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Abstract

Background: Dengue virus (DENV) infection can range in severity from mild dengue fever (DF) to severe dengue
hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Changes in host gene expression, temporally through the
progression of DENV infection, especially during the early days, remains poorly characterized. Early diagnostic markers for
DHF are also lacking.

Methodology/Principal Findings: In this study, we investigated host gene expression in a cohort of DENV-infected subjects
clinically diagnosed as DF (n = 51) and DHF (n = 13) from Maracay, Venezuela. Blood specimens were collected daily from
these subjects from enrollment to early defervescence and at one convalescent time-point. Using convalescent expression
levels as baseline, two distinct groups of genes were identified: the ‘‘early’’ group, which included genes associated with
innate immunity, type I interferon, cytokine-mediated signaling, chemotaxis, and complement activity peaked at day 0–1
and declined on day 3–4; the second ‘‘late’’ group, comprised of genes associated with cell cycle, emerged from day 4 and
peaked at day 5–6. The up-regulation of innate immune response genes coincided with the down-regulation of genes
associated with viral replication during day 0–3. Furthermore, DHF patients had lower expression of genes associated with
antigen processing and presentation, MHC class II receptor, NK and T cell activities, compared to that of DF patients. These
results suggested that the innate and adaptive immunity during the early days of the disease are vital in suppressing DENV
replication and in affecting outcome of disease severity. Gene signatures of DHF were identified as early as day 1.

Conclusions/Significance: Our study reveals a broad and dynamic picture of host responses in DENV infected subjects. Host
response to DENV infection can now be understood as two distinct phases with unique transcriptional markers. The DHF
signatures identified during day 1–3 may have applications in developing early molecular diagnostics for DHF.
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Introduction

Dengue viruses (DENV) are arthropod-borne single stranded RNA

viruses of the family Flaviviridae, genus Flavivirus. There are 4 closely

related, but antigenically distinct serotypes, DENV-1,-2,-3, and -4.

DENVs are endemic in more than 100 tropical and subtropical

countries of the world. Presently, no specific therapies or vaccines are

available to treat the diseases or to prevent DENV transmission [1,2].

Typically, febrile illnesses begin 5–7 days from the initial DENV

infection by an infected mosquito. The virus propagates in the

human host and the viremia titer in the host’s peripheral blood

peaks during the early days (first 2–3 days) of acute illness, which is

then followed by a steep decline [3]. Illnesses caused by DENV

infection include undifferentiated dengue fever (DF), dengue

hemorrhagic fever (DHF), and dengue shock syndrome (DSS)

[4,5]. According to the WHO’s 1997 guidelines [6,7], DF is an
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acute febrile illness with two or more manifestations of headache,

retro-orbital pain, myalgia, arthralgia, rashes, etc. Symptoms of

DF can last for 2–7 days. A DHF case is diagnosed by persistent

high fever, hemorrhage tendency, signs of plasma leakage ($20%

increase in hemoconcentration or hypoprotemia, pleural effusion

or ascites), and thrombocytopenia (platelet counts #100,000/

mm3). DHF is further classified into 4 grades according to the

severity of bleeding and plasma leakage. DSS refers to DHF

grades III and IV, which, if not diagnosed and treated in a timely

manner, can lead to death [6–9].

The pathogenic feature of severe dengue disease is a transient

increase in vesicular permeability, resulting in plasma leakage.

DENV-infection rigorously activates the host innate immune

system, which contributes to early anti-viral defense, but may

concomitantly also contribute to the development of plasma

leakage [3,10]. Analyses of host genome-transcript patterns have

revealed multiple gene expression profiles associated with dengue

infection: NF-kB-initiated immune responses [11], type I interfer-

on (IFN), ubiquitin proteasome pathway [11], cell cycle and

endoplasmic reticulum (ER) [12], genes involved in T and B cell

activation, surface marker expression, immunoglobulin, comple-

ment activation, and inmate immunity [12–14]. Some of these

genes are differentially expressed in DF vs. DHF or DSS patients

[12–14]. These studies demonstrated a powerful way for exploring

the roles of host immune responses to DENV infection, as well as

identifying disease severity markers using peripheral blood

mononuclear cells (PBMCs) without purifying the immune cell

subsets or manipulating the cells.

In this study, the dynamics of gene expression were analyzed in

cohorts of clinically defined DF and DHF subjects. The study

established an evolving picture of the host immune response

throughout the entire progression of dengue disease, from as early

as fever onset to early defervescence. In addition, the study

identified key genomic signatures that might be useful for the

future development of early diagnosis of severe dengue disease.

Materials and Methods

Ethics
All of the procedures were conducted in accordance with the

ethical standards of the Naval Medical Research Center Institu-

tional Review Board and with the Helsinki Declaration of 1975, as

revised in 1983. Prior to participating in the study, an informed

written consent was obtained from each participant or from their

parents or legal guardians. The Naval Medical Research Center

Institutional Review Board, in compliance with all Federal

regulations governing the protection of human subjects, approved

the study protocol (NMRCD.2005.0007). This study was also

approved by the Comité de Bioética del Instituto de Investiga-

ciones Biomédicas de la Universidad de Carabobo (CBIIB-UC), in

Maracay, Venezuela.

Patient enrollment, diagnosis of DENV, clinical
monitoring and specimen collection

Approximately 2500 residents in the city of Maracay,

Venezuela, participated in an active surveillance program for

DENV transmission. The subjects were monitored for febrile

illness through visits or phone calls three times a week. The

subjects who were five years of age and older, with a fever duration

of less than 120 hours and with two or more of the following

symptoms: myalgia, athralgia, leucopenia, rash, headache, lymph-

adenopathy, nausea, vomiting, positive tourniquet test, thrombo-

cytopenia and hepatomegaly (World Health Organization, Den-

gue hemorrhagic fever: diagnosis, treatment, prevention and

control. 2nd ed. Geneva: WHO; 1997), were enrolled in this study

by nurses and physicians of the field team from the Febrile

Surveillance Cohort, and by site physicians from local outpatient

clinics (Ambulatorio 23 de Enero, Ambulatorio la Candelaria,

Ambulatorio Efrain Abad Y Ambulatorio del Norte), and from

two metropolitan reference hospitals (Hospital Central de Mar-

acay and Hospital Ivss Jose Maria Carabaño Tosta). Blood

samples were obtained by standard venipuncture procedures in a

VacutainerH collection tube with anticoagulant. An initial blood

sample was taken upon enrollment for DENV serotype determi-

nation using Taqman-based RT-PCR. Only if DENV infection

was confirmed by RT-PCR, then serial blood samples were

collected at 24, 48 and 72 hours following the initial sample, and

one to two samples within 0–72 hours post-fever defervescence

and one sample at $20 days (convalescent period) following the

initial sample. Viremia levels were measured using quantitative

RT-PCR at enrollment and at 24, 48 and 72-hour specimens.

Clinical symptoms were monitored and recorded at every visit.

Separation of plasma and PBMCs was performed by gradient

centrifugation over Histopaque-Ficoll (Sigma, St. Louis, MO). The

plasma and PBMCs were stored at 270uC.

For the confirmed DENV cases, serum IgM was measured from

the samples at acute phase and convalescent phase using enzyme-

linked immunosorbant assays (ELISA) [15,16]. The primary

infection was determined using IgM serology: elevated IgM titers

($1:100) without detectable PRNT in the acute sample, and

elevated IgM levels in the convalescent sample. To determine the

prevalence and cumulative incidences of DENV infections, PRNT

titers were measured in the sera obtained from acute specimens

[17] as previously described [16,18].

Hematological analysis
Complete blood cell counts were performed for each blood

sample collected using the QBC automated system according to

the manufacturer’s instructions (Becton-Dickinson 1996). The

QBC STAR measures 9 important CBC hematological parame-

ters: hematocrit, hemoglobin, MCHC (mean corpuscular hemo-

globin concentration), platelet count, white blood cell count,

granulocyte count and percentage, and lymphocyte/monocyte

count and percentage.

RT-PCR
Viral RNA was prepared from 140 mL sera using QIAamp

ViralRNA Mini Kits according to the manufacturer’s instructions

Author Summary

The clinical outcome of DENV infection in humans can be
DF or the more severe DHF and DSS. The individual’s
previous DENV exposure history, infecting serotypes, and
host genetics are thought to be contributing factors to
dengue disease severity. Our study contributed to the
current dengue research field in the following ways: 1) Our
study reveals the dynamics of host gene expression over
each day post onset of symptoms. The gene transcription
patterns enabled classification of dengue disease into 2
subtle phases: early acute and late acute. 2) The study
identified gene markers differentiating severe dengue
cases from non-severe cases with .90% accuracy. Taken
together, our study offers insight into host responses in
DENV-infected subjects and these results may be valuable
for the future development of diagnostic tools for disease
severity.

Genetic Markers of Dengue Disease Severity
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(Qiagen Inc., Valencia, CA, USA). Briefly, the TaqManH One-Step

RT-PCR Master Mix Reagents (PN:4309169, Applied Biosystems)

were prepared in the following manner: final concentration of primers,

1 mM; probes, 0.22 mM in a final reaction volume of 25 ml [19].

Thermocycling was set to 50uC for 30 min and 95uC for 10 min,

followed by 45 cycles of 95uC for 15 sec and 60uC for 1 min. The PCR

reactions were performed in a 7500 Real-Time PCR System (Applied

Biosystems). DENV serotype-specific RT TaqMan PCR was

performed on the acute samples using a protocol previously described

by Laue et al: a standard curve for each DENV serotype was developed

using four DENV representative strains (one for each serotype). The

starting concentration followed a ten-fold dilution of each serotype:

serotype 1 (16007) = 2.36106 PFU/ml; serotype 2 (16681) = 2.56107

PFU/ml; serotype 3 (IQD1728) = 4.86105 PFU/ml and serotype 4

(1036) = 4.66105 PFU/ml.

Gene expression profile analysis using Affymetrix gene
chips

Extraction of cellular RNA, assessment of the integrity and

quantity of the extracted RNA, and subsequent processing of the

RNA for gene array were performed using the Agilent 2100

Bioanalyzer system (Agilent Technologies, Santa Clara, CA) as

previously described [20,21]. Two chip types were used in the

study: Affymetrix HG-U133 plus 2 and HG-Focus. The HG-

U133 plus 2 contained 54,675 probe sets, where each set

consisted of 11 25-mer probes. The HG-Focus gene chip is

consisted of 8,793 probe sets to assess 8,500 transcripts encoding

8,400 full length and fully annotated genes [20,21]. The 8793

probe sets of the HG-Focus are a subset of the probe sets from

HG-U133plus2.

GeneChip quality control and data normalization
Gene chips with a scaling factor .50 on the dChip software

(2005 version) were eliminated from further analysis [21,22]. Gene

chips were also examined using the QA/QC functions built into

the Partek software according to the Company’s User Manual.

Affymetrix CEL files were imported into Partek Genomics Suite

Version 6.6 (Partek). The gene chips that failed according to the

QC metrics and appeared as outliers using principal component

analysis (PCA) were eliminated for further analysis. The CEL files

were normalized at the probe level using the Robust Multi-chip

Average (RMA) method built into the Partek Genomic Suite

software. RMA was used to normalize the microarray data, which

leveraged the gene expression assessments made on Affymetrix

gene chips. For each probe set, the technique generated an

estimated value for the probe and chip effects, which resulted in an

overall pattern of probe set values observed in the data set. RMA

consisted of 3 calculation applications that address background

correction, normalization of the quantiles, and median polish

summarization. The gene expression data were expressed as log2

values. The data sets from the two gene chip platforms were

normalized and analyzed independently.

Differentially expressed genes
Differentially expressed genes were analyzed using analysis of

variance (ANOVA) using the Partek software. Multi-way

ANOVA was chosen based on the number of factors contributing

to data variation. The following factors were taken into

consideration as variation factors: subject #, scan date (date that

the chip image was taken), infecting serotype, illness day (days of

illness when the sample was taken), and disease severity (samples

associated with the DF or DHF category). Genes that were

considered significant only by chance were defined by the false

discovery rate (FDR$5%) and were excluded from further

analysis. In this study, the genes with a fold change of .2 or

,22 and a p-value plus a FDR ,5% were considered

significant. A heat map and PCA were used to visualize the

most informative trends by showing the predominant gradients in

the data set.

Gene ontology and functional pathway
Analysis of the gene biological functions and pathways were

performed using the pathway analysis modules in the Partek

Genomic Suite 6. Two analysis modules were used: gene ontology

(GO) [23] and KEGG pathway [24]. The gene ontology/

biological process level-5 (GOTERM_BP_5) [25] was used for

the GO analysis. The Database for Annotation, Visualization and

Integrated Discovery (DAVID), an online program for microarray

data mining developed by NIAID was used as a second tool for

gene function and pathway analysis.

Classification
Class prediction was performed using the Partek Model

Selection tool in the Partek software. Using this software, nested

cross-validations were used to select an optimal classifier and to

estimate the accuracy of the optimal classifier when multiple

classifiers were considered for a single problem. For the 2-level

cross-validation, an ‘‘inner’’ cross-validation was performed to

select predictor variables and optimal model parameters, and an

‘‘outer’’ cross-validation was used to produce overall accuracy

estimates for the classifier. Following the 2-level cross-validation

method, the 1-Level Cross-Validation was used to evaluate

multiple models and to select the best model to deploy. In this

study, the 2-level nested cross validation process used ANOVA or

Shrinking Centroid to filter the data. Multiple groups of variables

with specified sizes were evaluated. The best classification model

was determined by running the following classifiers: K-nearest

neighbors with 1–25 neighbors, Nearest Centroid, Discriminant

Analysis, and Support Vector Machine.

Results

Clinical information of the study population
From 2006 to 2010, approximately 300 febrile individuals in

Maracay, Venezuela, who presented themselves at participat-

ing clinics and hospitals or were identified by community-

based monitoring, with signs and symptoms consistent with

dengue disease, met the study enrollment criteria. These

individuals were subsequently enrolled into the study. Approx-

imately 130 subjects were confirmed by PCR of DENV

infection and were categorized as DF and DHF patients

according to the WHO 1997 dengue disease classification

guidelines. DHF patients were recognized based on fever,

bleeding, thrombocytopenia (platelet counts #100,000) and

signs of plasma leakage. Subjects who had $3 serially collected

samples, 1 at each of the febrile, defervescent and convalescent

stages were selected for the study, thus we had 51 DF and 13

DHF subjects providing a sum of more than 200 samples for

the study. The demographics of the study participants and

their clinical, immunological and hematological characteristics

are summarized in Table 1. The timing of the collection,

serotype, and severity, related to the samples are presented in

Table 2. To assess the statistical difference between DF and

DHF, hypothesis testing of 2 independent samples with

unknown variances was performed for mean values, and

hypothesis testing for 2 sample proportions was performed for

percentages. As shown in Table 1, most of the DHF cases met

Genetic Markers of Dengue Disease Severity
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all 4 classification criteria. The percentages of lymphocytes and

neutrophils in the peripheral blood of DF and DHF patients

were plotted in Figure S1.

Day-to-day host gene expression depicted two sub-
phases during the process of the disease

A total of 166 specimens from 47 DF and 3 DHF subjects were

used to study the dynamics of host responses using the HG-focus

gene chip platform (Table 2).

To analyze the dynamics of the host response in DENV-

infected individuals, samples obtained at different illness days

were grouped together into stages (G). Group sizes (# of

specimens) were shown by G and also by serotype or severity

(Table 2). As illustrated in Figure 1a, G0 was the day of fever

onset, G1–G5 corresponded to 1–5 days from fever onset, G6

was day 6–10, and G7 was the convalescent time point day

$20. As shown in Figure 1a, each G had $19 samples except

G0 and G1. Using levels of gene expression at G7 as the

baseline, significantly up- or downregulated genes were detected

at each G using 5-way ANOVA (Subject #, scan date, severity,

stage, and serotype as 5 factors). The number of significant

genes in each G from G0–G6 was 360 (G0), 320 (G1), 92 (G2),

136 (G3), 122 (G4), 198 (G5), and 152 (G6), respectively.

Combined, these genes consisted of a total of 615 genes (7.0% of

8793 probe sets on the FG-focus platform) representing the total

up- or down regulated genes activated throughout the entire

illness period. Visualizing the expression patterns of the 615 in

all of the samples at all time points using PCA, we observed that

Table 1. Clinical, immunological and virological information of study cohorts.

Gender and Age DF (n = 51) DHF (n = 13) p value

Sex: Female, No (%) 27 (52.9) 10 (76.9) 0.19

Age: Mean years 6SD (range) 15.367.1 (5–32) 19613.4 (5–49) 0.35

Infecting Serotype1

DENV-1, No (%) 26 (50.9) 2 (15.4) 0.33

DENV-2, No (%) 8 (15.7) 8 (61.5) 0.06

DENV-3, No (%) 9 (17.7) 2 (15.4) 0.94

DENV-4, No (%) 7 (13.7) 1 (7.7) 0.87

Pre-existing DENV infection2

None, No (%) 23 (45.1) 2 (15.4) 0.42

One serotype, No (%) 13 (25.5) 1 (7.7) 0.69

Two serotype, No (%) 10 (19.6) 6 (46.1) 0.26

Three serotype, No (%) 4 (7.8) 4 (30.8) 0.41

Symptoms

Hospitalization, No (%) 8 (15.7) 10 (76.9) ,0.01

Temp Max uC 6 ST DEV 38.960.7 39.160.7 0.37

Fever Days 6 ST DEV 4.361.1 5.261.0 ,0.01

Headache, No (%) 50 (98.0) 13 (100) 0.61

Shivering, No (%) 43 (84.3) 10 (76.9) 0.58

Rash, No (%) 37 (72.6) 8 (61.5) 0.53

Cough, No (%) 12 (23.5) 4 (30.8) 0.77

Diarrhea, No (%) 10 (19.6) 6 (46.2) 0.26

Nausea, No (%) 19 (37.3) 7 (53.8) 0.45

Hematology

Thrombocytopenia

(platelet #100,000/mm3), No (%) 8 (15.7) 12 (92.3) ,0.01

Plasma leakage3, No (%) 6 (11.8) 7 (61.5) ,0.01

Bleeding4, No (%) 23 (45.1) 13 (100) ,0.01

Viral Load (Mean ± ST DEV)

Day 0 (No) - - -

Day 1 (No) 1.4E+0462.8E+04 (7) - -

Day 2 (No) 7.4E+0362.8E+04 (27) 3.2E+0365.4E+03 (3) .0.05

Day 3 (No) 4.2E+0261.4E+03 (21) 1.6E+0664.6E+06 (9) .0.05

Day 4 (No) 0.7E+0162.4E+01 (14) 1.1E+0462.7E+04 (6) .0.05

1Serotype for 1 DF subject was missing due to a suspected non-DENV infection.
2PRNT for 1 DF subject was not done.
3Elevated hematocrit comparing the highest to the lowest values recorded, or other signs of plasma leakage (pleural effusion, ascites, or other edema).
4Tourniquet test or signs of epistaxis, ecchymosis, gum bleeding, hematemesis, hemoptysis, genital bleeding, or other bleeding.
doi:10.1371/journal.pntd.0002298.t001

Genetic Markers of Dengue Disease Severity
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gene expression patterns gradually shifted by stages from G0 to

G6 (Figure 1b). Within this gradual shift, G0, G1, G2, and G3

formed a cluster that was clearly distinguishable from that of G5

and G6. The samples from G4 bridged between the two clusters.

To determine whether the change of gene expression, especially

the two distinguishable clusters, was modulated by the presence or

absence of fever, we performed PCA on only the defervescent

samples. As shown in Figure 1c, the majority of the G4–G6

defervescent samples clustered together, while 4/5 G2–3 and some

G4 defervescent samples separated (Figure 1c), suggesting that

defervescent samples from a shorter febrile duration (2–3 days)

maintained gene expression patterns that were more similar to

those of early febrile samples. Similarly, when PCA analysis was

performed only on the febrile samples (Figure 1d), it was clear that

all of the 5 G5–6 samples, together with a few of the G4 febrile

samples separated from the rest of G0–G4 febrile samples, and

maintained a pattern more similar to that of late defervescent

samples.

Based on the 2 distinguishable clusters shown in Figure 1b, we

regrouped the samples into early acute (G0–G3), late acute (G4–

G6) and convalescent phases (G7). A second 4-way ANOVA was

performed by comparing the gene expression in the early acute vs.

convalescent and late acute vs. convalescent phases. We identified

223 and 140 significant genes that were differentially expressed in

the early acute and late acute phase, respectively (Figure 1e, Table

S1 and S4). Only 25 genes (,8%), as shown by a Venn Diagram

(Figure 1e), were shared between the early and late phase,

indicating persistent expression of these genes; whereas the

majority (,92%) of the genes (198+115 = 313) were uniquely

expressed in either the early or late phase (gene list shown in Table

S7). These phase-unique markers showed a better separation of

the 3 phases (Figure 1f): early acute, late acute and convalescent.

To validate our observations, we performed a similar analysis

for the samples assayed using another chip type: HG-U133plus2

(sample information shown in Table 2), and similar results were

obtained (Figure S2a–c). We further separated the DF and DHF

samples and analyzed them separately. The gradual change in

gene expression over time and the clustering of G1–G3 and G4–

G6 were both observed in the DF and DHF groups (Figure S3),

suggesting that the time of sampling contributed most significantly

to gene expression variation.

Functionally categorizing differentially expressed genes
in early and late acute phases

To understand the functions of the differentially expressed

genes identified by ANOVA, gene ontology (GO) and Kegg

pathway analysis was used to annotate the functional profiles.

The entire list of GO categories in the early and late acute phases

with a pathway p-value ,0.01 and with more than 3 involved

genes are shown in Tables S2, S3, S5, and S6. Listed in Table 3

are the most significant pathways with the highest enrichment

scores as detected using the HG-focus gene chip platform. As

shown in Table 3, genes upregulated in G0–G3 were related to

the innate immune pathways, type-I interferon-mediated signal-

ing, cytokine-mediated signaling, response to virus, chemotaxis,

and inflammatory responses. Gene down-regulated in G0–G3

were related to gene transcription and translation, cellular protein

metabolic processes, structural constituent of ribosome, viral

transcription, and viral infectious cycle. Genes upregulated in

G4–G6 were related to mitotic cell cycle, cell division, mitosis,

DNA replication, chromosome, spindle organization, phosphati-

dylinositol-mediated signaling. Strikingly, there was minor

overlap between early acute and late acute phases in terms of

gene functionality.

Table 2. Sample information on two gene chip platforms.*

Array by severity by serotype

Platform G All DF DHF DENV1 DENV2 DENV3 DENV4

G0 2 2 0 0 1 1 0

HG-focus G1 4 4 0 2 0 1 1

G2 21 20 1 14 2 3 2

G3 19 19 0 9 4 4 1

G4 24 21 3 12 4 5 4

G5 23 22 1 14 1 3 3

G6 26 25 1 18 0 7 1

G7 50 47 3 25 6 9 6

Total 166 157 9 95 18 33 18

G0 0 0 0 0 0 0 0

HG-U133 G1 2 2 0 0 2 0 0

plus 2** G2 8 5 3 1 5 1 1

G3 14 7 7 2 8 1 2

G4 18 8 10 3 10 3 2

G5 9 4 5 4 5 0 0

G6 22 11 11 7 7 5 3

G7 24 12 12 7 11 3 3

Total 97 49 48 24 48 13 11

*Tables shows number of samples per category.
**Among 97 samples tested on HG-U133plus2, 50 were also tested on HF-focus.
doi:10.1371/journal.pntd.0002298.t002

Genetic Markers of Dengue Disease Severity
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Figure 1. Daily gene expression patterns define 2 subtle phases during the disease process. a) Illness days with corresponding stages (G)
and phases for samples on the HG-focus platform. The number of febrile and defervescent samples in each G was shown. b) A global overview of the
gene expression pattern in G0 to G7. Using convalescent samples (G7) as a baseline, significant genes in each stage (from G0 to G6) were detected
using multi-way ANOVA. PCA was performed using all of the significant genes found in G0 to G7 on the HG-focus platform. All of the samples
(represented by dots) were included in the PCA. c) PCA was performed on the defervescent samples only. d) PCA was performed on the febrile
samples only and are indicated according to the number of fever days. e) Samples were reassigned to the early acute, late acute and convalescent
phases. Differentially expressed genes in the early acute vs. convalescent or late acute vs. convalescent phase were detected using multi-way ANOVA.
Shared genes between the early and late acute phases were represented by a Venn diagram. f) PCA was performed using 313 phase-specific genes.
doi:10.1371/journal.pntd.0002298.g001
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The GO analysis using genes expressed on HG-U133plus2

showed same GO pathways as those on HG-focus, reemphasizing

the reproducibility of the data (Table S8).

Furthermore, two of the top Kegg pathways representing the

early acute and late acute phases were the Systemic Lupus

Erythematosus (SLE) (Figure S4) and Cell Cycle (not shown)

pathways, respectively. SLE is an autoimmune disease associated

with type III hypersensitivity. It is triggered by the precipitation of

antibody immune complexes to cells and tissues, causing

complement activation, immune cell activation, and inflammation,

and results in tissue and organ damage. Genes encoding

complement components C2, C1q and C1r and genes associated

with antigen processing and presentation, cytokine-cytokine

signaling, T cell receptor signaling, cell adhesion, complement

coagulation, and all those marked with a red star, were present in

G0–G3.

Genomic signatures predictive of 3 dengue disease
phases with 91% accuracy

For the classification of dengue disease phases, 2-level cross-

validation using all of the data on the HG focus chips returned a

Normalized Accuracy Estimate = 88%. The 1-level cross-validation

returned a top model which used 65 variables and yielded a

Normalized Correction Rate of 91% (Figure 2a). These results

showed that a set of 65 variables classified early acute, late acute and

convalescent phases with an accuracy of 91% (Figure 2b). Among

these 65 genes, 23 and 27 variables were unique gene signatures for

the early acute and late acute phase, respectively, whereas 15

variables were expressed in both the early and late acute phases.

We also performed classification analysis with samples on the

HG-U133plus2 platform and found that 55 out of these 65 phase

classifiers were also (Table S9) found on this platform.

Sequential waves of marker expression
The dynamics of the expression of these 65 markers from G0–

G7 were analyzed and shown in Figure 3. Markers belonging to

the early acute phase peaked at G0–G1 and gradually declined to

baseline around G4–G5; whereas markers unique for the late

acute phase emerged at G4 and peaked at G5–G6. These results

showed two sequential waves of genes representing two host

response periods: an innate response period followed by a cell

mitotic cycle period. The cross-point of the two waves was at G4.

A list of the top 7 genes with 96% accuracy in predicting
DF vs. DHF

We further analyzed the data on the HG-U133plus2 chips for

gene expression related to DF vs. DHF. Classification analysis was

first performed using all of the genes on the HG-U133plus2 chip

for samples in G0–G3. A total of 140 genes (Table S10) classified

DF vs. DHF with a correction rate of 86% using the classification

methods of K-nearest Neighbor with Euclidean distance and 3

neighbors. The fold changes of the 140 genes between DF and

DHF were .2 or ,2 with p (FDR) ,0.05 by ANOVA analysis

(Table S10). Among these 140 genes, 79 genes (59%) showed

higher levels of expression in the DF samples compared to the

DHF samples; whereas 61 genes (41%) showed higher levels in the

DHF samples compared to the DF samples (Table S10). Antigen

processing and presentation of the peptide or polysaccharide

Table 3. Common and differential GO pathways in early acute and late acute phases.

Phase Up-regulated GO pathways Down-regulated GO pathways

Early Acute type I interferon-mediated signaling pathway translational elongation

cytokine-mediated signaling pathway translation

immune response structural constituent of ribosome

interferon-gamma-mediated signaling pathway viral transcription

innate immune response translational termination

double-stranded RNA binding cellular protein metabolic process

response to virus viral infectious cycle

chemotaxis gene expression

inflammatory response endocrine pancreas development

defense response to virus ribosome

Late Acute mitotic cell cycle positive regulation of nitric oxide biosynthetic process

cell division positive regulation of fever generation

mitosis peroxidase activity

spindle organization haptoglobin-hemoglobin complex

cell cycle sequestering of triglyceride

DNA replication positive regulation of calcidiol 1-monooxygenase activity

M phase of mitotic cell cycle humoral immune response

phosphatidylinositol-mediated signaling oxygen transport

chromosome regulation of I-kappaB kinase/NF-kappaB cascade

cell cycle checkpoint

Both phases cytokine-mediated signaling pathway

type I interferon-mediated signaling pathway

response to virus

doi:10.1371/journal.pntd.0002298.t003
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antigen via MHC class II, MHC class II protein complex,

interferon-gamma-mediated signaling pathway, T cell receptor

signaling pathway, MHC class II receptor activity, and T cell co-

stimulation were among the top functional bio-pathways with a

higher level expression in DF specimens compared to DHF

specimens (Table 4).

Figure 2. 2-level and 1-level cross-validation identified a top classification model and 65 gene signatures for the prediction of 3
phases. a) Information of the model selection showing 65 variables and a top classification model with 2-level and 1-level normalized correction
rates. b) Heatmap of the 65 signatures.
doi:10.1371/journal.pntd.0002298.g002
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Since our ultimate goal was to discover markers for the early

diagnosis of DHF, we sought markers expressed differently

between DF and DHF throughout G1 to G3, but not the ones

different in only one or two stages. The median level of gene

expression for each of the 140 genes in G1, G2 and G3 for the

DF and DHF group, respectively, was analyzed. There were 56

(out of 140) genes met this criterion with a fold change of .2

or ,22 throughout G1 to G3 compared to G7. Ranking of the

56 genes revealed 7 genes (Table 5) that differentiated DF from

DHF with a 96% accuracy. PCA using these 7 genes clearly

segregated the DF from the DHF samples (Figure 4a). The

dynamic expression of these 7 genes was shown in Figure 4b.

Discussion

The samples collected in this study spanned from as early as the

first day of fever onset to early defervescent to the convalescent

period. They provided an exceptional opportunity to investigate

the whole spectrum of host responses during the disease process.

The samples from earliest time points were particularly valuable in

understanding the differences in pathology between DF and DHF

at early stages of disease.

Clinical, immunological and hematological information
of DF and DHF cohorts

The classification of DF and DHF cases played a key role in

this study. We followed the 1997 WHO guidelines: persistent

high fever, hemorrhagic manifestations (spontaneous bleeding),

thrombocytopenia (platelet counts #100000/mm3), and signs

of plasma leakage ($20% increase in hemoconcentration,

pleural effusion or ascites). Most of our DHF cases met all 4

criteria.

Other differences characterizing DHF from DF included a

prolonged fever duration (5.2 vs. 4.3 days), higher hospitalization

rate, higher secondary infection rate, and a trend of higher viremia

titers, which were all consistent with our current knowledge

[9,26,27].

In all patients, there was a decrease in lymphocytes but an

increase in neutrophils within the first 1–3 days of illness

compared to the convalescent baseline (G7). Changes in the

lymphocytes and neutrophils were significantly more pro-

nounced in the DHF compared to the DF cases. Potts et al

attempted to use hematological measures for diagnosis of

severe dengue illness [28]. They found that higher counts of

neutrophils and lower counts of white blood cells within 3 days

from the onset of illness predisposed people at a higher risk of

DHF. Mechanistically, early stage T cell apoptosis [29,30]

demonstrated by Green et al. may account for the lower

lymphocyte counts. T cell apoptosis may also account for the

lack of functional CD8+ T cell cytokine production [31], and

lack of T cell proliferation at the febrile period of dengue

illness [32]. Taken together, these data support the role of

cellular immunity in the defense against dengue disease

severity, and provided some biological insights on our gene

array results, which are later discussed. Neutrophils are one of

the first cells to migrate to infection sites; they play an

Figure 3. Two waves of gene expression over the disease stages. Median marker expression intensity (log 2 value) of the genes detected in
the early and late acute phases from G0 to G7 was shown.
doi:10.1371/journal.pntd.0002298.g003
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important role in the control of various bacterial and viral

infections though phagocytosis and cytokine/chemokine pro-

duction [33]. Neutrophils release an array of cytokines and

chemokines to impact the functions of other cells of the innate

as well as the acquired immune system [34,35]. The changes of

neutrophil counts in early stages may provide mechanistic

insights for our gene array study, as the chemokine and

inflammatory cytokine responses are the top functional gene

pathways in early acute phase.

Two waves of gene expression representing two
distinctive phases of disease process

We observed a gradual evolution in the gene expression patterns

over time from G0 to G6 with a more significant change at G4,

resulting in the separation of the early acute (G0–G3) and late

acute phases (G4–G6). This was independent of disease severity

and was incompletely associated with fever status. The early acute

and late acute phases were represented by two waves of

functionally distinct gene clusters: the innate immunity followed

by cell cycle. Strikingly, only 10% genes were shared between the

two phases, and .90% of the genes were unique for either the

early or late phase.

A number of published dengue gene array studies [11,12]

have highlighted the importance of sampling time and

addressed the difference with respect to timing. However,

there is not a uniformed and clear method in the timing of the

samples. Some studies used #72 hours to define the early

phase, while others treated samples from various days as one

group. Furthermore, due to the limitation of their sample bank

(most of the studies had samples from day 3–6), the studies did

not show an evolving picture of gene expression on a day-to-

day basis, and were mostly unable to capture both waves of

gene expression [11,13,36,37]. Their findings highlighted a

specified period of dengue disease. To the best of our

knowledge, we are the first study to present the host response

to dengue infection as an entirety.

Nevertheless, when we examined our results and those of

others by breaking down to separate phases, we found that our

results and those of others were mutually supportive. Hoang et

al. had used samples collected within 72 hours of the illness

from Vietnam, and had identified major functional pathways,

response to virus, immune response, innate immune response

and inflammatory responses, which were nearly identical to

those found in our study. Fink et al. conducted a study on

dengue febrile subjects in Singapore [11]. Approximately 50%

of their 32 reported innate immunity genes, including TNF,

IP-10 (CXCL10), I-TAC (CXCL11), Stat 1, OAS1, OAS2,

OAS3, OASL, IFIH1, IFI44, UBE2L6, UPS18, HERC5,

ISG15, PSMB9, MxA (Mx1) were also identified during the

same period of disease G0–G3 in our study. More interesting-

ly, IP-10 (CXCL10) gene was one of the most upregulated

genes demonstrated in both ours and Fink’s study. In addition,

Simmons et al. used samples from day 3–6 with a mean length

of illness of 4.6 days from hospitalized patients in Ho Chi Minh

City, Vietnam [12]; Loke et al. studied gene expression using

samples within 3–6 days of illness from children in Nicaragua.

The presence of genes related to cell cycle, protein metabolism

and nucleic acid metabolism in these two studies confirmed

our observation of the late acute phase. Our results suggested

that future studies should consider carefully the time of sample

collection since host responses at early acute and late acute

phases showed little in common.

Table 4. GO pathways of gene signatures which differentiated DHF from DF.

Pathways Up/down Enrichment Enrichment

Df vs DHF Score P value

antigen processing and presentation of peptide or polysaccharide
antigen via MHC class II

Up 24.2904 0.000000

MHC class II protein complex Up 23.8583 0.000000

interferon-gamma-mediated signaling pathway Up 21.9241 0.000000

T cell receptor signaling pathway Up 17.1104 0.000000

MHC class II receptor activity Up 16.7737 0.000000

cytokine-mediated signaling pathway Up 15.0755 0.000000

lysosomal membrane Up 14.6264 0.000000

T cell costimulation Up 14.5901 0.000000

Golgi apparatus Up 11.4283 0.000011

type 2 fibroblast growth factor receptor binding Down 10.1483 0.000039

regulation of branching involved in salivary gland morphogenesis by
mesenchymal-epithelial signaling

Down 10.1483 0.000039

surfactant homeostasis Down 9.38874 0.000084

branching involved in salivary gland morphogenesis Down 9.00746 0.000122

killing of cells of other organism Down 9.00746 0.000122

defense response to fungus Down 8.84125 0.000145

phosphatidylcholine biosynthetic process Down 8.68795 0.000169

defense response to bacterium Down 8.68049 0.000170

hair follicle morphogenesis Down 7.50439 0.000551

response to virus Down 6.96488 0.000944

doi:10.1371/journal.pntd.0002298.t004
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Figure 4. Classification of DF and DHF. a) The expression pattern of the top 7 genes (selected from 140 genes) is indicated using PCA. b) The
dynamic expression (shown by median Log2 gene expression intensity) of 7 DF-DHF signatures from G1 to G7.
doi:10.1371/journal.pntd.0002298.g004

Table 5. List of top 7 genes differentiating DF from DHF with 96% accuracy.

Probeset Gene Gene Title p-value Fold-Change Up/down

ID Symbol (DF vs. DHF) (DF vs. DHF)

1556842_at LOC286087 hypothetical protein LOC286087 0.0002 4.0401 DF up vs DHF

203908_at SLC4A4 solute carrier family 4, sodium bicarbonate cotransporter, member 4 0.0001 2.0548 DF up vs DHF

205048_s_at PSPH phosphoserine phosphatase 0.0000 8.1003 DF up vs DHF

205826_at MYOM2 myomesin (M-protein) 2, 165 kDa 0.0004 4.9076 DF up vs DHF

219714_s_at CACNA2D3 calcium channel, voltage-dependent, alpha 2/delta subunit 3 0.0008 2.4949 DF up vs DHF

220307_at CD244 CD244 molecule, natural killer cell receptor 2B4 0.0001 2.1211 DF up vs DHF

225219_at SMAD5 SMAD family member 5 0.0003 2.1587 DF up vs DHF

doi:10.1371/journal.pntd.0002298.t005
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The two waves of genes possibly implicate two stages of
host response: anti-viral response and post-infection
recovery

The switch in major biological processes from innate

immunity to cell mitotic cycle at G4 occurred at G4. It

appeared that this switch coincided with a decrease in viremia.

As shown in Table 1, viremia decreased to low levels in most

dengue cases at around G3–G4. Genes related to the viral

replication cycle, RNA synthesis and RNA transcription were

downregulated in G0–G3, which coincided with the upregula-

tion of innate immune responses during this phase. It is known

that anti-viral inflammatory cytokines and soluble factors, IL-1,

-6, -8 and -10 or TNFa and c, MIP-1a and c or VEGF [38–42],

and the nitrogen and oxygen species [43], were present in

patient sera. Our study suggested a vital role of type I IFN

responses, anti-viral responses, as well as chemokines, chemo-

taxis and complement activation in suppressing viral replication.

Apoptosis of DENV-infected cells has been demonstrated in

vitro or in vivo in almost every single type of cells infected by

DENV. Studies using PBMCs from dengue patients show that

T cells undergo activation and apoptosis during the acute

illness phase when viremia was present. Impaired CD8+ T cell

activity [31], decreased circulation of CD4+ and CD8+ T cell

counts, impaired T cell proliferation [30,32], and increased T

cell apoptosis, were all demonstrated during the acute phase.

Restoration of T cell activities, T cell counts, and cytokine

production was detected from day 5 onward [29–32], which

coincided with the absence of viremia in vivo. In our study, the

patients also showed a decrease in lymphocytes during G0–G3,

which subsequently returned to above baseline levels. Al-

though they were not the top categories, apoptotic pathways,

including the activation of pro-apoptotic gene products,

response to unfolded proteins, activation of caspase activity,

release of cytochrome C from the mitochondria, and induction

of apoptosis by extracellular signals were upregulated during

the early acute phase, supporting previous in vitro and in vivo

observations on cell apoptosis during early days of infection.

The subsequent upregulation of genes related to DNA

synthesis and the mitotic cell cycle in G4–G6 suggests a

period of immune cell recovery, which may begin when

viremia has significantly decreased.

Biological pathways identified using proteomics and
genomic pathways

Our previous proteomics study revealed several serum

biomarkers that predicted DHF. One of these markers was

the complement component C4a [44]. Although direct

expression of C4a gene was not detected, its upstream

complement components, C1q and C2, and other factors such

as HF1, BF1, CD59 and SERPING1 were detected in the early

acute phase. The complement system can be activated by a

classical immune complex (IC) -dependent pathway, an

alternative pathway and a lectin pathway. Activation of the

complement system restricts viral or bacterial infection, but it

also promotes strong inflammatory responses. Complement

C1q- or C3 have been shown to eliminate ADE [45]. In

dengue patients, the peak presence of C3a and C5a coincided

with the onset of shock and leakage. In addition, the levels of

C3a correlated well with disease severity [46]. By capturing

genes in the complement pathways, our study highlighted the

involvement of the complement system in the early acute

phase. Since most DHF cases are secondary infectious cases,

the involvement of the complement system in dengue disease

severity requires further investigation.

Markers of disease severity
We found a set of 140 genes that distinguished DF from DHF

with 86% accuracy. Genes expressed more abundantly in DF were

associated with antigen processing and presentation, such as the

MHC class II protein complex, interferon-gamma-mediated

signaling, T cell receptor signaling, and T cell co-stimulation

pathways.

Seeking gene markers for severe dengue disease has been an

exclusive goal in nearly every gene array study conducted. For

those studies which used samples collected from day 3–6, their

results differed from our findings [13]. Popper et al. recently

performed a second gene array study in Nicaragua, where they

investigated gene expression in a day-to-day manner [37]. They

showed that on fever day 3, lower levels of IFN-stimulated gene

transcripts were associated with the development of DSS. The

results from this study showed some consistency with our findings.

Nascimento et al. conducted a gene array study on a well-

characterized dengue cohort from Recife, Brazil [47]. Their results

also showed that at early stages of DENV infection, the genes

involved in the effector functions of innate immunity were weaker

in DHF patients. Furthermore, Devignot et al. showed that genes

related to T and NK cell responses were decreased and genes

related to anti-inflammatory and repair/remodeling were in-

creased in DSS patients in a study in Cambodia [48]. Overall, the

results generated from our study and from those previously

reported illustrate an association of IFN-c and T cell immunity

with lower risk of DHF.

In our study, the majority (61.5%) of DHF cases were caused by

DENV-2. In contrast, 50% DF cases was due to infection with

DENV-1. We were unable to identify differences in the gene

expression pattern between any of the two serotypes (data not

shown). Thus, different serotypes may not be the main cause

underlying the differential gene expression patterns associated with

DF or DHF.

The association of cellular immunity with DF, but not DHF,

strengthened the protective role of cellular immunity against the

severity of dengue disease. Since most of the DHF cases were

secondary infections, theoretically, cellular immunity should be

more rigorous due to the presence of T cell memory. It is known

that DENV primarily infects monocytes, macrophages and

dendritic cells. These cells are antigen-presenting cells responsible

for antigen processing and presentation. Apoptosis caused by

DENV infection of these cells may account for the decrease in

lymphocytes in the peripheral blood during the early acute phase

of the disease and may explain the weakened gene expression of

cellular immunity in DHF patients.

For future diagnostic purposes, we selected 7 genes that were

able to differentiate between severe and non-severe dengue disease

with a high accuracy (96%). These genes were selected on the basis

of their consistent expression throughout the early acute days (G1

to G3). The CD244 gene encodes a cell surface receptor expressed

on natural killer (NK) cells (and some T cells) that mediate non-

major histocompatibility complex (MHC) restricted killing. The

interaction between NK-cells and target cells via this receptor was

thought to modulate NK-cell cytolytic activity. The SMAD5 gene

encoded protein is involved in TGF-b signaling, which results in

an inhibition of the proliferation of hematopoietic progenitor cells.

In addition, CD244 and SMAD5 genes were both downregulated

in DHF subjects. The CACNA2D3 gene encodes a member of the

alpha-2/delta subunit family, a protein involved in the voltage-

dependent calcium channel complex.
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Conclusion
To the best of our knowledge, this study was the first study to

present a systemic analysis of the full dynamics of the host response

in dengue clinical subjects. This study was completed using two

chip platforms and obtained highly consistent results between the

two platforms. The gene microarray analysis was supported by

clinical observations, comprehensive hematological test results, as

well as viremia and immunology data. This study also provided

solid data to highlight the importance of the timing in the

collection of the clinical samples. This study also strengthened the

role of IFN-c and T cell immunity in the defense against DHF.

Our results will advance the understanding of the DENV-

mediated disease progression, which will provide enormous

support for future clinical research, diagnostics and vaccine

development.

Gene Expression Omnibus accessing number
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(G7) as a baseline, significant genes in each time point were

detected using multi-way ANOVA for DF or DHF group. PCA
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profiling for the DF group. b) PCA profiling for the DHF group.
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from the HG-U133plus2 platform. The red stars mark the genes

or pathways present in the data.
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