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Abstract of the Dissertation

Advanced Spectrum Sensing for Multiple

Transmitter Identification

by

Paulo Isagani Malijan Urriza

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Danijela Cabric, Chair

The exponential growth in demand for mobile data has led to significant research

efforts aimed at more efficient methods of utilizing the scarce RF spectrum re-

source. One potential solution to this scarcity problem is Cognitive Radio (CR)

which involves dynamic spectrum access in which a set of unlicensed users oc-

cupy spectrum holes without causing significant degradation of performance to

the incumbent users. A key enabling technology for CR networks is accurate

spectrum sensing which aims to learn the radio environment in order to adapt

the CR transmission. Traditional spectrum sensing techniques have mainly fo-

cused on determining only the presence or absence of a licensed user. Recent

work in the past few years have shown however that more detailed knowledge

pertaining to radio-scene analysis can be used to improve the performance of CR

networks. The more the secondary user knows about the active licensed users, the

better it can adapt its transmission strategies. In this work, we put forward the

concept of advance spectrum sensing which takes a multi-dimensional approach

to radio-scene analysis that estimates various parameters of the active transmit-

ters through sensing, localization and tracking, modulation classification, PHY

parameter estimation, and MAC-layer classification.

In this work we investigate the elements of such an advance spectrum sensing
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system. Firstly, we will look at the problem of conventional spectrum sensing,

or detecting the presence or absence of transmitting Primary Users. In partic-

ular, we study how detection performance could be improved through the use

of cyclostationary feature detection and how it could be made robust to fading,

noise uncertainty, and co-channel interferers through the optimal use of multiple

sensors. Second, we attack the problem of modulation classification which we

argue is a critical piece of information for future cognitive radio systems. We

present a new type of pattern classification algorithm based on the concept of

sampled distribution distance which offers a low computational complexity alter-

native to maximum-likelihood based classification. Through our extensive anal-

ysis, we have derived the optimal form of this type of classifier and applied it to

the modulation classification problem. Finally, we propose a system of MAC-layer

classification based on 4th-order cumulants which distinguishes between TDMA,

OFDMA, CDMA and contention-based schemes. In addition, it is also able to

jointly perform modulation classification with channel access method. The anal-

ysis of the statistics of the 4th-order cumulant used in our work also offers large

potential for applications in different areas including modulation classification,

channel estimation, and estimation of number of users.
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CHAPTER 1

Introduction

There is an ever increasing demand for the Radio Frequency (RF) spectrum re-

source as a result of higher data rate applications brought about by transitioning

from voice-only to multimedia communications. This trend is further amplified

by the explosive growth of mobile devices as a result of both their decreasing cost

as well as their further integration into our society. However, the RF spectrum

resource is naturally limited due to both physics as well as the current state of

radio technology. This presents an unsustainable situation for future wireless sys-

tems. This problem has led to significant research effort which has been aimed at

more efficient methods of utilizing this scarce resource.

One potential solution to the scarcity problem is Cognitive Radio (CR). A pop-

ular paradigm for CR involves non-interfering dynamic spectrum access, where a

set of unlicensed users occupy spectrum holes left by licensed users without caus-

ing significant degradation of performance to the incumbent users. By knowing as

much information as possible about nearby licensed users, the probability of find-

ing these opportunities in an accurate and timely manner and subsequently using

it with minimal interference to the primary user, can be significantly improved.

Traditional spectrum sensing techniques have mainly focused on determining only

the presence or absence of a licensed user. In this dissertation, we put forward the

concept of advance spectrum sensing which takes a multi-dimensional approach

to radio-scene analysis that involves creating an up-to-date “map” of active li-

censed users, including additional information about their geographical location,

1



RF transmission parameters, and higher-layer parameters. Our main goal has

been to develop accurate yet energy efficient algorithms and architectures to per-

form RF transmit parameter estimation, modulation classification and MAC-layer

classification for use in CR networks.

1.1 Cognitive Radio

In order to address the RF spectrum scarcity problem, innovative techniques must

be developed with the aim of providing new and more efficient ways of utilizing

the available spectrum. In several spectrum measurement campaigns [Yan05,

SCZ10,WRP09,MTM06], it has been shown that the fixed allocation of spectrum

currenty employed by the vast majority of the world’s regulatory agencies (such

as that of the FCC, shown graphically in Fig. 1.1) is very inefficient and lead to

most channels being underutilized. One such result, from measurements done in

Chicago, IL, is presented in Fig. 1.2. We observe that a significant portion of the

spectrum allocated to licensed services show little to no usage over time, with all

observed channels being used < 25% of the time on the average.

Cognitive Radio or CR is a concept that has shown a lot of promise and

attracted a lot of interest in recent years. The main idea behind CR networks

(CRN) is the exploitation of existing spectrum holes. These spectrum holes are

opportunities for a secondary user (SU), either temporally, spectrally, or more

recently spatially reuse resources intended for a licensed or primary user (PU).

Through CR, the spectrum utilization can be improved significantly and the false

scarcity caused by fixed allocation can potentially be eliminated.

While there is no agreement yet on what a cognitive radio specifically entails,

the concept has evolved recently to include various meanings in several contexts

[Nee06, Sec. 1.1.1]. In this dissertation, we will use the definition adopted by

Federal Communications Commission (FCC): “Cognitive radio: A radio or system

2
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This chart is a graphic single-point-in-time portrayal of the Table of Frequency Allocations used by the
FCC and NTIA. As such, it does not completely reflect all aspects, i.e., footnotes and recent changes
made to the Table of Frequency Allocations. Therefore, for complete information, users should consult the
Table to determine the current status of U.S. allocations.

Figure 1.1: The NTIA’s frequency allocation chart showing the fixed allocation

of the radio spectrum.
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Figure 1.2: Average spectrum utilization taken over multiple locations [MTM06]
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that senses its operational electromagnetic environment and can dynamically and

autonomously adjust its radio operating parameters to modify system operation,

such as maximize throughput, mitigate interference, facilitate interoperability,

access secondary markets.” [Fed05]. Therefore by this definition, CRs must have

the ability to exploit locally unused spectrum with the aim of improving spectral

efficiency.

Two major tasks of a CRs become apparent when we apply this definition. A

CR must be able to explore and exploit a spectrum hole or opportunity [20111a].

Spectrum exploration is being able to identify any available and free spectrum

that is unused by the licensed user. This involves spectrum sensing techniques in

its various forms (see [YA09] and references therein). Exploiting the spectrum hole

on the other hand involves, among others, adapting the transmit waveform and

other parameters in order to access the available resource while minimizing inter-

ference to the PU. The basic outline of how a cognitive radio system is employed

to dynamically access spectrum is illustrated in Fig. 1.3. In general we define

the transmitters that are licensed to access the specified spectrum as Primary

Users (PU). On the other hand, our focus will be on another set of radios that

attempt to access the same spectrum opportunistically. We will refer to these ra-

dios as Secondary Users (SU) throughout this manuscript. These SUs explore the

spectrum environment using a spectrum sensing system and subsequently modify

their access strategy to enable transmission with minimal interference to the PU

network.

In this dissertation we want to focus on developing practical algorithms for the

exploration phase as well as to highlight potential applications of these algorithms

in improving the exploitation phase when applicable. In the following subsection

we will present the idea of multi-dimensional spectrum sensing which is aimed

at further increasing the probability of finding opportunities for resource reuse in

contrast to traditional spectrum sensing.
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Secondary Users
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Access
Strategy

Spectrum 
Sensing

Figure 1.3: General block diagram of Cognitive Radio

1.2 Motivations and Challenges for Advanced Spectrum

Sensing

The basic function of any cognitive radio can be simplified into a cycle of explo-

ration and exploitation. This cycle was first popularly presented in the work of Mi-

tola and Maguire [MM99]. A simplified version of this cycle from Haykin [Hay05]

is illustrated in Fig. 1.4. The main focus of this dissertation is what Haykin refers

to as Radio-Scene analysis. The ultimate goal of which is to accurately quantify

the radio environment in order to find as many opportunities where the SU can

transmit.

The area of radio-scene analysis has grown over the years to become a very

expansive and complicated subject. Many techniques aimed at observing different

aspects of the RF environment have been proposed. The most basic of these, and

clearly the most important for CR, is detection of spectrum occupancy. Research

on this area has mainly focused on the development of techniques that detect the

presence or absence of PU signals with high reliability, specified by the detection
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Figure 1.4: Cognitive Cycle [Hay05]
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probability and false alarm probability, using the minimum possible number of

observations, to minimize the detection delay.

In this dissertation, we put forward the idea of an Advanced Spectrum Sensing

System which extends the radio-scene analysis into a multi-dimensional problem.

Conventionally, spectrum sensing is done as a binary hypothesis test. This means

that either of two hypotheses are true. Either the null hypothesis: the primary

user is absent or the alternative hypothesis, the primary user is present. There is

however, a drawback to this approach because it limits the opportunities available

for dynamic spectrum access.

If for example, we had access to the following additional information about

the primary user we can adopt more sophisticated methods.

1. Location: If we knew where the primary users are located, we can use

some form of spatially-aware power control, reducing transmit power to

avoid interference.

2. Modulation Format: If we knew the modulation type being used by the

transmitter we can choose an access method that minimizes the interference

to these users or underlay access by performing interference cancellation

techniques

3. RF Transmit Parameters: If we knew the RF parameters such as the

transmit power, and where the signal is located in frequency then we can

identify the standards being used and choose our access strategy accordingly.

4. MAC Scheme: If we know which multiple access scheme the primary

network is using, be it TDMA, CSMA, or OFDMA, then we can tailor our

access strategy accordingly.

Knowing this multi-dimensional information about the primary network has

been the main goal of this dissertation.

8



Advance Spectrum Sensing for cognitive radio is particularly challenging be-

cause of the following challenges:

1. Non-cooperative Primary Network: In CR applications the primary

network is typically non-cooperative. This means that there is no exchange

of information between primary and secondary networks. This requires the

SU network to utilize blind estimation and classification techniques that only

require passive information that could be measured without cooperation

from the PU network.

2. Time Varying Environment: As with all wireless applications our system

also need to deal with the rapidly varying radio environment. This motivates

us to devolop techniques that work with low computational complexity in

real time. We need to have fast converging algorithms because there is

an inherent tradeoff between the amount of time we spend observing the

spectrum and our throughput. Our algorithms also need to be robust to

very low SNR and interference.

3. Large Variety of Systems: There is a large variety of systems that follow

very different standards and protocols. We need approaches that generalize

for a large number of possible standards. In the hypothetical case of a hostile

environment, the methods can possibly follow non-standardized protocols.

An example of such a challenging scenario where these issues are present is

illustrated in Fig. 1.5. This application is for opportunistic spectrum access in

the TV band. The primary users in this band include TV broadcasts and low

power devices such as wireless microphones that use analog FM. On the other

hand, secondary users such as 802.22 [20111b] compliant systems may now utilize

this spectrum. In the future, other ad hoc networks that want to utilize this band

will need advanced spectrum sensing in order to guarantee non-interference to the

primary network as well as coexistence with other secondary networks.
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Figure 1.5: Coexistence Scenario in TV Whitespace

Although initially applied to single sensor scenario, it has been shown that co-

operative versions of spectrum sensing algorithms provide significantly improved

detection performance. Detailed discussions of such algorithms including the ac-

companying implementation challenges are given in [YA09,GS08,CMB04]. How-

ever, according to [GS08], significant gains can be made by shifting from a reactive

spectrum sensing paradigm to a proactive one. In the first case, CRs start to sense

the spectrum only when it has some data to transmit and determine occupancy

at that given time only; in the second case, CRs maintain an up-to-date “map”

or database of PU activity, so as to improve the spectrum sensing responsiveness.

This idea of a PU activity database can further be extended by monitoring

not only band occupancy information but also characterizing PUs along multiple

dimensions including transmission parameters , modulation, MAC layer scheme,

and location, to name a few. This idea of multi-dimensional spectrum awareness

is described in [YA09] as a means of finding other venues for resource reuse or

10



increasing the probability of finding an existing opportunity in the most efficient

and timely manner. Examples of these dimensions are multiple codes, angle-of-

arrival (AoA), and traffic patterns. In [MS09], the importance of a spatial Re-

ceived Signal Strength (RSS) profile, and consequently location information was

presented. This advanced spatio-temporal spectrum sensing, that is both proac-

tive and multi-dimensional has been seen as the next evolution of this technology,

aimed at truly cognitive networks.

One aspect of the radio environment that can potentially be utilized by a

cognitive radio network (CRN) is the transmission parameters employed by both

primary users (PU) as well as competing secondary users (SU). As will be shown

in succeeding sections, algorithms that address this issue have received very little

attention in the literature. This is especially true when it comes to investigat-

ing practical implementation issues in scenarios where there are co-channel or

overlapping primary users.

Information about PU location will also enable several key capabilities in CR

networks including improved spatio-temporal sensing, intelligent location-aware

routing, as well as aiding spectrum policy enforcement. A good example of this

is the concept of spatial reuse illustrated in Fig. 1.6. By knowing the location of

nearby PUs, a secondary network can theoretically perform power control mech-

anisms as described in [CGG10] in order to reuse spectrum even when a PU is

actively transmitting. This scenario is not possible with the traditional On-Off

characterization based on simple energy detection methods.

In this dissertation we investigate practical algorithms for estimating PU trans-

mission parameters which include spectrum activity, modulation class, MAC layer

scheme. This forms the basis for a complete advance spectrum sensing system

shown in Fig. 1.7. In this block diagram the shaded blocks indicate the focus of

this dissertation. We focus on analyzing the context of the primary user activity

rather than simply reacting to their absence or presence. The approaches involved

11
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Figure 1.6: Importance of location information for spatial reuse [CGG10].
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in this system ranges from spectrum sensing to estimating PHY layer parameters

such as center frequency BW etc. and their modulation type. We also want to try

and localize the primary transmitters. On the other side of the equation, we want

also want to observe higher level characteristics such as channel access method

(what MAC scheme is being used) and there is also work on traffic prediction

and estimation. Through a mixture of algorithm development, performance eval-

uation, and actual hardware experiments we practically address the problem of

characterizing the radio environment with as much detail as possible.

1.3 Contributions of this Dissertation

Our contributions comprise of various aspects of the advanced spectrum sensing

system which was described in the previous section. These contribution summa-

rized into three main aspects.
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Multi-antenna Cyclostationarity Detection

We proposed a cyclostationary spectrum sensing method specifically targeted for a

multiple antenna receivers which is highly robust to noise uncertainty because the

detection threshold is not dependent on SNR. . We have shown that this method

has lower computational complexity than existing methods of comparable perfor-

mance because it only computes the cyclic covariance matrix once and performs

the correlation in time which eliminates the need for taking a high frequency res-

olution FFT with large number of samples. More importantly we have derived

asymptotic theoretical expressions for the probability of detection and false alarm.

Using these expressions aided with simulations we evaluated the performance of

this method under various scenarios including Rayleigh fading channel, correlated

noise environments, and in the presence of a strong interferer. The method was

shown to outperform existing techniques in all considered scenarios.

Sampled Distribution Distance Based Classification

We developed a computationally efficient method for modulation level classifica-

tion based on distribution distance functions. Specifically, we proposed to use a

metric based on Kolmogorov-Smirnov and Kuiper distances which exploits the dis-

tance properties between CDFs corresponding to different modulation levels. The

proposed method results in faster modulation level classification than the com-

monly used cumulant-based method, by reducing the number of samples needed.

It also results in lower computational complexity than the KS-GoF method, by

eliminating the need for a sorting operation and using only a limited set of test

points, instead of the entire CDF.

We have further verified the practicality of these approach by implementing

two modulation level classifiers in a practical real-time hardware platform with

radio front-ends and a DSP engine (BEE2), and evaluated their classification
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performance under realistic impairments such as quantization errors and timing

synchronization errors. Both classifiers were shown to follow similar trends with

regard to these impairments, and their hardware computational complexity were

proven to be similar.

Finally we have developed the concept of distribution distance based classifi-

cation. We also derived the optimal discriminant functions for classifying modu-

lation schemes using the sampled distribution distance. This method was shown

to provide substantial gains compared to other existing approaches. The per-

formance of this method is also shown to be close to the maximum likelihood

classifier but at significantly lower computational complexity. The same classifier

can be generalized to any classification problem where the CDF of each class is

available.

MAC Classification Based on the Fourth-Order Cumulant

Finally, we have contributed to the problem of channel access method classifi-

cation. We focus on the development of algorithms for channel access method

classification. In particular, we present a novel scheme for acquiring this informa-

tion comprising of three main stages 1) Band Segmentation, 2) Channel Access

Method and Modulation Type Classification, and finally 3) Collision detection.

We propose and evaluate a novel method of performing band-segmentation on

a wideband spectrum that is able to successfully distinguish between spectrally

overlapped signals without the need for multiple antennas as prior methods do.

This is achieved by exploiting the temporal independence in primary user activ-

ity through the Non-Negative Matrix Factorization (NNMF) method. We extend

existing fourth-order cumulant-based methods of modulation type classification

to distinguish between multiplexing methods including TDMA, OFDMA, and

CDMA. We propose a novel method based on the sample variance of the cumu-

lant estimator in order to identify contention-based systems. Through analysis
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and simulations we show that our scheme is capable of distinguishing between

TDMA, OFDMA, CDMA, and contention-based channel access methods with

a high probability. Further, our proposed method is capable of identifying the

modulation type of non-contention-based primary users with high accuracy.

1.4 Organization of this Dissertation

The rest of the dissertation is organized as follows. In Chapter 2 we investigate

different techniques that exploit multiple antennas for cyclostationary spectrum

sensing. We also discuss a novel method which we have proposed which is aimed

at improving the use of multiple antennas in this spectrum sensing problem. The

modulation classification approach based on sampled distribution distance is dis-

cussed in Chapter 3. In Chapter 4 we present a MAC-layer scheme classification

algorithm based on the normalized fourth order cumulant. Finally, we conclude

this dissertation in Chapter 5.
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CHAPTER 2

Multi-antenna Cyclostationary Spectrum

Sensing

Advanced spectrum sensing aims to acquire more information about the primary

user beyond their spectrum activity (e.g. whether the transmitter is idle or oc-

cupied). However, the traditional spectrum sensing problem still plays a very

important role in such a system. Transmitter activity is a key prerequisite knowl-

edge before we can estimate detailed knowledge about the Primary Users. In

this chapter we look at various spectrum sensing algorithms existing in the liter-

ature. In particular, we highlight the importance of spectrum sensing based on

the cyclostationary features embedded in the primary user signal. Specifically, we

will address an important problem that has not been tackled extensively in the

literature; how to efficiently utilize multiple receive antennas in the detection of

cyclostationary features. In this chapter we investigate different techniques that

exploit multiple antennas for cyclostationary spectrum sensing. We also discuss

a novel method which we have proposed which is aimed at improving the use

of multiple antennas in this spectrum sensing problem. Finally, we compare the

performance of these various different techniques and discuss the advantages and

disadvantages of each.
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2.1 Cyclostationary Spectrum Sensing

Spectrum sensing is a key step in effectively realizing cognitive radio networks

(CRN). In the CR access paradigm, secondary users (SU) in a CRN are allowed

to access spectrum reserved for use by licensed or primary users (PU) given that 1)

those resources are either currently unoccupied or 2) interference to the primary

network is kept under an acceptable level [Hay05]. The main goal of spectrum

sensing is to accurately and efficiently detect the presence or absence of a PU in

a given band, usually under the constraint of a low signal-to-noise ratio (SNR).

Several spectrum sensing methods have been proposed in the literature [YA09].

In general, these methods can be categorized as being based on either energy de-

tection, cyclic correlation (cyclostationarity), or matched filtering. Energy detec-

tion requires the least prior knowledge about the signal, while matched filtering

requires the most. Cyclic correlation-based techniques [LKK10, CGD07] lie in

between, requiring either prior knowledge or accurate estimation of the cyclic fre-

quencies present in the PU transmission signal. Although energy detection offers

the lowest computational complexity and is the optimal blind detector in the pres-

ence of i.i.d. noise, its performance relies on accurate knowledge of noise power

due to the SNR wall phenomenon [TS08]. The detection performance of energy

detection also degrades in a temporally correlated noise environment.

In some scenarios, such as very low SNR regime or when signal selectivity is

important, cyclic correlation-based methods offer several advantages over other

spectrum sensing approaches. Unlike energy detection, they do not suffer from

the SNR wall issue. These methods are also resilient to temporally correlated

noise and enable signal-selective spectrum sensing where the presence of signals-

of-interest (SOI) can be detected based on their unique cyclic features due to their

modulation type, symbol rate, and carrier frequency [GBC87].

One issue encountered with all spectrum sensing methods is the effect of fading
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in the channel between the PU and SU. There is a decrease in the probability

of detection whenever the channel is in a deep fade. This can be alleviated by

exploiting spatial diversity either through the use of cooperative spectrum sensing

[QCP08] or, if available, the use of multiple antennas. As a result, spectrum

sensing algorithms exploiting multiple antennas have received considerable interest

[TNG10,Tug12].

Algorithms that leverage the cyclostationarity property have been applied in

the past for multiple antenna receivers. In [SA08], the sum of the spectral correla-

tion for each antenna was proposed. Such methods are considered post-combining

techniques since knowledge of the channel state information (CSI) is not exploited.

On the other hand, pre-combining techniques which utilize an estimate of the CSI

to varying degrees have been shown to have better performance in a random chan-

nel. A method based on equal gain combining (EGC) was investigated in [CXH08]

which uses phase offset estimates to align the raw samples from each antenna. The

aligned signals are then summed before finding the spectral correlation. Finally,

a blind maximal ratio combining (MRC) scheme was evaluated in [JLZ10] which

utilized the singular value decomposition (SVD) to find an estimate of the CSI

and applied MRC on the raw samples.

Several issues need to be addressed with these existing schemes. First, none

of these works provide an analytical method for setting the decision threshold for

fixed probability of false alarm (PFA) since that distribution of the test statistic

is not known. Such theoretical expressions are useful because they could be used

for further analytical study of these methods from a system level perspective.

For example, work such as [GPC11] utilizes the expressions of PD and PFA as

a function of sensing time and SNR to analyze the throughput of CR networks.

In addition, these expressions allow the detection threshold to be determined

optimally without any prior training of the detector. Second, the threshlold used

in prior multi-antenna cyclostationary detectors are dependent on the SNR which
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means that a very accurate noise estimation is required to get the desired PFA.

A detector is thus very likely to be operating at an incorrect point along the

ROC curve because of inaccurate SNR estimate. Third, the spectral correlation

function used in all these prior methods require high computational complexity,

making them hard to implement in practice. Finally, we also want to improve the

detection performance.

These issues have motivated us to propose a spectrum sensing algorithm based

on the cyclic correlation significance test (CCST) designed for use in a multiple

antenna system which we refer to as Eigenvalue-Based Cyclostationary Spectrum

Sensing or EV-CSS. The CCST was used in [SG90] to perform cyclostationary

source enumeration using an information-theoretic criterion. However, the use of

CCST in the context of multiple antenna cyclostationary spectrum sensing has

not been investigated in prior work. The performance of this method in fading

channels has also not been evaluated nor compared to other spectrum sensing

schemes that exploit cyclostationarity. In this work, we derive the analytical

asymptotic performance of this detection method in both AWGN and flat-fading

channels. These expressions are then verified through simulations. The results

also enable us to investigate sensing performance in a spatially correlated noise

environment.

Our main contributions to multi-antenna cyclostationary spectrum sensing are

as follows:

1. Proposed a cyclostationary spectrum sensing method specifically targeted

for a multiple antenna receivers which is highly robust to noise uncertainty

because the detection threshold is not dependent on SNR.

2. Showed that this method has lower computational complexity than existing

methods of comparable performance because it only computes the cyclic

covariance matrix once and performs the correlation in time which eliminates
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the need for taking a high frequency resolution FFT with large number of

samples.

3. Derived asymptotic theoretical expressions for the probability of detection

and false alarm.

4. Evaluated the performance of this method under various scenarios including

Rayleigh fading channel, correlated noise environments, and in the presence

of a strong interferer. The method is shown to outperform existing tech-

niques in all considered scenarios.

The rest of this chapter is organized as follows. The system model is introduced

in Section 2.2 including a brief discussion of cyclostationarity. The proposed

method is detailed in Section 2.3 including analysis of its detection performance

under both AWGN and flat fading. Numerical results for various scenarios are

presented in Section 4.4.3. Finally, we offer some conclusions in Section 2.5.

Notation: |A| and tr(A) denote the determinant and trace of square matrix

A respectively. Bij denotes the (i, j)th element of the matrix B and I is the

identity matrix. The superscripts ∗ and H denote the complex conjugate and

the Hermitian (conjugate transpose) operations, respectively. Given two random

vectors x and y, we define cov(x,y) , E{xyH} − E{x}E{yH}. Given column

vector x, diag{x} denotes a square matrix with elements of x along its main

diagonal and zeros everywhere else. We will use the notation Nc(m,Σ) to denote

a proper (circularly symmetric) complex multivariate Gaussian distribution with

mean m and covariance Σ. Finally we use the notation y = O(g(x)) to indicate

that there exists some finite real number b > 0 such that limx→∞ |y/g(x)| ≤ b.
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2.2 Background and System Model

2.2.1 Background on Cyclostationarity

A signal is considered to be cyclostationary if its statistical properties are periodic.

Equivalently, if the cyclic autocorrelation function, defined as:

Rα
x(τ) = lim

∆t→∞

1

∆t

∫ ∆t
2

−∆t
2

x
(
t+

τ

2

)
x∗
(
t− τ

2

)
e−j2παtdt, (2.1)

is non-zero with some τ for at least one α 6= 0, the signal is said to exhibit

second-order cyclostationary property with α referred to as the cyclic frequency.

For example, in BPSK signals, cyclostationary features exist at α = k
Tb

and

at α = ±2fc + k
Tb

, where Tb is the symbol period, fc is the carrier frequency,

and k ∈ Z. Detailed analysis of the cyclostationary features for various digital

modulations can be found in [GBC87].

2.2.2 Signal Model and Assumptions

We adopt a similar signal model as that used in [JLZ10]. The spectrum sensing

problem is to decide between two hypotheses: H0, where the signal is absent; and

H1, where it is present. The received signal, sampled at a rate of 1/Ts, forms M

streams coming from each antenna with N samples each. This received signal is

defined as x(n) , [x1(n), x2(n), . . . , xM(n)]T , n ∈ Z, 1 ≤ n ≤ N , where xi(n) is

the signal coming from the ith antenna. The received signal is the superposition

of P signal sources (including both the SOI and any interferer) and receiver noise.

The two hypotheses can therefore be expressed in vector form as

x (n) =


η(n), H0,∑P

j=1 hjsj (n) + η (n) , H1,

(2.2)

where η(n) is the receiver noise denoted by η(n) , [η1(n), η2(n), . . . , ηM(n)]T ,

where every ηi is a purely stationary Gaussian random process (Rα
η (τ) = 0 for
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any α 6= 0) with variance of σ2
η. For simplicity, we restrict that only one PU

transmission, s1(n), is considered a SOI and that it is cyclostationary with a

unique cyclic frequency α = α0. The channel experienced by each of the P

sources is given by hj , [hj1, hj2, . . . , hjM ]T , where hjk is the channel between the

jth source and the kth antenna. We assume that the channel, although unknown

to the receiver, stays constant over the spectrum sensing interval. Subsequently,

we define the average signal-to-noise ratio to be

SNR ,E
{
hHh

}
/E
{
ηHη

}
. (2.3)

2.2.3 Spatially Correlated Noise Environments

In the case of spatially correlated noise, which can happen when there is sub-

stantial ambient noise in the band, following [SS97], we model η(n) to have a

covariance matrix given by Rηη = cov{η,η} where

{Rηη}ij = E{ηHi ηj} =


σ2
η, i = j

σ2
ηρ
|i−j|
s , i 6= j.

(2.4)

Thus with ρs = 0, the covariance matrix simplifies to σ2
ηI giving spatially white

noise, while ρs = 1 gives fully correlated noise over all antennas. Varying degrees

of partial correlation can be achieved by setting 0 < ρs < 1.

2.3 Proposed Detection Statistic

In this section, we describe the proposed method. We focus on a single cycle fre-

quency detection, but this approach could be generalized to multi-cycle detection.

2.3.1 Canonical Correlation Analysis

The key idea of the proposed detection test statistic is based on the theory of

canonical correlation analysis and the concept of common factors. A common
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factor is a signal component that is common to two data sets and can be estimated

from either of these data sets by a linear transformation. Since common factors are

defined to be independent of each other, the number of common factors is equal

to the rank of the cross-correlation matrix of the two data sets. As discussed

in [Law59], and subsequently utilized in [SG90], the number of common factors

between two M × 1 time-series vectors x(n) and y(n) is the rank of the matrix

R = R−1
xxRxyR−1

yyRyx, (2.5)

where we define Rxy , cov(x,y) given the two random vectors x and y.

Canonical analysis (see [And03] for details) aims to find the relationships

between two groups of variables in a data set. Given two random vectors x

and y, of length m and n respectively, canonical analysis aims to find at most

min{m,n} pairs of (ui,vi) such that the correlation between the linear combina-

tions, Ui , uHi x and Vi , vHi y, is maximized. An additional restriction is that Ui

and Vi must be uncorrelated with Uj and Vj for i 6= j. These linear combinations

are referred to as canonical variates. The canonical variates are sorted in decreas-

ing order of correlation such that the first canonical variates, U1 and V1, have the

highest correlation. The correlation coefficient, ρi , cov(Ui, Vi)/(σUiσVi), between

Ui and Vi is referred to as the ith canonical correlation. The procedure of find-

ing ui and vi can be efficiently performed using a singular value decomposition

(SVD) and the square of the canonical correlations can be found by finding the

eigenvalues of (2.5).

In the context of cyclostationary spectrum spectrum sensing, canonical analy-

sis provides us with a very powerful tool to optimally combine the signals from M

antennas and find the canonical correlations, ρi, resulting from up to M mutually

uncorrelated cyclostationary signals. This can be accomplished using the Cyclic

Correlation Significance Test (CCST) [SG90] by performing canonical analysis on

x(n) and x(n−τ)e−j2παnTs for a given lag τ and cyclic frequency α. By finding the

24



canonical correlations between these two sets of data, we are in effect measuring

the maximum amount of cyclic correlation for all possible linear combinations of

the signals coming from the M antennas. A threshold can then be applied on the

combined ρi’s to determine the presence or absence of the PU. Additionally, some

cyclic frequencies, such as those located on α = ±2fc for BPSK, only appear in

the conjugate cyclic correlation. These can also be detected by instead performing

the canonical analysis with x∗(n− τ)e−j2παnTs .

Prior to performing the detection, we pick the lag τ that provides the best

detection performance based on the modulation format used by the PU. This

could be done off-line by performing the maximization, τ0 = arg maxτ |Rα0
s (τ)|.

2.3.2 Detection Test Statistic

The steps for computation of the proposed test statistic are summarized as follows:

1. Estimate the covariance matrix of size M ×M at lag τ0

R̂xx(τ0) =
1

N ′

N ′∑
n=0

x (n) xH (n− τ0) , (2.6)

where N ′ = N − 1− τ0.

2. Estimate the cyclic correlation matrix using a cyclic cross-correlogram at

cyclic frequency α0 and lag τ0, defined as

R̂α0
xx(τ0) =

1

N ′

N ′∑
n=0

x (n) xH(n− τ0) e−j2πα0nTs . (2.7)

We will refer to the τ0-lag covariance matrices for both conventional and

cyclic autocorrelation function simply as R̂xx and R̂α0
xx from this point for

the sake of brevity, since other τ are not utilized by the test statistic. The

CCST is then calculated by finding the matrix

R̂ = R̂−1
xxR̂α0

xxR̂
−1
xx

(
R̂α0

xx

)H
. (2.8)
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3. Find the eigenvalues, µ = [µ2
1, µ

2
2, . . . , µ

2
M ]

T
, of R̂.

4. Combine eigenvalues as

λ ,
M∏
i=1

(
1− µ2

i

)
, (2.9)

and finally calculate the test statistic:

T αxx , −m lnλ. (2.10)

The factor m , N −M − 1 is used to scale the test statistic so that its

distribution is independent of the number of samples used [Bar38, Sec. 8].

5. Decision: T αxx ≷
H1
H0
γ, where γ > 0 is a threshold chosen to achieve constant

false alarm rate (CFAR) which will be discussed in the following section.

Note that all xH(n) can be replaced with xT (n) if the conjugate cyclic cor-

relation matrix is needed. We refer to the version of the test statistic that uses

xH(n) as the non-conjugate cyclic correlation significance test (NC-CCST) while

the other is the conjugate cyclic correlation significance test (C-CCST). For the

test statistic of each, we will use the notations T αxx and T αxx∗ respectively.

2.3.3 Distribution of Test Statistic Under H0 and Constant False-

Alarm Rate

Two key parameters are used to evaluate the performance of spectrum sensing

algorithms. The detection probability, PD, is the probability of being at H1 and

accurately detecting the PU (PD , Pr(T αxx > γ | H1)). On the other hand, the

false alarm probability, PFA, is the probability of being at H0 and mistakenly

detecting a PU (PFA , Pr(T αxx > γ | H0)).

It has been shown in [Bar38, Sec. 8] that the limiting distribution (N → ∞)

of the test statistic (2.10) for real and normally distributed random vectors ap-

proaches a χ2 distribution with degree-of-freedom M2. Following a similar proof,
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it can also be shown that for zero mean, complex Gaussian random variables, the

distribution is also χ2 with degree-of-freedom M2 when using the NC-CCST and

M(M + 1) for the C-CCST.

Based on the distribution of T αxx under H0, the detection threshold γ can be

set to achieve a desired PFA by satisfying∫ ∞
γ

fχ2
k

(x) dx = PFA, (2.11)

where

k =


M2 NC-CCST

M(M + 1) C-CCST

, (2.12)

and fχ2
k
(·) is the probability density function (pdf) of a χ2 random variable with

degree-of-freedom k.

These asymptotic distributions are verified to closely match simulation in

Fig. 2.1 for N = 1000. Due to the scaling factor in (2.10), the distribution is

independent of N . The empirical pdfs for two different σ2
η values are also shown

to demonstrate that the test statistic’s distribution under H0 is independent of

noise power.

As introduced in Section 2.2.3, spatially correlated noise happens whenever

Rηη is non-diagonal. This could also be interpreted as having a transformed

noise vector

η′ = Aη s.t. σηAAH = Rη′η′ , (2.13)

where A is an M × M matrix that determines the spatial correlation among

antennas. In order to see the effect of correlated noise on the distribution of T αxx
under H0, it is helpful to use an alternate interpretation of canonical correlation

as given in [SF69, Eqn. 2.1] such that

λ =
1

|R̂xx|2

∣∣∣∣∣∣ R̂xx R̂α0
xx

R̂α0H
xx R̂H

xx

∣∣∣∣∣∣, (2.14)
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Figure 2.1: Verification of the asymptotic distribution of the proposed test statistic

(C-CCST) under H0 with different number of antennas (M = {2, 3, 4}). These

plots show the accuracy of the analytical expression under N = 1000 number of

samples per antenna (SNR=-10 dB).

28



using the covariance matrix estimates given in (2.6) and (2.7) and λ as defined

in (2.9). Using (2.13), in conjunction with the multiplication property of deter-

minants, and determinants of block diagonal matrices, we find the value of λ for

correlated noise (λc) to be

λc =

∣∣∣∣∣∣∣
A 0

0 A

 R̂xx R̂α0
xx

R̂α0H
xx R̂H

xx

A 0

0 A

H
∣∣∣∣∣∣∣∣∣∣AR̂xxA

H

∣∣∣2 (2.15)

=

∣∣∣∣∣∣ R̂xx R̂α0
xx

R̂α0H
xx R̂H

xx

∣∣∣∣∣∣|R̂xx|−2 = λ. (2.16)

Therefore the test statistic under H0 is invariant to any linear transformation

on the noise measurements. As such the same expression for PFA as well as the

threshold for maintaining constant PFA is applicable even for correlated noise

environments.

2.3.4 Distribution of Test Statistic Under H1 and Probability of De-

tection

In this section we derive the distribution of the proposed test statistic, T αxx, under

H1. We begin by summarizing the prior work in statistics leading to the derivation

of the complete non-null distribution of the canonical correlations. We show how

this result is parameterized by the canonical correlation, ρ, between the two signals

being tested. In the context of cyclostationary spectrum sensing, this corresponds

to the value of the signal’s cyclic autocorrelation, Rα
ss , E

[
s(n)s∗(n)e−j2πα0nTs

]
.

We then derive the canonical correlation, ρ, resulting from Rα
ss with a given σ2

η,

N , Rηη and h. Using this canonical correlation, the complete distribution of the

test statistic under H1 is derived. Once the distribution is found, it allows us to

find the theoretical probability of detection given as:

PD = Pr(T αxx > γ | H1) = 1− FT αxx|H1 (γ) , (2.17)
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where FT αxx|H1 (·) is the cdf of the test statistic under H1 which we find in the rest

of this subsection.

Several works in the past have contributed to deriving the non-null distribution

of the test of significance of the canonical correlations originally proposed by

Bartlett [Bar47]. In [Law59], the approximate means and variances of the highest

eigenvalue were found in the asymptotic case with only one non-zero eigenvalue

(µ1 6= 0, µi = 0, i > 1 ) and normality assumption. The distribution of the actual

likelihood-ratio criteria, of the same form as (2.10), was found in [SF69]. However,

both of these results break down in the case of local alternatives, which correspond

to the cases when the distribution under H1 is very close to the null hypothesis.

In relation to the CCST, this corresponds to having a very-low SNR, which is

clearly the case of interest in the spectrum sensing problem.

Finally, the non-null distribution of the likelihood ratio criteria for covariance

matrix under local alternatives were found in [Sug73]. This criteria is used to test

the independence between two multivariate random variables by combining the

canonical correlation into a single test statistic. We use the same criteria to test

for independence between the signal of interest and a frequency shifted version

of itself. After the publication of this distribution, several works have focused on

eliminating the normality assumption [MW80, Oga07]. However, in the case of

spectrum sensing for CR, it is more likely to deal with detection under very-low

SNR. If the noise is assumed AWGN and the σ2
η ≥ σ2

s , the received signal, x(n), is

approximately normal and the results for canonical analysis assuming normality

can be used.

Following [Sug73, Thm. 4.1], the cdf of the the test statistic under local

alternatives is found to be asymptotically distributed as a non-central chi-square.

We have,

FT α
xx∗ |H1 (x) = Fχ′2(x,M(M + 1), δ2) +O(m−1), (2.18)

where Fχ′2(x, d, δ2) is the cdf of the non-central chi-square random variable with
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degree-of-freedom of d and non-centrality parameter δ2. The actual value of the

non-centrality parameter can be found as δ2 = tr(Θ2), where Θ =
√
m diag{ρ1, ρ2, . . . , ρM}.

Where, ρ2
i for 1 < i < M are the eigenvalues of (2.8) using ensemble averages.

Thus, they are solutions to the determininant equation∣∣∣R̂−1
xxR̂α0

xxR̂
−1
xxR̂α0H

xx − ρ2I
∣∣∣ = 0, (2.19)

which has M roots.

The true distribution deviates from the non-central chi-square with lower num-

ber of samples as indicated by the additionalO(m−1) term in (2.18). The complete

distribution up to the order O(m−2) can be found in [Sug73, Thm. 4.1] which for

the sake of brevity is no longer presented here. This more accurate distribution is

an expansion based on non-central chi-square random variables of higher degrees-

of-freedom with non-centrality parameters of tr(Θ4) and tr(Θ6). As such, a very

accurate expression for FT αxx|H1 (x) can be calculated with knowledge of Θ.

Let’s assume, for simplicity, that only one signal of interest s(n) has cyclic

frequency α. Therefore, ρi = 0 for i > 1. This assumption applies in almost all

cases since two communication signals will, with high probability, have different

cyclic frequencies. However, it is straightforward to extend these results to the

case of multiple signals with exactly the same α, since this simply corresponds

to additional non-zero ρi and the derivations presented here are still applicable.

Thus, these scenarios can be treated theoretically as being single signal scenarios

as long as the number of signals is less than or equal to the number of antennas

M .

The channel, h, is also assumed to be constant over one sensing period. There-

fore, the expression for the distribution derived in this subsection is for a partic-

ular channel instance. Later we extend these results for flat-fading channels by

integrating the distributions over the statistics of the fading channel.

With these assumptions, we proceed with finding the values of ρi as a func-
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tion of the channel h, the signal of interest s(n) and the noise covariance Rηη.

The received signal can be expressed as x(n) = s(n)h + η(n). Using our initial

assumption that the signal has unit power and is uncorrelated with the noise, the

asymptotic zero-lag covariance matrix then becomes

Rxx = cov (x(n),x(n)) (2.20)

= hhHE [s(n)s∗(n)] + Rηη (2.21)

= hhH + Rηη. (2.22)

On the other hand, recalling that noise has no cyclic features, the asymptotic

cyclic cross covariance matrix can be found as

Rα0
xx = cov

{
x (n) ,x(n)e−j2πα0nTs

}
(2.23)

= hhHE
[
s(n)s∗(n)e−j2πα0nTs

]
(2.24)

= hhHRα
ss. (2.25)

Subsequently the conjugate version, Rα
ss∗ , could also be used by replacing s∗(n)

with s(n).

We again use the alternate interpretation in (2.14) to find that the canonical

correlation under H1 as

ρ =
∥∥A−1h

∥∥2 |Rα
ss|/(‖A−1h‖2 + σ2

η), (2.26)

where the noise covariance matrix is Rηη = σ2
ηAAH . The details of the derivation

of (2.26) are provided in Appendix A. In the case of spatially uncorrelated noise,

we have A = IM so that the true correlation becomes

ρ = ‖h‖2 |Rα
ss|/(‖h‖

2 + σ2
η), (2.27)

which is only dependent on the 2-norm of the channel coefficient, the noise variance

σ2
η, and the cyclic correlation for the chosen α. A derivation of Rα

ss is given

in [RC11] for various modulation schemes including BPSK, MSK, and QAM.
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Figure 2.2: Verification of the asymptotic distribution of the proposed test statistic

(C-CCST) under H1 with different number of antennas (M = {2, 3, 4}). These

plots show the accuracy of the analytical expression under N = 1000 number of

samples per antenna (SNR=-10 dB).

A similar derivation can be done for C-CCST by replacing Rα
ss with Rα

ss∗ . Thus

for a single SOI scenario we have

Θ =
√
m [ρ, 0, . . . , 0] IM . (2.28)

Which when substituted to (2.18) gives us the complete distribution. In Fig. 2.2,

we show that the theoretical results are in very close agreement to the simulation.
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2.3.5 Rayleigh Fading

Now that we have the complete distribution for both the null and non-null hy-

pothesis with AWGN parameterized by a particular instance of the channel h

and the noise covariance Rηη, we can proceed to evaluate the performance of the

proposed test statistic under a flat-fading environment.

In particular we use a flat fading channel model where the channel vector, h,

remains constant during the whole frame of samples used in detection. This is de-

scribed using a channel vector for the ith frame as hi = [r1e
jθ1 , r2e

jθ2 , . . . , rMe
jθM ]T ,

where rn is a Rayleigh distributed random variable of unit variance and θn is a

uniformly distributed random variable in [0, 2π].

We first assume spatially uncorrelated noise (Rηη = σ2
ηI). Based on (2.27),

the true correlation coefficient, which eventually determines the non-centrality

parameter in (2.18) is a function of ‖h‖2 = hHh. The distribution of h can be

seen as a complex normal random vector of size M × 1 which results in ‖h‖2 ∼

χ2
2M . Combining (2.18) and (2.27), we find the new cdf of our test statistic under

Rayleigh flat-fading and spatially uncorrelated noise as:

F ∗T αxx|H1
(x) =

∫ ∞
0

Fχ′2
M2+M

(
x,
β |Rα

ss(τ)|
β + σ2

η

)
fχ2

2M
(β)dβ. (2.29)

In the case of spatially correlated noise, the random variable β = ‖A−1h‖2
=

hH
(
AAH

)−1
h becomes a generalized χ2 r.v. instead.

Although a closed form expression is very difficult to derive for such an expres-

sion due to the presence of the non-central chi-square, there is still some insight to

be gained by numerically integrating (2.29) to arrive at PD and PFA expressions

under flat fading.
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2.3.6 Comparison With Existing Approaches

The algorithms for multiple antenna spectrum sensing based on cyclostationarity

that are currently in the literature can generally be classified into two categories.

The simplest method to do this is to find the sum of the spectral correlation test

statistic estimated individually from each antenna [SA08]. We refer to this ap-

proach as SUM-MSDF (where MSDF means Modified Spectral Density Function).

The MSDF is defined as the spectral correlation function (SCF) normalized by

signal energy as discussed in [JLZ10].

Another existing approach is to sum the raw samples from each antenna and

then perform a single spectral correlation test. However, we encounter a problem

when the channel is not simply AWGN but instead has random fading. In this

case, each antenna will have some unknown phase offset and attenuation. Thus,

simply adding the raw samples non-coherently would decrease the probability of

detection. This problem is addressed in [CXH08] by first eliminating the phase

rotation of signal samples coming from each antenna. An estimate of the relative

phase difference between each antenna is calculated by finding both the cyclic

correlation of one antenna chosen as reference (auto-spectral correlation function

or auto-SCF) and the cross-cyclic correlation of every other antenna and the

reference antenna. The phase difference can then be extracted from these two.

We refer to this method in our comparisons as Equal Gain Combining (EGC).

Finally, Maximal Ratio Combining (MRC) is used in [JLZ10]. Blind channel

estimation is achieved by taking the vector corresponding to the highest singular

value of (2.7) as an estimate of the channel, ĥ. The raw samples from each antenna

are combined using

y(n) = ĥHx(n)/‖ĥ‖. (2.30)

The cyclic correlation test is then performed on the combined samples y(n). This

method is called MSDF with blind maximal ratio combining or BMRC-MSDF.
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It was shown to outperform the other techniques but at the cost of additional

complexity due to the channel estimation and combining. One issue with this

approach is the fact that the cyclic correlation is calculated twice. The first is

used to blindly estimate the channel and the second to perform the detection

on the combined samples. In contrast, the method we proposed only needs to

perform the first part of BMRC-MSDF, finding the eigenvalues, and then uses the

eigenvalues themselves to infer the presence or absence of the PU.

2.3.7 Advantages of the Proposed Method

As with other cyclostationarity-based spectrum sensing methods, one major ad-

vantage of the proposed method is its robustness to the noise uncertainty problem.

Since the noise is assumed to be stationary and does not exhibit cyclostationarity

at any α 6= 0, its cyclic correlation approaches zero as N → ∞. Thus, the effect

of any error in the noise power estimate on the detection probability can be elim-

inated by taking more samples. However, in the interest of conserving power and

arriving at a timely decision, both of which are high priority in the case of CR

applications, we aim to minimize N needed to achieve a target PD. This presents

another, more subtle, issue related to noise uncertainty.

In the non-asymptotic scenario, the methods based on the SCF (BMRC-

MSDF, EGC and SUM-MSDF) under H0 have been shown to depend on both

N and the noise power σ2
η [RC11]. Therefore, the proper detection threshold is

still a function of the noise variance. By incorrectly specifying this threshold,

the detector could be at the wrong point in the receiver operating characteristic

(ROC) curve. Equivalently, the target CFAR cannot be achieved. However, as

previously discussed and demonstrated in Fig. 2.1, the proposed test statistic is

independent of both σ2
η and N . Consequently, the threshold γ only needs to be

chosen once for a given number of antennas M to guarantee CFAR. This property

has been shown for other eigenvalue-based approaches [ZL09]. It derives from the
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fact that noise power estimation is built-in to the test statistic.

2.3.8 A Note on Complexity

We provide an approximate complexity comparison of the proposed method with

the best performing existing method (BMRC-MSDF) by taking number of com-

plex multiplications required for each under the same number of samples N . Since

the cyclic covariance operation and the SVD are common to both methods, they

are not included in the analysis.

Assuming the MSDF is calculated using an NS-point Fast Fourier Transform

(FFT) it requires in the order ofN log2(NS) multiplications. In addition, (M+1)N

multiplications are needed to perform the MRC and normalization. Finally, the

correlation in frequency uses NNS/2 multiplications. Thus, the BMRC-MSDF

approach performs in the order of N(log2(NS) + NS/2 + M + 1) multiplications

without taking into account the SVD and the cyclic covariance.

In comparison, the proposed EV-CSS method finds the conventional covariance

in addition to an eigenvalue decomposition (EVD) and the same cyclic covariance

as BMRC-MSDF, or in the order of NM2 multiplications. The operation R̂−1
xxR̂α

xx

in (2.8) is essentially the solution to a generalized linear system which can be seen

as an LU decomposition requiring approximately 2M3/3 multiplications. There-

fore, the EV-CSS approach requires in the order of NM2 +2M3/3 multiplications

in addition to the common operations with BMRC-MSDF. Since M is typically

much less than both N and NS, there is overall a significant decrease in complex-

ity with the proposed method. For example, if we take N = 4000, NS = 128, and

M = 2, (same parameters used in [JLZ10]), the BMRC-MSDF requires ∼296K

multiplications while EV-CSS needs only ∼16K multiplications, without counting

the common operations.
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2.4 Numerical Results and Discussion

In this section, simulation results are presented in order to compare the perfor-

mance of the proposed test statistic with the various existing techniques discussed

in Section 2.3.6. In addition, theoretical plots are included to further verify the

analytical expressions of the proposed method’s performance.

For these simulations we assume that only one PU has a feature at the chosen

cyclic frequency, α0. This PU is assumed to be transmitting a BPSK signal at a

carrier frequency fc = 80 KHz with symbol period of 25 µs. Each antenna of the

SU is sampled at a rate fs = 320 kHz. For all methods, the same cyclic frequency

located at α0 = 2fc is used. This cyclic feature is only present in the conjugate

cyclic autocorrelation which means the C-CCST statistic is used. This feature is

chosen because it is the highest magnitude feature among all cyclic frequencies.

The maximum cyclic autocorrelation at this cyclic frequency is observed at τ0 = 0

which is the lag we will be using for all EV-CSS simulations.

2.4.1 Threshold Selection for EV-CSS

One key advantage of the proposed EV-CSS scheme over other spectrum sensing

schemes is the simplicity of threshold selection to achieve CFAR. As discussed in

Section 2.3.3 the detection threshold, γ, is only dependent on M and not on N or

σ2
η. As a result of this, in a practical implementation of EV-CSS, the threshold

can be pre-calculated using only the χ2 distribution parameterized by the number

of antennas. As we will show in the following subsections, the theoretically deter-

mined threshold achieves the desired PFA and matches very well with simulations.

Thus, only a single threshold needs to be stored. For the following simulations we

set the CFAR to PFA = 0.1 unless otherwise stated.
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2.4.2 ROC and Detection Probability Versus SNR

We first consider M = 2 antennas in the SU. The channel between the PU and

each antenna of the SU, is modeled as a quasi-static Rayleigh fading channel with

channel h as described in Section 2.3.5. The fading is assumed to be frequency-flat

and remains constant during the whole frame of N = 1000 samples per antenna

used for detection. The noise in the antennas is assumed to be distributed as

a zero-mean circularly symmetric complex-Gaussian, η ∼ Nc(0, σ2
ηI). The PU

signal energy is assumed to be unit energy and σ2
η is chosen to achieve an average

SNR across antennas as defined in (2.3).

Using these assumptions the ROC curves under SNR = −10 dB and N = 1000

samples for the proposed method and the other cyclic-based approaches are shown

in Fig. 2.3 for comparison. Also included in this figure is the ROC curve for an

energy detection (ED) based technique designed for multiple antennas described

in [ZL09] referred to as Minimum-Maximum Eigenvalue (MME) detection. The

MME method does not utilize any cyclostationarity in the PU signal. Both the-

oretical results and Monte Carlo simulations (with 50,000 trials) are shown for

EV-CSS, while only the Monte Carlo simulations are shown for the other meth-

ods since these are already analyzed in the respective works that proposed them.

We have verified that these results agree with simulations presented in these prior

work under similar assumptions.

As seen in Fig. 2.3, there is very strong agreement in the theoretical and simu-

lation results for the proposed method. The performance of the proposed method

is clearly degraded when compared to a simple AWGN channel. However, it per-

forms better than all the other techniques. Interestingly, the method also also

outperforms BMRC-MSDF which, as discussed in Section 2.3.8, has significantly

higher computational complexity. Although this result initially appears to be

counter-intuitive, further experiments where only an AWGN channel is consid-
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Figure 2.3: Receiver Operating Characteristic (ROC) of different cyclostation-

ary-based spectrum sensing algorithms under Rayleigh flat-fading (SNR=-10 dB,

N = 1000).
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ered or if perfect channel state information (CSI) is assumed, show comparable

performance between BMRC-MSDF and EV-CSS. Therefore, we can conclude

that at very low SNR the blind channel estimates based on the SVD have large

errors and the full benefit of MRC is not achieved. In contrast, the EV-CSS is

able to fully take advantage of the information from all antennas because the

test statistic works directly with the covariance matrices instead of utilizing an

estimated CSI to pre-combine the signals.

Another reason for the performance gain is that EV-CSS works directly with

the time-domain cyclic autocorrelation of the PU signal which is particularly ef-

fective if some prior knowledge about the cyclic frequency α0 is provided. An

FFT based scheme requires the use of some form of frequency smoothing which

degrades the cyclic feature. However, BMRC-MSDF can be made more robust to

inaccurate knowledge of the cyclic features through these smoothing techniques as

described in [JLZ10]. This has no bearing in the scenarios presented in this work

since perfect knowledge of α0 is assumed and the parameters are chosen such that

the cyclic frequency is perfectly aligned with an FFT bin.

The EGC approach performs worst among all the techniques in a flat-fading

environment because at very low SNR the estimation of the phase of h has very

substantial error resulting in the test statistic being degraded in most cases. In

contrast to this SUM-MSDF is able to separately calculate the spectral correlation

of the signal on each antenna which offers significant gain after combining.

An interesting result to note here is that EV-CSS performs slightly better than

the MME technique. If there was perfect channel state information and the noise

variance was also known precisely, the energy detection method is known to be

the optimal detector. However, to deal with fading and unknown noise variance,

the MME technique does not use the measured energy as the test statistic but

instead uses the ratio of the maximum and minimum eigenvalue. This results in a

slight degradation in performance as compared to a fixed threshold on the energy.
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The effect of varying SNR on probability of detection is also shown in Fig. 2.4.

In both analysis and simulation plots for EV-CSS, γ is set directly using (2.11) in

order to maintain a CFAR of PFA = 0.1. We again observe the strong agreement

between theory and simulation for EV-CSS. In addition to this, the threshold

selection is shown to be very effective in achieving the desired theoretical PFA.

As for the other techniques, the threshold needs to be determined as a function of

SNR. This was achieved empirically in our simulations by Monte Carlo simulations

of each method under H0. Although the distributions used for H1 are designed

for local alternatives (very low SNR), the analysis still matches simulation very

accurately. This is true even at SNR ≥ 0 dB since the distribution converges to a

non-zero mean Gaussian at very high non-centrality parameter which accurately

describes the test statistic at both high N and high SNR.

2.4.3 Varying Sample Size and Varying Number of Antennas

The probability of detection over varying number of samples N ∈ [1000, 5000]

under an SNR of -10 dB and random flat-fading is shown in Fig. 2.5. In these sim-

ulations the PFA = 0.1 and the threshold is theoretically determined for EV-CSS.

For the other techniques, the CFAR threshold is determined empirically through

Monte Carlo simulations. As with varying SNR, only one threshold calculation is

done for EV-CSS due to its independence to N . Significant improvements in de-

tection probability of detection can be seen with increasing sample size. However,

these gains tend to slow down with higher number of samples.

The effect of number of antennas, M , on detection accuracy is studied in

Fig. 2.6. In this figure only the best two approaches (EV-CSS and BMRC-MSDF)

are shown to facilitate the comparison. Note that for EV-CSS, to keep the the

PFA constant at 0.1 the threshold must be set to a new value based on (2.11).

On the other hand, for BMRC-MSDF, the threshold is set for different SNR and

M . The σ2
η across all antennas is assumed to be the same and an SNR is set
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Figure 2.4: Comparison of multiple antenna cyclostationary spectrum sensing

techniques with varying SNR under Rayleigh flat-fading (M = 2, N = 1000,

PFA = 0.1, uncorrelated noise).
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Figure 2.5: Comparison of multiple antenna cyclostationary spectrum sensing

techniques with varying sample size N under Rayleigh flat-fading channel (M = 2,

N = 1000, SNR=-10 dB, PFA = 0.1, uncorrelated noise).
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Figure 2.6: The effect of the number of antennas on the detection probability

of EV-CSS (EC) and BMRC-MSDF (BM) at different values of SNR. The same

number of samples per antenna, N = 1000, is used (PFA = 0.1).

using (2.3). Since both algorithms utilize some form of blind channel estimate we

expect both to perform successively better as M is increased due to the improved

spatial diversity provided by multiple antennas due to independent fading. Similar

to previous results, the EV-CSS has better performance than BMRC-MSDF for

different values of M at low SNRs. The agreement between theory and simulation

for EV-CSS remains very strong even with higher M .
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2.4.4 Effect of Interfering Signal

In this section we investigate the performance of these spectrum sensing methods

in the presence of multiple PUs. For this scenario we regard only one PU as the

SOI and other PUs are seen as interfers. We test the robustness of these algorithms

in the presence of a strong co-channel interferer by introducing another BPSK

signal with the same symbol rate and with 30% spectral overlap. The effect of the

interferer on the detection performance is shown in Fig. 2.7 as a function of the

signal-to-interferer ratio (SIR), defined as the ratio of the interferer power to SOI

power, is varied from -20 dB to 0 dB. The noise is kept constant at σ2
η = 1. The

proposed algorithm shows the best signal selectivity among all the techniques. By

performing the correlation entirely in time domain, the proposed method is able

to suppress the interferer much better than the MSDF.

2.4.5 Spatially Correlated Noise

The effect of varying spatial correlation, ρs, is shown in Fig. 2.8. In this simulation

we again have M = 2 antennas. In the BMRC-MSDF simulations we assume

perfect knowledge of the channel with h = [1, 1]T (no fading) and therefore the

EVD-based blind channel estimation is no longer performed. This also results in

BMRC-MSDF and SUM-MSDF having very comparable performance and thus,

only one of them is shown. All methods, are degraded by increasing levels of

spatial correlation. However, we see that EV-CSS consistently performs better at

all levels of correlation. Also the performance of BMRC-MSDF degrades much

faster and has comparable performance to SUM-MSDF at very high levels of

correlation. SUM-MSDF is seen to be the most robust to spatially correlated

noise since it calculates the spectral correlation for each antenna individually.
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Figure 2.7: The effect a co-channel BPSK interfer on detection probability with

30% spectral overlap. The number of samples used for all antennas is N = 1000

and the noise level is kept constant at ση = 1 (PFA).
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Figure 2.8: The effect a increasing spatial correlation on detection probability.

A simple AWGN channel is used in these simulations to highlight the effect of

spatial correlation (N = 1000, SNR=-10 dB, PFA = 0.1).
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2.4.6 Robustness to Noise Uncertainty

Finally, we test the proposed test statistic’s robustness under noise uncertainty

and compare it with other cyclostationary-based spectrum sensing techniques.

Noise uncertatinty arises from the noise power level varying due to changes in

the amount of thermal noise, amplifier gain, calibration error, and fluctuating

interference [TS08]. The impact of the noise uncertainty is evaluated using the

Bayesian statistics approach [TS06], where a prior distribution on the noise power

is assumed. In our simulations this is achieved by having an SNR with uniform

distribution.

fSNR (x) =


1

2∆
, SNR−∆ ≤ x ≤ SNR + ∆

0, otherwise

, (2.31)

where SNR is the average SNR which we set to be -10 dB. We then calculate

the PFA and PD by averaging over fSNR (x). The results for ∆ ∈ [0, 3] dB are

presented in Fig. 2.9 where the average PFA = 0.1. As can be seen on the figure,

all methods have similar robustness to noise uncertainty. The EV-CSS method

offers performance gains over the two other methods even under very high levels

of noise uncertainty. The slight degradation in EV-CSS is caused by averaging PD

over a uniformly distributed random variable SNR where the relationship between

PD and SNR is non-linear. As such, the values below SNR have a higher effect

on the average PD resulting in a net degradation.

2.5 Summary

In this chapter, a multi-antenna cyclostationary-based spectrum sensing method

based on the cyclic correlation significance test was proposed and evaluated both

analytically and through simulations. Conventional spectrum sensing forms the

foundation of the advanced spectrum sensing system and it is crucial to solve
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Figure 2.9: The effect of noise uncertainty, ∆, on the performance of various spec-

trum sensing schemes based on cyclostationarity. Noise uncertainty is assume to

be uniformly distributed over an interval of
[
SNR−∆, SNR + ∆

]
dB. SNR=-10

dB and N = 1000 samples (spatially uncorrelated noise)
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issues relating to fading and interference. The proposed method was shown to

outperform existing multiple antenna signal-selective spectrum sensing methods

in the literature. In line with our key objectives for the advanced spectrum sensing

system, the proposed approach reduces the computational complexity of current

multi-antenna cyclostationary approaches. The computational complexity of the

test statistic was also compared with that of the best performing existing algo-

rithm that uses MRC by blindly estimating the CSI and was shown to require

substantially less multiplications. The detection threshold for CFAR was also de-

termined, both theoretically and via simulations, to be independent of the noise

variance or the number of samples. This means that a single threshold is required

for a given number of antenna, eliminating the need for separate noise estimation.

Our proposed method has also been shown to be highly robust to the effects of

noise uncertainty. Techniques such as EV-CSS allow for both accurate activity

detection as well as feature detection which is an important part of solving the

modulation classification problem which will be tackled in the next chapter.
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CHAPTER 3

Sampled Distribution Distance-Based

Classification

In this chapter we will focus on the modulation classification problem. Blind mod-

ulation classification allows us to further improve our knowledge of the behavior

of primary users. In this chapter, we review various approaches for performing

modulation classification in the context of advanced spectrum sensing. In partic-

ular, we present a novel approach to classifying the modulation order (number of

constellation points). We refer to this as modulation level classification (MLC)

method. This is a particularly difficult class of modulation classification problem

which has received minimal treatment in prior work. The approach we will discuss

in this chapter is based on concept of probability distribution distance functions.

Recent work have shown the effectiveness of this type of classification technique.

We further improve the practicality of these techniques by proposing key design

changes that achieve low computational complexity and outperforms the state of

the art methods based on cumulants and goodness-of-fit tests. These techniques

are also verified in practice using a hardware implementation using an FPGA

platform.

Later in the chapter we tackle the question of finding the optimal classifier

based on distribution distances only. This method, based on the Bayesian decision

criteria, asymptotically provides the minimum classification error possible given a

set of testpoints. Testpoint locations are also optimized to improve classification

performance. The method provides significant gains over existing approaches that

52



also use the distribution distance of the signal features.

3.1 Modulation Classification

Modulation level classification (MLC) is a process which detects the transmit-

ter’s digital modulation level from a received signal, using a priori knowledge of

the modulation class and signal characteristics needed for downconversion and

sampling. Among many modulation classification methods [DAB07], a cumulant

(Cm) based classification [SS00b] is one of the most widespread for its ability to

identify both the modulation class and level. However, differentiating among cu-

mulants of the same modulation class, but with different levels, i.e. 16QAM vs.

64QAM, requires a large number of samples. A recently proposed method [WW10]

based on a goodness-of-fit (GoF) test using Kolmogorov-Smirnov (KS) statistic

has been suggested as an alternative to the Cm-based level classification which

require lower number of samples to achieve accurate MLC.

We propose a novel MLC method based on distribution distance functions,

namely Kuiper (K) [CDG04] [Ste74, Sec. 3.1] and KS distances, which is a sig-

nificant simplification of methods based on GoF. We show that using a classifier

based only on K-distance achieves better classification than the KS-based GoF

classifier. At the same time, our method requires only 2ML additions in contrast

to 2M(log 2M+2K) additions for the KS-based GoF test, where K is the number

of distinct modulation levels, M is the sample size and L� M is the number of

test points used by our method.
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3.2 Modulation Level Classification

3.2.1 System Model

Following [WW10], we assume a sequence of M discrete, complex, i.i.d. and

sampled baseband symbols, s(k) , [s
(k)
1 · · · s

(k)
M ], drawn from a modulation order

Mk ∈ {M1, . . . ,MK}, transmitted over AWGN channel, perturbed by uniformly

distributed phase jitter and attenuated by an unknown factor A > 0. Therefore,

the received signal is given as r , [r1 · · · rM ], where rn = AejΦnsn + gn, {gn}Mn=1 ∼

CN (0, σ2) and {Φn}Mn=1 ∼ U (−φ,+φ). The task of the modulation classifier is

to find Mk, from which s(k) was drawn, given r. Without loss of generality, we

consider unit power constellations and define SNR as γ , A2/σ2.

3.2.2 Classification based on Distribution Distance Function

The proposed method improves upon the MLC technique based on GoF testing

using the KS statistic [WW10]. Since the KS statistic, which computes the mini-

mum distance between theoretical and empirical cumulative distribution function

(ECDF), requires all CDF points, we postulate that similarly accurate classifica-

tion can be obtained by evaluating this distance using a smaller set of points in

the CDF.

Let z , [z1 · · · zN ] = f(r) where f(·) is the chosen feature map and N is the

number extracted features. Possible feature maps include |r| (magnitude, N = M)

or the concatenation of <{r} and ={r} (quadrature, N = 2M). The theoretical

CDF of z given Mk and γ, F k
0 (z), is assumed to be known a priori (methods

of obtaining these distributions, both empirically and theoretically, are presented

in [WW10, Sec. III-A]). The K CDFs, one for each modulation level, define a set

of test points

t
(ε)
ij = arg max

z
D

(ε)
ij (z), (3.1)
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with the distribution distances given by

D
(ε)
ij (z) = (−1)ε

(
F i

0(z)− F j
0 (z)

)
, (3.2)

for 1 ≤ i, j ≤ K, i 6= j, and ε ∈ {0, 1}, corresponding to the maximum positive

and negative deviations, respectively. Note the symmetry in the test points such

that t
(0)
ji = t

(1)
ij . Thus, there are L , 2

(
K
2

)
test points for a K order classification.

The ECDF, given as

FN(t) =
1

N

N∑
n=1

I(zn ≤ t), (3.3)

is evaluated at the test points to form FN , {FN(t
(ε)
ij )}, 1 ≤ i, j ≤ K, i 6= j. Here,

I(·) equals to one if the input is true, and zero otherwise. By evaluating FN(t)

only at the test points in (3.1), we get

D̂
(ε)
ij = (−1)ε

(
FN

(
t
(ε)
ij

)
− F j

0

(
t
(ε)
ij

))
(3.4)

which are then used to find an estimate of the maximum positive and negative

deviations

D̂
(ε)
j = max

1≤i≤K,i6=j
D̂

(ε)
ij , 1 ≤ j ≤ K, (3.5)

of the ECDF to the true CDFs. The operation of finding the ECDF at the given

testpoints (3.4) can be implemented using a simple thresholding and counting

operation and does not require samples to be sorted as in [WW10]. The metrics

in (3.5) are used to find the final distribution distance metrics

D̂j = max
(∣∣∣D̂(0)

j

∣∣∣ , ∣∣∣D̂(1)
j

∣∣∣) , V̂j =
∣∣∣D̂(0)

j + D̂
(1)
j

∣∣∣ , (3.6)

which are the reduced complexity versions of the KS distance (rcKS) and the K

distance (rcK), respectively1. Finally, we use the metrics in (3.6) as substitutes to

the true distance-based classifiers with the following rule: choose Mk̂ such that

k̂D = arg min
1≤j≤K

D̂j, k̂V = arg min
1≤j≤K

V̂j. (3.7)

1Note that other non-parametric distances used in hypothesis testing exist (see introduction
in e.g. [CDG04]), although for brevity they are not addressed here. We note, however, that our
approach is easily applied to any assumed distance metric.
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In the remainder of the chapter, we define hD̂(FN) = k̂D and hV̂ (FN) = k̂V , where

k̂D, k̂V ∈ {1, . . . , K}.

3.2.3 Analysis of Classification Accuracy

Let t , [t1 · · · tL] denote the set of test points, {t(ε)ij }, sorted in ascending order.

For notational consistency, we also define the following points, t0 , −∞ and

tL+1 , +∞. Given that these points are distinct, they partition z into L + 1

regions. An individual sample, zn, can be in region l, such that tl−1 < zn ≤ tl,

with a given probability, determined by F k
0 (z).

Assuming zn are independent of each other, we can conclude that given z, the

number of samples that fall into each of the L + 1 regions, n , [n1 · · ·nL+1], is

jointly distributed according to a multinomial PMF given as

f(n|N,p) =


N !p

n1
1 ···p

nL+1
L+1

n1!···nL+1!
, if

L+1∑
i=1

ni = N,

0, otherwise,

(3.8)

where p , [p1 · · · pL+1], and pl is the probability of an individual sample being in

region l. Given that z is drawn fromMk, pl = F k
0 (tl)−F k

0 (tl−1), for 0 < l ≤ L+1.

Now, with particular n, the ECDF at all the test points is

FN(n) , [FN(t1) · · ·FN(tL)], FN(tl) =
1

N

l∑
i=1

ni. (3.9)

Therefore, we can analytically find the probability of classification to each of the

K classes as

Pr(k̂ = κ|Mk) =
∑

n∈NL+1

I(hV̂ (FN(n)) = κ)f(n|N,p), (3.10)

for the rcK classifier. A similar expression can be applied to rcKS, replacing hV̂ (·)

with hD̂(·) in (3.10).
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Table 3.1: Number of Operations and Memory Usage for Various Modulation

Level Classifier Algorithms

Method Multiply Add Memory

Cm 6M 6M K

rcKS/rcK 0 2ML WL(K + 1)

KS/K 0 2M(log 2M + 2K) KWN̄

rcKS/rcK (mag) 2M M(L+ 1) WL(K + 1)

KS/K (mag) 2M M(logM + 2K + 1) KWN̄

3.2.4 Complexity Analysis

Given that the theoretical CDFs change with SNR, we store distinct CDFs for W

SNR values for each modulation level (impact of the selection ofW on the accuracy

is discussed further in Section 3.2.5.2.) Further, we store KW theoretical CDFs

of length N̄ each. For the non-reduced complexity classifiers that require sorting

samples, we use a sorting algorithm whose complexity is N logN . From Table 3.1,

we see that for K ≤ 3 rcK/rcKS tests use less addition operations than K/KS-

based methods [WW10] and Cm-based classification [SS00b]. For K > 3, the rcK

method is more computationally efficient when implemented in ASIC/FPGA, and

is comparable to Cm in complexity when implemented on a CPU. In addition, the

processing time would be shorter for an ASIC/FPGA implementation, which is

an important requirement for cognitive radio applications. Furthermore, their

memory requirements are also smaller since N̄ has to be large for a smooth CDF.

It is worth mentioning that the authors in [WW10] used the theoretical CDF,

but used N̄ as the number of samples to generate the CDF in their complexity

figures. The same observation favoring the proposed rcK/rcKS methods holds for

the magnitude-based (mag) classifiers [WW10, Sec III-A].
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3.2.5 Results

As an example, we assume that the classification task is to distinguish between

M-QAM, where M ∈ {4, 16, 64}. For comparison we also present classification

result based on maximum likelihood estimation (ML).

3.2.5.1 Detection Performance versus SNR

In the first set of experiments we evaluate the performance of the proposed classi-

fication method for different values of SNR. The results are presented in Fig. 3.6.

We assume fixed sample size of M = 50, in contrast to [WW10, Fig. 1] to eval-

uate classification accuracy for a smaller sample size. We confirm that even for

small sample size, as shown in [WW10, Fig. 1], Cm has unsatisfying classification

accuracy at high SNR. In (10,17) dB region rcK clearly outperforms all detection

techniques, while as SNR exceeds ≈17 dB all classification methods (except Cm)

converge to one. In low SNR region, (0,10) dB, KS, rcKS, rcK perform equally

well, with Cm having comparable performance. The same observation holds for

larger sample sizes, not shown here due to space constraints. Note that the ana-

lytical performance metric developed in Section 3.2.3 for rcK and rcKS matches

perfectly with the simulations. For the remaining results, we set γ = 12 dB, unless

otherwise stated.

3.2.5.2 Detection Performance versus Sample Size

In the second set of experiments, we evaluate the performance of the proposed

classification method as a function of sample size M . The result is presented

in Fig. 3.2. As observed in Fig. 3.6, also here Cm has the worst classification

accuracy, e.g. 5% below upper bound at M = 1000. The rcK method performs

best at small sample sizes, 50 ≤ M ≤ 300. With M > 300, the accuracy of rcK

and KS is equal. Classification based on rcKS method consistently falls slightly
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Figure 3.1: Effect of varying SNR on the probability of classification of various

MLC techniques with M=50; (an.) – analytical result using (3.10).
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Figure 3.2: Effect of varying sample size on the probability of classification of

various MLC techniques with γ = 12 dB.

below rcK and KS methods. In general, rcKS, rcK and KS converge to one at the

same rate.

3.2.5.3 Detection Performance vs SNR Mismatch and Phase Jitter

In the third set of experiments we evaluate the performance of the proposed

classification method as a function of SNR mismatch and phase jitter. The result

is presented in Fig. 3.3. In case of SNR mismatch, Fig. 3.3(a), our results show the

same trends as in [WW10, Fig. 4]; that is, all classification methods are relatively

immune to SNR mismatch, i.e. the difference between actual and maximum SNR

mismatch is less than 10% in the considered range of SNR values. This justifies

the selection of the limited set of SNR values W for complexity evaluation used
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Figure 3.3: (a) Effect of SNR mismatch, nominal/true SNR=12dB; (b) effect of

phase jitter, nominal SNR=15dB.; (an.) – analytical result using (3.10), (mag) –

magnitude.

in Section 3.2.4. As expected, ML shows very high sensitivity to SNR mismatch.

Note again the perfect match of analytical result presented in Section 3.2.3 with

the simulations.

In the case of phase jitter caused by imperfect downconversion, we present

results in Fig. 3.3(b) for γ = 15 dB as in [SS00b], in contrast to γ = 12 dB

used earlier, for comparison purposes. We observe that our method using the

magnitude feature, rcK/rcKS (mag), as well as the Cm method, are invariant to

phase jitter. rcK and rcKS perform almost equally well, while Cm is worse than

the other three methods by ≈10%. As expected, the ML performs better than

all other methods. Quadrature-based classifiers, as expected, are highly sensitive
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to phase jitter. Note that in the small phase jitter, φ < 10◦, quadrature-based

classifiers perform better than others, since the sample size is twice as large as in

the former case.

3.3 Optimal Sampled Distribution Distance Classification

We have thus presented a computationally efficient method for modulation level

classification based on distribution distance functions. Specifically, we proposed to

use a metric based on Kolmogorov-Smirnov and Kuiper distances which exploits

the distance properties between CDFs corresponding to different modulation lev-

els. The proposed method results in faster MLC than the cumulant-based method,

by reducing the number of samples needed. It also results in lower computational

complexity than the KS-GoF method, by eliminating the need for a sorting op-

eration and using only a limited set of test points, instead of the entire CDF.

However, the choice of the KS-GoF test as the basis of our reduced complexity

approach might strike the reader as arbitrary. The idea is motivated mainly by

the earlier work in [WW10] which focused on KS-GoF. The question remains as

to which GoF test statistic gives the optimal performance. Alternatively, this

problem is equivalent to finding the optimal classifier based only on the sampled

ECDF. The ECDF forms the basis of all the GoF tests and is therefore the true

underlying test statistic. So, given a set of measurements of the ECDF at partic-

ular test points, we want to find the optimal discriminant function that based on

the classification accuracy.

Since we already have shown the effectivity of the rcK classifier, it stands to

reason that we could use this as the basis of the optimal classifier. In fact, the

idea of improving the classification accuracy of the rcK classifier by using more

testpoints was proposed in [WC12]. The method is referred to as Variational Dis-

tance (VD) classifier where testpoints are selected to be the pdf-crossings of the
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two classes being recognized. To generalize, we refer to methods such as rcK and

VD, that utilize the ECDF at a small number of testpoints, as sampled distribution

distance classifiers. In the rest of this chapter, we derive the optimal discriminant

functions for classification with the sampled distribution distance given a set of

testpoint locations. We also provide a systematic way of finding testpoints that

provide near optimal performance by maximizing the Bhattacharyya distance be-

tween features. Finally, we present results that compare the performance of this

approach with existing techniques.

3.3.1 Proposed Optimal Classifier

3.3.1.1 Classification Based on Sampled Distribution Distance

The common idea behind the techniques such as KS, rcK, and rcKS, which we

have discussed so far, is that they are all based on the ECDF defined as

FN(t) =
1

N

N∑
n=1

I(zn ≤ t), (3.11)

as the discriminating feature for classification. Here, I(·) is the indicator function

whose value is 1 if the function argument is true, and 0 otherwise. Once the ECDF

is found and the distribution distance is calculated, the candidate constellation

with minimum distance is chosen. However, we have shown that improved clas-

sification accuracy can be achieved at lower computational complexity by finding

the value of the ECDF at a small number of testpoints.

We now describe these methods formally by defining a set of L testpoints:

t = [t1 · · · tL], with ti+1 ≥ ti and t1 . . . tL ∈ R. We also define the following virtual

test points, t0 , −∞ and tL+1 , +∞ in addition to t. Evaluating the ECDF from

(3.11) at t gives us x = [x1 · · ·xL], xi , FN(ti). We refer to any classifier that

utilizes the feature vector x as a sampled distribution distance-based classifier. An

example of such a classifier is the variational distance (VD) classifier proposed
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in [WC12], which chooses t to be at the local maxima or minima of the difference

between two theoretical CDFs of the candidate classes. It could be shown that

this is equivalent to finding the points where the two theoretical pdfs cross each

other.

Our goal is to optimize the classification accuracy

PC =
K∑
i=1

Pr(k̂ = i |Mi ) Pr (Mi) . (3.12)

Intuitively, there are two ways to improve PC . First, since different testpoints

have varying distribution distance, different weights should be assigned to each.

Second, the number and location of testpoints should also be optimized to find

the proper balance between complexity and classification accuracy. Both of these

improvements are addressed in the following subsection.

3.3.1.2 Proposed Classifier

We first assume that t has been selected a priori and our goal is to find the optimal

classifier for the resulting feature vector x. We want to find a discriminant function

gk(x), k ∈ [1, K], for every candidate constellation Mk. The classification rule is

given as:

Choose: Mi s.t. gi(x) > gj(x)∀ j 6= i. (3.13)

According to decision theory, if the average classification error is used as the

performance metric, the optimal classifier is the Bayes decision procedure [DHS01]

stated as:

Choose: Mi s.t. Pr(Mi |x) > Pr(Mj |x)∀ j 6= i. (3.14)

Using the prior probabilities Pr(Mi), the posterior probabilities Pr(Mi |x)

could be found from Pr(x |Mi ) using Bayes formula. Thus, finding the pdf of

the feature vector conditioned on the modulation scheme, Pr (x |Mi ), effectively

gives us the optimal classifier.
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The testpoints partition z, which is the feature vector space, into L+1 disjoint

regions. An individual sample, zn, falls into region l if tl−1 < zn ≤ tl. This happens

with a given probability determined by F k
0 (z). We define the number of samples

that fall into each of the regions as n , [n1 · · ·nL+1], where ni corresponds to

region i. This is analogous to a random experiment with N independent trials,

each of which leads to a success for exactly one region, with each region having

a given fixed success probability, pl. The number of successes for each region is

described by a multinomial probability mass function (pmf) given as

f(n|N,p) =


N !p

n1
1 ···p

nL+1
L+1

n1!···nL+1!
, if

L+1∑
i=1

ni = N,

0, otherwise,

(3.15)

where p , [p1 · · · pL+1]. Given that z is drawn from Mk, pl = F k
0 (tl) − F k

0 (tl−1),

for 0 < l ≤ L+ 1.

Given a particular x, the number of samples in each region could be found as

ni = N (xi − xi−1) where x0 , 0 and xL+1 , 1. This gives a mapping from any

given x to n and therefore to the pmf f(n|N,p) as defined in (3.15). Combining

this mapping with (3.15), we have the complete class-conditional pdf, Pr (x |Mk )

with p determined by F k
0 (z). Thus we have the optimal classifier given t and

F k
0 (z). We will refer to x and n conditioned on class Mk as x(k) and n(k).

Although the multinomial pmf in (3.15) gives the optimal classifier, its cal-

culation is very computationally intensive. To address this issue we note that

asymptotically the multinomial pmf, f(n|N,p) in (3.15), approaches a multivari-

ate Gaussian distribution, n(k) ∼ N (µ
(n)
k ,Σ

(n)
k ) as N →∞ [Are77], with

µ
(n)
k = Np (3.16)

{Σ(n)
k }ij =


Npi(1− pi), if i = j,

−Npipj, if i 6= j.

(3.17)

Since x is the cumulative sum of n divided by N (i.e. xi = 1
N

∑i
j=1 nj), which is
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a linear operation, it follows that x(k) ∼ N (µk,Σk) where,

{µk}i =
i∑

j=1

pj = F k
0 (ti), (3.18)

{Σk}ij =
1

N2

i∑
l=1

j∑
m=1

{Σ(n)
k }lm. (3.19)

Having shown that the feature vector x is asymptotically Gaussian distributed,

we can proceed to apply the Bayes decision procedure in (3.14). However, the

full multivariate pdfs are no longer required because the optimal discriminant

functions for Gaussian feature vectors are known to be [DHS01]:

gk(x) = xTWkx + wT
k x + wk0, (3.20)

where

Wk = −1

2
Σ−1
k , wk = Σ−1

k µk, (3.21)

and

wk0 = −1

2
µT
kΣ−1

k µk −
1

2
ln |Σk|+ ln Pr (Mk) . (3.22)

In the following sections we will simply refer to this classifier as the Bayesian

approach.

3.3.1.3 Testpoint Selection

In this subsection we present a method for choosing testpoint locations, t, that

provide good classification performance. The method of using the pdf-crossings

makes intuitive sense, since it tries to find the testpoints that provide the max-

imum difference in the theoretical CDF while providing some heuristic rule that

the testpoints will be sufficiently far apart. Testpoints that are close to each other

are not as effective because the ECDF tends to be highly correlated.

Another issue with using the pdf-crossing is that it does not factor in knowl-

edge of the correlation between testpoints. As we have shown in Section 3.3.1.2,
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the distribution of x follows an approximate multivariate Gaussian with statis-

tics given in (3.18) and (3.19). Therefore, the class-conditional means µk and

covariance matrices Σk are sufficient to completely describe the distribution of

the feature vectors conditioned on Mk. Thus, these statistics are also sufficient

to find the optimal testpoint locations, t∗.

To find the classification accuracy a K-dimensional integration is required and

the limits are determined by the decision boundaries defined by (3.20), which in

general are non-trivial. We replace exact PC with a sub-optimum distance metric

that is easier to evaluate and does not require integration. In particular, we use

the Bhattacharyya distance first studied for signal selection in [Kai67]. Clearly,

this approximation does not guarantee the optimal testpoint locations based on

PC . However, the K-dimensional integration is infeasible due to its intractability.

The metric is shown here for reference:

DB =
1

8
(µ1 − µ2)T Σ−1 (µ1 − µ2)

+
1

2
ln

(
|(Σ1 + Σ2) /2|√
|Σ1||Σ2|

)
. (3.23)

Note that the Bhattacharyya distance is calculated between 2 classes. As

a result, the search for testpoints can only be performed for the K = 2 case.

However, this could be done sequentially through all the possible pairs ofMk. As

DB is a function of µk and Σk which are functions of our testpoint selection, t,

then we can express it as DB(t). We thus find the good candidate testpoint by

t∗ = arg max
t
DB (t) , (3.24)

under the constraint ti+1 ≥ ti.

The testpoint selection method for our proposed classifier and the VD classifier

is only applicable to the 2-class problem. As such, both approaches need to

be adapted to handle the multi-class problem. One approach is to merge the

testpoints for each possible pair of classes. However, this method results in a large
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increase in complexity. Instead we follow the sequential classification procedure

proposed in [WC12, Table. I] which involves first distinguishing between 4-QAM

and 16-QAM, and then distinguishing between 16-QAM vs. 64-QAM if the first

test results in 16-QAM. The 4-QAM vs. 16-QAM test is performed first because

it has the highest classification accuracy. The testpoint selection is performed for

these two tests independently.

As this is an L-dimensional optimization problem, a closed-form solution is

beyond the scope of this work. Instead, we turn to numerical optimization meth-

ods (gradient descent methods) to find local maxima. The initial point of these

procedures could be chosen to coincide with the pdf-crossings or equally spaced

over some interval.

3.3.1.4 Note on Implementation

Similar to rcK discussed in Sec. 3.2 and VD [WC12], the Bayesian approach only

needs to store the testpoint locations for a fixed set of SNRs since the theoretical

CDF is dependent on SNR. In contrast, the ML classifier requires the pdf of

each class under each SNR to be either calculated online or stored with high

resolution. Thus the primary cost in implementing the ML classifier is the large

look-up-table (LUT). Given a t of size L, VD and rcK require both t and µk for

each class Mk. In contrast, the Bayesian approach requires the same vector t,

an L× L matrix Wk, a vector wk of size L, and a scalar wk0 for each class Mk.

For performance comparisons in Sec. 3.3.2, the same number of testpoints are

used for both VD and Bayesian method. Based on the criteria used for testpoint

selection for VD, which is to find the local maxima and minima of the difference

between the theoretical CDFs, there are 4 testpoints for the 4-QAM vs. 16-QAM

test (for all SNRs), and 4 testpoints for the 16-QAM vs. 64-QAM test for SNR

≤ 7 dB and 8 testpoints for SNR > 7 dB. Therefore there are no more than 12

testpoints per SNR, meaning that additional storage requirements are negligible.

68



In terms of additional computational complexity, the proposed approach requires

the calculation of a quadratic form expression (3.20) which results in L(L + 1)

additional multiplications. Again, due to the fact that only a relatively small

number of testpoints is used, the additional complexity is minimal and is not a

function of N but only of the number of testpoints L.

3.3.2 Results and Discussion

3.3.2.1 Testpoint Selection

For the results section we focus on the quadrature feature which is a concatenation

of the I and Q component of each symbol. In Fig. 3.4, we show the results of

the testpoint selection procedure with M = 200, under 0 dB SNR, for varying

number of testpoints with the two class being 4-QAM and 16-QAM. The solid

line plot corresponds to the difference of the two theoretical CDFs. We note

that in the VD classifier the local maxima and minima of this plot are used as

the testpoints. However, we find that the numerical optimization finds “good”

testpoints to be close, but not exactly at the local maxima and minima. This is

due to the additional information provided by the covariance matrices.

In contrast to VD classifier that has a fixed number of testpoints (4 for this

particular problem) corresponding to the number of local maxima and minima,

the optimization procedure allows more flexibility in choosing the number of test-

points. In Fig. 3.4, we show the result of the optimization procedure for a range

of 1 to 8 testpoints. It confirms our intuition that “good” testpoints tend to be

1) spaced apart to avoid high correlation, 2) concentrated around locations that

have high CDF difference, and 3) are not necessarily the same for different values

of L. Intuitively, testpoints being located at the local minima and maxima yield

suboptimal results once the covariance matrix is accounted for. These results

confirm the need to jointly optimize the testpoint locations.
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The solid line shows the CDF difference between the two classes (4-QAM and

16-QAM, under SNR = 0 dB, M = 200)
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3.3.2.2 Comparison With Existing Techniques

As mentioned in the previous section, the proposed approach has the flexibility of

varying the number of testpoints. This effectively gives more flexibility to trade-

off classification accuracy with computational complexity. This idea is illustrated

in Fig. 3.5. For M = 1000 and SNR = 0 dB, we show the classification accuracy

of the proposed method as the number of testpoints is increased from 1 to 16,

for all possible pairs of Mk. The dotted lines correspond to the accuracy of the

ML classifier which serves as an upperbound to classification accuracy, while the

dashed lines correspond to that of the VD classifier. Note that both are plotted

as horizontal lines because ML does not utilize testpoints, while VD has a fixed

number of testpoints.

We see that the proposed method is able to match the accuracy of the VD

classifier with only 3 testpoints. Further, the method’s accuracy could be improved

by adding more testpoints but at the cost of higher complexity. However, there

exists a gap in performance between the Bayesian and the optimal ML classifier

even with high number of testpoints. Increasing the number of testpoints even

further increases the computational burden due to the need to perform an L× L

matrix multiplication.

Finally, in Fig. 3.6, we compare the performance of the proposed method with

the existing techniques under varying SNR with M = 200 symbols used for clas-

sification. To have a fair comparison, the same number of testpoints are used for

both VD and Bayesian. For the entire range of SNR, the proposed Bayesian ap-

proach is shown to provide substantial gains over the VD classifier. We emphasize

again that asymptotically, the proposed approach is the optimal classifier when

using the sampled distribution distance as the discriminating feature. Also shown

in the plot are the classification accuracy of the ML classifier which acts as the

upperbound, and the conventional Kuiper classifier.
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3.4 Hardware Implementation

In order to validate the idea of MLC in a practical platform, we implemented

the reduced complexity Kuiper test on the BEE2 hardware prototyping platform

and evaluated its performance. In particular, the classification accuracy of the

proposed classifier in distinguishing among 4, 16, and 64-QAM is analyzed under

varying SNR, varying number of symbols, and different timing offsets. The per-

formance of the proposed classifier was also compared to that of the widely-used

Cumulant-based classifier. Next, we propose possible architectures and their clas-

sification accuracy and computational complexity are compared. The proposed

method achieves a probability of correct classification of 93% using 512 symbols at

an SNR of 14dB as compared to an accuracy of 73% for the Cumulants method.

The two classifiers were shown to have comparable hardware utilizations.

3.4.1 Motivation for Hardware Implementation

Although the algorithms presented in this chapter have been evaluated exten-

sively through simulations, they all work under the assumption that the modu-

lation classifier has access to the transmitted symbol corrupted by only additive

white Gaussian noise (AWGN). This assumption implies perfect timing synchro-

nization recovery and perfect channel state information which is unrealistic in a

practical signal interception scenario. In order to understand the practicality of

synchronous modulation classification, the effects of quantization errors, frequency

offsets, and timing offsets must be quantified. In the remainder of this chapter,

the effects of practical impairments on the classification performance are eval-

uated by implementing both the reduced complexity Kuiper and the Cm-based

classifiers on hardware prototyping platform. The experiments were conducted

on the Berkeley Emulation Engine 2 (BEE2) [CWB05] platform using two radio

front-ends [Mis05] operating in the ISM band.
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modulation classifier.

3.4.2 System Model and Overview of Modulation Classification

3.4.2.1 General Modulation Classification Flow

Most modulation classifiers rely on obtaining information symbols, which could be

acquired by passing the incoming signal through a pre-processor which estimates

parameters that are not known a priori. In this work, we limit the scope by consid-

ering imperfect frequency and phase estimates, SNR mismatches, and inaccurate

timing synchronization. The general block diagram for an automatic modulation

classification (AMC) system is shown in Fig. 3.7. This figure illustrates the basic

concepts of all existing modulation classifiers, as well as blind demodulators. It

consists of a preprocessing block that conditions the signal based on the particu-

lar classification algorithm to be used, and a classification block which we will be

discussing in the next section.

3.4.2.2 Kuiper-based Modulation Classification

The algorithm to be implemented is based on the Goodness of Fit (GoF) features

as discussed in this chapter. The idea behind GoF-based classification is to map

the empirical cumulative distribution function (ECDF) of the received symbols
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to the closest known CDF. Different criteria, such as magnitude and/or phase

of received symbols, can be chosen as the statistical variable for classification.

This criteria will be referred to as the classification feature. Each feature has

a distinct CDF; once the feature has been selected, the ECDF for that feature

is computed, and the distance between the ECDF and all theoretical CDFs for

modulations of interests is calculated. Different distance computation methods

will result in different performance classifications. For instance, the Kolmogorov-

Smirnov method is based on the maximum deviation between the ECDF and

every CDF [WW10]. Finally, the modulation level whose CDF is closest to the

ECDF according to the selection criterion is chosen as the classified modulation

level.

All existing GoF algorithms require two hardware intensive operations: 1)

sorting the received symbols to form the ECDF, and 2) storing the theoretical

CDF at all points. On the other hand, our proposed approach, the reduced

Kuiper test, requires computing the ECDF at a limited number of points, which

we call test-points. In addition, the computational complexity of our algorithm

requires no multiplications, and simulation results show that it outperforms all

existing algorithms. For further details about the algorithm and its theoretical

classification performance, the reader is referred to Sec. 3.3.1.

It is important to note that the performance of all GoF-based tests is directly

related to the feature that will be used for classification. For instance, one could

obtain N complex information symbols sk, and concatenate the real and imaginary

values of each symbol yielding a vector of length 2N . This is referred to as

quadrature classification. In contrast, one could also compute the magnitude of

each of the received symbols, and obtain a vector of length N . Classification using

magnitude vectors is referred to as magnitude classification.

Although quadrature classifiers outperform magnitude classifiers for the same

vector length, quadrature classifiers are very sensitive to frequency offsets. In
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Figure 3.8: Tolerance of the reduced complexity Kuiper classifier to frequency

offset at SNR = 10dB.

the context of signal interception, such offsets are hard to fully mitigate, and

the performance of quadrature classifiers under slight offsets degrades at a fast

rate as shown in Fig. 3.8, where the classification performance is plotted as a

function of normalized frequency offset with respect to the signal bandwidth.

In contrast, magnitude-based classifier are robust to both frequency and phase

offset. Therefore, implementing magnitude classifiers circumvents the need to

finely estimate the frequency and phase offsets, and the performance drop can

always be mitigated by increasing the number of information symbols used for

classification. We wish to note that the Cm-based classifier is robust to frequency

offsets, and therefore is suitable to use under frequency and phase offsets as well.

Finally, we would like to note that the information symbols have to be nor-

malized to unit energy before computing the ECDF in order to have a proper

comparison against the stored known CDFs, assumed to be obtained from unit-

energy information symbols. After downconversion from IF to baseband, the

signal is sampled, passed through a matched filter assumed to be known in order
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to maximize the SNR. Note that the pulse shape was assumed to be known, but

could be estimated blindly as well. Next, the symbols are normalized and passed

to the classifier.

3.4.3 Experimental Setup and Modulation Classification Architecture

3.4.3.1 Experimental Setup

In our experiments, we use the Berkeley Emulation Engine 2 (BEE2) [CWB05]

as the prototyping platform which we connect to two RF front-ends that transmit

in the 2.39-2.49 GHz range. We designed our transceivers to transmit and receive

QAM waveforms modulated using a square root rate cosine pulse shape filter with

rolloff factor β = 0.2 at a rate of 2 Msymbols/sec. In all experiments, the transmit

center frequency was set to 2.485 GHz to minimize the interference with other

signals in the ISM band, and the receiver front-end downconverted the incoming

signal to an intermediate frequency of 4 MHz. The setup is shown Fig. 3.9 where

the two front-ends are connected via SMA cables to emulate a flat fading channel
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with Additive White Gaussian Noise (AWGN).

Our Tx design, which is implemented on the RF front-end [Mis05], allows

us to configure the transmitter to choose among 4, 16 and 64 QAM at different

SNR levels. Given that we will be implementing the magnitude-based Kuiper

classifier, fine carrier frequency and phase offsets is no longer required. In Fig.

3.11, we present the main architectural building blocks of our proposed classifier.

Assuming perfect knowledge of the transmit pulse shape at the receive side, we

matched-filter the incoming signal in order to maximize the receive SNR. The main

architectural blocks are blind timing synchronization, SNR estimation and energy

normalization, followed by the modulation classifier. The setup allows us to study

the effect of timing offsets at the receiver end, and energy normalization errors

on the classification performance, imperfections that often arise in the context of

signal interception.

3.4.3.2 Early-Late Gate Timing Synchronization Recovery

Timing synchronization, which entails selecting the optimal sampling point after

matched-filtering, is essential in the sampling process. In the context of signal

interception, training sequences cannot be acquired in order to start the sampling

process at the right sampling instant, and therefore timing synchronization has

to be performed blindly. One of the possibly candidates for timing synchroniza-

tion recovery is the early-late gate (ELG) sampler. The sampling rate and the

symbol rate were chosen so that we obtain 16 samples per information symbol,

and therefore there are 16 possible sampling instances. We refer to each of the

sampling instances by an address u ∈ [0, ..., 15]. The ELG takes advantage of

the correlation of the processed signal with the pulse shaping filter, the result of

which produces a peak. The idea behind ELG is that it samples the output of the

matched-filter at two timing instances, compares their values, and feeds back the

values to the address list u. The sampling instance is shifted adaptively until the
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difference between the values of the processed signal is minimized.

Before obtaining any set of information symbols for classification, the ELG

block is enabled for a fixed processing time required for the iteration-based timing

synchronization recovery method to converge.

3.4.3.3 Modulation Level Classification

The reduced complexity Kuiper (rcK) classifier is composed of a feature extrac-

tion block, followed by an energy normalization block that measures the average

symbol energy, and scales the symbols accordingly to achieve unit average energy.

Next, the receiver SNR is estimated, and used to select the corresponding test-

points and theoretical CDF from a look-up table stored in a ROM. Finally, a bank

of comparators are applied to the incoming feature samples for classification.

Fig. 3.11 depicts the high level block diagram of the proposed classifier. The

result of each threshold operation is used to increment several counters. The value

of these counters after N symbols have been processed is used as the classification

statistic. This block of comparators is repeated for each modulation level that we

need to classify, and the outputs of which are compared to find the minimum rcK

distance and subsequently to classify.
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3.4.4 Results and Discussion

In this section, we first show the hardware resources in terms of occupied area for

each of the implemented classifiers. Next, we focus our efforts on showing effect of

the impairments on the classification performance. The considered impairments

are: 1) quantization effects, which can be seen in all results below, 2) timing

synchronization impairments, and 3) energy normalization impairments. We wish

to note that it has been proven in [SS00b] and [URP11] that both classifiers

studied in this section are robust to SNR mismatches, which is proportional to the

error between true and estimated SNR, and therefore this aspect of impairments

were not studied experimentally.

3.4.4.1 Hardware Resources Comparison

The FPGA hardware resource breakdown estimates of the proposed architectures

are tabulated in Table 3.2. The bulk of the FPGA area is primarily allocated to

the Preprocessing block which is utilized by both classifiers, where the matched-

filtering and timing synchronization are performed. This can be attributed mainly

to two reasons, first is that the preprocessing block needs to operate at the highest

sampling rate (64 MHz) in order to give the oversampling ratio required for the

ELG. Secondly, both the downconversion and filtering blocks require several mul-

tipliers that operate at the same high frequency. On the other hand, no dedicated

multipliers were used for both classifiers since they operate at a slower rate than

the system clock.

As for the two classifiers, they occupy comparable FPGA area. Although

the two algorithms are inherently different, the word-lengths at various points in

the datapath were selected to match as closely as possible. We note that the

cumulant classifier utilizes fewer memory elements (FFs and BRAMs) while the

Kuiper classifier has less Look-Up-Tables. This can be attributed to the need to
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Classifier Slices FFs LUT BRAMs Mult

Proprocessing 7882 14709 13127 5 3

Reduced Comp. Kuiper 2904 6647 4431 24 0

Cumulant 2724 4416 4585 0 0

Table 3.2: Hardware resource breakdown estimates of the proposed classifiers

store the testpoint and ECDF values. Although the FPGA area provides us with

a rough estimate of the complexity of each classifier, we also need to take into

account their latency. The cumulant classifier has much higher latency due to the

need to calculate several magnitude and square operations.

3.4.4.2 Classification Performance versus Sample Size

We start by defining the probability of correct classification Pc as

Pc =
1

3

[
1

Ns

Ns∑
n=1

I{o = m|M = m}

]
, (3.25)

where I{} is the indicator function, o is the output of the modulation classi-

fier based on N symbols, M ∈ [4, 16, 64] is the modulation level used by the

transmitter, and Ns is the number of realizations used in the experiments, set to

Ns = 10000 for all experimental results given below. In the first set of experi-

ments, we compare (in Fig. 3.12) the classification performance obtained through

the hardware platform to the theoretical classification performance of both clas-

sifiers as a function of number of symbols, varied from 64 to 4096 at a fixed SNR

of 14 dB. The gap between the theoretical and experimental results is a direct

consequence of the hardware impairments including residual timing offset that

result from the limited time resolution, and the inherent quantization effects of a

hardware implementation. However, given that we are operating on a magnitude-

based classifier, the impairments that arise from frequency and phase offsets do

not affect the classification performance, and the only remaining impairments are
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Figure 3.12: Probability of correct classification versus number of symbols at a

fixed SNR = 14 dB.

quantization errors, errors in normalizing the incoming symbols to unit energy,

and errors in estimating the SNR. Note that all three impairments are common

to both classifiers, which makes the performance comparison fair. We note that

the theoretical classification performance is an upper bound for the experimen-

tal results. In addition, the results in Fig. 3.12 show that the Cm classifier is

very sensitive to the normalization factor that is used to normalize the symbol

energies. In fact, given that the Cm classifier is based on fourth order cumulants,

which is sample mean of the fourth moment of the incoming symbols. Therefore,

any normalization error due to the finite number of samples would have a com-

pounded effect on the cumulant, which proves that the Cm is very sensitive to

normalization impairments. This effect is further studied in Section 3.4.4.4.
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3.4.4.3 Classification Performance versus Timing Offset

In this subsection, we evaluate the performance of both classifiers under inaccu-

rate timing synchronization, which could arise due to the lack of synchronization,

limited number of samples, or a low SNR. In this experiment, we shifted the

sampling instances to span half the symbol period, beyond which the effect of

sampling synchronization would be symmetric. Fig. 3.13 shows the classification

performance of both classifiers as a function of the normalized timing offset with

respect to the symbol period. Both classifiers show a similar trend, and the classi-

fication performance drops to 0.33 at about a ratio of 0.25 Timing Offset
Symbol Period

. This result

shows that if the classification were to be done without any timing synchroniza-

tion, the sampling instance will be uniformly distributed between 0 and T, and

the classifier will yield a probability of classification of 0.33 60% of the time.

3.4.4.4 Classification Performance versus Normalization Error

After recovering the N information symbols, the modulation classifier block first

estimates the symbol energy by Ê = 1
N

∑N
n=1 |x(n)|2, and normalizes the complex-

valued symbols by
√
E . It is obvious that increasing the sample size will improve

the estimate of Ê , and improve classification accuracy, but will also reduce the

normalization mismatch. As N →∞, the estimated symbol energy Ê → E , where

E is the asymptotic symbols average energy. In order to isolate the normalization

effect, we keep the number of symbols used for classification as N = 4096 symbols,

and vary the number of symbols used for the energy estimator. Let δE = E/Ê be

the normalization mismatch. Fig. 3.14 shows the effect that the normalization

mismatch on the experimental classification performance for both classifiers. This

shows that the claim made earlier is indeed valid, and proves that Cm classifiers

are less robust to normalization mismatch.
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Figure 3.13: Probability of correct classification versus relative timing offset at a

fixed SNR = 14 dB, and N = 1024.
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3.4.5 Conclusion

In this last section, we implemented two modulation level classifiers in a practi-

cal real-time hardware platform with radio front-ends and a DSP engine (BEE2),

and evaluated their classification performance under realistic impairments such

as quantization errors and timing synchronization errors. Both classifiers show

similar trends with regard to these impairments, and their hardware computa-

tional complexity were proven to be similar. One interesting result presented in

this section shows that the cumulant-based technique is much more sensitive to

energy normalization errors than the rcK classifier. It was also shown that rcK

performs better than Cm for a fixed number of symbols, as predicted by theory

and simulations.

3.5 Summary

In this chapter we presented the concept of distribution distance based classifica-

tion. In particular, this approach was applied to the modulation level classifica-

tion probem. We also derived the optimal discriminant functions for classifying

modulation schemes using the sampled distribution distance. This method was

shown to provide substantial gains compared to other existing approaches. The

performance of this method is also shown to be close to the ML classifier but

at significantly lower computational complexity. Although modulation classifica-

tion is presented in this work to illustrate the basic concept, the approach is not

limited to this application. The same classifier can be generalized to any classifi-

cation problem where the CDF of each class is available. Finally, we presented a

hardware implementation to verify the practicality of the algorithm.
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CHAPTER 4

MAC-layer Classification

Various works that dealt with the radio-scene analysis problem have mainly fo-

cused on detecting the presence or absence of spectrum opportunities, i.e., spec-

trum holes, through various spectrum sensing methods. The output of the ma-

jority of these algorithms is binary; either the spectrum is busy or idle. However,

the concept of exploiting spectrum opportunity beyond the three dimensions of

space, time, and freqeuncy, also known as multi-dimensional spectrum awareness,

has increasingly gained research interest in recent years [YA09].

4.1 Introduction

The benefits of a multi-dimensional spectrum awareness approach have been

shown in several prior works. For example, time-domain waveform information

has been shown to improve spectrum sensing performance [Tan05]. Knowledge

of second-order statistics of primary user (PU) traffic parameters significantly re-

duces the probability of mis-detecting the presence of the primary user [KYY12].

Information about higher layer features used by a primary network has also been

shown to be beneficial to CR. It was shown by [SFT11] that if the primary network

is known to be using a legacy 802.11 MAC protocol then the CR transmission pa-

rameters can be chosen in such a way so as to maximize throughput. However,

utilizing information related to the specific standard used by a primary network

has limited applicability. In general, there is very minimal prior information avail-

able about the primary users in a secondary access scenario a problem commonly
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referred to as blind signal classification. To address this issue, more general char-

acteristics common to a large set of standards can instead be used. One such

feature is the channel access method utilized by the primary network.

4.1.1 Related Work

Channel access method (CAM) is defined as the protocol used by the wire-

less network in order to arbitrate and share the use of the common physical

medium [Min09]. These methods, which are also referred to as multiple access or

multiplexing schemes, give the ability to support more than one user over a single

radio channel. At the highest level, there are two main categories of channel access

methods: conflict-free and contention protocols. In conflict-free protocols, a user

is given complete control of a particular channel and other users are prohibited

from sharing that channel. Techniques including Time Division Multiple Access

(TDMA) and Frequency Division Multiple Access (FDMA) fall into this category.

On the other hand, in contention protocols there is some probability that one or

more users will transmit in the same channel at the same time instant and thus

cause a collision. Methods such as Carrier Sense Multiple Access (CSMA) fall

into this category.

Various works in the CR literature have pointed out that knowledge about

the channel access method employed by the primary network can be utilized to

improve CR performance. For example, if it is known that the primary net-

work employs a time division multiple access (TDMA) system then [WB12] pro-

poses a wideband time-frequency analysis method to infer the center frequency,

bandwidth, and occupancy of active channels with higher accuracy. The same

information can also be used by the CR to synchronize both its sensing and

access to the time slot thus reducing the overall need to perform sensing. In

fact, several proposed CR strategies are based on the assumption that PUs op-

erate under a TDMA or slotted access scheme [PSM05, ZTS07, SZ09, CXH08].
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There have also been several proposals of exploiting unused subcarriers whenever

the channel access method used is orthogonal frequency division multiple access

(OFDMA) [TCP09,BAP09]. For code division multiple access (CDMA) networks,

there is limited work on performing underlay spectrum access using spread spec-

trum. Finally, there are several prior works tackling how to efficiently utilize the

white space in contention based methods [MB08,LKT14].

ToAlthough such methods exploiting channel access method knowledge are

available in the literature, there has been very little work on the problem of ac-

tually identifying the channel access method used in CR context. The existing

works fall into two general categories. First, work in [DBM10] and [HPM07]

aim to determine the specific standard used by the primary network. These ap-

proaches require very detailed knowledge of PHY/MAC characteristics such as

packet structure and preamble format. The second category of approaches, such

as the method proposed in [HYY14], employ a more general channel access method

(CAM) classification which do not try to determine the exact standard in use. In

their work a Support Vector Machine (SVM) approach is employed in order to

classify between TDMA, carrier sense multiple access with collision avoidance

(CSMA/CA), slotted ALOHA, and pure ALOHA networks. However, we show in

our work that this approach has very poor performance in the presence of fading.

Further, CDMA and OFDMA systems which are very commonly used channel

access method, are not addressed.

Another key limitation of these prior works is the assumption that the fre-

quency band occupied by the primary user is known exactly. However, this is

not true in cognitive radio network. In particular, wideband or multi-band spec-

trum sensing has been shown to significantly increase the amount of opportunities

available to the CR network [QCS09, ALL12]. Therefore, this assumption makes

these works impractical in the CR scenario. In fact, it makes band segmentation

necessary.

90



MAC

Time

Multiplexing

Slot-based
Contention-

based

Frequency 

Multiplexing

OFDMA FDMA FHSS

Code 

Multiplexing

CDMA

Spatial 

Multipexing

Figure 4.1: Taxonomy of different channel acceess methods. Techniques in black

are addressed in this work.

4.1.2 Contribution

In this work, we approach the channel access method classification in 3 stages.

First, the frequency bands occupied by individual PUs are identified (Band Seg-

mentation Stage). Second, we identify the channel access method and modulation

utilized by the primary network (Channel Access Method and Modulation Type

Classification Stage). Finally, we distinguish between collision-free and contention

based protocols (Collision Detection Stage). The range of channel access schemes

identified in our scheme is shown in Fig. 4.1.

Analogous to the 3 stages of classification, the key contributions of this work is

three-fold. First, we propose and evaluate a novel method of band segmentation

designed for single antenna receivers based on the Non-negative Matrix Factor-

ization (NNMF) approach. Second, we present and analyze the performance of a

fourth-order cumulant based classifier for identifying both channelization schemes

and modulation type. Finally, we developed a new collision detection method

based on normalized fourth-order cumulants which substantially improves on the

performance of the technique in [HYY14].

The rest of this chapter is organized as follows. We first present the system

model and the channel access method classification problem in Section 4.2. Next,
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we present and evaluate the band segmentation scheme in Section 4.3. Since our

approach to channel access scheme classification is largely based on the cumulants,

we present some theoretical background on them in Section 4.4.1. The proposed

methods for both collision detection, modulation classification and channelization

identification is detailed in Section 4.4. Numerical results and comparisons to ex-

isting approaches are presented in Section 4.4.3. Finally, the chapter is concluded

in Section 2.5.

4.2 System Model

In this section, we describe the problem of channel access method classification

and band segmentation in detail. We will detail the system model used and state

the channel access method classification problem in the context of this system

model.

4.2.1 Network Model

Consider an environment where at least one PU network is present. The goal of the

proposed system is to identify the PU networks observed and the channel access

method used by these networks. We assume that there is only one spectrum

sensing node that is able to observe the transmitted signals from the primary

network. However, there is no cooperation between the primary networks and

the sensing node. Thus the classification needs to be done blindly using only

passive information. We assume that there are a total of Ntotal primary users

which are part of a primary network. These nodes are distributed in a uniform

random manner over a given area such that Li = (L
(i)
x , L

(i)
y ), i ∈ {1, 2, . . . , Ntotal}

is the location of the ith node with L
(i)
x and L

(i)
y being its x-coordinate and y-

coordinate respectively. Assume further that a spectrum sensing node located

at L0 = (L
(0)
x , L

(0)
y ) is able to observe the transmitted signals from the primary
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network. The signal received by the spectrum sensing node from the ith node

experiences path-loss which is distance dependent and represented as

αi =

(
d0

‖Li − L0‖

)−γ
. (4.1)

where γ is the path-loss exponent, d0 is the reference distance which we assume

to be 1m, and ‖ · ‖ is the Euclidean distance.

4.2.2 PU signal model

Each PU node in the network transmits a signal of the following form:

xi(n) = ai(n)si(n)e−j2πωcin. (4.2)

where ai(n) ∈ {0, 1} represents the activity (idle or busy) of the ith node. The

activity of each node is determined by two key parameters: 1) the Channel Access

Method in use by the PU network and 2) the traffic load or total traffic offered

to the channel by the PU network. We will define these two parameters shortly

and describe how they affect ai(n). The actual baseband signal for the ith node

is si(n) which depends primarily on the modulation format used as well as the

channel access method.We assume that the si(n) has a bandwidth of ∆ωBWi
and

center frequency ωci .

4.2.3 Channel Access Methods Being Considered

Consider a single primary network with Ntotal users. The transmited signal xi(n)

for each PU depends on the channel access method employed by the primary net-

work. This is the key parameter we are trying to classify in this work. As we have

explained in Section 4.1, we are interested in distinguishing between Contention-

based, TDMA, OFDMA, and CDMA. At the highest level, there are two general

categories of channel access methods, packet-based and channelization-based pro-

tocols. Packet-based methods use a single channel which is shared by multiple
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PU nodes through a contention protocol. We will refer to these techniques simply

as contention based approach. The second category of channel access methods

are, channelization or circuit based approaches. These protocols assign orthogo-

nal channels to each node in which they have guaranteed transmission privileges.

The orthogonality can be achieved through one of several dimensions such as time

(TDMA), frequency (FDMA), code (CDMA) or space (SDMA). We focus on the

first three of these. The signal model for each class of interest in this work is as

follows:

4.2.3.1 TDMA

In this approach a particular timeslot is assigned to each user. During this time

a given node is guaranteed to not interfere with any other node. In a TDMA

system, there will be at most one active user at a time or
∑Ntotal

i=1 ai(n) ≤ 1, ∀n ∈

{1, . . . , N}.

4.2.3.2 Contention-based

In contrast, contention-based channel access methods such as CSMA do not guar-

antee zero interference for each transmission. Each node can randomly start a

transmission resulting in some non-zero probability that a collision occurs. The

key difference between contention-based approaches and TDMA is that in the for-

mer more than one user can be active at any given time. The amount of temporal

overlap in which
∑N

i=1 ai(n) > 1, for any given n ≥ 0, is a function of the network

traffic and the particular back-off strategy chosen.

4.2.3.3 OFDMA

OFDMA allows for simultaneous transmissions to a single transmitter by assigning

a unique set of subcarriers to each individual node. The received signal model
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from one particular PU in a single OFDM symbol is given by

si(n) =
1√
Nsc

∑
k∈Si

xke
j2πkn
Nsc , 0 ≤ n ≤ Nsc − 1, (4.3)

where xk is the modulated data to be transmitted on the kth subcarrier, Nsc is

the total number of subcarriers and Si is the set of subcarriers assigned to the ith

user.

4.2.3.4 CDMA

Finally, code division multiple access (CDMA) allows all users to access the same

bandwidth at the same time but they are distinguished from each other by a unique

code. Each assigned code is used to transform the particular users data stream into

a spread-spectrum signal, using direct sequence spread spectrum. Another method

to achieve spread-spectrum is by using Frequency Hopping (FHSS). However, this

latter approach is beyond the scope of our work due since it requires an entirely

different band segmentation approach than the one presented in this work. The

signal model for a single transmitter using spread spectrum or CDMA system is

as follows:

si(n) = ci (n mod Lc)xi(n) (4.4)

where xi(n) is the data stream of the ith user and ci(n) is the code of that

particular user and Lc is the code length.

4.2.4 Traffic Model

The second key parameter that affects the behavior of the channel access method is

the amount of traffic offered to the channel. In particular, the rate of collisions in a

contention based scheme will be a function of the number of messages transmitted

by each node. This is referred to as offered load (G) and is measured in Erlangs.

For simplicity, we assume the following conditions: 1) all packets have the same

length, 2) a packet is generated from each node according to a Poisson process with
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rate λi, 3) packets that collide are not retransmitted. As a result, the aggregate

messages to the channel will also be a Poisson arrival process and is simply the

sum of all the rates λi, G =
∑N

i=1 λi.

4.2.5 Sensing Node

Finally, we combine the entire system by expressing the signal received by a ran-

domly placed spectrum sensing node. The sensing node downconverts spectrum

of bandwidth ∆ωBW to baseband. The downconverted signal is composed of the

transmissions from all the PUs. We assume that the channel between the sensing

node is the combined effect of random Rayleigh flat fading and path loss. Thus

the baseband signal at the spectrum sensing node can be written as follows:

r (n) =

Ntotal∑
i=1

hi (n)xi(n) + ν (n) (4.5)

where xi(n) represents the primary transmitted signal given in (4.2) at time n and

ν(n) is i.i.d. additive complex white Gaussian noise with zero mean and variance

σ2
ν , i.e., ν(n) ∼ CN (0, σ2

ν). The channel coefficient hi(n) ∼ CN (0, σ2
i ) where σ2

i

is determined by nodes transmit power and the pathloss experienced from the

transmitter to the sensing node given in (4.1).

4.3 Band Segmentation

An essential part of any wideband signal processing algorithm is to accurately

idenfity the frequency bands occupied by each active transmitter. This pro-

cess is referred to as Band Segmentation and is defined in [Jon85] as the pro-

cess of decomposing the observed wideband spectrum into individual receiving

information channels. In order to achieve this, we need to estimate the band-

width and center frequency of each of the Ntotal active transmitters. A hypo-

thetical scenario in which band segmentation is particularly challenging is illus-
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Figure 4.2: Example scenario for band segmentation.The dotted line indicates the

entire RF front-end bandwidth while the solid lines represent the individual bands

occupied by the four different PU.

trated in Fig. 4.2 in which the 2nd and 3rd signal have partial spectral overlap.

The key objective of Band Segmentation is to give accurate estimates ∆ω̂BWi
,

ω̂ci ,∀i ∈ {1, 2, . . . , Ntotal}.

The Band Segmentation problem can be addressed through the use of multiple

antennas as proposed in [ES99]. In their work they assumed that signals from var-

ious transmitters can be distinguished on the basis of their angle-of-arrival (AoA)

which is found through the popular MUSIC algorithm [Sch86]. However, such

an approach requires multiple antennas and is therefore very costly to implement

especially in the wideband case. Similarly, other methods based on eigenvalue

decomposition that utilize the raw downconverted wideband signal in order to

separate the individual transmitters result in very high computational complex-

ity.
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One promising approach which requires only a single sensor and which offers

significantly low computational complexity is to use Frequency-Domain Power

Detection (FPD) [Yu13, Chapter 6]. In this method a Fast Fourier Transform is

used to channelize the entire spectrum and perform narrowband signal detection

on each FFT bin [QCS09,YSR11,QCP08,QCS08]. The result of this FPD proce-

dure is then used to give a rough estimate of center frequency and bandwidth. We

first describe this approach which forms the foundation of the methods we present

later in this section. By using information about the traffic behavior of each PU

we are able to extend FPD band segmentation to correctly identify bands that

have partial spectral overlap.

4.3.1 Band Segmentation Using Frequency-Domain Power Detection

In FPD the problem of detecting the activity for each subchannel k can be modeled

as a binary hypothesis test, where hypothesis H0(k) stands for noise only, and

hypothesis H1(k) indicates both noise and signal are present. FPD is based on

estimating the power spectral density (PSD) and applying a threshold which yields

the binary estimate of activity. We will represent the estimated activity of the

kth bin as Â(k). The FPD test statistic is given in [YSR11] as

T (k) ,

Nf−1∑
m=0

|X̂m(k)|2
Â(k)=1

≷
Â(k)=0

τ(k) (4.6)

where T (k) is the energy in the kth FFT bin and τ(k) is its corresponding detection

threshold. The wideband signal is divided into Nf frames and the output of the

FFT for the mth frame is represented as X̂m(k). T (k) is approximately normally

distributed according to the central limit theorem based on the assumption that

M is large enough. Under this condition, the required number of averaging frames

and the detection threshold to achieve a given target probability of false alarm,

PFA, and probability of detection, PD, for a given SNR on the kth-bin with
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measured noise power of σ2
ν(k) can be derived from expressions in [QCS09] as

Nf = 2

(
Q−1(PFA)−Q−1(PD)

√
1 + 2SNR

SNR

)2

, (4.7)

and

τ(k) =
(
Q−1(PFA)

√
2Nf +Nf

)
σ2
ν(k). (4.8)

Based on the binary detection results of (4.6) and by assuming that adjacent

active bins are associated to a single PU, ∆ω̂BWi
can be estimated as the number

of consecutive active bins and ω̂ci as the centroid of these consecutive active bins.

However, such an approach is not robust when the bandwidth is large. If even

one of the bins occupied by one PU is mis-detected, then the signal-of-interest is

regarded as multiple signals resulting in failed band segmentation. To address this

issue, a threshold can be used for the minimum number of contiguous empty bins

before a band is considered empty. This exploits the high degree of correlation

between adjacent bins.

A significant limitation of this approach is the inability to accurately dis-

tinguish between multiple signals when they are in adjacent frequency bands.

Further, any spectral overlap, will cause this approach to fail. Finally, even if

signals are not spectrally overlapped, the imperfect spectral mask due to roll-off

and spectral leakage between FFT bins causes such a method to treat 2 or more

adjacent signals as a single larger bandwidth signal.

4.3.2 Traffic-aware FPD-based Band Segmentation

In order to address the limitations of the FPD-based band segmentation method

presented in the previous subsection, we propose to utilize the temporal variation

in PU activity. In the FPD approach, a particular band is assumed to either

be active, A(k) = 1, or inactive, A(k) = 0, for the entire duration of the sensing

period. However, assuming that PUs are not active all the time, and by performing

spectrum sensing L times, (L > 1), over a given time interval, the on-off behavior

99



of each PU can be observed. As a result, in addition to being a function of the FFT

bin k, the detection results are now also dependent on when sensing is performed.

We represent the temporal dependence of both the true FFT bin activity and the

computed test statistic explicitty by A(k, l) and T (k, l) respectively, where the

second argument represents the fact that this is lth sensing period (k, l ∈ Z, k ≤

K, l ≤ L). Effectively, we want to utilize the traffic behavior of individual PUs

in order to distinguish between them even in scenarios where there is spectral

overlap due to reasons described in the previous subsection. Due to the fact that

it incorporates the actual changing activity of inidividual PUs, we refer to this

approach as traffic-aware FPD-based band segmentation (TA-FPD).

We take advantage of the PU traffic in TA-FPD by performing multiple mea-

surements of the FPD test statistic given in (4.6). Recall that this test statistic

is an estimate of the average power in each FFT-bin. By assuming that signals

from each PU are independent from each other, we can approximate the average

power in each FFT-bin as the sum of the average power of all active PUs for that

particular bin. More explicitly, the new test statistic can represented as

T (k, l) =

Ntotal∑
i=1

ai(l)Ti(k) (4.9)

where we define ai(l) ∈ {0, 1} as the activity of the ith PU during the lth sensing

period and Ti(k) is the FPD test statistic if only the ith user was active. Thus

Ti(k) can be thought of as the PSD of the ith user when estimated using a K-

point FFT. Thus if we can estimate Ti(k)∀i ∈ {1, 2, . . . , Ntotal} from T (k, l), then

we could apply an appropriate threshold to each T̂i(k) similar to (4.6) to perform

band segmentation. Since T̂i(k) is now the PSD for a single signal, the band seg-

mentation becomes trivial. This solves the problemn in FPD band segmentation

we described in the previous subsection in which we are unable to distinguish

adjacent bands or bands with partial spectral overlap. In effect what we want

to do is to decompose T (k, l) into each PUs contribution and perform detection
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on each PU individually. We present one approach to achieve this in the follow

subsection.

4.3.3 Proposed Band Segmentation Approach

We propose to estimate T̂i(k) from T (k, l) by formulating the decomposition of

(4.9) into the corresponding ai(l) and Ti(k) for each PU into a matrix factorization

problem. Defining the activity matrix to be

A ,


a1(1) · · · aNtotal

(1)
...

. . .
...

a1(L) · · · aNtotal
(L)

 . (4.10)

Thus, A is a matrix whose ith column contains the temporal activity of the ith

user. Let us also define the PSD matrix as

T ,


T1(1) · · · TNtotal

(1)
...

. . .
...

T1(K) · · · TNtotal
(K)

 . (4.11)

For this matrix the ith column contains the PSD of only the ith user defined

earlier to be Ti(k). Finally let us define a new matrix R whose elements are given

by {R}kl , T (k, l) which is formed from the L FPD sensing periods.

Using these newly defined matrices we can rewrite (4.9) as R = ATT . The

problem of estimating Ti(k) for all PUs is equivalent to estimating the matrix

T which can be solved as a matrix factorization. However, a constraint in our

problem is that all elements of both A and T need to be non-negative. Since T

represents the PSD and A the activity of each individual PU, then it can easily

be seen that their values must be non-negative.

Using (4.9) and the non-negativity constraint we can solve the band segmen-

tation as an Approximate Non-Negative Matrix Factorization (NNMF) [LS00]. In

an approximate NNMF solution, a matrix R can be decomposed as R = ÂT̂T+V̂,
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where Â and T̂ are the appropriately sized matrices (i.e. L×Ntotal and K×Ntotal

respectively) and V̂ is the residual. In order to solve this matrix factorization

problem, the following cost function must be minimized:

F (Â, T̂) = ‖R− ÂT̂T‖2
F (4.12)

where ‖ · ‖F is the Frobenius norm. Various other costs functions and more

importantly, numerical algorithms for solving this optimization problem has been

presented in [LS00]. The band segmentation results can then be found by applying

a threshold on the elements of T̂.

In order to improve the results of the NNMF we apply a pre-processing stage

based on energy detection in order to eliminate the unnecessary contribution from

the receiver noise. In Fig. 4.3 we show an example of the result of applying NNMF

to the time-frequency map R. The time-frequency map is shown in the form of

a spectrogram on the left and the resulting matrix Ŝ after threshold is shown on

the right as the NNMF Result. The PU occupy bands as shown in the diagram

in Fig. 4.2. From this result we can then find an estimate of ∆ωBWk
with the

number of consecutive active bins and ωck as the centroid of these consecutive

active bins. This process is similar to the naive band-segmentation approach

described earlier. However, one key advantage is the ability to correctly identify

adjacent or overlapped signals such as the one given shown in Fig. 4.2 and Fig. 4.3.

4.3.4 Results and Comparison

4.3.4.1 Simulation Setup

In this subsection we evaluate the performance of the TA-FPD band segmentation

method under various scenarios. The configurable parameters of the proposed

approach are as follows:

• Nf = Number of averaged FFT frames for FPD. This number determines
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Figure 4.3: Illustration of Non-negative Matrix Factorization for band segmenta-

tion. The upper right image shows the spectrogram of 4 PUs, while the figure on

the right shows the segmented bands and the bottom figure shows the estimated

activity.

the achievable PD and PFA depending on the SNR according to (4.7).

• L = Number of FPD sensing periods. This parameter determines, how much

of the temporal variation in PU activity is observed.

• K = Number of FFT points. This parameter determines the best resolution

that can be achieved by both BW and center frequency estimation.
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For our simulations we assume Ntotal PUs occupying a bandwdith of ∆ωBW .

We express all bandwidth and center frequency values in terms of normalized

frequency (i.e. its ratio to the entire baseband signal bandwidth ∆ωBW ). For

simplicity, all transmitters utilize a 4-QAM single-carrier modulation format. Note

however, that since FPD is based only on the average power of each FFT bin,

then the particular modulation class has negligible effect to the performance of our

method. Further, since K determines the resolution of all frequency domain signal

parameters (center frequency, bandwidth), we will fix K = 256 and normalize

all average error measurement to the FFT resoltuion. Thus, the error of two

particular estimates ∆ω̂BWi
and ω̂ci realative to their true values are given by

e(∆ω̂BWi
) =

K(∆ω̂BWi
−∆ωBWi

)

∆ωBW
, e(∆ω̂ci) =

K(∆ω̂ci −∆ωci)

∆ωBW
. (4.13)

Equivalently, we are measuring the average error as number of FFT bins. Finally,

the activity of each PU is generated based on the model in Sec. 4.2.4.

4.3.4.2 Effect of Number of FFT averages (Nf)

In the first set of simulations, we study the effect of the number of FFT averaging

frames on the accuracy of band segmentation. We maintain a fixed PFA = 0.005

for the FPD. As such, the number of averages directly affects only the PD. We

vary Ntotal from 1 to 4, with all users transmitting with normalized bandwidth

∆ωBWi
= 1/8 and whose center frequencies are uniformly distributed over the

entire band, ωci ∼ U(−0.5, 0.5). The number of sensing periods L = 20 is also

fixed and the traffic load is G = 0.5. The simulation results for this scenario is

presented in Fig 4.4. As can be expected, the error in both bandwidth estimation

and center frequency estimation decreases with increased FFT averages which in

turn decreases the variance of the elements of R. However, the accuracy quickly

saturates after Nf = 4 which is equivalent to a PD = 99.5%. More importantly,

we find that the saturated value of the error increases with increasing number of
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Figure 4.4: Effect of varying the number of FFT Averages, Nf , on TA-FPD band

segmentation (L = 20, K = 256). (a) Bandwidth, ∆ωBWi
, estimation error (b)

Center frequncy, ∆ωci estimation error.

PU Ntotal.

In the case of a single user, the algorithm achieves the highest accuracy since

there is no potential overlap between different bands. However, the center fre-

quency accuracy is lower bounded by 0.5 bins which is minimum spectral resolu-

tion of the FFT. In the case of bandwdith estimation, both the FPD and TA-FPD

methods overestimate the value because of the imperfect spectral mask and the

pulse-shaping roll-off.

4.3.4.3 Effect of Varying Number of Sensing Periods (L)

As we have observed, the estimation accuracy can only be improved up to a certain

level by increasing Nf . To further improve the accuracy of band segmentation

we need to increase the number of sensing periods, L which allows the band

segemtation algorithm to observe the random PU traffic further. In Fig. 4.5 we can

confirm that the accuracy of TA-FPD can indeed be improved by increasing the

number of sensing periods L which equates to increasing the number of columns

in R. This confirms our intuition that by increasing L the independence between
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Figure 4.5: Effect of varying the number of sensing periods, L, on TA-FPD band

segmentation accuracy (Nf = 6, K = 256). (a) Bandwidth, ∆ωBWi
, estimation

error (b) Center frequncy, ∆ωci estimation error.

overlapping PU bands can be increased which is the basis of the NNMF and other

matrix factorization methods. However, even with increased sensing period the

error in band segmentation still increases with number of users.

4.3.4.4 Hybrid FPD/TA-FPD Algorithm

Since we have determined that more users contributing to R, we can improve

the accuracy of band segmentation significantly by only performing TA-FPD on

signals which are actually overlapped. To achieve this, we propose a hybrid FPD

and TA-FPD approach. We divide the band segmentation algorithm into two

stages. Stage 1 involves performing the band segmentation based solely on the

energy detection method presented in Sec. 4.3.1. The first stage segments all

non-overlapping PU bands. Each of these band segments is expected to have

one or more PUs. In Stage 2, we perform the NNMF-based (TA-FPD) band

segmentation on each submatrix of R formed by the bins of the bands resulting

from Stage 1. We can see from Fig. 4.6 that compared to TA-FPD, this hybrid

approach achieves significantly better accuracy even with increasing number of
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Figure 4.6: Accuracy comparison of TA-FPD and the Hybrid TA-FPD band seg-

menatation methods under varying number of users (Nf = 6, L = 20, K = 256)

.

users.

In summary, we have shown that NNMF can be a very effective means to

perform band-segmentation. The key benefit of such an approach is that it requires

only a single antenna and is able to segement bands that overlap. As a further

output of the band segmentation procedure, we also obtain an estimate of traffic

activity A which we later use in the channel access scheme identification discussed

in the following section.
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4.4 Identifying Channel Access Scheme

Once the individual bands occupied by the primary network have been iden-

tified, the next step is to distinguish between TDMA, OFDMA, CDMA, and

contention-based channel access methods. TDMA, OFDMA, and CDMA have

distinguishable features due to their signal structure. In particular, modulation

used in TDMA, the effect of the inverse fourier transform in OFDMA, and the

pseudonoise sequence used by users in CDMA. Contention-based methods have

distinguishable features depending on the constellation used and the probability

of collisions between users.

In this section, we start by describing normalized cumulants. Next, the sam-

ple normalized fourth-order cumulant is proposed to distinguish between TDMA,

CDMA, and OFDMA. Its sample variance is proposed for identifying contention-

based methods. We conclude this section with theoretical analysis of the proposed

two-step method and simulation results for the performance of the method.

4.4.1 Normalized 4th-Order Cumulants and its Properties

Cumulants of multiple random variables are particular linear combinations of their

joint higher order moments [Bri81]. For our purpose, we consider cumulants of the

complex-valued zero mean signal y(n) computed by considering multiple copies of

the same signal as distinct random variables. We define kth-order cumulants Cki,

for i ∈ {0, . . . , k}, of the signal y(n) as cumulant of k − i repeated copies of y(n)

and i repeated copies of y∗(n).

In particular, the second-order cumulants are defined to be [SS00a],

C20 = E[y2(n)] and C21 = E[|y(n)|2]. (4.14)

Note that there are two different 2nd-order cumulants. Fourth-order cumulants
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are defined as [SS00a]

C40 = M40 − 3M2
20, and (4.15)

C42 = M42 − |M20|2 − 2M2
21. (4.16)

Note that these expressions do not involve third-order moments of the signal

because most linear modulations used in communication signals are zero-mean

and have zero third-order moments. Similarly, the C41 cumulant is also zero for

most linearly modulated communication signals. Sixth-order and eighth-order

cumulants are defined in Appendix B.

To estimate the cumulants from J samples of a received signal, we use the

unbiased maximum likelihood estimators [SS00a]

Ĉ21 =
1

J

J∑
n=1

|y(n)|2, (4.17)

Ĉ20 =
1

J

J∑
n=1

y2(n), (4.18)

Ĉ40 =
1

J

J∑
n=1

y4(n)− 3Ĉ2
20, and (4.19)

Ĉ42 =
1

J

J∑
n=1

|y(n)|4 − |Ĉ20|2 − 2Ĉ2
21. (4.20)

Note that these cumulant estimates depend on the signal’s average power. Hence,

similar to [SS00a], the cumulant estimates are normalized by the signal power

Ĉ21 − σ2
ν where σ2

ν is the noise power. In particular, we focus on the fourth-order

cumulant estimate

C̃42 =
Ĉ42

(Ĉ21 − σ2
ν)

2
(4.21)

There are four key properties of normalized fourth order cumulants that are

crucial to channel access method classification:

1. One-to-one correspondence with modulation type: It is shown in [SS00a]

that the normalized C42 for single user signals modulated with different
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modulation types is distinct. This also holds true for TDMA systems since

only one user transmits at any given time. We also show, in Appendices B.2

and B.3, that the normalized C42 for signals from OFDMA and CDMA

systems are also distinct. The different values are illustrated in Fig. 4.7.

2. Additivity: The normalized C42 of the sum of independent signals, such

as signals from colliding users, is the linear combination of the individual

normalized C42. Suppose in the fth frame, Ncolliding signals collide then the

C42 estimate of the received signal is

C̃42 =

Ncolliding∑
i=1

(
Ĉ21,i − σ2

ν

)2

(
Ĉ21 − σ2

ν

)2 C̃42,i +
σ4
ν(

Ĉ21 − σ2
ν

)2 C̃42,ν (4.22)

where we define C̃42,i as the normalized cumulant estimate of the received

signal if only the ith signal were active and all other PUs are not transmit-

ting. C̃42,ν represents the estimate of the C42 of the noise alone. The proof

of (4.22) is given in Appendix B. The C42 of gaussian signals is zero [SS00a].

Hence, E
[
C̃42,ν

]
is zero for additive white gaussian noise (AWGN).

3. Effect of Collisions: WhenNcolliding > 1,
∑Ncolliding

i=1 (C21,i − σ2
ν)

2
< (C21 − σ2

ν)
2

due to the concavity of the square function. Hence, C̃42 reduces in magnitude

with increasing number of colliding signals. In expectation, we get

E
[
C̃42

]
Ncolliding→∞−−−−−−−→ 0. (4.23)

Collisions increase the sample variance of the estimated C̃42 because E[C̃42]

depends on the users whose signals collide. Different users collide at different

times and hence, the C42 value changes accordingly as given by (4.37). This

increases the variance of the estimator.

4. Effect of Flat-Fading: Since the C̃42 is normalized to signal power, its mean

value is independent of the attenuation due to flat-fading [SS00a]. It is also

independent of the noise power because E
[
C̃42,ν

]
= 0.
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Figure 4.7: E[C42] values for various classes

4.4.2 Proposed Method

Received TDMA, OFDMA, and CDMA signals have distinct normalized fourth-

order cumulant C42. The value of the C42 for TDMA depends on the modulation

type, that for OFDMA depends on the number of subcarriers, and that for CDMA

depends on the number of users, the code in use, and the modulation type. The

C42 values for OFDMA, CDMA, and some modulation types used in TDMA

systems are illustrated in Fig. 4.7. However, when packets collide randomly, such

as the case in contention-based schemes, then the C42 depends on the sets of users

that have collided and the number of occurrences of each such collision. Since we

cannot know this information in our system, we cannot identify properties of the

received signal from the C42. In other words, the C42 of the received signal can

be used to label a signal as TDMA, OFDMA, or CDMA but the confidence in

this inference will be low if collisions have occurred. We propose using the sample

variance of the estimates of C42 to estimate the probability that collisions have

occurred. If this probability is higher than a parameter PC|T then we declare the

channel access method to be a contention-based method. Otherwise, the channel

access method inferred from the sample estimate of C42 is declared to be true.

Note that TDMA and slotted contention-based channel access methods, such
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as slotted ALOHA, are not distinguishable using time-domain features such as

channel idle and busy durations alone [HYY14]. Hence, we propose discarding

noise-only samples, i.e., squelching the received signal, and using features de-

pendent only on the structure of the transmitted signal and the occurrence of

collisions.

The signal received in a band over a sufficiently long time consists of transmis-

sions from multiple users. Since we need to estimate the sample variance of C̃42,

we start by dividing the squelched received signal {y(n)}n∈{1,...,JF} into F frames

of J samples each. Next, the C42 is estimated for each frame:

C̃42(f) =
1

J

J∑
n=1

|y(J(f −1) +n)|4−|Ĉ20(f)|2−2Ĉ2
21(f) ∀f ∈ {1, . . . , F} (4.24)

where Ĉ21(f) and Ĉ20(f) are similarly computed from the fth frame.

Let the set U(f) be the set users transmitting simultaneously in frame f be

and their C42 estimate be C̃42,U(f)(f). Then the estimated C42 can be represented

as

C̃42(f) =
∑
U⊆U

1{U=U(f)}C̃42,U(f). (4.25)

Since each C42 estimate is gaussian in nature [SS00a], the C̃42(f) has a gaussian

mixture distribution

C̃42(f) ∼
∑
U⊆U

1{U=U(f)}N
(
C42,U , var

[
C̃42,U

])
(4.26)

where C42,U is given by (4.22) and var[C̃42,U ] is computed from (B.9). Therefore,

its mean and variance are

E
[
C̃42(f)

]
=
∑
U⊆U

P (U = U(f))C42,U and (4.27)

var
[
C̃42(f)

]
=
∑
U⊆U

P (U = U(f))

{(
C42,U − E

[
C̃42(f)

])2

+ var
[
C̃42,U

]
+

σ8
ν(∑

u∈U C21,u − σ2
ν

)4 var
[
C̃42,ν

]}
(4.28)
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respectively.

Now, as we had described earlier, we will use the C42 estimate to distinguish

between OFDMA, CDMA, and TDMA with different modulations. In TDMA

systems, exactly one user transmits at a time, i.e., |U(f)| = 1. We assume that

all users in the system have the same modulation type. The C42 estimate then

has the mean and variance as

E
[
C̃42(f)

]
=
∑
u∈U

P (u = U(f))C42,u = C42,1, and (4.29)

var
[
C̃42(f)

]
=
∑
u∈U

P (u = U(f))

{
var
[
C̃42,u

]
+

σ8
ν

(C21,u − σ2
ν)

4 var
[
C̃42,ν

]}
(4.30)

In OFDMA and CDMA systems, all users are active simultaneously at all times.

Therefore, C̃42(f) is a gaussian random variable with mean and variance as de-

rived in Appendices B.2 and B.3 respectively. Thus, E
[
C̃42(f)

]
can be used to

distinguish between TDMA, OFDMA, and CDMA. We propose the test statistic

W =
1

F

F∑
f=1

C̃42(f) (4.31)

and use the maximum likelihood estimator (4.32) to infer the tuple M̂ of channel

access method and the modulation type:

M̂ = arg max
M ′∈M

P (C42 = W |M ′) . (4.32)

Here, we search from the setM which consists of tuples of channel access method

and modulation type and level. These classes are listed in Table 4.1.

Next, we estimate our confidence in this inference. The confidence is estimated

from the variance of the C̃42 value. From (4.28), it is easy to see that

var
[
C̃42(f)

]
≥
∑
U⊆U

P (U = U(f))

{
var
[
C̃42,U

]
+

σ8
ν(∑

u∈U C21,u − σ2
ν

)4 var
[
C̃42,ν

]}
(4.33)
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Table 4.1: List of channel access methods and modulation types & levels that we

search from in (4.32).

Class label Channel access method Modulation type & levels

C1

TDMA

BPSK

C2 M-PSK (M > 2)

C3-C7 4/8/16/32/64-PAM

C8-C10 16/64/256-QAM

C11
OFDMA

QPSK

C12 16-QAM

C13 CDMA BPSK

with equality only if C42,U(f) is equal for all f ∈ {1, . . . , F}. In other words,

var
[
C̃42(f)

]
increases if collisions occur. Hence, we can estimate the confidence

in the absence of collisions from the sample variance of C̃42(f). The confidence

in the occurrence of collisions is hard to estimate because collisions may occur

infrequently and the number of colliding users is not fixed.

Let PC|T be a parameter specifying the maximum permissible probability of

inferring the occurrence of collisions when none have occurred. This is analogous

to setting a desired false alarm probability in a two hypothesis test. We use PC|T

to set a threshold on the sample estimate ς̂2 of var
[
C̃42(f)

]
. The sample variance

is computed by using the modulation type and channel access method inferred

earlier:

ς̂2 =
1

F

F∑
f=1

(
C̃42(f)− C42

(
M̂
))2

. (4.34)

By Cochran’s Theorem [Coc34], the sample variance is distributed as

ς̂2 ∼
var

[
C̃42(f)

∣∣∣∣M,
{
Ĉ21(f)

}
f
, σ2

ν

]
F

χ2
F (4.35)

where χ2
F is a χ2 distribution with F degrees. We choose a threshold τ such that
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P (ς2 > τ |H 6= Hcontention) < PC|T :

τ =
var
[
C̃42(f)

∣∣∣M̂, {Ĉ21(f)}f , σ2
ν

]
F

χ−2
F

(
1− PC|T

)
. (4.36)

If ς̂2 < τ then we declare the inference M̂ from (4.32) to be correct. If not, then

we infer that the channel access method is contention-based.

The algorithm is summarized as Algorithm 1.

Algorithm 1 MAC Classification Algorithm

Input: y ∈ CFJ , σ2
ν

for f = 1 . . . F do

Compute C̃42(f) from (4.24)

end for

W ← 1
F

∑F
f=1 C̃42(f)

for all M ′ ∈M do

Look up E
[
C̃42(f)

∣∣∣M ′, C̃21(f), σ2
ν

]
= E

[
C̃42(f)

∣∣∣M ′
]

from Table B.1

Compute var
[
C̃42(f)

∣∣∣M ′, C̃21(f), σ2
ν

]
by (B.13), (B.14)

Compute P (C42 = T1|M ′)

end for

M̂ ← arg maxM ′∈M P (C42 = T1|M ′)

Compute ς̂2 by (4.34)

Compute τ by (4.36)

Output: If ς̂2 ≤ τ then M ′ else Contention-based

4.4.3 Results and Comparisons

We have proposed a two step procedure to distinguish channel access methods

between TDMA, OFDMA, and CDMA. First, we use the average C̃42(f) to classify

the channel access method as either TDMA, OFDMA, and CDMA. At this stage,

we also infer the modulation type in the case of TDMA. Next, we estimate the

115



probability that collisions have occurred by thresholding the sample variance of

C̃42(f). The threshold depends on the inferred channel access method, modulation

type, and the signal power received in each frame.

4.4.3.1 Identifying Channel Access Method for Non-Contention-based

Methods

Our method can have errors at two stages: the maximum likelihood estimator to

distinguish between TDMA, CDMA, OFDMA and identifying the occurrence of

collisions.

The first stage is multi-hypothesis problem with the possible hypotheses listed

in Table 4.1. The probability of correctly inferring M by the maximum likelihood

estimator (4.32) can be computed from the theoretical distribution of C̃42(f) for

each of these classes. To verify the accuracy of our derivations, we provide the

theoretical and empirical probability of accuracy for these classes in Table 4.2 for

particular values of SNR.

Table 4.2: Verification of theoretical analysis of distributions of C̃42(f) for different

modulation types. System has 4 users, at average SNR of 10dB SNR, and 0.6 load.

Theory Simulation

BPSK 0.938 0.938

M-PSK 0.942 0.935

M-PAM 0.840 0.905

QAM 0.934 0.926

Lastly, we discuss the detection of modulation type and level for a TDMA

system. From Table B.1 in Appendix B, we see that C42 values of different levels

of the same modulation type are very close to each other. In the case of PAM,

for example, the C42 of 32-PAM differs from that of 64-PAM by 0.0018. However,

achieving such an accurate estimate from C̃42 requires samples of the order of 103
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Table 4.3: Confusion matrix for modulation type detection in TDMA systems.

Parameters: 4 users, average SNR 10dB, 0.6 offered load.

BPSK M-PSK PAM QAM

BPSK 0.957 0.025 0.000 0.018

M-PSK 0.004 0.957 0.018 0.021

PAM 0.010 0.047 0.924 0.018

QAM 0.005 0.035 0.013 0.946

or higher. Hence, in our simulations, we observe that our method is unable to

identify the modulation level correctly. However, our proposed algorithm has a

high probability of detecting the correct modulation type of a TDMA system. An

example confusion matrix is shown in Table 4.3.

4.4.3.2 Identifying Contention-Based Channel Access Methods

Our proposed method thresholds the sample variance of the C̃42(f) using a spec-

ified probability PC|T of identifying a non-contention channel access method as

a contention-based channel access system. Simulation results in Section 4.4.3.3

show that this probability is achieved exactly for a variety of system parameters.

Next, we analyze the probability of correctly detecting a contention-based

channel access method. The normalized sample cumulant can be written as

C̃42(f) =
∑
C⊆U

[
I{U(f)=C}

∑
u∈C C

2
21,uC̃42,u(f) + σ4

νC̃42,ν(f)(∑
u∈C C21,u − σ2

ν

)2

]
(4.37)

where C̃42,u(f) , Ĉ42,u(f)/C2
21,u. Explicitly factoring the normalization separates

the signal property (C̃42,u) from the effect of collisions (C21 =
∑

u∈C C21,u). Its
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mean and variance are

E
[
C̃42(f)

]
=
∑
C⊆U

[
P (U(f) = C)

∑
u∈C C

2
21,uC42,u(∑

u∈C C21,u − σ2
ν

)2

]
(4.38)

var
[
C̃42(f)

]
=
∑
C⊆U

P (U(f) = C)

∑
u∈C C

4
21,u var

[
C̃42,u(f)

]
+ σ8

ν var[C̃42,ν(f)](∑
u∈C C21,u − σ2

ν

)4


(4.39)

Now, note that we define T as the second-order moment of C̃42(f) around C42(M̂)

and not around E
[
C̃42(f)

]
. Since the variance is the minimizer of such a second-

order moment, E[T ] ≥ var[C̃42(f)]. Instead, if we consider the probability that

the sample variance of C̃42(f) exceeds our threshold τ , then we get a lower bound

on the probability of detecting contention-based channel access methods. Let T ′

be the sample variance of C̃42(f). Since C̃42(f) is a mixture model of distributions

with finite fourth-order moments, under hypothesis HC , T ′ is distributed as

T ′ ∼ N
(

var
[
C̃42(f)

]
,

1

F
var

[(
C̃42(f)− E

[
C̃42(f)

])2
])

. (4.40)

The mean of T is given by (4.39) and its variance can be computed as

var

[(
C̃42(f)− E

[
C̃42(f)

])2
]

= E

[(
C̃42(f)− E

[
C̃42(f)

])4
]
− E2

[(
C̃42(f)− E

[
C̃42(f)

])2
]

=
∑
C⊆U

4∑
k=0

{(
4

k

)( ∑
u∈C C

2
21,uC42,u

(
∑

u∈C C21,u − σ2
ν)

2
− E

[
C̃42(f)

])4−k

×P (U(f) = C)E

(∑u∈C C
2
21,u(C̃42,u(f)− C42,u) + σ4

νC̃42,ν(f)

(
∑

u∈C C21,u − σ2
ν)

2

)k


− var2
[
C̃42(f)

]
. (4.41)

Note that

E

(∑u∈C C
2
21,u(C̃42,u(f)− C42,u) + σ4

νC̃42,ν(f)

(
∑

u∈C C21,u − σ2
ν)

2

)k
 = E

[(
C̃42,C(f)− C42,C

)k]
(4.42)
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is the kth central moment of the sample normalized C42 of the received signal when

the C users collide. C̃42,C(f) is a gaussian random variable with mean given by

(4.22) and variance computable from (B.9). The gaussian nature of this estimate

implies that the above term is zero for k = 3. The distribution of U(f) depends

on the traffic parameter λi of all the users:

P (U(f) = C) =
∏
u∈C

λu
∏
u∈U\C

(1− λu). (4.43)

Now, we can compute a lower bound on the probability of detecting contention-

based channel access methods as

P
(
Ĥ = HC

∣∣∣HC

)
≥ 1− Φ−1

(
τT − E[T ′

var[T ′]

)
(4.44)

where E[T ′] and var[T ′] are computed as shown above.

The primary factors that affect the detection of contention are the received

powers of each primary user and the probability of collisions, i.e., P (|U(f)| > 1).

The mean of T increases monotonically with the received power of each primary

user. Therefore, the probability of detecting contention increases with an increase

in the received power of each primary user.

The probability of users colliding, i.e., P (|U(f)| > 1), increases monotonically

with increasing λu and also with increasing number of users.

4.4.3.3 Simulation Results

Our channel access method identification algorithm operates on a single frequency

band used by a single primary user network. Our simulation system consists of N

primary users communicating by a TDMA, CDMA, OFDMA, or contention-based

channel access method. In TDMA and contention-based systems, all users use the

same modulation scheme. We assume a Rayleigh flat fading channel between the

primary users and our sensor node. The received SNR of each individual user

is exponentially distributed. The offered load by the system is varied from 0.2
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to 1 and is divided equally among all users. Our metrics are the probability of

correctly detecting TDMA and contention-based channel methods. We test our

proposed algorithm by transmitting the same packets once from users through

TDMA and once more through a contention-based channel access scheme.

We compare our collision detection algorithm with the SVM-based algorithm

proposed in [HYY14]. Their algorithm trains an SVM uses a feature vector con-

sisting of the mean and variance of the received power; the minimum, median, and

maximum lengths of the idle periods; and the minimum, median, and maximum

lengths of busy periods. Unlike their algorithm, we do not need labeled training

data.

The performance of our classifier depends on the modulation type, offered

load, number of users and individual user’s SNR.

First, we consider the probability of identifying between TDMA, OFDMA, and

CDMA. Since we have chosen an algorithm based on bounding the probability of

wrongly labeling a system as using a contention-based method, the probability

of correctly detecting a system as TDMA, OFDMA, or CDMA is approximately

independent of the offered load, the number of users, and the average SNR. For

example, Fig. 4.8 shows the probability of correctly detecting TDMA, OFDMA,

and CDMA for a system having an average SNR of 5dB. We have chosen the

parameter PC|T as 0.05.

On the other hand, the probability of detecting contention-based channel ac-

cess methods is highly dependent on the modulation type, the average SNR, the

offered load, and the number of users. The effect of the modulation type and

the offered load can be seen in Fig. 4.9. BPSK has the least var[C̃42] and hence,

the probability of identifying contention-based systems using BPSK is the least.

PAM-modulated signals have the highest var[C̃42(f)] and hence, the probability

of identifying contention among PAM signals is high. Increasing the offered load

increases the number of collisions as can be seen from (4.43). This improves the
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Figure 4.8: Probability of correctly identifying the channel access scheme at 5dB

average SNR

probability of correctly detecting contention-based algorithm.

To study the effect of SNR on the detection of contention-based channel ac-

cess methods we illustrate, in Fig. 4.10, the probability of detecting a BPSK

modulated contention-based system as a contention-based channel access method.

We choose BPSK modulation because it has the worst probability of detecting

contention-based channel access methods due to the low var
[
C̃42

]
. We observe

that the probability of detecting it as contention-based increases with increasing

SNR of individual users. This is explained by the fact that E[T ], as described

by (4.39), is monotonically decreasing with the individual signal powers C21,u.

Counter-intuitively, Fig. 4.10 also shows that as the number of users increases,

the probability of detecting contention-based channel access method does not

change significantly.

In summary, our proposed algorithm is able to successfully classify signals

received from a primary user network as being either TDMA, OFDMA, CDMA,

or contention-based. For TDMA systems, it is able to identify the modulation

type with high accuracy.
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Figure 4.9: Contention Detection of 4 users.
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4.5 Conclusion and Future Work

We have presented in this chapter a new integrated approach for achieving chan-

nel access method classification. In particular we have developed a new method

for band-segmentation that could be used in a single antenna system based on

a frequency domain power detection method coupled with NNMF. Unlike other

single-antenna band-segmentation appraoch, this method is able to successfully

segment bands with partial spectral overlap by observing the temporal activity

of each PU. We have also presented a hybrid approach that combines this ma-

trix factorization method with a more robust energy detection based method in

order to further improve the accuracy of both center freqeuncy and bandwdith

estiamtion.

We have also shown in this chapter two key algorithms that can be used to iden-

tify the channel access method utilized by a primary network. In particular, we

extended a cumulant-based modulation type classification technique to differenti-

ate between OFDMA, CDMA and TDMA. A novel method based on the variance

of the sample cumulant estimator has been proposed to identify contention-based

channel access methods such as CSMA. The goal of channel access method classi-

fication is to further improve our knowledge of the behavior of PUs which is also

the key goal of advanced spectrum sensing. We have also done comparisons with

existing approaches and showed that our technique provides higher classification

accuracy given the same target false alarm probability.
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CHAPTER 5

Conclusion

5.1 Summary of Contributions

This dissertation has put forth the idea of advance spectrum sensing. Through

several key enabling aspects of such as system, which include activity detection

(conventional spectrum sensing), modulation classification and MAC-layer classi-

fication we have investigated the challenges faced by future cognitive radio sys-

tems. In particular we focused on the development, analysis, and evaluation of

algorithms that solve three key tasks crucial to advance spectrum sensing.

We proposed a cyclostationary spectrum sensing method specifically targeted

for a multiple antenna receivers which is highly robust to noise uncertainty be-

cause the detection threshold is not dependent on SNR. . We have shown that this

method has lower computational complexity than existing methods of comparable

performance because it only computes the cyclic covariance matrix once and per-

forms the correlation in time which eliminates the need for taking a high frequency

resolution FFT with large number of samples. More importantly we have derived

asymptotic theoretical expressions for the probability of detection and false alarm.

Using these expressions aided with simulations we evaluated the performance of

this method under various scenarios including Rayleigh fading channel, correlated

noise environments, and in the presence of a strong interferer. The method was

shown to outperform existing techniques in all considered scenarios.

We developed a computationally efficient method for modulation level classifi-
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cation based on distribution distance functions. Specifically, we proposed to use a

metric based on Kolmogorov-Smirnov and Kuiper distances which exploits the dis-

tance properties between CDFs corresponding to different modulation levels. The

proposed method results in faster modulation level classification than the com-

monly used cumulant-based method, by reducing the number of samples needed.

It also results in lower computational complexity than the KS-GoF method, by

eliminating the need for a sorting operation and using only a limited set of test

points, instead of the entire CDF. We have further verified the practicality of

these approach by implementing two modulation level classifiers in a practical

real-time hardware platform with radio front-ends and a DSP engine (BEE2),

and evaluated their classification performance under realistic impairments such as

quantization errors and timing synchronization errors. Both classifiers were shown

to follow similar trends with regard to these impairments, and their hardware com-

putational complexity were proven to be similar. Finally we have developed the

concept of distribution distance based classification. We also derived the optimal

discriminant functions for classifying modulation schemes using the sampled dis-

tribution distance. This method was shown to provide substantial gains compared

to other existing approaches. The performance of this method is also shown to be

close to the maximum likelihood classifier but at significantly lower computational

complexity. The same classifier can be generalized to any classification problem

where the CDF of each class is available.

Finally, we have contributed to the problem of MAC layer classification through

the development of algorithms to perform channel access method classification. In

particular, we presented a novel scheme for acquiring this information comprising

of three main stages 1) Band Segmentation, 2) Channel Access Method and Mod-

ulation Type Classification, and finally 3) Collision detection. We proposed and

evaluated a novel method of performing band-segmentation on a wideband spec-

trum that is able to successfully distinguish between spectrally overlapped signals
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without the need for multiple antennas as prior methods do. This is achieved

by exploiting the temporal independence in primary user activity through the

Non-Negative Matrix Factorization (NNMF) method. We extend existing fourth-

order cumulant-based methods of modulation type classification to distinguish

between multiplexing methods including TDMA, OFDMA, and CDMA. We pro-

posed a novel method based on the sample variance of the cumulant estimator

in order to identify contention-based systems. Through analysis and simulations

we show that our scheme is capable of distinguishing between TDMA, OFDMA,

CDMA, and contention-based channel access methods with a high probability.

Further, our proposed method is capable of identifying the modulation type of

non-contention-based primary users with high accuracy.

5.2 Furture Work

There are many aspects of the advance spectrum sensing system that need to be

solved before it finally becomes practical. In the area of cyclostationary spectrum

sensing, the approach we have presented is only able to detect a single cyclic fre-

quency due to the limitations of the covariance matrix approach. Several work

have shown that each man-made signal actually exhibits multiple cycle frequen-

cies. There is therefore a need to adapt the eigenvalue-based approach into a

multiple cycle frequency detector. Some promising ideas include applying a com-

plex exponential that is a sum of the multiple cycle frequencies present in the

signal of interest.

As for distribution distance based classification, we have already presented the

optimal form of the classifier. However, the implementation of such a classifier

in hardware is still an interesting challenge. As we have shown in our own hard-

ware implementation, problems with the improper scaling of signals prior to level

classification require very accurate noise power estimation algorithms. Techniques
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that allow classification in the presence of interferers are also of great interest.

Lastly, the area of MAC layer classification is yet a new and barely explored

problem in the context of cognitive radios. Therefore there are still many problems

facing its practical application. Most importantly, the effect of large variation in

received power of signals remains a big challenge in collision detection. The ap-

proaches we have shown perform best whenever collisions of almost equal received

power are being observed. This is not necessarily the case in a large geographi-

cal area. There is also a need to solve the problem of frequency hopping MAC

schemes which cannot be directly addressed using our technique.
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APPENDIX A

Derivation of True Correlation under H1

In this appendix, we find the true correlation, ρ, under the non-null hypothesis

H1 given a particular instance of the channel, h, and noise covariance matrix,

Rηη = σηAAH . We begin by repeating (2.22) and (2.25) since these covariance

matrices completely determine the test statistic.

Rxx = hhH + Rηη (A.1)

Rα0
xx = hhHRα

ss. (A.2)

From (2.14) and under the assumption of only one SOI (µi = 0 for i > 1) we

have

1− µ2
1 =

1

|Rxx|2

∣∣∣∣∣∣Rxx Rα0
xx

Rα0
xx Rxx

∣∣∣∣∣∣, (A.3)

where we recognize that both covariance matrices are Hermitian symmetric. Using

the determinant for block 2× 2 block matrices, we have

1− µ2
1 = |Rxx|

∣∣Rxx −Rα0
xxR

−1
xxRα0

xx

∣∣/|R̂xx|2 (A.4)

=
∣∣Rxx −Rα0

xxR
−1
xxRα0

xx

∣∣/|Rxx| (A.5)

Substituting Rα0
xx and grouping together scalar terms

1− µ2
1 =

∣∣Rxx −
(
|Rα

ss|
2 hHR−1

xxh
)
hhH

∣∣/|Rxx| (A.6)

Using Sylvester’s determinant theorem for the sum of a full-rank and rank-1 matrix

1− µ2
1 = |Rxx|

(
1− |Rα

ss|
2 (hHR−1

xxh
)2
)
/|Rxx| (A.7)

µ1 = |Rα
ss|hHR−1

xxh (A.8)
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To proceed further, we need to evaluate the inverse of (A.1) which is a sum of a

full-rank matrix and a rank-1 matrix. Using the results in [Mil81, Eqn. 1] the

inverse becomes

R−1
xx = R−1

ηη −
R−1

ηηhhHR−1
ηη

1 + hHR−1
ηηh

. (A.9)

Thus we have,

µ1 = |Rα
ss|hH

(
R−1

ηη −
R−1

ηηhhHR−1
ηη

1 + hHR−1
ηηh

)
h (A.10)

=
|Rα

ss|hHR−1
ηηh

1 + hHR−1
ηηh

. (A.11)

Recalling that Rηη = σηAAH , we arrive at the final expression

µ1 = |Rα
ss|hHA−HA−1h/(σ2

η + hHA−HA−1h). (A.12)
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APPENDIX B

Statistics of Sample Estimates of Cumulants

Consider J samples of a complex signal r(n) as given by (4.5). Define y(n) =

r(n) − 1
J

∑J
n=1 r(n) so as to obtain a zero-mean form of the received signal. We

wish to derive the mean and variance of the estimator C̃42,y where the subscript

y indicates that the cumulant is computed from the signal y(n).

We begin by studying the unbiased estimator for the (unnormalized) Ĉ42,y

cumulant:

Ĉ42,y = M42,y − |Ĉ20,y|2 − 2Ĉ2
21,y. (B.1)

Since these terms are correlated, we have

var[Ĉ42,y] = var[M̂42,y] + var[|M̂20,y|2] + 4 var[M̂2
21,y]− 2 cov[M̂42,y, |M̂20,y|2]

− 4 cov[M̂42,y, M̂
2
21,y] + 4 cov[|M̂20,y|2, M̂2

21,y]. (B.2)

From the Appendix in [SS00a] we have

var[M̂42,y] =
1

J
(M84,y −M2

42,y) (B.3)

The asymptotic analysis of both var[M̂2
21,y] and cov[M̂42,y, M̂

2
21,y] as derived in

[SS00a] are incorrect since they fail to take into account some O(1/J) terms as

shown in the following derivation. Using the definition α ,M42,y −M2
21,y,

var[M̂2
21,y] =

(J − 1)(J − 2)(J − 3)

J3
M4

21,y +
6(J − 1)(J − 2)

J3
M2

21,yM
2
42,y

−
(
M2

21,y +
α

J

)2

+O(1/J2)

=

(
1− 6

J

)
M4

21,y +
6

J
M2

21,yM42,y −
(
M2

21,y +
α

J

)2

+O(1/J2)

≈ 4

J
M2

21,y(M42,y −M2
21,y) (B.4)
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The error is in failing to take into account the − 6
J
M4

21,y part of the first term. A

similar derivation also gives the corrected expression

cov[M̂42,y, M̂
2
21,y] =

2

J
M21,y(M63,y −M42,yM21,y) (B.5)

Following similar derivations we can find the rest of the terms in (B.2) as

var[|M̂20,y|2] =
2

J
M42,y|M20,y|2 +

2

J
Re{M40,yM

∗2
20,y} −

4

J
|M20,y|4 (B.6)

cov[M̂42,y, |M̂20,y|2] =
2

J
Re{M62,yM

∗
20,y} −

2

J
M42,y|M20,y|2 (B.7)

cov[|M̂20,y|2, M̂2
21,y] =

4

J
M21,y Re{M41,yM

∗
20,y} −

4

J
M2

21,y|M20,y|2 (B.8)

Substituting (B.3)–(B.8) into (B.2) we find the general expression for the asymp-

totic variance of the C42,y estimate as follows:

J var[Ĉ42,y] ≈M84,y −M2
42,y + 8M21,y

[
2M21,y(M42,y −M2

21,y − |M20,y|2) + 2 Re{M41,yM
∗
20,y}

−M63,y +M21,yM42,y] + 2 Re{M∗
20,y(M40,yM

∗
20,y − 2M62,y)}

+ 2|M20,y|2(3M42,y − 2|M20,y|2). (B.9)

Now, y(n) is a noisy signal. We will rewrite (B.9) in terms of cumulants so

that we can quantify the effect of noise using the additive property of cumulants.

The following moment–cumulant equivalence relations are easy to derive:

M84,y =C84,y + 16C63,yC21,y + 12 Re{C64,yC20,y}+ 72C2
21,yC42,y + 18C2

42,y + 16|C41,y|2

+ |C40,y|2 + 6 Re{C∗40,yC
2
20,y}+ 96 Re{C∗41,yC20,y}C21,y + 36|C20,y|2C42,y

+ 72|C20,y|2C2
21,y + 24C4

21,y + 9|C20,y|4 (B.10)

M63,y =C63,y + 6 Re[C20,yC43,y] + 9|C20,y|2C21,y + 6C3
21,y + 9C21,yC42,y (B.11)

M42,y =C42,y + |C20,y|2 + 2C2
21,y, M40,y = C40,y + 3C2

20,y, M21,y = C21,y.

(B.12)

Gaussian noise has all the relevant cumulants zero except for C21,ν = σ2
ν . By slight

abuse of notation, let Cki,x be the Cki cumulant of the noiseless signal component
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of y(n). Then, except for C21,y, we can rewrite all the relevant cumulants as

Cki,y = Cki,x. C21,y can be rewritten as C21,y = C21,x + σ2
ν . Using these relations

and (B.10)-(B.12), we can rewrite (B.9) in terms of cumulants.

B.1 Single User Signals

If it is known that the received signal r(n) consists of a single user’s signal, i.e.,

no collisions have occurred and it is not a CDMA or OFDMA signal, then we

can use the modulation type M of the signal to describe var
[
C̃42,y

]
. We do

this by assuming that the normalizing factor
(
Ĉ21,y − σ2

ν

)2

is perfectly estimated.

Then, after normalization, Cki,x are replaced by Cki(M) where Cki(M) is the

Cki cumulant of a unit power signal having modulation M . After normalization,

C21,y would be replaced by C21,y/(C21,y − σ2
ν). Using these relations and (B.10)-

(B.12), we can rewrite (B.9) in terms of cumulants for signals modulated by real

constellations as:

J var[C̃42,y] =C84(M) + 4C63(M)

[
C21,y

C21,y − σ2
ν

]
+ 12 Re{C∗62(M)C20(M)}+ 17C42(M)2

− 8

[
C21,y

C21,y − σ2
ν

]2

C42(M) + 34|C20(M)|2C42(M) + 16|C41(M)|2

+ 24 Re{C41(M)∗C20(M)}
[

C21,y

C21,y − σ2
ν

]
+ |C40(M)|2

+ 6 Re{C40(M)∗C20(M)2}+ 24

[
C21,y

C21,y − σ2
ν

]4

(B.13)

where we use the fact that real constellations have all real moments, i.e., M20 =

M21, M40 = M41 = M42, and M62 = M63. Similarly, for signals modulated by

constellations having four-fold symmetry, such as QAM, we use C20 = 0 = C21 to

get

J var[C̃42,y] =C84(M) + |C40(M)|2 + 8

[
C21,y

C21,y − σ2
ν

]
C63(M) + 20

[
C21,y

C21,y − σ2
ν

]2

C42(M)

+ 4

[
C21,y

C21,y − σ2
ν

]4

+ 17C42(M)2 (B.14)
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This is the corrected form of [SS00a, Eqns. 13].

Table B.1 lists the statistics of the C42 estimation for unit power noise-less

signals having different modulation types.

B.2 Statistics for OFDMA Signals

The use of fourth order cumulants for distinguishing OFDM signals from single

carrier signals is proposed and analyzed in [SLB08]. The moments for OFDM are

found to be

M84 ≈ 24, M63 ≈ 6, M40 ≈ 0, M42 ≈ 2, M21 = 1. (B.15)

Using these moments in the corrected expression in (B.9) gives that J var[Ĉ42] ≈ 4

which coincidentally also matches the result derived in [SLB08] from the incorrect

expression of [SS00a]. Note however that this result only applies for OFDM with

subcarrier modulations that satisfy the fourfold symmetry such as QPSK. Using

these moments the variance of the fourth order cumulant for a noisy OFDM signal

can be found using (B.14).

B.3 Statistics for CDMA Signals

A CDMA signal which uses BPSK chips can be viewed as the sum of Ntotal BPSK

signals given as

x(n) =

Ntotal∑
i=1

si(n) (B.16)

where si(n) is a BPSK formed by spreading the data to be transmitted with the

particular code assigned to that user and is given by (4.4). Thus we can find

the mean of the normalized fourth-order cumulant of a noiseless CDMA signal as

E[Ĉ42] = −2/Ntotal where we invoke the additivity property as given in (4.22). In

effect, the mean normalized fourth order cumulant approaches 0 as the number of
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Table B.1: Theoretical Cumulant Statistics C42 for Various Constellation Types,

and Variances of Their Sample Estimates

Constellation C42 Nvar1(Ĉ42) from [SS00a] Nvar1(Ĉ42)

BPSK -2.0000 36.00 0.00

PAM(4) -1.3600 34.72 10.24

PAM(8) -1.2381 32.27 9.98

PAM(16) -1.2094 31.67 9.90

PAM(32) -1.2024 31.52 9.88

PAM(64) -1.2006 31.49 9.88

PAM(∞) -1.2000 31.47 9.87

PSK(≥4) -1.0000 12.00 0.00

V32 -0.6900 9.70 1.42

V29 -0.5816 8.75 1.77

QAM(4,4) -0.6800 9.54 1.38

QAM(8,8) -0.6191 8.82 1.39

QAM(16,16) -0.6047 8.65 1.39

QAM(32,32) -0.6012 8.61 1.39

QAM(∞ ) -0.6000 8.59 1.39

BPSK-OFDM 0 – ∼8

QPSK-OFDM 0 – ∼4
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users increases.

As for the variance of Ĉ42 we can use the general expression in (B.9) once the

moments are found. Due to the blind nature of our classification problem, we do

not have knowledge of the true spreading code used by each user. As a result,

the correlations from one chip to another within the same symbol period cannot

be known. However, unlike the single carrier signals presented in this appendix,

these correlations are clearly non-zero and are dependent on the codes used. To

circumvent this issue we will assume that such correlations are negligible. Note

that with this assumption we are treating CDMA signals to be similar to a sum of

BPSK signals in which symbols from different symbol periods and different users

are regarded as i.i.d. This is clearly an approximation, but we have found through

simulations that the discrepancy is negligible in practice.

With this assumption we can proceed to derive the moments of a sum of Ntotal

BPSK signals to be

M42 =

(
4

2

)(
Ntotal

2

)
1

N2
total

+
1

Ntotal

(B.17)

M63 =

(
6

2

)(
4

2

)(
Ntotal

3

)
1

N3
total

+

(
6

4

)(
Ntotal

2

)
2

N3
total

+
1

N2
total

(B.18)

M84 =

(
8

2

)(
6

2

)(
4

2

)(
Ntotal

4

)
1

N4
total

+

(
8

4

)(
4

2

)(
Ntotal

3

)
3

J4
(B.19)

+

((
8

6

)
+

1

2

(
8

4

))(
Ntotal

2

)
2

N4
total

+
1

N3
total

(B.20)

The detailed derivations of theses expressions have been left out. However, all

expressions can be derived using combinatorics. The final variance with noise can

then be found through (B.12).
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