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Predictive Analytics, Chemnitz University of Technology, Germany

Abstract

Comprehensive datasets used for modeling endeavours in syl-
logistic reasoning research usually contain only a single con-
clusion per task for each subject. However, this means that
no information about the other conclusions is provided, pre-
venting the distinction between conclusions that were rejected,
conclusions deemed to be valid but not the preferred conclu-
sion and conclusions that were not considered at all. In this
work, we present a multiple choice dataset containing all con-
clusions that participants considers valid. The data is com-
pared to datasets with other response designs, and an extensive
evaluation is performed to assess the impact of the response
design on the predictive performance of cognitive models. Fi-
nally, our results are discussed and put into perspective.

Keywords: Syllogistic reasoning; Response design; Cognitive
modeling; Jaccard coefficient

Introduction
Syllogistic reasoning, as one of the oldest domains of hu-
man reasoning research, is actively researched for over a cen-
tury (e.g., Störring, 1908). Traditionally, syllogistic problems
consist of two quantified statements (premises) with the first-
order logic quantifiers All, Some, No, and Some not, which
interrelate three terms as shown in the following example:

All A are B.
Some B are C.

What, if anything, follows?

The arrangement of the terms defines the so-called fig-
ure of a syllogism, where each syllogism is one of four fig-
ures. Throughout this paper, we will use the notation from
Khemlani and Johnson-Laird (2012), which is shown in the
table below:

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

For the sake of space, quantifiers are often abbreviated by
letters (All: A, No: E, Some: I and Some not: O). Combined
with the figure, the syllogism in the example can be abbre-
viated with AI1. The conclusions can be abbreviated in a
similar fashion, using the quantifier and the direction (ac or
ca). For example, All A are C would be abbreviated by Aac.
In case that no valid conclusion exists, it is often abbreviated
by NVC.

A comprehensive meta-analysis by Khemlani and Johnson-
Laird (2012) describes twelve theories and models for the do-
main. In an extensive analysis, seven of the theories are tested
with respect to their ability to account for the aggregated hu-
man response patterns, concluding that the models offer dif-
ferent strengths and drawbacks. Later, Riesterer, Brand, and
Ragni (2020) proposed an analysis procedure on the individ-
ual level, showing that the performance differs substantially
from aggregated analyses. However, despite large amount of
effort that had gone into models and their evaluation, most of
the work is based on datasets with a common trait: Partici-
pants are asked for a single response, either by allowing them
to freely formulate their conclusion or by selecting it from a
set of possible candidates. The former approach forces sub-
jects to actively construct conclusions on their own, whereas
the latter poses the problem that subject might just evaluate
the given responses instead (e.g., Dickstein, 1978). However,
freely formulated responses, if not guided further (e.g., by us-
ing a restricted entry box only allowing to enter valid inputs;
see Dames, Klauer, & Ragni, 2022), may require additional
interpretation, potentially leading to a loss of responses (e.g.,
as miscellaneous errors; Khemlani & Johnson-Laird, 2012).
Finally, no format sheds light on the reasons why a conclu-
sion was not selected: It remains unclear if a conclusion was
either considered to be valid, but not selected due to a bias,
or rejected as invalid or even not considered at all. To our
knowledge, no comprehensive dataset exists that contains all
conclusions that a participant considers to be valid.

This paper aims to make a first step towards this by present-
ing such data for all 64 syllogisms and all 9 possible response
options. The data is then compared to datasets with both sin-
gle response formats. Furthermore, the impact that different
response formats have on the predictive performance of cog-
nitive models is investigated: An aggregate analysis is per-
formed based on the procedure used in the meta-analysis by
Khemlani and Johnson-Laird (2012), as well as an evaluation
on the individual level adopting the method used by Riesterer,
Brand, and Ragni (2020). To avoid misunderstanding, we will
briefly clarify our terminology: While sometimes referred to
as multiple choice, we use single choice for a response for-
mat, where a single response has to be selected from a set of
candidates, whereas multiple choice will be used when one
or more candidates could be selected. A format with freely
formulated responses will be referred to as free response.
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Background

In their meta-analysis, Khemlani and Johnson-Laird (2012)
compiled prediction tables for the models for all 64 syllo-
gisms, which they compared against the relevant responses
in the aggregated dataset with respect to accuracy, hits and
rejections. The evaluated models comprised the Atmosphere
Hypothesis (Woodworth & Sells, 1935), the Conversion Hy-
pothesis (Revlis, 1975), the Matching Hypothesis (Wetherick
& Gilhooly, 1995), Psychology of Proof model (PSYCOP;
Rips, 1994), Verbal Models (Polk & Newell, 1995) as well
as the Mental Model Theory (MMT; Johnson-Laird, 1975)
and the Probability Heuristics Model (PHM; Chater & Oaks-
ford, 1999; Oaksford & Chater, 2001). For our evaluations,
we relied on the tables compiled by Khemlani and Johnson-
Laird (2012) for most models. For the sake of space, we will
only introduce PHM and MMT, as they were adapted to the
multiple choice task for the individual analysis (see Riesterer,
Brand, & Ragni, 2020) while the other models remained un-
changed (for a detailed description, see Khemlani & Johnson-
Laird, 2012).

The Mental Model Theory (Johnson-Laird, 1975) is a cog-
nitive theory based on the assumption that inferential mech-
anisms operate on a mental model constructed from the
premises. It consists of several phases: Model construction,
conclusion generation and a search for counterexamples. If
a counterexample is found, the model is updated and a new
conclusion is created or, finally, NVC is concluded. For
MMT, a computational implementation exists with mRea-
soner (Khemlani & Johnson-Laird, 2013). mReasoner al-
lows to control the phases via parameters and was success-
fully used to predict individual reasoners (Riesterer, Brand,
& Ragni, 2020).

The Probability Heuristics Model (Chater & Oaksford,
1999; Oaksford & Chater, 2001) is based on a set of simple
heuristics approximating p-validity with two phases: First,
generative heuristics create a conclusion candidate. Thereby,
the min-heuristic selects the least informative quantifier (ac-
cording to the order A > I > E ≫ O). Then, probabilis-
tic entailment (p-entailment) might generate alternative con-
clusions that are entailed (e.g., All entails Some, and Some
and Some not entail each other). The attachment-heuristic
then determines the direction of the conclusion, if possible.
The second phase consists of the test-heuristics: The max-
heuristic checks the confidence in the quantifier of the conclu-
sion candidate. The lower the confidence, the higher the prob-
ability of returning NVC instead of the conclusion candidate.
The O-heuristic states that O-responses should be avoided,
possibly by returning NVC (Copeland, 2006). Note that the
prediction table by Khemlani and Johnson-Laird (2012) does
not include the test-heuristics and is therefore missing NVC
responses (Baratgin et al., 2015). PHM was also success-
fully used to predict individual reasoners (Riesterer, Brand,
& Ragni, 2020), mainly relying on the max-heuristic to rep-
resent individual reasoners.

Datasets
We acquired the data of 100 participants a web experiment on
the platform Prolific1. Each participant was presented with
one syllogism at a time and was asked to select all conclu-
sions that follow from the respective premises. The conclu-
sions were thereby presented below the premises and could
be selected/deselected by clicking on them. Participants had
to explicitly select No valid conclusion, if they thought that
nothing follows from the premises. After selecting the re-
sponses, they had to click on a Continue button in order to get
to the next task. The syllogisms were presented in a random
order and contained professions and hobbies as contents to
avoid biases. In the end, participants were asked about their
interpretation of the quantifier some, i.e., if it also includes
all.

For comparison, two openly available datasets that con-
tain all 64 syllogistic tasks were included: As a dataset with
free responses, the aggregated dataset compiled for the meta-
analysis by Khemlani and Johnson-Laird (2012) was used.
The dataset consists of the data from six experiments with
a combined number of 156 participants which were asked to
generate a single response freely for each syllogism. As some
responses could not be interpreted, the percentages for the
conclusions don’t add up for all tasks (i.e., some proportion
is lost to miscellaneous errors). For a better comparison with
the other datasets, we normalized the percentages for each
task.

For single choice, the Ragni-2016 dataset was used, which
is part of the Cognitive Computation for Behavioral Reason-
ing Analysis (CCOBRA) Framework2. The dataset was ob-
tained from a web experiment on Amazon Mechanical Turk
and contains the responses of 139 participants to all 64 syllo-
gisms. The participants were asked to select one of the nine
possible response options.

Data Analysis
We will first assess some distinctive features of the multiple
choice dataset. Afterwards, a detailed comparison between
the three datasets is presented. All materials and scripts are
publicly available on GitHub3. The response distributions of
the multiple choice dataset and the most frequently selected
patterns are shown in Figure 1. It is important to note that the
presented pattern is unweighted and shows the total number
of selections of each response, thereby weakening the rela-
tive strength of NVC which is mutually exclusive with other
conclusions.

Based on first-order logic it would be expected that if an
universal quantifier was selected, responses with the respec-
tive particular quantifier would also be chosen as it is implied.
Based on first-order logic, it would be expected that universal
quantifiers would imply the respective particular quantifiers.

1https://www.prolific.co/
2https://github.com/CognitiveComputationLab/ccobra
3https://github.com/Shadownox/cogsci-2023-multiplechoice
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Figure 1: Unweighted response patterns to all 64 syllogisms with a multiple-choice task. Darker shades of blue denote a higher
number of selections for the respective response option. Red dots denote the most frequently selected response combinations
for each syllogism (purple is used in case of a tie).

However, the pattern shows a distinct separation between uni-
versal (A and E) and particular quantifiers (I, O). Only in
23.2% of the cases where A was selected, I was also included
in the responses (and only 8.8% for E → O). While this
can be explained by a preference of universal over particular
quantifiers (e.g., the gricean maxim of quantity; Grice, 1975)
for single response formats, this explanation does not apply
for the multiple choice scenario. Instead, the general under-
standing of the quantifiers appears to be the reason: 88% of
the participants stated that Some A are B does not include the
possibility that All A are B. In line with this, I and O in fact
are chosen together (58.3% and 61.7% for I → O and O → I,
respectively), with all four particular conclusions being the
most frequent pattern for all tasks except of IA2.

Another peculiarity of the most frequent pattern is its in-
variance to the direction of the response: in most cases, both
directions (ac and ca) are selected together, even if it is logi-
cally not warranted (e.g., AA1). At first glance, this seems to
contradict the figural effect (e.g., Dickstein, 1978; Johnson-
Laird & Bara, 1984), which is well established and com-
monly replicated in syllogistic reasoning and predicts a bias
towards ac for figure 1 syllogisms and towards ca for fig-
ure 2, respectively. When quantifying the effect by using
the difference between the percentages of responses given in
line with the effect (ac for figure 1 and ca for figure 2) and
the percentage of responses in the other direction (no-effect),
it showed that the effect is significantly weaker than for the
other datasets (Differences: free response: mean = .42; sin-
gle choice: mean = .32; multiple choice: mean = .1, Mann-
Whitney-U test between single choice and multiple choice:
U = 905.0, p < 0.001). However, although the effect was
weaker than in the other datasets and not represented in
the most frequently selected response combinations, it was
still significant (Mann-Whitney-U test between effect and no-
effect: U = 835.0, p < 0.001).

In order to compare the patterns of the multiple choice
dataset to the other datasets, we discounted each selected
response given by the participants by the total number of
selected responses for the task. This step is important to
make the NVC response comparable: While a non-NVC re-
sponse for single choice and free responses gets potentially

distributed across all other options (thereby relatively weak-
ening specific non-NVC responses), this would not occur for
multiple choice. Additionally, it allows to directly interpret
percentages and compare them between the datasets. To de-
termine responses that can be considered reliable, we apply
the same criterion as used by Khemlani and Johnson-Laird
(2012): By using a binomial test against the guessing prob-
ability of 1/9, a threshold of 16% can be used. Due to the
discounting, it also can be applied to the multiple choice data.
Figure 2 shows the patterns for all three datasets with reliable
responses and the most frequent answer (MFA) highlighted.
The mean number of reliable responses is thereby similar be-
tween all datasets with 2.05 for free responses, 1.95 for single
choice and 2.27 for multiple choice.

On the first glance, the patterns of the datasets seem to be
rather similar. To gain a deeper insight into the similarities,
we compare all datasets pairwise relying on several metrics:
First, we calculate the root mean squared error (RMSE) be-
tween the normalized patterns of the respective datasets. Sec-
ond, we compare the congruency of the most-frequent answer
patterns (i.e., the percentage of matches between both MFA-
patterns). Finally, we calculate the Jaccard coefficient, which
is defined as follows (Aggarwal, 2016):

jaccard(A,B) = |A∩B|
|A∪B|

As a set-based metric, we argue that the Jaccard coefficient
is well-suited for comparing selected responses. As partici-
pants only selected responses, but did not actively reject each
other option (especially in the single choice or free response
datasets), the interpretation of the Jaccard coefficient is intu-
itive: A value of 0.75 means that out of the reliable selected
responses in both datasets, 75% are reliable in both datasets,
while the other 25% are only present in one of the datasets.
The number of reliable responses is sparse, making it benefi-
cial to exclude other responses from the equation, as the score
would be skewed by a high (but rather meaningless) congru-
ency based on the large set of not chosen responses.

Table 1 shows the results for the four metrics for all pairs
out of the three datasets. Based on the RMSE, it can be seen
that the datasets are overall comparable, which also trans-
fers to the most frequent answer patterns. With the Jaccards
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Figure 2: Comparison of the response patterns between multiple choice (normalized), single choice and free response data.
Red dots denote the responses that are considered reliable (account for >= 16% of responses), the most frequent response is
highlighted with a black border.

coefficient, the differences become more visible, especially
between the free response and the multiple choice dataset.
Single choice thereby seems to be a middle ground between
the other response types, which is not surprising as it shares
traits with both types. However, the values of the Jaccard
coefficient still show that the majority of reliable responses
are transferable across datasets. The results illustrate the ad-
vantage of the Jaccard coefficient over the RMSE (or simi-
lar metrics that compare datasets directly) for this analysis:
While the RMSE indicates that no substantial difference ex-
ists across the whole distribution, the set-based Jaccard coef-
ficient provides a better resolution for the points of interest.

The overall high similarity between the datasets allows for
the assumption that most findings and effects found in exper-
iments asking for single responses can still be expected to be
transferable to multiple choice. In the following section, this
will be investigated by an evaluation of the predictive perfor-
mance of cognitive models.

Model Evaluation
Aggregate Level
For the aggregate analyis, the general evaluation approach by
Khemlani and Johnson-Laird (2012) was adopted. The au-
thors compiled prediction tables for the seven cognitive mod-
els introduced before and evaluated the predictions in terms
of accuracy, the percentage of hits and the percentage of cor-
rect rejections based on the set of reliable responses on each
dataset of the meta-analysis. For our analysis, we also rely on

Table 1: Jaccard coefficient, root mean squared error (RMSE)
and congruency between the most-frequent-answer patterns
from a pairwise comparison between response formats.

Response Type Jaccard RMSE MFA-Congruency
Free vs Single .78 .06 .97
Free vs Multi .66 .10 .96
Single vs Multi .76 .06 .98

the compiled prediction tables. However, unlike Khemlani
and Johnson-Laird (2012), we use the resulting meta-dataset
(with the normalization described in the Data section) instead
of the separate datasets that it was compiled from. Therefore,
the exact values differ from the results reported by Khemlani
and Johnson-Laird. Additionally, we included the Jaccard
coefficient again as a metric as an alternative for accuracy,
which comes with a substantial downside that can be seen
from the following thought experiment:

Given that there are approximately two reliable responses
per task and assuming a model that selects its responses ran-
domly, the accuracy depends highly on the number of predic-
tions. For a single randomly selected response (i.e., the mini-
mum number of predictions), the expected accuracy is 71.6%,
while the accuracy when predicting all nine responses would
only achieve an accuracy of 22.2%. A model that has the
correct number of predictions, but still selects them randomly
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Table 2: Evaluation of the models ability to account for reliable responses with respect to accuracy and jaccard coefficient for
free responses, single choice and multiple choice. The best values for each metric and dataset are marked in bold.

Model Multiple Choice Single Choice Free Response
Jaccard Acc. Hits Rej. Jaccard Acc. Hits Rej. Jaccard Acc. Hits Rej.

Atmosphere .51 .82 .56 .91 .41 .8 .55 .87 .41 .79 .55 .87
Conversion .5 .83 .51 .96 .5 .86 .54 .95 .43 .84 .49 .95
Matching .43 .74 .58 .78 .28 .67 .51 .72 .34 .7 .59 .74
MMT .59 .8 .91 .78 .56 .81 .98 .77 .57 .81 .96 .77
PHM .34 .73 .47 .81 .3 .72 .49 .78 .33 .73 .53 .79
PSYCOP .39 .75 .48 .86 .43 .78 .55 .86 .39 .77 .51 .86
Verbal Models .53 .84 .64 .93 .61 .87 .73 .93 .55 .85 .67 .92

would achieve 65.4%, which is over 6% worse than predict-
ing just a single answer, which means that smaller differences
in the actual predictive capabilities could be outweighed by a
slightly lower number of predictions. The Jaccard coefficient
is not invariant of the number of responses (1/9 for a single
prediction, 2/9 if all responses are predicted), but is not in-
fluenced as substantially.

The results of the evaluation are shown in Table 2. With
respect to accuracy, hits and rejections, the results support
the findings of the analysis by Khemlani and Johnson-Laird
(2012), with Verbal Models having the best overall accuracy
with MMT being close behind. Based on the Jaccard coef-
ficient, MMT performs better on the multiple choice dataset
and the free responses, however, the differences are also slim.
PHM is one of the worst performance models, potentially suf-
fering from the missing ability to conclude NVC, which is the
most frequently chosen response overall (Riesterer, Brand,
Dames, & Ragni, 2020). The two remaining metrics, hits
and rejections, appear to be less suited for gaining further in-
sight. Mainly, there are two problems: First, they are tightly
coupled as a model predicting too many responses will likely
score higher on hits and lower on rejections. Second, overall,
the metrics are overly sensitive to the number of predicted re-
sponses. Especially the rejections highly correlate with the
number of predicted responses (Spearman’s rank correlation:
r = −.95, p < .001), therefore providing little information
beyond the number of predicted responses itself.

Individual Level
It is important to note that a mismatch between the task that
the models were designed for and the task that the partici-
pants solved exists in the analysis above. Most models were
designed to predict the outcome of a single response task,
which means that the sets of responses that the models pre-
dicted refer to a population and not a single participant (which
is especially important for NVC, which is mutually exclusive
to any other response for participants). In a similar fashion,
the interpretation for the two single response datasets is prone
to mixing up preferences for a certain response with rejec-
tions of another. To overcome this problem, we evaluate the
predictive performance of the models on the individual level.

For the evaluation, the Cognitive Computation for Behav-
ioral Reasoning Analysis (CCOBRA) framework was used,
which was built to facilitate such analyses. We performed a
coverage evaluation (see Riesterer, Brand, & Ragni, 2020),
where each model is presented with the full set of responses
for a specific participant and allowed to fit it’s parameters
accordingly. As the models used in the previous analysis
are represented by tables, they lack the ability to fit their re-
sponses to a specific participant. Riesterer, Brand, and Ragni
(2020) provided a CCOBRA-implementation of mReasoner
as well as an implementation of PHM, which we then adapted
for the multiple choice task. As mReasoner natively supports
queries for a given conclusion (Is it necessary that...?), the
predictions for multiple choice were realized by querying for
every possible conclusion (with NVC being the result in case
of rejection). For PHM, we utilized the p-entailment to obtain
multiple predictions by adding a three-valued parameter con-
trolling the selection of the prediction candidates: (1) only
use conclusion candidates from min-heuristic, (2) only use
the candidates from p-entailment and (3) use both conclu-
sion candidates. For comparison, the most-frequent answer
(MFA) is included as a baseline model, which always pre-
dicts the most common combination and thereby serves as
the upper bound for all models that do not adapt to individual
participants. Again, the Jaccard coefficient was used to com-
pare the predictions to the responses participants selected and
both models were fitted to optimize the Jaccard coefficient.
The table-based versions of PHM and MMT are included for
comparison, whereas the other models are not included as
their implementation does support neither multiple choice nor
individual predictions. Figure 3 shows the results with respect
to the Jaccard coefficient. For PHM and MMT, the results dif-
fer substantially from the aggregate results. This illustrates
the effect of the information loss happening in the aggrega-
tion process by the determination of reliable responses, which
leads to the same treatment for all responses above 16% (e.g.,
predicting a response with just above 16% has the same worth
as predicting a response that over 50% of the participants se-
lected). Furthermore, the results indicate that the fitting of
the models to individual participants worked, as both, mRea-
soner and PHM (individualized), outperform the table-based
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Figure 3: Jaccard coefficient for all models when predicting
individual multiple-choice patterns. Boxplots denote medians
and inter-quartile ranges. Mean values are denoted by the
white triangle and points show results for specific individuals.

models. However, only PHM managed to surpass the most-
frequent answer, while mReasoner remained at a level that an
(hypothetical) ideal model also could reach without consider-
ing the individual reasoners.

Discussion
Most datasets used for modeling in the domain of syllogis-
tic reasoning were conducted using a response format ask-
ing for single conclusions. Thereby, it is argued that free re-
sponses have an advantage over single choice, because they
ensure that participants create the conclusions on their own
(Dickstein, 1978). With this paper, we looked at the impact
that the response format has on the results of cognitive model,
including a neglected perspective: When asking for single
conclusions, only an incomplete picture of the participants’
understanding of the valid inferences is provided. The rea-
sons why a specific conclusion is not selected remains un-
clear. To shed light on this, we conducted a study to obtain
a dataset containing the full set of conclusions that a partic-
ipant considers to be valid and used it to re-assess state of
the art models of syllogistic reasoning. A finding indicating
that multiple choice data was indeed helpful to disentangle
certain effects was that the figural effect, while still signifi-
cant, was significantly weaker for multiple choice tasks. This
could indicate that certain effects are in fact combinations
of reasoning effects finding possible conclusions with pref-
erences that choose certain conclusions over others (despite
considering both to be valid). Overall, however, the compari-
son between the datasets showed that the main patterns (e.g.,
the most frequently selected conclusions) were robust with
respect to the response format. This also carried over to the
aggregate analysis of the cognitive models, which supported
the general results by Khemlani and Johnson-Laird (2012)
across all response formats, with MMT and Verbal Models
achieving the highest predictive performance. We further in-
troduced the Jaccard coefficient as a means to compare sets of
selected responses, which is useful for comparing the patterns

in different datasets or evaluating the predictive performance
of cognitive models. Thereby, we argued that the metric is
well-suited for the task due to its close relation to the task
formulation itself (i.e., participants do not actively reject con-
clusions, which makes it debatable if conclusions that were
not selected should be treated in the same way as the selected
conclusions). Furthermore, its values can be interpreted intu-
itively and it is less affected by the total number of predictions
in the case of model evaluation.

Finally, we performed an evaluation on the individual level
following the proposed approach by Riesterer, Brand, and
Ragni (2020) on our multiple choice data. The implemen-
tations of PHM and mReasoner (Riesterer, Brand, & Ragni,
2020) were adapted to select multiple conclusions instead of
generating a single response and then fitted to each individual
participant at a time. Thereby, mReasoner natively supported
queries for the acceptance of a given conclusion, which made
the adaption straightforward. PHM, via the p-entailment, al-
ready offered a possibility to generate an alternative set of
conclusion candidates, which we could use to predict mul-
tiple responses. The individual analysis showed a substan-
tial drop in performance compared to the aggregate results
(especially for MMT), which is in line with other results of
individual analyses (e.g., Riesterer, Brand, & Ragni, 2018)
and highlights the loss of detail that can come with aggregat-
ing. As expected, the fitting allowed PHM and mReasoner to
outperform their table-based versions. However, only PHM
surpassed the level of the most frequent answer, which repre-
sents the upper bound achievable with a model not adapting
to individual reasoners.

Conclusion

The comparison between the different response types showed
that the effects and patterns found in syllogistic reasoning re-
search are robust and not easily susceptible by different re-
sponse formats. This can allow the combination of data from
different response formats for general modeling endeavors,
especially for approaches from machine learning which usu-
ally require larger datasets. For the multiple choice dataset,
the results indicated that some frequently given responses
found in the typically used single response datasets might ac-
tually be boosted by preference effects (e.g., the figural ef-
fect). Additionally, most cognitive models were designed to
only generate single responses, thereby not modeling syllo-
gistic reasoning but rather a specific task design of syllogistic
reasoning. It is important for future research in the field of
syllogistic research to include multiple choice to the standard
repertoire for future modeling endeavours, in order to obtain
a more complete understanding of the processes behind the
human ability to deduce conclusions in syllogistic tasks. Fi-
nally, our work illustrated the impact that the model evalu-
ation procedure itself has on the results. For future model
evaluation, focusing on the individual level is key, not only to
account for the inter-individual differences, but also to stick
as close as possible to the collected data.
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