
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Accurate Real-Time Reconstruction of Distant Scenes Using Computer Vision: The Recursive
Multi-Frame Planar Parallax Algorithm

Permalink
https://escholarship.org/uc/item/59k2n9ms

Author
Templeton, Todd

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59k2n9ms
https://escholarship.org
http://www.cdlib.org/

Accurate Real-Time Reconstruction of Distant

Scenes Using Computer Vision:

The Recursive Multi-Frame Planar Parallax Algorithm

by

Todd Russell Templeton

B.S.E. (Princeton University) 2004

M.S. (University of California, Berkeley) 2006

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor S. Shankar Sastry, Chair

Professor Ruzena Bajcsy

Professor Martin Banks

Fall 2009

Accurate Real-Time Reconstruction of Distant

Scenes Using Computer Vision:

The Recursive Multi-Frame Planar Parallax Algorithm

c© 2009

by Todd Russell Templeton

Abstract

Accurate Real-Time Reconstruction of Distant

Scenes Using Computer Vision:

The Recursive Multi-Frame Planar Parallax Algorithm

by

Todd Russell Templeton

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

In this dissertation, we detail the Recursive Multi-Frame Planar Parallax (RMFPP) al-

gorithm, a recursive extension of Irani et al.’s Multi-Frame Planar Parallax (MFPP) batch

algorithm that allows real-time reconstruction of distant static scenes using computer vi-

sion, with expected error that increases only linearly with depth. We present an overview

and comprehensive derivation of the theoretical foundation on which the RMFPP algorithm

is built, including the seminal planar-parallax work by Sawhney. We derive a recursive cost

function that preserves more of the problem’s nonlinearity than does the cost function in

the MFPP algorithm, which allows a more accurate recursive procedure. In order to obtain

a recursive algorithm, we remove the geometry-refining optimization that is present in the

MFPP algorithm; however, we empirically show that our algorithm degrades gracefully in

the presence of geometric error. We present results using both synthetic and real imagery

that show that the RMFPP algorithm is at least as accurate as the original MFPP batch algo-

rithm in many circumstances, is preferred to both fixed- and dynamic-baseline two-frame

methods, and is suitable for real-time use.

1

For Cheryl.

i

Contents

Acknowledgments iv

1 Introduction 1

1.1 Comparison to Previous Work . 1

1.2 Achieving Greater Accuracy With Multiple Frames 4

2 Multi-Frame Planar Parallax 9

2.1 Geometry . 10

2.2 Homographies . 12

2.3 Geometric Constraint . 13

2.4 Combining Multiple Frames . 16

2.5 The Multi-Frame Planar Parallax Algorithm 17

3 The Recursive Multi-Frame Planar Parallax Algorithm 20

3.1 Enabling Observations . 20

3.2 Recursive Cost Function . 22

3.3 Minimization of the Recursive Cost Function 24

3.4 Cost Function Comparison . 26

3.5 Complete Algorithm . 27

4 Results 31

4.1 Method . 31

4.2 Translation Experiments . 33

4.3 Effect of Geometric Noise . 45

4.4 Effect of Forward Camera Tilt . 47

4.5 Effect of Cost Function . 47

4.6 Real Image Experiments . 49

4.7 Full Terrain Reconstruction . 51

5 Conclusion 56

Bibliography 57

ii

List of Figures

1.1 Idealized flight for purposes of analyzing depth accuracy 5

1.2 Predicted standard deviations for stereo and multi-baseline vs. depth 8

2.1 Geometry of two-view planar parallax . 11

3.1 Uncertainty in disparity and depth for a translating camera 21

4.1 Synthetic sinusoidal terrain . 36

4.2 Sample images rendered from the sinusoidal terrain 37

4.3 Sample translation experiment results . 39

4.4 Algorithm comparison: σimg = 0 . 40

4.5 Algorithm comparison: σimg = 5 . 41

4.6 Algorithm comparison: σimg = 10 . 42

4.7 Effect of image weights . 43

4.8 Effect of different numbers of pyramid levels 44

4.9 Effect of geometric noise . 46

4.10 Effect of forward camera tilt . 48

4.11 Effect of cost function . 49

4.12 Real image results . 50

4.13 USGS terrain . 52

4.14 Sample images rendered from the USGS terrain 54

4.15 USGS experiment results . 54

4.16 Reconstructed USGS terrain . 55

iii

Acknowledgments

This dissertation would not have been possible without the support of my advisor, Prof. S.

Shankar Sastry. From our initial meeting—when he offered me the opportunity to work

on what would become my dissertation before the beginning of my first semester—he has

consistently provided me with the freedom to pursue my interests, and the (sometimes very

expensive) equipment required to transform them into reality.

I would like to extend special appreciation to Dr. Christopher Geyer, the postdoctoral

scholar with whom I worked at the beginning of my graduate career. Despite the fact

that he began our time together by asking me to write two routines in assembly as a pro-

gramming test—and then discarded them in favor of the original C versions for reasons of

maintainability—I owe him a great debt for his instigation of the Bearland helicopter map-

ping and landing project, and for the beginnings of many of the ideas in this dissertation.

I would also like to thank Prof. Ruzena Bajcsy and Prof. Martin Banks for serving on

my committee; Dr. Jonathan Sprinkle for his support in all things technical, political, and

administrative; Dr. David Shim, Dr. Hoam Chung, and Travis Pynn for their support of my

experiments at Richmond Field Station; and the Boeing Phantom Works crew at Southern

California Logistics Airport for their support of my experiments in Victorville.

Parts of this dissertation are reprinted, in original or modified form, from [5]. They are

c©2006 IEEE and are reprinted with permission.

iv

Chapter 1

Introduction

In this dissertation we address the problem of accurately reconstructing a distant scene

with a single camera, and doing so at framerate. An important application is the creation of

digital elevation maps (DEMs) for purposes ranging from visualization (e.g. Google Earth

and NASA’s World Wind [19]) and hydrological analysis [8], to robot path planning [18]

and autonomous landing [23]. Though active technologies such as radar and LIDAR are

available and tend to have very high accuracy, passive sensors are often cheaper and have

a smaller form factor, consume less power, and (being emissionless) are more difficult to

detect. For a small platform such as a micro air vehicle (MAV) [15], passive sensors may

be the only viable option.

1.1 Comparison to Previous Work

A common method for passive range estimation is the use of a stereo camera pair [3,

13]. Stereo systems, unfortunately, cannot attain the desired accuracy given constraints

on resolution and platform space. For a stereo system, the variance of depth estimates (ẑ)

1

grow quartically with depth—that is, the variance of expected differences between the true

depth and the estimate E
[
(z − ẑ)2] = O(z4)—which in our case is unacceptable.1

In a rigid scene, however, we can treat multiple images—obtained as the vehicle moves

through space—as a multiple-camera system. We describe here a recursive method based

on the multi-frame planar parallax framework [17, 7] that uses multiple image pairs with

baselines larger than are physically attainable on the platform in order to reduce vari-

ance. We show that in theory we can recover depth with a variance that is asymptotically

quadratic in the depth.

The novelty of this result is a method that is (i) recursive in the sense that the cost

of incorporating measurements from a new image is proportional only to the number of

pixels in the image and does not depend on the number of frames already seen; (ii) dense,

in the sense that it provides estimates of depth for any sufficiently-textured region; (iii)

more accurate than instantaneous stereo; and (iv) direct (see the discussion, pro: [6], con:

[24]), by which we mean that the algorithm does not depend on the matching of features,

but rather expresses a cost function directly in terms of the image, and the gradients of the

cost function are computed by linearization of the brightness constancy constraint.

Other methods feature some, but not all, of these elements. For example, bundle ad-

justment [25] is the optimal estimator for determining structure and motion from multiple

views when correspondences are known and correct. However, it provides neither dense

structure, nor the ability to recover structure recursively. Stereo and multi-baseline meth-

ods are the most-favored methods for recovering dense structure, e.g. [16, 20]. Matthies

and Shafer [13], and later Xiong and Matthies [26], investigate sources of error in stereo;

the primary drawback of stereo is its inaccuracy, as discussed above. Planar parallax is

a related framework based on registration using a plane in the scene [17]. Irani et al. [7]

1For example, at a depth of 100 meters, a baseline of 1 meter, and a focal length f = 500, the standard

deviation of ẑ is approximately 20 meters.

2

propose a method for estimating planar parallax, and from it depth, using more than two

views, though it is not recursive. Their work is the closest in spirit to ours. We improve

on this method in that we present a Recursive Multi-Frame Planar Parallax (RMFPP) algo-

rithm. Other closely related works are Zucchelli et al. [27], in which they sparsely estimate

structure and motion and update a dense structure map; and Matthies et al. [14], in which

they propose a Kalman filter for updating disparities.

Here we employ a direct method that takes advantage of the observation that for a

smoothly-moving camera, although the initial small-baseline disparity estimates may lead

to inaccurate depth estimates, they are nevertheless accurate disparity measurements. Fur-

thermore, later improvement in the depth estimates will not significantly change the refined

small-baseline disparities. Therefore, in the cost function described in [7], the image need

not be rewarped and relinearized. Instead the linearized terms are kept and are incorporated

into the cost function for later frames.

The method described here is subject to several assumptions. We reiterate that this

method updates estimates of structure only; we assume that the positions and orientations

of the cameras have been previously determined. We have not found a method to recur-

sively estimate structure and motion that is both dense and direct—the possibility of such

an algorithm seems unlikely but remains open. We also rely on the usual assumptions:

validity of the brightness constancy constraint within some regions, rigidity of the scene,

and the presence of sufficient texture. Finally, the motions between the camera positions

should be sufficiently small—though this constraint can be lessened by the use of image

pyramids.

3

1.2 Achieving Greater Accuracy With Multiple Frames

In this section we model depth errors in a stereo pair and in an idealized multiple-baseline

system. For a fixed-baseline stereo pair, the predicted standard deviation is quadratic in the

depth, i.e. E
[
(ẑ − z)2]1/2

= O(z2). Using the simple case of a camera moving in a straight

line at constant velocity, we show that by appropriately weighting pairwise estimates we

can theoretically attain errors between O(z) and O
(
z1/2

)
, depending on the correlation

between disparity estimates.

Fixed-baseline stereo. Consider a rectified stereo pair separated by a baseline b, observ-

ing a point at depth z. The relationship between disparity and depth is given by z = f b/δ,

where δ is the disparity and f is the focal length. Ignoring quantization errors and mis-

matches, we can obtain an approximation of the variance of the depth estimate at any

single pixel, namely:

σ2
ẑ = E

[
(ẑ − z)2]

= E

[(
f b

δ + ǫ
−

f b

δ

)2
]

=

∫ (
f b

δ + ǫ
−

f b

δ

)2

p(ǫ) dǫ

=
f 2 b2

δ2

∫ (
ǫ

δ + ǫ

)2

p(ǫ) dǫ

≈
f 2 b2

δ2

∫ (
1

δ
ǫ

)2

p(ǫ) dǫ

=
f 2 b2

δ4

∫

ǫ2 p(ǫ) dǫ

=
z4

f 2 b2
σ2

ǫ (1.1)

where ǫ is the zero-mean error in the disparity estimate, and where we have taken the

first-order Taylor series approximation of ǫ/(δ + ǫ) in ǫ about 0. Generally σǫ depends

on the image derivatives along the scanline. Using a single stereo measurement would be

4

Figure 1.1: Idealized flight for purposes of analyzing depth accuracy. c©2006 IEEE.

Reprinted, with permission, from [5].

ill-advised at depths greater than f b/σǫ—corresponding to a disparity of σǫ—above which

the predicted standard deviation σẑ would become larger than the depth.

Can we achieve greater accuracy in range using only passive means? We can reduce

uncertainty by increasing b, or by utilizing the independence in the measurements, if there

is any. Often it is not practical to increase the baseline between two vehicle-mounted

cameras beyond some fixed limit, but on a moving vehicle we can get wider baselines for

free. If the camera’s motion can be recovered (either by structure-from-motion methods or

by some combination of inertial and GPS systems) then we can use multiple measurements

to reduce error. If the measurements are to some degree independent, then we can drive

down uncertainty.

Monocular camera at constant velocity and framerate. We consider the following situ-

ation, depicted in Figure 1.1: an aerial vehicle flying at constant altitude above terrain with

average relative height z meters, at constant horizontal velocity v. Assume that the position

of the vehicle is known without error at all times, and that a downward-pointing onboard

camera with field of view θ captures an image every t seconds. The baseline between the

0-th and k-th frame is bk = kvt and the number of times a point at depth z from the camera

is seen is at most n = l/vt = 2z tan θ
2
/vt.

5

Let us use a single pair of frames separated by a wider baseline and determine the

resulting depth error. Choose the 0-th frame and the c · n-th frame, where c < 1—that is, a

frame a constant fraction in between the first and the last frame in which there is overlap in

the two views of the ground. Then the predicted accuracy (variance) is z2σ2
ǫ /4c

2f 2 tan2 θ
2
.2

This is a significant improvement over the fixed-baseline case. Instead of being quadratic

in the depth, here the predicted standard deviation is proportional to the depth.

Can we do better than error linear in depth by using multiple measurements? We can get

the most out of multiple measurements when they are known to be independent. However,

in simulated experiments with 1/f noise, we find that errors in disparity estimates are

correlated with correlation coefficient up to 0.6; i.e. if ǫi,j is the error in the estimate of

disparity between frames i and j, then we find there to be correlation between errors ǫ0,1 and

ǫ0,2. Let us construct a linear estimator that is blind to the generally-unknown correlation

coefficient, and derive the estimator’s variance while assuming a nonzero correlation.

Let ẑk be the depth calculated using the k-th estimated disparity, δ̂k = δk + ǫk, between

frames 0 and k. Using Equation 1.1, ẑk’s variance is σ2
k = z4σ2

ǫ /f
2k2t2v2; the minimum-

variance linear estimate of z using m = c · n estimates ẑk is ẑ =
∑m

k=1 wkẑk, where

wk = σ−2
k /

∑m
j=1 σ−2

j . Since the 0-th image does not change it is reasonable to assume

that, for any fixed pixel in the first image, σǫk
does not change with k. However, as we have

discussed, we cannot guarantee statistical independence of the ǫk.

Predicted error. It is difficult, if not impossible, to empirically determine the correlation

among ǫk for real images. However, if we have evidence that the correlation is bounded,

then we can gauge the effect of correlation on the accuracy of the linear estimator. Assume

that, for some 0 ≤ ρ ≤ 1, E[ǫj ǫk] < ρσ2
ǫ for all j and k. Then the covariance between ẑj

and ẑk is:

2Note that f and θ are usually coupled with the resolution of the camera, but are constant for a fixed

camera.

6

cov(ẑj, ẑk) = E
[
(ẑj − z) (ẑk − z)

]

= E

[(
f bj

δj + ǫj

−
f bj

δj

) (
f bk

δk + ǫk

−
f bk

δk

)]

=

∫∫ (
f bj

δj + ǫj

−
f bj

δj

)(
f bk

δk + ǫk

−
f bk

δk

)

p(ǫj, ǫk) dǫj dǫk

=
f 2 bj bk

δj δk

∫∫ (
ǫj

δj + ǫj

)(
ǫk

δk + ǫk

)

p(ǫj, ǫk) dǫj dǫk

≈
f 2 bj bk

δj δk

∫∫ (
1

δj

ǫj

)(
1

δk

ǫk

)

p(ǫj, ǫk) dǫj dǫk

=
f 2 bj bk

δ2
j δ2

k

∫∫

ǫj ǫk p(ǫj, ǫk) dǫj dǫk

=
z4

f 2 bj bk

E[ǫj ǫk]

< ρ
z4

f 2 bj bk

σ2
ǫ (1.2)

where we have taken the first-order Taylor series approximation of ǫj/(δj + ǫj) in ǫj , and

ǫk/(δk + ǫk) in ǫk, about 0. The expected squared error, as a function of ρ, for the linear

estimator defined above is:

E
[
(ẑ − z)2] =

m∑

k=1

var(wk ẑk) + 2
m∑

k=2

k−1∑

j=1

cov(wj ẑj, wk ẑk)

=
m∑

k=1

w2
k var(ẑk) + 2

m∑

k=2

k−1∑

j=1

wj wk cov(ẑj, ẑk)

=

(
m∑

k=1

1

var(ẑk)

)
−2 [

m∑

k=1

1

var(ẑk)
+ 2

m∑

k=2

k−1∑

j=1

cov(ẑj, ẑk)

var(ẑj) var(ẑk)

]

<

(
m∑

k=1

f 2 k2 v2 t2

z4 σ2
ǫ

)
−2 [

m∑

k=1

f 2 k2 v2 t2

z4 σ2
ǫ

+ 2 ρ

m∑

k=2

k−1∑

j=1

f 2 j k v2 t2

z4 σ2
ǫ

]

=
z4 σ2

ǫ

f 2 v2 t2

(
m∑

k=1

k2

)
−2 [

m∑

k=1

k2 + 2 ρ

m∑

k=2

(

k

k−1∑

j=1

j

)]

=
z4 σ2

ǫ

f 2 v2 t2

(
m∑

k=1

k2

)
−2 [

m∑

k=1

k2 + ρ

m∑

k=2

k2 (k − 1)

]

≈
z4 σ2

ǫ

f 2 v2 t2

(
1

3
m3

)
−2 [

1

3
m3 +

1

4
ρm4

]

=
z4 σ2

ǫ

f 2 v2 t2

[

3
1

m3
+

9

4
ρ

1

m2

]

7

=
z4 σ2

ǫ

f 2 v2 t2



3

(

v t

2 c z tan θ
2

)3

+
9

4
ρ

(

v t

2 c z tan θ
2

)2




=
z2 σ2

ǫ

f 2

[

3

8

v t

c3 z tan3 θ
2

+
9

16
ρ

1

c2 tan2 θ
2

]

,
(
c1 z + c2 ρ z2

)
· σ2

ǫ (1.3)

for z >> vt, and where c1 and c2 depend on t, v, f , θ, and c. If there is no correlation, i.e.

ρ = 0, then the resulting estimator has standard deviation proportional to the square root of

the depth. When there is nonzero correlation, then the standard deviation is asymptotically

linear. In Figure 1.2 we plot Equation 1.3 using the following values: t = 3.75−1 sec;

v = 14 meters/sec; θ = 50◦; c = 1/4; ρ = 0, 1/3, 2/3 and 1; and z ranging between 20

and 200 meters. Note that at z = 17.11 meters the number of measurements is m = 1.

To summarize, by combining multiple measurements and wider baselines we can obtain

between linear and quadratic variance in depth estimates as a function of true depth, a

vast improvement over the quartic variance obtained with a stereo pair. In the following

chapters we describe a recursive algorithm for densely reconstructing terrain, in which we

try to achieve this performance.

50 100 150 200
Depth (m)

1

2

3

S
t
d
.

D
e
v
.

(
m
)

50 100 150 200
Depth (m)

1

2

3

S
t
d
.

D
e
v
.

(
m
)

ρ = 1

ρ = 0

ρ = 2/3

ρ = 1/3

st
er

eo

Figure 1.2: Predicted standard deviations for stereo and multi-baseline as a function of

depth. The single curve shows depth error of stereo when using the smallest baseline (the

first two frames in the idealized aerial image sequence). The (red) shaded area shows the

range of errors of a multiple-baseline linear estimator for 0 ≤ ρ ≤ 1. c©2006 IEEE.

Reprinted, with permission, from [5].

8

Chapter 2

Multi-Frame Planar Parallax

The multi-frame planar parallax (MFPP) method is a generalization of stereo rectification

to more than two frames that was first described by Sawhney [17], and was later extended

by Irani et al. [7]. Whereas stereo rectification yields images where the disparity (or optical

flow) is parallel to scanlines and is inversely proportional to depth, MFPP registration yields

images such that the ratio of disparities along epipolar lines can be expressed in terms of a

view-independent shape parameter that encodes depth.

This chapter provides a self-contained introduction to both two-frame and multi-frame

planar parallax, using (and introducing) the notation that will be used throughout the re-

mainder of this dissertation. The two-view derivations are more-detailed versions of Sawh-

ney’s in [17], and are given here in multi-frame notation for consistency. The multi-frame

derivations are based on those of Irani et al. in [7].

9

2.1 Geometry

Suppose one or more stationary or moving cameras take images I1, . . . , Im of a rigid scene,

and denote forward and inverse (calibrated) image projection as

π

















x

y

z

















=






x
z

y
z




 and π∗











x

y









 =









x

y

1









(2.1)

respectively. Denote by Ki ∈ SL!(3) the intrinsic calibration of the i-th view. Let the

rotation and translation taking the i-th coordinate system to the first one be given by (Ri ∈

SO(3) ,Ti ∈ R
3), i.e. all corresponding points P1 and Pi in the first and i-th coordinate

systems satisfy P1 = Ri Pi + Ti. By combining these definitions, we have that a point

Pi in the coordinate system of the i-th camera can be projected into the first camera by

p1 = π[K1 (Ri Pi + Ti)]. Note that R1 = I and T1 = 0 so that the first frame acts as a

reference frame.

Figure 2.1 shows the geometry of planar parallax for the reference frame and an arbi-

trary i-th frame. We represent the world point of interest, P , by P1 in the coordinate system

of the first view and by Pi in the coordinate system of the i-th view, and its projections into

I1 and Ii by p1 and pi, respectively. We denote the image of the i-th viewpoint in I1 (one of

the epipoles in the stereo pair defined by the first and i-th views) by ei = π(Ki Ti), although

in practice we will often use the homogeneous epipole Ei = (e
(i)
x , e

(i)
y , e

(i)
z)T = K1 Ti ∈ R

3

to avoid division by zero when e
(i)
z is zero or numerical errors when e

(i)
z is small, i.e. when

there is small z displacement between the views.

We choose a virtual reference plane in the scene, represented by NT
i Pi +di = 0 in the

i-th view. Here, Ni ∈ R
3 is unit normal of the reference plane in the coordinate system of

the i-th view, and di ∈ R is the perpendicular distance of the i-th viewpoint from the virtual

plane. This reference plane allows us to project a point pi in Ii into I1 without knowing the

10

Figure 2.1: Geometry of two-view planar parallax.

distance of Pi from the i-th viewpoint. Although the projected point p′

i is not necessarily

equal to p1 unless P is on the plane, the point p′

1
has two convenient properties:

1. The point p1 is on the epipolar line through p′

i. Alternatively, the point p′

i is on the

epipolar line through p1. Figure 2.1 provides a geometric proof.

2. The position of p′

i along the epipolar line through p1 is a simple function of N1,

d1, Ri, Ti, K1, Ki, p1, and a view-independent shape parameter G(p1). This function

will be derived in the following sections.

11

2.2 Homographies

Given the reference plane and the geometry between the first and i-th views, we construct

the homographies Hi ∈ R
3×3 such that each Hi transforms the first frame to the i-th frame

via the reference plane, i.e. the projections p′

i and pi of a point on the reference plane in

the first and i-th frames, as in Figure 2.1, satisfy pi = π[Hi π
∗(p′

i)]. These homographies

are given by:

Hi = KiRi

−1

(

I +
1

d1

TiN
T
1

)

K1

−1 (2.2)

Proof:

ρPi = Ri

−1 (P ′

i − Ti)

= Ri

−1

[

P ′

i − Ti

(

−
1

d1

NT
1

P ′

i

)]

= Ri

−1

(

I +
1

d1

TiN
T
1

)

P ′

i

∝ Ri

−1

(

I +
1

d1

TiN
T
1

)

K1

−1π∗(p′

i)

⇔ pi = π

[

KiRi

−1

(

I +
1

d1

TiN
T
1

)

K1

−1π∗(p′

i)

]

= π[Hi π
∗(p′

i)] where Hi = KiRi

−1

(

I +
1

d1

TiN
T
1

)

K1

−1 (2.3)

Note that we can write the inverse of Hi analytically:

Hi

−1 = K1

(

I −
1

NT
1

Ti + d1

TiN
T
1

)

RiKi

−1 (2.4)

Proof:

P ′

i = Ri ρPi + Ti

= Ri ρPi + Ti

(

−
1

di

NT
i ρPi

)

= Ri ρPi + Ti

[

−
1

NT
1

Ti + d1

(
Ri

−1N1

)T
ρPi

]

= Ri ρPi + Ti

(

−
1

NT
1

Ti + d1

NT
1

Ri ρPi

)

12

=

(

I −
1

NT
1

Ti + d1

TiN
T
1

)

Ri ρPi

∝

(

I −
1

NT
1

Ti + d1

TiN
T
1

)

RiKi

−1π∗(pi)

⇔ p′

i = π

[

K1

(

I −
1

NT
1

Ti + d1

TiN
T
1

)

RiKi

−1π∗(pi)

]

= π
[
Hi

−1 π∗(pi)
]

where Hi

−1 = K1

(

I −
1

NT
1

Ti + d1

TiN
T
1

)

RiKi

−1 (2.5)

2.3 Geometric Constraint

In this section, we derive the fundamental planar parallax constraint, the position of p′

i

along the epipolar line through p1:

δi(p1,G(p1)) , p1 − p′

i = −
G(p1)

di − G(p1) e
(i)
z






e
(i)
z px − e

(i)
x

e
(i)
z py − e

(i)
y




 (2.6)

where p1 = (px, py)
T

, G(p1) = ph/pz is a view-independent scalar defined at each point

in the first image, pz is the depth of P in the first view, and ph = NT
1

P1 + d1 is the signed

perpendicular distance of P from the reference plane.

Proof:

P ′

i =

(

I −
1

NT
1

Ti + d1

TiN
T
1

)

Ri ρPi

∝

(

I −
1

NT
1

Ti + d1

TiN
T
1

)

RiPi

=

(

I −
1

NT
1

Ti + d1

TiN
T
1

)

Ri

[
Ri

−1 (P1 − Ti)
]

=

(

I −
1

NT
1

Ti + d1

TiN
T
1

)

(P1 − Ti)

= P1 −

[

1 +
NT

1
(P1 − Ti)

NT
1

Ti + d1

]

Ti

= P1 −
NT

1
P1 + d1

NT
1

Ti + d1

Ti

13

= P1 −
ph

di

Ti

⇒ π∗(p′

i) = K1

[

1

pz −
ph

di

e
(i)
z

(

P1 −
ph

di

Ti

)]

= K1

[

di

di pz − ph e
(i)
z

(

P1 −
ph

di

Ti

)]

=
di

di pz − ph e
(i)
z

(

pz π∗(p1) −
ph

di

Ei

)

⇔ π∗(p1) − π∗(p′

i) = π∗(p1) −
di

di pz − ph e
(i)
z

(

pz π∗(p1) −
ph

di

Ei

)

=

(

1 −
di pz

di pz − ph e
(i)
z

)

π∗(p1) +
ph

di pz − ph e
(i)
z

Ei

= −
ph e

(i)
z

di pz − ph e
(i)
z

π∗(p1) +
ph

di pz − ph e
(i)
z

Ei

=
ph

di pz − ph e
(i)
z

(
−e(i)

z π∗(p1) + Ei

)

= −
G(p1)

di − G(p1) e
(i)
z

(
e(i)

z π∗(p1) − Ei

)

⇔ p1 − p′

i = −
G(p1)

di − G(p1) e
(i)
z






e
(i)
z px − e

(i)
x

e
(i)
z py − e

(i)
y




 (2.7)

The difference δi is called the planar parallax. Note that we have derived this relation-

ship using the homogeneous epipole Ei instead of the (projected) epipole ei in order to

handle the case when the (projected) epipole is at infinity; in that case we find, as expected,

that all epipolar lines are parallel, i.e. that all terms in Equation (2.6) that include px and py

are zero.

If we know the correspondence between p1 and p′

i a priori, we can write a simpler form

of δi in terms of p′

i:

δi(p
′

i,G(p1)) , p1 − p′

i = −
G(p1)

di






e
(i)
z p′x − e

(i)
x

e
(i)
z p′y − e

(i)
y




 (2.8)

14

where p′

i =
(
p′x, p

′

y

)T
.

Proof:

π∗(p′

i) =
di

di pz − ph e
(i)
z

(

pz π∗(p1) −
ph

di

Ei

)

⇔ π∗(p1) =
di pz − ph e

(i)
z

di pz

π∗(p′

i) +
ph

di pz

Ei

⇔ π∗(p1) − π∗(p′

i) =

(

di pz − ph e
(i)
z

di pz

− 1

)

π∗(p′

i) +
ph

di pz

Ei

= −
ph e

(i)
z

di pz

π∗(p′

i) +
ph

di pz

Ei

=
ph

di pz

(
−e(i)

z π∗(p′

i) + Ei

)

= −
G(p1)

di

(
e(i)

z π∗(p′

i) − Ei

)

⇔ p1 − p′

i = −
G(p1)

di






e
(i)
z p′x − e

(i)
x

e
(i)
z p′y − e

(i)
y




 (2.9)

Although we have defined G(p1) = ph/pz, ph and pz are not independent. Using the

fact that P1 = pz K1

−1 π∗(p1):

ph = NT
1

P1 + d1

= NT
1

(
pz K1

−1 π∗(p1)
)

+ d1

=
(
NT

1
K1

−1 π∗(p1)
)
pz + d1 (2.10)

Therefore, we can use G(p1) and pz interchangeably:

G(p1) =
ph

pz

=

(
NT

1
K1

−1 π∗(p1)
)
pz + d1

pz

= NT
1

K1

−1 π∗(p1) +
d1

pz

(2.11)

15

and

pz =
ph

G(p1)
=

(
NT

1
K1

−1 π∗(p1)
)
pz + d1

G(p1)

⇔
(
G(p1) − NT

1
K1

−1 π∗(p1)
)
pz = d1

⇔ pz =
d1

G(p1) − NT
1

K1

−1 π∗(p1)
(2.12)

2.4 Combining Multiple Frames

The above derivations describe the relationship between the first frame and an arbitrary i-th

frame. In this section, we begin to use all of the non-reference frames to estimate G, i.e.

the G(p1) value for each pixel in the reference frame, from which we can find the depth pz

of the pixel in the reference frame using Equation (2.12).

As we will, from this point forward, primarily be referring to pixels in the reference

image, we define p = p1.

Using the brightness constancy constraint, we have that:

Ir
i (p − δi(p,G(p))) − I1(p) ≈ 0 (2.13)

where I r
i is the plane-registered image obtained by warping Ii by Hi:

Ir
i (q) = Ii[π(Hi π

∗(q))] (2.14)

In principle, we can solve for G, and the extrinsic parameters (Ri,Ti) i = 2, . . . ,m if

they are unknown, by minimizing the sum-of-squares residual of the brightness constancy

constraint over all images and all pixels:

m∑

i=2

∑

p

[

Ir
i (p − δi(p,G(p))) − I1(p)

]2

(2.15)

16

In practice, we make the solution more robust by assuming small differences between

neighboring G(p) and evaluating the error of each G(p) over win(p), a k × k window

around p:

ε(G, R2,T2, . . . , Rm,Tm) =
m∑

i=2

∑

p

∑

q∈win(p)

[

Ir
i (q − δi(q,G(p))) − I1(q)

]2

(2.16)

2.5 The Multi-Frame Planar Parallax Algorithm

In [7], Irani et al. assume that the intrinsic parameters Ki i=1, . . . ,m and extrinsic param-

eters (Ri,Ti) i=2, . . . ,m are unknown, but that a dominant plane exists in the scene and

can be identified independently (and indirectly) in each frame by estimating the homogra-

phy Hi between that frame and the reference frame. As is shown in Equation (2.6), warping

each frame Ii to Ir
i by Hi as in Equation (2.14) reduces any concern about the intrinsic pa-

rameters Ki i = 1, . . . ,m and extrinsic parameters (Ri,Ti) i = 2, . . . ,m to concern only

about the homogeneous epipoles Ei i = 2, . . . ,m and plane distances di i = 2, . . . ,m,

which must be estimated along with G. Note that Ni and di cannot be uniquely determined

from the estimated Hi [12].

The MFPP algorithm minimizes an approximation of Equation (2.16) over all frames

simultaneously. Irani et al. begin by approximating the brightness constancy constraint in

Equation (2.13) as:

Iτ
i (p) −






Ix(p)

Iy(p)






T

δi(p,G(p)) ≈ 0 where

Iτ
i (p) = Ir

i

(

p − δi

(

p, G̃(p)
))

− I1(p) +






Ix(p)

Iy(p)






T

δi

(

p, G̃(p)
)

(2.17)

Here, Ix and Iy are the x and y image derivatives of I1, and a tilde denotes the current

estimate. The primary assumption is that δi(p,G(p)) − δi

(

p, G̃(p)
)

is small.

17

Proof:

I1(p) ≈ Ir
i (p − δi(p,G(p))) = Ir

i

[

p − δi

(

p, G̃(p)
)

−
(
δi(p,G(p)) − δi

(

p, G̃(p)
))]

⇒ Ir
i

(

p − δi

(

p, G̃(p)
))

≈ I1

[

p +
(
δi(p,G(p)) − δi

(

p, G̃(p)
))]

≈ I1(p) +






Ix(p)

Iy(p)






T

(
δi(p,G(p)) − δi

(

p, G̃(p)
))

⇔ Ir
i

(

p − δi

(

p, G̃(p)
))

− I1(p) −






Ix(p)

Iy(p)






T

(
δi(p,G(p)) − δi

(

p, G̃(p)
))

≈ 0

⇔ Iτ
i (p) −






Ix(p)

Iy(p)






T

δi(p,G(p)) ≈ 0 where

Iτ
i (p) = Ir

i

(

p − δi

(

p, G̃(p)
))

− I1(p) +






Ix(p)

Iy(p)






T

δi

(

p, G̃(p)
)

(2.18)

Substituting Equation (2.6) into this approximation of the brightness constancy con-

straint, we find that:

Iτ
i (p) +

G(p)

di − G(p) e
(i)
z

[
Ix(p)

(
e(i)

z px − e(i)
x

)
+ Iy(p)

(
e(i)

z py − e(i)
y

)]
≈ 0 (2.19)

where p = (px, py)
T

.

After initializing G(p) = 0 ∀p, Ei = (0, 0, 1)T i=2, . . . ,m, and di = 1 i=2, . . . ,m,

the MFPP algorithm alternates between a local phase, which refines G while holding the

Ei’s and di’s constant, and a global phase, which refines the Ei’s and di’s while holding

G constant. The error function for the local phase is:

εMFPPL(G(p)) =
m∑

i=2

∑

q∈win(p)






Iτ
i (q)

(

d̃i − G(p) ẽ(i)
z

)

+

G(p)
[
Ix(q)

(
ẽ(i)

z qx − ẽ(i)
x

)
+ Iy(q)

(
ẽ(i)

z qy − ẽ(i)
y

)]






2

(2.20)

18

where q = (qx, qy)
T

; the error function for the global phase is:

εMFPPG(Ei, di) =
∑

p

wi(p)






Iτ
i (p)

(

di − G̃(p) e(i)
z

)

+

G̃(p)
[
Ix(p)

(
e(i)

z px − e(i)
x

)
+ Iy(p)

(
e(i)

z py − e(i)
y

)]






2

(2.21)

where wi(p) =
(

d̃i − G̃(p) ẽ
(i)
z

)
−2

and p = (px, py)
T

. Note that the weights wi(p) en-

sure that each pixel contributes approximately equally to the optimal Ei and di during the

global phase; Irani et al. do not find it necessary to ensure that each frame contributes

approximately equally to the optimal G(p) in the local phase.

Because many of the terms in Equation (2.12) are unknown in this case, the traditional

form of the MFPP algorithm is only able to calculate G(p), not pz. However, in the remain-

der of this dissertation, when we use the MFPP algorithm we will assume that the intrinsic

parameters Ki i = 1, . . . ,m and extrinsic parameters (Ri,Ti) i = 2, . . . ,m are known,

which will eliminate the global phase of the optimization and also allow us to calculate pz

from G(p).

19

Chapter 3

The Recursive Multi-Frame Planar

Parallax Algorithm

The Multi-Frame Planar Parallax (MFPP) algorithm summarized in Section 2.5 is a batch

method; every gradient computation requires a summation over all images, and then each

image is rewarped once G is updated. With increasing numbers of frames, it will not be

feasible to perform such an update at framerate. We would prefer an algorithm that, when

a new frame is added, has a constant-time update using sufficient information about the

preceding images that has been stored in a set of statistics. This chapter derives such an

algorithm: the Recursive Multi-Frame Planar Parallax (RMFPP) algorithm.

3.1 Enabling Observations

We begin with a simple example at a single pixel. Consider estimating pz from disparities

δk, as in Section 1.2. Suppose δk = (k − 1) · 1
pz

. The disparity as a function of k is linear,

as shown in Figure 3.1 (a), and its slope is the reciprocal of pz. Image I1 does not change

20

2 3 4 5 6 7
Frame Number

D
i
s
p
a
r
i
t
y

(
p
i
x
e
l
s
)

Disparities Between Frames
 1 and k, and Their Errors

(a)

2 3 4 5 6 7
Frame Number

D
e
p
t
h

V
a
r
i
a
n
c
e

Depth (Slope^-1) and Its Variance
 As a Function of Frame Number

(b)

Figure 3.1: (a) Disparity as a function of frame number for translating camera; error bars

indicate error independent of frame number. (b) Uncertainty in pz as a function of frame

number. c©2006 IEEE. Reprinted, with permission, from [5].

so the error bars in disparity have constant width. The wider triangle ending at frame 5

represents the set of lines with slope (p−1
z) ± one standard deviation from the mean slope.

The triangle ending at frame 7 shows the same but after incorporating frames 6 and 7.

Now consider Figure 3.1 (b). We show the standard deviation of an estimate of pz as a

function of frame number, assuming that at the k-th frame we incorporate all frames up to

and including k. The uncertainty in pz is transformed to uncertainty in disparities through

scaling by ∂δk/∂pz = (k − 1)/p2
z.

We observe: (1) small refinements to pz later in the sequence do not significantly affect

δk’s near the beginning of the sequence; (2) as long as these triangles’ widths do not exceed

the radius for which the linearity of intensity is valid, there is no need to rewarp the images.

If the disparities do not exceed the range of linearity, we can create a recursive algorithm.

21

3.2 Recursive Cost Function

We now turn the minimization of the MFPP algorithm’s batch cost function εMFPPL, as

defined in Equation (2.20), into a recursive procedure. We begin by restoring the nonlin-

earity in G(p) from the constraint in Equation (2.19); instead of multiplying both sides of

the constraint by the denominator as in the MFPP algorithm, we linearize the cost function

around current estimates of G(p) below. We replace the sum over the window win(p) with

the average over the window, to account for the possibility of the window being different

in different frames due to the invalidity of one or more input terms—we discuss the issue

of validity when we give the complete algorithm in Section 3.5. We also introduce weights

αi on the contribution of each frame in the sequence to the total non-recursive error εNR:

εNR(G(p)) =
m∑

i=2

αi

|win(p)|

∑

q∈win(p)




I

τ
i (q) +

G(p)

di − G(p) e
(i)
z






Ix(q)
(
e(i)

z qx − e(i)
x

)
+

Iy(q)
(
e(i)

z qy − e(i)
y

)











2

=
m∑

i=2

αi

|win(p)|

∑

q∈win(p)

[

Iτ
i (q) +

G(p)

di − G(p) e
(i)
z

Iκ
i (q)

]2

,

m∑

i=2

αi

|win(p)|

∑

q∈win(p)

ri(q,G(p))2

,

m∑

i=2

αi ci(G(p)) (3.1)

where q = (qx, qy)
T

. Note that we have simplified the notation by defining Iκ
i (q):

Iκ
i (q) = Ix(q)

(
e(i)

z qx − e(i)
x

)
+ Iy(q)

(
e(i)

z qy − e(i)
y

)
(3.2)

In the recursive formulation we propose a cost function that is linearized in past terms

but iterated until convergence on the latest image. We denote by G̃(i) the final estimate of G

after the last iteration on the i-th frame or, in the case of the most recent image, the estimate

of G after the most recent iteration. Then, for example after the i-th frame has arrived, we

22

define ε
(i)
RMFPP to be the per-pixel cost up to and including the i-th frame:

ε
(i)
RMFPP(G(p)) ,

i∑

j=2

αj cj(G(p))

= αi ci(G(p)) +
i−1∑

j=2

αj cj

[

G̃(j)(p) +
(

G(p) − G̃(j)(p)
)]

≈ αi ci(G(p)) +
i−1∑

j=2

αj













c′′j

(

G̃(j)(p)
)

2!

(

G(p) − G̃(j)(p)
)2

+

c′j

(

G̃(j)(p)
)

1!

(

G(p) − G̃(j)(p)
)

+

cj

(

G̃(j)(p)
)













︸ ︷︷ ︸

2nd-order Taylor series in G(p) at G̃(j)(p)

, αi ci(G(p)) +
i−1∑

j=2

αj

[
Aj(p) G(p)2 + Bj(p) G(p) + Cj(p)

]

, αi ci(G(p)) + ΣA(i−1)(p) G(p)2 + ΣB(i−1)(p) G(p) + ΣC(i−1)(p)

(3.3)

where

Aj(p) =
1

2
c′′j

(

G̃(j)(p)
)

Bj(p) = −G̃(j)(p) c′′j

(

G̃(j)(p)
)

+ c′j

(

G̃(j)(p)
)

Cj(p) =
1

2
G̃(j)(p)2 c′′j

(

G̃(j)(p)
)

− G̃(j)(p) c′j

(

G̃(j)(p)
)

+ cj

(

G̃(j)(p)
)

(3.4)

Here, Aj , Bj , and Cj are respectively the coefficients of G(p)2
, G(p) and 1 in the Taylor

series expansion of the per-pixel cost in the j-th frame; ΣA(i−1), ΣB(i−1), and ΣC(i−1) are

the corresponding coefficients in the Taylor series expansion of the total past per-pixel cost,

i.e. cumulative sums of the weighted Aj , Bj , and Cj through the (i−1)-st frame. Note that

each Aj in ΣA, for example, is the result of a linearization (of cj) about a different point

from the terms before it, namely whichever was the latest estimate of G.

23

3.3 Minimization of the Recursive Cost Function

Minimization of ε
(i)
RMFPP takes a particularly convenient form if we use Newton’s method,

which also features a fast rate of convergence. Then we can iteratively refine G by using:

G(p) ← G̃(i)(p) −
ε
(i)′

RMFPP

(

G̃(i)(p)
)

ε
(i)′′

RMFPP

(

G̃(i)(p)
)

= G̃(i)(p) −
αi c

′

i

(

G̃(i)(p)
)

+ 2 ΣA(i−1)(p) G̃(i)(p) + ΣB(i−1)(p)

αi c′′i

(

G̃(i)(p)
)

+ 2 ΣA(i−1)(p)

=
αi

[

G̃(i)(p) c′′i

(

G̃(i)(p)
)

− c′i

(

G̃(i)(p)
)]

− ΣB(i−1)(p)

αi c′′i

(

G̃(i)(p)
)

+ 2 ΣA(i−1)(p)

= −
αi Bi(p) + ΣB(i−1)(p)

2 αi Ai(p) + 2 ΣA(i−1)(p)

= −
ΣB(i)(p)

2 ΣA(i)(p)
(3.5)

Equivalently, we can iteratively minimize the recursive cost function over frames 2 . . . i:

ε
(i)
RMFPP(G(p)) = αi ci(G(p)) + ΣA(i−1)(p) G(p)2 + ΣB(i−1)(p) G(p) + ΣC(i−1)(p)

≈ ΣA(i)(p) G(p)2 + ΣB(i)(p) G(p) + ΣC(i)(p) (3.6)

In both cases, the only terms that change between iterations are Ai(p), Bi(p), and Ci(p).

To fully specify the minimization procedure for ε
(i)
RMFPP, we must derive Aj and Bj .

We begin by deriving c′j and c′′j :

c′j(G(p)) =
1

|win(p)|

∑

q∈win(p)

[
rj(q,G(p))2]′

=
2

|win(p)|

∑

q∈win(p)

rj(q,G(p)) r′j(q,G(p))

c′′j (G(p)) =
2

|win(p)|

∑

q∈win(p)

[
rj(q,G(p)) r′j(q,G(p))

]
′

=
2

|win(p)|

∑

q∈win(p)

[
r′j(q,G(p))2 + rj(q,G(p)) r′′j (q,G(p))

]

24

≈
2

|win(p)|

∑

q∈win(p)

r′j(q,G(p))2
(3.7)

where r′j = ∂rj/∂G(p) and we ignore second-order terms of rj . We also derive r′j:

r′j(q,G(p)) =

[

Iτ
j (q) +

G(p)

dj − G(p) e
(j)
z

Iκ
j (q)

]
′

=

(

dj − G(p) e
(j)
z

)

+ G(p) e
(j)
z

(

dj − G(p) e
(j)
z

)2 Iκ
j (q)

=
dj

(

dj − G(p) e
(j)
z

)2 Iκ
j (q) (3.8)

Finally, we can fully specify Aj and Bj:

Aj(p) =
1

2
c′′j

(

G̃(j)(p)
)

≈
1

|win(p)|

∑

q∈win(p)

r′j

(

q, G̃(j)(p)
)2

=
1

|win(p)|

∑

q∈win(p)

d2
j

(

dj − G̃(j)(p) e
(j)
z

)4 Iκ
j (q)2

Bj(p) = −G̃(j)(p) c′′j

(

G̃(j)(p)
)

+ c′j

(

G̃(j)(p)
)

≈ −G̃(j)(p)
2

|win(p)|

∑

q∈win(p)

r′j

(

q, G̃(j)(p)
)2

+

2

|win(p)|

∑

q∈win(p)

rj

(

q, G̃(j)(p)
)

r′j

(

q, G̃(j)(p)
)

=
2

|win(p)|

∑

q∈win(p)

r′j

(

q, G̃(j)(p)
) [

rj

(

q, G̃(j)(p)
)

− G̃(j)(p) r′j

(

q, G̃(j)(p)
)]

=
2

|win(p)|

∑

q∈win(p)

dj
(

dj − G̃(j)(p) e
(j)
z

)2 I
κ
j (q)










Iτ
j (q) +

G̃(j)(p)

dj − G̃(j)(p) e
(j)
z

Iκ
j (q)−

G̃(j)(p) dj
(

dj − G̃(j)(p) e
(j)
z

)2 I
κ
j (q)










=
2

|win(p)|

∑

q∈win(p)

dj
(

dj − G̃(j)(p) e
(j)
z

)2 I
κ
j (q)




I

τ
j (q) −

G̃(j)(p)2 e
(j)
z

(

dj − G̃(j)(p) e
(j)
z

)2 I
κ
j (q)






(3.9)

25

3.4 Cost Function Comparison

We compare the RMFPP cost function from Equation (3.6) to the MFPP cost function from

Equation (2.20), where we have added weights αj/|win(p)| to the MFPP cost function (and

so have renamed it εMFPPW), and have simplified the notation by using Iκ
j (q). We define

εMFPPW(G(p)) = ε
(m)
MFPPW(G(p)), where ε

(i)
MFPPW(G(p)) is the cost for frames 2 . . . i:

ε
(i)
MFPPW(G(p)) =

i∑

j=2

αj

|win(p)|

∑

q∈win(p)

[
Iτ

j (q)
(
dj − G(p) e(j)

z

)
+ G(p) Iκ

j (q)
]2

=
i∑

j=2

αj

|win(p)|

∑

q∈win(p)

[(
Iκ

j (q) − Iτ
j (q) e(j)

z

)
G(p) + Iτ

j (q) dj

]2

=
i∑

j=2

αj

|win(p)|

∑

q∈win(p)










(
Iκ

j (q) − Iτ
j (q) e(j)

z

)2
G(p)2 +

2
(
Iκ

j (q) − Iτ
j (q) e(j)

z

)
Iτ

j (q) dj G(p) +

Iτ
j (q)2 d2

j










,

i∑

j=2

αj

[
AMFPP

j (p)G(p)2 + BMFPP
j (p)G(p) + CMFPP

j (p)
]

, ΣA
(i)
MFPP(p)G(p)2 + ΣB

(i)
MFPP(p)G(p) + ΣC

(i)
MFPP(p)

⇒ G(p) ← −
ΣB

(i)
MFPP(p)

2 ΣA
(i)
MFPP(p)

(3.10)

Therefore, analogous to Aj(p) and Bj(p), we can write:

AMFPP
j (p) =

1

|win(p)|

∑

q∈win(p)

(
Iκ

j (q) − Iτ
j (q) e(j)

z

)2

BMFPP
j (p) =

2

|win(p)|

∑

q∈win(p)

(
Iκ

j (q) − Iτ
j (q) e(j)

z

)
Iτ

j (q) dj (3.11)

We note that ε
(i)
MFPPW(G(p)) is independent of G̃(j)(p), j =2, . . . , i; this is not the case for

ε
(i)
RMFPP(G(p)), where we have restored more of the problem’s nonlinearity. We also note

that the cost functions ε
(i)
MFPPW(G(p)) and ε

(i)
RMFPP(G(p)) are equivalent when dj = di and

e
(j)
z = 0, j = 2, . . . , i; this occurs when the camera’s line of sight is perpendicular to, and

the camera maintains a constant distance from, the reference plane.

26

3.5 Complete Algorithm

We are now ready to give the complete Recursive Multi-Frame Planar Parallax algorithm.

The state variables G, ΣA, ΣB, residual, and numValid, each the same dimensions as I1,

are initialized to 0. Every image Ii utilizing the reference image I1 is processed as follows:

process_image(αi, Ii, Ki, Ri, Ti, I1, Ix, Iy, K1, N1, d1,

G, ΣA, ΣB, residual, numValid):

1: compute Ir
i as in Equation (2.14)

2. compute Iκ
i as in Equation (3.2)

3: for up to niter iterations:

4: {ΣAIter, ΣBIter} = {ΣA, ΣB}

5: for each pixel p:

6: calculate δi(p,G(p)) as in Equation (2.6)

7: calculate Iw
i (p) , Ir

i (p − δi(p,G(p)))

8: compute Iτ
i (p) as in Equation (2.17)

9: end for

10: for each pixel p:

11: calculate {Ai(p) , Bi(p)} as in Equation (3.9)

12: {ΣAIter(p) , ΣAIter(p)} + = αi {Ai(p) , Bi(p)}

13: estimate G(p) as in Equation (3.5) using {ΣAIter, ΣBIter}

14: end for

15: if average change in valid region of G is small, then break

16: end for

17: {ΣA, ΣB} = {ΣAIter, ΣBIter}

18: for each pixel p where Iw
i (p) is valid:

19: residual(p) + = αi |I1(p) − Iw
i (p) |

20: numValid(p) + +

21: end for

27

We mention several specific implementation issues below, which are: (1) how to pre-

vent changes to points that go out of view; (2) how to handle regions of low texture; (3) how

to decide whether a pixel is an outlier; (4) how to integrate measurements from multiple

runs into a single coherent map; and (5) when to choose a new reference image.

The first two implementation issues are special cases of a more general strategy that is

required for implementation of the algorithm: at each step where a new value is computed,

the inputs must be evaluated to determine whether the output is valid, and the validity of

values must be propagated through all calculations. For example, the image derivatives

Ix and Iy are not valid at the edge pixels if a 3x3 matrix is convolved with the image to

determine the derivative; therefore, the edge pixels of Iκ
i are also not valid. Pixels of Ir

i

that the homography Hi maps to a pixel outside of Ii are marked as invalid; this occurs

when a point goes out of view. In addition, Ai(p) and Bi(p) are invalid if Ai(p)/Bi(p) is

too large or NaN—in particular, the quotient is NaN where both image derivatives are zero

(insufficient texture).

After we have processed all images Ii utilizing the reference image I1 as above, we

generate a depth estimate, using Equation (2.12), for each pixel in the reference frame that

satisfies a few basic criteria (discussed below). For each pixel in the reference frame that

passes the previous test, we calculate a 3D world point (X,Y, Z) using (R1,T1); we also

calculate an estimate of the uncertainty in the world Z coordinate, var(Z). Finally, we filter

the 3D world points for outliers (discussed below).

We motivate the calculation of var(Z) by observing that the update equation for G(p),

Equation (3.5), can be written as the quotient of two weighted averages:

−ΣB(i)(p)

2 ΣA(i)(p)
,

−
∑i

j=2 αj(p) Bj(p)

2
∑i

j=2 αj(p) Aj(p)

=
−

(
∑i

j=2 αj(p)
)
−1 ∑i

j=2 αj(p) Bj(p)

2
(
∑i

j=2 αj(p)
)
−1 ∑i

j=2 αj(p) Aj(p)

28

,
−Σα(i)(p)−1 ΣB(i)(p)

2 Σα(i)(p)−1 ΣA(i)(p)
(3.12)

where we index αj by p to allow αj(p) to be zero if p is not valid in frame j. Be-

cause we have multiple estimates Aj(p) of A(p), we calculate the empirical weighted av-

erage and weighted variance of A(p). Then we calculate the variance of the weighted sum
(
∑i

j=2 αj(p)
)
−1 ∑i

j=2 αj(p) Aj(p). We perform the same steps for the Bj(p) values. We

propagate the variances of the weighted sums through the Jacobian of Equation (3.5) to

obtain var(G(p)), and through the Jacobian of Equation (2.12) to obtain var(pz). Finally,

we propagate the variance through the Jacobian of the affine transformation (R1,T1) to

obtain var(Z). Note that this procedure underestimates the variance because the estimates

Aj(p) (and Bj(p)) are correlated; however, it underestimates the variance of all pixels in

all reference frames, and we find that combining multiple estimates of the same point in

the final map using these variances works well in practice.

To allow the calculation of these variances, we maintain the following statistics in ad-

dition to ΣA(i)(p) and ΣB(i)(p):

ΣAA(i)(p) =
i∑

j=2

αj(p) Aj(p)2

ΣBB(i)(p) =
i∑

j=2

αj(p) Bj(p)2

ΣAB(i)(p) =
i∑

j=2

αj(p) Aj(p) Bj(p)

Σα(i)(p) =
i∑

j=2

αj(p)

Σαα(i)(p) =
i∑

j=2

αj(p)2
(3.13)

Because these statistics are maintained similarly to ΣA(i)(p) and ΣB(i)(p), we have omit-

ted them from the algorithm above.

29

The criteria for generating a depth estimate pz for a pixel p are: it must be valid in

at least 5 images since the last reference change (encoded in numValid(p)), it must have

an average absolute residual (determined by residual(p) / Σα(p)) no larger than 10, and it

must be no less than 2 pixels from the edge of the reference image.

The 3D world point outlier filter begins by iteratively rejecting points that are too many

standard deviations above the mean in their 3D X or Y coordinates. This is followed by

iteratively discarding all points with 3D (X,Y) coordinates in any 25-th (5x5 equal-sized

regions) of the portion of the X-Y plane spanned by the data that contains less than 0.1% of

the points. Finally, points are again iteratively rejected based on being too many standard

deviations above the mean, this time in their 3D Z coordinates or in their 3D Z uncertainty

var(Z).

We integrate the 3D world points into a fixed-grid elevation and appearance map. For

reconstructing large areas of terrain where the region to be explored is not known a priori,

a modular map is best; by modular we mean that we store fixed-resolution, e.g. 16 × 16,

blocks, and add blocks to the map only when data is available in that region. All values

contained in the same grid square (not block) are optimally combined using their estimated

variances.

Finally, a new reference image I1 is set when: (i) the percentage of pixels that are valid

after aligning the next image is below a given threshold (we use 50%); or (ii) after a set

maximum number of images since the last reference change to reduce mapping latency (we

use 20). World points are generated upon every change in reference image.

30

Chapter 4

Results

In this chapter, we present results of running the RMFPP algorithm on synthetic sequences,

as well as on real sequences recorded from a robotic helicopter. The results on synthetic

data allow us to evaluate the algorithm analytically; the results on real data allow us to

show its applicability to the real world.

4.1 Method

In addition to direct analysis of the RMFPP algorithm, we present comparisons between

the RMFPP algorithm and the following algorithms: the MFPP batch algorithm discussed

in Chapter 2, and variants of the RMFPP algorithm that only use the first or last frame in

the sequence following each reference frame—we refer to these as the Closest and Farthest

variants, respectively. The Closest and Farthest variants are particular fixed-baseline and

wide-baseline stereo algorithms, respectively, that take advantage of the fact that the scene

is distant and known to be close to a reference plane—they are not intended to represent

the most advanced stereo algorithms in their respective classes, only the ill-posed nature

31

of triangulation in the fixed-baseline case with a distant scene (Closest), and the effects

of image and geometric noise on reconstruction when using only a single pair (Closest

and Farthest), while being directly comparable to the RMFPP algorithm because of their

similarity to that method.

All of the experiments in this chapter use our single-threaded C++ implementation

of the RMFPP and MFPP algorithms (including the Closest and Farthest variants), which

makes extensive use of BLAS [9], LAPACK [1], and OpenCV [2]. They are run on an Intel

Core 2 Duo 2.0 GHz CPU with 4 GB of RAM and openSUSE GNU/Linux 10.3 x64-64.

Unless otherwise specified, we use the following parameters for all experiments: Im-

ages are 320x240 pixels. Synthetic images (and their ground-truth depth images) are ren-

dered in the 3D modeling program Blender [4]. Virtual cameras are downward-pointing

(line of sight perpendicular to the terrain), have a focal length of 350, move at 50 me-

ters/sec, and capture 5 frames/sec—consecutive images are rendered 10 meters apart. For

the MFPP algorithm, we use a 4-level image pyramid below, and a 3-level image pyramid

at and above, 700 meters above the average terrain elevation; for the Farthest variant of the

RMFPP algorithm, we use a 4-level image pyramid below, and a 3-level image pyramid

at and above, 1000 meters above the average terrain elevation; for the RMFPP algorithm

and its Closest variant, we do not use an image pyramid. We use the following per-image

weights: αi = 1 for the MFPP algorithm and αi = (i − 1)2
for the RMFPP algorithm; αi

is irrelevant for the Closest and Farthest variants, so we use αi = 1. These pyramid sizes

and per-image weights are experimentally determined to give the best results for each algo-

rithm; we will discuss the effects of both in the following section. The maximum number

of iterations niter = 20, and the reference frame is changed only when there is less than

50% overlap between the current frame and the reference frame.

32

4.2 Translation Experiments

For our initial algorithm comparison and analysis, we use images rendered from a synthetic

sinusoidal terrain, shown in Figure 4.1. We render sequences of images and ground-truth

depth data from translating downward-looking cameras at the following heights above the

mean terrain elevation: 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, and

2500 meters. Each sequence is of the appropriate length so that there is a 50% overlap

between the image of the reference plane (horizontal, at the mean terrain elevation) in the

first and last frames: at 500 meters, it contains 18 frames; at 1000 meters, 35 frames; and at

2000 meters, 69 frames. We show sample rendered images in Figure 4.2; each rendered tex-

ture image is the reference image for our translation experiment at the given height, and the

corresponding rendered depth image is the ground truth for the depth image that we recon-

struct during the experiment. Note that the RMFPP and MFPP cost functions are equivalent

for this experiment, as discussed in Section 3.4; here we are showing the effectiveness of

our recursive method while using equivalent cost functions across all algorithms, although

our runtime results for the RMFPP algorithm (and its Closest and Farthest variants) still

reflect the usage of the more computationally expensive RMFPP cost function.

We first show sample reconstructions obtained by processing the translation image se-

quences with the RMFPP algorithm. Figure 4.3 contains the (unfiltered) reconstructed

depth for each pixel in the reference frame that is visible for at least 5 frames, as well as

a histogram of depth reconstruction errors and the number of optimization iterations used

for each image, for the sample rendered images in Figure 4.2. We obtain a median absolute

error of 0.8 meters at an elevation of 500 meters; 1.8 meters at an elevation of 1000 meters;

and 3.7 meters at an elevation of 2000 meters. The runtime is less than 0.17 sec/frame at

all elevations—well within the 5 frames/sec rate of the original sequences, due to the small

number of optimization iterations that are required after the first frames.

33

We compare the accuracy and runtime of all four algorithms described above at all

twelve rendered elevations. Figure 4.4 shows the results. The Closest algorithm, which

only uses the reference frame and the following frame (a fixed 10-meter baseline stereo

system), quickly leaves the top of the figure—it reaches a median absolute error of 100

meters at an elevation of 2500 meters as its triangulation becomes ever more ill-posed.

The remaining three algorithms, RMFPP, MFPP, and Farthest, all use the full range of the

sequence (at least the first and last frames), and have similar median absolute errors in

these experiments. However, the RMFPP algorithm is 3 to 4 times faster than the MFPP

algorithm per frame. At least as importantly for real-time vision, the RMFPP algorithm

returns its result approximately 0.2 sec after the last frame, while the MFPP algorithm

does not begin processing until all frames are captured. Hence, we have succeeded in our

primary goal for the RMFPP algorithm—replicating the accuracy of the MFPP algorithm,

while reducing its runtime to a range that is acceptable for real-time use.

We observe that the similarity and linearity of the reconstruction errors for the RMFPP,

MFPP, and Farthest algorithms in the previous experiment correspond to the expected error

derived for each algorithm in Section 1.2, with correlation coefficient ρ ≈ 1 for the RMFPP

and MFPP algorithms. To show the advantage of using all frames between the first and the

last, as in the RMFPP and MFPP algorithms, instead of just the first and the last as in

the Farthest algorithm, we add noise to all frames except the reference frame (thus adding

noise to the difference between the appearance of corresponding points from the reference

frame to any subsequent frame). Figures 4.5 and 4.6 show that the multiple estimates of G

provided by the RMFPP and MFPP algorithms result in significantly better performance in

the presence of image noise.

To justify the per-image weights αi used in the RMFPP and MFPP algorithms, we show

a comparison of different weight degrees, namely αi = (i − 1)β
for different values of the

exponent β, at different levels of image noise. Note the choice of (i − 1), as the images

34

corresponding to the reference frame I1 are I2 through Im. Figure 4.7 shows the results

for both algorithms. We conclude that the MFPP algorithm obtains its best results with

αi = 1 (the weights implicitly used by Irani et al. in [7]), and that the RMFPP algorithm

degrades significantly below αi = (i − 1)2
. We choose to use αi = (i − 1)2

for the RMFPP

algorithm to balance the benefit of high weight degree against its effect of diminishing the

contribution of earlier frames; we note that the low-elevation result degrades slightly above

this point, and that the high-altitude improvement above this point is small, particularly

when σimg ≤ 5. If the expected image noise and elevation above the terrain are large, we

recommend using a larger weight degree for the RMFPP algorithm.

Lastly, we discuss the use of image pyramids. Figure 4.8 shows the effect of using

different numbers of pyramid levels with the four algorithms. We conclude that an image

pyramid is unnecessary for the RMFPP algorithm; it achieves the same benefit (that of

reducing the size of the disparities between the plane-rectified image Ir
i and the reference

image I1 via a previous estimate) by using its estimate of G from the previous frame. In

fact, we find in our experiments that using a pyramid slows down the algorithm’s opti-

mization considerably because, even though the initial estimate for the coarsest pyramid

level is a subsampled version of G from the previous frame, the process of downscaling

the previous frame’s final estimate of G to the coarsest level and then upscaling it to the

finest level makes it less accurate than the final estimate of G from the previous frame at the

original image size, even with the refinement optimizations in the coarser pyramid levels.

In the case of the Closest algorithm, we find that an image pyramid is not beneficial—the

large errors that result from that algorithm are largely due to ill-posed triangulation, not to

large disparities between Ir
i and I1. Finally, the MFPP and Farthest algorithms both clearly

benefit from image pyramids with 4 levels at lower elevations and 3 levels at higher ele-

vations (where the additional subsampling at the fourth level is not necessary and slightly

decreases the algorithm’s accuracy). All of the previous and subsequent results use the best

number of pyramid levels for each algorithm at each elevation.

35

(a) (b)

Figure 4.1: Synthetic texture (a) and sinusoidal terrain (b) with resolution 1 meter/pixel.

The texture is uniform in [0, 255]. The terrain has elevation 100 · sin(0.02X) · sin(0.02Y)
where X ∈ [−3000, 3000) meters and Y ∈ (−1000, 7000] meters.

36

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Rendered texture and depth from downward-pointing cameras positioned 500

meters (a,b), 1000 meters (c,d), and 2000 meters (e,f) above the mean of the synthetic

sinusoidal terrain.

37

(a) (b)

−20 −10 0 10 20
Error (m)

P
ix

e
ls

pz Reconstruction Error

(c)

2 7 12 17
Frame Number

0

10

20

It
e
ra

ti
o
n
s

Number of Optimization Iterations

(d)

(e) (f)

−20 −10 0 10 20
Error (m)

P
ix

e
ls

pz Reconstruction Error

(g)

2 12 22 32
Frame Number

0

10

20

It
e
ra

ti
o
n
s

Number of Optimization Iterations

(h)

38

(i) (j)

−20 −10 0 10 20
Error (m)

P
ix

e
ls

pz Reconstruction Error

(k)

2 22 42 62
Frame Number

0

10

20
It

e
ra

ti
o
n
s

Number of Optimization Iterations

(l)

Figure 4.3: Results of RMFPP reconstruction using image sequences rendered from a trans-

lating downward-looking camera 500 meters (a-d), 1000 meters (e-h), and 2000 meters (i-l)

above the mean of the sinusoidal terrain. Each result set includes the reconstructed depth

(a,e,i), the valid mask for the reconstructed depth (b,f,j), the histogram of depth reconstruc-

tion errors (c,g,k), and the number of optimization iterations performed for each image

(d,h,l). The reference image and ground-truth depth images are those in Figure 4.2. Note

that the depth reconstructions are unfiltered. The red box around the depth valid mask is

not part of the mask itself—it serves only to separate the mask image from the surrounding

whitespace.

39

500 1500 2500
Elevation (m)

0

5

10

M
e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

(m
)

Algorithm Accuracy Comparison: σimg = 0

RMFPP
MFPP
Closest
Farthest

(a)

500 1500 2500
Elevation (m)

0

1

2

3

T
im

e
 P

e
r

Fr
a
m

e
 (

s)

Algorithm Runtime Comparison: σimg = 0

RMFPP
MFPP
Closest
Farthest

(b)

Figure 4.4: Comparison of algorithm accuracy (a) and runtime (b) based on translation

experiments with no noise. The error for Closest continues similarly above (a), but is

removed from the plot above 10 meters of median absolute error to allow greater detail for

the other algorithms.

40

500 1500 2500
Elevation (m)

0

5

10

M
e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

(m
)

Algorithm Accuracy Comparison: σimg = 5

RMFPP
MFPP
Closest
Farthest

(a)

500 1500 2500
Elevation (m)

0

1

2

3

T
im

e
 P

e
r

Fr
a
m

e
 (

s)

Algorithm Runtime Comparison: σimg = 5

RMFPP
MFPP
Closest
Farthest

(b)

Figure 4.5: Comparison of algorithm accuracy (a) and runtime (b) based on translation

experiments with image noise that is Gaussian with standard deviation σimg = 5. The error

for Closest continues similarly above (a), but is removed from the plot above 10 meters of

median absolute error to allow greater detail for the other algorithms. Note the difference

in accuracy, in the presence of image noise, between the single-frame algorithm Farthest

and the multi-frame algorithms RMFPP and MFPP.

41

500 1500 2500
Elevation (m)

0

5

10

M
e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

(m
)

Algorithm Accuracy Comparison: σimg = 10

RMFPP
MFPP
Closest
Farthest

(a)

500 1500 2500
Elevation (m)

0

1

2

3

T
im

e
 P

e
r

Fr
a
m

e
 (

s)

Algorithm Runtime Comparison: σimg = 10

RMFPP
MFPP
Closest
Farthest

(b)

Figure 4.6: Comparison of algorithm accuracy (a) and runtime (b) based on translation

experiments with image noise that is Gaussian with standard deviation σimg = 10. The

error for Closest continues similarly above (a), but is removed from the plot above 10

meters of median absolute error to allow greater detail for the other algorithms. Note the

difference in accuracy, in the presence of image noise, between the single-frame algorithm

Farthest and the multi-frame algorithms RMFPP and MFPP.

42

0 1 2 3
Weight Degree

1.0

1.5
P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Image Weights: RMFPP, σimg = 0

500 meters
1000 meters
2000 meters

(a)

0 1 2 3
Weight Degree

1.0

1.5

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Image Weights: MFPP, σimg = 0

500 meters
1000 meters
2000 meters

(b)

0 1 2 3
Weight Degree

1.0

1.5

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Image Weights: RMFPP, σimg = 5

500 meters
1000 meters
2000 meters

(c)

0 1 2 3
Weight Degree

1.0

1.5

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Image Weights: MFPP, σimg = 5

500 meters
1000 meters
2000 meters

(d)

0 1 2 3
Weight Degree

1.0

1.5

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Image Weights: RMFPP, σimg = 10

500 meters
1000 meters
2000 meters

(e)

0 1 2 3
Weight Degree

1.0

1.5

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Image Weights: MFPP, σimg = 10

500 meters
1000 meters
2000 meters

(f)

Figure 4.7: Relative accuracy of the RMFPP (a,c,e) and MFPP (b,d,f) algorithms with

different degrees of the per-image weight αi: with σimg = 0 (a,b), σimg = 5 (c,d), σimg =
10 (e,f). Note that the best MFPP results are obtained with αi = (i − 1)0

(degree 0); also

note significant degradation of the RMFPP results below αi = (i − 1)2
(degree 2).

43

1 2 3 4 5
Pyramid Levels

0

10

20

30

M
e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

(m
)

Effect of Image Pyramid: RMFPP

500 meters
1000 meters
2000 meters

(a)

1 2 3 4 5
Pyramid Levels

0

10

20

30

M
e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

(m
)

Effect of Image Pyramid: MFPP

500 meters
1000 meters
2000 meters

(b)

1 2 3 4 5
Pyramid Levels

0

10

20

30

M
e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

(m
)

Effect of Image Pyramid: Farthest

500 meters
1000 meters
2000 meters

(c)

1 2 3 4 5
Pyramid Levels

0

10

20

30

M
e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

(m
)

Effect of Image Pyramid: Closest

500 meters
1000 meters

(d)

Figure 4.8: Relative accuracy of each algorithm with different numbers of pyramid levels

(with one pyramid level equivalent to no image pyramid): RMFPP (a), MFPP (b), Farthest

(c), and Closest (d). Note that an image pyramid is not necessary for RMFPP and does

not improve Closest, but does improve MFPP and Farthest; the results in the previous and

subsequent figures use the optimal number of pyramid levels for each algorithm at each

elevation.

44

4.3 Effect of Geometric Noise

When we derived the RMFPP algorithm from the MFPP algorithm in Chapter 3, we re-

moved the MFPP algorithm’s interspersed optimization over the multi-camera and scene

geometry. Hence, we have assumed that this geometry is known, or can be estimated well

enough that the RMFPP algorithm degrades gracefully instead of failing catastrophically

due to a violation of its assumptions. In this section, we explore what range of errors in

estimating the required geometric parameters is “good enough”: the relative rotation Ri and

translation Ti between the reference frame and each subsequent frame i, and the distance

d1 of the reference frame from the reference plane. Note that the distance between subse-

quent frames and the reference plane, the di, are calculated using the plane normal N1, d1,

and the relative translation Ti.

The rotation error is parameterized as an axis-angle vector in R
3 with entries that are

chosen from the Gaussian distribution with standard deviation σRi
; the rotation matrix that

corresponds to this axis-angle vector is multiplied to the right of the relative rotation Ri.

The translation error is parameterized as a vector in R
3 with entries that are chosen from the

Gaussian distribution with standard deviation σTi
; the translation noise vector is added to

the relative translation Ti. The height error is a scalar in R that is chosen from the Gaussian

distribution with standard deviation σd1
; the height noise is added to d1.

We run experiments at elevations of 500, 1000, and 2000 meters, with the same se-

quences as in the previous section. As shown in Figure 4.9, we find that there is, indeed, a

range of errors in Ri, Ti, and d1 in which the RMFPP algorithm degrades gracefully. For

Ri, we find that the estimation error σRi
must be less than 10−3; for Ti, the allowable esti-

mation error σTi
scales linearly with elevation and must be less than d1/500. We also find

that the algorithm is relatively insensitive to error in d1—it degrades gracefully through a

broad range of σd1
.

45

10-5 10-4 10-3 10-2 10-1

Noise Standard Deviation

100

101

102

103

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Rotation Noise on Accuracy: RMFPP

500 meters
1000 meters
2000 meters

(a)

10-5 10-4 10-3 10-2 10-1

Noise Standard Deviation

100

101

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 T

im
e
 P

e
r

Fr
a
m

e

Effect of Rotation Noise on Processing Time: RMFPP

500 meters
1000 meters
2000 meters

(b)

0 2 4 6
Noise Standard Deviation (m)

100

101

102

103

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Translation Noise on Accuracy: RMFPP

500 meters
1000 meters
2000 meters

(c)

0 2 4 6
Noise Standard Deviation (m)

100

101

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 T

im
e
 P

e
r

Fr
a
m

e

Effect of Translation Noise on Processing Time: RMFPP

500 meters
1000 meters
2000 meters

(d)

0 25 50 75 100 125
Noise Standard Deviation (m)

100

101

102

103

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Height Noise on Accuracy: RMFPP

500 meters
1000 meters
2000 meters

(e)

0 25 50 75 100 125
Noise Standard Deviation (m)

100

101

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 T

im
e
 P

e
r

Fr
a
m

e

Effect of Height Noise on Processing Time: RMFPP

500 meters
1000 meters
2000 meters

(f)

Figure 4.9: Relative accuracy and runtime of the RMFPP algorithm with three types of

Gaussian noise on the multi-camera and scene geometry: noise in the relative rotation σRi

(a,b) and translation σTi
(c,d) between the the current camera and the reference camera,

and noise σdi
in the distance between the reference camera and the mean elevation of the

terrain (e,f). Note the graceful degradation of the algorithm’s accuracy and runtime through

σRi
= 10−3 and σTi

= d1/500, and through a broad range of σd1
.

46

4.4 Effect of Forward Camera Tilt

Although we have used a downward-facing camera in the previous experiments to cor-

respond to the theoretical error analysis in Section 1.2, in practice we would like to tilt

the camera forward so that we can reconstruct more terrain that is in front of the vehicle.

Figure 4.10 shows the result of running the RMFPP and MFPP algorithms on image se-

quences that are rendered from the sinusoidal terrain in Figure 4.1 using virtual cameras

with varying degrees of forward tilt. In order to obtain the best performance from the

MFPP algorithm, we compensate for the faster foreground image motion by adding a fifth

pyramid level at 500 meters for 40◦ and above, a fourth pyramid level at 1000 meters for

25◦ and above, a fifth pyramid level at 1000 meters for 45◦, and a fourth pyramid level at

2000 meters for 30◦ and above. We conclude that both the RMFPP and MFPP algorithms

degrade gracefully with a tilted camera.

4.5 Effect of Cost Function

The tilted-camera sequences that we used in the previous section also provide an oppor-

tunity to compare the performance of the RMFPP algorithm using the more accurate cost

function approximation that we derived in Section 3.2 to the original MFPP cost function

from Section 3.4, as ez (the Z coordinate of the homogeneous epipole) is non-zero in the

case of forward camera tilt. We show the results in Figure 4.11. We conclude that using the

original MFPP cost function degrades the results slightly at moderate to high camera tilt,

but that the difference is never more than 0.2%. Given the higher computational cost of the

more accurate RMFPP cost function, in situations where a higher framerate is desired we

recommend using the MFPP cost function instead.

47

0 15 30 45
Camera Tilt (deg)

100

101

102

103

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Camera Tilt on Accuracy: RMFPP

500 meters
1000 meters
2000 meters

(a)

0 15 30 45
Camera Tilt (deg)

100

101

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 T

im
e
 P

e
r

Fr
a
m

e

Effect of Camera Tilt on Runtime: RMFPP

500 meters
1000 meters
2000 meters

(b)

0 15 30 45
Camera Tilt (deg)

100

101

102

103

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Camera Tilt on Accuracy: MFPP

500 meters
1000 meters
2000 meters

(c)

0 15 30 45
Camera Tilt (deg)

100

101

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 T

im
e
 P

e
r

Fr
a
m

e

Effect of Camera Tilt on Runtime: MFPP

500 meters
1000 meters
2000 meters

(d)

Figure 4.10: Relative accuracy and runtime of the RMFPP (a,b) and MFPP (b,c) algo-

rithms with varying degrees of forward camera tilt. Note that the both algorithms degrade

gracefully with camera tilt.

48

0 15 30 45
Camera Tilt (deg)

1.000

1.002
P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 M

e
d
ia

n
 A

b
so

lu
te

 E
rr

o
r

Effect of Cost Function on Accuracy:
RMFPP With MFPP Cost Function

500 meters
1000 meters
2000 meters

(a)

0 15 30 45
Camera Tilt (deg)

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
a
l
C

h
a
n
g
e
 i
n
 T

im
e
 P

e
r

Fr
a
m

e

Effect of Cost Function on Runtime:
RMFPP With MFPP Cost Function

500 meters
1000 meters
2000 meters

(b)

Figure 4.11: Relative accuracy (a) and runtime (b) of the RMFPP algorithm using the cost

function from the MFPP algorithm, compared to using the better cost function approxima-

tion derived for the RMFPP algorithm. Note that the algorithm performs better with the

RMFPP cost function at moderate to high camera tilt, although the difference in accuracy is

never more than 0.2% and the additional complexity of the RMFPP cost function requires

more computation time.

4.6 Real Image Experiments

To demonstrate that the RMFPP algorithm is suitable for real-world use, we show results

using images recorded from a robotic helicopter north of Southern California Logistics

Airport near Victorville, CA. We emphasize that this is a challenging dataset—there is lens

flare in the center of every image, which violates the algorithm’s assumption that the scene

is static, and the vehicle is traveling at only 130-170 meters above ground level, which

reduces the number of frames in which a point on the ground is visible (and hence the

number of frames Ii using a reference frame I1). In these experiments, the camera is tilted

forward by 27◦ and has focal length 342; the images are 320x240 pixels. The vehicle

moves at 8-16 meters/sec, and images are captured at 3.75 frames/sec. We determine the

location of the camera at each image by refining the vehicle INS data using a combination

of SIFT [11] and sparse bundle adjustment [10].

49

(a) (b)

(c) (d)

(e) (f)

Figure 4.12: RMFPP results using real images recorded from a robotic helicopter north of

Southern California Logistics Airport near Victorville, CA: captured image (a,b), recon-

structed depth (c,d), and valid mask for reconstructed depth (e,f). Each column is a result

set: (a,c,e) and (b,d,f). The error region in the center of the reconstructed depth (c,d) is

due to lens flare, which violates the algorithm’s assumption that the scene is static. Note

that the depth reconstructions are unfiltered. The red box around the depth valid mask is

not part of the mask itself—it serves only to separate the mask image from the surrounding

whitespace.

50

Figure 4.12 shows the recorded images, and the (unfiltered) reconstructed depth. The

algorithm correctly determines that the top of each image has larger depth than the bottom

(due to camera tilt). Although the lens flare leads to an error region in the center of the

reconstructed depth, the remainder of the reconstruction is unaffected. The reconstruction

runtime is less than 0.5 seconds per frame, despite the lens flare.

4.7 Full Terrain Reconstruction

As a final demonstration of the RMFPP algorithm, we show a full terrain reconstruction

using United States Geological Survey orthoimagery [22] and elevation [21] data, as shown

in Figure 4.13. The USGS data includes the region used for the real image experiments

above. Using Blender [4] and the same camera parameters as in the sinusoidal terrain

experiments above, we render images that are 10 meters apart using an outwardly-spiraling

downward-facing camera that is 1000 meters above the terrain’s mean elevation. Figure

4.14 shows sample rendered images; note the wide variety of texture and terrain.

The reconstruction uses 4 complete spirals (with 50% overlap), 162 reference frames,

5647 total images, and an average of 0.17 seconds per frame. Figure 4.15 gives a quanti-

tative evaluation of the reconstruction, and Figure 4.16 gives a qualitative view of the final

result. The median absolute reconstruction error is 0.87 meters.

51

(a)

(b)

Figure 4.13: USGS texture (a) and terrain (b) north of Southern California Logistics Airport

near Victorville, CA. The texture is comprised of Digital Orthophoto Quarter-Quadrangles

[22] with resolution 1 meter/pixel. The terrain is from the National Elevation Dataset [21]

and has resolution 1/3 arc second per pixel. The terrain elevation is 744-1181 meters, with

a mean elevation of 840 meters. The difference in aspect ratio is due to the fact that 1/3 arc

second of longitude is smaller (in meters) than 1/3 arc second of latitude at this latitude.

52

(a) (b)

(c) (d)

(e) (f)

(g) (h)

53

(i) (j)

Figure 4.14: Rendered texture and depth from downward-pointing cameras positioned

1000 meters above the mean of the USGS terrain. Note the wide variety of texture and

terrain, from desertous to agricultural, and from flat to mountainous.

−20 −10 0 10 20
Error (m)

P
ix

e
ls

Terrain Reconstruction Error

(a)

2 12 22 32
Frame Number

0

10

20

It
e
ra

ti
o
n
s

Number of Optimization Iterations

(b)

Figure 4.15: Result of RMFPP reconstruction using image sequences rendered from an

outwardly-spiraling downward-looking camera 1000 meters above the mean of the USGS

terrain. The histogram of reconstruction errors for the entire area is shown in (a); the

number of iterations required for each frame following a representative reference frame is

shown in (b).

54

(a)

(b)

Figure 4.16: The reconstructed USGS texture and terrain, using 4 complete spirals (with

50% overlap) and 5647 frames (including 162 reference frames) spaced 10 meters apart.

The resolution is equal to that of the original USGS terrain, 1/3 arc second per pixel.

55

Chapter 5

Conclusion

In this dissertation, we have detailed the Recursive Multi-Frame Planar Parallax (RMFPP)

algorithm, a recursive extension of Irani et al.’s Multi-Frame Planar Parallax (MFPP) batch

algorithm, and shown that its error increases only linearly with depth. We have verified that

our recursive cost function, which preserves more of the problem’s nonlinearity than does

the one in the MFPP algorithm, allows a more accurate recursive procedure. We have also

validated the removal of the geometry-refining optimization used in the MFPP algorithm,

observing graceful degradation under geometric noise. Finally, we have presented results

using both synthetic and real imagery that show that the RMFPP algorithm is at least as

accurate as the original MFPP batch algorithm in many circumstances, is preferred to both

fixed- and dynamic-baseline two-frame methods, and is suitable for real-time use.

Future directions for this research include the development of a visual egomotion es-

timation algorithm that is suitable for distant (near-planar) scenes, and that fulfills the ac-

curacy requirements of the RMFPP algorithm as observed in this dissertation. We would

also like to combine both the RMFPP algorithm and this egomotion estimation system into

a complete real-time robotic reconstruction platform for distant static scenes.

56

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for

Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[2] Gary Bradski. Programmer’s tool chest: The OpenCV library. Dr. Dobbs Journal, November

2000.

[3] Olivier Faugeras. Three-Dimensional Computer Vision. The MIT Press, 1993.

[4] Blender Foundation. Blender: the free open source 3d content creation suite, 2008. Version

2.48a. Available from http://www.blender.org.

[5] Christopher Geyer, Todd Templeton, Marci Meingast, and S. Sastry. The Recursive Multi-

Frame Planar Parallax Algorithm. In Proceedings of Third International Symposium on 3D

Data Processing, Visualization and Transmission, 2006.

[6] M. Irani and P. Anandan. About direct methods. In Proc. International Workshop on Vision

Algorithms, September 1999.

[7] M. Irani, P. Anandan, and M. Cohen. Direct recovery of planar-parallax from multiple frames.

Trans. on Pattern Analysis and Machine Intelligence, 24(11), November 2002.

[8] S. K. Jenson and J. O. Domingue. Extracting topographic structure from digital elevation

data for geographic information systems analysis. Photogrammetric Engineering and Remote

Sensing, 54(11):1593 – 1600, 1988.

57

http://www.blender.org

[9] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms

for FORTRAN usage. ACM Trans. Math. Soft., 5:308–323, 1979.

[10] M.I.A. Lourakis and A.A. Argyros. The design and implementation of a generic sparse bundle

adjustment software package based on the Levenberg-Marquardt algorithm. Technical Report

340, Institute of Computer Science - FORTH, Heraklion, Crete, Greece, Aug. 2004. Available

from http://www.ics.forth.gr/~lourakis/sba.

[11] David G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2), 2004.

[12] Y. Ma, S. Soatto, Jana Košecká, and Shankar Sastry. An Invitiation to 3D Vision: From Images

to Geometric Models. Springer Verlag, New York, 2003.

[13] L. Matthies and S. A. Shafer. Error modeling in stereo navigation. J. of Robotics and Automa-

tion, RA-3(3), June 1987.

[14] Larry Matthies, Takeo Kanade, and Richard Szeliski. Kalman filter-based algorithms for esti-

mating depth from image sequences. International Journal of Computer Vision, 3(3), Septem-

ber 1989.

[15] J. McMichael and M. Francis. Micro air vehicles–toward a new dimension in flight. Technical

report, DARPA, 1997.

[16] M. Okutomi and Takeo Kanade. A multiple-baseline stereo method. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 15(4):353–363, April 1993.

[17] H. S. Sawhney. 3d geometry from planar parallax. In Proceedings of Computer Vision and

Pattern Recognition, June 1994.

[18] B. Sofman, J. Bagnell, A. Stentz, and N. Vandapel. Terrain classification from aerial data to

support ground vehicle navigation. Technical Report CMU-RI-TR-05-39, Robotics Institute,

Carnegie Mellon University, 2006.

58

http://www.ics.forth.gr/~lourakis/sba

[19] E. Sokolowsky, H. Mitchell, and J. de La Beaujardiere. NASA’s scientific visualization studio

image server. In Proc. IEEE Visualization 2005, page 103, 2005.

[20] Gideon P. Stein and Amnon Shashua. Direct estimation of motion and extended scene structure

from a moving stereo rig. Technical Report AIM-1621, Massachusetts Institute of Technology,

1997.

[21] United States Geological Survey. 1/3-Arc Second National Elevation Dataset (NED), 2009.

Available from http://seamless.usgs.gov.

[22] United States Geological Survey. Digital Orthophoto Quarter-Quadrangles (DOQQ), 2009.

Available from http://seamless.usgs.gov.

[23] Todd Templeton, David Hyunchul Shim, Christopher Geyer, and S. Sastry. Autonomous

vision-based landing and terrain mapping using an MPC-controlled unmanned rotorcraft. In

Proceedings of 2007 IEEE International Conference on Robotics and Automation, 2007.

[24] P. H. S. Torr and A. Zisserman. Feature based methods for structure and motion estimation.

In Proc. International Workshop on Vision Algorithms, September 1999.

[25] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle

adjustment – a modern synthesis. In Proc. International Workshop on Vision Algorithms,

September 1999.

[26] Yalin Xiong and L. Matthies. Error analysis of a real-time stereo system. In Proceedings of

Computer Vision and Pattern Recognition, June 1997.

[27] M. Zucchelli and H. I. Christensen. Recursive flow based structure from parallax with auto-

matic rescaling. In British Machine Vision Conference, September 2001.

59

http://seamless.usgs.gov
http://seamless.usgs.gov

	Acknowledgments
	Introduction
	Comparison to Previous Work
	Achieving Greater Accuracy With Multiple Frames

	Multi-Frame Planar Parallax
	Geometry
	Homographies
	Geometric Constraint
	Combining Multiple Frames
	The Multi-Frame Planar Parallax Algorithm

	The Recursive Multi-Frame Planar Parallax Algorithm
	Enabling Observations
	Recursive Cost Function
	Minimization of the Recursive Cost Function
	Cost Function Comparison
	Complete Algorithm

	Results
	Method
	Translation Experiments
	Effect of Geometric Noise
	Effect of Forward Camera Tilt
	Effect of Cost Function
	Real Image Experiments
	Full Terrain Reconstruction

	Conclusion
	Bibliography

