UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Memory-Centric Architectures: Bridging the Gap Between Compute and Memory

Permalink
https://escholarship.org/uc/item/59z905nd

Author
Li, Shuangchen

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/59z905nc
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Memory-Centric Architectures: Bridging the Gap Between
Compute and Memory

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Electrical and Computer Engineering
by

Shuangchen Li

Committee in charge:

Professor Yuan Xie, Chair

Professor Margaret Marek-Sadowska
Professor Dmitri Strukov

Professor William Yang Wang

Dr. Hongzhong Zheng

March 2018

The Dissertation of Shuangchen Li is approved.

Professor Margaret Marek-Sadowska

Professor Dmitri Strukov

Professor William Yang Wang

Dr. Hongzhong Zheng

Professor Yuan Xie, Committee Chair

January 2018

Memory-Centric Architectures: Bridging the Gap Between Compute and Memory

Copyright (©) 2018
by

Shuangchen Li

il

Acknowledgements

First of all, I sincerely thank my advisor, Prof. Yuan Xie. I have learnt a lot from his board
knowledge, wisdom, passionate, skills and I wish I could have learnt them all. His research
foresight is what I admire and benefit from the most. This thesis is an example of his great
vision. Even more, he almost offers everything and leverages all the resource that he has to
make me a better researcher. Words are to pale to express all my gratitude.

Many thanks to Prof. Margaret Marek-Sadowska, Prof. Dmitri Strukov, Prof. William
Wang, and Dr. Hongzhong Zheng for serving in my dissertation committee and providing
valuable feedback to my qualify exam and this dissertation.

I would like to express my special thank to Prof. Sharon Hu and Prof. Yongpan Liu, who
first guided me into the research world during my Master study; Dr. Kaisheng Ma, who taught
and helped me a lot for turning into a computer architect when I was in Penn State University.
Also, I feel so lucky to have the chance working with Prof. Jishen Zhao and Dr. Cong Xu,
who taught me so much knowledge and skills that I will always regard them as my mentors.
I would also like to thank Dr. Hang Zhang, who was an alive Google Scholar and offered me
lots of help.

I sincerely thank coauthors of my research papers, including but not limited to Dr. Ping
Chi, Dr. Kaisheng Ma, Peng Gu, Liu Liu, Yu Ji, Dr. Tao Zhang, and Dr. Krishna Malladi. I
also sincerely thank Dr. Dimin Niu, Dr. Hongzhong Zheng, Dr. Niladrish Chatterjee, and Dr.
Mike O’Connor for their insightful mentoring during my internships.

I would like to thank all my friends in both PSU and UCSB and all members in the MDL
group and the SEAL group, for keeping me accompany in this journey, encouraging and inspir-
ing me, making me all these good memories. Especially Dr. Kaisheng Ma, Ziyang Qi, Xulong
Tang, Dr. Cong Xu, Dr. Ping Chi, Dr. Jia Zhan, Hang Zhang, Itir Akgun, Linuo Xue, Liu Liu,

Peng Gu, Maohua Zhu, Dylan Stow, Dr. Chao Zhang, and Dr. Xing Hu.

v

Last but not the least, I would like to thank my parents for their unconditional love and

support, and all my friends for making my life vivid.

Curriculum Vitze

Shuangchen Li
Education
2018 Ph.D. in Electrical and Computer Engineering (Expected), University of
California, Santa Barbara.
2014 M.A. in Electrical Engineering, Tsinghua University.
2011 B.S. in Electrical Engineering, Tsinghua University
Publications

[1]. Wei-Hao Chen, Wen-Jang Lin, Shuangchen Li, Li-Ya Lai, Jian-Wei Su, Huan-Ting Lin,
Chien-Hua Hsu, Heng-Yuan Lee, Yuan Xie, Shyh-Shyuan Sheu, and Meng-Fan Chang “A
16Mb Dual-Mode ReRAM Macro with Sub-14ns Computing-In-Memory and Memory Func-
tions Enabled by Self-Write Termination Scheme.” Proc. IEEE International Electron Devices
Meeting (IEDM), 2017.

[2]. Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan, and
Yuan Xie “DRISA: A DRAM-based Reconfigurable In-Situ Accelerator.” Proc. International
Symposium on Microarchitecture (MICRO), 2017.

[3]. Liu Liu, Ping Chi, Shuangchen Li, Yuanqing Cheng, and Yuan Xie. “Processing-In-
Memory Architecture Design for Accelerating Neuro-Inspired Algorithms.” Proc. Neuro-
inspired Computing Using Resistive Synaptic Devices, 2017.

[4]. Ping Chi, Shuangchen Li, and Yuan Xie. “Building Energy-Efficient Multi-Level Cell
STT-RAM Caches with Data Compression.” Proc. Asia and South Pacific Design Automation
Conference (ASP-DAC), 2017.

[5]. Chi Ping and Shuangchen Li (Equal Contribution), Cong Xu, Tao Zhang, Jishen Zhao,
Yu Wang, Yongpan Liu, Yuan Xie “PRIME: A Novel Processing-in-memory Architecture for
Neural Network Computation in ReRAM-based Main Memory.” Proc. International Sympo-
sium on Computer Architecture (ISCA), 2016.

[6]. Yu Ji, Youhui Zhang, Shuangchen Li, Ping Chi, Cihang Jiang, Peng Qu, Yuan Xie,
and Wenguang Chen “NEUTRAMS: Neural Network Transformation and Co-design under

Neuromorphic Hardware Constraints.” Proc. International Symposium on Microarchitecture
(MICRO), 2016.

[7]. Shuangchen Li, Cong Xu, Jishen Zhao, Lu Yu, Yuan Xie “Pinatubo: A Processing-
in-Memory Architecture for Bulk Bitwise Operations on Emergying Non-volatile Memories.”
Proc. the 53nd Annual Design Automation Conference (DAC), 2016.

[8]. Shuangchen Li, Liu Liu, Peng Gu, Cong Xu, and Yuan Xie “NVSim-CAM: A Circuit-
Level Simulator for Emerging Nonvolatile Memory based Content-Addressable Memory.” Proc.
International Comference on Computer-Aided Design (ICCAD), 2016.

vi

[9]. Peng Gu, Shuangchen Li, Dylan Stow, Russell Barnes, Liu Liu, Yuan Xie, and Eren
Kursun “Leveraging 3D Technologies for Hardware Security: Opportunities and Challenges.”
Proc. Great Lakes Symposium on VLSI (GLVLSI), 2016.

[10]. Ping Chi, Shuangchen Li, Yuanqing Cheng, Yu Lu, Seung H. Kang, Yuan Xie. “Archi-
tecture Design with STT-RAM: Opportunities and Challenges.” Proc. Asia and South Pacific
Design Automation Conference (ASP-DAC), 2016. (Invited)

[11]. Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li, Yong-
pan Liu, John Sampson, Yuan Xie, and Vijaykrishnan Narayanan. “Architecture Exploration
for Ambient Energy Harvesting Nonvolatile Processors.” Proc. International Symposium On
High Performance Computer Architecture (HPCA), 2015. (Best Paper Award, IEEE Micro
Top Picks 2016)

[12]. Kaisheng Ma, Xueqing Li, Shuangchen Li, Yongpan Liu, John Sampson, Yuan Xie,
and Vijaykrishnan Narayanan. “Nonvolatile Processor Architecture Exploration For Energy-
Harvesting Applications.” IEEE MICRO magazine, 2015.

[13]. Shuangchen Li, Ping Chi, Jishen Zhao, K.T. Tim Cheng, and Yuan Xie. “Leverag-
ing Nonvolatility for Architecture Design with Emerging NVM.” Proc. Non-Volatile Memory
System and Applications Symposium (NVMSA), 2015. (Invited)

[14]. Shuangchen Li, Ang Li, Yuan Zhe, Yongpan Liu, Peng Li, Guanyu Sun, Yu Wang,
Huazhong Yang, Yuan Xie. “Leveraging Emerging Nonvolatile Memory in High-Level Syn-
thesis with Loop Transformations.” Proc. International Symposium on Low Power Electronics
and Design (ISLPED), 2015.

[15]. Yongpan Liu, Zhewei Li, Hehe Li, Yiqun Wang, Xueqing Li, Kaisheng Ma, Shuangchen
Li, Mei-Fang Chiang, John Sampson, Yuan Xie, Jiwu Shu, and Huazhong Yang. “Ambient
Energy Harvesting Nonvolatile Processors: From Circuit To System.” Proc. the 52nd Annual
Design Automation Conference (DAC), 2015. (Invited)

[16]. Shuangchen Li, Ang Li, Yongpan Liu, Yuan Xie, and Huazhong Yang. “Nonvolatile
Memory Allocation and Hierarchy Optimization for High-Level Synthesis.” Proc. Asia and
South Pacific Design Automation Conference (ASP-DAC), 2015.

vii

Abstract

Memory-Centric Architectures: Bridging the Gap Between Compute and Memory
by

Shuangchen Li

While the compute part keeping scaling for decades, it becomes more and more difficult
for the memory part to catch up. This mismatch raises two grand challenges. One is referred
to as the “Memory Wall”, in which case the memory latency and bandwidth turn to be the
bottleneck, slowing down the system no matter how computing resource improves. The other
one is referred to as the “Power Wall”, which demands high power efficiency due to a limited
power budget, whereas the energy spent on the memory accesses dominates the total energy
consumption.

To address those challenges, this dissertation focuses on designing memory-centric archi-
tectures to bridge the gap between compute and memory. Two types of memory-centric ar-
chitecture have been investigated. The first one is the compute-capable memory architecture,
which moves computing resources to the memory side. The in-memory computing scheme ex-
plores larger bandwidth and reduces data movement overhead. The second one is the memory-
rich accelerator architecture, which is designed with tightly coupled high performance com-
puting resource and large-capacity on-die memory. The in-situ computing design provides
benefits as a non Von Neumann architecture. This dissertation has proposed five architectures,
which cover both compute-capable memory and memory-rich accelerator architectures, both
the offshore DRAM and emerging non-volatile memory technologies, and a large range of the

important applications, such as deep learning, database, graph processing.

viii

Contents

Curriculum Vitae vi
Abstract viii
1 Introduction 1
1.1 Demands for Memory-Centric Architectures 2
1.2 Opportunities and Challenges 3
1.3 Contributions e e e e 5
2 Backgrounds and Related Work 7
2.1 System Memory and DRAM Basics 7
2.2 Emerging Nonvolatile Memory Basics 8
2.3 Related Work on Compute-Capable Memories 11
2.4 Related Work on Memory-Rich Accelerators 13
3 PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for
Bulk Bitwise Operations 15
3.1 Motivationand Overview 16
3.2 Architecture and Circuit Design 18
3.3 System Support 23
34 Experiment 24
3.5 Summary ... 28
4 PRIME: Processing In ReRAM-based Main Memory 30
4.1 PRIME Architecture e 31
4.2 System-Level Design 45
43 Evaluation e e e e 52
44 Conclusion e e 58
5 NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory 59
5.1 Background and Overview 61

5.2 NVSIM-CAM Development 64
5.3 Design Space Exploration with NVSIM-CAM 72
5.4 3D Vertical ReRAM based TCAM: Acasestudy 75
5.5 Conclusion 81
6 DRISA: A DRAM-based Reconfigurable In-Situ Accelerator 83
6.1 OVErview e e e e e 86
6.2 DRISA Architecture 87
6.3 Accelerating CNN: ACase Study 102
6.4 Experiments 106
6.5 Discussion: Which DRISAisBetter 116
6.6 Conclusion 117
7 SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator 118
7.1 Background 120
7.2 Motivation e e e e e e e e e e e e e 122
7.3 SCOPE Architecture 126
74 HPDArithmetico 131
7.5 DISCUSSIONS . . . v v v v v et e e e e e e e e e e e 134
7.6 A Case Study: Deep Learning 135
7.7 EBXperiments e 137
7.8 Conclusion e 145
8 Summary 147
Bibliography 150

Chapter 1

Introduction

For decades, computing capability has been scaling quite well. For example, the performance
of world’s top-1 supercomputer has improved 33 x in the past decade [1], and the performance
of a single GPGPU has even boosted 24 x within three years'. The successes do not only owe to
the technology development (Moore’s Law), but also the innovations of computer architecture,
such as super-scaler and multi-core. However, while the compute part is developing so fast,
it is difficult for the memory part to catch up. For the memory bandwidth, it took JEDEC
seven years to develop from DDR3 to DDR4, and after that (year 2014), the peak memory
bandwidth of a single CPU [3] has only improved ~15%. For the memory capacity, the DRAM
DIMM capacity doubles every three years [4]. It is much slower than the computing scaling
(about doubling every two years) [3] and heavily relies on the about-to-end Moore’s Law. For
the memory latency, it has only improved 26% during 11 years [5]. The unbalanced scaling
capability between compute and memory turns into a grand gap.

To further illustrate the gap, Table 1.1 lists two-generation NVIDIA’s GPUs’ statistics as an
example. From Pascal architecture to Volta [2], the computing performance has boosted 5.5 x

while the memory bandwidth improvement is only 1.2x; the computing resource improved

IComparing NVIDIA K40 5Tops/s with V100 120Tops/s for FP16 performance [2].

1

Introduction Chapter 1

40% but the memory capacity stays the same.

Comp. peak perf. | Device Mem. Comp. tran- | Device Mem.
(FP16) Bandwidth sistors count Capacity
Pascal-2016 22Tops/s 732GB/s 15.3B 16GB
Volta-2017 120Tops/s 900GB/s 21.1B 16GB
5.5x vs. 1.2 1.4x vs. 1x

Table 1.1: An example of two generations NVIDIA GPU [2] to show the gap between com-
puting and memory.

1.1 Demands for Memory-Centric Architectures

While understanding the gap between the compute and memory, bridging the gap is severely
demanded from both the hardware and application points of view, motivating us to focus more
on the memory architecture design.

For the hardware, memory revolution is essential to achieve the exascale computing tar-
get, i.e., building a supercomputer that deliveries 10'80ps/s performance with 20GWatt power
budget by 2023 [6]. It requires 11x improvement on performance and 8.3 improvement
on energy efficiency in the next five years. There are two key challenges and both of them
are caused by memory problems. The first one is referred to as the “memory wall”, in which
case the memory bandwidth turns to the system bottleneck, and the performance cannot be im-
proved no matter how much the computing part improves. The second one is the “power wall”,
in which case energy efficiency must be improved before putting more compute resources due
to a limited power budget. In this aspect, studies have showed accessing the data takes more
than 2 orders of magnitude energy then the computing [7], leaving the memory as the bottle-
neck again.

For the applications, as we are entering the big data era, memory plays a more important

role. Especially, some of the killer applications are memory bound. They require very simple
2

Introduction Chapter 1

computing but feed on large memory bandwidth. For example, the graph processing applica-
tions could speedup ~5 x given ~5x more memory bandwidth [8].

As a conclusion, all these demands inspire us to rethink the whole computer architecture
design. After decades of mainly focusing on the computing part, now it is the time to shift our
major focus to the memory part. On contrary to the conventional compute-centric architecture,
all these demands are driving us towards the memory-centric architecture, which offers us

many opportunities to bridge the gap between compute and memory.

1.2 Opportunities and Challenges

Towards the memory-centric design, there are two promising types of architectures, as

shown in Figure 1.1.

Arch-1: Compute-Capable Memory Arch-2: Memory-Rich Accelerator
S o S E t""High Perf. |
: High ' : High ' ! : : :|
i Density ! | Density ! : Comp. Unit E
: Mem. . Mem. : ;[Large Mem. Unit } :
{(Light Comp.): i(Light Comp.): Host § g]
IR s R I [ITHUOTOTI000000000_ |
System Memory (DIMM/HMC/etc) Accelerator (PCle/QPl/etc)

Figure 1.1: Two solutions: the compute-capable memory and the memory-rich accelerator.

Compute-Capable Memory. The first architecture (Figure 1.1(a)) is referred to as the
compute-capable memory. This architecture designs lightweight computing units on the system
main memory side. It is also known as Processing-in-memory (PIM) or In-memory computing
architecture. The opportunities of this architecture is two folded. First, it can embrace the
large memory internal bandwidth, which is otherwise wasted. In addition, the closer towards
the memory cell, the larger bandwidth is offered. Figure 1.2(left side) shows the internal band-

width potential of both DDR3 and HMC memory. From the DDR or HMC IO to the row buffer,
3

Introduction Chapter 1

there is a 57x and 222 x bandwidth improvement, respectively. Second, it eliminates the data
movement between the host and the memory by performing the computing on the memory
side. As shown in the right side of Figure 1.2, the energy spent on the data movement from the
system memory (the last bar) is ~ 100x larger than that on computing, which highlights the
importance of minimizing the data movement. It is reported that the compute-capable memory
architecture can archive 80% energy saving on certain applications [8].

However, there are also challenges. First, memory industry is very cost-sensitive, so mem-
ory is highly optimized for low cost (density). Unfortunately, adding computing elements to
inside the memory would incur larger area overhead than that could be accepted by the indus-
try. Second, due to the cost-optimized design rule, it is difficult to design high performance
computing units on the memory side. Even if 3D stacking technology is adopted, the empty
area on the logic die where the memory-side processors locate are tightly limited [9]. For ex-
ample, one of the HMC-based compute-capable memory reported 132Gops/s [10], whereas a

state-of-the-art GPGPU offers 120Tops/s [2].

1.E+05 1.E+05

. [ODDR3-1600 ®HMC |
§_1.E+O4 S 1.E+04 |
o 8-
= 1.E+03
I S 1.E+03 |
2 1.E+02 I @
c

2 L 1.E+02
@ 1.E+01 ’_‘
[a0]

1.E+00 1.E+01

Bus (Serdes) Chip/Die 10 Bank Row Buffer INT Main

Comp. Comp Cache Cache Cache Memory

Figure 1.2: Left: Memory bus and internal bandwidth at chip/bank hierarchy for both DDR3
and HMC. Right: Data movement dominates the energy consumption (dynamic energy only
with 32K-256K-4M-8G memory hierarchy at 45nm [11]).

Memory-Rich Accelerator. The second architecture (Figure 1.1(b)) is referred to as the
memory-rich accelerator. It tries to merge the compute and memory by packing more on-die
memories with the accelerator. The opportunities are obvious: accessing on-chip memory
embraces larger bandwidth, lower latency, and smaller energy consumption. The benefits en-

courage many designs to adopt this architecture. For example, the neural network accelera-

4

Introduction Chapter 1

tor Dadiannao [12] packs 36 MB eDRAM scratchpad memory, Google’s TPU packs a 24MB
SRAM which consumes the same area as processing units [13], and POWER-9 [14] also packs
128MB eDRAM L3 cache.

However, the challenges are also noticeable. The capacity of the memory that can be
packed on-die is limited. This is because to be compatible with CMOS technology, the on-
die memory are either SRAM or eDRAM. Their memory cell area is large: SRAM cell is
~ 146F? [15] and eDRAM cell is 60F> ~ 80F? [16], whereas the commodity DRAM is
only 6F2. An exception is the interposer-based architecture, such as Volta GPU [2], which
packs commodity DRAM with processors through links on the interposer. However, its band-
width, latency, energy consumption are all not compatible with the on-die memory. For ex-
ample, the on-die eDRAM in Dadiannao [12] offers 1.65TB/s bandwidth, 4.95ns latency, and
0.07pJ/bit [15] energy efficiency, whereas the interposer connected HBM in V100 [2] only has
0.9TB/s bandwidth, but requires ~200ns latency [17] and 3.7pJ/bit [18] energy.

1.3 Contributions

The goal of this dissertation is to explore both the compute-capable memory and memory-
rich accelerator architecture, to bridge the gap between compute and memory. Meanwhile, we
have addressed the challenges of both them, i.e., the tight area constraints for the compute-
capable memories and the limited memory capacity for the memory-rich accelerator. To this
end, the key idea of this dissertation is to leverage memory cell themselves for computing.
Specifically, we have two compute-capable memory designs.

e PINATUBO, which accelerates the bulk bitwise operations inside the NVM-based main
memory with minimal area overhead by leveraging the resistive feature of the memory
cells.

e PRIME, a morphable processing-in-memory architecture for ReRAM-based main mem-

5

Introduction Chapter 1

ory, which efficiently accelerates neural computation by leveraging ReRAMs unique yet
largely overlooked property having both computation and data storage capability in one
device.

We also have three memory-rich accelerator designs.

e NVCAM, which designs the accelerator with the content-addressable memory to serve
searching tasking with high energy efficiency.

e DRISA, which is an in-situ accelerator built using DRAM technology with the major-
ity of the area consisting of DRAM memory arrays, and computes with logic on every
memory bitline, achieving the goal of large memory capacity for the accelerator.

e SCOPE, which combines the stochastic computing arithmetic with the DRISA’s in-situ
architecture, to further improve its performance.

The architectures that proposed in this dissertation have a board coverage in both terms
of technologies and the applications: three of the designs adopts the emerging non-volatile
memory technologies, and the other two designs leverage the offshore DRAM technology. In
addition, these architectures have covered a large range of applications such as deep learning
inference and training, graph processing, database, and bioinformatics.

To conclude, by exploiting the memory cells’ special features, we leverage the memory
for the computing tasks, and build better memory-centric architectures to further close the gap
between compute and memory. The architectures proposed highlight their contributions to
tackle the tight area constraints challenge for the compute-capable memory architecture and

the limited memory capacity problem for the memory-rich accelerator architecture.

Chapter 2

Backgrounds and Related Work

In this chapter, we first introduce basic backgrounds about the system memory. Then, we
survey the related work for both the compute-cable memory and the memory-rich accelerator
architectures, with emphasize on demonstrate the distinguishing of the architecture proposed

in this dissertation.

2.1 System Memory and DRAM Basics

Figure 2.1 shows the basic circuit of commercial DRAMs. A DRAM chip contains multiple
banks, which are connected with global buses. Inside a bank, there are subarrays that share
global BLs. Global decoders decode parts of the addresses to the global wordlines (WLs) that
connected to different subarrays. Cell matrices (Mats) are basic memory arrays that line up and
make a subarray. Every Mat has its private local WL decoders, drivers, and sense amplifiers
(SAs). A DRAM cell is constructed with a access transistor and a capacitor (1T1C). Within
one chip, only a single row in a subarray is activated at one time. The Mats in the subarray
work in a lock-step manner.

A DRAM process and a logic process are totally different and incompatible [19]. It is

7

Backgrounds and Related Work Chapter 2

i [] b g Subarry —y Al_ccess i
| (1) 1 .

e | Bank 2| | mat | Mat | we T i

1| @ L -l L ' =

e s Il :

'@ ° ; e i

i [e) O | [Global WL~ e , i

= Global B Capacitor BLl :

" Bank Buffer SA E

Ry RS S S SR N SRR

(a) Chip (b) Bank and Subarray (c) Mat and Cell

Figure 2.1: The DRAM basics. Glossary: WL - Wordline; BL - Bitline; SA - Sense Amplifier;
Dec - Decoder.

difficult to build logics with a DRAM process, or the other way around. The transistors in
a DRAM process are extremely optimized for low leakage, which draws their speed down.
For example, substrate bias are added to increase threshold voltage for extra leakage saving.
Moreover, a DRAM process usually has three metal layers but logic processes can get more
than twelve metal layers, which means logic circuits in a DRAM process will suffer from
higher interconnection overhead. As a summary, building complex logic circuits in a DRAM
process is problematic with 22% performance degradation and 80% area overhead [19], which
is a major reason why earlier PIM researches that put processors and DRAM on the same die
haven’t turned into a success. On the other hand, building DRAM cells with a logic process
turns to be eDRAMSs, which is not efficient, either. eDRAM results in 10x area overhead [16,

20], around 4 x more power, and 100 x shorter retention time [20], compared with DRAMs.

2.2 Emerging Nonvolatile Memory Basics

Device. Although the working mechanism and the features varies, the three typical types
of the NVM have common basics: all of them are based on resistive cell. To represent logic
“0” and “17, they rely on the difference of cell resistance (Rpigh Or Rjow), Which is archived by

different state of the device, i.e., high-resistance state (HRS) and low-resistance state (LRS). To

8

Backgrounds and Related Work Chapter 2

switch between logic “0” and “17, certain polarity, magnitude, and duration voltage is required

to be applied on the cell.

HRS LRS 1HRS 1LRS
Metal < > Free WL
m “ Chalco- Layer e I
] genide 2
I [
-ence SL B
Metal T T Layer
(a) PCM cell (b) STT-MRAM cell (c) ReRAM cell (d) 1T1R cell

Figure 2.2: Device Basics for (a) PCM (b) STT-MRAM (c) ReRAM, and the (d) ITIR Cell Structure.
PCM [21] uses phase change material (e.g., chalcogenide glass) to archive two device

states. The amorphous state provides HRS and the crystalline state is the LRS. They represent
logic “0” and “1” respectively. Switching between those two states requires different heating
temperatures and durations, i.e., different write current. Specifically, changing from LRS to
HRS is referred as a RESET operation, which requires a high and short current pulse. In
contrast, switching from HRS to LRS is denoted as a SET operation, which requires a moderate
and long current pulse.

STT-MRAM [22] relies on the magnetic tunnel junction (MTJ) with a fixed ferromagnetic
layer (reference layer) and a programmable ferromagnetic layer (free layer). The magnetiza-
tion direction of the free layer provides two different states. Parallel magnetization direction
of the free and reference layer leads to LRS (logic “0”), and in contrast, the anti-parallel mag-
netization direction leads to HRS (logic “1”). To write logic “1”, a negative voltage difference
is required. To write logic “0”, a positive voltage difference needs to be established.

ReRAM [23] sandwiches a metal-oxide layer with two metal layers. The nanoscale con-
ductive filaments (CF) provides two states. A well established CF provides LRS (logic “17)
and cut-off CF leads to HRS (logic “0”). When certain polarity voltage is required to switch
between HRS and LRS.

Peripheral Circuitry. Because of the special feature of the memory cell device, e.g., resis-

tive cell instead of charge-based cell, the peripheral circuitry demands special designs. Cell

9

Backgrounds and Related Work Chapter 2

structure of all the three technologies can implement the memory block with a 1TIR struc-
ture [24-26], where it has a wordline (WL) controlling the access transistor, a bitline (BL) for
data sensing, and source line (SL) to sense to provide write current (for ReRAM and STT-
MRAM in particular). In order to provide high density, 1S1R (1-selector-resistor) structure is
proposed for both PCM [27] and ReRAM [28] with only 4F 2 cell area. 3D-stacked memory-
cell is also proposed [29,30]. To further improve the density, multi-level cell (MLC) is pro-
posed for all of those three NVM [31-33].

Sense amplifier (SA) is the major different between the NVM and conventional SRAM or
DRAM. While conventional charge-based memory using a few transistor to amplify the charge
difference, the resistance-based NVM has to convert the difference in resistance (Rpjgn /Riow) as
voltage or current, which are referred as voltage and current sensing (VSA and CSA), respec-
tively. NVM prefers CSA [34] due to its advantages of fast access and robustness of variation.
Besides, NVM requires extra reference cells for sensing '. Considering the large area of CSA
and the extra reference cell, it is typical to share SA among adjacent columns, which leads to a
smaller row buffer size [35].

Other difference besides SA in the peripheral circuitry also exits. The write driver (WD) [24,
30] is design to provide certain polarity, magnitude, and duration voltage or current across the
BL and the SL. The support circuit for restore in DRAM is not necessary in NVM, thanks
to its non-volatility and non-destructive read. Extra lift time enhancement circuit is probably
required for PCM and ReRAM, e.g., flip-N-write [36] and read-before-write [37].
NVM-based system main memory. Asthe NVM technology turns mature, all the three tech-
nologies (PCM [37-39], ReRAM [40], and STT-MRAM [41-43]) are proposed as a candidate
to be the next generation main memory, due to NVM’s high density, better scalability, and
ultra-low standby power. In order to tackle the limited lifetime problem of PCM and ReRAM,

architecture-level solution such as wear-leveling [39] and comparison-based write [36,37] are

! Although self-reference is possible in STT-MRAM, it incurs large latency/energy overhead.
10

Backgrounds and Related Work Chapter 2

proposed. To migrate the expensive write operation overhead, architecture supports such as

write-cancelation [44] and data preset [45] are proposed.

2.3 Related Work on Compute-Capable Memories

Early Effort on Processing-in-Memory Architectures The idea of PIM can be traced back to
the 1990s. A bulk of works, including IRAM [46], DIVA [47], Active Page [48], FlexRAM [49],
proposed the PIM-based architecture by integrating computing logics and DRAM on one chip.
We refer to these work as 2D-based PIM. Based on the observation that memory latency is
4x larger than raw DRAM access time, D. Patterson [46] proposed IRAM to merge the pro-
cessing and DRAM on the same chip. By replacing the original cache hierarchy with DRAM
on Alpha 21164 (the fastest processor at that time), they were able to achieve 1x-2x speedup
on the applications of database and sparse computing. To further exploit the internal DRAM
bandwidth, IRAM also explores the possibility of introducing PIM to vector processor, while
the implementation of PIM on traditional 2D DRAM experiences great challenges in cost and
manufacture. These work has been criticized for the difficulty of integrating complex logics
with DRAM technologies. Even including simple adders in DRAM process technologies in-
duces large overhead and low effective performance. However, recently, this approach has
been revisited. Buffered Comparator [50,51]) puts lightweight comparator with DRAMs. Pro-
PRAM [52] leverages 2D NVM for PIM. It uses NVM’s lifetime enhancement peripheral cir-
cuits (data-comparison write and flip-n-write) for in memory computing. Even thought the area
overhead is partially solved by adding much less computing unit, the computing performance
of that turns into a new bottleneck.

As a summary, PIM sticks with a main memory position that is optimized for memory
density. Building logic elements inside the memory benefit a lot, but the area overhead makes
a server limitation.

11

Backgrounds and Related Work Chapter 2

3D Stacking based Near Data Computing Architectures The emerging technology of 3D
die stacking, either through-silicon-via (TSV) based 3D integration or interposer-based 2.5D
integration, has alleviated the manufacture concerns of PIM to some extent, which is referred
to as 3D-based PIM. The vertical 3D die-stacking with TSVs allows the stacking of multiple
memory dies directly on top of the logic die to achieve high memory bandwidth; while the
2.5D silicon interposer allows a high bandwidth connection between the memory stack and
the logic die on the same substrate. There are two main streams for the 3D-stacking memory:
Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) [8, 10, 53—-66]. Since
the power and area budget is quite limited in the logic die, the processor in HMC prefers
to be light-weight, which might not support complex functions, such as branch prediction,
dynamic scheduling, and cache hierarchy. IBM [67] proposed Active Memory Cube (AMC),
which adds computational elements on the base logic layer to accelerate scientific computing
applications. They designed the base logic layer for efficiency and versatility and came up
with the following design choices: no caches, hardware scheduling of instructions, a vector
instruction set, predicated execution, and gather-scatter accesses directly to memory in the
Cube. Several attempts have also been made on HMC-based energy efficient domain specific
accelerators. Guo et al. [68] proposes to integrate various accelerators into the base logic layer
to obtain an energy efficient accelerated library for memory bounded operations, e.g. matrix
operation, data reshaping, and FFT. Gao et al. [69] proposed Tetris, an HMC-based neural
network accelerator, which moves the logic of the accumulation operation to the DRAM die,
or further into the bank, to reduce the double access of the intermediate results in the neural
network applications.

As a summary, the 3D-stacking based PIM architectures are more practical after that re-
searches have taken the lessons from the early 2D-based PIM effort. It revives the PIM research
with the help of the severer-than-ever demands of bridging the gap between compute and mem-

ory. However, the empty area on the logic die is limited [9], not to mention the fixed power

12

Backgrounds and Related Work Chapter 2

budget and thermal constraints for the system memory. As a result, the computing performance
of the 3D-based PIM is limited. In addition, as shown in Figure 1.2, the closer the computing
units are designed to the data, the more benefit we can have from the compute-capable mem-
ory architecture. Though on the memory side, the computing units and the memory are still
in different dies in the 3D-based PIM. It might not embrace as much as the benefit comparing
with the 2D-based PIM.
Revolutionary DRAM Designs Recent research has evolved DRAM memory by adding ad-
ditional functional capability [70]. Rowclone [71] has supported in-DRAM row-to-row copy
with minor modification on existing DRAMs. Seshadri et al. [72] has explored fast bulk bit-
wise operations in DRAMs. However, it only support AND/OR operations, which are not logic
complete, and hence not for general purpose. DRAF [73] has proposed a DRAM-based FPGA,
where DRAM cells are used as look-up tables.

As a summary, the revolutionary DRAM is more like a light version of the 2D-based PIM.
To address the cost-sensitive challenge, they come up with smart ideas to minimize the area
overhead. However, this come with the drawback of low computing performance, or limited

support for the computing operation types.

2.4 Related Work on Memory-Rich Accelerators

Memory-Rich Processors Interposer-based 2.5D integration is already embraced by the indus-
try for integrating 3D stacked memories with large-scale designs, due to its feasibility over true
3D integration in terms of cost and better thermal profile. For example, AMD’s Fury X GPU
integrates 4GB of 3D stacked High-Bandwidth Memory (HBM) [74]; Nvidia’s Pascal/Volta
GPU increases the capacity of HBM to 16GB [75]; Intel’s Knights’ Landing CPU also inte-
grates 16GB high bandwidth stacked DRAM [76]. Xilinx recently also announced the Virtex
Ultrascale+ FPGA that integrates 8GB HBM [77]. Lots of designs that accelerate NN appli-
13

Backgrounds and Related Work Chapter 2

cations with various platforms (ASIC, GPU, FPGA) with large on-chip memory [78—80] have
been proposed. TrueNorth [8§1-84] computes with on-chip SRAM-based crossbars and coun-
ters. DaDianNao [78] has 36 MB of on-chip memories, but DRISA has 512MB. NeuroCube [10]
is a PIM architecture for NNs. Though its memory capacity is large, its performance is low.
As a summary, as mentioned in the introduction, the interposer connected memories, al-
though having large memory, the bandwidth, latency, and energy efficiency are not as good as
the on-die memories. On the other hand, the on-die memory’s density is low and the memory
capacity packed is not large enough.
In-situ Computing Accelerators Automata [85] has implemented a reconfigurable processor
with a DRAM process. It computes with counters and finite-state machines, by storing pro-
grammed states in the DRAM while streaming in the data. Mikamonu [86—88] has proposed
to compute with the NOR logic provided by the 3T1C DRAM cell or NVMs, but their proposal
does not have data movement mechanisms. Therefore, complex functions (like full adders)
are not supported. NVM is very suitable for associate memory implementation [89-93]. Re-
searches have use the NVM-based TCAM in CPU [94], GPGPU [95], and accelerators [96,97].
NVM is also designed as LUT [98] and nonvolatile logic gates [99]. Recent work also take use
of ReRAM crossbar’s special feature, to implement IMPLY-based logics [100-102]. Also tak-
ing use of the crossbar structure, researcher are able to implement dot-product function with

high energy efficiency, which is widely used in deep learning acceleration [103, 104].

14

Chapter 3

PINATUBO: A Processing in Emerging
Non-volatile Memory Architecture for

Bulk Bitwise Operations

The goal of this chapter is to show Non-volatile memory (NVM)’s potential on enabling PIM
architecture, while almost all existing efforts focus on DRAM systems and heavily depend on
3D integration. NVM’s unique features, such as resistance-based storage (in contrast to charge-
based in DRAM) and current-sensing scheme (in contrast to the voltage-sense scheme used in
DRAM), are able to provide inherent computing capabilities [101, 105]. Therefore, NVM can
enable PIM without the requirement of 3D integration. In addition, it only requires insignificant
modifications to the peripheral circuitry, resulting in a cost-efficient solution. Furthermore,
NVM-enabled PIM computation is based on in-memory analog signals, which is much more
energy efficient than other work that uses digital circuits.

In this chapter, we propose PINATUBO!, a Processing In Non-volatile memory ArchiTecture

"Mount Pinatubo is an active volcano that erupted in 1991. We name our PIM design after Pinatubo, because
PIM researches also had a great moment in 1990s, and we believe it is their time to revive. The novel architecture’s
impact will be like a volcano eruption.

15

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

for bUlk Bitwise Operations, including OR, AND, XOR, and INV operations. When PINATUBO
works, two or more rows are activated simultaneously, the memory will output the bitwise op-
erations result of the open rows. PINATUBO works by activating two (or more) rows simulta-
neously, and then output of the memory is the bitwise operation result upon the open rows. The
results can be sent to the I/O bus or written back to another memory row directly. The major
modifications on the NVM-based memory are in the sense amplifier (SA) design. Different
from a normal memory read operation, where the SA just differentiates the resistance on the
bitline between Ryigp and Rjow, PINATUBO adds more reference circuit to the SA, so that it
is capable of distinguishing the resistance of {Rhigh/Z (logic “0,0”), Rhigh| |Riow (logic “0,17),
Riow/2 (logic “1,17)} for 2-row AND/OR operations. It also potentially supports multi-row
OR operations when high ON/OFF ratio memory cells are provided. Although we use 1T1R
PCM as an example in this paper, PINATUBO does not rely on a certain NVM technology or
cell structure, as long as the technology is based on resistive-cell.

Our contributions in this chapter are listed as follows,

e We propose a low-cost processing-in-NVM architecture with insignificant circuit modi-
fication and no requirement on 3D integration.

e We design a software/hardware interface which is both visible to the programmer and
the hardware.

e We evaluate our proposed architecture on data intensive graph processing and data-base
applications, and compare our work with SIMD processor, accelerator-in-memory PIM,

and the state-of-the-art in-DRAM computing approach.

3.1 Motivation and Overview

Bitwise operations are very important and widely used by database [106], graph process-

ing [107], bio-informatics [108], and image processing [109]. They are applied to replace
16

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

expensive arithmetic operations. Actually, modern processors have already been aware of this

strong demand, and developed accelerating solutions, such as Intel’s SIMD solution SSE/AVX.

kCF’Uﬂ[:""zxm"(ia'ré)"‘::-]

{Caches (idle);:

All data via the
Narrow DDR bus

Operand Row 1 |

Only CMD
ROW-ADR(g»

~

Operand Row 1 |
| Operand Row 2 |

Operand Row 2 |

Operand Row n |

Operand- Row n |

| Result EOW | [ResultRow <
" “NVM-based Main Memory/a
(a) Conventional Approach (b) Pinatubo

Figure 3.1: Overview: (a) Computing-centric approach, moving tons of data to CPU and write
back. (b) The proposed PINATUBO architecture, performs n-row bitwise operations inside
NVM in one step.

We propose PINATUBO to accelerate the bitwise operations inside the NVM-based main
memory. Figure 3.1 shows the overview of our design. Conventional computing-centric archi-
tecture in Figure 3.1 (a) fetches every bit-vector from the memory sequentially. The data walks
through the narrow DDR bus and all the memory hierarchies, and finally is executed by the
limited ALUs in the cores. Even worse, it then needs to write the result back to the memory,
suffering from the data movements overhead again. PINATUBO in Figure 3.1 (b) performs
the bit-vector operations inside the memory. Only commands and addresses are required on
the DDR bus, while all the data remains inside the memory. To perform bitwise operations,
PINATUBO activates two (or more) memory rows that store bit-vector simultaneously. The
modified SA outputs the desired result. Thanks to in-memory calculation, the result does not
need the memory bus anymore. It is then written to the destination address thought the WD
directly, bypassing all the I/O and bus.

PINATUBO embraces two major benefits from PIM architecture. First, the reduction of

data movements. Second, the large internal bandwidth and massive parallelism. PINATUBO

17

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

performs a memory-row-length (typical 4Kb for NVM) bit-vector operations. Furthermore, it
supports multi-row operations, which calculate multi-operand operations in one step, bringing

the equivalent bandwidth ~1000x larger than the DDR3 bus.

3.2 Architecture and Circuit Design

In this section, we first show the architecture design that enables the NVM main memory
for PIM. Then we show the circuit modifications for the SA, LWL driver, WD, and global
buffers.

3.2.1 From Main Memory to PINATUBO

Main memory has several physical/logic hierarchies. Channels runs in parallel, and each
channel contains several ranks that share the address/data bus. Each rank has typical 8 physical
chips, and each chip has typical 8 banks as shown in Figure 3.2 (a). Banks in the same chip
share the I/O, and banks in different chips work in a lock-step manner. Each bank has several
subarrays. As Figure 3.2 (b) shows, Subarrays share the GDLs and the global row buffer. One
subarray contains several MATs as shown in Figure 3.2 (c), which also work in the lock-step
manner. Each Mat has its private SAs and WDs. Since NVM’s SA is much larger than DRAM,

several (32 in our experiment) adjacent columns share one SA by a MUX.

(a) Chip (inter bank op.) (b) Bank (inter-subarray op.) (c) Mat (intra-subarray op.)

P
] s Subarrays L . SL_‘_‘_m_ Bl h
: —

I-I"II _,_‘_m_ III-I"

MUX Mux_#SSh

Row Buffer (SA w/ Intra-sub operations))

(Inter-sub operations) (WD (w/ in-place update))

Figure 3.2: The PINATUBO Architecture. Glossary: Global WordLine (GWL), Global
DatalLine (GDL), Local WordLine (LWL), SelectLine (SL), BitLine (BL), Column Select-
Line (CSL), Sense Amplifier (SA), Write Driver (WD).

>/

Row’

OutputBuffer c
(Inter-bank "
_operations

18

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

According to the physical address of the operand rows, PINATUBO performs three types
of bitwise operations: intra-subarray, inter-subarray, and inter-bank operations.
Intra-subarray operations. If the operand rows are all within one subarray, PINATUBO
performs intra-subarray operations in each MAT of this subarray. As shown in Figure 3.2 (c),
the computation is done by the modified SA. Multiple rows are activated simultaneously, and
the output of the modified SA is the operation result. The operation commands (e.g., AND or
OR) are sent by the controller, which change the reference circuit of the SA. We also modify
the LWL driver is also implemented to support multi-row activation. If the operation result is
required to write back to the same subarray, it is directly fed into the WDs locally as an in-place
update.

Inter-subarray operations. If the operand rows are in different subarrays but in the same
bank, PINATUBO performs inter-subarray operations as shown in Figure 3.2 (b). It is based on
the digital circuits added on the global row buffer. The first operand row is read to the global
row buffer, while the second operand row is read onto the GDL. Then the two operands are
calculated by the add-on logic. The final result is latched in the global row buffer.

Inter-bank operations. If the operand rows are even in different banks but still in the same
chip, PINATUBO performs inter-bank operations as shown in Figure 3.2 (a). They are done by
the add-on logic in the I/0 buffer, and have a similar mechanism as inter-subarray operations.

Note that PINATUBO does not deal with operations between bit-vectors that are either in
the same row or in different chips. Those operations could be avoided by optimized memory

mapping, as shown in Section 3.3.

3.2.2 Peripheral Circuitry Modification

SA Modification: The key idea of PINATUBO is to use SA for intra-subarray bitwise opera-

tions. The working mechanism of SA is shown in Figure 3.3. Different from the charge-based

19

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

DRAM/SRAM, the SA for NVM senses the resistance on the BL. Figure 3.3 shows the BL
resistance distribution during read and OR operations, as well as the reference value assign-
ment. Figure 3.3 (a) shows the sensing mechanism for normal reading (Though the SA actually
senses currents, the figure presents distribution of resistance for simplicity). The resistance of
a single cell (either Rjoy Or Rpjgp) is compared with the reference value (Rief.reaq), determining
the result between “0” and “1”. For bitwise operations, an example for a 2-row OR operation
is shown in Figure 3.3 (b). Since two rows are activated simultaneously, the resistance on the
BL is the parallel connection of two cells. There could be three situations: Rjqy||Rjow (logic
“17,“17), Riow||[Rnigh (“17,0”), and Rhpien ||Rhigh (0”,0)2. In order to perform OR operations,
the SA should output “1” for the first two situations and output “0” for the last situation. To
achieve this, we simply shift the reference value to the middle of Rjow ||Rhigh and Rhigh ||Rhigh.
denoted as Ri.t.o- Note that we assume the variation is well controlled so that no overlap exists
between “1” and “0” region. In summary, to compute AND and OR, we only need to change

the reference value of the SA.

A
SA “w » [{Tatd “ » H I 111 » H
outou t|:> 1 reg/onl 0” region 1” region I 0” region
CTAN AN VANANE BVA\
R | | >
CELLL Rlcw Rrefread Rhlgh R|0N||R|0N RION”Rhlgh Rrefor Rhlgh”RhIgh
value ﬁ “177 “077 (“ ” “177) (“177 “0!!) (“077, “O")

(a) SA reads with Rietreaq- (b)) SA processes OR with R refor

Figure 3.3: Modifying Reference Values in SA to Enable PINATUBO.

Figure 3.4 (a) shows the corresponding circuit modification based on the CSA [110]. As
explained above, we add two more reference circuits to support AND/OR operations. For
XOR, we need two micro-steps. First, one operand is read to the capacitor Cj,. Second, the
other operand is read to the latch. The output of the two add-on transistors is the XOR result.

For INV, we simply output the differential value from the latch. The output is selected among

24/|” denotes production over sum operation.

20

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

READ, AND, OR, XOR, and INV results by a MUX. Figure 3.4 (b) shows the HSPICE vali-
dation of the proposed circuit. The circuit is tested with a large range of cell resistances from

the recent PCM, STT-MRAM, and ReRAM prototypes [111].

08p0l1/00/1/0 |1[|1 [0
—_—— Row Data
| OR/AND o1 ol1l10l1] ol ol 1] |1
| overhead, —
BL REF , 08 ——
rg [| Contrl. (V)] OR AND| XOR
%8 LY
,§<"§ L or X 2: 0.8
7 —|— ourt .
¢ b xRNy 08
ENA outT\V)l1o01001 0 1 0 1
0

Figure 3.4: Current Sense Amplifier (CSA) Modification (left) and HSPICE Validation (right).

Multi-row Operations: PINATUBO supports multi-row operations that further accelerate
the bitwise operations. A multi-row operation is defined as calculating the result of multiple
operands at one operation. For PCM and ReRAM which encode Ry;gp as logic “0”, PINATUBO
can calculate n-row OR operations®. After activating n rows simultaneously, PINATUBO needs
to differentiate the bit combination of only one “1” that results in “1”, and the bit combination
with all “0” that results in “0”. This leads to a reference value between Rioy||Rpigh/(n — 1)
and Rpign/n. This sensing margin is similar with the TCAM design [112]. State-of-the-art
PCM-based TCAM supports 64-bit WL with two cells per bit. Therefore we assume maximal
128-row operations for PCM. For STT-MRAM, since the ON/OFF ratio is already low, we
conservatively assume maximal 2-row operation.

LWL Driver Modification: Conventional memory activates one row each time. However,
PINATUBO requires multi-row activation, and each activation is a random-access. The mod-

ifications of the LWL driver circuit and the HPSICE validation are shown in Figure 3.5. Nor-

3Multi-row AND in PCM/ReRAM is not supported, since it is unlikely to differentiate Rioy /(1 — 1)||Rpign and
Riow/n, when n > 2.

21

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

mally, the LWL driver amplifies the decoded address signal with a group of inverters. We
modify each LWL drive by adding two more transistors. The first transistor is used to feed the
signal between inverters back and serves as a latch. The second transistor is used to force the
driver’s input as ground. During the multi-row activation, it requires to send out the RESET
signal first, making sure that no WL has latched anything. Then every time an address is de-
coded, the selected WL signal is latched and stuck at VDD until the next RESET signal arrives.
Therefore, after issuing all the addresses, all the corresponding selected WL are driven to the

high voltage value.

RESET(V) | [
DEC n(V) | [|

5

WL_n (V) 1'O_f—L

Figure 3.5: Local Wordline (LWL) Driver Modification (left) and HSPICE Validation (right).

WD Modification: Figure 3.6 (a) shows the modification to a WD of STT-MRAM/ReRAM.
We do not show PCM’s WD since it is simpler with unidirectional write current. The write
current/voltage is set on BL or SL according to the write input data. Normally, the WD’s input
comes from the data bus. We modify the WD circuit so that the SA result is able to be fed

directly to the WD. This circuit bypasses the bus overhead when writing results back to the

memory.
Cantr]
ng
= Buffer
Sl or
ILL——M1| 10 Buffer

Overhead

Figure 3.6: (a) Modifications to Write Driver (WD). (b) Modifications for Inter-Sub/Bank Operations

Global Buffers Modification: To support inter-subarray and inter-bank operations, we have

to add the digital circuits to the row buffers or IO buffers. The logic circuit’s input is the data
22

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

from the data bus and the buffer. The output is selected by the control signals and then latched

in the buffer, as shown in Figure 3.6 (b).

3.3 System Support

Figure 3.7 shows an overview of PINATUBO’s system design. The software support con-
tains the programming model and run-time supports. The programming model provides two
functions for programmers, including the bit-vector allocation and the bitwise operations. The
run-time supports include modifications of the C/C++ run-time library and the OS, as well as
the development of the dynamic linked driver library. The C/C++ run-time library is modified
to provide a PIM-aware data allocation function. It ensures that different bit-vectors are allo-
cated to different memory rows, since PINATUBO is only able to process inter-row operations.
The OS provides the PIM-aware memory management that maximizes the opportunity for call-
ing intra-subarray operations. The OS also provides the bit-vector mapping information and
physical addresses (PAs) to the PIM’s run-time driver library. Based on the PAs, the dynamic
linked driver library first optimizes and reschedules the operation requests, and then issues ex-
tended instruction for PIM [113]. The hardware control part utilizes the DDR mode register
(MR) and command. The extended instructions are translated to DDR commands and issued
through the DDR bus to the main memory. The MR in the main memory is set to configure the

PIM operations.

Software Stack Hardware Control

: . . i
i Programming Model i i C Run-time | { OS Driver Lip_: i -CMO ,\5de Register
e Lib L (pim- schedule) i [ADR | m

H H HE)

Y i i(pim-aware; i L |_{ .

{| Pim_op(dst,src1,src2, | i\ “malloc J; §(expose PA by Sys-) (“extend): i FDATSL — Memory with PIM)
i 3 call ISA_ /'

: Main Memory

Figure 3.7: PINATUBO System Support.

23

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

3.4 Experiment

In this section, we compare PINATUBO with state-of-the-art solutions and present the

performance and energy results.

3.4.1 Experiment Setup

The three counterparts we compare are described below:

SIMD is a 4-core 4-issue out-of-order x86 Haswell processor running at 3.3GHz. It also
contains a 128-bit SIMD unit with SSE/AVX for bitwise operation acceleration. The cache
hierarchy consists of 32KB L1, 256KB L2, and 6MB L3 caches.

S-DRAM is the in-DRAM computation solution to accelerate bitwise operations [114]. The
operations are executed by charges sharing in DRAM. Due to the read-destructive feature of
DRAM, this solution requires copying data before calculation. Only 2-row AND and OR are
supported.

AC-PIM is an accelerator-in-memory solution, where even the intra-subarray operations are
implemented with digital logic gates as shown in Figure 3.6 (b).

The S-DRAM works with a 65nm 4-channel DDR3-1600 DRAM. AC-PIM and PINATUBO
work on 1TIR-PCM based main memory whose tRCD-tCL-tWR is 18.3-8.9-151.1ns [115].
SIMD works with DRAM when compared with S-DRAM, and with PCM when compared with
AC-PIM and PINATUBO. Note that the experiment takes ITIR PCM for a case study, but
PINATUBO is also capable to work with other technologies and cell structures.

The parameters for S-DRAM are scaled from existing work [114]. The parameters for AC-
PIM are collected from synthesis tool with 65nm technology. As to parameters for PINATUBO,
the analog/mixsignal part, including SA, WD, and LWL, is extracted from HSPICE simulation;
the digital part, including controllers and logics for inter-subarray/bank operations, is extracted
from the synthesis tool. Based on those low-level parameters, we heavily modify NVsim [118]

24

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise

Operations Chapter 3

Vector: pure vector OR operations.

dataset: e.g. 19-16-1(s/r) means 2'%-lentgh vector, 2'° vectors, 2'-row OR ops
(sequntial/random access)

Graph: bitmap-based BFS for graph processing [107].

dataset: dblp-2010, eswiki-2013,amazon-2008 [116]

Database: bitmap-based database (Fastbit [106]) application.

dataset: 240/480/720 number of quraying on STAR [117]

Table 3.1: Benchmarks and Data Set

for the NVM circuit modeling, and CACTI-3DD [115] for the main memory modeling, in or-
der to achieve high-level parameters. We also modify the PIN-based simulator Sniper [119]
for SIMD processor and the NVM-based memory system. We develop an in-house simula-
tor to evaluate the AC-PIM, S-DRAM, and PINATUBO. We show the evaluation benchmarks
and data sets in Table 3.1, in which Vector only has OR operation while Graph and Database

contain all AND, OR, XOR, and INV operations.

1.E+04 ¢ —2—2-ow OR
——&—4-row OR
1.E+03 £
E —— 8-row
n r —8— 16-row
S 1E02 ¢
E -&--32-row
o [
1E+01 | & , =<O--64-row
E % ; -0--128-row
i Region
1.E+00

10 11 12 13 14 15 16 17 18 19 20
Bit-vector Length (2”n)

Figure 3.8: PINATUBO’s Throughput (GBps) for OR operations.

3.4.2 Performance and Energy Evaluation

Figure 3.8 shows PINATUBO’s OR operation throughput. We have four observations.

First, the throughput increases with longer bit-vectors, because they make better use of the

25

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

memory internal bandwidth and parallelism. Second, we observe two turning points, A and
B, after which the speedup improvement is showed down. Turning point A is caused by the
sharing SA in NVM: bit-vectors longer than 2!4 have to be mapped to columns the SA sharing,
and each part has to be processed in serial. Turning point B is caused by the limitation of
the row length: bit-vectors longer than 2'° have to be mapped to multiple ranks that work in
serial. Third, PINATUBO has the capability of multi-row operations (as the legends show).
For n-row OR operations, larger n provides larger bandwidth. Fourth, the y-axis is divided into
three regions: the below DDR bus bandwidth region which only includes short bit-vectors’
result; the memory internal bandwidth region which includes the majority of the results; and
the beyond internal bandwidth region, thanks to the multi-row operations. DRAM systems can

never achieve beyond memory internal bandwidth region.

] o S-DRAM gAC-PIM EPinatubo-2 mPinatubo-128 I

1.E+04 ¢

1.E+03 [

1.E+02 [

H‘I‘Ill‘l‘l
(7] (2] () 2 - o = c o o o C
s 5 5 5 N|3 £ 6|F @ & @
© & & & ¢T3 RN ¥~
> & + v = - O

Vector Graph Fastbit

Figure 3.9: Speedup Normalized to SIMD Baseline.
We compare both PINATUBO of 2-row and 128-row operation with two aggressive base-

lines in Figure 3.9, which shows the speedup on bitwise operations. We have three obser-
vations: First, S-DRAM has better performance than PINATUBO-2 in some cases with very
long bit-vectors. This is because DRAM-based solutions benefit from larger row buffers, com-
pared with the NVM-based solution. However, the advantage of NVM’s multi-row operations

still dominates. PINATUBO-128 is 22 x faster than S-DRAM. Second, the AC-PIM solution

26

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

is much slower than PINATUBO in every single case. Third, multi-row operations show their
superiority, especially when intra-subarray operations are dominating. An opposite example is
14-16-7r, where all operations are random accesses and it is dominated by inter-subarray/bank

operations, so that PINATUBO-128 is as slow as PINATUBO-2.

[OS-DRAM B©ACPIM mPinatubo-2 mWPinatubo-128 |

5.E+05 ¢

5E+04

5E+03 §

5E+02 §

e LUNE
() »n »n n — o T c o o o c
- ~ ~ ~ N3 = ol ¥ ®© A ©
6 & & & ©|T ZF N|N ¥ O~ QE)
> & v = 3 ° 5 O

Vector Graph Fastbit

Figure 3.10: Energy Saving Normalized to SIMD.

Figure 3.10 shows the energy saving result. The observations are similar with those from
speedup: S-DRAM is better than PINATUBO-2 in some cases but worse than PINATUBO-128
on average. AC-PIM never has a change to save more energy then any of the other three so-
lutions, since both S-DRAM and PINATUBO rely on high energy efficient analogy computing.
On average, PINATUBO saves 2800x energy for bitwise operations, compared with SIMD
processor.

Figure 3.11 shows the overall speedup and energy saving of PINATUBO in the two real-
world applications. The ideal legend represents the result with zero latency and energy spent
on bitwise operations. We have three observations. First, PINATUBO almost achieves the
ideal acceleration. Second, limited by the bitwise operations’ proportion, PINATUBO can
improve graph processing applications by 1.15x with 1.14x energy saving. However, it is
data dependent. For the eswiki and amazon data set, since the connection is “loose”, it has to

spend most of the time searching for an unvisited bit-vector. For dblp, it has 1.37x speedup.

27

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

| 0S-DRAM ©AC-PIM mPinatubo-2 mPinatubo-128 :zzldeall

1.40 -
130 {1l
il |
1.20
1.10 m |
2. = c cC|OoO O O C C 2_ = c cC|lOoO O O C C
S =R IIIIRN J|IS|2 =R BII IR J|3
© ©
3 g £ el E 3 g £ el E
5O G|o EO0 |
Graph Fastbit Graph Fastbit
Speedup Energy

Figure 3.11: Overall Speedup and Energy Saving Normalized to SIMD Baseline.

Third, for the database applications, it achieves 1.29x overall speedup and energy saving.

3.4.3 Overhead Evaluation

Figure 3.12 shows the area overhead results. As shown in Figure 3.12 (a), PINATUBO in-
curs insignificant area overhead only 0.9%. However, AC-PIM has 6.4% area overhead, which
is critical to the cost-sensitive memory industry. S-DRAM reports ~0.5% capacity loss, but it is
for DRAM-only result and orthogonal with PINATUBO’s overhead evaluation. Figure 3.12 (b)
shows the area overhead breakdown. We conclude that the majority area overhead are taken by
inter-subarray/bank operations. For intra-subarray operations, XOR operations takes most of

the area.

3.5 Summary

In this chapter, a processing-in-NVM architecture for bulk bitwise operations is proposed.

The computation makes use of NVM’s resistive-cell feature and achieves high performance

28

PINATUBO: A Processing in Emerging Non-volatile Memory Architecture for Bulk Bitwise
Operations Chapter 3

O Pinatubo
mAC-PIM

inter-bank

0,
-§ 6% X 0-09% wl act 0.05%
v
£ . o inter-sub Intra-sub and/or
<1>J 4% o 0.72% 0.13% 0.02%
@) > xor 0.06%
© 2% o
(O]
< 0% |
PCM

Figure 3.12: Area Overhead Comparison (left) and Breakdown (right).

and energy efficiency with insignificant area overheads. Experimental results show that the
proposed architecture achieves ~500x speedup and ~28000x energy saving on bitwise oper-
ations, and 1.12x overall speedup, 1.11x overall energy saving on data intensive graph pro-

cessing and database applications with real-world data.

29

Chapter 4

PRIME: Processing In ReRAM-based

Main Memory

In this chapter, we propose a novel PIM architecture for efficient NN computation built upon
ReRAM crossbar arrays, called PRIME, processing in ReRAM-based main memory. ReRAM
has been proposed as an alternative to build the next-generation main memory [120], and is
also a good candidate for PIM thanks to its large capacity, fast read speed, and computation
capability. In our design, a portion of memory arrays are enabled to serve as NN accelera-
tors besides normal memory. Our circuit, architecture, and software interface designs allow
these ReRAM arrays to dynamically reconfigure between memory and accelerators, and also
to represent various NNs. The current PRIME design supports large-scale MLPs and CNNss,
which can produce the state-of-the-art performance on varieties of NN applications, e.g. top
classification accuracy for image recognition tasks. Distinguished from all prior work on NN
acceleration, PRIME can benefit from both the efficiency of using ReRAM for NN compu-
tation and the efficiency of the PIM architecture to reduce the data movement overhead, and
therefore can achieve significant performance gain and energy saving. As no dedicated pro-

cessor is required, PRIME incurs very small area overhead. It is also manufacture friendly

30

PRIME: Processing In ReRAM-based Main Memory Chapter 4

with low cost, since it remains as the memory design without requirement for complex logic
integration or 3D stacking.

The contribution of this paper is summarized as follows:

e We propose a ReRAM main memory architecture, which contains a portion of memory
arrays (full function subarrays) that can be configured as NN accelerators or as normal
memory on demand. It is a novel PIM solution to accelerate NN applications, which
enjoys the advantage of in-memory data movement, and also the efficiency of ReRAM
based computation.

e We design a set of circuits and microarchitecture to enable the NN computation in mem-
ory, and achieve the goal of low area overhead by careful design, e.g. reusing the periph-
eral circuits for both memory and computation functions.

e With practical assumptions of the technologies of using ReRAM crossbar arrays for
NN computation, we propose an input and synapse composing scheme to overcome the
precision challenge.

e We develop a software/hardware interface that allows software developers to configure
the full function subarrays to implement various NNs. We optimize NN mapping dur-
ing compile time, and exploit the bank-level parallelism of ReRAM memory for further

acceleration.

4.1 PRIME Architecture

We propose processing in ReRAM-based main memory, PRIME, which efficiently accel-
erates NN computation by leveraging ReRAM’s computation capability and the PIM architec-
ture. Figure 4.1(c) depicts an overview of our design. While most previous NN acceleration
approaches require additional processing units (PU) (Figure 4.1(a) and (b)), PRIME directly

leverages ReRAM cells to perform computation without the need for extra PUs. To achieve
31

PRIME: Processing In ReRAM-based Main Memory Chapter 4

this, as shown in Figure 4.1(c), PRIME partitions a ReRAM bank into three regions: memory

(Mem) subarrays, full function (FF) subarrays, and Buffer subarrays.

i(a) Processor-Coprocessor Arch.; i (¢) PRIME i

r———=——=—7— | I
. _CPU_| [PU]
<

ReRAM Banks

__

Mem subarrays

A

FF subarrays
1

| Buffer'subarra}‘/'

Figure 4.1: (a) Traditional shared memory based processor-coprocessor architecture, (b) PIM
approach using 3D integration technologies, (¢) PRIME design.

The Mem subarrays only have data storage capability (the same as conventional mem-
ory subarrays). Their microarchitecture and circuit designs are similar to a recent design of
performance-optimized ReRAM main memory [120]. The FF subarrays have both computa-
tion and data storage capabilities, and they can operate in two modes. In memory mode, the
FF subarrays serve as conventional memory; in computation mode, they can execute NN com-
putation. There is a PRIME controller to control the operation and the reconfiguration of the
FF subarrays. The Buffer subarrays serve as data buffers for the FF subarrays, and we use the
memory subarrays that are closest to the FF subarrays as Buffer subarrays. They are connected
to the FF subarrays through private data ports, so that buffer accesses do not consume the band-
width of the Mem subarrays. While not being used as data buffers, the Buffer subarrays can
also be used as normal memory. From Figure 4.1(c), we can find that for NN computation the
FF subarrays enjoy the high bandwidth of in-memory data movement, and can work in parallel
with CPU, with the help of the Buffer subarrays.

This section describes the details of our microarchitecture and circuit designs of the FF

32

PRIME: Processing In ReRAM-based Main Memory Chapter 4

subarrays, the Buffer subarrays, and the PRIME controller. These designs are independent of
the technology assumptions for ReRAM based computation. For generality, we assume that
the input data have P, bits, the synaptic weights have P, bits, and the output data have P,
bits. With practical assumptions, the precision of ReRAM based NN computation is a critical
challenge. We discuss the precision issue and propose a scheme to overcome it in Section 4.1.4.

Finally, more details are given about implementing NN algorithms with our hardware design.

Crrl ata from
I } o Q Rl
1 |
g
3| |
S
N |
E 5]
151 S 1
<1 E3
i E ES Crossbar :qq
& col Mux. N A
= =1
E :]Vol Jg.
o a S
=) S
= Glossary:

(.} add-on hardware» : comp. data flow Ctrl from

-D Connecuml GWL: Global Word Line, WDD: Wordline ig
— Buﬂer Subarrayl % Decoder and Driver, ASA: Sense Ampl'iﬁer, i
T _I~ GDL: Global Data Line, AMP: Amplifier,
|C0mmller | Global 10 Row Buffer I SW: Switches, Vol.: Voltage Sources A T

Figure 4.2: The PRIME architecture. Left: bank structure. The blue and red bold lines rep-
resent the directions of the data flow for normal memory and for computation, respectively.
Right: functional blocks modified/added in PRIME. (A) Wordline driver with multi-level volt-
age sources; (B) column multiplexer with analog subtraction and sigmoid circuitry; (C) re-
configurable SA with counters for multi-level outputs, and added ReLU and 4-1 max pooling
function units; (D) connection between the FF and Buffer subarrays; (E) PRIME controller.

4.1.1 FF Subarray Design

The design goal for FF subarray is to support both storage and computation with a minimum
area overhead. To achieve this goal, we maximize the reuse of peripheral circuits for both

storage and computation.

33

PRIME: Processing In ReRAM-based Main Memory Chapter 4

Microarchitecture and Circuit Design

To enable the NN computation function in FF subarrays, we modify decoders and drivers,

column multiplexers (MUX), and sense amplifiers (SA) as shown in Figure 4.2.

Decoder and Driver. We add several components in decoders and drivers marked as light
blue in Figure 4.2 @ First, we attach multi-level voltage sources to the wordlines to provide
accurate input voltages. NN computation requires that all input data are simultaneously fed into
the corresponding wordline. Therefore, we add a latch to control the input voltage. The control
signals determine the combination of voltage sources that provide the demanding input voltage.
Second, to drive the analog signals transferring on the wordlines, we employ a separate current
amplifier on each wordline. Third, rather than two voltage levels used in the memory mode
(for read and write, respectively), NN computation requires 2/ levels of input voltages. We
employ a multiplexer to switch the voltage driver between memory and computation modes.

Finally, we employ two crossbar arrays store positive and negative weights, respectively, and
allow them to share the same input port.

Column Multiplexer. In order to support NN computation, we modify the column multiplex-
ers in ReRAM by adding the components marked in light blue in Figure 4.2 @ The modified
column multiplexer incorporates two analog processing units: an analog subtraction unit and
a non-linear threshold (sigmoid) unit [121]. The sigmoid unit can be bypassed in certain sce-
narios, e.g. when a large NN is mapped to multiple crossbar arrays. In addition, in order to
allow FF subarrays to switch bitlines between memory and computation modes, we attach a
multiplexer to each bitline to control the switch. Since a pair of crossbar arrays with positive
and negative weights require one set of such peripheral circuits, we only need to modify half
of the column multiplexers. After analog processing, the output current is sensed by local SAs.
Sense Amplifier. Figure 4.2 @ shows the SA design with the following modifications as

marked in light blue in the figure. First, NN computation requires SAs to offer much higher

34

PRIME: Processing In ReRAM-based Main Memory Chapter 4

precision than memory does. We adopt a P,-bit (P, <8) precision reconfigurable SA design that
has been tested through fabrication [122]. Second, we allow SA’s precision to be configured as
any value between 1-bit and P,-bit, controlled by the counter as shown in Figure 4.2 @ The
result is stored in the output registers. Third, we allow low-precision ReRAM cells to perform
NN computation with a high-precision weight, by developing a precision control circuit that
consists of a register and an adder. Fourth, we add a hardware unit to support ReLU function,
a function in the convolution layer of CNN. The circuit checks the sign bit of the result. It
outputs zero when the sign bit is negative and the result itself otherwise. Finally, a circuit to

support 4-1 max pooling is included. More details are discussed in Section 4.1.5.

Buffer Connection. Figure 4.2 @ shows the communication between the FF subarrays and
the Buffer subarrays. One adjacent Mem subarray is configured to serve as a buffer for com-
putation, which will be explained in Section 4.1.2. We enable an FF subarray to access any
physical location in a Buffer subarray to accommodate the random memory access pattern in
NN computation (e.g., in the connection of two convolutional layers). To this end, extra de-
coders and multiplexers are employed in the buffer connection unit. Additionally, we allow the
data transfer to bypass the Buffer subarray in certain scenarios, e.g. when the output of one
mat is exactly the input of another. After bypassing the Buffer subarrays, we employ a register
as an intermediate data storage.

Benefits of Our Design are two-fold. First, our design efficiently utilizes the peripheral cir-
cuits by sharing them between memory and computation functions, which significantly re-
duces the area overhead. For example, in a typical ReRAM-based neuromorphic computing
system [123], DACs and ADCs are used for input and output signal conversions; in a ReRAM-
based memory system, SAs and write drivers are required for read and write operations. Yet,
SAs and ADCs serve similar functions, while write drivers and DACs do similar functions. In

PRIME, instead of using both, we reuse SAs and write drivers to serve ADC and DAC func-

35

PRIME: Processing In ReRAM-based Main Memory Chapter 4

| Global Row Buffer | | Global Row Buffer

0 0 |
: [m][Latch] | : [m][Latch]

OSA] |Femidfsw]| || OS]

(- \I @Z =
. . 1 . T
—'|Slgm01d | Su? > sigmoidy

1 1
Posi.tive (A) Negz_ltive Mem %@ Mem
Weight %‘ Weight | |£altc_h|
(Buffer subarray) | Buffer subarray)
(a) (b)

Figure 4.3: An example of the configurations of FF subarrays. (a) Computation mode; (b)
memory mode.

tions by slightly modifying the circuit design. Second, we enable the FF subarrays to flexibly
and efficiently morph between memory and computation modes. Furthermore, we can extend
our design to aggressively configure the FF subarrays in an asymmetric manner: several mats
in one FF subarray serve computation, while the rest mats as memory. Such design is feasible,
because the multiplexers can connect all of the newly added circuits with the original peripheral

circuits that only serve memory function.

Morphing Between Two Modes

Figure 4.3 shows two FF subarrays that are configured into computation and memory
modes, respectively. The black bold lines in the figure demonstrate the data flow in each
configuration. As shown in Figure 4.3(a), in computation mode, the FF subarray fetches the
input data of the NN from the Buffer subarray into the latch of the wordline decoder and driver.
After the computation in the crossbar arrays that store positive and negative weights, their out-
put signals are fed into the subtraction unit, and then the difference signal goes into the sigmoid

unit. The analog output is converted to digital signal by the SA is written back to the Buffer

36

PRIME: Processing In ReRAM-based Main Memory Chapter 4

subarray. As shown in Figure 4.3(b), in memory mode, the input comes from the read/write
voltage selection (denoted by an m box), and the output bypasses the subtraction and sigmoid
units.

The morphing between memory and computation modes involves several steps. Before
the FF subarrays switch from memory mode to computation mode, PRIME migrates the data
stored in the FF subarrays to certain allocated space in Mem subarrays, and then writes the
synaptic weights to be used by computation into the FF subarrays. When data preparations are
ready, the peripheral circuits are reconfigured by the PRIME controller, and the FF subarrays
are switched to computation mode and can start to execute the mapped NNs. After completing
the computation tasks, the FF subarrays are switched back to memory mode through a wrap-up

step that reconfigures the peripheral circuits.

4.1.2 Buffer Subarrays

The goal of the Buffer subarrays is two-fold. First, they are used to cache the input and
output data for the FF subarrays. Benefiting from the massive parallelism of matrix-vector
multiplication provided by ReRAM crossbar structures, the computation itself takes a very
short time. Moreover, the data input and output may be serial, and their latencies become
potential bottlenecks. Therefore, it is necessary to cache the input and output data. Second, the
FF subarrays can communicate with the Buffer subarrays directly without the involvement of
the CPU, so that the CPU and the FF subarrays can work in parallel.

We choose to configure the adjacent memory subarray to the FF subarrays as the Buffer
subarray, which is close to both the FF subarrays and the global row buffer so as to minimize
the delay. We do not utilize the local row buffer because it is not large enough to serve typical
NNs. We do not implement the buffer with low-latency SRAM due to its large area and cost

overhead.

37

PRIME: Processing In ReRAM-based Main Memory Chapter 4

Mem Subarray Mem Subarray

Mat | Mem Subarray X

- ot Buffer Subarray

al
g Buffer Subarray Buffer Subarray | ’

[

FF Subarray 8 FF Subarray FF Subarray
*

| Global 10 Row Buffer | | Global 10 Row Buffer | | Global IO Row Buffer |
(a) Load/Store data to/ (b) Load/Store data to/ (c¢) Communication between
from Row Buffer from Buffer subarray Buffer & FF subarray

Figure 4.4: Data movements inside memory.

As described in Figure 4.4, the Buffer subarray and the FF subarrays are connected by the
connection unit which enables the FF subarrays to access any data in the buffer. To fetch data
for the FF subarrays, the data are first loaded from a Mem subarray to the global row buffer,
and then they are written from the row buffer to the Buffer subarray. These two steps have to be
done in serial due to the resource conflict, i.e. the global data lines (GDL). The communication
between the Buffer subarray and the FF subarrays is independent with the communication
between the Mem subarray and the globe row buffer. Therefore, when PRIME is accelerating
NN computation, CPU can still access the memory and work in parallel. To write the data from
the Buffer subarray to memory, the data go through the global row buffer to the corresponding
Mem subarray. There are three advantages of this design. First, the short delay between the
Buffer and the FF subarrays mitigates the data input/output bottleneck of NN computations.
Second, normal memory accesses and NN computations can be done in parallel, as the data
communication between the Buffer and FF subarrays is through the dedicated wires. Third,
caching the output data in the Buffer subarray alleviates the impact of the slow write operations

of ReRAM.

38

PRIME: Processing In ReRAM-based Main Memory Chapter 4

4.1.3 PRIME Controller

Figure 4.2 @ illustrates the PRIME controller that decodes instructions and provides con-
trol signals to all the peripheral circuits in the FF subarrays. A key role of the controller is
to configure the FF subarrays in memory and computation modes. Table 4.1 lists the basic
commands used by the controller. The left four commands generate control signals for the
multiplexers in Figure 4.2, including the function selection of each mat among programming
synaptic weights, computation, and memory, and also the input source selection for computa-
tion, either from the Buffer subarray or from the output of the previous layer. These commands
are performed once during each configuration of the FF subarrays. The right four commands

in Table 4.1 control the data movement. They are applied during the whole computation phase.

Datapath Configure Data Flow Control
prog/comp/mem [mat adr][0/1/2] fetch [mem adr] to |buf adr]
bypass sigmoid [mat adr] [0/1] commit [buf adr] to [mem adr]
bypass SA [mat adr][0/1] load [buf adr] to [FF adr]
input source [mat adr][0/1] store [FF adr] to [buf adr]

Table 4.1: PRIME Controller Commands

4.1.4 Overcoming the Precision Challenge

The precision issue is one of the most critical challenges for ReRAM based NN computa-
tion. It contains several aspects: input precision, synaptic weight (or cell resistance) precision,
output (or analog computation) precision, and their impacts on the results of NN applications
(e.g. the classification accuracy of image recognition tasks).

Previous work has employed 1-bit to 12-bit synaptic weights for ReRAM based NN com-
putation [124—126]. There have been active research going on with improving the resistance
precision of MLC ReRAM cells. With a simple feedback algorithm, the resistance of a ReRAM

device can be tuned with 1% precision (equivalent to 7-bit precision) for a single cell and about

39

PRIME: Processing In ReRAM-based Main Memory Chapter 4

3% for the cells in crossbar arrays [127, 128].

The latest results of the Dot-Product Engine project from HP Labs reported that, for a
256 x256 crossbar array, given full-precision inputs (e.g. usually 8-bit for image data), 4-bit
synaptic weights can achieve 6-bit output precision, and 6-bit synaptic weights can achieve
7-bit output precision, when the impacts of noise on the computation precision of ReRAM
crossbar arrays are considered [129].

We evaluated the impacts of input and synaptic weight precisions on a handwritten digit
recognition task using LeNet-5, a well-known CNN, over the MNIST database [130]. We adopt
the dynamic fixed point data format [131], and apply it to represent the input data and synaptic
weights of every layer. From the results as shown in Figure 4.5, for this NN application, 3-bit
dynamic fixed point input precision and 3-bit dynamic fixed point synaptic weight precision
are adequate to achieve 99% classification accuracy, causing negligible accuracy loss compared
with the result of floating point data format. The results indicate that NN algorithms are very
robust to the precisions of input data and synaptic weights.

Our PRIME design can be adapted to different assumptions of input precision, synaptic
weight precision, and output precision. According to the state-of-the-art technologies used in
ReRAM based NN computation, one practical assumption is that: the input voltage have only
3-bit precision (i.e. 8 voltage levels), and the ReRAM cells can only represent 4-bit synaptic
weights (i.e. 16 resistance levels), and the target output precision is 6-bit. The data format we
use is dynamic fixed point [131]. To achieve high computation accuracy with conservative as-
sumptions, we propose an input and synapse composing scheme, which can use two 3-bit input
signals to compose one 6-bit input signal and two 4-bit cells to represent one 8-bit synaptic

weight.

40

PRIME: Processing In ReRAM-based Main Memory Chapter 4

100
95
2 90
s
> 85
]
5 380
o
]
< 75
20 ! —@—Input 1bit —@®— Input 2bit Input 3bit Input 4bit,
| —@—Input 5bit —@—Input 6bit —@—Input 7bit —@— Input 8bit,
O T
2 3 4 5 6 7 8
Weight (cell) bits

Figure 4.5: The precision result.

Input and Synapse Composing Scheme

We present the input and synapse composing algorithm first, and then present the hardware
implementation. Table 4.2 lists the notations.

If the computation in a ReRAM crossbar array has full accuracy, the result should be

v Py Py
Ran= Y (Y 1281 Y wiak), (4.1)
i=1 k=1 k=1
P, Py, P, the number of bits for input/output/synaptic weights
Py the number of inputs to a crossbar array is 2/¥
LW the kM bit of the i input signal/synaptic weight
In, 11 the k'™ bit of HIGH/LOW-bit part of the i input
Whi, W the k' bit of HIGH/LOW-bit part of the i weight

Table 4.2: Notation Description.
which has (P, + P,, + Py)-bit full precision. Since the target output is P,-bit, we will take

the highest P,-bit of Rg. Then, the target result is denoted as shifting Rpyy to the right by

41

PRIME: Processing In ReRAM-based Main Memory

Chapter 4

(P + Py + Py — P,) bits:

Rtarget = Rpuy > (Pm + Py +PN_P0)-

(4.2)

Now each input signal and synaptic weight are composed of two parts: high-bit part and low-bit

part. We have,

P P /2

input: Y 12571 = Y (znf 2kt 2B /2 4 ok
k=1 k=1
P, RS2 |
weight: Y w2kl = Y (whi2k=! oB/2 wiiok .,
k=1 k=1

Then, Ry will contain four parts (i.e., HH-part, HL-part, LH-part, and LL-part),

AN e Bn/2 P2
Rar= Y {27 2" Y 12"y wn2t!
=1 k=1 k=1
HH—part
o Ra2 R2
+27 . Y 2ty wat!
k=1 k=1
HL—part
P Pn/2 . Py/2 . Pn/2 . Py/2 .
+27 0 Y 2Ty w2ttt + Y 2ty w2ty
k=1 k=1 k=1 k=1
LH—part LL—part

Here, we rewrite Ry as
Ry = 2 -Riy + 2% -Rifi + 2% - R + R
We can also denote Ryarger With four parts:
Ruarger = Rigr' +Riar +Riar' + Rigr'-

42

4.3)

4.4)

4.5)

(4.6)

4.7)

(4.8)

PRIME: Processing In ReRAM-based Main Memory Chapter 4

In equation (4.7), if the output of each Rgy part is only P,-bit, then,

RHH- take all the P, bits of Rtull result

tar

RIL: take the highest P, — ‘o bits of RHL result

tar *

tar *

RLH: take the highest P, — blts of Rfull result

RLL: take the highest P, — fn P bits of REL.

tar *

According to our assumptions, we have P, = 6 (composed of two 3-bit signals), P, = 8
(composed of two 4-bit cells), and Py, = 6 (enabled by 6-bit precision reconfigurable sense
amplifiers). The target result should be the summation of three components: all the 6 bits of
RHH output, the highest 3 bits of RE: output, and the highest 2 bits of RE output.

To implement synapse weight composing, P, is loaded to the latch in the WL driver as
shown in Figure 4.2 @ According to the control signal, the high-bit and low-bit parts of the
input are fed to the corresponding crossbar array sequentially. To implement synapse com-
posing, the high-bit and low-bit parts of the synaptic weights are stored in adjacent bitlines of
the corresponding crossbar array. As shown in Equation (4.8), R;4ge consists of four com-
ponents. They are calculated one by one, and their results are accumulated with the adder in
Figure 4.2 @ The right shift operation, i.e. taking the highest several bits of a result, can
be implemented by the reconfigurable SA. To take the highest n-bit of a result, we simply

configure the SA as an n-bit SA.

4.1.5 Implementing NN Algorithms

MLP/Fully-connected Layer: Matrix-vector Multiplication. Matrix-vector multiplication
is one of the most important primitives in NN algorithms. The ReRAM crossbar arrays are used
to implement it: the weight matrix is pre-programmed in ReRAM cells; the input vector is the
voltages on the wordlines driven by the drivers (as shown in Figure 4.2 @); the output currents

are accumulated at the bitlines. The synaptic weight matrix is separated into two matrices: one
43

PRIME: Processing In ReRAM-based Main Memory Chapter 4

storing the positive weights and the other storing the negative weights. They are programmed
into two crossbar arrays. A subtraction unit (as shown in Figure 4.2 @) is used to subtract
the result of the negative part from that of the positive part. One challenge in using ReRAM
crossbar arrays for neural computing is the limited precision of weights presented by ReRAM
cells. To tackle this challenge, our design leverages low-precision (e.g., 4-bit) cells to achieve
high-precision (e.g., 8-bit) results, taking advantage of the reconfigurable SA and the precision

control hardware in Figure 4.2 (C).

MLP/Fully-connected Layer: Activation Function. Our circuit design supports two ac-
tivation functions: sigmoid and ReLU. Sigmoid is implemented by the sigmoid unit in Fig-
ure 4.2 @, and ReLU is implemented by the ReLU unit in Figure 4.2 @ These two units can
be configured to bypass in some scenarios. For example, when we compose a high-precision
result with multiple low-precision results as shown in Equation (4.8), those low-precision re-
sults will bypass the sigmoid units. After the high-precision result is obtained, we feed it to the
sigmoid unit.

Convolution Layer. The computation of the convolution layer is described as follows,

TNin

S =max(Y f®gij+bi,0), 1 <i < nou, “49)
j=1

where f}“ is the j-th input feature map, and f" is the i-th output feature map, g; ; is the
convolution kernel for f]i.“ and 2", b; is the bias term, and ni, and ngy are the numbers of the
input and output feature maps, respectively.

To implement the summation of n;, convolution operations (f;n ® gi,j) plus b;, all the ele-
ments of j convolution kernels g; ; are pre-programmed in the ReRAM cells of one BL or more
BLs if they cannot fit in one, and the elements of f]i-rl are performed as input voltages. We also
write b; in ReRAM cells, and regard the corresponding input as ’1”. Each BL will output the

whole or part of the convolution result. If more BLs are used, it takes one more step to achieve

44

PRIME: Processing In ReRAM-based Main Memory Chapter 4

the final result. Next, the max(x,0) function is executed by the ReLU logic in Figure 4.2 G

Pooling Layer. To implement max pooling function, we adopt 4:1 max pooling hardware in
Figure 4.2 @, which is able to support n:1 max pooling with multiple steps for n > 4. For
4:1 max pooling, first, four inputs {a;} are stored in the registers, i = 1,2,3,4; second, we
execute the dot products of {a;} and six sets of weights [1,-1,0,0], [1,0,-1,0], [1,0,0,-1], [0,1,-
1,0], [0,1,0,-1], [0,0,1,-1] by using ReRAM to obtain the results of (a; —a;), i # j; next, the
signs of their results are stored in the Winner Code register; finally, according to the code, the
hardware determines the maximum and outputs it. Mean pooling is easier to implement than
max pooling, because it can be done with ReRAM and does not require extra hardware. To
perform n:1 mean pooling, we simply pre-program the weights [1/n,---,1/n] in ReRAM cells,

and execute the dot product of the inputs and the weights to obtain the mean value of n inputs.

Stage 1: Program | Modified Code: : Stage 2: Compile Stage 3: Execute

I |:> Map_Topology ();

- . | Synaptic Weights Mapping
Rty i L ey
SegPent Run(input_data); ! |Opt. II: Data Place E>| Datapath Config (Table 2 left)!
1r Post_Proc(); | Controller || Mat| ...

— Ao i) |
ata Flow Ctrl (Table 2 right) i
(J NN param. file J - [Offline Training] | | FF Subarray i

=

Figure 4.6: The software perspective of PRIME: from source code to execution.

Local Response Normalization (LRN) Layer. Currently, PRIME does not support LRN ac-
celeration. We did not add the hardware for LRN, because state-of-the-art CNNs do not contain
LRN layers [132]. When LRN layers are applied, PRIME requires the help of CPU for LRN

computation.

4.2 System-Level Design

In this section, we present the system-level design of PRIME. The software-hardware in-
terface framework is described. Then, we focus on the optimization of NN mapping and data

allocation during compile time. Next, we introduce the operating system (OS) support for

45

PRIME: Processing In ReRAM-based Main Memory Chapter 4

switching FF subarrays between memory and computation modes at run time.

4.2.1 Software-Hardware Interface

Figure 4.6 shows the stack of PRIME to support NN programming, which allows develop-
ers to easily configure the FF subarrays for NN applications!. From software programming to
hardware execution, there are three stages: programming (coding), compiling (code optimiza-
tion), and code execution. In the programming stage, PRIME provides application program-
ming interfaces (APIs) so that they allow developers to: 1) map the topology of the NN to the
FF subarrays, Map_Topology, 2) program the synaptic weights into mats, Program_Weight, 3)
configure the data paths of the FF subarrays, Config_Datapath, 4) run computation, Run, and
5) post-process the result, Post_Proc. In our work, the training of NN is done off-line so that
the inputs of each API are already known (NN param.file). Prior work explored to implement
training with ReRAM crossbar arrays [125, 133—137], and we plan to further enhance PRIME
with the training capability in future work.

In the compiling stage, the NN mapping to the FF subarrays and the input data allocation are
optimized (as described in Section 4.2.2). The output of compiling is the metadata for synaptic
weights mapping, data path configuration, and execution commands with data dependency and
flow control. The metadata is also the input for the execution stage. In the execution stage,
PRIME controller writes the synaptic weights to the mapped addresses in the FF subarrays;
then it (re-)configures the peripheral circuits according to the Datapath Configure commands
(Table 4.1 left) to set up the data paths for computation; and finally, it executes Data Flow
Control commands (Table 4.1 right) to manage data movement into or out of the FF subarrays

at runtime.

"Due to the space limit, we only depict the key steps at high level while the design details of the OS kernel,
compiler, and tool chains are left as engineering work.

46

PRIME: Processing In ReRAM-based Main Memory Chapter 4

4.2.2 Compile Time Optimization
NN Mapping Optimization

The mapping of the NN topology to the physical ReRAM cells is optimized during compile

time. For different scales of NNs, we have different optimizations.

Small-Scale NN: Replication. When an NN can be mapped to a single FF mat, it is small-
scale. Although we can simply map a small-scale NN to some cells in one mat, the other cells in
this mat may be wasted. Moreover, the speedup for very small NNs is not obvious, because the
latency of the peripheral circuits may overwhelm the latency of matrix-vector multiplication on
ReRAM cells. Our optimization is to replicate the small NN to different independent portions
of the mat. For example, to implement a 128 — 1 NN, we duplicate it and map a 256 —2 NN
to the target mat. This optimization can also be applied to convolution layers. Furthermore,
if there is another FF mat available, we can also duplicate the mapping to the second mat,
and then the two mats can work simultaneously, as long as the Buffer subarray has enough

bandwidth.

Medium-Scale NN: Split-Merge. When an NN cannot be mapped to a single FF mat, but can
fit to the FF subarrays of one bank, it is medium-scale. During the mapping at compile time, a
medium-scale NN has to be split into small-scale NNs, and then their results are merged. For
example, to implement a 512 — 512 NN on PRIME with 256 — 256 mats, it is split into four
256 — 256 parts ([M; 1,M12;M>1,M>5]) and mapped to four different mats. After they finish
computation, the results of M; ; and M, ; are added to get the first 256 elements of the final
result, and the sum of the results of M, > and M, > forms the second 256 elements of the final

result.

Large-Scale NN: Inter-Bank Communication. A large-scale NN is one NN that cannot
be mapped to the FF subarrays in a single bank. Intuitively, we can divide it into several

medium-scale trunks and map each trunk to the same bank serially in several stages. This

47

PRIME: Processing In ReRAM-based Main Memory Chapter 4

naive solution requires reprogramming the FF subarrays at every stage, and the latency over-
head of reprogramming may offset the speedup. Alternatively, PRIME allows to use multiple
banks to implement a large-scale NN. These banks can transfer data to each other and run
in a pipelined fashion to improve the throughput. Like prior work [138], the inter-bank data
movement is implemented by exploiting the internal data bus shared by all the banks in a chip.
PRIME controller manages the inter-bank communication, and can handle arbitrary network
connections. If all the banks are used to implement a single NN, PRIME can handle a maximal
NN with ~2.7x 108 synapses, which is larger than the largest NN that have been mapped to
the existing NPUs (TrueNorth [139], 1.4x 107 synapses). In Section 4.3, we implement an

extremely large CNN on PRIME, VGG-D [132] which has 1.4x 103 synapses.

Bank-level Parallelism and Data Placement

Since FF subarrays reside in every bank, PRIME intrinsically inherits bank-level paral-
lelism to speed up computation. For example, for a small-scale or medium-scale NN, since it
can be fitted into one bank, the FF subarrays in all the banks can be configured the same and
run in parallel. Considering FF subarrays in each bank as an NPU, PRIME contains 64 NPUs
in total (8 banksx 8 chips) so that 64 images can be processed in parallel. To take advantage of
the bank-level parallelism, the OS is required to place one image in each bank and to evenly
distribute images to all the banks. As current page placement strategies expose memory latency
or bandwidth information to the OS [140, 141], PRIME exposes the bank ID information to the
OS, so that each image can be mapped to a single bank. For large-scale NNs, they can still
benefit from bank-level parallelism as long as we can map one replica or more to the spare

banks.

48

PRIME: Processing In ReRAM-based Main Memory Chapter 4

K} High-bit weights EH:Low-bit weights []:Zero weights [Mat T-Conv 1

25 o }

L Mat 2-3: Pool ., :
.] (ping-pong)
Mat 4-6: FC1 part 1-3|_J | Bypass
(240-140) Reg.

replica

11250
L1140

L T fo e Mat 7-8: FC1 merge | |
H B : : mng-pon

— e L (ping-pong)
Opt. 1: 250 inputs, Opt. 2: 140 inputs, Mat 9-10: FC2 layer |_|
10 replicas per mat 24 replicas per mat (ping-pong)

(a) (b) (©)

Figure 4.7: A mapping example. (a) Optimization choice 1 and (b) optimization choice 2 for
the convolutional layer; (c) mat-level mapping and optimization.

Buffer
Subarray

A Mapping Case Study: CNN-1

We show how CNN-1 in Table 4.3 is mapped to PRIME in this section. We use 256 x 256
ReRAM mats, and ReRAM cells in FF subarrays can be programmed in 4-bit precision and
the synaptic weights of the NN are 8-bit in the application. Therefore, to present one weight,
two cells are used. In CNN-1, the convolutional layer has five 5 x 5 kernels. Then, the
weight matrix is of size 25(=5-5) x 10(=5-2) 2. In order to improve latency and ReRAM’s
utility, the compile-time optimization may replicate the matrix 10 times, and map a 250 x 100
weight matrix to a 256 x 256 mat, as shown in Figure 4.7(a). Actually, the optimization can
be better for a convolutional layer. Because two adjacent convolution operations share most
of the inputs, e.g., 20 out of 25 inputs for a 5x5 kernel in this case, we are able to map more
replicas of the 25 x 10 weight matrix in one mat in a smart way, as shown in Figure 4.7(b). In
this way, we make 24 replicas in one mat, increasing the number of output data from 50 to 120
as well as reducing the number of input data from 250 to 140. In CNN-1, the pooling layer
adopts 4 : 1 max pooling. Since each pooling requires a 4 x 6 weight matrix, we can map 42
replicas in one mat. In CNN-1, the fully connected layers are 720—70—10. Since the input

dimension is larger than 256, we apply the split-merge mapping. First, the 720 x 140(=70-2)

For clarity, we only talk about the positive part of the weight matrix. The mapping optimization also applies
to the negative part.

49

PRIME: Processing In ReRAM-based Main Memory Chapter 4

weight matrix is mapped into 3 mats, each of size 240 x 140. Then, the merging of the results
from those three mats is performed in another mat to achieve the final results. In the merging
mat, since the weight matrix is 3 X 1, we can execute 85 merging operations in one mat at the
same time.

In each mat, computation and data input/output can work in a pipelined way, thanks to input
latches and output registers in Figure 4.2 @ and @ All mats can work in parallel, and the
data communication among them either goes through the Buffer subarray or bypasses it with
the help of the bypassing registers (as shown in Figure 4.2 G). When a mat has bypassed inputs
(not from the Buffer subarray but from the bypassing registers) and is dedicated for a whole
layer (not one of a set of mats for split-merge mapping), in order to improve the throughput,
we can duplicate the mat and make the two mats work in a ping-pong mode, in which one mat
receives its inputs from the previous layer while the other does the computation. As shown
in Figure 4.7(c), the pooling layer, the merging layer of the fully connected layer 1, and the
the fully connected layer 2, are configured to work in ping-pong mode. The whole system
takes ten mats, Mats 1 to 10, and we duplicate it using Mats 11 to 20. We do not replicate
more because with two copies the data communication latency totally hides the computation
latency. More copies cannot further improve the throughput because the latency-dominated

data communication is serial among mats through the bus-based Buffer subarray.

4.2.3 Run Time Optimization

When FF subarrays are configured for NN applications, the memory space is reserved and
supervised by the OS so that it is invisible to other user applications. However, during the run-
time, if none or few of their crossbar arrays are used for computation, and the page miss rate
is higher than the predefined threshold (which indicates the memory capacity is insufficient),

the OS is able to release the reserved memory addresses as normal memory. It was observed

50

PRIME: Processing In ReRAM-based Main Memory Chapter 4

that the memory requirement varies among workloads, and prior work has proposed to dynam-
ically adjust the memory capacity by switching between SLC and MLC modes in PCM-based
memory [142]. The page miss rate curve can be tracked dynamically by using either hardware
or software approaches [143]. In our design, the granularity to flexibly configure a range of
memory addresses for either computation or memory is crossbar array (mat): when an array
is configured for computation, it stores multi-bit synaptic weights; when an array is used as
normal memory, it stores data as single-bit cells. The OS works with the memory management
unit (MMU) to keep all the mapping information of the FF subarrays, and decides when and
how much reserved memory space should be released, based on the combination of the page

miss rate and the utilization of the FF subarrays for computation.

4.2.4 Discussion

Overhead of Writing Synaptic Weights. In the execution stage, before the computation
starts, we need to program the target ReRAM cells according to the synaptic weights. We adopt
a similar mapping engine described in prior work [144]. Programming cells to certain weights
is equivalent to writing MLC ReRAM cells, which is both time- and energy-consuming. To

reduce the overhead of programming, data comparison write schemes are used [145].

ReRAM Endurance. PRIME does not deteriorate ReRAM’s lifetime. Prior techniques
that extend ReRAM’s lifetime can be integrated into PRIME seamlessly. When serving as
memory, ReRAM works as SLCs with 102 [146,147] lifetime. When serving as accelerators,
ReRAM works as MLCs and they are only written at the programming stage with synaptic
weights. Given a 10-year lifetime and 10° MLC endurance®, PRIME can be re-programmed
every 300ms, which is far ahead of the expected programming rate that occurs daily, weekly,

or even monthly.

SMLC endurance is reported between 107 [148] to 10'2 [147]. We adopt 10” to have a conservative lifetime
estimation.

51

PRIME: Processing In ReRAM-based Main Memory Chapter 4

Sneak Current and IR-Drop. When serving as memory, a ReRAM crossbar array suffers
from multiple possible current paths. Many previous studies proposed different solutions to
solve the sneak current problem at device, circuit, and architecture levels [120,149—-154], which
are adoptable in PRIME. However, when serving for computing, the sneak current does not
matter, since it contributes to the computation [155]. The IR-drop on a wordline is a challenge
for both memory and computation functions. Xu et al. [120] proposed a double-sided ground
biasing technique to solve this problem for ReRAM based main memory, which is adopted in
PRIME. Moreover, proper training [137] and layout engineering [156] can further address the
IR-drop for ReRAM-based NN computation. We have considered the impact of the IR-drop
on computation precision in our design. That is one important reason for our conservative

assumption in PRIME that ReRAM based analog computation has only 6-bit output precision.

4.3 Evaluation

In this section, we evaluate our PRIME design. We first describe the experiment setup, and

then present the performance and energy results and estimate the area overhead.

4.3.1 Experiment Setup

Benchmark. The benchmarks we use (MIBench) comprise six NN designs for machine
learning applications, as listed in Table 4.3. CNN-1 and CNN-2 are two CNNs, and MLP-
S/M/L are three multilayer perceptrons (MLPs) with different network scales: small, medium,
and large. Those five NNs are evaluated on the widely used MNIST database of handwritten
digits [130]. The sixth NN, VGG-D, is well known for ImageNet ILSVRC [132]. It is an
extremely large CNN, containing 16 weight layers and 1.4x 108 synapses, and requiring ~
1.6 x 10'% operations.

PRIME Configurations. There are 2 FF subarrays and 1 Buffer subarray per bank (totally
52

PRIME: Processing In ReRAM-based Main Memory

Chapter 4

MIBench

MLP-S

784-500-250-10

CNN-1 conv5x5-pool-720-70-10 MLP-M

784-1000-500-250-10

CNN-2 conv/x10-pool-1210-120-10 | MLP-L

784-1500-1000-500-10

VGG-D

conv3x64-conv3x64-pool-conv3x128-conv3x128-pool
conv3x256-conv3x256-conv3x256-pool-conv3x512
conv3x512-conv3x512-pool-conv3x512-conv3x512
conv3x512-pool-25088-4096-4096-1000

Table 4.3: The Benchmarks and Topologies.

64 subarrays). In FF subarrays, for each mat, there are 256 x256 ReRAM cells and eight 6-

bit reconfigurable SAs; for each ReRAM cell, we assume 4-bit MLC for computation while

SLC for memory; the input voltage has 8 levels (3-bit) for computation while 2 levels (1-bit)

for memory. With our input and synapse composing scheme, for computation, the input and

output are 6-bit dynamic fixed point, and the weights are 8-bit.

Methodology. We compare PRIME with several counterparts. The baseline is a CPU-only

solution. The configurations of CPU and ReRAM main memory are shown in Table 4.4, in-

cluding key memory timing parameters for simulation. We also evaluate two different NPU

solutions: using a complex parallel NPU [157] as a co-processor (pNPU-co), and using the

NPU as a PIM-processor through 3D stacking (pNPU-pim). The configurations of these com-

paratives are described in Table 4.5.

Processor 4 cores; 3GHz; Out-of-order
L1 I&D cache Private; 32KB; 4-way; 2 cycles access;
L2 cache Private; 2MB; 8-way; 10 cycles access;
ReRAM- 16GB ReRAM; 533MHz IO bus;
222?;1 8 chips/rank; 8 banks/chip;
Memory tRCD-tCL-tRP-tWR 22.5-9.8-0.5-41.4 (ns)

Table 4.4: Configurations of CPU and Memory.

53

PRIME: Processing In ReRAM-based Main Memory Chapter 4

We model the above NPU designs using Synopsys Design Compiler and PrimeTime with
65nm TSMC CMOS library. We also model ReRAM main memory and our PRIME system
with modified NVSim [158], CACTI-3DD [159] and CACTI-IO [160]. We adopt Pt/TiO2-x/Pt
devices [128] with Ron /Ry = 1kQ/20kQ and 2V SET/RESET voltage. The FF subarray is
modeled by heavily modified NVSim, according to the peripheral circuit modifications, i.e.,
write driver [161], sigmoid [121], and sense amplifier [122] circuits. We built a trace-based in-
house simulator to evaluate different systems, including CPU-only, PRIME, NPU co-processor,

and NPU PIM-processor.

Description Data path Buffer
Parallel NPU [157] 16 16 multiplier 2KB in/out
pNPU-co .
as CO-processor 256-1 adder tree 32KB weight
pNPU-pim PIM version of parallel NPU, 3D stacked to each bank

Table 4.5: The Configurations of Comparatives.

4.3.2 Performance Results

The performance results for M[Bench are presented in Figure 4.8. MIBench benchmarks
use large NNs and require high memory bandwidth, and therefore they can benefit from PIM.
To demonstrate the PIM advantages, we evaluate two pNPU-pim solutions: pNPU-pim-x1 is
a PIM-processor with a single parallel NPU stacked on top of memory; and pNPU-pim-x64
with 64 NPUs, for comparison with PRIME which takes advantages of bank-level parallelism
(64 banks). By comparing the speedups of pNPU-co and pNPU-pim-x1, we find that the PIM
solution has a 9.1 x speedup on average over a co-processor solution. Among all the solutions,
PRIME achieves the highest speedup over the CPU-only solution, about 4.1x of pNPU-pim-
x64’s. PRIME achieves a smaller speedup in VGG-D than other benchmarks, because it has
to map the extremely large VGG-D across 8 chips where the data communication between

banks/chips is costly. The performance advantage of PRIME over the 3D-stacking PIM solu-
54

PRIME: Processing In ReRAM-based Main Memory Chapter 4

tion (pNPU-pim-x64) for NN applications comes from the efficiency of using ReRAM for NN
computation, because the synaptic weights have already been pre-programmed in ReRAM cells
and do not require data fetches from the main memory during computation. In our performance
and energy evaluations of PRIME, we do not include the latency and energy consumption of
configuring ReRAM for computation, because we assume that once the configuration is done,

the NNs will be executed for tens of thousands times to process different input data.

‘ OpNPU-co OpNPU-pim-x1 ®pNPU-pim-x64 & PRIME|
1E+05 :

-} — < ol SPS =

= o2 & Spm 2 M SHES o=

O 1E+04 = i B2 B E° © 2
N = 2) I

8‘ 1E+03 x = ﬁﬁ

£ - - = g .

o A o : —)

Z 1E+02 | & i be i £

g a o “ 0 ' -

S 1EH01 H o i v - b

L —

4 i LN] i

w 1E+00 |_| -

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG gmean
Figure 4.8: The performance speedups (vs. CPU).

Figure 4.9 presents the breakdown of the execution time normalized to pNPU-co. To clearly
show the breakdown, we evaluate the results of pNPU-pim with one NPU, and PRIME without
leveraging bank parallelism for computation. The execution time is divided into two parts,
computation and memory access. The computation part also includes the time spent on the
buffers of NPUs or the Buffer subarrays of PRIME in managing data movement. We find
that pNPU-pim reduces the memory access time a lot, and PRIME further reduces it to zero.
Zero memory access time does not imply that there is no memory access, but it means that the

memory access time can be hidden by the Buffer subarrays.

4.3.3 Energy Results

The energy saving results for MIBench are presented in Figure 4.10. Figure 4.10 does not

show the results of pNPU-pim-x1, because they are the same with those of pNPU-pim-x64.

55

PRIME: Processing In ReRAM-based Main Memory Chapter 4

| OCompute + Buffer ®Memory |
8 100%
E T
Z 20%
o
£ 10% H H
Z o gm e gm 2 Em 2 Em e em e EM
5 22 | 382 | Bz | 282 | fe2 | I8
2 SEE | ZEE | 5RE | 22K | 2E2E | 2RE
— [V 284 oz [2%74 a.z a7
a o o o o (=8
CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG-D

Figure 4.9: The execution time breakdown (vs. pNPU-co).

From Figure 4.10, PRIME shows its superior energy-efficiency to other solutions. pNPU-
pim-x64 is several times more energy efficient than pNPU-co, because the PIM architecture
reduces memory accesses and saves energy. The energy advantage of PRIME over the 3D-
stacking PIM solution (pNPU-pim-x64) for NN applications comes from the energy efficiency

of using ReRAM for NN computation.

| OpNPU-co B pNPU-pim-x64 m PRIME
5 1E+06 . =
O 1E+05 = a a 3 2
8 é = « =
: 1E+04
E o
e
S 1E+03 _ o
o O 5N
z 1E+02 Lo °
2 1Eol 2 -
3
= 1E+00
m

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG gmean

Figure 4.10: The energy saving results (vs. CPU).

Figure 4.11 provides the breakdown of the energy consumption normalized to pNPU-co.
The total energy consumptions are divided into three parts, computation energy, buffer energy,
and memory energy. From Figure 4.11, pNPU-pim-x64 consumes almost the same energy in
computation and buffer with pNUP-co, but saves the memory energy by 93.9% on average by

decreasing the memory accesses and reducing memory bus and I/O energy. PRIME reduces all

56

PRIME: Processing In ReRAM-based Main Memory Chapter 4

the three parts of energy consumption significantly. For computation, ReRAM based analog
computing is very energy-efficient. Moreover, since each ReRAM mat can store 256 x 256
synaptic weights, the cache and memory accesses to fetch the synaptic weights are eliminated.
Furthermore, since each ReRAM mat can execute as large as a 256 — 256 NN at one time,
PRIME also saves a lot of buffer and memory accesses to the temporary data. From Fig-
ure 4.11, CNN benchmarks consume more energy in buffer and less energy in memory than
MLP benchmarks. The reason is that the convolution layers and pooling layers of CNN usually

have a small number of input data, synaptic weights, and output data, and buffers are effective

to reduce memory accesses.

| OCompute B Buffer ®Memory

g 100%

; 75%

S 50%

2

. 25% H H

E = = =

Z OEUJ OELWJ OELIJ OEUJ OELWJ OELIJ

& Tas | 282 | 32 | $a2 | 52 | IE2

9 o o o o e o

S o o o o o o

S| 2BF | 2ET | AT | BT | & 4

a, [=9 (=8 [=9 o a,

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG-D

Figure 4.11: The energy breakdown (vs. pNPU-co).

4.3.4 Area Overhead

Given two FF subarrays and one Buffer subarray per bank (64 subarrays in total), PRIME
only incurs 5.76% area overhead. The choice of the number of FF subarrays is a tradeoff
between peak GOPS and area overhead. Our experimental results on Mlbench (except VGG-
D) show that the utilities of FF subarrays are 39.8% and 75.9% on average before and after
replication, respectively. For VGG-D, the utilities of FF subarrays are 53.9% and 73.6% before
and after replication, respectively. Figure 4.12 shows the breakdown of the area overhead in a

mat of an FF subarray. There is 60% area increase to support computation: the added driver

57

PRIME: Processing In ReRAM-based Main Memory

Chapter 4

takes 23%, the subtraction and sigmoid circuits take 29%, and the control, the multiplexer, and

etc. cost 8%.

Bdecoder (& mux)

@drive (WL, BL)

moutput (SA, etc)

B misc (precharge, etc)

O Add-on: drivers

H Add-on: sigmoid, SA, etc
W Add-on: contrl, etc

Figure 4.12: Area Overhead of PRIME.

4.4 Conclusion

8%

15%

11%
6%

23%

29%
8%

This paper proposed a novel processing in ReRAM-based main memory design, PRIME,

which substantially improves the performance and energy efficiency for neural network (NN)

applications, benefiting from both the PIM architecture and the efficiency of ReRAM-based

NN computation. In PRIME, part of the ReRAM memory arrays are enabled with NN com-

putation capability. They can either perform computation to accelerate NN applications or

serve as memory to provide a larger working memory space. We present our designs from

circuit-level to system-level. With circuit reuse, PRIME incurs an insignificant area overhead

to the original ReRAM chips. The experimental results show that PRIME can achieves a high

speedup and significant energy saving for various NN applications using MLP and CNN.

58

Chapter 5

NVSIM-CAM: A Circuit-Level Simulator
for Emerging Nonvolatile Memory based

Content-Addressable Memory

Ternary Content-Addressable Memories (TCAMs) are used for a wide variety of applica-
tions, such as associative caches, networking routers, and search engines. TCAMs provide
fast match/mismatch responses for in-memory content searching. Conventionally, TCAMs are
implemented by SRAMs with 16 transistors per cell [162]. The large cell area and the cor-
responding large power consumption result in poor scalability. However, the emergence of
the nonvolatile memory (NVM) based TCAM (nvTCAM) offers an alternative to overcome
the challenge. The emerging NVMs, i.e., Magnetoresistive RAM (MRAM) [163], Phace-
Changing RAM (PCM) [164], and Resistive RAM (ReRAM) [165], provide small cell area,
nonvolatility, and zero standby power consumption. Consequently, it not only improves the
memory design to be denser and more power efficient, but also makes evolution for the TCAM
design: a new generation of the nvTCAM with significant area reduction, low power consump-
tion, better scalability, and instant-on/off features.

59

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

The nvTCAM has an even boarder influence. It can also pave ways for corresponding archi-
tecture innovations, which otherwise, are impossible with conventional SRAM-TCAMs. For
example, thanks to nvTCAM’s low power consumption and the instant-on/off feature, Changet
al. [166] has proposed to use nvITCAM for deep packet inspection in the energy-hungry IoT
scenario. SRAM-TCAM is not competent due to large leakage power. Similarly, taking advan-
tages of the nvTCAM'’s high density feature, Ipeker al. [167] has proposed a nvTCAM-based
accelerator for data intensive applications. SRAM-TCAM is not adoptable due to the poor
scalability. These work has shown the trend that as the nvTCAM keeps developing, there will
be more edge-cutting techniques that call for the architecture/system design rethinking.

In order to keep pase with the ever-changing nvTCAM technology, a circuit-level model
and a simulation tool are essential. However, building such a tool is challenging. First, targeting
at emerging technology, the tool should not only focus on circuit modeling, but also be able to
capture performance related device characters. Second, different from the almost fixed SRAM-
TCAM cell structure, the nvTCAM faces a diversity of the cell structures. The tool should be
able to support the flexibility of the cell design. Third, most of the nvTCAMs are sensitive with
the search word size, which results in extra design knobs and constraints. Considering all these
challenges, the nvTCAM design ends up with a much larger design space than that of either
NVMs or SRAM-TCAMSs. To find a sweet point from the large design space, the automatic
tool is preferred.

Previous work set foot in modeling either the SRAM-TCAM or the emerging NVM, but
they are not adoptable for the nvTCAM modeling. CACTI [168] and its variants [169] have
modeled SRAM-based full associate cache, but no emerging technologies are supported. Sher-
woodet al. [170] has proposed a power model for TCAMs, but again, they only focused on
SRAM-TCAMs. On the other hand, NVSim [158] is widely used for emerging NVM perfor-
mance, area, and power evaluation, but the support for nvTCAM is not yet developed. Most

recently, Chener al. [171] has made comprehensive comparisons and design space explorations
60

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

among three types of MRAM-TCAM cells. However, they did not provide a universal model
and simulation platform, either.

In this chapter, for the first time, we develop a universal simulation tool for nvTCAMs,
named NVSIM-CAM. A following case study presents this tool’s competency of early stage
projection and design space exploration, with a novel 3D vertical ReRAM based nvTCAM

design. Our specific contributions in this paper are listed as follows,

e We develop a circuit-level model of nvTCAM which provides full-support for the in-
dispensable diversity and flexibility of the nvTCAM design given their many possible
choices of cell structures and circuit optimizations. We implement our model on a simu-
lator framework NVsim with heavy modifications of its code base.

e We validate our model with fabricated nvTCAM prototypes, and the results show that
we can achieve 3.5% error on average for several chips with different designs. We also
demonstrate the competency of the tool in exploring a huge design space of nvTCAM at
an early design phase.

e We propose a novel and extremely high-density TCAM design based on low-cost vertical
3D vertical ReRAM. We use NVSIM-CAM to evaluate the design and demonstrate 234 x
higher density than the state-of-the-art design. We then project the superiority and iden-
tify the limitation of 3DVTCAM based on our evaluations with the tool. We also discuss

the potential applications and architecture innovations facilitated by the 3DVvTCAM.

5.1 Background and Overview

This section shows an overview of the micro-architecture of a general nvITCAM, and the

framework of the developed NVSIM-CAM tool.

61

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

5.1.1 Principle working mechanism of TCAMs

Though there are plenty types of nvTCAM cell structures, they stick to the principle NOR-
type! working mechanism. The TCAM cells are connected together with the matchline (ML).
In order to describe three states (“0”, “1”, and “x”), the cell usually contains two single-level
cells or one MLC. The querying data is transferred to each corresponding cells through the
searchline (SrL) during search operations. By properly encoding the storing data and the
querying data, the cell can output a logical “0” for mismatch and logic “1” for match. The
ML performs an overall logic “AND” operation for all the cell matching result on it: If any

mismatch shows up (““0”), the final result shows a mismatch (“0”).

o Rl === Precharge ML wire Pre-
g K Match discharge | I WI _______ }-charge
g ! Miss discharge I_!m_""tcl}f-lz.'_!m.'.s.

"' Match: Miss:
£ :I.Precharge . |SA Margin hold pull- CMI
=i [l. Matchline but ref

' : down
g, develop ll. Sensing |leak

. < 3

= (a) Sensing mechanism 'me (b) RC model for the matchline

Figure 5.1: The ML sensing machanism.

Figure 5.1 (a) shows the sensing mechanism for (nv)TCAM. There are three phases. In the
first phase, the ML is charged to a high voltage. In the second phase, the SrLs are activated to
evaluate matching. The ML starts to discharge. In the last phase, the ML voltage difference
between match and mismatch is large enough for a sense amplifier (SA) to sense. We denote the
minimal ML voltage difference between a match and a mismatch as the sense margin (shown
in Figure 5.1 (a)). Figure 5.1 (b) shows the circuit model. A mismatch cell generates Iy
to discharge the ML. This current is much larger than I,qp, Which is the leaking discharge
current from a match cell. A reasonable design should have a small Iy;ss to prevent leakage
during match, so that the SA sense margin is large enough. At the same time, a larger Ip,ch 1S

preferred, since the ML can discharge quickly and it results in a smaller search latency.

INAND-type suffers from voltage drop and pool stability, and hence is rarely adopted [172].
62

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

5.1.2 The bank organization and components

Figure 5.2 (left) shows the bank-level architecture for a nvTCAM. As the lower level micro-
block, Mats within a bank are connected with H-tree [158] (the bus-like connection is also
supported). In order to support a large query word size, the word is able to be partitioned
among the Mats. In this situation, the search operations inside each Mat work simultaneously,

and their results are merged (by AND logic) at the joint point of the H-tree routing.

In-buf Col Dec. & Dr.
Precharger

LMerger : BL/SL
MAT MAT ____BL/S

a
= [SrL/wi
o
(n'ed

cell F
ML

merge

v Mux
3 Sense Amp.
Bank = Accumulator
®) Priority Enc.

MAT MAT
- merge -

Figure 5.2: The bank organization (left) and components within a Mat (right). Glossary:
Decoder (Dec.), Driver (Dr.), Encoder (Enc.)

Figure 5.2 (right) shows the components that build a nvTCAM Mat. NVSIM-CAM is
based on NVSim [158] but there are plenty of differences between the TCAM and normal
memories, as marked with dark colors. Besides the WL/BL/SL, there are also SrLs and MLs
in nvTCAMs. There are also unique components in nvTCAM, including the accumulator and

the priority encoder.

5.1.3 The framework of NVSIM-CAM

Figure 5.3 shows the framework of the NVSIM-CAM tool. The design knobs include data
organizations, technologies, component settings, and cell designs. The detailed configurable
items are listed in Table 5.1. These design knobs are either fixed for a certain design projection,

or input as a range for DSEs. The optimization objective and design constraints are supported.
63

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

The output of NVSIM-CAM is the performance/power/area parameters of the best design that

meets the design specification and constraints.

£))

Organization: Components: []Celldescription:
[jTechnoIogy: & 4 X Opt:

— perf.;
Spec. o) _’I_IVSI';n CDASI\é = | area,
&Constr.| Qo] lfolr power

Figure 5.3: The framework of NVSIM-CAM.

Organization: Component:
Bank/Mat size: H-tree, partition SA types (vol./cur.)

SA sharing: Mux, local/global Buf., Acc., Priority enc.
Bit serial width (if appliable) Drivers opt. target

Cell description:
Cell type (Diode/NMOS/Direct); Device parameters
Description for each port: transistor size, V/I in every op.

Table 5.1: NVSIM-CAM’s input and design knobs.

5.2 NVSIM-CAM Development

In this section, we show the development of NVSIM-CAM. We first show how NVSIM-
CAM models different cell structures. Then, in order to improve the simulation precision,
we propose the customized-SA based modeling. In the end, we validate NVSIM-CAM with

fabricated nvTCAM prototypes.

5.2.1 Description of various cell structures

The nvTCAM cell structure design is flexible. For example, from simple cells of 2T2R [164]
or 3T1R [165], to the complex cell of 6T2R [173], there are reasonable designs with fabricated

prototypes. They are adopted according to different design targets. To model the cell diversity,
64

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

we focus on three aspects: the cell’s impact on peripheral circuits, the intra-cell currents, and

the cell’s impact on ML development.

Cell’s impacts on peripheral circuits

A cell can have multiple ports connected to the row/column wires (WL/SrL/etc). For ex-
ample, the 3T1R cell [174] is connected to three row wires and three column wires. These
wires determine the corresponding row/column drivers and the multiplex’s design. To capture
these impacts, we need a description of each port, including the connected transistor’s size and
the connected wire’s width. By these descriptions, the RC model of the row/column wire is
established. Then, with the description of the voltage and/or current that applied to this port
during search/write operations, the maximal current on the wire is calculated, and hence we

have the parameters for driver/mux design (RC load and maximal current).

Intra-cell currents

Two kinds of intra-cell currents are considered in NVSIM-CAM. First, there could be direct
current (DC) in the cells during search, for example, in the 4T2R cell [175]. The DC needs to
be counted for power consumption. Second, although based on NVM, the nvTCAM cell still

suffers from leakage, which needs to be included in the leakage power.

Cell’s impacts on ML development

The ML development is essential for calculating sensing latency and checking sense margin
constraints. To model various cell structures’ impact on ML, we classify all those cell designs
into three categories: Diode-access, NMOS-access, and Direct-access, as shown in Figure 5.4.
To support various cell structure designs, the circuit in the dashed box is flexible with any

design.

65

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

Figure 5.4: Three types of nvTCAM cell structures.

Diode-access nvTCAM. A diode (implemented by NMOS) is used to connect the cells to the
ML. While mismatching, a low voltage is generated to the diode and turns it on, setting a path
to discharge the ML. For matches, a higher-than-ML voltage is output to the diode and turns it
off. The 4T2R cell structure [163] in Figure 5.4 (a) is an example. A match operation connects
one or two storage cells with Ry to the circuit, generating a high enough voltage to turn the
diode off. If mismatch happens, it connects one storage cell with Ry, to the diode with a low
voltage that turns it on, and hence discharges the ML.
NMOS-access nvTCAM. A pull-down NMOS is used to connect the cell circuit to the ML.
A mismatch/match generates an high/low voltage to the NMOS’s gate. It further discharges
the ML or keeps its voltage high. The 4T2R cell structure [175] in Figure 5.4 (a) is an exam-
ple,which is similar with the Diode-access example.
Direct-access nvTCAM. The cells are directly connected to the ML with the access transis-
tors. A mismatch connects cells with Ry to the ML and generate large discharge current. A
match connects at least one cell with large resistance Ry to the ML, results in a leaking current
but small enough to keep the ML voltage high for a long time. The 2T2R cell structure [164]
in Figure 5.4 (d) is an example.

Different categories result in different discharging paths. The ML delay is able to be cal-

culated accordingly. We show the detailed calculation in Section 5.2.2.

66

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

0.8 0.7
~07 | A—A—A A A A A A A A 4| _ ——— .| S
b Sos 2 06
S~ - (0] A

(0] J—
8os o match (sim) o5 — N
g — h(sim) So4 m hspice 5
S matcl &) A 1-miss (sim) > 04 |[—1-miss (sim)
> A hspice > . a0 .
205 1l s (sim) Zi02 A hspice s m hspice
e i al =% % 0.3 match (sim) ™

W hspice x A hspice []

0.4 0.0 A a—a 4 4 a 02
0 1020 30 40 50 60_70 80 90 100 0 10 20 30 40 50 60 70 80 90 10 0 10 20 30 40 50 60 70 80 9°t1(3°s)
(a) Diode-access nvTCAM (ps) (b) NMOS-access n'vTCAM ~ t(PS (c) Direct-access nvTCAM

Figure 5.5: Validating ML model in NVSIM-CAM with HSPICE simulations for all three
cell categories.

5.2.2 ML delay modeling

We focus on ML developing phase in the three phases for sensing shown in Figure 5.1 (a).
For the other two phases, previous methodologies are adaptable for modeling. For example
in the precharge phase, since no cell is turned on in that phase, the precharge latency and
power is independent with store/search data pattern, and is able to be calculated with ML’s RC
parameters. We extend the BL delay model in NVSim [158] for ML modeling. Recall that the

voltage dividing bitline delay model is described as follows,

ML

T =RyCyuL + %RMLCMLa Veense =Vs-e 7, (5.1)
where Ry, is the equivalent cell resistance, Ry, and Cyy, are the ML’s RC parameters. Vj is the
precharged voltage, and Viepse sets the timing that the SA is enabled to sense. #y is the ML
development delay.

The nvTCAM ML delay modeling is different from normal memory’s BL model in two as-
pects. First, besides calculating the delay, we also need to check the sensing margin constraint
for nvTCAM. To this end, we calculate the mismatch that provides the worst case for sensing
(with largest RAH}}SS, usually the case that only one cell misses) in Equation (5.2). In this worse

case, the ML discharge is slower than any other mismatch cases, and the ML developed voltage

is closest to the match case. Therefore, we calculate the sense margin with it. 7y is defined as

67

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

the latency that the ML discharges to Viepge 1n the worst mismatch, as follows,

T e = Ve Vingien = Vy € o, (5.2)
where the ML voltage at #yyr in the match situation is denoted as Vipach- The voltage difference
between the match (Vipaen) and the worst mismatch (V,22%) should be larger than the sensing
margin.

Second, different from normal memories, the nvTCAM Ry, calculation depends on both

the cell categories and the match results. For Diode/NMOS-access cells, Ry, in match and

worst-case mismatch situations are calculated as follows,

Roft Roft

N—-1’

Rﬂn/}atch — , RAH}iSS — Ron” (5_3)

where R, and Ry are the on/off equivalent resistance of a diode/NMOS transistor. N denotes
the number of cells that are activated on the ML at one time. Note that different from NMOS-
access cells, Diode-access cells have a fast voltage drop before the ML discharges. The fast
voltage drop turns the diode off for the match cells. For direct-access cells, the Ry, calculation

is calculated as follows,

RH + Ron

RH+R0n
N—-1"

match __
Ry ™ = N

, RNSS — Ry + Ronl| (5.4)

where R; /Ry are the low/high resistance of the NVM cell.
The ML model for the three types of nvTCAMs are then validated with HSPICE simula-
tions, as shown in Figure 5.5. It shows that the model (lines) is able to represent the real delay

from the HSPICE (dots) precisely for each category of the nvTCAM cells.

68

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

5.2.3 Customize SA

The support for customized SAs is essential. Unlike the well developed SRAM’s SA,
the NVM (especially nvTCAM) SA designs are very complex and flexible. They are usually
designed with special consideration of a particular device or cell structure. Moreover, both
of the SA performance and area take an important portion in the overall chip evaluation. For
example, Changet al. [176] has shown that by designing a better SA, the overall read latency
embraces a 6.3~8.1 x improvement. The SA design is even more important in nvTCAM. There
are more SAs in nvTCAM, because SAs are usually not shared among MLs in order to provide
a better searching parallelism. Fabricated prototypes show that the SA area takes as large as
13.7%~30.5% of the overall area [173, 177]. In addition, we also need to count the reference
circuit that used for SA reference value generation. However, the reference circuit usually takes
large area, and varies from a few dummy cells to a entire data array, in order to tackle process
variation for emerging technologies. For example, the PCM based 2T2R nvTCAM [164] has

one out of nine array for the reference circuit.

ML | (Cusfom Latency & | rvsivicam
2 | NVSim-cam model Design power e
T T ustom
s1(Pre-RUN rea (HSPICE or Area or SA
Constr literature) Netlist

Figure 5.6: NVSIM-CAM’s supporting for customized SA.

Even though the SA design is so flexible and important, existing tools only support fixed SA
designs with constant parameters. NVSim [158] supports three types of SA designs but still not
sufficient. To cope with this problem, NVSIM-CAM supports customized SAs, which provides
a interface to import the any SA parameters (either from HSPICE simulation or literature) into
the tool, when a more precise result is expected.

Figure 5.6 shows the framework. First, we pre-run the NVSIM-CAM to extract the model
of the ML for the following customized SA design. The user could design their SA by HSPICE

69

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

or simply gather data from literature, as long as the custom SA’s latency and power parameters

are given back to the NVSIM-CAM. For the area, if it is not available, a netlist with transistor

size is also acceptable, in which case, the NVSIM-CAM estimates the layout footprint [158].
By applying the custom SA design, the validation error (in the case of Table 5.2) reduces

from 8% to 4.3%.

5.2.4 Other components

Some of the nvTCAM design require extra peripheral circuits. NVSIM-CAM provides the
bit serial accumulator and the priority encoder. We describe the modeling as follows.
Accumulator. The accumulator is used to support bit serial search, which activates only parts
of the ML each time and searches the whole word serially. The accumulator gathers the partial
matching results and generates the final result for the serial searching. The accumulator circuit
includes a register and an AND logic [177]. It also contains a power gating transistor to gate the
ML whenever a mismatch happens during the serial searching to save power. By applying the
bit serial searching, the number of match leakage path is reduced and hence the sense margin
is improved.

Priority Encoder. The priority encoder only generates the lowest address of all the matching
entries. The encoder is implemented to facilitate particular applications [166] or to reduce
global wiring for the results. The priority encoder is made of a multiple match resolver (MMR)
block and a normal encoder block. NVSIM-CAM models the MMRs according to a look
ahead 3-level folding design [178]. The basic MMR block (8 entries) is based on dynamic
logic [178], and there are two look ahead signals. The basic blocks are serially connected and
the look ahead signals are connected in a hierarchical folding style so that the overall latency
is reduced from O(N) to O(logN). We validate NVSIM-CAM’s priority encoder model with a

256-bit encoder with the fabricated result [178]. It shows that NVSIM-CAM achieves 12.96%

70

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

latency error and 16.18% power error.

5.2.5 Validation with fabricated prototypes

In order to validate NVSIM-CAM, we compare the projected result from NVSIM-CAM
against the fabricated prototypes. Table 5.2 validates the Diode-access nvTCAM cell model.
Table 5.3 works for the NMOS-access model, and Table 5.4 validates the Direct-access model.
Nonvolatile technologies of MRAM, PCM, and ReRAM are all examined by those validations.
Despite of the limited data we achieve from the literature, NVSIM-CAM manages to achieve
a estimation with error around 5%. Even though the error rate is acceptable, we would like
to point out that each of those chips is fabricated by a technology with in-house parameters,
but NVSIM-CAM is based on PTM. The errors from the technology library could be a major
source for the error. Therefore, the significant of this tool lies in relative comparisons, such as

DSE shown in the next section.

90nm, Diode, 32-bit, 64-entry

Metric Actual Projected Error
Area (um?): 17118.953 16378.50 -4.3%
Lsearch (n8s): 2.50 2.571 2.6%
Esecarch (pJ): - 4.606 -

Table 5.2: Validation: 4T2R MRAM [163].

180nm, NMOS, 32-bit, 128-entry

Metric Actual Projected Error
Area (um?): - 83157.52 -
Lsearch (nS): 1.20 1.14 -5.34%
Esearch (pJ): - 51.661 -

Table 5.3: Validation: 4T2R ReRAM [175].

2 We scale the 600nm data to 32nm for comparison and hence result in unexpected error.
3Blank area is excluded.
“Test and reference circuit is embedded.

71

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

90nm, Direct, 64-bit, 2048-entry, 8-mat

Metric Actual Projected Error
Area (um?): 4 34636.95 -
Lsearch (nS): 1.90 1.85 -2.5%
Esearch (pJ): - 144.42 -

Table 5.4: Validation: 2T2R PCM [164].

5.3 Design Space Exploration with NVSIM-CAM

In this section, we perform DSE with NVSIM-CAM to show its competency. We first show
the search word size’s impact. Then, we explore how the scaling of technology affects the
nvTCAM design. In the end, we present an overall DES example to show that the optimization

1s never trivial.

5.3.1 Exploring search word size’s impacts

Figure 5.7 shows the search word size’s impact on the ML delay and the sense margin.
For the configurations, we use 14nm FinFET technology [179] and ReRAM [175]. We set
the the ML length the same as the search word size. Three cell structures with 4T2R [163],
4T2R [175], and 2T2R [164] are selected as representatives for the three nvTCAM cell struc-
ture categories. The observations are presented as follows.

Diode-access nvTCAM cells provide support for long search words, but suffer from
large search latency. It is able to minimize the leaking current (Ijuch) if matching, results in
the large sense margin and hence good scalability. However, the current when it mismatches
(Imiss) 1s also small, and it causes a longer ML discharge delay. Figure 5.7 shows the trend. Its
ML delay is larger than other types in most of the cases, and the sense margin almost stays the
same, as the word size scales up.

NMOS-access nvTCAM provides support for long words, and fast search for short

72

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

words. This is because it have both small I,,ch and large I,iss. However, the downside is the
large cell area. As shown in Figure 5.7, the ML delay gets larger when word gets longer. It is
because the large cell area causes a long ML and hence a large RC delay. For sense margin,
it is even better than the Diode-access nvTCAMs, because it does not contains a fast voltage

drop before the ML development.

1.E+4 | -e-diode A S 400 | A-k--k--k--d-k--k-oA
™ -4~NMoOS o £ [T S Y
o 1.E+3 direct | _# c 200
9 e 2
g 1.E+2 ././‘ g 0 '
i 4 -e-diode
= 1.E+1 re 8200
= 1 pE % -1—-3!~nost
Ero & 400 irec
2838 2833 IBIF
— AN 1 O ~. N © O
Word size ~ Word size —

Figure 5.7: Exploring word size’s impact on ML delay and sense margin for three types of
cell structures.

Direct-access nvTCAM offers best scalability but cannot afford a long search word. It
benefits from a considerable small cell area. However, the leaking current I,4h is large, and
hence it turns to be a limitation for a long search word. Figure 5.7 shows that when the word
size is larger than 32-bit, the sense margin is below 80mV, which is difficult for the SA design.

Therefore, Mat partition or bit serial searching is required to support longer search words.

5.3.2 Exploring technology’s impact

We study the impact of technology scaling on the performance of nvTCAM design. For the
configurations, we use the same cells in Section 5.3.1. The bank contains a single Mat with 64-
bit word and 256 entries. We implement the FinFET technology models in NVSIM-CAM and
the device parameters are extracted from PTM [179,180]. We observe from NVSIM-CAM that,
overall the latency and energy result scales well with the technology development. However,

we notice that for Direct-access nvTCAMs, the technology scaling hurts the sense margin.
73

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based

Content-Addressable Memory Chapter 5

Beyond the 22nm technology, 64-bit word size hits the 80mV sense margin constraint, and

hence is difficult for sensing. It brings up the scaling challenges for the area-efficient Direct-

access cells. Data encoding schemes [164] or ECC could be the feasible solutions.

2.0 —e-diode 40 -e—diode
e ~4-NMos S50 ~A=NMOS
; direct — direct
@) = A
§10 E,ZO
© A
— ~ W0

= -
T g
0.0 e 0
45 32 22 14 10 7 45 32 22 14 10 7

Technology (nm)

Technology (nm)

Figure 5.8: Technology’s impact on search latency and energy for three types of cell structures.

5.3.3 An overall DSE example

In order to show the nvTCAM DSE is nontrivial, we show an overall DSE example with
NVSIM-CAM in Figure 5.5. For the configurations, we set the data organization as a single
Mat with 128-bit word and 64 entries. The cell library contains three cells from the three
categories, i.e., the 4T2R [163] Diode-access cell, the 3T1R [174] NMOS-access cell, and the
2T2R [164] Direct-access cell. We optimize the design for different targets such as area and
search latency.

We observes from the DSE result that there is no such a design choice that wins for
every design target. For the area optimization, the Direct-access cell providing small cell area
is adopted. However, the Direct-access cell suffers from word size scalability challenge. It has
to apply bit serial search scheme to achieve the 128-bit search word requirement. As a result,
the area optimized design scarifies search latency for a smaller area. For the search latency
and energy optimizations, the NMOS-access cell wins, thanks to the large Iy it provides.

74

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based

Content-Addressable Memory Chapter 5
Area Opt. |Lsearch Opt. | Esearch Opt.| Ewrite Opt. |Leakage Opt.

Area (um?): 5746.551 | 33327.997 | 21879.867 | 27913.421 5746.551
Search Latency (ns) 16.736 1.332 5.201 72.992 1121.232
Search Energy (fJ/bit)| 27.878 25.533 23.772 599.912 1976.749
Write Energy (nJ) 102.992 106.26 168.25 95.142 102.992
Leakage (uW) 47.507 2089.383 418.904 63.778 47.507
Cell Sturcture 2T2R-direct| 3T 1R-nmos | 3T1R-nmos [4T2R-diode| 2T2R-direct
MLC No Yes Yes No No
Bit Serial 64-bit - - - 1-bit
Driver Opt. area-opt | latency-opt | area-opt area-opt area-opt

Table 5.5: Design Space Exploration for 14nm ReRAM based 128-bit 64-entry nvTCAM.

However, it is not optimistic considering write energy, since the 3T1R cell has to use the MLC
feature, which is more difficult to write. In the end for the leakage optimization, the Direct-
access cell is better for two reasons: first, its intra-cell leakage is much smaller; second, the

smaller area leads to shorter wires, and hence smaller drivers with smaller leakage.

Pillar electrode
i SrL
Metal oxide Plane electrode Metal @Wetal oxid RS
L 1/2\/]» Search 0
WL/SrL ij Metals E ' g .y
H i] .
eI oo b= >
T L cenzil | ||l cent J searn
. | 0
WL/ 3 .-:\L:- - :
[Cell
2R 2 1S Metalt | 13 3 |l Pre-
A eds L= 0 charge"{{}_
BL/ML @
(a) (b) (c)

Figure 5.9: (a) 3D Vertical ReRAM based TCAM structure. (b) Cell section. (c) Circuit
model when searching.

5.4 3D Vertical ReRAM based TCAM: A case study

In this section, we propose 3DVTCAM, a novel nvTCAM based on the 3D vertical ReRAM
(3DVReRAM). As a case study, we explore the benefit and also challenges faced by the pro-

posed high density TCAM, showing that how the NVSIM-CAM tool helps to project the
75

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

emerging device developments. In the end, we also discuss that how the projection further

facilitates architecture-level innovations.

5.4.1 The 3D Vertical ReRAM TCAM cell

We briefly introduce the background, since the proposed 3DvTCAM is based on the 3DVR-
eRAM [181, 182]. As shown in Figure 5.9 (a), the 3DVReRAM structure is similar with 3D-
NAND. Each horizontal plane makes the WL. The vertical pillars with metal oxide around the
central metal pillar provide the metal-oxide-metal sandwich structure when contacting with
the horizontal planes, and hence build ReRAM cells (a clearer sectional view is shown in Fig-
ure 5.9 (b)). The pillar is connected with a access transistor controlled by SL, and then a row
of pillars are connected to the BL The signal from a certain pillar is sent to the SA for read.
Even though the 3DVReRAM is a ultra dense multi-layer transistor-less design that provides
extreme cost efficiency [183], it faces the sneak path problem. Selector based device [184] is
proposed to solve the problem by increasing the non-linearity.

We propose the 3DVTCAM based on the 3DVReRAM, as shown in Figure 5.9 (a) and (c).
The horizontal plane is used as the SrL, and the BL is used as the ML. A word is stored
vertically along a vertical pillar, and a bit is built up with a couple of cells encoding the “0/1/x”
states. For searching, a SrL inputs (0, 1/2V)/(1/2V,0). The SL signal only activates one of the
pillars connected to the ML at one time. The first column and first row in Table 5.6 shows

how 3DVTCAM searches and stores “0/1/x”. For normal read and write, it remains the same

as 3DVReRAM.
Cell Content 1 (L, H) 0(H,L) X (H, H)
Search 0 (0, 0.5V) Ior, +Lig Iog + 111, oy +1ig
Search 1 (0.5V, 0) L+ Iy Lig + Lo, Ly + Dy
Search X (0.5V, 0.5V) Ly +hLy L+ Lig+hLy

Table 5.6: Cell current during ML developing (darker means larger).

76

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

In order to make sure the 3DVTCAM work, we prefer the Iss to be large enough to dis-
charge the ML, and the I, small enough to hold the ML voltage and provide enough sense
margins. We show the discharge current with all combination of SrLL voltage and storage cell

resistance as follows,

1% 1% v 4
br=—, loy=——, L= hn =
0L R’ 0H Ry’ IL 2K.R;’ 1H 2K,Ry’
R(Lv,
K — (2 read) Ior. > max{log, i1, Lig}, (5:5)
(Vread)

where Io;, and 1,7 denotes the current with OV or 1/2V input at SrL to a cell with Ry resistance,
and K, represents the cell nonlinearity. From the equation we observe that, if provided a large
K, and a large on/off resistance ratio, current Iz, will be much smaller than other possible
currents and hence ensure the correctness of the TCAM. Table 5.6 shows the cell current of all
possible combinations. A darker table cell represents a larger current. Based on this, we show

the calculation of the equivalent cell resistance as follows,

2K, RL i 2K, Ry
Rif“h = =05 RS = RIS maxten = (o) N, (5.6)
minlyiss =Ly (2N —2)+Ir +Lig. (5.7)

Based on the resistance calculation and the ML model in Section 5.2.2, we show the ML

discharge calculation for 3DVTCAM as follows,

Vs(Ru+Rr), _1

VS(RM +RT) i (Vs _)e L (5.8)

VO(I) =
ZR%V ZR%V

where R 1y are the overall equivalent resistance connected to the SrLs with 1/2V as input.
Different from other nvTCAM, the SrL the 1/2V input makes some of the discharge paths

to the 1/2V instead of the ground. We then validate the model with HSPICE simulations in

77

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

Figure 5.10, where the lines represent results from NVSIM-CAM and the points represent
results from the HSPICE. The results show both mismatch and match scenarios with K, as 20

and 500. It shows that our model fits well with the real data.

0.8
S --=miss (k=20)
\“-;06 ® hspice
> ——match (500)
= A hspice
Qo4
7 —match (20)
> 0.2 ¢ hspice

cCwTwN©V®WT©VWLY time (ns)
O ~ N oo < v

Figure 5.10: ML delay validation with HSPICE.

5.4.2 Exploring feature of the new cell

We project the advantages and disadvantages of the new cell with the help of 3DVTCAM
in this subsection. For all the experiment, we apply 14nm FinFET technology and other con-

figurations following the work from Conger al. [181].

—~380 4.0 9E+3
2 3 3
\5330 L 35 Ee3 Ng
5280 S 4, 3
S 230 = 5E+3 2
= @ 25 =
Q 180 o o
= =P 3E+3 O
o 130 — 5
n o,
80 O 15 5E+2
4 8 16 32 64 128 4 8 16 32 64128
Number of layers Number of Layers

Figure 5.11: Layers v.s. sense margin and density (256 %256 array).

We have three observations after studying the impact of the number of layers and the non-
linearity factor K, in Figure 5.11. First, more layers hurts the sense margin badly. This is

78

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

because a larger number of layers results in more discharge paths during match, and it makes
the sense margin drop exponentially. Second, a larger K; helps to provide smaller /i, and
hence better sense margin. However, beyond K, = 50, increasing K, barely enlarges the sense
margin anymore. This observation shows that aggressive nonlinearity device technology
cannot completely overcome the layer scaling challenge. Instead, we have to apply bit serial
searching or Mat partition design to achieve a longer search word. Third, except for increasing
the searching parallelism, we do not have a motivation for a large number of layers, from
density point of view. Since the aspect ratio is fixed, more layers makes the array area larger,
and hence longer wires and larger driver. Figure5.11 shows that the density sweet point is 16
layers while only considering cell density and 64 layers for the overall density.

We also explore the number of layer’s impact on the overall search latency and power
in Figure 5.12. Although the number of layer (capacity) increases, the latency almost stays
the same, which shows 3DVTCAM’s good scalability. Also, the K,’s impact on latency is
negligible. For the power, it doesn’t change while layer (capacity) increases, either. The power

per bit reduces exponentially.

9 — 1.4% 450
— = =
2 = —~ 108 o
2 3 3
388 0 = 300 8
S [N) =
5 <z =
— c 8 104 =
586 S < 150 =
= © S 2
3 : g °
n [l = n o
8.4 = 0.0% 100 0
4 8 16 32 64 128 T ooy TR
Number of layers Number of lay&rs

Figure 5.12: Layers v.s. overall latency and power.

We also compare the 3DVTCAM with conventional 2D nvTCAM design in Figure 5.13.

For configurations, we use 128-bit search word, 32 layer design with K,=20. We take the 4T2R

79

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

NMOS-access cell [175] for the 2D baseline. For speed, the 3DvTCAM is slower than a
2D nvTCAM by ~58% even when the capacity goes as large as 1GB. However, 3DvTCAM
is more energy efficient. since the power consumption results show ~2.7x and ~506x im-
provement than a 2D nvTCAM of 1MB and 1GB, respectively. That is owed to the good
scalability of 3DVTCAM that the length of global wire increases such slower than that of the
2D case. For area comparison, 3DvTCAM provides a ultra dense solution that saves up to
~234x area, which is much larger than the 3D layer factor (32 layers). This is owed to the

area reduction of the global wires and drivers.

Olatency Eenergy mArea

1.E+3

1.E+2
1.E+1
1.E+0
1.E-1 H
1.E-2

16M 64M 256M
CapaC|ty (Byte)

Better than 2D TCAM

Figure 5.13: Compare 3DvICAM with 2D design.

5.4.3 Discussion: Turning the projection into architecture innovations

In this subsection, we discuss a potential boarder impact of the NVSIM-CAM tool. We dis-
cuss the architecture-level innovation facilitated by the projection result from NVSIM-CAM.
In the 3DVTCAM case, we propose a processing-in-storage architecture targeting at energy-
efficient acceleration for DNA alignment algorithms.

DNA alignment algorithms like BLAST [185] face challenges, since they need to process
huge data sets (one trillion bases and increasing exponentially [186]). The data sets are too
large to store in the DRAM main memory. They have to be stored in the storage, such as the

3DReRAM based fast storage system. The alignment algorithm requires searching among the

80

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

whole database to pick up the hit sequences for further alignment operations. As shown in

Figure 5.14 (a), the processor needs to fetch every raw data from the storage for searching.

@ processors o) processors
g Joor 0 |
33 R e DDR
03 DRAM working T = DRAM working
S & memory S5 memory
L) (4}
L PCle or SATA ‘; Cle or SATA
") . L~
3D Vertical ReRAM S < Fast
Fast Storage S | SDTCAM gigrage
(a) generation of hits with processors: (b) generation of hits
identify all word matches in DB with PIS by TCAM

Figure 5.14: Processing-in-storage with 3DvTCAM.

In order to eliminate the unnecessary data movement, we propose a processing-in-storage
(PIS) architecture, where part of the fast storage 3DVReRAM is designed as 3DVTCAM. The
search operation for hit sequence is then able to be performed inside the storage with the help of
the TCAM, as shown in Figure 5.14 (b). By applying the PIS architecture, the data movement is
minimized that only a few hit sequences are fetched to the processer. Therefore, a large portion
of energy is saved. Moreover, the search operation embraces a larger bandwidth, since it gets
rid of the limitation of the narrow data bus, and takes advantage of the massive bank/Mat-level
parallelism inside the storage. Conventional SRAM-TCAM or nvTCAM are not competent to
support the PIS architecture. Because their large area cannot fit in with the storage class design.
This architecture innovation is facilitated by the NVSIM-CAM projection of the 3DvTCAM

(~234x denser than 2D nvTCAM).

5.5 Conclusion

In order to model and project the ever changing emerging NVM based TCAM design, we
propose a circuit-level model and develop a simulation tool, NVSIM-CAM. The tool is able to

capture the flexibility of the nvTCAM design and is validated with both HSPICE simulations
81

NVSIM-CAM: A Circuit-Level Simulator for Emerging Nonvolatile Memory based
Content-Addressable Memory Chapter 5

and fabricated prototypes. Based on NVSIM-CAM, we perform the DSE for different types
of nvTCAM cells. In order to show how NVSIM-CAM helps for early stage projection of
potential novel TCAM designs, we explore 3DVTCAM, a proposed 3D vertical ReRAM based
TCAM, as a case study. We also discuss NVSIM-CAM’s potential for facilitating further

architecture innovations.

82

Chapter 6

DRISA: A DRAM-based Reconfigurable

In-Situ Accelerator

To bridge this gap between the computing and the memory, extensive work has been done to
explore possible solutions, which can be classified into two categories: The first approach, re-
ferred to as the memory-rich processor, sticks with the computing-centric architecture while
bringing more memory on-chip. For example, modern CPU processors integrate up to 128MB
embedded DRAM (eDRAM) caches [187], latest GPU processors integrate up to 16GB 3D
High-bandwidth memory(HBM) with 2.5D interposer [188]. This on-chip/in-package mem-
ory not only reduces energy-consuming off-chip memory accesses, but also provides higher
memory bandwidth, improving system performance. The second approach, referred to as the
compute-capable memory, switches to the memory-centric processing-in-memory (PIM) ar-
chitecture. Lightweight processing units are designed in the logic die of 3D stacking memo-
ries [57] or in the same DRAM die in 2D cases [50, 189] for near-data computing or in-memory
computing. This approach significantly reduces the traffic between the host and memories, and
embraces the large internal memory bandwidth.

However, both approaches have limitations. As shown in Figure 6.1, bringing large on-chip

83

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

0B 1IIEJrO:sﬁferedComp This Work
s< NeuroCu
o‘I: § 1.£+02 Compute-capable
o5 Memory (PIM) Dadiannad®
S8 1E+0f Shidiannao
EQ Memory-rich\ TITAN X (ASICs)
§§ 1.E+00 Processor PU)
 1E+00 1E+01 1E+02 1E+03 1E+04

Normalized Peak Perf. per Area

Figure 6.1: The on-chip memory capacity and computing capability of various ap-
proaches [10, 50,78, 190].

memory to the powerful memory-rich processor architectures (the lower right corner) boosts
the performance, but the memory capacity is still not enough for data intensive applications. On
the other hand, the PIM approaches (the upper left corner) effectively bond more memory to the
computing resources, but the performance is not as competitive as GPU/ASICs. For example,
Neurocube achieves 132GOPs [10], while the latest GPU can reach 44TOPs [190]. Emerging
applications, such as deep learning and bioinformatics (like meta-genome data analysis [191]),
are both compute and memory intensive, with a challenging demand for both powerful com-
puting and large memory capacity/bandwidth (the upper right corner in Figure 6.1), which may
not be satisfied by either of these approaches.

Designing a novel architecture to achieve the goal in the target region in Figure 6.1 is
challenging. It is difficult to keep adding more memories to processors, since even the high-
density eDRAM suffers from a much larger cell size (60F 2 _80F? [16, 192]) than DRAMs
(6F?). On the other hand, it is also difficult to improve PIM’s performance. For the 3D-based
PIM, the area of the processing unit is limited by the logic die’s area budget [9]. For the 2D-
based PIM, building complex logics with DRAM process technologies results in large area and
cost, making the approach unviable for the DRAM industry [62].

The goal of this chapter is to build a processing unit that provides both high computing per-

84

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

formance and large memory capacity/bandwidth (the upper right region in Figure 6.1). To that
end, we present a DRAM-based Reconfigurable In-Situ Accelerator architecture, DRISA. The
accelerator is built using DRAM technology with the majority of the area consisting of DRAM
memory arrays, and computes with logic on every memory bitline (BL). By applying the
DRAM technology, we achieve the goal of large memory capacity for the accelerator. Further-
more, DRISA’s in-situ computing architecture eliminates unnecessary off-chip accesses and
provides ultra-high internal bandwidth. To avoid the large overhead caused by building logic
with DRAM process, DRISA uses simple and serially-computing BL logic. The BL logic
has bitwise Boolean logic operations (like NOR), which are either performed by the memory
cell itself, or by a few add-on gates. DRISA can be reconfigured to compute various functions
(like additions) by serially running the functionally complete Boolean logical operations with
the help of hierarchical internal data movement circuits. Finally, to achieve high performance
with these simple and serially-computing logic elements, multiple rows, subarrays, and banks
are activated simultaneously to provide massive parallelism. We compare four different de-
sign options, and present a case study of accelerating the state-of-the-art convolutional neural
networks (CNNs). The contributions of this paper are summarized as follows:

e We propose an accelerator architecture, DRISA, built with DRAM technology. It provides
large on-chip memory and in-situ computing benefits. To reduce the overhead of build-
ing logic with DRAM process, we use simple Boolean logic operations for computing but
achieve high performance after optimizations.

e A set of circuits and microarchitectures are implemented in DRISA, including the BL logic
design, the reconfigurable scheme, hierarchical internal data movement circuits, and con-
trollers. Optimizations for unblocking the internal data movement bottlenecks and reducing
activation latency and energy are presented to achieve higher performance.

e We use CNN acceleration as a case study to demonstrate the effectiveness of our approach,

with resource allocation optimizations. We compare four different DRISA designs and
85

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

present conclusions that guide efficient DRISA design. We also compare DRISA with the

state-of-the-art ASIC and GPU solutions for the CNN case study.

6.1 Overview

The Key Idea. To implement in-situ computing with large on-chip memory, we build DRISA
with DRAM process technology. The main challenge is to efficiently build complex logic
functions within the DRAM process. We solve this problem by only building simple Boolean
logic operations. Figure 6.2 shows a logical overview of DRISA. To avoid building complex
circuitry in DRAM process technology, we leverage vast, parallel DRAM internal resources
to increase computational ability by serially cascading on simple Boolean logic. The bitwise
Boolean logic operations are implemented in an efficient manner for each BL. To compute,
DRISA first opens two rows, performs logical operations using SAs modified with logic and
shifters, and then writes back to a result row. It achieves reconfigurability by implementing
different sets of functions serially for a desired overall function. However, in order to increase
the throughput with multiple DRAM resources, multiple rows, subarrays, and banks need to be

activated simultaneously, leading to challenges that we describe next.

BL-width Row operand-1 C— Multi-

vector » ||E=——== subarray
3 |I=—== g \active

[/O]

| N | |

| 4} |]

General OP < I 1) | '
(add...) » Multi-bank active

(@) (b) (c)

Figure 6.2: A logical overview of DRISA. (a) Performing general operations through serially
running Boolean logic operations. (b) Implementing Boolean logic operations with SA’s help
for each BL. (c) Multi-bank/subarray activation for more parallelism.

Challenges and Solutions. Our DRISA architecture exploits massive DRAM parallelism and

86

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

achieves large computational throughput for in-situ reconfigurable computing. However, new
design methodologies are required to achieve high performance. We outline the challenges and

our contributions to address them:

Challenge-1:Achieving high performance with the simple and serial logic elements. We
target DRISA as an accelerator instead of as host memory to avoid tight area constraints, and
hence we can optimize it for high performance. DRISA requires simultaneous activation
of multiple subarrays and banks to provide large parallelism and thereby large computational
throughput. To solve this, we propose bank reorganization to enable activating multiple rows

(Section 6.2.4).

Challenge-2:Unblocking the internal data movement bottleneck. We propose group/bank buffers
to isolate local movements in DRAM and enable moving multiple data buffers in parallel (Sec-
tion 6.2.2). We also reorganize the bank to reduce data collisions on the shared data bus by

designing a hierarchical bus (Section 6.2.4).

Challenge-3:Optimizing ACT to reduce its latency and energy. Activation (ACT) is a basic step
for DRISA computing. Directly adopting a DRAM ACT mechanism results in large latency and
energy overheads. Our bank reorganization makes WLs/BLs shorter (Section 6.2.4). We also
present split computing and storage array regions, p-operations, and local instruction decoding

to save latency and energy on ACT (Section 6.2.3).

6.2 DRISA Architecture

We show DRISA’s architecture design in Figure 6.3. It inherits most aspects of standard
DRAM design. However, one more hierarchy, called a group, is added between the hierar-
chy of the chip and bank. Groups are connected with a bus (gBus), and controlled by the
chip-level controllers (cCtrl). Within a bank, bank-level decoders are modified as controllers

(bCtrl). Bank buffers (bBuf) are added to help data movements. In a subarray, a subarray-

87

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

level controller (sCtrl) is added. In a mat, the cell array is split into two regions, for storage
and computing, respectively. The SA is modified to support the computing. Extra hardware
to support data movements is also added. A mat is logically partitioned vertically into lanes,
and each lane is equivalent to an n-bit processing unit. We elaborate on the design details and

justify the design choices in the rest of this section.

) = sCtrl '
Adr Cell Region for Data ™ |
e
[}
Bus bBUS calcAadr Cell Region for Calc — |p !
i [1) calc-SA e
movCtrl @ intra/inter-lane SHF - |
Drv [© lane-FWD !
[}
(a) Chip (b) Bank (c) Subarray and mat
Figure 6.3: DRISA architecture design. (Glossary - cCurl/gCtrl/bCtrl/sCtrl:

chip/group/bank/subarray controller. gBus/bBus: group/bank bus. bBuf: bank buffer.
IDrv: local driver. SHF: shifter. FWD: forwarding.)

6.2.1 Microarchitecture for Computing

The basic operating units for the reconfigurable computing are the Boolean logic operations
and the shifters (@ and @ in Figure 6.3, respectively). For the logic part, there are two ap-
proaches that can make DRAMs computing-capable: the 371 C solution and the /71 C solution.

Both of these approaches share the same shifter design.

————r —
Rs—“ . R a/11d o1r
Rt== Rl‘; 010

WWLR ¥, Pre oail
Rr— 0306

rBL S <0.5|>0.5
WBL’ SA 017

(a) 3T1C_ (b) 1T1C: AND/OR +logic gate (c)1T1C + adder

Figure 6.4: Cell structures. (Glossary - Rs/Rt/Rr: Operand source row s and source row t,
result row r.)

88

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

3T1C-based computing: This design changes standard DRAM cells to 371C and uses cells
themselves for computing. Therefore no other circuits are required. 371 C cell was used in early
DRAM designs [193]. As shown in Figure 6.4(a), both WLs and BLs are separated as two lines
for read and write, respectively. The cell includes two separated read/write access transistors,
and an extra transistor that decouples the capacitor from the read BL. The third transistor also
connects the cell in a NOR style on the read BL. Therefore, the 371C cell naturally performs
NOR logic (NOR itself is functionally complete) on BL without any extra design changes.
1T1C-based computing: This design keeps the standard DRAM cells unchanged, but uses
extra circuits attached to the SAs for computing. There are two types of computing. First,
it calculates AND and OR using the method proposed by Seshadri et al. [72] (on the left part
of Figure 6.4(b)). The result row is pre-stored with O (for AND) or 1 (for OR), and three rows
are activated simultaneously. Then, after charge sharing (shown as 0.3 and 0.6 in the figure),
the SA readout is the logic result, and the result is restored to the result row during the row
closing. Note that this operation will also destroy the operand rows, so a row copy before the
operations is required. However, the problem is that AND/OR alone are not logically complete.
Therefore, the second types of computing is demanded. DRISA calculates other logic function
like NOT to achieve logical completeness, as shown in the right part of Figure 6.4(b). Extra
circuits for a latch and logic gates (to perform one or some of Boolean logic operations) are
added. The operand Row s (Ry) is activated first, and the data is stored in the latch. Then,
the operand Row ¢ (R;) is activated, and its data, along with the data in the latch, is fed into
the logic gate. The result is then read out or restored to the result row. Taking the /71C-based
solution to an extreme scenario, we can also design a n-bit adder circuit for n-bit BLs, as shown
in Figure 6.4(c).

Both of the 371C- and 171C-based solutions make each BL computing-capable. This
architecture makes in-situ computing possible, since the memory cell and the BL logic are

tightly coupled.
89

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

Circuits for intra-lane SHF': Shifters are required in our architecture because the bitwise
Boolean logic operations only performs logical operations but not arbitrary data movement.
Shifters are designed for data shuffling, thereby enabling general-purpose computing. Fig-
ure 6.5(a) shows the shifter circuits that take a 4-bit lane as an example. The circuits are
located at @ in Figure 6.3. Figure 6.5(b) and (c) show the examples for left shift-2 and right
shift-3. The circuit design is similar to a barrel shifter. For an n-bit lane, we implement arith-
metic 1/(n-1)-bit right shifts. We also implement 1/exp2-bit left shifts. The left shift is either a
logical or arithmetic shift. We design filling lines that can fill in 0/1 accordingly. This design

can then perform arbitrary shifts by running serially.

rB a"\ a('\/ \('13 \'v \"\ \W \"b \'v \"\ \('\/ \('1D \'v
g &8s o &Y § & & 3
i g i |
s i ,LL , _L'u
¢ I I i
Lo, e Tl e 2
LZ;
Rs” (a) circuit L2 (¢) left SHF-2 R3 (¢) right SHF-3

Figure 6.5: The shift (SHF) circuits and examples. (Wires - Green: Poly. Black/Gray: Met-
al-1. Blue: Metal-2. Glossary - Lx/Rx: Left/Right shift x. rBL/wBL: read/write bitline. FL:
Filling line.)

Our shifter design is optimized for common cases. Even though 1-bit left/right shift alone
is functionally complete, we design extra (n-1) bit right shift circuits to cover the common
case that makes the whole lane all-zero/one according to its sign bit. We also design special
exp2-bit left shift circuits to cover the most common shifts in full adders, making it 11% faster.
We do not design special circuits for every possible shift cases, thus saving 60% shifter circuit
area, 84% shifter latency, and 52% shifter energy, without any performance degradation for all
u-operations defined in Table 6.1.

Reconfigurable computing: With the functionally complete logic and shifters, DRISA can

theoretically accomplish any operations by running serially. In Figure 6.6, the 371C one-cycle
90

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

NOR logic is used as an example to show how DRISA supports some frequently used operations,
i.e., selection (SEL), addition (ADD), and multiplication (MUL). We use the notation shown in
the upper-left corner of Figure 6.6, where the blocks denote rows in DRAMs, white rows are
inputs, blue rows are intermediate terms, and green rows are outputs. Arrows connect the

sources and result of a NOR logic.

Rin-1-fe 290 o o 1.initial 2. prefix 3. final
NOR @ Rin-2 000 i 00 “00 ® I ‘{'ﬁp
R T . GI) ole GI T
in-1°k2 — . N
E:R-; 000 3 ® R|n'1_""0"“ P.i ? PO 0
Rse H 2 Rin-2¥[[[]<<24 ol i
:*t Rr-1-~J i Goy Gt Cou .
R . RI’-Z—” Poﬂ» Pi+1—) SUI’W'
(a) SEL (b) CSA (c) FA

Figure 6.6: Building operations with basic Boolean logic operations.

To calculate SEL, we duplicate the selector 0/1 to a whole row. Then the SEL is broken
down into NOR logic step by step, as shown in Figure 6.6(a), which takes 7 cycles and 6 inter-
mediate terms in total. For adders, we show both a carry-save adder (CSA), which has three
inputs and two outputs without a carry-out, and a full adder (FA), which has two inputs and
one output and a carry-out. Breaking down the CSA into NOR logics, we get Figure 6.6(b).
The FA calculation is shown in Figure 6.6(c). There are three steps: Step one initializes and
generates partial terms Py and Gy. Step two follows the prefix tree [194] logics, generates P;
and G;, and iterates [og(n) times for an n-bit adder. During this step, left shifting is required.
Step three finally generates the sum and the carry-out. For the MUL, the calculation depends
on the multiplier’s bit width. If the multiplier is binary, the MUL collapses as a XNOR logic.
Otherwise, MUL is calculated by generating partial terms with shifter and SEL and then sums
all these partial terms with both CSA and FA.

Figure 6.7 (left) shows the cycles to compute CSA and FA. DRISA favors CSA because as

91

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

40 - —
m 4-bit multiplier
m 8-bit
16-bit
2 4 8 16 1 2 4 8 16
n-bit per lane n-bit per lane

Figure 6.7: 3T1C computing cycles for ADD and MUL.

each lane’s bit width increases (x-axis), CSA retains a constant latency. Figure 6.7 (right) shows
MUL with different lane counts and multiplier widths, both in bits. For 1-bit and 2-bit MUL,
it takes only 5-6 cycles. However, if the multiplier has more than 3 bits, it takes hundreds of

cycles for computing.

6.2.2 Microarchitecture for Data Movement

A general purpose processor requires flexible data movement. The shift circuits mentioned

above only cover inter-lane movement. We design circuits for data movement between lanes
in this subsection, in order to have a functionally complete hierarchical shift solution. Specif-
ically, within the subarrays, we design inter-lane SHF circuits. Between subarrays, we have
improved RowClone [71]. We also have the lane-FWD circuits, to move data from and to
arbitrary lanes.
Circuits for inter-lane SHF: Inter-lane SHF (@ in Figure 6.3) shifts a row from one lane
to its adjacent lane. The circuits are shown in Figure 6.8(a). The shifter contains ping/pong
phases. We choose this two-step shift because it saves area, since all lanes share the same shift
data wire (the two upper blue wires in Figure 6.3).

Figure 6.8(b) and (c) show the example of left shift. If shifting right, ping and odd are first

selected for the ping-phase, and then pong and even for the pong-phase.
92

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

(a) circuit (c) Left SHF-pong

Figure 6.8: The inter-lane SHF circuits and examples.

Circuits for lane-FWD: Lane-FWD (@ in Figure 6.3) supports random read/write from/to an
arbitrary lane. Figure 6.9(a) shows the circuit design. Figure 6.9(b) and (c) show examples of

reading Lane-1 and writing Lane-2, respectively.

I I |
data(RIR | ITEIA
28 R
w/rc
selC. : : = : : .
(a) circuit (b) read Lane-1 (c) write Lane 2

Figure 6.9: The lane-FWD circuits and examples
Enhanced RowClone with bank buffer: We improve upon the existing RowClone [71] tech-
nique in DRISA. Besides original row-to-row copy, DRISA can choose either to copy the whole
row, or to repeatedly copy the data from a certain lane. Furthermore, we add bank buffers (@
in Figure 6.3) in order to tackle Challenge-2 (preventing data movement from becoming the
bottleneck). The limitation of RowClone lies in the shared memory data bus. Although multi-
ple subarrays/banks work simultaneously in DRISA, the initial RowClone only works with two
subarrays at one time since it utilizes the shared data bus between banks. Bank buffers, which
are implemented by registers, isolate intra-bank RowClones from other banks, so that multiple

intra-bank RowClones work in parallel in different banks.

93

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

6.2.3 Microarchitecture for Controllers

Instruction design: We abstract an instruction set shown in Table 6.1. The instruction follows
the R-format in MIPS [195], which contains the opcode, the address for two (or possibly one or
three) input rows and the output row, and the funct code that describes detailed controls. DRISA
has the basic instructions for Boolean logic operations and data movement mentioned earlier, as
shown in the left side of Table 6.1. In addition, there are also t-operations, including frequently
used functions (SEL, ADD, MUL, MAX, etc). Next, bulk data copy and also compute reductions
with addition/maximal/minimal operators are supported. Finally, a vector-wise inner-product
operation is also supported. Note that instructions like control transfer are carried out by the

host and therefore not included in Table 6.1.

opcode funct opcode funct
5 | Logic (NORetc) | type of logic Calc. (FA etc) | N/A
é SHF L/R, offset, filling £ | Bulk-copy length, stripe
g | Lane-SHF L/R, offset S [Rsum length
2 | Dup-copy N/A R-MAX/MIN length
Copy bank/group/chip Inner-product | length

Table 6.1: The basic instructions and [-operations.

Multi-level controllers: DRISA has four levels of controllers (@ in Figure 6.3): chip, group,
bank, and subarray-level controllers. They support simultaneous multi-subarray/bank acti-
vation for better parallelism. The first two levels (chip/group) of controllers are essentially
decoders, but they can also help with data movement. The bank-level controllers decode the
instructions. They convert the instructions and u-operations into addresses, vector lengths,
and control codes, and then send them to the controllers in the active subarray. The subarray
controller consists of address latches, local decoders, and counters. The address latches are
essential for multi-subarray activation [196]. The counters are used for continuously updating
addresses to local decoders for the bulk-style p-operations.

Split array regions: The cell array is split into the data region and the compute region (@ in
94

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

Figure 6.3). They share BLs and SAs, but have separate decoders in the subarray controllers.
This separation reduces the area and performance overhead while supporting multi-row activa-
tions (required by computing in Section 6.2.1). A strong decoder that activates multiple rows
in one cycle is costly. On the other hand, designing a latch for each local WL and serially
decoding for the active rows [197] wastes too much latency and energy. Instead, in the split
array case, the data region that has most of the cells does not need multi-row activation. The
compute region that stores the intermediate data (blue rows in Figure 6.6) only contains a few
(typically 16) rows. Designing a strong one-cycle decoder is much easier.

Without the split regions, a strong one-cycle decoder takes 204.3% area overhead (com-
pared with a normal 256 fan-out decoder). On the other hand, the serial solution only takes
4.3% area overhead, but results in 10.8% peak performance degradation. After adapting the

split cell region idea, we have one-cycle decoding with only 19.02% area overhead.

6.2.4 Optimizing Bank Reorganization

We reorganize bank/array in DRISA to optimize for performance and energy efficiency.

Conventionally in DRAM memories, bank/array organizations are optimized for memory den-
sity. We switch the optimization objective in DRISA since we are now designing accelerators
instead of memories.
Improving the parallelism: We have to improve parallelism to achieve high performance.
It takes DRISA around 30 cycles for FA. If considering each cycle as tRC, DRISA’s adder
runs as slow as ~1MHz. To overcome Challenge-1, we present two techniques: (1) DRISA
simultaneously activates multiple subarrays in multiple banks.

To achieve this, each subarray and bank has their independent controllers with latches.
Previous work [196] shows such modification incurs ignorable area overhead. The detailed

controller design is shown in Section 6.2.3. (2) Furthermore, DRISA activates more rows at

95

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

one time. We reorganize the banks and subarray by making the subarray smaller (few number
of rows) but with larger quantity. Therefore, the number of rows/subarrays that can be active
simultaneously is increased. Later, Figure 6.11 shows that it costs 58% more area but gains 4 x
more parallelism. This is worthwhile when optimizing for performance per area.

However, there are limitations for out parallelism improvements. First, the power budget

is a hard constraint. Second, modern DRAMs use open-BL architecture, where the SA works
with a differential sensing mechanism. It needs an idle adjacent subarray as a reference. There-
fore, adjacent subarrays cannot be activated simultaneously, i.e., we can at most activate 50%
of all the subarrays. Third, more compute parallelism is not necessarily better, since internal
data movement may become the bottleneck. Section 6.4.2 shows that the subarray’s effective
utilization can be as low as 10%, due to data blocking.
Unblocking the data movement bottleneck: For Challenge-2, we propose four techniques.
(1) We design bank/group buffers in Section 6.2.2, in order to isolate local movements and
parallelizing them. (2) We reorganize the banks by reducing the number of subarrays per bank
while increasing the bank quantity. Fewer subarrays per bank reduces the data conjunctions
for intra-bank data movements. (3) We add groups and group buffers, so that inter-bank data
movements inside different groups work in parallel. (4) We propose the bulk-style t-operations
(Section 6.2.3) to reduce instruction data movement (and decoding). One p-operation only
requires one-time data transfer and decoding, and then the local controller auto-generates bulk
instructions.

Figure 6.10 (left) shows that reducing the number of subarrays per bank from 1024 to 64
achieves 576 x better performance with only 1.5% area overhead. This increase of resource
utilization is the evidence that this performance gain comes from faster data movements. Fig-
ure 6.10 (right) shows that as the number of groups increases from 1 to 16, it achieves 3.65 x
better performance. In addition, by adapting p-operations, we achieve another 22.94% and

3.43% reduction on latency and energy, respectively.
96

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

1.E+2 mmmlatency — 60% 5.E-2 60%
E = Efficiency [S
1.E+1 50% —~
0 40% < 5 40% &
= 1.E+0 c — 0 \C/
5 1E1 0% 5 8 =
= 1B N o I\
3 0% 2 5 20% S
1.E-2 10% = — 5
1.E-3 0% .
9830 5.E-3 0%
‘g_l 0 AN v«

Figure 6.10: The latency and resource utilization for real application (VGG-16 on
1T1C-mixed). Left: Impact of number of subarrays per bank. Right: Impact of number
of groups.

Optimizing ACT latency and energy: Reducing the ACT overhead is essential in DRISA. In
a typical DRAM, a activation cycle (tRC) takes 46ns [198] and 24.9% of the memory power
consumption [199]. Such a long clock period and large energy consumption are challenging for
DRISA, which computes serially with multiple cycles per operation. To tackle this Challenge-
3, we propose three techniques. (1) We reorganize arrays with shorter BLs (fewer columns)
and WLs (fewer rows) [200]. Shorter BLs and WLs result in smaller RC and hence smaller
latency and energy, as well as easier and faster decoding. (2) We include the extra group
hierarchy between the chip and banks. This makes the bus become hierarchical and hence
more scalable, so that the bus overhead is reduced. (3) The u-operations also help; one u-
operation may contain hundreds of ACT instructions, but it is only transferred on the global
bus for one instance. Average ACT cost is then reduced.

Figure 6.11 shows the ACT energy and latency for four cases (A to D) with area results.
Case-A is the bank organization in the original DRAM memory. We observe that the BL
dominates both the latency (41%) and energy (99%) in ACTs. This is the motivation for our
first technique that switches to shorter WL/BLs, as shown by Case-B. 4x shorter BLs and 8 x
shorter WLs yields 62.5% latency and 66.9% energy/bit reduction. The downside is 58% larger

area. However, this is acceptable since DRISA is an accelerator optimized for performance, not

97

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

0.18 12 29
mbus
= BL&SA
— Dec =9 == bus 1 26 -
20.12 WL 2 e BL&SA &
= > Dec £
) 26 WL 1237
£ 0.06 % o
W I — 3 I | 120
: : 1B,
A B c D

Figure 6.11: Reducing the activation energy and latency (A: 8 banks, 1K-16K subarray; B:
512 banks, 256-2K subarray; C: B with group (128 banks per group); D: C with local decod-
ing.)

a memory optimized for density. Case-C shows the second technique’s benefit. By having
the group hierarchy, it reduces the latency and energy spent on the bus by 49.9% and 50%,
respectively. Case-D shows that the third technique is effective. By adapting pt-operations, it

further saves 12.7% latency and 6.9% energy.

6.2.5 System Integration

We briefly discuss how to integrate DRISA into the system (detailed software/system sup-
port is out of the scope of this paper and planned as future work). Considering that DRISA is a

co-processor or accelerator instead of a memory, it is integrated in the same manner as a GPU

or FPGA, not a PIM system.
PCl-e
drlver

e ’m» o
llbrary .(comp:ler) DivM | IR B

JUUUNERUUUUUUEUUEUL

Figure 6.12: Integrating DRISA into the System.

For the software component , DRISA follows the same programming model as Automata [85],

GPU, or FPGA. DRISA requires a special programming language or framework, like CUDA
98

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

for GPU and AP SDK [201] for Automata. A corresponding compiler is also necessary. In or-
der to map general purpose program onto DRISA, programmers can treat DRISA as a multiple
issued vector machine, similar to programming with AXE/SSE. To make programming easier,
application-specific APIs should also be provided to the users. The DRISA compiler compiles
the high-level descriptions into DRISA instructions, and it works along with the driver and the
runtime engine to offload tasks onto DRISA, transfer data, and control DRISA to finish the task.

For the hardware, both PCle and DIMM solutions are applicable. PCle integration (like
GPU, FPGA, Automata [85]) provides sufficient power delivery and well-developed control
system. The DIMM solution (like AC-DIMM [202]) requires DRISA to support a DDR-like
interface but function like an accelerator. This solution is still within active research. The
advantages of the DIMM solution is simplicity for scaling-out, considering that the number of
DIMM slots is much more than PCle’s. The downside is that the power budget for each slot
is low, which limits the performance of every individual DRISA. For both of those solutions,
there is an SoC controller on board, which supports inter-chip communications.

To scale-out for applications with larger data sets than DRISA’s memory capacity, DRISA
follows the solution of multi-GPUs, which leaves the partitioning job to programmers or frame-

works (like Torch [203]).

6.2.6 Discussion

Limitations. DRISA is not suitable for floating point calculation, even though it is capable of
this functionality. The limitation lies in the lock-step within a subarray, since all lanes in one
subarray share the same controller. This dramatically hurts the performance of floating point
operations, because the internal control of floating point calculation is data dependent. For
example, the shift for significands alignment is based on the subtraction result of exponential

biases. Therefore, every lane potentially requires a different bit shift, which is not supported

99

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

by the lock-step architecture. Instead, a single floating point operation is required to run on a

whole subarray instead of a single lane, massively reducing lane-level parallelism.

Process variation. Multiple experimental studies and patents have already established the vi-
ability of 3T1C and 3 row activation designs in DRAM, even in the presence of manufacturing
variations. In addition, Micron’s Automata has demonstrated the feasibility of heterogeneous
circuits design with DRAM process technology. Specifically for DRISA, we examine the im-
pact of these variations and general DRAM challenges, since the computed results depends on
the nominal operation of the proposed bitwise logic computational the DRAM cell level.

The first challenge is with variable cell voltage level due to charge-leak, thereby impacting
the charge-sharing operation with bitline. DRISA is not impacted by this challenge since every
bitwise logical operation is preceded by a data-copy to the source and destination rows (Rs,
Rt). This naturally constitutes DRAM restore operation, charging the voltage levels to the cell
value and offsets any charge leaking that could affect cell-sharing operation with three-rows. In
addition, DRISA can tolerate 8ms retention time, compared with 64ms in commodity DRAM,
which makes it even more robust.

The second challenge relates to variation in the cell-level capacitances that could affect the
bitwise logical operation due to strong or weak capacitances. Fortunately, DRISA has a 4-point
approach that ensures strong immunity to these challenges:

e First, process variations’ impact in the context of multi-row activation in 1T1C-based de-
signs were already examined in detailed by Buddy-RAM [204]. The impact was shown to be
minimal, affecting special patterns of cell values with specific cell capacitance strengths. How-
ever, even for these cases, measurements show that the logic function sustains even with +20%
process (40% cell-cell) variation. For the case of DRISA design, the theoretical limits allow
433% capacitance variation for a 3 wordline design, but our evaluation places a tighter bound
of +£28% to ensure safe margin for sense amplifier. DRAM systems today have a process

variation much less than this tolerable +28% (56% cell to cell). For example, the capaci-
100

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

tance difference between two generation is only 10~15% [205]. Also, industry inventions on
new DRAM capacitance structures significantly increase the capacitance of DRAM cell and
therefore reduce the impact of variation [205].
e Next, as discussed in Section 6.2.1, DRISA array structure is fundamentally different and is
tailored to be an accelerator with 16 x smaller array size than commodity DRAM (256-by-2048
v.s. 1024-by-8096). This results in a proportionately smaller number of cells sharing the local
bit lines which is therefore significantly shorter. This in turn improves the ratio between local
bitline and the cell capacitances and therefore the sensing ability beyond commodity DRAM
and other existing approaches.
e The impact of process variation can also be handled at the circuit level. Unlike cost-optimized
commodity DRAMs, DRISA can tune the SA design and spend more area for extra reliabil-
ity [206]. Also, in IT1C, we can also use the logic gates (Figure 6.4(b) right side) for pure
digital computing, where no multi-row ACT or SA is involved, immune to process variation.
e Finally, we can apply architecture-level method to avoid defective modules. For example,
DRISA can examine the capacitance variation during the manufacturing and testing phase.
Cells that are detected to contain more than the acceptable variation will be masked and instead
replaced with spare row and column by using already prevalent fusing techniques, consistent
with existing DRAM. Since the spare DRAM cells are already implemented in the state-of-the-
art DRAM chips, there is no extra hardware overhead. With a high threshold, we expect this
to produce similar yield as a normal process. Another way is to apply defect-aware mapping
method similar to ArchSheild [207].

The final challenge relates to DRAM yield as a result of co-existence of logical elements
and the DRAM cells. By virtue of design, these logical components i.e. shifter, are integrated
after the sense amplification stage and do not interfere with the highly-optimized DRAM cell

level, IO lines’ layout. As such, it does not affect DRAM yield either.

DRISA is an accelerator, not host memory. We position DRISA as an accelerator or co-
101

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

processor instead of as part of the host memory, because memory designs are extremely opti-
mized for low-cost, but our target is to build a high performance accelerator. Conventionally,
DRAM is cost sensitive and is unlikely to be changed. However, by avoiding being a part of the
host memory, DRISA’s area is not the primary optimization priority, and we can trade-off area
overhead for better performance. As we change the design goal to high performance, DRISA
has greater room to re-design the DRAM arrays and peripheral circuits for high performance
parallel computation. In addition, we treat DRISA’s memory space similar to the device mem-
ory or scratchpad memory on GPU/FPGA/Automata, which avoids issues in data coherence,

data reorganization, and address translation if using DRISA as host memory.

6.3 Accelerating CNN: A Case Study

In this section, we map CNNs (inference) on DRISA as a case study. Note that the purpose
of the case study is to show the methodology of application mapping. DRISA is not limited to

only CNN applications.

6.3.1 Quantizing CNN for DRISA

NN algorithms are originally based on floating point calculations. NN data quantization
work [208-212] helps to tackle the challenge by quantizing the floating point activation data
and weight into fewer bits of fixed-point data and then retraining the NN to reduce the accu-
racy loss. Furthermore, research studies have found it is even possible to quantize weights into
binary data [213-215]. After proper training, BWN [215] (binary weight, floating point activa-
tion data) shows 0%, 8.5%, and 5.8% top-1 accuracy degradations, compared with all floating
point golden models on AlexNet [216], ResNet-18 [217], and GoogleNet [218], respectively.

Even more aggressively, BNN [214] and XNOR-Net [215] also binarize the activation data. It

102

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

shows Top-1 accuracy degradation of 12.4% and 18.1% on AlexNet and ResNet-18, respec-

tively.
75% 95%
mmm AlexNet top-1 mm VGG-16 top-1
5‘70% AlexNet top-5 —=—\/GG-16 top-5 90% >
o o
3 65% 85% 3
< <
< 60% I 80%
& &
= 55% 75% +
50% 70%
<FP.FP> <1.FP> <1.8> <1.2>

Figure 6.13: Training DRISA-friendly CNN on ImageNet (jx,n; denotes x-bit weights and
n-bit fixed point activation data).

We apply 1-bit weights with 8-bit activations (j1,8;) for DRISA. This is because DRISA
runs faster if one of the multipliers have 1 or 2 bits, while it is insensitive to the other operand
(Figure 6.6). Therefore, it is not necessary to adopt the extreme BNN/XNOR-Net quantization
cases (both binary weight and activation data). Instead, we need an eclectic way with binary
weights and fixed-point activation data (between BWN and BNN/XOR-NeT). Specifically,
we use binary weights for all layers (including the first and last layers), and use shifter for
approximate weight scaling. Figure 6.13 shows our training result for AlexNet and VGG-
16 [219] on ImageNet [220]. Note that Figure 6.13 shows a “worst” case scenario, since we
have not applied fine tuning for our training. More training epochs, larger batch sizes, image
augmentation [79], better initialization [209], and better learning rate tuning will effectively
increase the accuracy. It has much larger potential since BWN (; 1,FP;) [215] has been reported

as 56.8% top-1 accuracy, which sets a upper bound of our accuracy.

6.3.2 Resource Allocation

DRISA provides row-to-row operations, which are treated as SIMD vector instructions (like

AVX [221]). In CNN applications, more than 99.9% of the operations can be aggregated as

103

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

vector operations [222]. For these scalar operations or vector operations that are shorter than
DRISA’s row size, we fill zeros in any unused slots.

In order to efficiently utilize DRISA hardware, we need to optimize resource allocations
for CNNs. CNNs have lots of inherent parallelism (e.g., batch, feature map, and pixel-level
parallelism), and so does the DRISA architecture (i.e., group, bank, subarray and lane-level
parallelism). How to effectively allocate the hardware resource to the application is challeng-
ing. We follow two design philosophies: (1) The data movement and computation tasks should
be balanced, in order to achieve the highest efficiency. (2) Since DRISA favors CSA compared
to FA, we should avoid using FA (Figure 6.7).

Input Input - 5,
fmaps b C fmap E> S(plégglﬁ‘f%ls;
Data-dup | @ E>| Subarray-2
| [l B H
7 —]i{ Output :
subarrayis ... JT-¢ fmap & | Subarray-n
Output ﬁ (final sum)
fmaps ; bank

(a) Output fmap - Lanes (b) Input fmap = Subarrays
Figure 6.14: The basic resource allocation scheme for lanes and subarrays.

We design the resource allocation scheme as shown in Figure 6.14, following these design
philosophies. First, all the input data from feature maps are duplicated to all the lanes in
a subarray (Figure 6.14(a)). These lanes work in parallel after weights are preloaded. The
output of each lane is a dependent output feature. The purpose for this mapping scheme is to
make all of the sum reductions happen in a single lane, so that inefficient inter-lane SHF and
lane-FWD are eliminated. Second, each subarray takes part of the input feature maps. These
subarrays work in parallel on the partial results, and an extra subarray sums up the final result
(Figure 6.14(b)). Third, for bank and group level parallelism, we take use of the application’s
parallelism in pixel and batch, i.e., mapping different regions of the feature map to different

banks, and different batches to different groups.

104

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator

Chapter 6

Notation Description

Rutyernel Convolution data reuse buffering size, none/kernel/lines.
Lnifmap Number of input feature maps per lane.

STact Number of active subarrays per Bank.

Bng,e The partition of the feature maps by pixel for computing.

Table 6.2: The design knobs for resource allocation optimization.

With the allocation scheme, we formulate the allocation optimization problem. The design

parameters to solve are shown in Table 6.2. Ruyeme denotes the data reuse scheme for convo-

lution computation in a lane. It can buffer (1) nothing, or (2) the kernel while fetching a line in

the kernel every time, or (3) lines while fetching only a pixel every time. The formulation of

the optimization is described as follows,

To solve: {RukernelaLnifmapa Sractaanize}

Objective: max. Performance/Watt

s.t.: Cap (Rukemelv Lnifmap) < Cappax

Lnifmap < max. ifmap,,,,pe,
Sract S max. Sract

Bngi,e < max. ifmapg;,..

6.1
(6.2)
(6.3)
(6.4)
(6.5)

(6.6)

In this case study, we maximize performance per watt as the optimization objective (others

metric can also apply). We need to solve the design parameters listed in Table 6.2. For the

constraints, Equation (6.3) shows that the buffered data should not exceed the memory capacity.

Equation (6.4) shows that the number of input feature maps per lane is limited by the total

feature map number. Equation (6.5) describes the limitation of the active subarray’s quantity

(in Section 6.2.4). Equation (6.6) describes the limitation of the feature map size. To solve this

105

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

problem, we scan all the design space with the in-house simulator (described in Section 6.4.1).

6.3.3 Mapping Other Applications to DRISA

DPU is not limited to only CNN applications. DRISA is not limited to CNN inference
accelerations. Data quantization in recursive NN (RNN) with 2-bit weights [223] is also an
ideal case to run on DRISA. Instead of inference, training is also feasible by quantizing gradient
data with DoReFa-Net [209].

Furthermore, DRISA is not limited to deep learning applications. DRISA is designed as a
SIMD architecture and can be treated as a vector processor, so a large range of applications can
be mapped to DRISA. Programs benefit from DRISA the most if they have enough data paral-
lelism, if they are both compute and memory intensive, and if they can be mostly computed by
integer operations. We are currently working on mapping emerging bioinformatic applications

(meta-genome data analysis [191]) to DRISA.

6.4 Experiments

In this section, we first describe the experiment setup. Then, overall performance, energy,
and area evaluations are presented. The evaluation for the CNN acceleration case study is also

presented with comparisons to the state-of-the-art solutions.

6.4.1 Experiment Setups for DRISA

We evaluate and compare four DRISA designs. The configurations are shown as follows.
3T1C: 8-bit lane, 256 rows and 512 columns per mat, 4 mats (256 rows by 2048 columns, or
256 lanes) per subarray, 16 subarrays per bank, 64 banks per group; in total 4 groups and 2Gb
capacity. 22nm DRAM process technology and the 3T1C cell size is 30F? [224].

106

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

1T1C-nor/mixed/adder: 1T1C-based solutions with NOR logic, or mixed logic gates (includ-
ing NAND, NOR, XNOR, INV), or adder circuit attached to SA (see Section 6.2.1). In total, 8
groups and 4Gb capacity. The cell size is 6F>. Rest of the configurations are same as 3TIC’s.

In order to evaluate the brand new hardware, two in-house simulators are developed. First,
a circuit-level simulator is built based on CACTI-3DD [225]. CACTI-3DD is DRAM cir-
cuit simulator. It provides DRAM latency, energy, and area parameters, which are validated
with fabrication DRAMs. Based on it, our simulator modifies the configuration files to reflect
array organization. Then we add extra circuits described in Section 6.2 with APIs provided
from CACTI-3DD. The controllers and adders in the /77 C-adder solution are synthesized by
Design Compiler [226] with an industry library. The difference between the logic process
and DRAM process technologies are capture from parameters in previous research [19].
Second, a behavioral-level simulator is developed from scratch, calculating the latency and en-
ergy DRISA spends given a certain task like system-C simulation. It also includes a mapping
optimization framework for the CNN applications, according to the design space exploration

described in Section 6.3.2.

6.4.2 Evaluation for DRISA Solutions

Table 6.3 shows the area comparison of the four DRISA configurations. First, we observe
that even though the memory density of 371C is half as much as others, 371C only takes
17.6% more area than IT1C-nor, due to the large cell footprint of the latter. Second, 171C-
adder takes the largest area, due to the more complex logic circuit (adders) that are embedded.
Third, DRISA i1s almost half as dense as a normal 8Gb DRAM memory. However, DRISA
is not a cost sensitive memory design. Although it is not as dense as a memory, it very area
efficient as an accelerator. Later experiment shows DRISA offers the highest performance per

area among all kinds of accelerators. Note that though a larger chip with higher performance

107

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

3T1C 1T1C-nor 1T1C-adder

Figure 6.15: The area breakdown of three DRISA solutions.

is feasible, the die size impacts the chip cost. DRISA thus has a similar die size to commercial

DRAM memories in this paper. For a fair comparison, the following results are normalized by

area.
Solution 3TIC | ITIC-nor | ITIC-mixed | ITIC-adder | DRAM-8Gb
Area (mm?) | 64.58 | 54.90 65.22 90.91 60.44

Table 6.3: The area comparison of DRISA solutions, including an 8Gb DRAM memory as a reference.

Figure 6.15 shows the area breakdown. First, we observe that the breakdown of 3TIC is
similar to that of a DRAM memory, where cells and analog 1O circuits dominate (79%). The
add-on shifters, controllers, buffers, and bus circuits constitute a smaller fraction (less than 5%)
in area. Second, the add-on NOR and latch circuits in I7T1C-nor take 24% of the area, almost
as much as the memory cell themselves. This is because of the inefficient implementation
of logic circuits with DRAM process technologies. Third, the add-on adder circuits in /71C-
adder takes 51% of the total area, resulting in 66% more area than /7T1C-nor. Again, this result
supports the observation that DRAM process technologies are not suitable to build complex
logic circuits, with design complexities even for simple adders.

Figure 6.16 shows the latency (£Step) and energy (eStep) for a basic computing step (in-
cluding opening operand rows, computing, closing operand rows, and writing back to result

108

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

20 [mmtStep —w—tClone | 290 mm eStep —#—-eClone| 4.5
0.25 F

15 r] 200 —_~ o~ —~
m @ 5 2
=10 11905 © 02 °

B Qo

;‘% 11005 £ 5
= 5 I I 1| 50 Q o 0.15 %

0 0 0.1

O

O
N
%

>
F & &
& <Y
KN

'\c’(e
<

Figure 6.16: The latency and energy comparison among four DRISA solutions.

row). It also shows the latency (#Clone) and energy (eClone) to copy one row across subarrays
in the same bank. First, we observe that 377C takes 112% more computing latency and 79%
more computing energy, due to the longer BLs/WLs and larger cells. Second, the data move-
ment latency/energy are dominated by the latency/energy on wires. Hence, designs with larger
areas result in larger latency/energy. Third, a latency breakdown shows that the logics’ latency

takes less than 1% in all DRISA cases, except for 171C-adder which spends 10% latency on

the adder.
3 80
m3T1C

m1T1C-NOR 60
1T1C-mixed 3
1T1C-add 409
(&)

o .,

_-. . . 0
basic Boolean logic XNOR CSA FA

Figure 6.17: Cycles for frequently used operations.

Figure 6.17 shows the cycle count for frequently used operations. It shows that /77 C-nor is
the slowest since for AND/OR the system requires copy-on-operation, which takes 3 more cycles

per logic. IT1C-mixed appears to be better since every logic operation is based on the add-on

109

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

logic gates. However, it still needs 2 cycles for each Boolean logic operation. 171C-adder is
clearly the fastest design.
In later sections, we will show effective performance of these four solutions for more com-

prehensive comparisons before we draw the conclusion in Section 6.5.

6.4.3 The CNN Case Study Results

We compare DRISA with the state-of-the-art solutions in the CNN inference acceleration
case study.

Baseline setup: We also compare with state-of-art accelerating platforms for the CNN appli-
cation. They are described as follows.

ASIC: This is a DaDianNao-like [78] ASIC design but optimized for binary weight CNN
with 8-bit activation data. There are two versions with either 8x8 tiles (33MB eDRAM) or
16x16 tiles (129MB eDRAM). An advanced on-chip data reuse scheme as in ShiDianNao [227]
is adopted. The design is synthesized with Design Compiler [226] and scaled to 22nm. The
eDRAM and SRAM are calculated from CACTI [15]. An in-house behaviorial-level simulator

is built to evaluate the performance and energy given a certain CNN task.

From Bufeenter¥j From DDR4
‘g | BUfoenter |
‘58 ToH-tree
Q
o« |\ = core core
3 >
3@
H
a3}
£
LIE_’ core core
To all neighbor Buf; ToBuUf;

Figure 6.18: The architecture of the ASIC baseline.
GPU: We use two TITAN X (Pascal) [190]. Each GPU has 3584 CUDA cores running at

1.5GHz (11TFLOPs peak performance). GPU-FP is achieved by running Torch 7 [203] with
110

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

cuDNN [228] using floating point data. We measure the power consumption with NVIDIA’s
system management interface [229]. The results are conservatively scaled by 50% to exclude
the power cost by cooling, voltage regulators, etc. We then aggressively scale the GPU-FP
result by x4 for the quantized CNN!, since it claims x4 peak performance running with 8-bit
integers instead of floating point data.

In the case study, we consider four CNN applications (including both convolution layers
and fully connected layers): 8-layer AlexNet [216], 16-layer VGG-16, 19-layer VGG-19 [219],
and 152-layer ResNet-152 [217]. Note that as another advantage, DRISA does not have refresh
overhead. Even in the most complex CNN case, one iteration of the task is done within 8ms,
which means every row have already been read and restored at least once within 64ms.
Performance evaluation: Figure 6.19 shows the peak performance (w/ and w/o normalization
by area) for all the solutions (We assume DRISA has the same power budget as GPUs). It
shows that the best DRISA is still 54% slower than GPU-INT. Note that DRISA’s area is
~14% of GPUs, larger sized DRISA with more active subarrays provides higher performance.
Therefore, area-normalized results (performance per area) turns to be a fairer performance
metric. With this metric, DRISA (ITI1C-adder) outperforms ASIC and GPU by 1.9x and
12.7x, respectively. Note that peak performance is only part of the picture, and the resource

utilization shown later is another key factor.

@ 1E+00 ¢ ; 1E+02 __
o z = 2
AN ke,
8 E |] =
" E 1E01 | 1 1E+01 £
b =iy F 3 [0]
)] <
5= I | e 8
o 1E02 = 1E+00 o

$ D & &

L F S

N PN > v? Y Q QQ
NN ¥ O 0
KX

Figure 6.19: The peak performance (w/ and w/o normalization by area) comparison.

TNo framework supports fixed point CNN on GPU yet, and the real scale ratio should be less than x4 due to the unperfect utilization.

111

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

Figure 6.20 shows the on-chip memory capacity and bandwidth (buffer bandwidth for ASIC
and register file bandwidth for GPU are counted). First, it shows that DRISA has 387 x more
memory capacity and 54 x more bandwidth than GPU and 6.8 x and 15x more than ASIC
solutions. This is because of the in-situ computing architecture. The majority of DRISA is
DRAM cells for large capacity, and multiple subarrays are activated simultaneously for large
bandwidth. Second, 3T1C and IT1C-adder have lower capacity and bandwidth density among

DRISA solutions, due to the large cell size and large add-on circuit overheads.

o 1E¥02 1E+01
o o
o o ~
< %‘ 1E+01 1E+00 . O
@ o=
SE o€
i o) < =
g2 1E+00 1801 5 2
S e
O E-01 1602 §
O S O & © < & m
ORI O R IR
P I IR R R I M
X &\0 <N N o o
N N

Figure 6.20: The on-chip memory capacity and peak on-chip bandwidth comparison (normal-
ized by area).

Figure 6.21 shows the performance (frames per second) results on CNN applications with
a batch size of 1/8/64, which are normalized with area. It shows that DRISA is 8.7 x and 7.7 x
faster than the ASIC and GPU solutions, respectively. It also shows a flipped result: /71C-
adder with higher peak performance (Figure 6.19) is 12.4% slower than 17 C-mixed. This is
because the computing and data movement costs are not balanced in /71C-adder. Even though
the computing is fast, the data movement turns out to be the bottleneck. For the same reason,
an ASIC with more tiles is not necessarily better.

Figure 6.22 shows the fraction of time when either on-chip or off-chip data movement
blocks computing (data from GPU is not achievable). It explains why DRISA performs bet-
ter: First, we observe DRISA (except for /T1C-adder) only spends ~10% time on memory

access while others spend more than 90% time waiting for the loading data either from off-

112

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

1E+02 u3T1C = 1T1C-nor 1T1C-mixed 1T1C-adder’»
< m Asic-64 = Asic-256 u GPU-FP uGPU-INT
E 1E+01 ‘
£
)
= 1E+00
8 1E-01
<
S 1E-02
o 1 8 641 8 64| 1 8 641 8 64
AlexNet vgg-16 vgg-19 resnet-152 | GM

Figure 6.21: The performance comparison (normalized by area).

chip memory or on-chip caches?. The low memory bottleneck ratio is then transferred as a
high resource utilization in Figure 6.23, which benefits from the in-situ computing architec-
ture. Second, although both /T1C-adder and ASICs have more than 90% memory bottleneck
ratio, /T1C-adder is still 7.8 x faster than ASICs (Figure 6.21). This is because DRISA’s supe-

riority also stems from its massive parallelism, not only its merging of computing and memory

resources.

~ 120% [m3T1C = 1T1C-nor 1T1C-mixed

[5] 1T1C-adder m Asic-64 m Asic-256

@ 100% r

2 8% |

o 8

m g 60% |

2% 40% |

& 20%

= 0%
1 8 64| 1 8 64| 1 8 641 8 64
AlexNet vgg-16 vgg-19 resnet-152 | GM

Figure 6.22: The memory bottleneck ratio (when computing has to wait for data).

Figure 6.23 shows the resource utilization (in regard to the peak performance), which
strengthens the conclusions drawn from Figure 6.22. DRISA (except for 1T1C-adder) has
an average of 45% utilization. The utilization is lower than 50% because it spends at least half

of the resources on the data movement, while others are lower than 20%.

2The large percentage is not surprising since the computing and memory access are pipelined, and the computing latency is usually hidden
by the data movement.

113

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

80%

m3T1C ®1T1C-nor 1T1C-mixed = 1T1C-adder
u Asic-64 = Asic-256 mGPU-FP mGPU-INT

. 60% : "

[8)

400

G 40%

=

W 20%

0%
1 8 64| 1 8 64| 1 8 64| 1 8 64

AlexNet vgg-16 vgg-19 resnet-152 | GM

Figure 6.23: The resource utilization efficiency.

Energy Evaluation: Figure 6.24 shows the area-normalized energy efficiency (frames per
Joule, higher is better) comparison. First, we observe that GPUs are still the most energy-
hungry solutions®. Second, DRISA is even 1.4x better than ASICs, thanks to the efficient
in-situ computing architecture. In addition, DRAM process technologies have less leakage
compared with the logic process, especially when considering memory cell’s leakage(DRAM
retention time is 64ms while eDRAM is ~100us [20]). Third, 3TIC is 1.94x better than

1TI1C-adder, because the logic implemented by DRAM process technologies hurts the energy

efficiency.

o 1E+00 3 m3T1C ®u1T1C-nor 1T1C-mixed = 1T1C-adder

o E _m Asic-64 u Asic-256 u GPU-FP 1 GPU-INT

< i

%&\ 1E-01

c]

9 E 102 4

Q£ 3

B2 reos |

£ 1E-03 4

>]

Q 1E-04 -

| 1 8 641 8 64|1 8 64| 1 8 64
AlexNet vgg-16 vgg-19 resnet-152 | GM

Figure 6.24: The energy efficiency comparison (normalized by area).

Figure 6.25 shows the percentage of energy spent on memory, which explains why DRISA

has better energy efficiency. First, we observe that DRISA (except for IT1C-adder) spends

3 We conservatively take 50% of total GPU board power as that actually spent on the GPU chip and GDDR
memories.

114

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

45% energy on memory, 1.15x smaller than others, thanks to the in-situ computing archi-
tecture. Second, /T1C-adder spends 92% energy on memory, due to the inefficient DRAM-

implemented logics and longer wires induced by the large area overhead.

120% [" m3T1C = 1T1C-nor 1T1C-mixed
100 | ©1T1C-adder mAsic-64 u Asic-256
-— o
X 80% |

60% [

1 8 64|1 8 641 8 641 8 64
AlexNet vgg-16 vgg-19 resnet-152 | GM

Figure 6.25: The data movement energy ratio.

Figure 6.26 shows the power consumption. It shows that even though DRISA-based solu-
tions activate multiple rows simultaneously, the power consumption is still within the power
budget and 54% lower than GPUs. This is due to the power budget-aware active subarray num-
ber controlling, as described in Section 6.2.4. We also evaluated the power density with the
Hotspot tool [230]. The core temperature is well under DRAM’s 85°C constraint, and existing
cooling solutions are sufficient [231]. In addition, when integrating DRISA with PCle like
the case of GPUs, the power delivery is not a problem. When integrating with DIMM, DRISA
needs to shut down parts of the activate subarrays in order to stay within DIMM’s power bud-

get.

1E+03 3 u3T1C = 1T1C-nor 1T1C-mixed = 1T1C-adder
m Asic-64 m Asic-256 uGPU-FP mGPU-INT

1E+02 4

Power (W)

1E+01 4

1E+00 -
1 8 64| 1 8 64| 1 8 64| 1 8 64

AlexNet vgg-16 vgg-19 resnet-152 | GM

Figure 6.26: The power comparison.

Cost Analysis: Besides the performance and energy benefits, DRISA can also potentially offer
115

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

lower cost. Not only does DRISA have high area efficiency, but also three more reasons con-
tribute to lower cost. First, a DRAM process has only 3 to 4 metal layers [232], while GPUs
or ASICs with logic processes usually have more than 10 layers. Second, DRISA has fewer
pins since it does not require connections to large external memories. This could result in a
reduction in packaging cost. Combining these two factors, an industry cost analysis tool [233]
shows that DRISA can be ~6x more cost efficient (normalized by area) than GPUs. Third, it

has fewer requirements for extra memory chips (like GDDRS5), since DRISA itself is a memory.

6.5 Discussion: Which DRISA is Better

ITIC-adder is the least effective design. Though ITIC-adder has the best (3.84 x better)
peak performance, its effective performance is 11% lower than others because its resource
utilization is 77% lower. It is also 40% less energy efficient. In addition, it requires the largest
area with 51% overhead to build adders, which becomes more difficult to manufacture. /71C-
adder’s problems lie in (1) large energy/area overhead of building logics with DRAM process
technologies and (2) unbalanced computing and data movement capability (data movement is
costly due to longer wires caused by area overhead). As a conclusion, building too large logic
with DRAM process technologies is not feasible.

On the opposite end of the spectrum from the /71C-adder, 3T1C has minimal extra logic
circuits built in the DRAM process technologies. However, it is also not the most effective
design. Though it has 5.7% better energy efficiency, it suffers from 68% lower effective per-
formance. For the area, it is 49% less dense. 3T1C’s problem is its large cell size. As a
conclusion, it shows that only relying on memory cells for computing is not feasible, either,
due to significant performance loss, though it brings the best energy efficiency.

1T1C-nor/mixed stand somewhere between 171C-adder and 3T1C and prove to be the best
designs. They add a few logics in DRAM process technologies but not in excess. 171C-mixed

116

DRISA: A DRAM-based Reconfigurable In-Situ Accelerator Chapter 6

is 4.7% faster than I1T1C-nor due to its flexibility to build logics, while /T1C-nor’s energy

efficiency is 16% better due to more memory cell based computing.

6.6 Conclusion

To address the “memory wall” challenge, we propose a DRAM-based PIM design with
simple Boolean logic operations to enable in-situ computing inside DRAM. To overcome the
challenges induced by building accelerators with DRAM process technologies, we use simple
Boolean logic operations to compute complex functions by running serially. The Boolean logic
operations are provided either by the BLs themselves or by extra circuits added to the SAs. We
compare four different DRISA designs and conclude that 171 C-nor/mixed are the best choices.
We then present a case study where we evaluate CNN applications on DRISA. With the benefit
of in-situ computing, DRISA shows 8.8 speedup and 1.2x better energy efficiency when

compared with ASICs, and 7.7 x speedup and 15x better energy efficiency than GPUs.

117

Chapter 7

SCOPE: A Stochastic Computing Engine
for DRAM-based In-situ Accelerator

The DRAM-based in-situ accelerator [234] is proposed to address the challenges faced by both
the memory-rich processors and the compute-capable memory architecture. This in-situ accel-
erator is different from conventional PIM architectures. It is a standalone accelerator instead
of part of system memory, so it is highly optimized for speed instead of low cost. DRAM,
with its smaller memory cells (6F?), allows for large on-chip memory capacity. Furthermore,
it tightly combines the compute and memory by attaching a simple processing unit to each
memory bitline (BL), and leverages the large number of BLs inside memory for massive paral-
lelism. However, due to the inefficiency of building processing logic circuits with the DRAM
technology, it only supports simple bitwise operations (NOR) and bitwise shifts [197,234,235].
In order to support complex computations such as additions, it breaks those instructions into
multiple bitwise Boolean logic operations and processes them one by one. This scheme takes
hundreds of cycles for multiplication (MUL) instructions, which raises the challenge for high
performance.

To address this challenge, we adopt stochastic computing arithmetic for the DRAM-based

118

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

in-situ accelerator. Stochastic computing is an approximate computing method that has been
studied for decades [236]. Stochastic computing converts a MUL to a simple bitwise AND
operation, dramatically reducing the complexity. It reduces the MUL’s latency on the DRAM-
based in-situ accelerator by 48 x since the latter can do very long vector bitwise operations in
parallel. However, the benefit comes at the cost of data explosion, since typically stochastic
computing represents an n-bit fixed point integer by the probability of the appearance of “1” in
a 2"-bit bitstream, demanding larger memory bandwidth. Note that this challenge would offset
the performance improvement when stochastic computing is adopted in a conventional Von
Neumann architecture, but not for a DRAM-based in-situ accelerator, which tightly couples
large memory with compute units.

In this chapter, we propose SCOPE, the StoChastic cOmPuting Engine for DRAM-based
in-situ accelerators. SCOPE tailors and adapts the stochastic computing arithmetic to such in-
situ accelerator architecture. It converts the complex MULSs into simple AND operations, thus
dramatically reducing latency. In return, the in-situ architecture offers large on-chip memory
with wide internal bandwidth to address the problem of long bitstreams in stochastic com-
puting, which makes a perfect match between the arithmetic and the architecture. To further
overcome stochastic computing challenges (i.e., exponentially long bitstreams, low through-
put, and unpredictable numerical precision loss), we propose a novel Hierarchical and Hybrid
Deterministic (H?D) improved arithmetic, introducing three techniques. First, the hierarchical
method separately converts the binary number’s MSBs part and LSBs part into two shorter
stochastic bitstreams, in order to reduce the total bitstream length. Second, we propose a hy-
brid representation with both a dense binary representation and a compute-friendly stochastic
representation, which further reduces the bitstream length. Third, we develop a deterministic
approach for the stochastic number generator, significantly improving the numerical precision
and reducing the area overhead. Even more importantly, it makes the error reproducible for

debugging purposes. The contributions of this paper are summarized as follows:

119

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

e We propose the idea of applying stochastic computing to the DRAM-based in-situ accelera-
tor architecture to synergistically reinforce the strengths and address the weaknesses of both
paradigms.

e We demonstrate SCOPE, the holistic architecture design that supports stochastic computing
in the in-situ accelerator.

e We propose a novel Hierarchical and Hybrid Deterministic (H2D) stochastic computing
arithmetic, providing better performance, lower area overhead, and better numerical preci-
sion.

e We evaluate CNN/RNN inference and CNN training tasks on SCOPE as a case study and

compare SCOPE with state-of-the-art solutions.

7.1 Background

This section briefly describes the background of stochastic computing, the DRAM-based

in-situ accelerator architecture, and deep learning applications.

Stochastic Computing (SC) trades precision and representation density for simpler logic de-
sign and lower power. It has been proposed as an alternative low power computing method [237],
and is widely applied to image/signal processing, control systems, or general purpose comput-
ing [236,238]. Stochastic computing uses stochastic bitstreams to represent and compute. The
probability of the appearance of “1” in the bitstream ({x;}) represents the value of the binary

number (X), as shown in Equation (7.1) and example of in Equation (7.3).

X (Binary) — {x;} (Stoch.), X =P(x; = 1), (7.1)

X Y=Pxi=1)-Pyi=1)=Px=1&y;=1). (7.2)

120

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

Stochastic computing simply AND two bitstreams to calculate a multiplication (MUL). The

661”

resulting bitstream’s probability of the appearance of gives the result of multiplication,
as shown in Equation (7.2) and the example in Equation (7.4). To calculate addition (ADD),

stochastic computing uses a multiplexer to evenly select bits from two operand bitstreams.

X = % (Binary) — {x;} = {0,1,0,1,1,0} (Stoch.), (7.3)
2
Y = = (Binary) = {yi} = {0,0,1,1,0,0} (Sroch.),
1
XY = = (Binary) = {xi&y;} = {0,0,0,1,0,0} (Stoch.). (7.4)

There are three major components of stochastic computing. They are (1) a stochastic num-
ber generator (SNG), which converts binary data to stochastic bitstreams, (2) logic gates, which
calculate MULSs and ADDs, and (3) a popcount (PC) unit, which converts the result bitstreams
back to binary numbers. For the first part, conventionally, a random number generator (RNG)
is adopted, and the binary number is used as the threshold to generate bitstream. It takes 2"
cycles! to convert an n-bit binary into a 2”-bit stochastic bitstream. To reduce energy con-
sumption and improve numerical precision, linear-feedback shift register (LFSR) based SNG
method was proposed [239]. Parallel SNGs [240] were proposed based on LFSR to further
reduce the conversion latency. For the second part, logic gates, existing work [241,242] has
shown that binary addition is preferred over stochastic additions to obtain better accuracy. This
work follows this conclusion and only runs MUL operations in the stochastic domain. For the
third part, PC counts the number of “1”s in the bitstream. An approximate PC (APC) [243] is

proposed to sacrifice result accuracy for reduced energy consumption and latency.

IThroughout this paper, unless otherwise stated, we use 2”-bit bitstream to represent n-bit binary.

121

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

7.2 Motivation

In this section, we introduce the motivation and the key ideas of this work. We describe the
challenges of DRAM-based in-situ architecture, and show how adopting stochastic computing
can help solve those challenges. Furthermore, the problems of stochastic computing arithmetic

and features of the in-situ accelerator which can address these problems are highlighted.

1.0E+3 ¢
E| mMUL

1.0e+2 [| ®SC
(7] F
Q@ [
S 1.0E+1 L
S : I I

1.0E+0 L

2 4 8 16 32

Binary operand bit length

Figure 7.1: Latency (cycles per MUL) comparison of binary and stochastic computing in
DRAM-based in-situ accelerator architecture.

Limitation of DRAM-based In-situ Accelerators Building computing units in DRAM pro-
cesses presents several limitations. Different from a logic process, the DRAM process is opti-
mized for high density and low leakage power, so building logic gates in the DRAM process
is not efficient (80% area and 22% performance overhead [19]). Therefore, the in-situ ar-
chitecture can only build simple bitwise logic gates such as AND gates. In order to calculate
MULs and ADDs, simple bitwise logic operations are performed repeatedly. The key problem
is the slow MUL operation. As shown in Figure 7.1 (blue bars), an 8-bit multiplication takes
143 cycles, and the cycle count increases exponentially with the operand’s bit-length (x-axis).
This severely degrades the performance, especially the latency. Consequently, applications that
can be used with DRAM-based in-situ accelerators are limited to those mainly having ADD

operations.

122

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

Opportunities and Challenges of Stochastic Computing The multiplication operation be-
comes a single bitwise AND operation in stochastic computing. The in-situ accelerator computes
thousands of AND operations in parallel, taking only 3 cycles. As shown in Figure 7.1 (orange
bars), the 8-bit MUL latency is reduced 47.33x by using stochastic computing. The stochas-
tic computing not only boosts the performance, but also enables adoption of the architecture
by more applications. For example, previously, DRAM-based in-situ processors could only
accelerate binary weight neural networks to avoid MUL operations, whereas when stochastic

computing is adopted, they can support more applications like neural network training [244].

o 1.E+4 1.E+13
£ I =

B 1.E+3 | =

g i B 1EH2 t
0 [S

3 1E2 ¢ =

5 [% 1E+11 |
O 1E+1 L £

< | © =

|'E 1.E+0 [- 1.E+10

(@) Stoch. Bin (b). Stoch. Bin

Figure 7.2: Comparison of (a) performance per area and (b) performance per Watt for 10-bit
binary multiplier and 1024-bit stochastic computing multiplier.

However, adopting stochastic computing arithmetic is not straightforward. There are many
challenges. First, the throughput is degraded, although the MUL latency is reduced. Second,
the area and power overheads to support stochastic computing are also downsides. Figure 7.2
shows the comparison between the stochastic computing and binary arithmetic? in terms of
10-bit multiplier throughput normalized by (a) area and (b) power. Both of them have ded-
icated registers for data buffering. Stochastic computing computes in parallel (1024 ANDs in
one cycle), representing the architecture of the in-situ accelerator. Unfortunately, the stochas-
tic computing case only provides 0.1% throughput/area and 12.7% throughput/power of the

conventional binary datapath case.

For the SC-multiplier, we design one-cycle fully parallel circuit synthesized with 45nm FreePDK, integrating
parameters from state-of-the-art SNG [240] and PC [243].

123

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

There are two reasons behind the low throughput problem. First, data representations in
stochastic computing are very inefficient. An n-bit binary is represented with 2"-length bit-
stream in the stochastic domain. The required data storage capacity and bandwidth exponen-
tially increases, demanding more on-chip buffer. As shown in Figure 7.3(a) and (b), 88% of the
power in the stochastic computing circuit is spent on data buffering, whereas it is only 13% in
the conventional binary case. Second, stochastic computing incurs large area overhead for the
supporting circuits, e.g., the SNG and the PC. As shown in Figure 7.3(c), 95% area is dedicated
to the SNG [240]. Previous work has also shown that stochastic computing increases energy

consumption by 3 x compared with binary data path due to the SNG overhead [245].

| =Reg =MUL | | =SNG =Reg =AND :PC |
AND

(a) BIN-MUL power (b) SC-MUL power (c) SC- area

Figure 7.3: (a) Binary MUL Power breakdown, (b) stochastic computing MUL power break-
down, and (c) stochastic computing MUL area breakdown.

Running stochastic computing on the DRAM-based in-situ accelerator relieves these prob-
lems. Unlike conventional accelerators, which use low density SRAM or eDRAM, the in-situ
accelerator has a large amount of DRAM-based on-die memory space, thus it provides high en-
ergy efficiency. For example, the DRAM-based in-situ processor [234] spends 33% less energy
for buffering 1Mb data than conventional processors using SRAM [15]. Therefore, stochastic
computing’s requirement for more data buffering is met. In addition, all computing units oper-
ate at the BL level, offering ultra high bandwidth so that the stochastic computing can run fully
parallel. As a result, the in-situ accelerator architecture and stochastic computing perfectly

match each other. Their advantages compensate each other’s disadvantages.
124

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

1.0E+3

1.0E+1 mMUL =SC
1.0E-1
1.0E-3
1.0E-5
1.0E-7

Blnary operand bit Iength
Figure 7.4: Throughput/Area (MULs per cycle per area unit) comparison of binary and

stochastic computing MUL in DRAM-based in-situ accelerator architecture.

MuLs/Cycle/area

Towards A Better Stochastic Computing Arithmetic Even when stochastic computing is
adopted, certain challenges still remain, although the nature of the in-situ architecture par-
tially solves some issues. Figure 7.4 shows a comparison between binary MUL operations and
stochastic computing MUL operations using the in-situ accelerator. Different from the latency
in Figure 7.1, this data shows the throughput results normalized by the resource area used.
Stochastic computing provides limited throughput benefit only if the operand bit length is less
than 8. There are three reasons. Challenge-1: The bitstream length needs to be reduced. The
long bitstream requires large storage and takes more computing resources. This problem is
highlighted in Figure 7.2. These resources could have otherwise been used for more comput-
ing parallelism but are wasted to support long bitstreams. Challenge-2: The area overhead
of the supporting hardware, i.e., the SNG and the PC, as shown in Figure 7.3(c). Challenge-
3: stochastic computing’s numerical precision needs improvement, which is pointed out as a
major challenge in the field [236]. In addition, the error incurred by the stochastic computing
would be better to be deterministic, so that the system error could be predictable and control-
lable. The error should also be reproducible to allow for system debugging. In summary, a
better stochastic computing arithmetic with reduced bitstream length, simplified support cir-

cuitry, and improved precision is needed to address these problems.

125

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

7.3 SCOPE Architecture

In this section, we describe the SCOPE architecture. We first show how stochastic com-
puting is tailored and adapted to the DRAM-based in-situ accelerator architecture, and then we

introduce a series of hardware designs to support stochastic computing.

S ey — ey ! Connect to. SA
rsan T s BLT e
% . 13 Data Cell Region i[O X
L y 8 /
0 5 o ! QReg A \
L 7

g :
.o g \ !d - -] 4 ~
A < W Comping-Cell'Region ; o m—

v ifg[Sub- i e Computa . " SRR
o I Bl Crrteae eraey [CEBL V]| | s
VI e | E lg Moo\ [© simple Shifters | ™. Shift-out EE

N @rd iy e | I L feptome) L ——— i Read.1
(a) Chip (b) Bank (c) Subarray (d) Computational SA

Figure 7.5: SCOPE’s architecture overview (Additional hardware to support stochastic com-
puting is colored green).

7.3.1 Customizing Stochastic Computing

The original stochastic computing arithmetic is tailored to better fit with the DRAM-based
in-situ accelerator. First, only MULSs is performed with stochastic computing, while ADDs still
uses the binary data path. This is done to avoid error accumulation, even though this incurs
latency and power overheads for converting data back and forth between stochastic bitstreams
and binary. Previous work [241,242] have also shown that stochastic computing-based ADD
seriously degrades the application-level computing accuracy. Second, the unipolar stochastic
computing [237], which is similar with the unsigned integers, is adopted with an extra bit as the
sign-bit. The bipolar stochastic computing arithmetic (like signed integers) is not used to avoid
incompatibility with the proposed H>D method which will be introduced in Section 7.4. Third,
fully parallel stochastic computing is used, which is different from most of the conventional
serial stochastic computing data path (e.g., taking 1024 cycles to compute with a 1024-bit
bitstream), because the DRAM-based in-situ accelerator already provides massively parallel

bitwise operation hardware.
126

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

7.3.2 Supporting Stochastic Computing

Figure 7.5 shows the overview of the SCOPE architecture. SCOPE includes additional
supporting hardware, which are colored green. These include the controller, Stochastic Number
Generator (SNG), popcount (PC) unit, and the logic gates on each BL. The whole stochastic
computing workflow using SCOPE is described as follows. Step-1, after the instructions are
read and consecutively decoded at the bank and the subarray level, SNG is used to convert the
binary numbers into stochastic bitstreams, which are then stored along the memory row. Step-
2, arithmetic operations are applied on these bitstreams using the bitwise operations provided
by each BL. Step-3, the result bitstreams are converted back to binary integers using the PC. In
the rest of this subsection, we describe SCOPE’s major components following the order of this

working flow, and explain how they coordinate and support stochastic computing.

Binary-to-Stochastic Conversion As shown in Figure 7.5-@, SNG converts binary numbers
into stochastic bitstreams. Conventionally, an energy-efficient parallel LFSR-based SNG [240]
can be adopted, generating 32-bit bitstream per cycle. However, after our stochastic computing
arithmetic improvement is introduced later in Section 7.4, an even simpler and faster SNG
solution can be used in SCOPE. The improved arithmetic allows us to use a lookup table
(LUT)-based SNG, which generates the whole bitstream in just one cycle.

We introduce two architecture-level optimizations for the conversion, in addition to the
SNG hardware itself. First, we choose to convert binary data to stochastic bitstreams before
storing them in the subarray. An alternative approach is storing binary data and not converting
them until being issued for logic operations. The former approach stores stochastic bitstreams
and occupies 2.5 x more subarray capacity, but it saves 50176 x conversion tasks since the data
is heavily reused?. Since SCOPE offers large on-chip memory, the proposed approach is pre-

ferred to obtain better performance and energy efficiency. Second, we design one SNG for each

3The result is for the weight of a convolution layer in CNN (VGG16s first layer) after H>D optimizations.

127

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

subarray instead of each bank, so that binary data is not converted to stochastic bitstreams until
the inter-subarray data transfer is done. This design choice reduces data movement overhead
by transferring dense binary data instead of the large stochastic bitstreams. Otherwise, moving

1KB data takes 2.5 x more latency and energy.

Arithmetic Operation Arithmetic operations are carried out with BL logic operations in
computational SAs (Figure 7.5(c)-@). Figure 7.5(d) shows the components of the computa-
tional SA, which mainly include a set of logic gates (e.g., AND in @) and a register (@). Three
multiplexers (MUXs) are used to select the inputs of the register, the inputs of the logic gates,
the restore data source, and the shift data source.

MUL is simplified as an AND operation in the stochastic domain. SCOPE needs three cycles
to compute AND, as shown in Figure 7.6(a). In Cycle-1, row X is read and latched in the register,
and this row is then restored (closed). In Cycle-2, row Y is read, and X&Y is calculated and
latched, after which row Y is restored (closed) . In Cycle-3, the result row is activated, and
is restored by the result value from the register. Note that we intentionally protect the input
operands since they are usually reused in the future. Since DRAM is read destructive, extra
cycles is needed to restore original values (X and Y) to the operand rows. ADD in SCOPE
is still calculated with binary data path. Figure 7.6(b) shows the working flow to compute a
carry-save addition (CSA). This step takes four cycles. In Cycle-1, operand X is loaded. In
Cycle-2 and 3, Y and Cin are read, intermediate results are calculated accordingly, and Sum is
restored to the memory. In Cycle-4, carry-out Co is calculated and restored back to memory.
Note that since operands in sum-reduction are rarely reused in the future, the steps that save
operands are skipped, in order to improve performance.

Compared with the baseline architecture [234], we have two optimizations from the hard-
ware design perspective. First, an optimized set of logic gates (Figure 7.5-@)) was selected so

that rwo results of any operation can be obtained. For example, X&Y and XAY can be computed

128

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

AND (MUL for SC): Carry Save Adder:
R=X&Y — (S, Co) = X+Y+Cin |———
1. Read(X), X >Reg, 1. Read(X), X>Reg, Restore (X)
Restore(X) 2. Read(Y), P=XAY, G=X&Y, P>Reg,
2. Read(Y), R=X&Y, Restore(G)
R2Reg, Restore(Y) 3. Read(C), T=P&C, S=PAC, T=>Reg,
Restore(S)
3. Read(-), Restore(R) 4. Read(G), Co=T]|G, Restore(Co)
(a) 3-cvcle AND op. (b) 4-cvcle CSA op.

Figure 7.6: (a) Steps to perform MUL. (b) Steps for carry save addition.

simultaneously. This optimized two-output design improves addition operations by 1.75x with
19% area overhead, compared with single-output logic sets. Second, an LUT data path to sup-

port the improved H>D stochastic computing arithmetic is added (described in Section 7.4).

Row-n: bitstream-n:30:I 50:, 5..,:
: _ Al 0l MUL
Row-2: | bitstream-2::0¢ +1% «. results

Row-1: |pitstream-1:113 304 &..
Step-1: Row- {4 &4 01 Step-1 (*n): Col- <=2 -
Itj/vise sum 20 8 8 wise Sum (PC); i

Step-2 (*1): Col-“ &7 Step-2: Row-i— =t
wise Sum (PC) & wise sumh.. 5.4
(a) ALAP-PC (b) ASAP-PC

Figure 7.7: Calculating the sum of partial MUL results in MAC operations (a) PC as Late as
possible, and (b) PC as Soon as possible.

Stochastic-to-Binary Conversion After calculating MULS in the stochastic domain, we con-
vert the data back to binary data before any further computations, in order to avoid error ac-
cumulation. We choose not to adopt the prevailing approximate popcount (APC) proposed
in previous work [243] (Figure 7.5-@). Although the APC reduces the popcount latency, it

significantly decreases the numerical precision (see Figure 7.13). Moreover, APC requires de-

129

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

signing extra hardware in SCOPE, which takes 11.71% area overhead per subarray. Therefore,
we leverage the already existing column-wise addition operations in SCOPE for the conversion,
instead of paying extra hardware overhead and suffering precision loss if APC is used.

In order to improve the performance of stochastic-to-binary conversion, we propose a
method called ALAP-PC, which calculates the PC as late as possible. This is an effective
optimization for vectored multiply-and-accumulate (MAC) operations, which are widely used
in many applications such as those that require matrix multiplication. In such situations, there
are two types of sum tasks. One is the sum of the bits within the stochastic bitstream to convert
it back to binary data, i.e., the popcount. It requires addition across columns, since a bitstream
is stored along in one memory row. The other type is the sum of all the MUL results. It re-
quires addition across rows, since the results are stored in different rows. The key idea of the
ALAP-PC is to perform the row-wise sum-reduction first, and the column-wise sum-reduction
(PC) as late as possible. Figure 7.7 shows (a) the ALAP-PC and (b) the opposite, ASAP-PC, in

which column-wise sum-reduction is done first and then row-wise sum-reduction is executed.

1.E+6
1.E+5 EASAP mALAP
® 1.E+4
o 1.E+3
>
© 1.E+2
1.E+1
1.E+0

16-bit
16-bit
16-bit
16-bit
16-bit

=
<
©
—

256-bit
256-bit
256-bit
256-bit
256-bit
256-bit

16 MACs | 32 MACs | 64 MACs |128 MACs|256 MACs|512 MACs
Figure 7.8: ASAP-PC vs. ALAP-PC.

Figure 7.8 shows the performance comparison between these two methods. The x-axis
represents the number of MAC operations, with either 16-bit or 256-bit stochastic bitstream.
The data shows that the ALAP-PC achieves up to 56 x improvement over ASAP-PC. This is

because row-wise sum-reduction can use CSA, which has no carry prorogation and can be

130

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

calculated efficiently by lock-step bitwise operations within 4 cycles. On the other hand, the
column-wise sum-reduction needs full adders (FAs), which takes 22 cycles for 8-bit operands.
The ALAP-PC uses less of the inefficient column-wise sum-reduction operation and hence

saves latency.

7.4 H2D Arithmetic

The conventional stochastic computing arithmetic suffers from the exponential bitstream
length and the numerical precision loss, as discussed in Section 7.2. In this section, we describe

our proposed improved stochastic computing arithmetic composed of three key techniques.

7.4.1 Hierarchical Stochastic Bitstreams

In order to reduce the length of stochastic bitstreams, the hierarchial method divides the
binary data into two parts and separately converts these parts into stochastic bitstreams. As
shown in Figure 7.9, a binary number is divided into the most significant bits (MSBs) part
and the least significant bits (LSBs) part. Taking an 8-bit binary number as an example, the
MSBs-part is its higher 4 bits and the LSBs-part is its lower 4 bits. Instead of converting the
whole n-bit binary data into (2"-1)-bit stochastic bitstream, the proposed hierarchial method
separately converts the 5-bit MSB/LSB parts into two (22-1)-bit stochastic bitstreams (referred
to as partial bitstreams). Consequently, the stochastic bitstream length is reduced by 2771 The
MUL operation in the context of the hierarchical method is not a bitwise AND anymore, as
shown in the lower right corner of Figure 7.9. It contains three partial bitstream MULSs, one
shift, and two addition operations. Note that it is unnecessary to consider the MUL of two
LSB-parts because in stochastic computing, the result is truncated from 2n-bit to n-bit for an
n-bit MUL.

The benefit of the hierarchical method is the reduction of the bitstream length (8 x for 8-bit
131

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

Binary:[1,0,0,1] =[1,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1]
A original bitstream (2"-1bits)
MSBs-part LSBs-pa hierarchical bitstream

Bina)lj(/;b _ “;1b*2n/2+¢|_1b { [1 ’ 0 , 1] , [O , 1 , 0]} (Zn/2+1_2 bits)

Hierarchica{l bitstrean}v: X4% X% = (M1b*2n/2+|-1b)'(Mzb*znlz"'Lzb)/ 2"
X*={M°, L® boag b by bynp b.y byon2,y by bion
= . + . + . +|3_.L_./2_
SC-MUL, truncated n-bit: M:™ M2+ (M7 Lo+ ML 7)/2 2
X4 X0 = (X4 Xp°)/2" = M>-M2%-2" + My®-Lo° + Mo*-Lo°

Figure 7.9: Hierarchical stochastic representation.

integer), which then translates to throughput improvement. One drawback of this method is
that it makes MUL more complex. For the 8-bit integer example, 6 x more cycles are required.
However, after considering the MUL overhead, it still brings 5.40x throughput improvement.
Another downside is that it degrades the numerical precision because it introduces more error
to the MSB-parts. However, we show that this disadvantage can be compensated by other
methods, and we show it obtains 60% accuracy improvement when all these techniques are

combined in Section 7.7.3.

7.4.2 Hybrid Binary-Stochastic Bitstreams

Here, we discuss the proposed hybrid binary-stochastic data representation and arithmetic.
As shown in Figure 7.10, the original stochastic bitstream is divided into groups with three bits.
Then, binary representation is used inside each group, while a set of these groups makes up
the hybrid binary-stochastic bitstream. To perform MUL operations on the hybrid bitstreams,
2-bit binary MUL is executed within each group, and then a series of the result groups forms
as the result hybrid bitstream. The 2-bit MUL for each group can be implemented with simple
bitwise operations, as shown in the lower part of Figure 7.10. Note that we choose 3-bit
stochastic subsequence to group as a 2-bit binary instead of a longer subsequence. This is

because a longer subsequence requires more-than-2-bit binary MUL operations, which results
132

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

in larger latency and area overhead that may cancel out the benefit of a short bitstream.

The benefit of the hybrid representation is a 1.5 x reduction of bitstream length since it con-
denses every 3-bit stochastic subsequence into 2-bit binary, which can lead to higher through-
put and energy efficiency. In addition, the hybrid method improves the numerical precision
by 33%, since part of the MUL calculation is performed in the accurate binary domain. The
only drawback is the 2-bit binary MUL calculation. A custom LUT is designed for this oper-
ation as shown in Figure 7.5-@). It takes one more cycle than the original 3-cycle stochastic
MUL. However, hybrid representation still offers 11% MUL throughput improvement even
after considering this overhead.

sC bits.: ~ [1,1,1,0,1,0,1,0,1,0,0,0,0,0,1]

#-of-‘1’in each group/vO i) G & 2 d bits

Hybrid-sc: [3, 1, 2, O, 1]
>BIN inside group <& V4 <

N4 A%
>SC outside group[11, 01, 10, OO, 01]
(2"-1)/3*2 bits

Figure 7.10: Hybrid binary-stochastic representation.

7.4.3 Deterministic SNG

Previous work [246,247] have shown that the stochastic numbers are not necessarily com-
pletely randomized. Consequently, we propose a deterministic SNG. Instead of using con-
ventional random number generator hardware (e.g., RNG or LFSR) for the SNG, we use a
pre-programmed lookup table (LUT). As shown in Figure 7.11, one operand is converted into
stochastic bitstream in a “0”s-“17s-“0"s style. The number of “0”’s before “1”’s are preset as
an offset, which is looked-up from the LUT. The number of “1”’s is equal to the binary data.
The other operand is converted into stochastic bitstream in a periodic style. In other words,
“1”s are evenly distributed in the stochastic bitstream. For both of the operands, the number

of “1”’s are set to the original binary number. Designing the deterministic approach is easier in
133

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

SCOPE, because the error propagation is limited by only computing one MUL operation in the

stochastic domain and converting stochastic bitstreams back to binary immediately.

Operand___offset “17s Qs
X(%):10,0,0,0,0,0,1,1,1,1,1,0,0,0,0]
pegiodic

Y ():[1,0,0,1,0,0,1,0,0,1,0,0,1,0,0]

Figure 7.11: A deterministic approach for stochastic number generation.

The deterministic approach has two advantages. First, it simplifies the SNG as a simple
LUT, thus it provides 53.2x area reduction. Second, it improves the stochastic computing
numerical precision by 23%, as shown in Figure 7.13. Moreover, it makes stochastic computing
error predictable and reproducible, which makes it possible to control the error and debug the

program.

7.4.4 H’D: Putting all together

The three techniques (Hierarchial, Hybrid, and Deterministic) are orthogonal to each other,
so all of them can be applied together. We collectively name these techniques H>D. For an 8-bit
integer, HD can reduce the bitstream length by 12 x and improve the throughput by 5.2x. The

numerical precision is also improved by 60%, as will be shown in Section 7.7.3.

7.5 Discussions

In this subsection, we discuss SCOPE’s system integration, programming interface, and

limitations.

System integration SCOPE is positioned as an accelerator or co-processor. It is integrated
using the PCle bus, similar to the TPU [13], GPUs [248], or Micron’s Automata [249]. SCOPE
134

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

has sufficiently large on-chip memory so that no additional memory (DRAM) is required. In
addition, SCOPE can be scaled out by connecting multiple chips together, as in the case of

multiple GPUs.

Programming interface Although the programming interface is beyond the scope of this
paper, here, we briefly discuss the hypothetical framework. We assume a high level framework
is built as the user interface, similar to the case of Tenserflow and TPU [13], where the hardware
accelerator is transparent to the user. However, to build this framework, lower level APIs
that send SCOPE instructions from the host and drivers to fetch data to and from SCOPE are

required. We leave the complete software stack as our future work.

Limitations SCOPE has two major limitations. First, although the proposed H>D improves
the numerical precision, it is still limited to applications that can tolerate approximate comput-
ing. In addition, the data is limited to fixed-point integer format, since a stochastic bitstream
is an alternative representation of an integer, not a floating-point number. Second, SCOPE
operations within the same subarrays are executed in lock-step, which limits the program-
ming flexibility and resource utilization. Considering these limitations, the preferred usage is
for applications that are data intensive, have significant data parallelism, and can tolerate ap-
proximate computing. In this paper, we consider deep learning applications as a case study.
However, broader application fields such as image/signal processing and bioinformatics can

also potentially be used with SCOPE.

7.6 A Case Study: Deep Learning

In this section, we consider CNN/RNN inference tasks and CNN training tasks as a case

study.

135

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

7.6.1 Tailoring DNN for Stochastic Computing

Deep learning applications are well-known for being error tolerant. Data quantization [209—
215,223] and compression [208] methods have been well studied. Even aggressively quantized
CNN training using 1-bit weight, 2-bit activation, and 4-bit gradient shows tolerable recogni-
tion accuracy degradation [209]. Previous work have also evaluated applying stochastic com-
puting to CNN inference [241, 242, 245, 250] and training [244]. In this case study, we run
CNN/RNN inference task and CNN training task on SCOPE as follows. We apply the quanti-
zation DNN methods, but replace the integer MUL with stochastic computing methods. In the
back-propagation process, the numerical error induced by stochastic computing is modeled as
part of the quantization noise, which is taken into consideration during the gradient calculation.

In Section 7.7.4, we will justify that SCOPE is capable for use in deep learning applications.

7.6.2 Mapping DNN on SCOPE

Mapping DNN applications to SCOPE is non-trivial. The general guidelines are: (1) to
fully explore task-level or data-level parallelism so that SCOPE’s resources are well-utilized,
(2) to carefully exploit data reuse so that communication overhead is minimized, and (3) to
minimize operations that runs slowly on SCOPE such as the row-wise sum-reduction operation.
Following these guidelines, we propose mapping strategies for both the feedforward and back-
propagation processes.

Figure 7.12(a) shows how SCOPE maps feedforward tasks (either convolution or MLP
layers). The weights are pre-stored in the subarrays to avoid unnecessary data movement. This
scheme saves significant latency and energy especially for MLP layers. The activation data
(either feature maps of convolution layers or neuron output for MLP layers) is broadcasted
along a subarray. Then, each element of the result vector from that subarray becomes an output

feature map or a neuron. Finally, SCOPE’s subarray-level parallelism is leveraged to process

136

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

different parts of the input feature map in parallel, and SCOPE’s independent banks are also

explored for batch-level parallelism.

Input fmaps o Banks
m N\ N
I SR) JUS) S— ...,
= ST o HL)]
. ; S |5t (part-1) " (part-n) i
Output |3l lfiiomignlll 2 T
maps— O] sl O3] B2
e I (part-1) " (part-n)
| s SR Y O o
f%gug i Wor Wna V. 2 Oweights or 5(L-1)
p Parallel for batches Parallel for batches
(a) feedforward (b) back-propagation

Figure 7.12: Mapping both feedforward and back-propagation of DNN to SCOPE.

Figure 7.12(b) shows the mapping scheme for back-propagation. Different from the feed-
forward case, the gradients are stored in the computing subarrays, since both of the two matrix
multiplication tasks in back-propagation use the gradient data. Then, the weight are input to
the subarray when calculating the gradient of the previous layer, or the activation data are fed
in when calculating the weight gradient. Finally, the result of multiple subarrays are merged to
get the final result. Different batches are mapped to independent banks for higher throughput.

The weight update calculation, if demanding floating-point operations, is offloaded to the host

or other hardware.

7.7 Experiments

In this section, after the description of the experimental setup, we demonstrate the evalua-
tion of SCOPE. Then we evaluate the numerical precision improvement of the proposed H>D
method. Finally, we show the performance and energy evaluation when running deep learning

applications on SCOPE.

137

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

7.7.1 Experimental Setup

The configuration is described as follows. SCOPE is evaluated under 22nm DRAM tech-
nology, and has 8Gb DRAM, which is split into 1024 banks, and these banks are further
grouped into 64 groups. For each bank, there are 16 subarrays, and each subarray has 256
rows and 2048 columns, an SNG, and a 16-bit adder. We compare SCOPE with baselines

described in Table 7.1 in the following experiments.

DRISA [234] The DRAM-based in-situ acc. w/o. stoch. comp.
SCOPE-vanilla The SCOPE w/o. H*D using original stoch. comp.
SCOPE-hyb SCOPE w/o. the whole H2D, both w/. the determini-
SCOPE-hier stic SNG but only w/. either hybrid or the hierarchial .
SCOPE-H’D SCOPE with the whole H>D design (our proposal)
GPU Pascal TITAN X [248] with 40.4 TOPS peak INT8
performance and 12GB GDDRS device memory.

Table 7.1: Baseline descriptions.

To evaluate SCOPE’s circuit, we layout the logic gates for each computational SA (Fig-
ure 7.5-@)). We use 45nm FreePDK [251], because this logic process has the similar pitch
size with the 22nm DRAM’s peripheral region [252]. We then integrate the post-layout com-
pute unit parameters to a heavily-modified CACTI-3DD [225], in order to model the SCOPE
architecture. We also develop behavioral level simulators to evaluate SCOPE’s effective per-
formance and energy consumption running given applications, according to the mapping tech-
niques described in Section 7.6. The GPU results are measured from dual Pascal TITAN-X
with FP32 precision. We conservatively scale these results by 4 x as GPU-INTS for a fair com-
parison. We also conservatively exclude one third of the GPU board power consumption for
cooling purpose. We include the 12GB device memory as part of GPU’s area, since SCOPE’s

equivalent device memory is on-die.

138

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

7.7.2 Performance and Area Evaluation

Table 7.2 shows the comparison between baselines in terms of the MUL latency, the fused
MUL-ADD peak throughput, chip area, and performance per unit area. We highlight three key
observations from these results. First, simply adopting stochastic computing to the DRAM-
based in-situ accelerator decreases the MUL latency by 47.6x. However, this degrades the
throughput by 1.21x because of the long bitstream (see Section 7.2). Second, hierarchical and
hybrid methods both increase the throughput by reducing the bitstream length at a reasonable
cost of longer latency and/or extra area overhead. These methods increase the performance per
unit area of SCOPE-vanilla by 4.4x and 1.1 x, respectively. Third, putting all the arithmetic
optimizations together, the H*D shows 4.2x and 6.16x better performance and performance

per unit area compared with the SCOPE-vanilla.

DRISA® SCOPE GPU
vanilla | hier | hybrid | H?D | INTS
MUL latency® 143 3 17 4 21 0.5
Peak TOPs® 1.65 1.36 5.98 1.55 7.08 | 404
Area (mm?) 2582 | 259.42 | 2582 273.38 16314
Peak GOPs/Area 6.39 5.24 23.16 5.67 2590 | 24.76

2 We re-evaluate DRISA [234] with 8Gb setup and integrating more accurate post-
layout logic gates parameters; ”Cycle; “INT8-fused MUL-ADD operation, including
SNG/PC; “Normalized to 22nm, including 12GB DRAM.

Table 7.2: Peak Performance Comparison.

Table 7.3 shows the SCOPE-H?D’s area, latency, and energy, compared with commodity
DRAMs with same capacity. As expected, SCOPE’s area is larger than the commodity DRAM.
However, note that this work is targeted as a high performance accelerator rather than system
main memory. Enabling wider computing capability and higher performance is a priority for
this type of accelerator. One reason for the area overhead is the extra hardware, e.g., computa-
tional SA in Figure 7.5-@. Another reason is the array reorganization. SCOPE adopts a large

number of smaller yet less dense arrays with short BL. and WL [253], which contributes to both
139

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

a much shorter latency and increased parallelism. Consequently, SCOPE is 5.03x faster with

19.36 x less energy consumption.

Area (mm?) Latency (ns) Energy (nJ)
SCOPE DRAM SCOPE DRAM SCOPE DRAM
273.38 61.73 8.02 40.35 0.11 2.13

Table 7.3: The area, latency, and energy of SCOPE and commodity DRAM.

7.7.3 Precision Evaluation

As one of the approaches to approximate computing, the numerical precision in SCOPE is
very important. In this subsection, we evaluate SCOPE’s precision, and show how it can be
improved by the proposed H>D method. Then, we show how SCOPE impacts the accuracy of
neural networks in our case study described in Section 7.6.

Figure 7.13 shows the error root mean square (RMS) of all possible INT8 operand combi-
nations. In this figure, the x-axis is different arithmetic configurations, in which the baseline is
the vanilla stochastic computing (SCOPE-vanilla). Applying hybrid and deterministic methods
alone (the second and fourth bar) reduces the error by 33% and 23%, respectively. By replacing
the approximate APC used in previous work with the accurate PC (the fifth bar), an extra 25%
error reduction is achieved. Even though the hierarchial method increases the error by 275%
(the third bar), putting them together with the accurate PC, H>D improves the overall precision
by 60% over baseline.

In the experiment, we also evaluate the impact of numerical precision on deep learning
applications. The stochastic computing-based CNN evaluation based on previous DNN quan-
tization methods [209, 223]. stochastic computing is simulated by adding noise to integer
MULs according to the error RMS data from Figure 7.13. The numerical error induced by
stochastic computing is then modeled as part of the quantization noise in the back-propagation

process. In the CNN inference experiments, we conservatively quantize both weight and acti-
140

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

o
o
X

P
2
= 0.03
S
i 0.02
: I
S 0.01 '
2

0.00

baseline Hybrid Hier. Deter. w.0.APC H2D-w.PC

Figure 7.13: The error RMS of 8-bit MUL for the proposed H>D method (normalized to range [0, 1]).

vation data to 8-bit integers while using floating-point gradient for the offline training. Then,
we apply stochastic computing for all integer MULS in the feedforward process. In the CNN
training experiments, in addition to the 8-bit weights and activation data, we also quantize gra-
dients as 8-bit integers. Then, we apply stochastic computing for all integer MULS in both the
feedforward and back-prorogation process. For this case study, we have evaluated LeNet [254]
on MNIST [255]. It is difficult to examine a larger neural network, because random number
generation required to simulate stochastic computing on current GPUs is inefficient, result-
ing in extremely long training periods. However, we observe that SCOPE offers even smaller
accuracy loss compared with quantized neural network solutions, so we believe that the per-
formance of SCOPE on larger scale neural networks is also similar with other neural network

quantization work [209,223].

— FP32 golden model minference ®Training [
99.5%
g‘ 98.5%
3 97.5%
o X
< 96.5% S
95.5%
INT8 SCOPE SCOPE SCOPE SCOPE
-vanilla -H2D -H?Dx4 -H?Dx16

Figure 7.14: The stochastic computing based CNN inference and training recognition accuracy.

141

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

Figure 7.14 shows both the inference and training recognition accuracy for integer quanti-
zation, SCOPE-vanilla, and the proposed SCOPE-H2D method. For inference (blue bars), first,
we observe that H>D-based CNN only has 0.27% accuracy degradation than the golden model
(using FP32, 99.5% accuracy), and only 0.02% degradation compared with the integer quan-
tization method. Second, the proposed H>D method is better than SCOPE-vanilla by 0.4%,
which is a even larger gap than that between H2D and the golden model. For training (orange
bars), we observe that although H?D-based training has 1.03% accuracy degradation compared
with the golden model, it is 1.07% and 2.45% better than the integer-based solution and the
SCOPE-vanilla, respectively. In addition, we observe that having longer stochastic bitstreams,
which can help to improve the numerical precision, is not necessary in this situation. The last
two bars show that 4 x and 16 x longer bitstreams only improve the accuracy by 0% and 0.09%

in the inference experiment, and 0.38% and 0.42% in the training experiment.

I FP32 golden model

INT8 SCOPE SCOPE SCOPE SCOPE
-vanilla -H2D -H2Dx4 -H2Dx16

4.50
4.46
4.42
4.38
3 4.34
2 4.30

ity
better)

Preplex
eris

Figure 7.15: The stochastic computing based vanilla RNN inference for character-level lan-
guage model.

We also evaluate vanilla RNN inference applications in the experiment, which justify that
SCOPE can be widely adopted to various deep learning applications. The perplexity is the
RNN accuracy metric, in which case lower perplexity is better. We still use 8-bit weights and
activation data, and floating-point gradient, and we use stochastic computing for integer MULSs
in the feedforward processes. We use a vanilla RNN model with 3 layers and 256 neurons per
layer running a character-level language model [256]. As shown in Figure 7.15, we observe

that although the integer-based quantization method has a similar result as the golden model,

142

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

both the SCOPE-vanilla and the proposed SCOPE-H?D have a better result than the golden
model. The SCOPE-vanilla has a 0.02-lower perplexity, and SCOPE-H?D is even better with
a 0.09-lower perplexity. In summary, we have shown that SCOPE is effective for some of the

deep learning applications.

7.7.4 Evaluating DNN on SCOPE

In this subsection, we evaluate SCOPE with deep learning applications as a case study. We
consider four benchmarks, as shown in Table 7.4, in which all the CNN applications run on
ImageNet [220] data set and the RNN runs on a character-level language model [256]. The

batch size is set to 64 for all the experiments.

vgg VGG-16 [219], CNN inference

resnet ResNet-152 [217], CNN inference

rnn Vanilla RNN, 3-layerx256-neuron, inference
Alex-train AlexNet [216], CNN training

Table 7.4: Benchmark descriptions.

Figure 7.16 shows the performance per unit area results, which are normalized to the DRISA
baseline. On average, the proposed SCOPE-H’D is 2.3 x better than DRISA and 3.8 x better
than GPU-INT. Although GPU-INT provides high performance when its resource utilization
is high, the data movement may offset its advantages. In addition, compared with the methods
without H2D or with partial H>D, SCOPE-H?D always provides better performance. SCOPE-
H?D is 11.6x, 9.0x, and 1.1x better than the SCOPE-vanilla, SCOPE-hyb, SCOPE-hier,
respectively. Moreover, the trend stays the same for each particular benchmark. The supe-
rior performance of the SCOPE-H2D comes from both the bitstream length reduction and the
simplified hardware.

Figure 7.17 shows the energy efficiency (performance per Watt) results, which are nor-
malized to the DRISA baseline. On average, the proposed SCOPE-HD’s energy efficiency

143

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

= SCOPE-vanilla u SCOPE-hyb SCOPE-hier
SCOPE-H2D m GPU-INT8 (All Norm. to DRISA)

10 ¢

Norm. Perf./Area

0.1

vag resnet rnn Alex-train gmean

Figure 7.16: Performance per unit area (task/s/mm?) normalized to DRISA [234].

is 4.4 better than the baseline DRISA, and is 1.7 x better compared with GPU-INT. SCOPE
performs better for memory-intensive inference benchmarks, e.g., ResNet and RNN, since data
movement overhead is significantly reduced by storing data within its large on-chip memory.
In addition, we also demonstrate the importance of the H?D method. With the H2D method, it
provides 7.1x better energy efficiency than the SCOPE-vanilla. Compared with the partially
adopted H>D (SCOPE-hyb and SCOPE-hier) baselines, the SCOPE-H?D is 5.4x and 1.2x

better on average, and the same trend applies to every benchmark.

u SCOPE-vanilla u SCOPE-hyb SCOPE-hier
SCOPE-H2D H GPU-INT8 (All Norm. to DRISA)

10 ¢

Norm. Eenrgy Effi.

vagg resnet rnn Alex-train gmean

Figure 7.17: Energy efficiency (task/J) normalized to DRISA [234].

Figure 7.18 shows the power consumption (lower is better), which are normalized to the
DRISA baseline. On average, SCOPE-H?D has lower power consumption than the baseline
DRISA by 1.8x, because of stochastic computing’s high power efficiency. It also uses lower
power when compared with GPU-INT by 5.2, contributed by the reduction of data movement

energy. Again, the data also shows that the power efficiency is improved by the proposed H>D
144

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

method. SCOPE-H?D reduces power by 1.7x and 1.6x compared with the SCOPE-vanilla
and SCOPE-hier. Adopting the hybrid method increases the power consumption because of

the extra LUT logic operations in the computational SA (Figure 7.5-@).

m SCOPE-vanilla SCOPE-hyb SCOPE-hier
SCOPE-H2D m GPU-INT8 (All Norm. to DRISA)

= 10
2
o
- 1
(@]
pa

0.1

resnet nn Alex-train gmean

Figure 7.18: Power consumption (Watt) normalized to DRISA [234].

7.8 Conclusion

In this chapter, we design SCOPE, a holistic architecture which adopts stochastic com-
puting for the DRAM-based in-situ accelerator architecture, two paradigms that synergisti-
cally complement each other. Stochastic computing simplifies the complex MUL operations
so that MULs can be efficiently calculated with the simple Boolean logic gates available in
the DRAM-based in-situ accelerator. In return, the in-situ architecture offers large on-chip
memory with wide internal bandwidth to address the problem of long bitstreams in stochas-
tic computing. To further improve the performance and energy efficiency, we propose the
H?D arithmetic optimization methods. We evaluated the proposed architecture with a case
study of deep learning applications. The experimental results show that SCOPE is 2.3x bet-
ter than the DRAM-based in-situ accelerator baseline, and 3.8 x better than GPU, in terms of
area-normalized performance. The proposed H?D arithmetic optimization improves the per-
formance by 11.6x and boosts the energy efficiency by 5.4x. In addition, H>D improves

stochastic computing’s numerical precision by 60% on average, which translates into accuracy

145

SCOPE: A Stochastic Computing Engine for DRAM-based In-situ Accelerator Chapter 7

improvement when adopted to deep learning applications.

146

Chapter 8

Summary

Data movement between the processing units and the memory in traditional von Neumann
architecture is creating the “memory wall” and “power wall” challenge. To bridge the gap
between the computing and the memory, two approaches, the compute-capable memory and
the memory-rich processor have been studied in this thesis.

We first explore the compute-capable memory architecture. As a highlight, we leverage
emerging NVM for this study, which leads to two benefits. First, as the next generation sys-
tem memory technology, NVM is turning mature and offering better scalability and lower cost,
compared with the prevailing 3D stacking DRAM solutions. Second, we leverage NVM’s
special feature (e.g., resistive cell structure) and utilize the memory cell themselves for com-
puting, so that the performance is maximized with reasonable overhead. Specifically, there are
two architecture designs from Chapter 3 and 4.

First, PINATUBO, a processing in non-volatile memory architecture for bulk bitwise op-
erations, is proposed. While most of the recent work focused on PIM in DRAM memory
with 3D die-stacking technology, we propose to leverage the unique features of emerging non-
volatile memory (NVM), such as resistance-based storage and current sensing, to enable effi-

cient PIM design in NVM. Instead of integrating complex logic inside the cost-sensitive mem-

147

Summary Chapter 8

ory, PINATUBO redesigns the read circuitry so that it can compute the bitwise logic of two or
more memory rows very efficiently, and support one-step multi-row operations.

Then, PRIME, a novel processing-in-memory architecture for neural network computation
in reram-based main memory, is proposed. In this work, we propose a novel PIM architecture,
called PRIME, to accelerate NN applications in ReRAM based main memory. In PRIME, a
portion of ReRAM crossbar arrays can be configured as accelerators for NN applications or as
normal memory for a larger memory space. We provide microarchitecture and circuit designs
to enable the morphable functions with an insignificant area overhead. We also design a soft-
ware/hardware interface for software developers to implement various NNs on PRIME. Bene-
fiting from both the PIM architecture and the efficiency of using ReRAM for NN computation,
PRIME distinguishes itself from prior work on NN acceleration, with significant performance
improvement and energy saving.

We then explore the memory-rich accelerator architecture. The uniqueness of our study
is that we provide ultra large on-chip memory capacity by utilizing either NVM or DRAM,
which offer much higher density than conventional SRAM or eDRAM. Specifically, there are
three architecture design from Chapter 5, 6, and 7.

First, we proposed we propose a circuit-level model and develop a simulation tool, NVSIM-
CAM, which helps researchers to make early design decisions, and to evaluate device/circuit
innovations. The tool is validated by HSPICE simulations and data from fabricated chips. We
also present a case study to illustrate how NVSIM-CAM benefits the nvTCAM design. In
the case study, we propose a novel 3D vertical ReRAM based TCAM cell, the 3DvTCAM.
We project the advantages/disadvantages and explore the design space for the proposed cell
with NVSIM-CAM. We also show the potential architecture innovations that facilitated by the
3DVTCAM.

Then, DRISA, a DRAM-based reconfigurable in-situ accelerator architecture, to provide

both powerful computing capability and large memory capacity/bandwidth. DRISA is primar-
148

ily composed of DRAM memory arrays, in which every memory bitline can perform bitwise
Boolean logic operations (such as NOR). DRISA can be reconfigured to compute various func-
tions with the combination of the functionally complete Boolean logic operations and the pro-
posed hierarchical internal data movement designs. We further optimize DRISA to achieve
high performance by simultaneously activating multiple rows and subarrays to provide mas-
sive parallelism, unblocking the internal data movement bottlenecks, and optimizing activation
latency and energy. We explore four design options and present a comprehensive case study to
demonstrate significant acceleration of convolutional neural networks.

Finally, We propose SCOPE, the stochastic computing engine with a novel in-memory
computing architecture and improved arithmetic. In stochastic computing, binary numbers are
converted into stochastic bitstreams, which turns integer multiplications into simple bitwise
AND operations, but at the expense of larger memory capacity/bandwidth demands. Stochastic
computing is a perfect match for the DRAM-based in-situ accelerators because it addresses the
in-situ accelerator’s low performance problem by simplifying the operations, while leverag-
ing the in-situ accelerator’s advantage of large memory capacity/bandwidth. To further boost
the performance and compensate for the numerical precision loss, we propose a novel Hierar-
chical and Hybrid Deterministic (H>D) stochastic computing arithmetic. Finally, we consider
quantized deep neural network inference and training applications as a case study.

We hope the work in this thesis would be useful and inspirational for both accelerator
and memory system design, especially in the context of emerging applications such as deep

learning.

149

Bibliography

[1] Top500, “The list of top500 super computers.”
https://www.top500.o0org/statistics/, 2017.

[2] Nvidia, Nvidia tesla v100 gpu architecture, Technology Report (2017).

[3] K. Rupp, Cpu, gpu and mic hardware characteristics over time, 2013.
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/.

[4] R. Williams, T. Sze, D. Huang, S. Pannala, and C. Fang, Server memory road map,
Memory Forum (2012).

[5] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, Tiered-latency
DRAM: A Low Latency and Low Cost DRAM Architecture, in Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), HPCA ’ 13, (Washington, DC, USA), pp. 615-626, IEEE Computer Society,
2013.

[6] E. Computing, The opportunities and challenges of exascale computing, .

[7] O. Villa, D. R. Johnson, M. O’Connor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, S. W. Keckler, and W. J. Dally,
Scaling the Power Wall: A Path to Exascale, in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pp. 830-841, IEEE
Press, 2014.

[8] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, A scalable processing-in-memory
accelerator for parallel graph processing, in International Symposium on Computer
Architecture (ISCA), (New York, New York, USA), pp. 105-117, ACM Press, 2015.

[9] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim in Infernational
Symposium on Microarchitecture (MICRO)], pp. 1-13, ACM, 2016.

[10] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, Neurocube: A
Programmable Digital Neuromorphic Architecture with High-Density 3D Memory, in
International Symposium on Computer Architecture (ISCA), pp. 380-392, IEEE, jun,
2016.

150

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, Mcpat: An
integrated power, area, and timing modeling framework for multicore and manycore
architectures, in Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM
International Symposium on, pp. 469—480, Dec, 2009.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, DianNao: A
Small-footprint High-throughput Accelerator for Ubiquitous Machine-learning, in
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 269-284, 2014.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-1. Cantin, C. Chao, C. Clark, J. Coriell,
M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,

A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,

J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,

A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,

E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, In-Datacenter Performance Analysis of a Tensor
Processing Unit, .

C. Gonzalez, E. Fluhr, D. Dreps, D. Hogenmiller, R. Rao, J. Paredes, M. Floyd,

M. Sperling, R. Kruse, V. Ramadurai, R. Nett, S. Islam, J. Pille, and D. Plass,
POWER9: A processor family optimized for cognitive computing with 25Gb/s
accelerator links and 16Gb/s PCle Gen4, in IEEE International Solid-State Circuits
Conference, pp. 50-51, 1EEE, feb, 2017.

N. P. Muralimanohar, Naveen and Balasubramonian, Rajeev and Jouppi, CACTI 6.0: A
tool to model large caches, HP Lab. (2009) 22-31.

G. Fredeman, D. W. Plass, A. Mathews, J. Viraraghavan, K. Reyer, T. J. Knips,

T. Miller, E. L. Gerhard, D. Kannambadi, C. Paone, D. Lee, D. J. Rainey, M. Sperling,
M. Whalen, S. Burns, R. R. Tummuru, H. Ho, A. Cestero, N. Arnold, B. A. Khan,

T. Kirihata, and S. S. Iyer, A 14 nm 1.1 Mb Embedded DRAM Macro With I ns Access,
IEEE Journal of Solid-State Circuits 51 (jan, 2016) 230-239.

H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
Demystifying gpu microarchitecture through microbenchmarking, in Performance
Analysis of Systems & Software (ISPASS), 2010 IEEE International Symposium on,
pp- 235-246, IEEE, 2010.

151

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keckler, and W. J.
Dally, Fine-grained DRAM: Energy-efficient DRAM for Extreme Bandwidth Systems,
in International Symposium on Microarchitecture (MICRO), pp. 41-54, ACM, 2017.

Y.-B. Kim and T. W. Chen, Assessing merged DRAM/Logic technology, Integration, the
VLSI Journal 27 (jul, 1999) 179-194.

Mu-Tien Chang, P. Rosenfeld, Shih-Lien Lu, and B. Jacob, Technology comparison for
large last-level caches (L3Cs): Low-leakage SRAM, low write-energy STT-RAM, and
refresh-optimized eDRAM, in International Symposium on High Performance
Computer Architecture (HPCA), pp. 143—154, IEEE, feb, 2013.

H.-S. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,
and K. E. Goodson, Phase change memory, Proceedings of the IEEE 98 (Dec, 2010)
2201-2227.

Y. Huai, Spin-transfer torque mram (stt-mram): Challenges and prospects, AAPPS
Bulletin 18 (2008), no. 6 33—40.

H.-S. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. Chen, and
M.-J. Tsai, Metal oxide rram, Proceedings of the IEEE 100 (June, 2012) 1951-1970.

G. De Sandre et. al., A 90nm 4mb embedded phase-change memory with 1.2v 12ns read
access time and Imb/s write throughput, in ISSCC, pp. 268-269, Feb, 2010.

C. Kim, K. Kwon, C. Park, S. Jang, and J. Choi, A covalent-bonded cross-coupled
current-mode sense amplifier for stt-mram with 1tImtj common source-line structure
array, in Solid- State Circuits Conference - (ISSCC), 2015 IEEE International, pp. 1-3,
Feb, 2015.

M.-F. Chang, J.-J. Wu, T.-F. Chien, Y.-C. Liu, T.-C. Yang, W.-C. Shen, Y.-C. King,
C.-J. Lin, K.-F. Lin, Y.-D. Chih, S. Natarajan, and J. Chang, Embedded Imb reram in
28nm cmos with 0.27-to-1v read using swing-sample-and-couple sense amplifier and
self-boost-write-termination scheme, in Solid-State Circuits Conference Digest of

Technical Papers (ISSCC), 2014 IEEE International, pp. 332-333, Feb, 2014.

Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon,

J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J.
Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee,

J. Yoo, and G. Jeong, A 20nm 1.8v 8gb pram with 40mb/s program bandwidth, in
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE
International, pp. 4648, Feb, 2012.

T. yi Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. Lee, G. Balakrishnan, G. Yee,
H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S. Addepalli, A. Al-Shamma, C.-Y. Chen,

152

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. Gupta, G. Hilton, S. Joshi, A. Kathuria, V. Lai, D. Masiwal, M. Matsumoto,

A. Nigam, A. Pai, J. Pakhale, C. H. Siau, X. Wu, R. Yin, L. Peng, J. Y. Kang, S. Huynh,
H. Wang, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T. Tsukamoto,
T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, T. Hara, H. Inoue, L. Fasoli,

M. Mofidi, R. Shrivastava, and K. Quader, A 130.7mm2 2-layer 32gb reram memory
device in 24nm technology, in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2013 IEEE International, pp. 210-211, Feb, 2013.

Intel and micron have new class of non-volatile memory that is 1000 times faster and
10 times denser than nand flash memory, .

T. yi Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. Lee, G. Balakrishnan, G. Yee,

H. Zhang, A. Yap, J. Ouyang, T. Sasaki, A. AlI-Shamma, C. Chen, M. Gupta, G. Hilton,
A. Kathuria, V. Lai, M. Matsumoto, A. Nigam, A. Pai, J. Pakhale, C. H. Siau, X. Wu,
Y. Yin, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T. Tsukamoto,

T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, H. Inoue, and L. Fasoli, A
130.7-mm 2-layer 32-gb reram memory device in 24-nm technology, Solid-State
Circuits, IEEE Journal of 49 (Jan, 2014) 140-153.

F. Bedeschi, R. Fackenthal, C. Resta, E. Donze, M. Jagasivamani, E. Buda F. Pellizzer,
D. Chow, A. Cabrini, G. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills,

R. Gastaldi, and G. Casagrande, A multi-level-cell bipolar-selected phase-change
memory, in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical
Papers. IEEE International, pp. 428—625, Feb, 2008.

X. Lou, Z. Gao, D. V. Dimitrov, and M. X. Tang, Demonstration of multilevel cell spin

transfer switching in mgo magnetic tunnel junctions, Applied Physics Letters 93
(2008), no. 24 242502.

S.-S. Sheu, M.-F. Chang, K.-F. Lin, C.-W. Wu, Y.-S. Chen, P.-F. Chiu, C.-C. Kuo, Y.-S.
Yang, P.-C. Chiang, W.-P. Lin, C.-H. Lin, H.-Y. Lee, P.-Y. Gu, S.-M. Wang, F. Chen,
K.-L. Su, C.-H. Lien, K.-H. Cheng, H.-T. Wu, T.-K. Ku, M.-J. Kao, and M.-J. Tsai, A
4mb embedded slc resistive-ram macro with 7.2ns read-write random-access time and
160ns mlc-access capability, in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2011 IEEFE International, pp. 200-202, Feb, 2011.

M.-F. Chang, S.-S. Sheu, K.-F. Lin, C.-W. Wu, C.-C. Kuo, P.-F. Chiu, Y.-S. Yang, Y.-S.
Chen, H.-Y. Lee, C.-H. Lien, F. Chen, K.-L. Su, T.-K. Ku, M.-J. Kao, and M.-J. Tsai, A
high-speed 7.2-ns read-write random access 4-mb embedded resistive ram (reram)

macro using process-variation-tolerant current-mode read schemes, Solid-State
Circuits, IEEE Journal of 48 (March, 2013) 878-891.

J. Meza, J. Li, and O. Mutlu, A case for small row buffers in non-volatile main
memories, in Computer Design (ICCD), 2012 IEEE 30th International Conference on,
pp- 484-485, Sept, 2012.

153

[36] S. Cho and H. Lee, Flip-n-write: A simple deterministic technique to improve pram
write performance, energy and endurance, in Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, pp. 347-357, Dec, 20009.

[37] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, A durable and energy efficient main memory
using phase change memory technology, in Proceedings of the 36th Annual
International Symposium on Computer Architecture, pp. 14-23, ACM, 2009.

[38] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, Architecting phase change memory as a
scalable dram alternative, in Proceedings of the 36th Annual International Symposium
on Computer Architecture, pp. 2—13, ACM, 20009.

[39] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, Scalable high performance main
memory system using phase-change memory technology, in Proceedings of the 36th
Annual International Symposium on Computer Architecture, pp. 24-33, ACM, 2009.

[40] P. Nair, C. Chou, B. Rajendran, and M. Qureshi, Reducing read latency of phase change
memory via early read and turbo read, in High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, pp. 309-319, Feb, 2015.

[41] P. Chi, C. Xu, T. Zhang, X. Dong, and Y. Xie, Using multi-level cell stt-ram for fast and
energy-efficient local checkpointing, in Proceedings of the 2014 IEEE/ACM
International Conference on Computer-Aided Design, pp. 301-308, 2014.

[42] J. Wang, X. Dong, and Y. Xie, Enabling high-performance lpddrx-compatible mram, in
Proceedings of the 2014 International Symposium on Low Power Electronics and
Design, pp. 339-344, ACM, 2014.

[43] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, Evaluating stt-ram as

an energy-efficient main memory alternative, in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on, pp. 256267, April, 2013.

[44] M. Qureshi, M. Franceschini, and L. Lastras-Montano, Improving read performance of
phase change memories via write cancellation and write pausing, in High Performance
Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on,
pp- 1-11, Jan, 2010.

[45] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L. A. Lastras, Preset:
Improving performance of phase change memories by exploiting asymmetry in write
times, in Proceedings of the 39th Annual International Symposium on Computer
Architecture, pp. 380-391, IEEE Computer Society, 2012.

[46] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick, A case for intelligent ram, IEEE micro 17 (1997), no. 2
3444,

154

[47]1 M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki,
J. Brockman, A. Srivastava, et. al., Mapping irregular applications to diva, a
pim-based data-intensive architecture, in Proceedings of the 1999 ACM/IEEE
conference on Supercomputing, p. 57, ACM, 1999.

[48] M. Oskin, F. T. Chong, and T. Sherwood, Active pages: A computation model for
intelligent memory, vol. 26. IEEE Computer Society, 1998.

[49] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas,
Flexram: Toward an advanced intelligent memory system, in Computer Design
(ICCD), 2012 IEEE 30th International Conference on, pp. 5—14, IEEE, 2012.

[50] J. Lee and J. H. Ahn and K. Choi, Buffered compares: Excavating the hidden
parallelism inside DRAM architectures with lightweight logic, in Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 1243—1248, 2016.

[S1] J. Ahn, S. Yoo, and K. Choi, AIM: Energy-Efficient Aggregation Inside the Memory
Hierarchy, ACM Transactions on Architecture and Code Optimization 13 (oct, 2016)
1-24.

[52] Y. Wang, Y. Han, L. Zhang, H. Li, and X. Li, Propram: Exploiting the transparent

logic resources in non-volatile memory for near data computing, in Proceedings of the

52Nd Annual Design Automation Conference, pp. 47:1-47:6, ACM, 2015.

[53] P. Trancoso, Moving to Memoryland: In-memory Computation for Existing

Applications, in International Conference on Computing Frontiers, pp. 32:1—-32:6,
ACM, 2015.

[54] A.Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, NDA: Near-DRAM

acceleration architecture leveraging commodity DRAM devices and standard memory

modules, in International Symposium on High Performance Computer Architecture

(HPCA), pp. 283-295, feb, 2015,

[55] M. Gao and C. Kozyrakis, HRL: Efficient and flexible reconfigurable logic for
near-data processing, in International Symposium on High Performance Computer
Architecture (HPCA), pp. 126—137, IEEE, mar, 2016.

[56] D.Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski,
TOP-PIM: Throughput-oriented Programmable Processing in Memory, in

International Symposium on High-performance Parallel and Distributed Computing,
pp- 85-98, ACM, 2014.

[57] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. Cher, C. H. A.
Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox, D. S. Gallo, L. Grinberg,
J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H.

155

Moreno, J. K. O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D.
Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and Z. Sura, Active
Memory Cube: A processing-in-memory architecture for exascale systems, IBM
Journal of Research and Development 59 (mar, 2015) 17:1-17:14.

[58] S. G. Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand and O. Mutlu, Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation, in International Conference on Computer
Design (ICCD), 2016.

[59] 1. Ahn, S. Yoo, O. Mutlu, and K. Choi, PIM-enabled Instructions: A Low-overhead,
Locality-aware Processing-in-memory Architecture, in International Symposium on
Computer Architecture (ISCA), pp. 336-348, ACM, 2015.

[60] B. Akin, F. Franchetti, and J. C. Hoe, Data Reorganization in Memory Using
3D-stacked DRAM, in International Symposium on Computer Architecture (ISCA),
pp- 131-143, ACM, 2015.

[61] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, NDC: Analyzing the Impact of 3D-Stacked
Memory+ Logic Devices on MapReduce Workloads, in International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2014.

[62] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair, and
S. Swanson, Near-Data Processing: Insights from a MICRO-46 Workshop, in Micro,
IEEE, vol. 34, pp. 36-42, IEEE, jul, 2014.

[63] Q. Guo, T.-M. Low, N. Alachiotis, B. Akin, L. Pileggi, J. C. Hoe, and F. Franchetti,
Enabling portable energy efficiency with memory accelerated library, in International
Symposium on Microarchitecture (MICRO), (New York, New York, USA),
pp- 750-761, ACM Press, dec, 2015.

[64] M. Gao, G. Ayers, and C. Kozyrakis, Practical Near-Data Processing for In-memory
Analytics Frameworks, Parallel Archit. Compil. Tech. (PACT), 2015 IEEE Int. Conf.
(2015) 113-124.

[65] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, and
C. R. Das, Scheduling Techniques for GPU Architectures with Processing-In-Memory

Capabilities, in International Conference on Parallel Architectures and Compilation
(PACT), (New York, New York, USA), pp. 31-44, ACM Press, 2016.

[66] B. Hong, G. Kim, J. H. Ahn, Y. Kwon, H. Kim, and J. Kim, Accelerating Linked-list
Traversal Through Near-Data Processing, in International Conference on Parallel
Architectures and Compilation (PACT), (New York, New York, USA), pp. 113124,
ACM Press, 2016.

156

[67] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C.-Y. Cher, C. H.
Costa, J. Doi, C. Evangelinos, et. al., Active memory cube: A processing-in-memory

architecture for exascale systems, IBM Journal of Research and Development 59
(2015), no. 2/3 17-1.

[68] Q. Guo, T.-M. Low, N. Alachiotis, B. Akin, L. Pileggi, J. C. Hoe, and F. Franchetti,
Enabling portable energy efficiency with memory accelerated library, in Proceedings
of the 48th International Symposium on Microarchitecture, pp. 750-761, ACM, 2015.

[69] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, Tetris: Scalable and efficient
neural network acceleration with 3d memory, in Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 151-764, ACM, 2017.

[70] V. Seshadri, Simple DRAM and Virtual Memory Abstractions to Enable Highly Efficient
Memory Systems, CoRR abs/1605.06483 (2016).

[71] V. Seshadri, M. A. Kozuch, T. C. Mowry, Y. Kim, C. Fallin, D. Lee,
R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu, and P. B. Gibbons, RowClone:
fast and energy-efficient in-DRAM bulk data copy and initialization, in International
Symposium on Microarchitecture (MICRO), (New York, New York, USA),
pp- 185-197, ACM Press, 2013.

[72] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gibbons,
and T. C. Mowry, Fast Bulk Bitwise AND and OR in DRAM, Computer Architecture
Letters PP (2015), no. 99 1.

[73] M. Gao, C. Delimitrou, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and
C. Kozyrakis, DRAF: A Low-Power DRAM-Based Reconfigurable Acceleration Fabric,
in International Symposium on Computer Architecture (ISCA), pp. 506-518, IEEE, jun,
2016.

[74] AMD, “Radeon R9 Series Graphics Cards.” www.amd . com/r9, 2015.

[75] Nvidia, “Pascal GPU Architecture .”
http://www.nvidia.com/object/gpu-architecture.html, 2016.

[76] Intel, “Intel Xeon Phi Processor: Your Path to Deeper Insight.”
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-
processor-product-brief.html, 2016.

[77] Xilinx, “Xilinx Virtex UltraScale+ HBM device family .”
https://www.xilinx.com/products/silicon-devices/fpga/virtex-
ultrascale-plus.html, 2016.

157

[78] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and
O. Temam, DaDianNao: A Machine-Learning Supercomputer, in International
Symposium on Microarchitecture (MICRO), pp. 609-622, IEEE, dec, 2014.

[79] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun, Deep Image: Scaling up Image
Recognition, CoRR abs/1501.02876 (2015).

[80] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and
H. Esmaeilzadeh, From High-Level Deep Neural Models to FPGAs, in International
Symposium on Microarchitecture (MICRO), IEEE, Oct, 2016.

[81] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser,
R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S.
Modha, A million spiking-neuron integrated circuit with a scalable communication
network and interface, Science 345 (2014), no. 6197 668-673.

[82] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, A digital
neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm, in
Custom Integrated Circuits Conference (CICC), pp. 1-4, IEEE, sep, 2011.

[83] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch, A. Amir, J. Arthur,
A. Cassidy, M. Flickner, P. Merolla, S. Chandra, N. Basilico, S. Carpin, T. Zimmerman,
F. Zee, R. Alvarez-Icaza, J. A. Kusnitz, T. M. Wong, W. P. Risk, E. McQuinn, T. K.
Nayak, R. Singh, and D. S. Modha, Cognitive computing systems: Algorithms and
applications for networks of neurosynaptic cores, in International Joint Conference on
Neural Networks (IJCNN), pp. 1-10, IEEE, aug, 2013.

[84] J.-s. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Rajendran,
J. A. Tierno, L. Chang, D. S. Modha, and D. J. Friedman, A 45nm CMOS

neuromorphic chip with a scalable architecture for learning in networks of spiking
neurons, in Custom Integrated Circuits Conference (CICC), pp. 1-4, IEEE, sep, 2011.

[85] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes, An efficient and
scalable semiconductor architecture for parallel automata processing, in Parallel and
Distributed Systems, IEEE Transactions on, p. 99, IEEE, 2014.

[86] A. Akerib and E. Ehrman, Non-volatile in-memory computing device, may, 2015. US
Patent App. 14/588,419.

[871 A. Akerib, O. AGAM, E. Ehrman, and M. Meyassed, Using storage cells to perform
computation, dec, 2014. US Patent 8,908,465.

[88] A. Akerib and E. Ehrman, In-memory computational device, nov, 2014. US Patent
App. 14/555,638.

158

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Y. Yang, J. Mathew, M. Ottavi, S. Pontarelli, and D. K. Pradhan, 2t2m memristor based
tcam cell for low power applications, in Design Technology of Integrated Systems in
Nanoscale Era (DTIS), 2015 10th International Conference on, pp. 1-6, April, 2015.

M.-F. Chang, C.-C. Lin, A. Lee, C.-C. Kuo, G.-H. Yang, H.-J. Tsai, T.-F. Chen, S.-S.
Sheu, P.-L. Tseng, H.-Y. Lee, and T.-K. Ku, A 3t/r nonvolatile tcam using mlc reram
with sub-1Ins search time, in Solid- State Circuits Conference - (ISSCC), 2015 IEEE
International, pp. 1-3, Feb, 2015.

J. Li, R. Montoye, M. Ishii, and L. Chang, I mb 0.41 um?2 2t-2r cell nonvolatile tcam
with two-bit encoding and clocked self-referenced sensing, Solid-State Circuits, IEEE
Journal of 49 (April, 2014) 896-907.

S. Matsunaga, S. Miura, H. Honjou, K. Kinoshita, S. Ikeda, T. Endoh, H. Ohno, and
T. Hanyu, A 3.14 um2 4t-2mtj-cell fully parallel tcam based on nonvolatile
logic-in-memory architecture, in VLSI Circuits (VLSIC), 2012 Symposium on,

pp- 4445, June, 2012.

S. Matsunaga, A. Katsumata, M. Natsui, T. Endoh, H. Ohno, and T. Hanyu, Design of a
270ps-access 7-transistor/2-magnetic-tunnel-junction cell circuit for a

high-speed-search nonvolatile ternary content-addressable memory, Journal of Applied
Physics 111 (2012), no. 7 07E336.

X. Guo, E. Ipek, and T. Soyata, Resistive computation: Avoiding the power wall with
low-leakage, stt-mram based computing, in Proceedings of the 37th Annual
International Symposium on Computer Architecture, pp. 371-382, ACM, 2010.

T. Hanyu, D. Suzuki, N. Onizawa, S. Matsunaga, M. Natsui, and A. Mochizuki,
Spintronics-based nonvolatile logic-in-memory architecture towards an
ultra-low-power and highly reliable visi computing paradigm, in Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition, pp. 1006-1011,
2015.

Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, Ac-dimm: associative
computing with stt-mram, in Proceedings of the 40th Annual International Symposium
on Computer Architecture, pp. 189-200, ACM, 2013.

H.-J. Tsai, K.-H. Yang, Y.-C. Peng, C.-C. Lin, Y.-H. Tsao, M.-F. Chang, and T.-F.
Chen, Energy-efficient non-volatile tcam search engine design using priority-decision
in memory technology for dpi, in Proceedings of the 52Nd Annual Design Automation
Conference, pp. 100:1-100:6, ACM, 2015.

C.-Y. Wen, J. Li, S. Kim, M. Breitwisch, C. Lam, J. Paramesh, and L. Pileggi, A
non-volatile look-up table design using pcm (phase-change memory) cells, in VLSI
Circuits (VLSIC), 2011 Symposium on, pp. 302-303, June, 2011.

159

[99] M.-F. Chang, S.-M. Yang, C.-C. Kuo, T.-C. Yang, C.-J. Yeh, T.-F. Chien, L.-Y. Huang,
S.-S. Sheu, P.-L. Tseng, Y.-S. Chen, F. Chen, T.-K. Ku, M.-J. Tsai, and M.-J. Kao,
Set-triggered-parallel-reset memristor logic for high-density heterogeneous-integration
friendly normally off applications, Circuits and Systems I1: Express Briefs, IEEE
Transactions on 62 (Jan, 2015) 80—84.

[100] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, Fast boolean logic
mapped on memristor crossbar, .

[101] H. Li et. al., A learnable parallel processing architecture towards unity of memory and
computing, Scientific reports 5 (2015).

[102] B. Chen, E. Cai, W. Ma, P. Sheridan, and U. W. Lu, Efficient in-memory computing
architecture based on crossbar arrays, in Electron Devices Meeting, 2015. IEDM’15
Technical Digest. IEEE International, Dec, 2015.

[103] M. N. Bojnordi and E. Ipek, Memristive Boltzmann machine: A hardware accelerator
Jor combinatorial optimization and deep learning, in International Symposium on High
Performance Computer Architecture (HPCA), pp. 1-13, IEEE, mar, 2016.

[104] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars, in Proceedings of the 43Nd Annual
International Symposium on Computer Architecture, ISCA *16, 2016.

[105] S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels, H. Corporaal, H. Jiao,
F. Catthoor, D. Wouters, L. Eike, et. al., Memristor based computation-in-memory
architecture for data-intensive applications, in DATE, pp. 1718-1725, 2015.

[106] K. Wu, Fastbit: an efficient indexing technology for accelerating data-intensive
science, in Journal of Physics, vol. 16, p. 556, 2005.

[107] S. Beamer, K. Asanovic¢, and D. Patterson, Direction-optimizing breadth-first search, in
SC, pp. 1-10, Nov, 2012.

[108] M. Pedemonte, E. Alba, and F. Luna, Bitwise operations for gpu implementation of
genetic algorithms, in Proceedings of the 13th annual conference companion on
Genetic and evolutionary computation (GECCO), pp. 439446, ACM, 2011.

[109] J. Bruce, T. Balch, and M. Veloso, Fast and inexpensive color image segmentation for
interactive robots, in Intelligent Robots and Systems (IROS), vol. 3, 2000.

[110] M.-F. Chang, S.-J. Shen, C.-C. Liu, C.-W. Wy, Y.-F. Lin, Y.-C. King, C.-J. Lin, H.-J.
Liao, Y.-D. Chih, and H. Yamauchi, An offset-tolerant fast-random-read

current-sampling-based sense amplifier for small-cell-current nonvolatile memory,
Solid-State Circuits, IEEE Journal of 48 (March, 2013) 864-877.

160

[111] K. Suzuki and S. Swanson, The non-volatile memory technology database (nvmdb),
Tech. Rep. CS2015-1011, Department of Computer Science & Engineering, University
of California, San Diego, May, 2015. http://nvmdb.ucsd.edu.

[112] J. Liet. al., 1 mb 0.41 um 2t-2r cell nonvolatile tcam with two-bit encoding and clocked
self-referenced sensing, JSSC 49 (April, 2014) 896-907.

[113] J. Ahn et. al., Pim-enabled instructions: A low-overhead, locality-aware
processing-in-memory architecture, in ISCA, pp. 336-348, ACM, 2015.

[114] V. Seshadri et. al., Fast bulk bitwise and and or in dram, CAL PP (2015), no. 99 1-1.

[115] K. Chen et. al., Cacti-3dd: Architecture-level modeling for 3d die-stacked dram main
memory, in DATE, pp. 33-38, 2012.

[116] “Laboratory for web algorithmics.” http://law.di.unimi.it/.
[117] “The star experiment.” http://www.star.bnl.gov/.

[118] X. Dong et. al., Nvsim: A circuit-level performance, energy, and area model for
emerging nonvolatile memory, TCAD 31 (July, 2012) 994—-1007.

[119] T.E. Carlson et. al., Sniper: Exploring the level of abstraction for scalable and
accurate parallel multi-core simulation, in SC, pp. 52:1-52:12, ACM, 2011.

[120] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and Y. Xie,
Overcoming the challenges of crossbar resistive memory architectures, in High
Performance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on, pp. 476488, Feb, 2015.

[121] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, Rram-based analog approximate
computing, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems PP (6, 2015) 1-1.

[122] J. Li, C.-I. Wu, S. Lewis, J. Morrish, T.-Y. Wang, R. Jordan, T. Maffitt, M. Breitwisch,
A. Schrott, R. Cheek, H.-L. Lung, and C. Lam, A novel reconfigurable sensing scheme

for variable level storage in phase change memory, in Memory Workshop (IMW), 2011
3rd IEEE International, pp. 1-4, IEEE, 2011.

[123] M. Hu, H. Li, Q. Wu, and G. Rose, Hardware realization of bsb recall function using
memristor crossbar arrays, in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pp. 498-503, June, 2012.

[124] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang, Memristor-based approximated
computation, in Low Power Electronics and Design (ISLPED), 2013 IEEE
International Symposium on, pp. 242-247, Sept, 2013.

161

[125] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev, and D. B.
Strukov, Training and operation of an integrated neuromorphic network based on
metal-oxide memristors, Nature (2014).

[126] Y. Kim, Y. Zhang, and P. Li, A reconfigurable digital neuromorphic processor with

memristive synaptic crossbar for cognitive computing, J. Emerg. Technol. Comput.
Syst. 11 (Apr., 2015) 38:1-38:25.

[127] FE. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, High precision tuning of state for
memristive devices by adaptable variation-tolerant algorithm, Nanotechnology 23
(2012), no. 7 075201.

[128] F. A. L. Gao and D. B. Strukov, A high resolution nonvolatile analog memory ionic
devices, in 4th Annual Non-Volatile Memories Workshop, NVMW 2013, pp. paper—57,
2013.

[129] M. Hu, J. P. Strachan, E. Merced-Grafals, Z. Li, and R. S. Williams, Dot-product
engine: Programming memristor crossbar arrays for efficient vector-matrix
multiplication, in ICCAD’15 Workshop on “Towards Efficient Computing in the Dark
Silicon Era”, Nov, 2015.

[130] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86 (Nov, 1998) 2278-2324.

[131] Y. B. M. Courbariaux and J.-P. David, Low precision storage for deep learning, CoRR
abs/1412.7024 (2014).

[132] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale
image recognition, in Proceedings of the International Conference on Learning
Representations (ICLR), pp. 1-14, May, 2015.

[133] FE. Alibart, E. Zamanidoost, and D. B. Strukov, Pattern classification by memristive
crossbar circuits using ex situ and in situ training, Nature communications 4 (2013).

[134] M. Hu, H. L1, Y. Chen, Q. Wu, and G. S. Rose, Bsb training scheme implementation on
memristor-based circuit, in Computational Intelligence for Security and Defense
Applications (CISDA), 2013 IEEE Symposium on, pp. 80-87, IEEE, 2013.

[135] B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang, Training itself: Mixed-signal training
acceleration for memristor-based neural network, in ASP-DAC, pp. 361-366, 2014.

[136] B. Liu, M. Hu, H. Li, Z.-H. Mao, Y. Chen, T. Huang, and W. Zhang, Digital-assisted
noise-eliminating training for memristor crossbar-based analog neuromorphic

computing engine, in Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pp. 1-6, IEEE, 2013.

162

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

B. Liu, H. Li, Y. Chen, X. Li, T. Huang, Q. Wu, and M. Barnell, Reduction and ir-drop
compensations techniques for reliable neuromorphic computing systems, in
Computer-Aided Design (ICCAD), 2014 IEEE/ACM International Conference on,

pp. 63-70, Nov, 2014.

V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, Rowclone: Fast and
energy-efficient in-DRAM bulk data copy and initialization, in Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-46, (New
York, NY, USA), pp. 185-197, ACM, 2013.

R.A.PD.D.B.A A JA ACMEPMS.C.N.B.S.C.TZFZR A-LJK
T.W. W.R.E.M. T. N. R. S. S. K. Esser, A. Andreopoulos and D. Modha, Cognitive
computing systems: Algorithms and applications for networks of neurosynaptic cores,
in The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1-10,
Aug, 2013.

B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, Operating system support for
improving data locality on cc-numa compute servers, in Proceedings of the Seventh

International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS VII, (New York, NY, USA), pp. 279-289, ACM, 1996.

N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler, Page
placement strategies for GPUs within heterogeneous memory systems, in Proceedings
of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, (New York, NY, USA), pp. 607-618,
ACM, 2015.

M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montafio, and J. P. Karidis,
Morphable memory system: A robust architecture for exploiting multi-level phase
change memories, in Proceedings of the 37th Annual International Symposium on
Computer Architecture, ISCA ’10, (New York, NY, USA), pp. 153-162, ACM, 2010.

P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar, Dynamic
tracking of page miss ratio curve for memory management, in Proceedings of the 1 1th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XI, (New York, NY, USA), pp. 177-188, ACM, 2004.

M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge, J. J.
Yang, and R. S. Williams, Dot-product engine for neuromorphic computing:

Programming 1tIm crossbars for efficient vector-matrix multiplication, Tech Reports
(2015) HPL-2015-55.

S. Cho and H. Lee, Flip-n-write: A simple deterministic technique to improve pram
write performance, energy and endurance, in 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 347-357, Dec, 2009.

163

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim,
D. H. Seo, S. Seo, U.-1. Chuang, 1.-K. Yong, and K. Kim, A fast, high-endurance and
scalable non-volatile memory device made from asymmetric ta205-x/tao2-x bilayer
structures, Nature Materials 10 (2011), no. 8 625-630.

C.-W. Hsu, L.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin, and T.-H. Hou,
Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 10'2 cycles for
3D high-density storage-class memory, in VLSI Technology (VLSIT), 2013 Symposium
on, pp. T166-T167, June, 2013.

S. R. Lee, Y.-B. Kim, M. Chang, K. M. Kim, C. B. Lee, J. H. Hur, G.-S. Park, D. Lee,
M.-J. Lee, C. J. Kim, U.-I. Chung, I.-K. Yoo, and K. Kim, Multi-level switching of

triple-layered taox rram with excellent reliability for storage class memory, in VLSI
Technology (VLSIT), 2012 Symposium on, pp. 71-72, June, 2012.

D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, Design trade-offs for high
density cross-point resistive memory, in Proceedings of the 2012 ACM/IEEE
International Symposium on Low Power Electronics and Design, ISLPED *12, (New
York, NY, USA), pp. 209-214, ACM, 2012.

Y. Yang, J. Mathew, M. Ottavi, S. Pontarelli, and D. Pradhan, Novel complementary
resistive switch crossbar memory write and read schemes, IEEE Transactions on
Nanotechnology 14 (March, 2015) 346-357.

A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, K. Tanabe, T. Nakamura,

Y. Sumimoto, N. Yamada, N. Nakai, S. Sakamoto, Y. Hayakawa, K. Tsuji, S. Yoneda,
A. Himeno, K. Origasa, K. Shimakawa, T. Takagi, T. Mikawa, and K. Aono, An 8Mb
multi-layered cross-point ReRAM macro with 443MB/s write throughput, in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International,

pp. 432-434, Feb, 2012.

T. yi Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. Lee, G. Balakrishnan, G. Yee,

H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S. Addepalli, A. Al-Shamma, C.-Y. Chen,

M. Gupta, G. Hilton, S. Joshi, A. Kathuria, V. Lai, D. Masiwal, M. Matsumoto,

A. Nigam, A. Pai, J. Pakhale, C. H. Siau, X. Wu, R. Yin, L. Peng, J. Y. Kang, S. Huynh,
H. Wang, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T. Tsukamoto,
T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, T. Hara, H. Inoue, L. Fasoli,

M. Mofidi, R. Shrivastava, and K. Quader, A 130.7mm?2 2-layer 32Gb ReRAM memory
device in 24nm technology, in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2013 IEEE International, pp. 210-211, Feb, 2013.

M. Jung, J. Shalf, and M. Kandemir, Design of a large-scale storage-class rram system,
in Proceedings of the 27th International ACM Conference on International Conference
on Supercomputing, ICS *13, (New York, NY, USA), pp. 103-114, ACM, 2013.

164

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

C. Xu, P--Y. Chen, D. Niu, Y. Zheng, S. Yu, and Y. Xie, Architecting 3D vertical
resistive memory for next-generation storage systems, in Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design, ICCAD 14,
(Piscataway, NJ, USA), pp. 55-62, IEEE Press, 2014.

P. Gu, B. Li, T. Tang, S. Yu, Y. Cao, Y. Wang, and H. Yang, Technological exploration
of rram crossbar array for matrix-vector multiplication, in Design Automation
Conference (ASP-DAC), 2015 20th Asia and South Pacific, pp. 106-111, Jan, 2015.

P.-Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrudhula, J.-s. Seo,

Y. Cao, and S. Yu, Technology-design co-optimization of resistive cross-point array for
accelerating learning algorithms on chip, in Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, pp. 854-859, 2015.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning, in
Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 14, (New York, NY,
USA), pp. 269-284, ACM, 2014.

Xiangyu Dong et. al., NVSim: A Circuit-Level Performance, Energy, and Area Model
for Emerging Nonvolatile Memory, TCAD 31 (jul, 2012) 994—-1007.

K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
Cacti-3dd: Architecture-level modeling for 3D die-stacked DRAM main memory, in

Proceedings of the Conference on Design, Automation and Test in Europe, pp. 33-38,
EDA Consortium, 2012.

N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas, Cacti-io: Cacti with
off-chip power-area-timing models, in Proceedings of the International Conference on
Computer-Aided Design, pp. 294-301, ACM, 2012.

N.M.N. P.J. C. Xu, D. Niu and Y. Xie, Understanding the trade-offs in multi-level cell
ReRAM memory design, in Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pp. 1-6, IEEE, 2013.

A. Fritsch et. al., A 4GHz, low latency TCAM in 14nm SOI FinFET technology using a
high performance current sense amplifier for AC current surge reduction, in ESSCIRC,
pp- 343-346, sep, 2015.

S. Matsunaga et. al., A 3.14 um2 4T-2MTJ-cell fully parallel TCAM based on
nonvolatile logic-in-memory architecture, in VLSIC, pp. 44-45, jun, 2012.

J.Liet. al., I Mb 0.41 um2 2T-2R Cell Nonvolatile TCAM With Two-Bit Encoding and
Clocked Self-Referenced Sensing, JSSC 49 (apr, 2014) 896-907.

165

[165] C.-C. Lin et. al., A 256b-Wordlength ReRAM-based TCAM with Ins Search-Time and
14x Improvement in WordLength- EnergyEfficiency-Density Product using 2.5TIR cell,
in ISSCC, pp. 136138, 2016.

[166] H.-J. Tsai et. al., Energy-efficient non-volatile TCAM search engine design using
priority-decision in memory technology for DPI, in DAC, pp. 1-6, june, 2015.

[167] Q. Guo et. al., AC-DIMM_: associative computing with STI-MRAM, in ISCA,
pp- 189200, 2013.

[168] N. Muralimanohar et. al., CACTI 6.0: A tool to model large caches, HP Lab. (2009)
22-31.

[169] S. Liet. al., CACTI-P: Architecture-level modeling for SRAM-based structures with
advanced leakage reduction techniques, in ICCAD, pp. 694701, nov, 2011.

[170] B. Agrawal and T. Sherwood, Ternary CAM Power and Delay Model: Extensions and
Uses, TVLSI 16 (may, 2008) 554-564.

[171] I. Bayram and Y. Chen, NV-TCAM: Alternative interests and practices in NVM designs,
in NVMSA, pp. 1-6, aug, 2014.

[172] K. Pagiamtzis et. al., Content-Addressable Memory (CAM) Circuits and Architectures:
A Tutorial and Survey, JSSC 41 (mar, 2006) 712-727.

[173] S. Matsunaga et. al., Fully parallel 6T-2MTJ nonvolatile TCAM with
single-transistor-based self match-line discharge control, in VLSIC, pp. 298-299, jun,
2011.

[174] M.-E. F. Chang et. al., A 3TIR nonvolatile TCAM using MLC ReRAM with Sub-1ns
search time, JSSC 58 (feb, 2015) 318-319.

[175] L.-Y. Huang et. al., ReRAM-based 4T2R nonvolatile TCAM with 7x NVM-stress
reduction, and 4x improvement in speed-wordlength-capacity for normally-off

instant-on filter-based search engines used in big-data processing, in VLSIC, pp. 1-2,
jun, 2014.

[176] M.-F. Chang et. al., An Offset-Tolerant Fast-Random-Read Current-Sampling-Based
Sense Amplifier for Small-Cell-Current Nonvolatile Memory, JSSC 48 (mar, 2013)
864-877.

[177] S.Matsunaga et. al., Implementation of a perpendicular MTJ-based
read-disturb-tolerant 2T-2R nonvolatile TCAM based on a reversed current reading
scheme, in ASP-DAC, pp. 475-476, jan, 2012.

166

[178] Chung-Hsun Huang et. al., Design of high-performance CMOS priority encoders and
incrementer/decrementers using multilevel lookahead and multilevel folding
technigques, JSSC 37 (2002), no. 1 63-76.

[179] “Predictive Technology Model.” http://ptm.asu.edu/.

[180] S. Zuloaga et. al., Scaling 2-layer RRAM cross-point array towards 10 nm node: A
device-circuit co-design, in ISCAS, pp. 193-196, may, 2015.

[181] C. Xu et. al., Architecting 3D vertical resistive memory for next-generation storage
systems, in [CCAD, pp. 55-62, nov, 2014.

[182] I. G. Baek et. al., Realization of vertical resistive memory (VRRAM) using cost effective
3D process, in IEDM, pp. 31.8.1-31.8.4, dec, 2011.

[183] C. Xu et. al., Modeling and design analysis of 3D vertical resistive memory: A low cost
cross-point architecture, in ASP-DAC, pp. 825-830, jan, 2014.

[184] E. Cha et. al., Nanoscale (10nm) 3D vertical ReRAM and NbO?2 threshold selector with
TiN electrode, in IEDM, pp. 10.5.1-10.5.4, dec, 2013.

[185] “BLAST.” http://blast.ncbi.nlm.nih.gov/Blast.cgi.
[186] “GenBank.” http://www.ncbi.nlm.nih.gov/genbank/statistics/.

[187] L. Gwennap, Skylake speedshifts to next gear, Microprocessor Report 29 (2015), no. 9
6-10.

[188] NVIDIA Volta, 2017.

[189] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick, A case for intelligent RAM, Micro, IEEE 17 (1997), no. 2
34-44.

[190] NVIDIA TITAN X (pascal), 2016.
http://www.geforce.com/hardware/10series/titan-x-pascal.

[191] K. Chen and L. Pachter, Bioinformatics for whole-genome shotgun sequencing of
microbial communities, PLoS Comput Biol 1 (2005), no. 2 e24.

[192] F. Hamzaoglu, U. Arslan, N. Bisnik, S. Ghosh, M. B. Lal, N. Lindert, M. Meterelliyoz,
R. B. Osborne, J. Park, S. Tomishima, Y. Wang, and K. Zhang, /3.1 A 1Gb 2GHz
embedded DRAM in 22nm tri-gate CMOS technology, in International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), pp. 230-231, 1EEE, feb,
2014.

[193] G. Sideris, INTEL 1103-MOS memory taht defied cores, ELECTRONICS 46 (1973),
no. 9 108-113.

167

[194] D. H. Neil Weste, CMOS VLSI Design: A Circuits And Systems Perspective, 3/E.
Pearson, 2006.

[195] D. A. Patterson and J. L. Hennessy, Computer organization and design: the
hardware/software interface. Newnes, 2013.

[196] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, A Case for Exploiting Subarray-level
Parallelism (SALP) in DRAM, in International Symposium on Computer Architecture
(ISCA), pp. 368-379, IEEE Computer Society, 2012.

[197] S.Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, Pinatubo: A processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile memories, in Proc.
53rd Annu. Des. Autom. Conf. - DAC 16, (New York, New York, USA), pp. 1-6, ACM
Press, 2016.

[198] 8Gb B-die DDR4 SDRAM, 2016.
http://www.samsung.com/semiconductor/global/file/product/2016/06/
DS_K4A8G085WB-B_Rev1_61-0.pdf.

[199] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, Hal-DRAM: A
high-bandwidth and low-power DRAM architecture from the rethinking of fine-grained

activation, in International Symposium on Computer Architecture (ISCA), pp. 349-360,
jun, 2014.

[200] Y. H. Son, O. Seongil, Y. Ro, J. W. Lee, and J. H. Ahn, Reducing memory access
latency with asymmetric DRAM bank organizations, International Symposium on
Computer Architecture (ISCA) 41 (jul, 2013) 380.

[201] “Micron Automata Processor.” https://www.micronautomata.com/.

[202] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, AC-DIMM: associative
computing with STI-MRAM, in nternational Symposium on Computer Architecture
(ISCA), pp. 189-200, ACM, 2013.

[203] “Torch 7.7 http://torch.ch/.

[204] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, Buddy-RAM: Improving the Performance
and Efficiency of Bulk Bitwise Operations Using DRAM, CoRR abs/1611.09988 (2016).

[205] J. M. Park, Y. S. Hwang, S. W. Kim, S. Y. Han, J. S. Park, J. Kim, J. W. Seo, B. S. Kim,
S. H. Shin, C. H. Cho, S. W. Nam, H. S. Hong, K. P. Lee, G. Y. Jin, and E. S. Jung,
20nm DRAM: A new beginning of another revolution, in 2015 IEEE International
Electron Devices Meeting (IEDM), pp. 26.5.1-26.5.4, 2015.

[206] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM Circuit Design: Fundamental and
High-Speed Topics. Wiley-IEEE Press, 2nd ed., 2007.

168

[207] P.J. Nair, D.-H. Kim, and M. K. Qureshi, ArchShield: architectural framework for
assisting DRAM scaling by tolerating high error rates, in International Symposium on
Computer Architecture, (New York, New York, USA), pp. 72-83, ACM Press, 2013.

[208] S. Han, H. Mao, and W. J. Dally, Deep Compression: Compressing Deep Neural
Network with Pruning, Trained Quantization and Huffman Coding, CoRR
abs/1510.00149 (2015).

[209] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, DoReFa-Net: Training Low
Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients, CoRR
abs/1606.06160 (2016).

[210] F. Li and B. Liu, Ternary Weight Networks, CoRR abs/1605.04711 (2016).

[211] G. Venkatesh, E. Nurvitadhi, and D. Marr, Accelerating Deep Convolutional Networks
using low-precision and sparsity, CoRR abs/1610.00324 (2016).

[212] 1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, Quantized Neural
Networks: Training Neural Networks with Low Precision Weights and Activations,
CoRR abs/1609.07061 (2016).

[213] M. Courbariaux, Y. Bengio, and J. David, BinaryConnect: Training Deep Neural
Networks with binary weights during propagations, CoRR abs/1511.00363 (2015).

[214] M. Courbariaux and Y. Bengio, BinaryNet: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1, CoRR abs/1602.02830 (2016).

[215] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks, CoRR abs/1603.05279
(2016).

[216] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, in Advances in Neural Information Processing
Systems (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.),
pp- 1097-1105. Curran Associates, Inc., 2012.

[217] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition,
CoRR abs/1512.03385 (2015).

[218] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, Going Deeper with Convolutions, CoRR
abs/1409.4842 (2014).

[219] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, CoRR abs/1409.1556 (2014).

169

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]
[229]

[230]

[231]

[232]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ImageNet Large Scale Visual
Recognition Challenge, International Journal of Computer Vision (IJCV) 115 (2015),
no. 3 211-252.

Intel, “Intel Instruction Set Architecture Extensions.”
https://software.intel.com/en-us/intel-isa-extensions.

S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen, Cambricon: An
Instruction Set Architecture for Neural Networks, in International Symposium on
Computer Architecture (ISCA), pp. 393—405, 1IEEE, jun, 2016.

J. Ott, Z. Lin, Y. Zhang, S. Liu, and Y. Bengio, Recurrent Neural Networks With
Limited Numerical Precision, CoRR abs/1608.06902 (2016).

S.-M. Kang and Y. Leblebici, CMOS digital integrated circuits. Tata McGraw-Hill
Education, 2003.

Ke Chen, Sheng Li, N. Muralimanohar, Jung Ho Ahn, J. B. Brockman, and N. P.
Jouppi, CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main
memory, in Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp- 33-38, EDA Consortium, IEEE, mar, 2012.

“Design Compiler, Synopsys Inc..”
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/ DesignCompiler.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam,
ShiDianNao: shifting vision processing closer to the sensor, in International
Symposium on Computer Architecture (ISCA), (New York, New York, USA),

pp- 92-104, ACM Press, 2015.

“NVIDIA cuDNN.” https://developer.nvidia.com/cudnn.

“NVIDIA System Management Interface.”
https://developer.nvidia.com/nvidia-system-management-interface.

W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. Stan,
HotSpot: a compact thermal modeling methodology for early-stage VLSI design, IEEE
ransactions on Very Large Scale Integration (VLSI) Systems 14 (may, 2006) 501-513.

Yasuko Eckert Nuwan Jayasena and G. Loh, Thermal Feasibility of Die-Stacked
Processing in Memory, in WoNDP: 2nd Workshop on Near-Data Processing,
International Symposium on Microarchitecture, IEEE, 2014.

T. Vogelsang, Understanding the Energy Consumption of Dynamic Random Access
Memories, in International Symposium on Microarchitecture (MICRO), pp. 363-374,
IEEE, dec, 2010.

170

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

IC Cost and Price Model, Revision 1506, IC Knowledge LLC., 2015.
http://www.icknowledge.com/.

S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, DRISA: A
DRAM-based Reconfigurable In-Situ Accelerator, in International Symposium on
Microarchitecture (MICRO), pp. 288-301, ACM, 2017.

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,

O. Mutlu, P. B. Gibbons, and T. C. Mowry, Ambit: In-memory Accelerator for Bulk
Bitwise Operations Using Commodity DRAM Technology, in International Symposium
on Microarchitecture (MICRO), pp. 273-287, ACM, 2017.

A. Alaghi and J. P. Hayes, Survey of Stochastic Computing, ACM Transactions on
Embedded Computing Systems 12 (may, 2013) 1-19.

B. R. Gaines, Stochastic computing, in Proceedings of the spring joint computer
conference, 1967.

J. P. Hayes, Introduction to stochastic computing and its challenges, in Proceedings of
the Annual Design Automation Conference, 2015.

J. H. Anderson, Y. Hara-Azumi, and S. Yamashita, Effect of LFSR seeding, scrambling
and feedback polynomial on stochastic computing accuracy, in Design, Automation &
Test in Europe Conference & Exhibition, pp. 1550-1555, 1EEE, 2016.

K. Kim, J. Lee, and K. Choi, An energy-efficient random number generator for
stochastic circuits, in Asia and South Pacific Design Automation Conference,
pp.- 256-261, IEEE, jan, 2016.

H. Sim, D. Nguyen, J. Lee, and K. Choi, Scalable stochastic-computing accelerator for
convolutional neural networks, in Asia and South Pacific Design Automation
Conference, pp. 696701, IEEE, jan, 2017.

A.Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan, SC-DCNN:
Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing,

Proceedings of International Conference on Architectural Support for Programming
Languages and Operating Systems (2017) 405-418.

K. Kim, J. Lee, and K. Choi, Approximate de-randomizer for stochastic circuits, in
International SoC Design Conference, pp. 123—124, IEEE, nov, 2015.

S. Gupta, V. Sindhwani, and K. Gopalakrishnan, Learning Machines Implemented on
Non-Deterministic Hardware, arXiv Prepr. arXiv1409.2620 (2014).

K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, Dynamic energy-accuracy trade-off
using stochastic computing in deep neural networks, in Proceedings of the Annual
Design Automation Conference, 2016.

171

[246] D. Braendler, T. Hendtlass, and P. O’Donoghue, Deterministic bit-stream digital
neurons, IEEE Transactions on Neural Networks 13 (nov, 2002) 1514-1525.

[247] D. Jenson and M. Riedel, A deterministic approach to stochastic computation, in
Proceedings of International Conference on Computer-Aided Design, 2016.

[248] NVIDIA GPU, 2016. http://www.nvidia. com.
[249] Micron, Micron announces development of new parallel processing architecture, .

[250] B. Y. Zhe Li, Ao Ren, Ji Li, Qinru Qiu, Yanzhi Wang, DSCNN: Hardware-Oriented
Optimization for Stochastic Computing Based Deep Convolutional Neural Networks, in
Internetional Conference on Comupter Design, 2016.

[251] 1. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D. Franzon,
M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal, FreePDK: An open-source
variation-aware design kit, in International Conference on Microelectronic Systems
Education (MSE), pp. 173174, IEEE, 2007.

[252] M. Sung, S. A. Jang, H. Lee, Y. H. Ji, J. I. Kang, T. O. Jung, T. H. Ahn, Y. I. Son, H. C.
Kim, S. W. Lee, S. M. Lee, J. H. Lee, S. B. Baek, E. H. Doh, H. J. Cho, T. Y. Jang, I. S.
Jang, J. H. Han, K. B. Ko, Y. J. Lee, S. B. Shin, J. S. Yu, S. H. Cho, J. H. Han, D. K.
Kang, J. Kim, J. S. Lee, K. D. Ban, S. J. Yeom, H. W. Nam, D. K. Lee, M. M. Jeong,
B. Kwak, J. Park, K. Choi, S. K. Park, N. J. Kwak, and S. J. Hong, Gate-first
high-k/metal gate dram technology for low power and high performance products, in
2015 IEEE International Electron Devices Meeting (IEDM), pp. 26.6.1-26.6.4, Dec,
2015.

[253] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, Low-Cost
Inter-Linked Subarrays (LISA): Enabling fast inter-subarray data movement in DRAM,

in International Symposium on High Performance Computer Architecture (HPCA),
pp- 568-580, IEEE, mar, 2016.

[254] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, 1. Guyon,
U. Muller, E. Sackinger, P. Simard, and V. Vapnik, Comparison of learning algorithms
for handwritten digit recognition, in International conference on artificial neural
networks, vol. 60, pp. 53—60, Perth, Australia, 1995.

[255] Y. LeCun, C. Cortes, and C. J. Burges, Mnist handwritten digit database, AT&T Labs 2
(2010).

[256] “Efficient, reusable RNNs and LSTMs for torch.”
https://github.com/jcjohnson/torch-rnn.

172

