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Abstract

Optimal Codebook Generation and Adaptation in Compression, Communications and

Machine Learning

by

Ahmed Elshafiy

Codebook design, generation, and adaptation, based on matching to stochastic source

examples or prior knowledge of source distribution, has played a central role in many

applications of source coding. The original iterative “natural type selection” (NTS) al-

gorithm performs stochastic codebook generation of memoryless sources, and achieves

the rate-distortion bound, as it asymptotically converges to the optimal codebook re-

production distribution, Q∗. However, these optimality results are subject to significant

limitations that compromise the practical applicability of NTS, namely: i) the string

length L is required to go to infinity at the outset, before NTS iterations begin, whereas

the iteration complexity is exponential in L, and ii) it is only applicable to discrete and

memoryless sources, thus precluding a vast portion of important lossy coding applica-

tions. This thesis offers means to eliminate or circumvent these critical shortcomings by

proposing new and enhanced NTS algorithms, complemented by optimality proofs that

are not subject to the above limitations. To circumvent the need to start with asymptot-

ically large string length, L, the approach leverages a maximum likelihood framework to

estimate, at each NTS iteration n, the reproduction distribution most likely to generate

the sequence of K length-L codewords that respectively and independently “d-match”

(i.e., are within distortion d from) a sequence of K length-L source words. The re-

production distribution estimated at iteration n is used to regenerate the codebook for

iteration n + 1. The sequence of reproduction distributions estimated by NTS is shown
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to converge, asymptotically in K, n, and L (in this order), to the optimal distribution

that achieves the rate-distortion bound. Thus, the string length L is the last parame-

ter to be sent to infinity. Moreover, it is established that, for finite length L, the new

NTS algorithm converges to the best achievable distribution, i.e., as constrained by the

string length L, and details are provided for various types of sources, where numerical

simulations show that the algorithm rate of convergence in n for finite length L is at

least as fast as convergence in n with infinite L. To handle sources with memory, NTS

is further generalized by considering source sub-vectors or “super-symbols”, of memory

depth M , during d-match search in the codebook, maximum likelihood estimation of re-

production distribution, and codebook regeneration. Asymptotic convergence, in L and

M , to the optimal reproduction distribution is also established for sources with memory.

As for, perhaps the more challenging, sources over continuous alphabet spaces, which

are inconsistent with the traditional concept of “type” or “typical sequence”, in the pro-

posed asymptotically optimal approach, we employ empirical probability measures for

codebook reproduction distribution estimation.

Methodologies for optimal codebook generation and adaptation are further developed

and employed in two promising example applications in the areas of i) wireless commu-

nications and ii) machine learning. In particular, for 5G cellular systems and next gener-

ation wireless local area networks, directional beamforming with large antenna arrays is

key to mitigating the substantial signal loss experienced at the millimeter wave frequency

band, where it entails a significant increase in the number of beams required to main-

tain cell coverage, and hence an increase in the beam management overhead necessary

to maintain link with mobile users. This observation, in turn, suggests that the under-

lying problem of finding the optimal set of beam steering directions will benefit from

fundamental signal processing and codebook design methodologies, and specifically from

basic principles and algorithms for cluster analysis. This part of the thesis establishes
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and exploits the equivalence between the problem of optimizing a set of beam steering

directions and the classical problems of clustering in pattern recognition and codebook

design in data compression, albeit with an unusual distortion measure. Subsequently, a

global optimization approach within the deterministic annealing framework is derived,

to circumvent poor local optima that may riddle the cost surface under the classical

gradient descent clustering techniques. System simulation results show that the pro-

posed approaches deliver considerable gains, over the baseline beam steering techniques,

in terms of average signal-to-noise ratio.

The third part of the thesis is concerned with codebook design and adaptation for

machine learning or artificial intelligence. Machine learning applications have exploded

in recent years due to the availability of huge data sets, as well as advances in com-

putational and storage capabilities. Although successful methods have been proposed

to reduce learning system complexity while maintaining required accuracy levels, the-

oretical understanding of the underlying trade-offs remains elusive. In this work, the

classical supervised learning problem is reformulated within a rate-distortion framework.

It provides insights into the underlying accuracy-complexity trade-offs, by considering

the overall learning system as consisting of two components. The first is tasked with

extracting (learning) from the source the minimal number of information bits necessary

to ultimately achieve the prescribed output accuracy. The learned bits are then used

to retrieve the desired output from the second component, an appropriately designed

codebook. The premise here is that an optimal system is characterized by having to learn

the minimum amount of information from the source, just sufficient to yield the system

output at the desired precision, which implies efficiency in terms of system complexity,

generalization and training data requirements. The design and training of such a refor-

mulated system is detailed, and asymptotically optimal performance that achieves the

rate-distortion bound is established.
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Chapter 1

Introduction

Codebook design, or equivalently quantizer design, has played a central role with dif-

ferent flavors in numerous applications in the areas of source coding, communications,

machine learning, etc. In the communications or information-theory literature, an early

clustering method was suggested for scalar quantization, variants of which are known

as the Lloyd algorithm [1] or the Max quantizer [2]. This method was later generalized

to Vector Quantization (VQ), and to a large family of distortion measures [3], and the

resulting algorithm is commonly referred to as the Generalized Lloyd Algorithm (GLA).

In the pattern-recognition literature, similar algorithms have been introduced, includ-

ing the ISODATA [4] and the K-means [5] algorithms. All the above iterative methods

alternate between two complementary steps (often referred to as the Lloyd iteration):

optimization of the partition into clusters given the current codebook entries, and opti-

mization of the codebook entries for their respective clusters. It is easy to show that such

an iterative procedure is monotone non-increasing in the distortion, and convergence to

a local minimum of the distortion is guaranteed. The Deterministic Annealing (DA)

approach, for conventional distortion measures, has been proposed as a powerful algo-

rithm for avoiding poor local minima that may riddle the cost function [6]. The optimal
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Introduction Chapter 1

solution can be tracked in a deterministic annealing framework, starting at the global

optimum for high distortion (where the cluster means all coincide at a single point, i.e.,

we have a single effective mean for the entire training set) and tracking the minimum as

the temperature (the Lagrangian parameter controlling the tradeoff between distortion

and entropy) is lowered. During this annealing process, the system undergoes a sequence

of “phase transitions” whereby the cardinality of the set of effective means increases.

Inspired by principles of statistical physics and derived in terms of information theory,

DA was proposed as a powerful non-convex optimization tool for compression, clustering,

classification and related problems.

Crucial to all of the above iterative codebook design algorithms is the prior knowledge

of source statistics, however in many applications, the source statistics are not known

or are varying with time. Stochastic codebook generation and adaptation, based on

codeword statistics and source string matching, without prior knowledge of source dis-

tributions, offered major contributions to lossless and lossy source coding applications.

Particularly influential were the seminal contributions of Lempel and Ziv, as evidenced

by the numerous prevalent variants of the LZ77 and LZ78 algorithms [7, 8] which showed

stochastic codebook generation/adaptation, where noticeably the generated codebooks

do not require exponential d-match search complexity, to be a powerful tool for lossless

coding. As an example of how stochastic codebook generation is employed, consider LZ78,

where on-the-fly compression is performed by creating a dictionary or tree of codewords,

as source strings are encoded. This tree of codewords is created, without recourse to

prior knowledge of source statistics, in a manner that ensures that the relative frequency

of typical source sequences in the tree, asymptotically approaches one [8]. Stochastic

codebook generation mechanisms have been proposed for lossy coding as well, e.g., the

gold-washing [9] and natural type selection [10, 11] algorithms. It is important to em-

phasize that optimizing the codebook reproduction distribution is fundamentally more

2



Introduction Chapter 1

difficult in the lossy coding setting. The lossless coding problem is “simpler” not only

because perfect matching is less complex than matching with distortion, but also because

the optimal codebook generating distribution, which achieves the minimum coding rate,

is exactly the source distribution. Hence, in lossless coding, the ultimate goal of stochas-

tic codebook generating algorithms is simply to learn the source distribution from source

examples. However, in lossy coding, the problem is vastly more difficult as the source

distribution P and optimal codebook generating distribution Q∗ are generally different,

even if the alphabets are the same, and more so in the high distortion constraint regime

[12, 13, 14, 10]. For example, in the case of continuous alphabet sources with the squared

error distortion measure, at very small distortion (high resolution) Q∗ ≈ P , but as the

distortion constraint is relaxed, i.e., d increases, Q∗ diverges from P , it shrinks, often

becomes discrete, and eventually collapses to a single point when d = dmax [15]. Hence,

it is not enough to simply “mimic” the source, and finding the optimal codebook repro-

duction distribution represents a significant challenge. The key insight, as articulated

in [10] for discrete alphabet sources, is that “type selection”, rather than learning and

matching source statistics, is the appropriate approach to codebook adaptation in the

lossy coding setting. Ultimately, the optimal codebook reproduction type for the source

is estimated by the codebook adaptation algorithm at a given distortion constraint d.

This idea of “type selection” for codebook generation or adaptation, which is the most

relevant to the work done in this thesis, was first introduced in the stochastic codebook

generation and adaptation algorithm, known as “Natural Type Selection” (NTS) [10, 11].

In this algorithm, at each time step or iteration n, a source word of length L is encoded.

Given the source word, the type of the first codeword (in a randomly generated codebook

drawn from a generating distribution Qn) to satisfy the specified distortion constraint d,

is used as the distribution from which to regenerate the codebook in the next iteration,

n+1. In other words, the codebook reproduction types are naturally selected in response

3



Introduction Chapter 1

to source examples, and evolve through a sequence of “d-match” operations, hence the

name natural type selection, with a nod to Darwin’s theory of evolution. Consequently,

it was shown that asymptotically in, first, the string length L, and then the number

of iterations n, the sequence of codebook generating types Q1, Q2, . . . converges to the

optimal reproduction distribution Q∗
P,d that achieves the rate-distortion bound R(P, d).

While the early NTS algorithm was shown to achieve asymptotic optimality, the results

nevertheless are constrained by limitations that significantly compromise the algorithm’s

general applicability. In order to converge to the optimal codebook generating distribu-

tion, first the string length L has to be sent to infinity, and only then can the codebook

be iteratively regenerated. Unfortunately, the codebook size must grow exponentially in

L, in order to ensure that a d-match to a source example is found with probability one.

Such intractable d-search and match complexity, which is the central step in the NTS

iteration, severely limits the algorithm usefulness in practical implementations. Clearly,

the reversed order of limits, where L is the last parameter to go to infinity, is much

more desirable in practice. It is preferable to regenerate the codebook at manageable

d-search complexity, and only then gradually increase the string length L. Moreover,

the original NTS algorithm was only shown to be asymptotically optimal for memoryless

discrete alphabet sources, while in practice, many sources of interest are sources with

memory, and/or continuous alphabet sources. These fundamental shortcomings, coupled

with the observation that stochastic codebook generation has had a phenomenal impact

on practical lossless source coding, provide strong motivation to take a principled look

at the original NTS algorithm, and develop a tractable yet asymptotically optimal al-

ternative. The central part of this thesis proposes a tractable codebook generation and

adaptation algorithm, with the desired reversed order of limits, for which we establish

the asymptotic optimality for discrete alphabet memoryless sources. Next, we extend the

stochastic codebook adaptation and generation mechanism to discrete alphabet sources

4
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with memory, where we consider vector sources or sources with finite memory depth,

e.g., sources with Markovian property. We also establish the asymptotic optimality of

the algorithm variant in these settings. Consequently, we generalize the framework to

accommodate sources over continuous alphabet spaces, which in turn, include the vast

majority of sources seen in practice.

In order to assess the effectiveness of the proposed codebook design and adaptation

techniques, methodologies for optimal codebook generation and adaptation are further

developed and employed in two promising example applications, that can greatly benefit

of such algorithms, in the areas of i) wireless communications and ii) machine learning.

In particular, for 5G cellular systems and next generation wireless local area networks,

Multiple-Input Multiple-Output (MIMO) systems in conjunction with millimeter-wave

frequencies have been recognized as a promising tool in the effort to satisfy the ever-

growing demand for higher data-rates. Given that physical layer technologies already

operate at, or close to, Shannon capacity, the main focus must be on the system band-

width [16, 17]. Studies have shown that considerable rate gains can be achieved through

millimeter-wave communications by exploiting the substantial bandwidth available at

these frequencies. However, a number of significant challenges arise as well [18, 19],

including increased path-loss, shadowing losses, signal attenuation, and atmospheric ab-

sorption at some frequencies, which cause considerable decrease in link budget and result

in considerable reduction in cell coverage area. To meet this challenge, larger trans-

mit/receive arrays, and hence increased array factors, are employed to boost the link

budget. Considering a transmit linear-array of length Ntx, the increase in Effective

Isotropic Radiated Power (EIRP) due to beamforming is proportional to Ntx [20], yield-

ing a corresponding increase in the receiver signal-to-noise ratio (SNR). However, the

Half-Power Beam-Width (HPBW) is inversely proportional to Ntx. Thus, large arrays

offer EIRP gains in the steering direction, but at the cost of narrower beams, which in-
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turn result in an increase in the number of beams required to maintain acceptable spatial

coverage. Both transmitter and receiver typically operate with predefined “codebooks”

of beamforming vectors, wherein each codebook entry corresponds to a beam steering

direction. An increase in codebook size hinders beam tracking and beam alignment due

to the inherent increase in beam measurement time (sweep time) and thus compromises

the system responsiveness to user and environment dynamics.

Beam broadening was proposed as a countermeasure to allow for a tradeoff between

the requirements of high EIRP and low beam management complexity, especially in

conjunction with user tracking and initial access [21, 20, 22, 23]. Additionally, enhanced

robustness to user dynamics can be achieved by employing a more efficient beam search

or beam alignment algorithms for a given codebook of beam steering directions, as has

been pursued in [24, 25]. However, regardless of the beam width or the beam alignment

algorithm, the overall performance of the system can be improved by optimal design

of the beam steering directions, to match the observed or estimated user statistics. It

is intuitively obvious that an optimal design of beam steering directions will jointly

consider the distribution of users as well as the direction-dependent beam width. The

objective of this work is to develop a sound methodology, from basic signal processing

principles, for finding the optimal set of beam steering directions, i.e., designing the

beam steering codebook, given a codebook size budget. The problem of finding the

optimal beam steering angles can, in fact, be viewed as a clustering problem, where

the two-dimensional angular space (azimuth and elevation angles) is partitioned into Nb

sub-cells each represented by a pointing angle [26]. As the number of pointing angles is

increased, the average link performance over the angular space increases, but so does the

rate of beam updates, and the system becomes less robust to dynamics. This tradeoff is

analogous to the classical rate-distortion tradeoff considered in quantizer design for data

compression. Consequently, this work derives an approach within a powerful optimization

6
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framework, namely, deterministic annealing to circumvent poor local optima (that might

result from the k-means or similar algorithm in [26]), solve the clustering problem at

hand, and achieve significant performance gains.

The third part of the thesis is concerned with codebook design and adaptation for

machine learning or artificial intelligence. A considerable surge in machine learning

applications has been observed in recent years, due to the explosion of available data

sets, computation and storage capabilities, as well as the advances in machine learning

techniques. Machine learning algorithms are currently employed in a broad spectrum

of day-to-day applications, including speech recognition and synthesis, computer vision,

virtual personal assistants, medical image analysis, autonomous cars, social media and

marketing services, etc. Machine learning encompasses a variety of adaptive methods

to optimize the parameters of a system of processing units based on past observations,

i.e., examples or training sequences, such that it approximates the desired behavior. The

underlying assumption is that both training and testing sets are drawn from the same

stochastic model. In supervised learning, a teacher or annotator is available to provide

the desired outputs (or labels) for the training examples. Hence, system parameters

can be fine-tuned to minimize the error between desired and estimated outputs. In

contrast, unsupervised learning is needed when the desired outputs are unknown, and

the algorithm seeks to cluster the input instances into useful classes by discerning the

statistical structure underlying the training set.

Deep learning and Deep Neural Networks (DNN)s refer to a class of machine learning

methods where the system architecture is composed of a network of perceptrons (neurons)

arranged in multiple information-processing layers (also called hidden layers). In early

the 1960s, it was shown in [27, 28] that a single perceptron can learn to classify any

linearly separable set of inputs with an ensured convergence to the optimal separating

hyperplane. Later, multi-layer perceptrons were proposed as a generalization for non-
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linear partition of the input space. Many methods have been proposed and implemented

thus far for reducing the size and computational complexity of DNNs, while attempting

to maintain accuracy or performance constraints. These methods include weight sharing

[29], quantization [30], network pruning [31][32][33], and low-rank approximations [34].

While successful, these methods involve substantial changes to the DNN in question and

give little control over the inherent accuracy-complexity trade-offs.

This part of the work proposes a reformulation of the classical supervised learning

problem within a (practical) rate-distortion or information theoretic framework, thereby

providing insights into the crucial accuracy-complexity trade-offs. This is accomplished

by dividing the problem into two parts. The first part of the proposed framework ex-

tracts (i.e., learns) from the source the minimal necessary number of information bits,

by employing a learning system (e.g., a deep network). The learned bits are used to

retrieve the desired output from the second part, i.e., a designed codebook, which sat-

isfies a distortion or accuracy requirement. The premise here is that an optimal system

is the one characterized by extracting the minimum amount of information from the

source, required to yield the system output at the desired precision, which implies ef-

ficiency of the learning task in terms of system complexity, generalization and training

data requirements. The asymptotic optimality results of the proposed NTS algorithm

for large spectrum of sources supports the promise of the recursive NTS framework as an

optimal means to generate or update codebooks, from source examples, for the proposed

rate-distortion based learning system.

The remainder of the thesis is organized as follows: The relevant background on

stochastic and deterministic codebook design methodologies is introduced in Chapter

2. The tractable and asymptotically optimal stochastic codebook design approach, i.e.,

the NTS algorithm, is proposed in Chapter 3. The asymptotic optimality is established

for the vast majority of sources, and mathematical proofs are provided in Appendix A.
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Derivation and employment of deterministic codebook design methods in wireless com-

munications systems is shown in Chapter 4, where considerable gains in the average

signal-to-noise ratios are observed in numerical simulations. Subsequently, reformulation

of the classical supervised learning system into a rate-distortion framework, in conjunc-

tion with the derivation of a variant of the NTS algorithm for such settings, is proposed

in Chapter 5. Finally, conclusion are drawn in Chapter 6.
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Chapter 2

Relevant Background

2.1 Conceptual Signal Compression System Model

Throughout this chapter denote X and Y as the source and reproduction alphabet spaces.

We assume that the alphabet X is either a discrete space or (more generally) a complete

separable metric space (often called Polish space), equipped with its associated Borel

σ-field X ′. Similarly, we assume that the reproduction alphabet Y is either a discrete

space or (more generally) also a Polish space equipped with its associated Borel σ-field

Y ′. Furthermore, let {Xu}∞u=1 be a stationary ergodic source, where the source realization

is denoted as xu ∈ X , and similarly, the reproduction realization is denoted as yu. Next,

let {X̃i}∞i=1 be a sequence of independent and identically distributed (i.i.d.) M -tuples

(or source “super-symbols”), each obtained by drawing M successive symbols from the

distribution underlying source {Xu}. Hence, let PM be the vector source distribution

of x̃ on XM . Define a source block (source word) that contain L source vectors as

X =
(
X̃1, X̃2, . . . , X̃L

)
, and source block realization as x. Next, we define an arbitrary

non-negative (measurable) scalar-valued distortion function ρ : X × Y → [0,∞). The

distortion between a realization of the source block x and a realization of the code block

10
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Figure 2.1: The conceptual signal compression system model.

(codeword or reproduction word) y=(ỹ1 . . . , ỹL), with ỹi∈YM , is assumed additive, and

is specifically, the average distortion over super-symbols in the block:

ρ (x,y) =
1

L

L∑
ℓ=1

ρ (x̃ℓ, ỹℓ) =
1

L

L∑
ℓ=1

(
1

M

M∑
m=1

ρ(xℓ,m, yℓ,m)

)
, (2.1)

where xℓ,m and yℓ,m are the m-th letters in x̃ℓ and ỹℓ, respectively.

The conceptual compression system model is shown in Fig. 2.1. Notice that the

operations that are performed by the encoder are reversed by the decoder in order to

recover the original data {du}∞u=1. The first conceptual encoder block is the “Mapper”.

The main operation of the mapper is to remove any redundancy in the source message

that can be present in the form of correlation. For example, if the data is temporally

correlated, a mapper can perform prediction from the previous reconstructed data that

is available at the decoder, i.e., {d̂u}, and only the prediction errors are required to be

encoded and transmitted to the receiver. The data can also be made uncorrelated by

simply performing a transform operation such that the output of the transform is uncor-

related or nearly uncorrelated. The majority of practical compression systems include

both predictors and transforms to decorrelate the source data and hence remove any

redundancies. For example, in video compression standards, discrete cosine transforms

11
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are used to spatially decorrelate the image pixels, and then linear prediction is performed

to exploit the temporal correlation [35, 36]. The function of the next block in Fig. 2.1,

i.e. the quantizer or the codebook, is to remove “irrelevant” data. In other words, the

quantizer main goal is to minimize the amount of data that is required to be transmitted

in a way that would optimally introduce little to no distortion. There are various ways

to design a codebook for a given system, depending on whether the system has prior

knowledge of source statistics, whether the source statistics are fixed or time-varying,

whether the data to be quantized is grouped into blocks of samples, and many other

factors. Consequently, the third block in the encoder conceptual diagram is the entropy

encoder. The function of the entropy encoder, like the mapper, is to remove any redun-

dancy in the source message. By Shannon source coding theorem, the minimum bit-rate

that can be used to encode a given source while ensuring an asymptotically vanishing

probability of error is the source entropy, where the source entropy is simply defined

as the average information rate of the source. The formal and mathematical definition

of source entropy and other definitions of information-theoretic quantities are given in

subsequent sections. Hence, the entropy encoder simply assigns different codes (possibly

with different lengths) to the quantizer levels, with the aim to minimize the average en-

coding rate or code lengths. Finally, the last block in the system model is the channel

encoder, which is present to equip the transmit message with additional redundancies in

order to combat the distortions introduced by the channel. The simplest form of channel

coding is repetition coding, where the code bits are repeated to allow for a chance to

recover the original message at the decoder if few bits were corrupted by the channel.

The codebook or the quantizer block is the main focus of this thesis. In the next sections,

we investigate the most relevant methods of codebook design.

12
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2.2 Stochastic Codebook Design: Random Coding

In this section, we introduce the mechanisms of stochastic codebook design or random

coding. First, for a scalar-valued fidelity constraint d, define a “d-match” event as the

event that ρ (x,y) ≤ d. Suppose a random codebook CL of infinite number of length-

ML codewords (Y(j), with j ≥ 1) is generated such that, each codeword consists of L

i.i.d. vectors as QM = {QM(ỹ) : ỹ ∈ YM)}. We call QM the codebook reproduction

distribution. Let NM,L be the index of the first codeword in CL that d-matches the source

word realization x, i.e.,

NM,L = inf {j ≥ 1 : ρ (x,y(j)) ≤ d} , (2.2)

with the convention that the infimum of an empty set is +∞. Given a codebook repro-

duction distribution QM over YM , we define,

Dmin ≜ EPM

[
ess inf

ỹ∼QM

ρ(X̃, Ỹ)

]
, (2.3)

Dav ≜ EPM×QM

[
ρ(X̃, Ỹ)

]
, (2.4)

where ess inf ỹ∼QM
(·) denotes the essential infimum of a function, i.e.,

ess inf
Y∼QM

ρ(x̃, Ỹ) = sup{t ∈ R : QM(ρ(x̃, Ỹ) > t) = 1}, for any x̃ ∈ XM . (2.5)

We will assume throughout this chapter that Dav is finite, and Dmin < Dav <∞. We will

also restrict our attention to the non-trivial range of distortion levels d ∈ (Dmin, Dav).

Shannon’s theorem of lossless coding states: if we generate a random codebook of length

exp(L(H(PM) + ϵ)) using the source distribution PM , then the probability of finding yet

13
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another independently generated source word in the codebook goes to one asymptotically

in L, wherein H(PM) is the source entropy, defined as follows for discrete alphabet spaces,

H(PM) = −
∑

x̃∈XM

PM(x̃) log(PM(x̃)). (2.6)

Unless otherwise mentioned, all familiar information-theoretic quantities (entropy, mu-

tual information, and so on) are defined in terms of logarithms taken to base e, and

are therefore expressed in nats. On the other hand, Shannon’s lossy coding theorem for

scalar-valued distortion measures states: if a random codebook of length exp(L(R(PM , d)+

ϵ)) is generated using an optimal reproduction distribution Q∗
PM ,d, the probability of find-

ing a codeword that d-matches an independently generated source word, drawn from the

source distribution PM , goes to one as L goes to infinity, wherein R(PM , d) is the joint

(or M -th order) rate-distortion function, i.e., [37, 38, 39]

R(PM , d) = inf
V :[V ]x=PM ,

EV (ρ(X̃,Ỹ))≤d

I(X̃, Ỹ). (2.7)

Here, I(X̃, Ỹ) is the mutual information between the m-tuples random vectors X̃ and Ỹ,

and the infimum is taken over all joint probability measure V such that the x-marginal of

V , denoted [V ]x, is PM and the expected distortion EV (ρ(X̃, Ỹ)) ≤ d. Let V ∗
PM ,d be the

optimal joint distribution that realizes the infimum in (2.7), then the optimal codebook

reproduction distribution Q∗
PM ,d is the y-marginal of the optimal joint distribution V ∗

PM ,d.

However, if a random codebook is generated from distribution QM ̸= Q∗
PM ,d, then the

minimum encoding rate to guarantee a d-match in probability, as L goes to infinity, was

effectively shown in [40], and extended to memoryless sources over abstract alphabets in
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[41], to be

R(PM , QM , d) = inf
V :[V ]x=PM ,

EV (ρ(X̃,Ỹ))≤d

D(V ||PM ×QM), (2.8)

R(PM , QM , d) = inf
Q′

M

{Imin(PM ||Q′
M , d) +D(Q′

M ||QM)}, (2.9)

where D(·||·) is the Kullback-Leibler (KL) divergence, and Imin(PM ||Q′
M , d) is the usual

minimum mutual information but with an additional constraint on the output distribu-

tion, i.e.,

Imin(PM ||Q′
M , d) = inf

V :[V ]x=PM , [V ]y=Q′
M ,

EV (ρ(X̃,Ỹ))≤d

I(X̃, Ỹ). (2.10)

Here the infimum is taken over all joint distributions V of the random vectors (X̃, Ỹ),

whose x-marginal, denoted by [V ]x, is PM , and y-marginal, denoted by [V ]y, is Q
′
M , and

such that the expected distortion does not exceed d. In [42, Th. 2], it was shown that,

under these assumptions for the memoryless case (for which extension to the sources with

memory case is straight forward), R(PM , QM , d) is finite, strictly positive, and that the

infimum in its definition in (2.8) is always achieved by some joint distribution V ∗
PM ,QM ,d.

Moreover, since the set of V over which the infimum is taken is convex, from [43] it can

be concluded that V ∗
PM ,QM ,d is the unique minimizer. Hence, a unique minimizer to (2.9)

also exists, i.e.,

Q∗
PM ,QM ,d = argmin

Q′
M

{Imin(PM ||Q′
M , d) +D(Q′

M ||QM)}. (2.11)

Next, we define the minimum coding rate per letter for stationary ergodic sources with

memory required to guarantee a d-match with probability one asymptotically in L as

[38, 39],

R(d) = lim
M→∞

M−1R(PM , d). (2.12)
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The limit in (2.12) exists for stationary ergodic sources, and for any M , R(PM , d) is an

upper bound to R(d) [44, Th. 9.8.1]. Consequently, the optimal codebook reproduction

distribution that achieves R(d) is obtained as,

Q∗
d = lim

M→∞
Q∗

PM ,d. (2.13)

For a source with discrete input and reproduction alphabets, define a ‘type’ of source or

code vector as the fraction of occurrence of every letter in the alphabet as seen in the

vector [45]. To accommodate sources with memory, and account for memory depth of M ,

we proceed as follows [46]: define Qn,M,L (ỹ(j)) =
{
Q(y) : Q(y) = 1

L
N(y|ỹ(j)),y ∈ YM

}
as the M-th order type of codeword ỹ(j), where N(y|ỹ(j)) is the number of occurrences

of the sub-vector (or super symbol) y in the codeword. This is simply the type for the

source considered as over a “super alphabet” of super-symbols. Now suppose a finite

source block length L is considered, then for a given finite codebook C̃L of C codewords,

i.e., C̃L = {Ỹ(j), with j = 1, . . . , C}, we define an (L,M,C, d, ϵ) code as a pair of

mappings f : XML → {1, . . . , C}, and g : {1, . . . , C} → YML, such that,

f(x̃) = inf {j ∈ {1, . . . , C} : ρ (x̃, ỹ(j)) ≤ d} , (2.14)

and the probability of exceeding the distortion constraint d between a source word and

its reproduction is,

P [f (x̃) = +∞] ≤ ϵ. (2.15)

The rate of the (L,M,C, d, ϵ) code is denoted by RL(PM , d, ϵ) = 1
L
log(C). By Shannon’s

theorem of lossy coding, if the codebook generating distribution is Q∗
PM ,d, it can be shown

that [47],

lim
L→∞

RL(PM , d, ϵ)→ R(PM , d), ∀ϵ ∈ [0, 1]. (2.16)
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2.2.1 Lossless Random Coding: Lempel-Ziv Algorithms

Seminal contributions were achieved by the lossless coding algorithms developed by Lem-

pel and Ziv, as evidenced by the numerous prevalent variants of the LZ77 and LZ78

algorithms [7, 8], where noticeably the generated codebooks do not require exponential

d-match search complexity.

As an example of how stochastic codebook generation is employed, consider LZ78,

where on-the-fly compression is performed by creating a dictionary or tree of codewords,

as source strings are encoded. This tree of codewords is created, without recourse to

prior knowledge of source statistics, in a manner that ensures that the relative frequency

of typical source sequences in the tree, asymptotically approaches one [8]. The main

idea behind LZ algorithms, is that if we consider a non-uniformly distributed source,

a sub string that has already been generated and seen by the source is more likely to

be generated again than a sub-string that have not been seen yet. The LZ78 algorithm

works by constructing a dictionary of sub-strings, which we will call “phrases”, that have

been generated by the source. The LZ78 algorithm constructs its dictionary on the fly,

only going through the data once. For examples, suppose that the source alphabet is

given by X = {A,B}, and suppose the source generated the following sequence of letters,

which is required to be encoded and transmitted, i.e.,

AAABABBABABABAAAABABABA (2.17)

The algorithm starts by encoding the shortest phrase that has not been seen in the

dictionary. In the beginning of the encoding process, the shortest phrase is always the

left most single letter in the source sequence. Hence, the first phrase in the dictionary is
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Output Message
Dictionary

Index Phrase
(0, A) 1 A
(1, A) 2 AA
(0, B) 3 B
(1, B) 4 AB
(3, A) 5 BA
(5, B) 6 BAB
(4, A) 7 ABA
(2, A) 8 AAA
(6, A) 9 BABA

Table 2.1: The dictionary table constructed by LZ78 algorithm for the given example
in Section 2.2.1

′A′.

A|AABABBABABABAAAABABABA (2.18)

Now we proceed to the next phrase in the sequence that has not been seen in the dictio-

nary, hence the second phrase imported in the dictionary is ′AA′ because the phrase ′A′

is already available in the dictionary.

A|AA|BABBABABABAAAABABABA (2.19)

The algorithm continues to process the source string on-the-fly, and consequently, the

source sequence will be divided into phrases as follows:

A|AA|B|AB|BA|BAB|ABA|AAA|BABA|BA (2.20)

Finally, the dictionary is constructed from the observed phrases and an output message

is constructed for every phrase. The output message can be one of three possible options:

i) (0, x) if the one character phrase x ∈ X is not in the dictionary, ii) (dictionary index, x)

if the multi-character phrase ending with the letter x ∈ X is not in the dictionary, and
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iii) (dictionary index, ∅) if the last sequence letter or the last phrase is entirely in the

dictionary. In the above examples, the corresponding dictionary as well as the output

messages are given in Table 2.1. Finally, the LZ78 encoding and dictionary generation

algorithm is summarized in Algorithm 1.

Algorithm 1 : LZ78 Algorithm in [8]

1: procedure LZ78(x1, x2, . . . , xL)
2: Dictionary D ← {∅}, dictionary index i← 1., string index n← 1.
3: while n ≤ L do
4: Find the shortest phrase y = {xn, . . . , xn+N−1} /∈ D.
5: n← n+N .
6: if N is equal to 1 then.
7: Send the message (0, xn+N−1).
8: Insert y to D at index i.
9: i← i+ 1.
10: else if y /∈ D then
11: Send the message (j, xn+N−1), where {xn, . . . , xn+N−2} ∈ D at index j.
12: Insert y to D at index i.
13: i← i+ 1.
14: else
15: Send the message (j, ∅), where {xn, . . . , xn+N−1} ∈ D at index j.
16: end if
17: end while
18: return D.
19: end procedure

It can be shown that, asymptotically in the string length L, the LZ78 algorithm aver-

age encoding length approaches the entropy of the source, and the probability of finding

an independently generated source string in the dictionary goes to one, thus establishing

the asymptotic optimality of LZ78 algorithm. The crucial impact attained by LZ algo-

rithms in lossless source coding has provided a strong motivation to develop and derive

alternative algorithms for lossy source coding, in which the source phrase is allowed to

be reconstructed within some distortion level d. Note that the optimal codebook gener-

ating distribution in lossless coding is simply the source distribution, so the stochastic
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mechanism’s essential objective is to learn this distribution from observation of source

strings. However, in lossy coding, the optimal codebook generating, or reproduction

distribution Q∗ differs from the source distribution P , as it depends on the distortion

constraint d. This represents a non-trivial learning challenge, especially in the non-high

resolution regime, where Q∗ deviates significantly from P [12, 13, 14, 10]. For example,

in the case of continuous alphabet sources with the squared error distortion measure, at

small distortion (high resolution) Q∗ ≈ P , but as the distortion constraint is relaxed,

i.e., d increases, Q∗ increasingly differs from P , it shrinks, often becomes discrete, and

eventually collapses to a single point when d = dmax [15]. In the next subsection, we

introduce a stochastic codebook design algorithm based on source examples for lossy

coding, namely Natural Type Selection (NTS).

2.2.2 Lossy Random Coding: Natural Type Selection Algo-

rithm

In [10], a novel codebook regeneration algorithm was developed and shown to achieve

asymptotically optimal performance, in the rate-distortion sense, for discrete memoryless

sources. Consider the memoryless case for whichM is set to one, and the source letters are

generated according to P1 = {P1(x) : x ∈ X}, where X is a discrete alphabet space. The

subscript “1” here and below stands for M = 1. Additionally, let the memoryless code-

book reproduction distribution over discrete alphabet space Y , be Q1 = {Q1(y) : y ∈ Y}.

It was shown in [10] that the empirical type of the codeword that d-matches an indepen-

dently generated source word, converges in probability to Q∗
P1,Q1,d

as the string length

L → ∞. Note that Q∗
P1,Q1,d

is more efficient in coding the source than the initial Q1,

i.e., R(P1, Q
∗
P1,Q1,d

, d) < R(P1, Q1, d). This immediately suggests a recursive algorithm.

Let n be the iteration index, N1,L be the index of the first d-matching codeword, whose
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type is denoted as Q
N1,L

n,1,L. Starting with a strictly positive initial codebook reproduction

distribution denoted Q0,1,L, the type of the d-matching codeword at the current iteration

is used to generate the codebook of the next iteration. In other words, the next itera-

tion’s codebook reproduction distribution is naturally selected by the source through a

d-match event, hence the name “natural type selection”. The original NTS algorithm is

summarized in Algorithm 2.

Algorithm 2 : Original NTS Algorithm for memoryless Sources in [10]

1: procedure NTS Original(N,L, d,Q0,x(1), . . . ,x(N))
2: Q1,1,L ← Q0.
3: for n = 1 : N do
4: i← n.
5: j ← 0.
6: while d′ < d do
7: j ← j + 1.
8: Generate j-th codeword y(j) using Qn,1,L.
9: d′ ← ρ (x(i),y(j)) .
10: end while
11: Qn+1,1,L ← Q

N1,L

n,1,L.
12: end for
13: return QN+1,1,L.
14: end procedure

This algorithm results in a sequence of codebook reproduction distributions,

Qn,1,L = Q
N1,L

n−1,1,L, (2.21)

Qn,1= lim
L→∞

Qn,1,L=Q∗
P1,Qn−1,1,d

, n = 1, 2, . . . (2.22)

It was shown in [10], that the sequence of distributions in (2.22), i.e., Q0,1, Q1,1, Q2,1, . . . ,

coincides with the recursion in the fixed distortion version of the Blahut algorithm [48]

for computation of the rate-distortion function. In other words, the NTS procedure

stochastically simulates the Blahut algorithm, where the next distribution at each itera-

tion step emerges “on the fly” through the coding process. Hence, it was shown that the
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Figure 2.2: Unstable evolution of the codebook reproduction distribution by the origi-
nal NTS algorithm for finite-lengths L = 32 and L = 256. Binary source is considered
with P1 = {0.48, 0.52}, and Hamming distortion measure with d = 0.35.

recursion in (2.22) converges to the optimal codebook distribution Q∗
P1,d

that achieves

the rate-distortion bound R(P1, d) in (2.7) for M = 1, i.e.,

Q∗
P1,d

= lim
n→∞

lim
L→∞

Qn,1,L, (2.23)

R(P1, d) = lim
n→∞

lim
L→∞

R(P1, Qn,1,L, d). (2.24)

The asymptotic optimality result, established for the original NTS algorithm, suffers

from several fundamental shortcomings the impact its practical implementation. The

first shortcoming pertains to complexity and hinges on the order of limits that requires

that string length L be sent to infinity first, and only then can NTS iterations be per-

formed (n → ∞). In other words, NTS iterations must be performed on very large

strings. Unfortunately, the probability of finding a d-match decreases exponentially with
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the string length, or alternatively, the codebook size must grow exponentially with L,

which implies intractable d-search complexity, even in early NTS iterations. Clearly, it

is the reversed order of limits that would be desirable in practice. To see the difficulties

encountered when attempting to run NTS at finite L, consider a toy example assuming

binary input and reproduction alphabets, i.e., X = Y = {0, 1}, asymmetric memoryless

(M = 1) source, with P1 = {0.48, 0.52}, under the Hamming distortion measure. Fig. 2.2

depicts the instability, in terms of codebook reproduction distribution, exhibited by the

original NTS algorithm at finite string lengths L < ∞, with obvious fluctuations. Note

that even though the codebook reproduction distributions tend to approach the neighbor-

hood around Q∗
P1,d

as the iteration index n increases, these fluctuations ultimately render

the resulting codebook reproduction distribution useless. It is also worth noting that as

the source block length L increases, the intensity of codebook reproduction distribution

fluctuation decreases, where it vanishes asymptotically in L. In [11], a parametric set

of codebook reproduction distributions QΘ was considered, wherein the codebook repro-

duction distributions were constrained to a pre-specified family of distributions, Q ∈ QΘ,

spanned by a parameter vector θ ∈ Θ. A smoothing block on the parameter vector θ was

proposed to reduce the fluctuations of the codebook reproduction distributions around

the optimal solution, at finite string length L, which nevertheless exhibited some sig-

nificant instability (see Figure 2 in [11]). An additional limitation of the original NTS

algorithm was that optimality results were only available for discrete alphabet memo-

ryless sources. In practice, however, lossy coding is applied to a much broader class of

sources, and sources with memory and/or continuous alphabet sources are common. The

above shortcomings represent a significant obstacle on the way to achieve major impact

on lossy coding. The phenomenal impact of stochastic codebook generating algorithms

(e.g., LZ78 in [8]), in many lossless coding applications, suggests that overcoming these

shortcomings may deliver considerable benefits. This provides a strong motivation to
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develop a tractable NTS algorithm that is asymptotically optimal for a wide spectrum

of sources. In the next section, we turn our attention to non-stochastic codebook design

methods, i.e., methods for which the source statistics are available, and hence, the de-

sign steps are carried deterministically based on the available statistics rather than the

stochastic source examples. Consequently, the codebook is generated deterministically

from the available training set, unlike the stochastic codebook design methods.

2.3 Relevant Non-stochastic Codebook Design

As the deterministic quantizer design or, more generally, the clustering problem, appears

with various flavors in many diverse applications, solution methods have been developed

in multiple disciplines, e.g. the Generalized Lloyd algorithm [3] or the Max quantizer

[2] in communications or information theory literature, or the ISODATA [4] and the

k-means [5] algorithms in the pattern recognition literature. All the aforementioned

iterative methods alternate between two complementary steps (often referred to as the

Lloyd iteration): optimization of the partition into clusters given the current codebook

entries, and optimization of the codebook entries for their respective clusters. The details

of the Lloyd iteration will be illustrated in the next subsection.

Even though these algorithms ensure convergence, they only guarantee convergence to

a locally optimal solution, while in many cases of interest the cost surface is riddled with

poor local minima. A variety of heuristic approaches have been proposed to tackle this

difficulty, and they range from repeated optimization with different initialization, and

heuristics to obtain good initialization, to heuristic rules for cluster splits and merges,

etc. Nevertheless, there is a substantial gain to be recouped by a principled attack

on the problem. This motivates the use of powerful optimization tools. Deterministic

annealing has been demonstrated to be highly effective in avoiding poor local minima,
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when conventional distortion measures are used, and has become the method of choice in

numerous disciplines [6]. DA is motivated by the annealing process in physical chemistry,

where certain chemical systems are driven to their low energy states by annealing, i.e., via

gradual cooling of their temperature. Additional non-convex optimization tools have also

been inspired by the annealing process of chemical systems, such as stochastic relaxation

[49] or simulated annealing [50]. However, these optimization methods can only reach

the global minimum if the rate of lowering the temperature follows T ∝ 1/ log(n), where

n is the iteration index [49]. This slow annealing schedule is often unrealistic in many

practical applications. As its name suggests, DA tries to enjoy the best of two scenarios.

On the one hand it is deterministic, meaning that random motion on the energy surface

while making incremental progress on the average, as is the case for stochastic relaxation,

is discouraged due to its slow convergence. On the other hand, it is still an annealing

method and aims at the global minimum, instead of getting greedily attracted to a nearby

local minimum.

DA introduces a controlled amount of randomness in the optimization, measured by

the Shannon entropy, and controlled by a Lagrange multiplier T , analogous to “tempera-

ture” in the physical system. The resulting Lagrangian, an expectation function account-

ing for the tradeoff between distortion and entropy, is in fact exactly the Helmholtz free

energy in physics, and is deterministically minimized at successive temperatures, thus

circumventing the high computational complexity of stochastic simulated annealing. In

the next subsections we will introduce two relevant clustering approaches in depth, i.e.,

the Generalized Lloyd algorithm and Deterministic Annealing
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2.3.1 Generalized Lloyd Algorithm

In this subsection, we deeply illustrate the inner-workings of the generalized Lloyd algo-

rithm or its relatives. of The two steps in Lloyd iteration can be formally stated as:

1. Fix the codebook entries {yj}, and assign each data point xi to the codeword

incurring the least distortion. Let Sj be the set of data points assigned to codeword

yj, also called the jth cluster. The clustering partition is given by the (generalized)

nearest neighbor rule. Specifically, cluster j is given by:

Sj = {i : ρ(xi,yj) ≤ ρ(xi,yk), ∀k ̸= j} . (2.25)

2. Fix the clustering partition {Sj} and optimize the entries in the codebook to min-

imize the average distortion. Specifically, adjust each codeword yj so that it mini-

mizes its cluster’s average distortion:

yj = argmin
y

1

|Sj|
∑
i∈Sj

ρ(xi,y), j = 1, 2, . . . , Nc, (2.26)

where | · | denotes the set cardinality, and Nc is the number of codewords (or the

number of centroids) in the codebook. A necessary condition for optimality can be

obtained by setting the gradient with respect to y to zero:

1

|Sj|
∑
i∈Sj

∂

∂y
ρ(xi,y) = 0 , j = 1, 2, . . . , Nc, (2.27)

Note that the traditional K-means “centroid” rule which computes each codebook

26



Relevant Background Chapter 2

entry as the cluster sample average,

yj =
1

|Sj|
∑
i∈Sj

xi, (2.28)

is only valid for the squared error distortion measure, where (2.27) simplifies to

(2.28).

In every “Lloyd iteration”, one can evaluate the average distortion as,

D =
1

|S1 ∪ S2 · · · ∪ SNc |

Nc∑
j=1

∑
i∈Sj

ρ(xi,yj), (2.29)

where ∪ denotes the set union operation.

It is straightforward to show that the two steps of the main iteration guarantee that D

is monotonically non-increasing, and in fact monotonically decreasing until convergence

(under mild assumptions regarding treatment of ties in the nearest neighbor step). Addi-

tionally, note that as Nc →∞, the codebook average distortion asymptotically vanishes,

i.e., D → 0, which is consistent with standard requirements of distortion measures and

represents the “ideal setting” at the limit of high resolution. Finally, the GLA algorithm

is summarized in Algorithm 3.

2.3.2 Deterministic Annealing

Unlike the GLA algorithm, DA considers a probabilistic assignment between the data

points {xi} and codebook entries or cluster centroids {yj}. Let the cluster association

probabilities be denoted as p(j|i). In this case, the overall average distortion in the
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Algorithm 3 : Generalized Lloyd Algorithm in [3]

1: procedure GLA(x1,x2, . . . ,xN , C0, Nc)
2: Initialize the codebook C = {y1, . . . ,yNc} ← C0.
3: Initialize clusters Sj = {∅},∀j ∈ {1, . . . , Nc}.
4: while Convergence has not been achieved, i.e., ∆D

D
> threshold do

5: for i = 1 : N do
6: Adjust clusters by assigning xi to Sj if yj = argmin

y∈C
ρ(xi,y).

7: end for
8: for j = 1 : Nc do
9: Adjust centroids according to yj = argmin

y

1
|Sj |

∑
i∈Sj

ρ(xi,y).

10: end for

11: Calculate the total average distortion D = 1
|S1∪S2···∪SNc |

Nc∑
j=1

∑
i∈Sj

ρ(xi,yj).

12: end while
13: return C.
14: end procedure

system due to quantization of data points is given by the expectation,

D =
∑
i

∑
j

p(j|i)p(i)ρ(xi,yj), (2.30)

where p(i) is the prior probability of a data vector xi. Note that minimizing the distortion

with respect to the free parameters {yj, p(j|i)} would immediately lead to hard associa-

tion between the data point and the nearest codebook entry, where the term “nearest” is

used in the sense of the distortion measure. Instead, the distortion is minimized subject

to an imposed level of randomness, which is naturally measured by Shannon’s entropy

H. Hence, the Lagrangian function to be minimized can be written as,

L = D − TH, (2.31)
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where,

H = −
∑
i

∑
j

p(j|i)p(i) log (p(j|i)p(i)) , (2.32)

and T (“temperature”) is the Lagrangian parameter. Next, an iterative approach, which

is an appropriately designed random relative of the GLA algorithm, is employed to min-

imize the Lagrangian function:

1. Initialize temperature, T = Tmax and the entries of the codebook {yj}.

2. Fix the codebook {yj} and find the random clustering partition (i.e., probabilistic

assignment of data points to centroids) which minimizes the Lagrangian cost:

{p(j|i)} = argmin
{p(j|i)}

L, ∀i, ∀j (2.33)

Note that the solution must further impose the constraint
∑

j p(j|i) = 1,∀i, which

directly yields a random relative of the nearest neighbor rule, given by the Gibbs

distribution:

p(j|i) =
exp

(
−ρ(xi,yj)

T

)
Zi

, (2.34)

where the normalization constant is

Zi =
∑
j

exp

(
−ρ(xi,yj)

T

)
, (2.35)

sometimes called the partition function in physics.

3. Fix the random clustering partition, {p(j|i)} and optimize the entries of the code-

book to minimize the Lagrangian cost. Specifically,

{yj} = argmin
{yj}
L = argmin

{yj}
D, (2.36)
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where we used the fact that the entropy is determined by the (fixed) clustering

partition, and hence can be discarded from L in this step. Noting further that D

is additive in the contributions of individual codebook entries, we obtain:

yj = argmin
y

∑
i

p(j|i)p(i)ρ(xi,y), (2.37)

or as necessary condition for optimality, the random relative of the centroid rule:

∑
i

p(j|i)p(i) ∂

∂y
ρ(xi,y) = 0 , j = 1, 2, . . . , Nb, (2.38)

4. Check if convergence condition satisfied, else go to step 2.

5. Cool the system, e.g., T = αT , with α < 1. If the prescribed minimum temperature

is reached, then terminate the algorithm.

6. Perturb the codebook entries to check for possible splitting of codebook centroids,

also known as phase transition, then go to step 2.

At T = 0, the DA algorithm degenerates to the GLA algorithm, however the annealing

process until then eliminates the sensitivity to initialization. In step 4, convergence can

be checked by comparing ∆L
L to a convergence threshold. It is important to note that

by gradual cooling, the system undergoes a series of phase transitions at corresponding

“critical temperatures”, in analogy to physical systems, wherein the cardinality of the

codebook grows. The critical temperatures can be derived using tools of variational

calculus. Let us consider first the case of very high temperature, T → ∞, where the

Gibbs distribution of (2.34) becomes a uniform distribution, and all the codebook entries
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{yj} merge to a single codebook entry, y∗, and the condition in (2.38) simplifies to,

∑
i

p(i)
∂

∂y
ρ(xi,y

∗) = 0. (2.39)

Hence, at high temperature, there is effectively one codebook entry and one cluster - the

entire training set. Next let L∗ denote the minimum of the Lagrangian function L over

the cluster association probabilities, i.e.,

L∗({yj}, T ) = min
{p(j|i)}

L,

= −T
∑
i

p(i) log
∑
j

exp

(
−ρ(xi,yj)

T

)
,

(2.40)

which must still be minimized with respect to the codebook. The bifurcation or splitting

of codebook entries occurs when, as the temperature is lowered, the existing codebook

entries that satisfy the necessary condition for optimality, no longer correspond to a

minimum of L∗, i.e., we now observe a saddle point or a maximum of the cost L∗. The

necessary condition for optimality of a codebook {yj}, is

d

dϵ
L∗({yj + ϵηj}, T )|ϵ=0 = 0, ∀{ηj}, (2.41)

where {yj + ϵηj} is a perturbed codebook with finite perturbation vectors {ηj}. The

solution represents a minimum of the cost, as long as the second-order derivative is

positive for all finite perturbations,

d2

dϵ2
L∗({yj + ϵηj}, T )|ϵ=0 > 0, ∀{ηj}. (2.42)

Consequently, bifurcation occurs when the gradually lowered temperature yields equality

in (2.42), hence the solution is no longer stable. (Intuitively, there are perturbation
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directions along which if we split the codebook entries, we will be able to decrease the

cost.) This temperature is what is called critical temperature in statistical physics. See [6]

for extensive analysis of DA’s sequence of phase transitions through which the cardinality

of the codebook grows, as well as for demonstration that the algorithm is invariant to

initialization. Finally, the DA algorithm is summarized in Algorithm 4.

Algorithm 4 : Deterministic Annealing in [6]

1: procedure DA(x1, . . . ,xN , p(1), . . . , p(N), C0, Nc)
2: Initialize the codebook C = {y1, . . . ,yNc} ← C0.
3: Initialize temperature T = Tmax.
4: while T > Tmin do
5: while Convergence has not been achieved, i.e., ∆L

L > threshold do
6: for i = 1 : N do

7: Adjust cluster association probabilities of xi as p(j|i) =
exp

(
−

ρ(xi,yj)

T

)
Zi

.
8: end for
9: for j = 1 : Nc do
10: Adjust centroids according to yj = argmin

y

∑
i

p(j|i)p(i)ρ(xi,y).

11: end for
12: Calculate the total average Lagrangian function L = D − TH.
13: end while
14: Cool the system, i.e., T = αT , with α < 1.
15: Perturb centroids, i.e., yj = yj +wj, where wj is the perturbation noise.
16: end while
17: return C.
18: end procedure
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Chapter 3

A Tractable Natural Type Selection

Codebook Design Algorithm

In this chapter, we develop a tractable version of the NTS algorithm for a larger spec-

trum of sources. The results included in this chapter are published in [51, 46, 52, 53].

We adopt the same notation (for source words, codewords, distortion function, alphabet

spaces, etc.) as defined in Chapter 2. In other words, denote X and Y as the source

and reproduction alphabet spaces. We assume that the alphabet X is either a discrete

space or (more generally) a complete separable metric space (often called Polish space),

equipped with its associated Borel σ-field X ′. Similarly, we assume that the reproduction

alphabet Y is either a discrete space or (more generally) also a Polish space equipped

with its associated Borel σ-field Y ′. Furthermore, let {Xu}∞u=1 be a stationary ergodic

source, where the source realization is denoted as xu ∈ X , and similarly, the reproduc-

tion realization is denoted as yu. Next, let {X̃i}∞i=1 be a sequence of independent and

identically distributed (i.i.d.) M -tuples (or source “super-symbols”), each obtained by

drawing M successive symbols from the distribution underlying source {Xu}. Hence, let

PM be the vector source distribution of x̃ on XM . Define a source block (source word)
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that contain L source vectors as X =
(
X̃1, X̃2, . . . , X̃L

)
, and source block realization

as x. Next, we define an arbitrary non-negative (measurable) scalar-valued distortion

function ρ :XM ×YM→ [0,∞). The distortion between a realization of the source block

x and a realization of the code block (codeword or reproduction word) y=(ỹ1 . . . , ỹL),

with ỹi∈YM , is assumed additive, and is specifically, the average distortion over super-

symbols in the block:

ρ (x,y) =
1

L

L∑
ℓ=1

ρ (x̃ℓ, ỹℓ) =
1

L

L∑
ℓ=1

(
1

M

M∑
m=1

ρ(xℓ,m, yℓ,m)

)
, (3.1)

where xℓ,m and yℓ,m are the m-th letters in x̃ℓ and ỹℓ, respectively. First, we turn

our attention to sources over discrete alphabet spaces. Generalization of such tractable

algorithm to sources over abstract alphabets is introduced next in section 3.3.

3.1 Discrete Alphabet Sources

We start by posing a natural and important question: can a more effective algorithm

be devised such that converging behavior is achieved in a non-asymptotic parameter

settings? Can, at least, the convergence to the optimal reproduction distributionQ∗
PM ,d be

achieved but through a reversed order of limits? I.e., can we achieveQ∗
PM ,d by first sending

n to infinity, while maintaining finite L, and then sending L to infinity? Obviously, if

string length L is finite, then the type of the d-matching codeword (of the same length)

is restricted in resolution to 1/L, as the relative frequency of a letter or super symbol, in

the codeword, is a multiple of 1/L. Such a low resolution of types may cause difficulties

for an iterative algorithm that advances by potentially very small adjustments to the

distribution. In order to circumvent this shortcoming, we propose to update the estimate

of a general codebook reproduction distribution (not restricted to type resolution of
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1/L), after observing many d-matching events. In other words, we find the maximum

likelihood estimate of the distribution that would have generated the observed sequence of

d-matching codewords in response to a sequence of independently generated source words.

Note that this approach is closely connected to finding the maximum likelihood codebook

reproduction distribution, within a family of distributions, that maximize the probability

of d-match events, which has been investigated in [54, 55]. However, in our method, we

find the reproduction distribution that maximizes the probability of generating a set

of observed d-matching codewords, which is shown to provide asymptotically optimal

rate-distortion results as will be proved in Theorems 1-7. Let K be the number of

the d-matching events considered before performing maximum likelihood estimation and

updating the codebook reproduction distribution.

Lemma 1 : The Maximum Likelihood (ML) estimate of the codebook reproduction

distribution that generates i.i.d. M -length super symbols, given a set of K d-matching

codewords, is the average of the d-matching codeword types, i.e.,

Qn+1,M,L,K = Q̂ML =
1

K

K∑
k=1

Qk, (3.2)

where k enumerates the d-matching events, and Qk is the M -order type of the k-th d-

matching codeword ỹ(jk), whose index in the random codebook is jk. In these settings,

the codeword (and source word) consists of L sub-vectors (or super symbols) each of size

M . A simplified version of this lemma, with simplified notations, has appeared in [51]

for discrete alphabet memoryless (M = 1) sources.

The proof of Lemma 1 is given in Appendix A.1. The sketch of proof is, first, to estab-

lish that the probability of generating a codeword from a given distribution only depends

on its type. Next, we realize that the maximum likelihood distribution that generates a

set of a d-matching codewords, is the one that minimize the sum of KL divergences seen
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versus all d-matching codewords. The average type of K d-matching length-L codewords

is exactly equal to the type of length-KL code block formed by concatenating the K

d-matching codewords. Note that the resolution of the maximum likelihood codebook

reproduction distribution Q̂ML is 1/(LK). However, the complexity of computing Q̂ML

only grows linearly with K, while the d-matching complexity is exponential in L. This

result immediately suggests a modified and considerably more tractable variant of the

NTS recursive algorithm. Starting with an arbitrary and strictly positive initial repro-

duction distribution Q0,M,L (the subscripts ‘0’ denotes n = 0), the average M -th order

type of K d-matching codewords is used to generate a new codebook in the next NTS

iteration. The modified NTS algorithm is summarized in Algorithm 5.

Algorithm 5 : Modified NTS Algorithm for Discrete Alphabets

1: procedure NTS Modified Discrete(N,M,L,K, d,Q0,x(1), . . . ,x(KN))
2: Q1,M,L,K ← Q0.
3: for n = 1 : N do
4: for k = 1 : K do
5: i← (n− 1)K + k.
6: j ← 0.
7: while d′ < d do
8: j ← j + 1.
9: Generate j-th codeword y(j) using Qn,M,L,K .
10: d′ ← ρ (x(i),y(j)) .
11: end while
12: Qk ←M -th order type of y(j).
13: end for

14: Qn+1,M,L,K ← 1
K

K∑
k=1

Qk.

15: end for
16: return QN+1,M,L,K .
17: end procedure

This modified algorithm yields a sequence of reproduction distributions, i.e.,

Qn,M,L,K =
1

K

K∑
k=1

Qk, (3.3)
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Table 3.1: Summary of the NTS Algorithm parameters’ definitions.

n NTS iteration index.
M Memory depth or size of “super-symbol”.
L Number of (length M) super symbols encoded together.
K Statistical depth for ML codebook distribution estimation.
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Figure 3.1: Evolution of the codebook reproduction distribution by the tractable NTS
algorithm for different finite source lengths L and statistical depth K = 105. Binary
memoryless source is considered with P1 = {0.48, 0.52}, and Hamming distortion
measure with d = 0.35. Reprinted, with permission, from [51] © 2020 IEEE.

Qn,M,L = lim
K→∞

Qn,M,L,K , n = 1, 2, . . . (3.4)

For convenience, the main NTS parameters are summarized in Table 3.1. Before we

dive into the convergence analysis of the modified NTS algorithm, we immediately verify

the stability of the proposed modified NTS algorithm using the same example that was

considered in Fig. 2.2, i.e., a discrete binary input and reproduction alphabet spaces

(X = Y = {0, 1}). The source is assumed memoryless (M = 1) asymmetric with P1 =

{0.48, 0.52}. A Hamming distortion function is employed, i.e., the distortion between

source word and codeword is the frequency of positions at which the corresponding source
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and code letters differ. The distortion constraint is set as d = 0.35. The statistical

depth is set in the simulation environment to K = 105. For these settings, the optimal

codebook reproduction distribution is Q∗
P1,d
≈ {0.44, 0.56}. Fig. 3.1 shows the evolution

of the codebook reproduction distribution, i.e., Qn,1,L, across the NTS iteration index n

for different values of finite source word lengths L. As we see in Fig. 3.1 (for the same

source and distortion as in Fig. 2.2), the use of K > 1 smooths out the large fluctuations

present in the codebook reproduction distributions of the original NTS algorithm, and

enhances the speed of convergence.

In the following analysis, we establish that the sequence of reproduction distributions

of the modified NTS algorithm, despite the fact that it maintains a fixed and finite

string length L, converges asymptotically, in probability, as n→∞ and K →∞ to the

optimal achievable reproduction distribution Q∗
M,L(PM , d), where “achievable” reflects

the limitations due to the fixed string length L, as will formally be stated in Theorem

2. For a more clear delivery of our main results in Theorems 1 and Theorem 2, we will

consider only the memoryless case, i.e., M = 1. Generalization of these theorems to

sources with memory will be stated in the Corollary 1 and Corollary 2.

First, define UL(d) as the set of all possible pairs of L-length source words and code-

words that can d-match, i.e.,

UL(d)≜
{
(x,y) : x ∈ X L,y ∈ YL, ρ(x,y) ≤ d

}
. (3.5)

Next, for memoryless source distribution P = P1, define the set EL(P, d) as,

EL(P, d)≜
{
V : V (x,y) ≥ 0, V

(
X L,YL

)
= 1, V (x,y) = 0 ∀(x,y) /∈ UL(d), [V ]x = PL

}
,

(3.6)

where PL is the L-dimensional product distributions of P on X L. Note that the joint
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distributions in EL(P, d) are defined on the Cartesian product of L-fold product source

and reproduction alphabet spaces, i.e., X L × YL, and hence, the joint distributions in

EL(P, d) live in an r-dimensional simplex space Sr (with r = |X L| × |YL|), defined as,

Sr =

{
z = (z1, . . . , zr) ∈ Rr :

r∑
i

zi = 1, zi ≥ 0,∀i ∈ {1, . . . , r}

}
. (3.7)

where R denotes the real line. We can now state our first Theorem.

Theorem 1 For an initial codebook reproduction distribution Q0 that is strictly positive

everywhere over the discrete alphabet Y, i.e., Q(y) > 0,∀y ∈ Y, and for distortion

measure satisfying 0 ≤ Dmin < Dav <∞, the reproduction distribution of the generalized

recursive NTS algorithm in (3.3 converges asymptotically, as K → ∞, given a fixed

source word length L, a fixed super-symbol length M = 1, and iteration index n−1, to the

marginal distribution of the L-dimensional distribution Q∗
L(P,Qn−1,1,L, d) in probability,

i.e.,

i) Qn,1,L = lim
K→∞

Qn,1,L,K → E[Qk], (3.8)

where k enumerates the d-matching events (k = 1, . . . , K), and Qk is the M-th order

type of the k-th d-matching codeword ỹ(jk), whose index in the random codebook is jk.

Furthermore, we show,

ii) E[Qk] = Q∗
L(P,Qn−1,1,L, d)

Marg., (3.9)

where the super script “Marg.” denotes the marginal distribution of the L-dimensional

distribution on the reproduction space Y (or more generally YM if M > 1 memory depth
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is considered by the algorithm), and Q∗
L(P,Q,D) is defined as follows,

V ∗
L (P,Q, d) ≜ arg min

V ∈EL(P,d)
D
(
V
∣∣∣∣PL×QL

)
,

Q∗
L(P,Q, d) = [V ∗

L (P,Q, d)]y ,

(3.10)

where the notation [·]y denotes the y-marginal distribution of the argument.

It should be noted that, similar to PL, QL is the L-dimensional product distributions

of Q over YL. The proof of Theorem 1 is provided in Appendix A.4. A brief proof

sketch is that, first, it establishes that the sequence of d-matching codewords’ types are

independent and identically distributed, and thus by weak Law of Large Numbers (LLN),

the ML type in (3.2) or the average type converges to the expected value in probability.

Next, to show the second part of Theorem 1, we employ a variant of the conditional

limit theorem in [45] to establish that, conditioned on the rare event that the joint input-

output distribution of a block ofK concatenated respective source and codewords
(
X,Y

)
belongs to a convex set of distributions that generated d-matching source and code pairs

with probability one, then the joint distribution of this block converges in probability, as

K →∞, to the distribution V ∗
L (P,Qn−1,1,L, d). This theorem has an intimate relationship

with the Gibbs Conditioning Principle of statistical mechanics (see [56] and the references

therein). The Gibbs conditioning principle roughly states: suppose that {X1, . . . , XN}

are i.i.d. random variables distributed over a Polish space with marginal distribution PX

and a measurable function f : X → R. Hence, under suitable conditions on PX and f(·),

and conditioned on the rare event that

{
1
N

∑
i

f(Xi) ∈ [a− δ, a+ δ]

}
, where a ∈ R and

δ > 0, the distribution of Xi converges in probability, as N → ∞, to the distribution

that minimizes the divergence D(·||PX) over all distributions that satisfy the constraint,

which is very closely related to the arguments used to prove Theorem 1.

Theorem 1 implies that at every NTS iteration, the codebook reproduction distribu-
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tion converges to a marginal of Q∗
L(P,Qn−1,1,L, d), as K → ∞. Note that the codebook

reproduction distribution in the next NTS iteration Q∗
L(PM , Qn−1,1,L, d)

Marg. is more effi-

cient in encoding the source than Qn−1,M,L, the reproduction distribution in the current

NTS iteration. This immediately suggests that the reproduction distributions improve

by NTS iterations. Next we extend this result to sources with memory, for which the

source and code words are now viewed as an L-length sequence of i.i.d. M -length “su-

per symbols” on the alphabets XML and YML, respectively, where M is the considered

memory depth.

Corollary 1 For an initial codebook reproduction distribution Q0 that is strictly positive

everywhere over the discrete alphabet YM , i.e., Q(y) > 0,∀y ∈ YM , and for distortion

measure satisfying 0 ≤ Dmin < Dav <∞, the reproduction distribution of the generalized

recursive NTS algorithm in (3.3) converges asymptotically, as K → ∞, given a fixed

source word length L, a fixed super-symbol length M ≥ 1, and iteration index n − 1, to

the marginal of the ML-dimensional distribution Q∗
M,L(P,Qn−1,M,L, d) in probability, i.e.,

Qn,M,L = Q∗
M,L(PM , Qn−1,M,L, d)

Marg., (3.11)

where Q∗
M,L(PM , QM , d) is defined similar to Theorem 1, i.e.,

V ∗
M,L(PM , QM , d) ≜ arg min

V ∈EM,L(PM ,d)
D
(
V
∣∣∣∣PL

M×QL
M

)
,

Q∗
M,L(PM , QM , d) =

[
V ∗
M,L(PM , QM , d)

]
y
,

(3.12)

The distributions PL
M and QL

M are the L-dimensional product distributions of PM and

QM over XML and YML, respectively. Additionally, the set EM,L(PM , d) is the direct
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generalization of EL(P, d) for M ≥ 1, i.e.,

EM,L(d)≜
{
V : V (x,y) ≥ 0, V

(
XML,YML

)
= 1,

V (x,y) = 0 ∀(x,y) /∈ UM,L(d), [V ]x = PL
M

}
,

(3.13)

UM,L(d)≜
{
(x,y) : x ∈ XML,y ∈ YML, ρ(x,y) ≤ d

}
. (3.14)

Proof: The proof of Corollary 1 follows directly from Theorem 1 by instead considering

the source word as a sequence of i.i.d. M -length vectors, each distributed according to

PM . Hence, the new vector source will consists of “super-symbols” on the super-alphabet

XM . Consequently, to accommodate such source containing a sequence of i.i.d. vectors,

the code words are similarly constructed as a sequence of i.i.d. M -length vectors, each

distributed according to QM over the reproduction super-alphabet space YM . The proof

follows similar to the proof of Theorem 1 under the new source and code words settings.

■

Next we establish the asymptotic optimality of the tractable NTS algorithm as the

number of NTS iterations n, and the source words length L go to infinity. Similar to

Theorem 1, for clarity of presentation, we first consider memoryless sources in Theorem

2, and then, we generalize our results to sources with memory in Corollary 2.

Theorem 2 Given a memoryless source and a strictly positive initial codebook reproduc-

tion distribution Q0 over Y, i.e., Q0(y) > 0, ∀y ∈ Y and for distortion measure satisfying

0 ≤ Dmin < Dav <∞, the recursion in Algorithm 5, with M = 1, achieves,

i) Qn,1,L → Q∗
L(P, d)

Marg., as n→∞ , (3.15)

ii)
1
L
RL(P, d)→ R(P, d)

Q∗
L(P, d)

Marg. → Q∗
P,d

, as L→∞ , (3.16)
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where the subscript ’1’ stands for M = 1, Q∗
P,d is the optimum reproduction distribution

that achieves the rate distortion function R(P, d), and Q∗
L(P, d)

Marg. is the marginal dis-

tribution of the optimum achievable L-dimension reproduction distribution Q∗
L(P, d) for

finite source word length L that would asymptotically achieve the rate RL(P, d), i.e.,

RL(P,Q, d) ≜ min
V ∈EL(P,d)

D
(
V
∣∣∣∣ PL ×QL

)
,

WL(P, d) ≜
{
W:PL◦W =V, V ∈ EL(P, d)

}
,

W ∗
L(P, d) = W ∗

L ≜ arg min
W∈WL(P,d)

I
(
PL,W

)
,

RL(P, d) ≜ min
Q

RL(P,Q, d) = I
(
PL,W ∗

L

)
,

Q∗
L(P, d) ≜

[
PL ◦W ∗

L(P, d)
]
y
,

(3.17)

where I
(
PL,W

)
is the mutual information defined over the distributions, i.e.,

I
(
PL,W

)
=
∑
x̃∈XL

∑
ỹ∈YL

PL(x̃) W (ỹ|x̃) log W (ỹ|x̃)
Q(ỹ)

, (3.18)

Q(ỹ) =
∑

x̃′∈XL

PL(x̃′) W (ỹ|x̃′). (3.19)

Note that the only difference between RL(P,Q, d) in (3.17) and R(P,Q, d) in (2.8), with

M = 1, is the set over which the min operation is taken as well as the dimension of the

distributions L. The convex set EL(P, d), which is constrained by the finite source word

length L, is a subset of the set {V : [V ]x = PL, EV (ρ(X,Y)) ≤ d}. Additionally, we

show in Theorem 2 that these two sets are equivalent asymptotically as L → ∞. The

proof of Theorem 2 is provided in Appendix A.5.

Now we turn our attention to the case for which the source is with memory. Con-

sequently, in order to capture the correlation between source samples, the source words

and code words are constructed by concatenating a sequence of L i.i.d. M -length sub
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vectors according to PM on XM and QM on YM , respectively, where M is the memory

depth considered.

Corollary 2 For an initial codebook reproduction distribution Q0 that is strictly positive

everywhere over the discrete alphabet YM , i.e., Q(y) > 0, ∀y ∈ YM , and for a distortion

measure satisfying 0 ≤ Dmin < Dav < ∞, the recursion in Algorithm (5), with M ≥ 1,

achieves,

i) Qn,M,L → Q∗
M,L(PM , d)Marg., as n→∞ , (3.20)

ii)
1
L
RM,L(PM , d)→ R(PM , d)

Q∗
M,L(PM , d)Marg. → Q∗

PM ,d

, as L→∞ , (3.21)

where Q∗
PM ,d is the optimum reproduction distribution that achieves the joint M-th order

rate distortion function R(PM , d), and Q∗
M,L(PM , d)Marg. is the marginal distribution of

the optimum achievable ML-dimension reproduction distribution Q∗
M,L(PM , d), for finite

source word length L and sub-vector length M , that would asymptotically achieve the rate

RM,L(PM , d), i.e.,

RM,L(PM , QM , d) ≜ min
V ∈EM,L(PM ,d)

D
(
V
∣∣∣∣ PL

M ×QL
M

)
,

WM,L(PM , d) ≜
{
W:PL

M ◦W =V, V ∈ EM,L(PM , d)
}
,

W ∗
M,L(PM , d) = W ∗

M,L ≜ arg min
W∈WM,L(PM ,d)

I
(
PL
M ,W

)
,

RM,L(PM , d) ≜ min
Q

RM,L(PM , QM , d) = I
(
PL
M ,W ∗

M,L

)
,

Q∗
M,L(PM , d) ≜

[
PL
M ◦W ∗

M,L(PM , d)
]
y
,

(3.22)

where I
(
PL
M ,W

)
is the mutual information defined over the distributions.

Proof: Similar to Corollary 1, the proof of Corollary 2 follows directly from Theorem

2 by instead considering the source word as a sequence of i.i.d. M -length sub-vectors or
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super-symbols, each distributed according to PM . Hence, the new “vector” source will

consists of “super-symbols” on the super-alphabet XM . Consequently, to accommodate

such source containing a sequence of i.i.d. vectors, the code words are similarly con-

structed as a sequence of i.i.d. M -length sub-vectors or super-symbols, each distributed

according to QM over the reproduction super-alphabet space YM . Hence, the proof fol-

lows similar to the proof of Theorem 2 under the new source and code words settings.

■

Additionally, by (2.12) and (2.13), for sources with memory, the proposed NTS algo-

rithm can further find Q∗
d, that achieves R(d), if the memory depth M (or the size of the

“super symbol”) is sent to infinity.

Corollary 3 Among all possible finite-length codebook reproduction distributions that

generate i.i.d. M-length super symbols, and that induce a joint distribution generating

d-matching source and code pairs with probability one, the tractable NTS algorithm finds

the codebook reproduction distribution that minimizes the divergence between the input-

output joint distribution, and the product of their marginal distributions, asymptotically

in K and n, i.e.,

V ∗
M,L(PM , d) = arg min

V ∈EM,L(PM ,d)
I(V, PL

M ×QL
M), (3.23)

I(V, PL
M ×QL

M)=
∑

x̃∈XML

∑
ỹ∈YML

V (x̃, ỹ) log
V (x̃, ỹ)

PL
M(x̃)QL

M(ỹ)
, (3.24)

QM(y) =
∑

ỹ′∈YML

N(y|ỹ′)
∑

x̃′∈XML

V (x̃′, ỹ), ∀y ∈ YM , (3.25)

where N(y|ỹ) is the frequency of occurrence of y as seen in ỹ, hence, QM is the y-

marginal of V on YM . In other words, out of all the possible finite-length codebook re-

production distributions that induce joint distributions generating d-matching ML-length
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source and code pairs with probability one, the NTS algorithm finds the distribution that

minimizes the encoding rate when the codebook reproduction distribution is used with

asymptotic-length encoding settings. This also implies that the NTS algorithm with finite

length settings finds the distribution that achieves the rate-distortion function, albeit for

a max-distortion constraint d over every ML-length segment.

Proof: An optimal finite-length codebook C∗(PM , d), given a distortion constraint d,

will only generate the codewords that can possibly d-match finite-length source examples.

Hence, the optimal codebook reproduction distribution belongs to the convex hull of

all possible codewords that can exist in C∗(PM , d). This set of distributions is exactly

{QL
M : [V ]y = QM , V ∈ EM,L(PM , d)}, and the NTS algorithm finds the minimizing joint

distribution, in EM,L(PM , d), to the mutual information by (3.17) and (3.23). ■

While ensuring optimality, the NTS algorithm for source with memory in [46] suf-

fers from fundamental practical flaws. In order to converge to the optimal distribution

that achieves the rate-distortion bound for sources with memory, the algorithm needs

to encode source words that are composed of i.i.d. M -length vectors according to the

M -th order source joint distribution PM , while sending M to infinity. This obviously

requires the prior knowledge of the source statistics in order to artificially generate such

vectors with i.i.d. constraints, which is elusive in practical cases. Furthermore, even

for finite-memory sources such as sources with finite order Markovian property, the al-

gorithm requires sending the length of i.i.d. source and code vectors M , within the

L-length codeword, to infinity in order to converge to the optimal. It is important to

note that sending M to infinity implies that the cardinalities of the source and code

super alphabet spaces increase beyond any practical computational power available to

perform d-search, ML estimation and codebook regeneration operations, thus rendering

the system unfeasible in practical scenarios. The requirement of sending M to infinity is
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also counter-intuitive, specifically for sources with finite memory, i.e., sources for which

the current sample distribution only depends on a subset of the past samples. In the

next section, we propose to modify the NTS algorithm for Markovian sources, such that

the algorithm converges to its optimal distribution without sending M to infinity. More

specifically, we restrict the generating codebook distribution to distributions with M -th

order Markovian property, which is the same Markovian property order as the source.

Then, asymptotic convergence to the optimal constrained distribution, i.e., the distribu-

tion that achieves the minimum per letter encoding rate over all codebook distributions

within the constrained family of Markovian distributions, is shown.

3.2 Sources with Markovian Property

In this section, we restrict our attention to stationary and ergodic sources with memory,

described by the Markovian property, over discrete alphabet space X . Denote the M -th

order Markov source as a source with M -length Markov property, i.e., for any time index

n ≥M > 0,

P(Xn = xn | Xn−1 = xn−1, Xn−2 = xn−2, . . . , X0 = x0) =

P(Xn = xn | Xn−1 = xn−1, Xn−2 = xn−2, . . . , Xn−M = xn−M).

(3.26)

This implies that the current source sample distribution only depends on the previous M -

samples. This Markov source can be described by a state transition diagram containing

exactly |X |M states. Let Pj|i be the homogenous source state transition probability from

state i to state j, where i, j ∈ R = XM . Hence, let P be the state transition probability

matrix for which the entry in the i-th row and j-th column is Pj|i. Furthermore, let

P (X|x) = {P (x|x) : x ∈ X} be the stationary source letter distribution conditioned on

the M previous samples being x. Note that there exists a one-to-one mapping between
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the set {Pj|i, ∀(i, j) ∈ R2} and the set {P (x|x),∀x ∈ X ,∀x ∈ XM}. By the stationary

assumption of the Markov chain, the stationary distribution is computed as, Π = Π P,

whereΠ = [π(1), . . . , π(|R|)] is a row vector. In order to take into account the Markovian

property of the source, we restrict the codebook reproduction distribution to distributions

with M -th order Markov property. Let Qj|i be the codebook distribution state transition

probability from state i to state j, where i ∈ S, j ∈ S, and S = YM . Hence, let Q

be the state transition probability matrix for which the entry in the i-th row and j-th

column is Qj|i. Let the random L-tuples source words and codewords X = [X1, . . . , XL],

and Y = [Y1, . . . , YL], be generated according to state transition matrices P and Q,

respectively. First, we introduce a variant of NTS algorithm for the above setup. At

every NTS iteration with index n, the algorithm finds a set of d-matching codewords

in the random codebook to a set of K independently generated source words. Let the

realizations of the d-matching source and code sets be denoted as {x(i1), . . . ,x(iK)}, and

{y(j1), . . . ,y(jK)}, where jk is the index of the codeword that d-match the k-th source

word in the codebook. Next, similar to before, the NTS algorithm finds the most likely

constrained reproduction distribution to produce the set of d-matching codewords, where

the distribution is constrained to have M -th order Markov property.

Lemma 3 [57]: The ML estimate of the M -th order Markov process state transition

probabilities underlying the codebook reproduction distribution, given a set of K d-

matching codewords, is the average of the d-matching codewords’ transitions, i.e.,

Qn+1,M,L,K = QML =

Qj|i : Qj|i =

K∑
k=1

N(i )j|y(k))

K∑
k=1

∑
j′∈S

N(i )j′|y(k))
, ∀(i, j) ∈ S2

 , (3.27)

where k enumerates the d-matching events, and N(j ) i|y(jk)) is the number of transitions

from state i to state j as seen in the k-th d-matching codeword y(jk), whose index in
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the random codebook is jk. The proof of Lemma 3, originally written in [57], is given

in A.3. Thus, this algorithm yields a sequence of state transition matrices as in (3.27),

or equivalently, a sequence of conditional distributions Qn+1,M,L,K(Y |y). Hence, the

iterative NTS algorithm for Markovian sources over discrete alphabet spaces can be

summarized in Algorithm 6.

Algorithm 6 : Modified NTS Algorithm for Markovian Sources over Discrete Alphabets

1: procedure NTS Markov Discrete(N,M,L,K, d,Q0,x(1), . . . ,x(KN))
2: Q1,M,L,K ← Q0.
3: for n = 1 : N do
4: for k = 1 : K do
5: i← (n− 1)K + k.
6: j ← 0.
7: while d′ < d do
8: j ← j + 1.
9: Generate j-th codeword y(j) using state transition matrix Qn,M,L,K .
10: d′ ← ρ (x(i),y(j)) .
11: end while
12: Record N

(i)j)
k ← N(i )j|y(j)), ∀(i, j) ∈ S2.

13: end for

14: Qn+1,M,L,K ←

Qj|i : Qj|i =

K∑
k=1

N
(i)j)
k

K∑
k=1

∑
j′∈S

N
(i)j′)
k

, ∀(i, j) ∈ S2

 .

15: end for
16: return QN+1,M,L,K .
17: end procedure

In the next discussion, we quantify the asymptotic performance of the NTS algorithm

specialized for Markov sources. Let the random codebook be generated according to a

Markov process with conditional probabilities Q(Y |y), ∀y ∈ YM , i.e., Q(Y |y) is the

row in the matrix Q that corresponds to transitions from state s = y ∈ S. Before we

characterize the asymptotic performance of such algorithm, we start by transforming this

variant of NTS algorithm into a dual set of NTS algorithms for memoryless sources. Let

the sets of K d-matching source words and codewords be concatenated into KL-length

source and code blocks denoted as, s = [x(i1), . . . ,x(iK)], and c = [y(j1), . . . ,y(jK)],
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respectively. Furthermore, let the source and code blocks be independently divided into

sub-streams based on the previous source and code M -tuples, denoted as {sx,∀x ∈

XM}, and {cy,∀y ∈ YM}. Note that by the homogenous assumption of the Markovian

source and code distributions, the sequence of symbols of the sub-streams {sx} are i.i.d.

according to P (X|x). The set of d-match event {ρ(x(ik),y(ik)) ≤ d, ∀k}, implies that

ρ(s, c) ≤ d, which is equivalent to a set of size |XM × YM | events of distortion matches

between the sub-streams {sx} and {cy}, each with distortion level denoted as dx,y, such

that,
∑
x,y

Mn(x,y)dx,y ≤ d. Here Mn(x,y), is the empirical probability of reproducing a

letter in sub stream sx, by a letter in sub stream cy, at NTS iteration n, as seen by the

code and source blocks s, and c, respectively. To illustrate this idea further, consider

Fig 3.2 showing binary source and code blocks, which are formed by concatenating three

d-matching source and code words. The source and code generating distributions exhibit

a first order Markovian property, hence the number of Markov states is |X | = |Y| = 2,

furthermore, a Hamming distortion measure is employed at distortion level d = 1/3. The

letters that are divided into different i.i.d. sub-streams are assigned different colors. For

example, the samples that follow ‘0’ are assigned black color, and the samples following

‘1’ are assigned blue color. The i.i.d sub-streams sx and cy are formed by concatenating

all the samples following the same letter together as shown in Fig. 3.2.

Theorem 3 For an initial codebook generating Markov chain with strictly positive tran-

sition probabilities Q(Y |y) > 0, ∀y ∈ S = YM , and distortion measure satisfying

0 ≤ Dmin < Dav <∞, the transition probabilities Q(Y |y), of the recursive NTS algorithm

for Markov sources, where each recursion involves collecting K d-matches, converge in

probability and asymptotically, as L→∞, as follows,
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Figure 3.2: Division of the d-matching source and code blocks into i.i.d. sub-streams
based on the previous sample. Reprinted, with permission, from [53] © 2023 IEEE.

Qn+1,M,K(Y |y)→
∑

x∈XM

M∗
n(x|y)Q∗ (P (X|x), Qn,M,K(Y |y), d∗x,y

)
,

V ∗ (P (X|x), Q(Y |y), d∗x,y
)
≜ arg min

V ∈Ex,y(d∗x,y)
D
(
V
∣∣∣∣∣∣P (X|x)×Q(Y |y)

)
,

Q∗ (P (X|x), Q(Y |y), d∗x,y
)
=
[
V ∗ (P (X|x), Q(Y |y), d∗x,y

)]
y
,

(3.28)

where Qn+1,M,K(Y |y) = lim
L→∞

Qn+1,M,L,K(Y |y), and the set Ex,y(dx,y) is defined as,

Ex,y(d
∗
x,y) =

{
V : V = P ′ ◦W ′, P ′ = P (X|x), ρ(P ′,W ′) ≤ d∗x,y

}
. (3.29)

Here ρ(P ′,W ′) is the average distortion computed over distributions, and the set of dis-

tortion levels {d∗x,y,∀(x,y) ∈ XM × YM}, satisfies,

∂

∂δ
R(P (X|x), Q(Y |y), δ)

∣∣∣
δ=d∗x,y

= R′
P,Q,d, ∀(x,y),

∑
x,y

M∗
n(x,y)d

∗
x,y ≤ d, (3.30)

where R′
P,Q,d is independent of the sub-stream pair (x,y).

In other words, the distortion allocation to sub-stream pairs, d∗x,y, ensures they all main-

tain the same rate-distortion slope, given codebook generating distributions {Q(Y |y)},

while satisfying the overall average distortion constraint d. The proof of Theorem 3 is

given in Appendix A.6. Next, we look at the asymptotic convergence of the codebook

reproduction conditional distributions as the number of iterations n goes to infinity.
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Theorem 4 Given an initial codebook that is generated using a Markov process with

strictly positive conditional distributions Q(Y |y) for any state y ∈ S = YM , the recursion

in (3.27) achieves the minimum average coding rate over the cross product of all source-

code sub streams, denoted as R(d), i.e.,

R(d) = min
Q(Y |y)

min
M(y|x)

dx,y,Vx,y

∑
x,y

M(x)M(y|x) D
(
Vx,y

∣∣∣∣ P (X|x)×Q(Y |y)
)
. (3.31)

and the set of optimization variables that achieves the minimum in (3.31), satisfies,

∂

∂δ
R (P (X|x), Q∗(Y |y), δ)

∣∣∣
δ=d∗x,y

= R′
P,Q∗,d,

∑
x,y

M∗(x,y)d∗x,y ≤ d, (3.32)

where R′
P,Q∗,d is independent of the sub-stream pair (x,y).

The proof of Theorem 4 is provided in Appendix A.7. This establishes that the NTS

algorithm finds the conditional distributions that minimize the average encoding rate over

all i.i.d. source and code cross sub-streams {sx × cy} while maintaining the distortion

level d, hence implying asymptotic optimality.

In the next section, we generalize the proposed NTS algorithm to sources with ab-

stract alphabet spaces, which are more prominent in practical applications. The prelim-

inary results of this generalization have first appeared in [52].

3.3 Abstract Alphabet Spaces

While earlier sections focused on discrete alphabet sources, the prevalence of continuous

alphabet sources in practical compression applications provides strong motivation for

generalization of the NTS algorithm to accommodate these sources. It is important to

emphasize that the standard concept of types, which was the cornerstone of the afore-

mentioned NTS work on discrete alphabet sources, and was specifically instrumental
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to showing asymptotic convergence to the reconstruction distribution that achieves the

rate-distortion bound, does not apply to continuous alphabet sources. Hence, the gen-

eralization of the NTS algorithm to continuous alphabet sources is not straightforward

and is, in fact, fundamentally more challenging. In order to circumvent this issue, we

start working with probability measures over abstract alphabet spaces rather than the

method of types. Important advances were made in [41], which studied abstract alphabet

spaces in the random codebook coding context of plain and entropy-constrained quan-

tization, and further generalized the conditional limit theorem, which is at the heart of

the NTS algorithm, to stationary ergodic sources with abstract alphabet spaces. We

assume that the alphabet X is a complete separable metric space (often called Polish

space), equipped with its associated Borel σ-field X ′. Similarly, we assume that the re-

production alphabet Y is also a Polish space equipped with its associated Borel σ-field

Y ′. Similar to the tractable NTS algorithm for discrete sources in Section 3.1, a se-

quence ofK d-matching events between independent source examples, {x(i1), . . . ,x(iK)},

and codewords {y(j1), . . . ,y(jK)} is observed before estimating the maximum likelihood

codebook reproduction distribution. Note that matching codewords are indexed in the

codebook, as reflected in the notation jk for the index of the k-th matching codeword.

We turn our attention to the source block and the code block that are formed by con-

catenating the source words and the d-matching codewords, i.e., x = (x(i1), . . . ,x(iK)),

and y = (y(j1), . . . ,y(jK)). Note that, obviously, ∀k ∈ {1, . . . , K}, ρ(x(ik),y(jk)) ≤ d.

Hence, the source block x and code block y satisfies a stricter distortion requirement,

due to the inherent maximum distortion constraint over sub-blocks. In order to capture

such stricter distortion requirement, we define a scalar-valued auxiliary distortion func-

tion as follows:
(
ρ(d) : XML × YML → {0, 1}

)
, which is additive across the K ML-length

sub-blocks, i.e.,
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ρ(d) (x(ik),y(jk)) =

0 if ρ (x(ik),y(jk)) ≤ d,

1 otherwise
(3.33)

ρ(d)(x,y) =
1

K

K∑
k=1

ρ(d) (x(ik),y(jk)) , (3.34)

It should be noted that by setting ρ(d)(x,y) = 0, we impose a requirement of maximum

distortion d per sub-block, over the K sub-blocks. Thus, the auxiliary distortion mea-

sure ρ(d) is a subterfuge to impose maximum distortion while maintaining the additive

property over theK sub-blocks. Next, in view of (3.2), the next iteration codebook repro-

duction distribution is computed as the average of the codeword empirical distributions,

i.e.,

Qn+1,M,L,K =
1

K

K∑
k=1

Qy(jk), (3.35)

Qn+1,M,L = lim
K→∞

Qn+1,M,L,K , (3.36)

Qn+1,M = lim
L→∞

Qn+1,M,L, (3.37)

where Qy(jk) is the empirical distribution of the k-th d-matching codeword y(jk) on

YML,i.e., (3.35) can be rewritten as

Qn+1,M,L,K =
1

K

K∑
k=1

δy(jk), (3.38)

with δy(jk) denoting a Dirac measure located at y(jk). The modified NTS algorithm for

sources with abstract alphabets is summarized in Algorithm 7.

Theorem 5 Let a random codebook be generated with QM = Qn−1,M,L having strictly

positive density everywhere on YML, and assume the auxiliary distortion measure ρ(d)

satisfies 0 ≤ Dmin < Dav <∞, then the probability measure Qn,M,L,K on YML converges

weakly almost surely, as K goes to infinity, to the optimal distribution Q∗
PL
M ,QL

M ,γ
that
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Algorithm 7 : Modified NTS Algorithm for Abstract Alphabets

1: procedure NTS Modified Abstract(N,M,L,K, d,Q0,x(1), . . . ,x(KN))
2: Q1,M,L,K ← Q0.
3: for n = 1 : N do
4: for k = 1 : K do
5: i← (n− 1)K + k.
6: j ← 0.
7: while d′ < d do
8: j ← j + 1.
9: Generate j-th codeword y(j) using Qn,M,L,K .
10: d′ ← ρ (x(i),y(j)) .
11: end while
12: jk ← j.
13: end for

14: Qn+1,M,L,K ← 1
K

K∑
k=1

δy(jk).

15: end for
16: return QN+1,M,L,K .
17: end procedure

achieves the bound R(PL
M , QL

M , γ), for the auxiliary distortion measure ρ(d)(·), with the

extreme distortion constraint γ = 0, i.e.,

Qn,M,L,K =⇒ Q∗
PL
M ,QL

M ,γ, γ = 0, as K →∞, (3.39)

Q∗
PL
M ,QL

M ,γ = argmin
QL′

M

{
Imin

(
PL
M ||QL′

M , γ
)
+D

(
QL′

M ||QL
M

)}
, (3.40)

Imin

(
PL
M ||QL′

M , γ
)
= inf

V :[V ]x=PL
M , [V ]y=QL′

M ,

EV (ρ(d)(X̃,Ỹ))≤γ

I
(
X̃, Ỹ

)
, (3.41)

where “=⇒” denotes weak convergence of random probability measures almost surely, and

the probability measures PL
M , and QL

M denotes the L-product probability measures of PM

and QM , respectively, on XML and YML.

The proof of Theorem 5 is provided in Appendix A.8. Note that Q∗
PL
M ,QL

M ,γ
is more

efficient in encoding than Qn−1,M,L, which immediately suggests that the algorithm is
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improving in the rate-distortion sense at every NTS iteration. Alternating minimization

over convex sets arguments can be further invoked to show asymptotic optimality of the

NTS algorithm as n goes to infinity, as has been shown in Theorem 2 for discrete alphabet

sources.

Theorem 6 For an initial distribution Q0 having strictly positive density everywhere

over YML and for a distortion measure satisfying 0 ≤ Dmin < Dav <∞, the recursion in

Algorithm 7 achieves,

Qn,M,L =⇒ Q∗
PL
M ,γ

, for γ = 0, as n→∞ , (3.42)

where Q∗
PL
M ,γ

is the optimal reproduction distribution that achieves the rate distortion

function R(PL
M , γ) for the auxiliary distortion measure ρ(d)(·), i.e.,

R
(
PL
M , γ

)
= inf

QL
M

inf
V :[V ]x=PL

M ,

EV (ρ(d)(X̃,Ỹ))≤γ

D
(
V ||PL

M ×QL
M

)
, (3.43)

such that the inner infimum is taken over all joint distributions V of the random vectors

(X̃, Ỹ) such that the x-marginal of V is PL
M , and the expected distortion EV

(
ρ(d)(X̃, Ỹ)

)
≤

γ.

The proof of Theorem 6 is provided in Appendix A.9. Next, we show the asymptotic

performance of the tractable NTS algorithm for asymptotic length source words over

abstract alphabet spaces.

Theorem 7 Assuming the same conditions as in Theorem 5 and Theorem 6, the marginal

probability measure of Qn,M,L on YM , denoted by QMarg.
n,M,L, converges in the weak conver-

gence sense to the optimal probability measure Q∗
PM ,d that achieves the M-th order rate-

distortion function R(PM , d) as L and n go to infinity for the original distortion measure
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ρ(·).

It is worth noting that by (2.12) and (2.13), for sources with memory, the proposed NTS

algorithm can further find Q∗
d, which achieves R(d), if the memory depth M (or the size

of the “super symbol”) is sent to infinity. Appendix A.10 provides the detailed proof of

Theorem 7.

3.4 Rate of Convergence

In order to paint a better picture of the proposed NTS algorithm in practical cases, where

the parameters n,M,L and K are finite, one can assess the speed of convergence of such

algorithm. Hence, in this section we provide arguments that quantify the convergence

rate of the proposed tractable NTS algorithm with respect to i) the number of NTS

iterations n, ii) the statistical depth K, and iii) the source word length L.

3.4.1 Number of NTS Iterations n

As has been mentioned earlier, in the limit as L goes to infinity, the original NTS al-

gorithm simulates the Blahut algorithm in [48] for computation of the rate-distortion

function R(PM , d) [10], where the next distribution at each iteration step emerges “on

the fly” through the coding process. Earlier work [58] has shown an upper bound on the

speed of convergence of Blahut algorithm for rate-distortion function computation with

respect to the number of iterations n, where it has been shown that the approximation

error of the rate-distortion function is, at most, inversely proportional to the number

of iterations n. For finite length L, and by the results of theorems 3 and 4, the NTS

algorithm yet again simulates Blahut algorithm for computation of the rate-distortion

function R(PL
M , γ), asymptotically in K, albeit for the auxiliary distortion measure ρ(d)
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defined in (3.34) and the extreme distortion level γ = 0. Hence, the approximation error

of R(PL
M , γ) is, at most, inversely proportional to the number of iterations n. The nu-

merical results depicted in Fig 3.1 provide a compelling evidence that the modified NTS

algorithm converges faster with respect to n for smaller values of finite length L.

3.4.2 Statistical Depth K

Here we establish the behavior of the modified NTS algorithm at every iteration for

finite statistical depth K in terms of the speed of convergence. We present the result for

discrete alphabet spaces, with the note that generalization to abstract alphabet spaces

is straight forward.

Lemma 2 : The ML estimator of the codebook reproduction distribution that is re-

stricted to generate i.i.d. M -length super symbols is an unbiased estimator with variance

decaying proportional to 1/K around its mean, i.e.,

VAR[Qn,M,L,K(y)] =
1

K
VAR[Qk(y)], ∀y ∈ YM , (3.44)

where VAR[·] denotes the variance of the argument. The proof of Lemma 2 is found

in Appendix A.2. This establishes the speed of convergence of the ML estimator with

finite statistical depth K, i.e., the variance of the random ML distribution around the

limiting distribution decays proportional to 1/K, where K is the number of d-match

events observed before estimating the ML distribution.

3.4.3 Source-word Length L

In order to assess the convergence rate of the NTS algorithm with respect to the source

word length L, one should equivalently assess the convergence rate of the conditional

limit theorem, which is intimately connected to the convergence rate of Sanov’s theorem
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or Gibbs conditioning principle [59, 56] [60, Sec. 3.3]. While theoretical quantification of

such convergence rates has been elusive over the decades in the literature, a significant

speed of convergence result has been introduced in [61] using Nummelin’s conditional

weak law of large numbers defined as follows: Let (B, || · ||) be a real separable Banach

space of dimension 1 ≤ u ≤ ∞, and assume Y1,Y2, . . . are i.i.d. B valued random

vectors with probability measure µ and mean m =
∫
B ydµ. Nummelin’s conditional weak

law of large numbers establishes that under suitable conditions on (D ⊂ B, µ) and for

every ϵ > 0,

lim
L→∞

P(||SL/L− a0|| < ϵ | SL/L ∈ D) = 1, (3.45)

with a0 the dominating point of D and SL =
L∑
i=1

Yi. In [61], authors studied the rates of

convergence of such law, i.e., they examined lim
L→∞

P(||SL/L− a0|| < t/Lr | SL/L ∈ D) as

r, t and D vary, where a connection to Gibbs conditioning principle was also investigated.

More specifically, it was shown that, for any Borel set A of B,

lim
L→∞

∣∣∣∣∣P
(
Y ∈ A

∣∣∣ SL

L
∈ DL,r,t

)
− P(Y∗ ∈ A))

∣∣∣∣∣ = 0, for r < 0.5, (3.46)

where Y∗ is generated according to the limiting distribution µ∗, and Dn,r,t = {y : ||y −

a0|| < t/Lr} ∩D, with the mean m not belonging to D or its closure D, in addition to

other constraints on µ and B (see [61] for the full list of constraints in Theorem 4 and

Theorem 7).

Additionally, we emphasize that the sequence of K d-matching ML-length codewords

is memoryless in K, because each codeword must satisfy the distortion constraint with an

independently generated source word separately (independently of the other codewords).

In contrast, the L super-symbols inside each codeword are dependent, because the distor-

tion constraint ties them together, as they satisfy it only on the average. It seems quite

59



A Tractable Natural Type Selection Codebook Design Algorithm Chapter 3

clear that this induced ”memory” is most likely to slow down the convergence speed,

hence we expect the algorithm to be converging in L slower than K. However, these

convergence rates should also be studied in terms of computational steps where each step

is a d-match event resulting in a produced d-matching codeword in the sequence that

quantifies the convergence rates. In that sense, the step size is computationally constant

when we increase K (on average it takes the same number of codewords generated to

find a d-match to a given source word), but it grows exponentially with increase in L as

it requires exponentially more codewords to find a d-match.

Furthermore, it is worth noting that the exact rate-distortion performance of a ran-

dom code with finite block length L and memory depth M , which is required to guaran-

tee d-match with probability 1− ϵ, (with 0 < ϵ < 1), to independently generated source

words, has been detailed in [47] for different types of source distributions. In other

words, for a given (L,M,C, d, ϵ) random code having an optimal codebook generating

distribution Q∗
M,L, the expected probability of excess distortion is given by,

E[ϵ] = E
[
1−Q∗

M,L

(
BM,L

(
X̃, d

))]C
, (3.47)

where C is the number of codewords in the codebook, BM,L(·, d) is the d-distortion ball

around source words, i.e.,

BM,L (x̃, d) =
{
ỹ : ỹ ∈ YML, ρ (x̃, ỹ) ≤ d

}
, (3.48)

and Q∗
M,L (BM,L(·, d)) denotes the probability of generating codewords that falls in the

distortion ball BM,L(·, d) via Q∗
M,L codebook reproduction distribution. The finite-length
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rate can be calculated from (3.47) as,

RL(PM , d, ϵ) =
1

L
log (C) > RL(PM , d), ∀L <∞, and for sufficiently small ϵ. (3.49)

The d-ball set BM,L(X̃, d) and the finite length rate RL(PM , d, ϵ) are detailed for popular

sources and distortion measures in practice, e.g., binary memoryless sources with ham-

ming distortion measure, discrete memoryless sources with hamming distortion measure,

and Gaussian sources with mean squared error distortion measure in [47]. For identical

source and reproduction alphabet spaces, i.e., X = Y , the constrained set of joint distri-

butions EM,L(PM , d), regardless of d and L, will always contain the joint distribution for

which the channel is given as,

Ŵ (ỹ|x̃) =

1 if ỹ = x̃

0 otherwise
∀x̃ ∈ XML. (3.50)

V̂ = PL
M ◦ Ŵ . (3.51)

This will result in a codebook reproduction distribution identical to the source distribu-

tion PM . Hence, this in turn suggests an upper bound on the NTS performance, i.e.,

RL(PM , d) ≤ RUB
L (PM , d) = min

QM

D
(
V̂ ||PL

M ×QL
M

)
. (3.52)

RL(PM , d, ϵ) ≤ RUB
L (PM , d, ϵ), (3.53)

where RUB
L (PM , d, ϵ) = 1

L
log
(
Ĉ
)
and Ĉ satisfies,

E[ϵ] = E
[
1− PM

(
BM,L

(
X̃, d

))]Ĉ
. (3.54)
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Finally, in [47], the authors derived a lower bound on the codebook size required to realize

an (L,M,C, d, ϵ) code. This lower bound is based on binary hypothesis testing. Suppose

X = Y , the optimal performance achievable among all randomized tests PW |X : XML →

{0, 1} between L-product probability distributions PL
M and QL

M on XML is denoted by

(1 indicates that the test chooses PL
M)

βα

(
PL
M , QL

M

)
= min

PW |X :

P
PL
M

(W=1)≥α

PQL
M
(W = 1), (3.55)

where PPL
M

and PQL
M

are used to denote the probabilities of events on the underlying

probability spaces induced by the distributions PL
M and QL

M . Hence, it was shown that

the codebook size C required to realize an (L,M,C, d, ϵ) code must satisfy,

C ≥ sup
Q

inf
y∈YML

β1−ϵ

(
PL
M , QL

M

)
PQL

M
[ρ(X̃, ỹ)]

. (3.56)

This equivalently results in a lower bound on the encoding rate, denoted as RLB
L (PM , d, ϵ),

required to guarantee finding a d-match in the codebook of size C with expected prob-

ability 1 − ϵ, to any independently generated source word that contains L independent

M -length super-symbols. In the next section, we show the stable evolution of the code-

book reproduction distribution, obtained by the NTS algorithm, for binary source toy

examples to further illustrate the results derived in Theorems 1-7.

3.5 Toy Examples

First, we refer the readers back to the memoryless binary asymmetric source considered

in Fig. 2.2 for the original NTS algorithm and Fig. 3.1 for the tractable NTS algorithm.

It can be seen in Fig. 3.1 that the codebook reproduction distribution approaches the
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optimal reproduction distribution as L → ∞. Nevertheless, the algorithm always con-

verges, for any finite length L, to the optimal achievable distribution Q∗
1,L(P1, d). For

the settings in Fig. 3.1, and for L = 1, the only codeword that can possibly d-match

the source word is one identical to it. Hence, the set of L-constrained joint distributions

EM,L,K contains exactly one element, asymptotically in K, which consequently explains

why the modified NTS algorithm converges after only one iteration for L = 1. As the fi-

nite length L increases, the set of joint distributions EM,L,K expands, which demonstrates

a slower convergence of the codebook reproduction distribution to the optimal achievable

distribution Q∗
1,L(P1, d). Additionally, in order to show a fair comparison between orig-

inal and modified NTS algorithm, it is important to emphasize that the complexity of

both algorithms is proportional to nK exp(L). Hence, we show in Fig. 3.3 the unstable

performance of the original NTS algorithm for fixed string length L = 64, and for large

number of NTS iterations n = 5× 106 to compensate for K = 1 inherent in the original

NTS algorithm. Thus, the complexity of the original NTS algorithm with these parame-

ters is roughly similar to the complexity of the modified NTS algorithm with parameters

L = 64, n = 50, and K = 105, for which the performance curve is circle-marked and

shown in Fig. 3.1. Hence, it can be concluded, at least for the cases examined in our

simulations, that the tractable NTS algorithm, proposed in this work, is substantially

more stable when compared to the original NTS algorithm in [10], which renders the

proposed codebook generating algorithm very attractive to practical implementations.

As, even for finite and small values of the string lengths L, convergence is guaranteed.

Moreover, we note that the modified NTS algorithm, for finite length L, achieves the

codebook reproduction distribution that minimize the encoding rate, while maintaining

average distortion level d per L-segment source-code pairs, when this distribution is used

in asymptotic-length encoding settings, as illustrated in Corollary 1.

Next, we depict the effect of the statistical depth K on the evolution of the code-
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Figure 3.3: Evolution of the codebook reproduction distribution by the original NTS
algorithm for finite source length L = 64. Binary memoryless source is considered
with P1 = {0.48, 0.52}, and Hamming distortion measure with d = 0.35.

book reproduction distribution for the aforementioned binary asymmetric source in Fig

3.4. It is important to note that the modified NTS algorithm estimate the next iter-

ation codebook reproduction distribution, using ML estimator, from a sequence of K

independent d-matching codewords, which exactly simplifies to the K-average (or sam-

ple average) of the M -th order d-matching codeword types. Thus, this estimator is an

unbiased estimator with a variance decaying proportional to 1/K. Fig. 3.4 further ver-

ifies that the amplitudes of fluctuations around the per-iteration asymptotic estimate,

i.e., Q∗
M,L(PM , Qn,M,L,K , d)

Marg., roughly decays proportional to
√

1/K as illustrated in

Lemma 2. It is worth noting that the approximate delay in the system, i.e., the total

number of source super-symbols seen before the algorithm terminates, is proportional to

K and is specifically equal to LKN .

To further assess the rate-distortion performance of the NTS algorithm for the given

source example, we depict the finite-length rate in [47] denoted as RL(P1, d, ϵ), rate-

distortion functionR(P1, d), the upper and lower bounds on the finite length rateRUB
L (P1, d, ϵ),
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Figure 3.4: Effect of the statistical depth K on the evolution of codebook reproduc-
tion distribution. A binary memoryless source is considered with P1 = {0.48, 0.52},
Hamming distortion measure at d = 0.35, and source length L = 64.

and RLB
L (P1, d, ϵ) for different values of source lengths L in Fig. 3.5. A Hamming dis-

tortion function is assumed with distortion level d = 0.35, and the probability of re-

producing a source-word with a codeword, for which the distortion level d is not met,

is P [f (x̃) = +∞] ≤ ϵ = 0.01. For every source length L, RL(P1, d, ϵ) is the rate re-

quired, by the random codebook which is generated via Q∗
1,L(P1, d)

Marg., to guarantee

that a d-match is found to a random finite-length source-word in the codebook with

expected probability greater than or equal to (1 − ϵ). Hence, RL(P1, d, ϵ) captures the

rate penalty due to both finite source length L <∞ and the asymptotically non-optimal

codebook reproduction distribution Q∗
1,L(P1, d)

Marg. ̸= Q∗
PM ,d. Notice that, as expected,

RL(P1, d, ϵ) > R(P1, d), ∀L < ∞. The gap between RL(P1, d, ϵ) and R(P1, d) continues

to shrink as L approaches ∞.

Next, we turn our attention to sources with memory. A binary-alphabet stationary

Markov chain source is considered, i.e., X = Y = {0, 1}. Let the source transition

probabilities be P (0|1) = 0.6, P (0|0) = 0.7, P (1|0) = 0.3, and P (1|1) = 0.4 (This is also
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Figure 3.5: Rate performance for finite source lengths L < ∞. A binary source is
considered with P1 = {0.48, 0.52}, Hamming distortion measure at d = 0.35, statistical
depth K = 105, and the probability of reproducing a source-word with a codeword
for which the distortion level is not met is P [f (x̃) = +∞] ≤ ϵ = 0.01.

a simple Gilbert-Elliott model). First, We consider the vector source that is resulted from

such Markov source, hence we turn our attention to Algorithm 5 with M > 1. In the

simulation environment, the vector length is set to two, i.e., M = 2, which corresponds

to source distribution P2 = {7/15, 3/15, 3/15, 2/15}. In order words, the source words

are formed of i.i.d. vectors according to P2. Obviously, such artificially generated source

words require the prior knowledge of source joint distribution. For these settings, the

Hamming distortion measure is considered. Without loss of generality, the distortion

constraint is assumed as follows: d = dmax = 1/3. Note that Q∗
P2,dmax

= {1, 0, 0, 0},

i.e., the optimal reproduction distribution collapses onto one point that corresponds to

the super-symbol y = (0, 0). The generalized NTS algorithm is run with K = 105,

and different values of L. The evolution of the codebook reproduction distribution is

plotted across the NTS iteration index n in Fig 3.6. For L = 1, and the considered

distortion constraints, the only codeword that can d-match the source word is identical

to it. Hence, the codebook reproduction distribution in (3.4) immediately converges to
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the source distribution P2. As L increases, the set of all possible d-matching joint types

U2,L(d) expands, and it can be observed that the codebook reproduction distribution

Qn,2,L,K approaches Q∗
P2,d

, asymptotically in n, as derived in Theorem 2.
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Figure 3.6: Evolution of the codebook reproduction distribution by the tractable NTS
algorithm for different finite source lengths L and statistical depth K = 105. Binary
Markov source is considered with Hamming distortion measure at d = dmax = 1/3.
Reprinted, with permission, from [46] © 2021 IEEE.

Finally, we illustrate the convergence behavior of the NTS algorithm variant, which

is tailored for Markovian sources, i.e., Algorithm 6. We consider a more distinctive first-

order Markov source with the following transition probabilities: P (0|0) = 0.8, P (1|0) =

0.2, P (0|1) = 0.4, and P (1|1) = 0.6. Similarly, for these settings, the Hamming distortion

measure is considered. Without loss of generality, the distortion constraint is assumed

as follows: d = dmax = 1/3. We depict the evolution of transition probabilities of the

codebook reproduction distributions as the number of NTS iterations n increases for
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Figure 3.7: Evolution of the conditional codebook reproduction distribution by the
tractable NTS algorithm Markov sources variant, for different finite source lengths L
and statistical depth K = 105. Binary Markov source is considered with Hamming
distortion measure at d = dmax = 1/3.

different values of finite source word length L in Fig. 3.7. It is worth noting that as L

increases, and for the given distortion level d, the transition probabilities of the codebook

reproduction distribution approaches Q∗(0|0) = 1, and Q∗(1|1) = 1, which represents the

highest source probable symbol conditioned on the previous sample as expected.
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Chapter 4

An Optimal Codebook Design

Approach for Beam Steering

Directions in Wireless Systems

In this chapter, we develop and employ novel codebook design algorithms in millimeter

wave wireless systems, where we think that this example application will greatly benefit

from codebook design tools and methods. The results included in this chapter are pub-

lished in [23, 62, 26, 63]. First, the wireless system model is introduced in Section 4.1.

Then the relevant beamforming techniques are introduced in Section 4.2. The proposed

codebook design algorithms for beam steering directions are developed in Section 4.3.

Finally, the experimental results of the proposed design techniques are shown in Section

4.4.

4.1 System Model

Consider the downlink transmission direction. For outdoor settings, the 5G base station

(also called gNB) is equipped with a planar array consisting of Ntx antennas, while
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Figure 4.1: Snapshot of the 3D cluster delay line channel model in [64]. Reprinted,
with permission, from [23] © 2019 IEEE.

the user equipment (UE) comprises a linear array consisting of Nrx antennas. Let

s ∈ {1, 2, . . . , Ntx} and u ∈ {1, 2, . . . , Nrx} denote the transmit and receive antenna

indices, respectively. The downlink channel, we consider, is modeled as the 3GPP Clus-

ter Delay Line (CDL) channel [64], which is depicted in Fig. 4.1. Let Nc denote the

number of detected clusters, and Mr the number of rays within a single cluster. Let

m ∈ {1, 2, . . . ,Mr} be the ray index, and n ∈ {1, 2, . . . , Nc} be the cluster index. The

(Nrx × Ntx) channel matrix is denoted by Hn,m(t), where t is the time index. Next,

the unit-norm phase-control (Ntx × 1) transmit beamforming vector and, similarly, the

(Nrx × 1) receive beamforming vector are denoted by btx(φ) and brx(ϑ), respectively,

where φ, and ϑ are the transmit and receive vectors of the beamforming phases.

Beamforming can be attained using either amplitude control, phase control, or both.

For maximum power efficiency and maximum total transmit power, it is desirable to

operate the power amplifier associated with each antenna as close to its saturation point

as possible. Typically, to avoid non-linear effects, the operating point is selected to be

a few dB below the saturation point (also called back off), to allow for some peak-to-
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average power margin. Amplitude-based beamforming is suboptimal due to the drop seen

in the EIRP when power amplifiers are either switched off or operating well below the

optimal efficiency point. Beam broadening achieved by switching off (ℓ− 1)Ntx/ℓ power

amplifiers, with ℓ ∈ {21, 22, . . . , Ntx} is a special case of amplitude-based beamforming.

For example, turning off half the power amplifiers results in 6 dB drop in EIRP at the

steering direction. This is because the total transmit power decreases by 3 dB and the

power array factor drops by 3 dB as well. Correspondingly, the beam width increases

by a factor of two. Due to the severe loss in EIRP when using amplitude-based beam

beamforming or beam broadening, throughout the remainder of this chapter, only phase-

control based beamforming will be considered. The received signal in this setting is given

by,

y(t, fr)=(brx(ϑ))
H

Nc∑
n=1

Mr∑
m=1

{(
Hn,m(t)e

−j2πfrτn(t)
)
btx(φ)

x(t, fr)

}
+ (brx(ϑ))

H n(t, fr),

(4.1)

where fr is the rth sub-carrier frequency, τn(t) is the nth cluster delay, x(t, fr) is the com-

plex frequency domain transmit symbol with E [|x(t, fr)|2] = 1, and n(t, fr) ∼ CN (0, σ2
n)

is the complex Additive White Gaussian Noise (AWGN) vector, with σ2
n = kBTB, where

kB is the Boltzmann constant, T is the temperature in Kelvin, and B is the transmission

bandwidth. We employ the standard notation (·)T and (·)H to denote transposition and

the conjugate transposition operations, respectively. The (u, s) element of the channel

matrix Hn,m(t) is denoted by hu,s
n,m(t), and is given by,

hu,s
n,m(t)=

√
Pn

Mr

Frx(θ
A
n,m, ϕ

A
n,m)e

j2π
(θ̂An,m)

T
·du

λc ejζn,m

Ftx(θ
D
n,m, ϕ

D
n,m)e

j2π
(θ̂Dn,m)

T
·ds

λc e−2πj
(θ̂An,m)

T
·v

λc
t,

(4.2)

where
(
θDn,m, ϕ

D
n,m

)
are the elevation and azimuth departure angles for the ray m in
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cluster n, while
(
θAn,m, ϕ

A
n,m

)
are the elevation and azimuth arrival angles. Furthermore,

Ftx(θ
D
n,m, ϕ

D
n,m), and Frx(θ

D
n,m, ϕ

D
n,m) are the transmit and receive normalized field patterns

for vertical polarization as a function of the elevation and azimuth angles. The field

patterns are assumed identical for all antenna elements on either of the transmit or

receive sides. Throughout this chapter, no cross polarization is considered. The n-th

cluster power is denoted as Pn, λc is the carrier wavelength, and ζn,m models the ray’s

random initial phase. The UE velocity vector is denoted as v. The vectors ds and du

are the location vectors of the individual antenna element relative to the transmit and

receive origins, respectively. Additionally, the spherical unit vectors θ̂An,m and θ̂Dn,m are

defined as,

θ̂An,m ≜


sin(θAn,m) cos(ϕ

A
n,m)

sin(θAn,m) sin(ϕ
A
n,m)

cos(θAn,m)

 , (4.3)

θ̂Dn,m ≜


sin(θDn,m) cos(ϕ

D
n,m)

sin(θDn,m) sin(ϕ
D
n,m)

cos(θDn,m)

 · (4.4)

Next, define the transmit and receive array factors for ray m in cluster n as,

Atx(θ
D
n,m, ϕ

D
n,m,φ)≜

[
ej2π

(θ̂Dn,m)
T
·d̄1

λc . . . ej2π
(θ̂Dn,m)

T
·d̄Ntx

λc

]
btx(φ), (4.5)

Arx(θ
A
n,m, ϕ

A
n,m,ϑ)≜ (brx(ϑ))

H

[
ej2π

(θ̂An,m)
T
·d̄1

λc . . . ej2π
(θ̂An,m)

T
·d̄Nrx

λc

]T
. (4.6)

Therefore, the perceived channel coefficients, upon applying the beamforming vectors,
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are obtained as,

hn,m(t, fr)= (brx(ϑ))
H Hn,m(t)e

−j2πfrτn(t)btx(φ),

hn,m(t, fr)=

√
Pn

Mr

Frx(θ
D
n,m, ϕ

D
n,m)Arx(θ

A
n,m, ϕ

A
n,m,ϑ)

Ftx(θ
A
n,m, ϕ

A
n,m)Atx(θ

D
n,m, ϕ

D
n,m,φ)

ejζn,me−2πj
(θ̂An,m)

T
·v

λc
te−j2πfrτn(t).

(4.7)

Finally the aggregate channel transfer function, due to all clusters and rays, is according

to,

h(t, fr) =
Nc∑
n=1

Mr∑
m=1

hn,m(t, fr). (4.8)

The Signal-to-Noise Ratio (SNR) seen at rth sub-carrier with frequency fr is given by,

γr(t) =
PtxGtx|h(t, fr)|2Grx

PL(t)Fn σ2
n

, (4.9)

where Ptx is the average transmit power, PL(t) is the path-loss, Fn is the receiver noise

factor, and where Gtx and Grx are the maximum gains of the transmit and receive antenna

elements relative to an isotropic antenna element, respectively.

4.2 Beamforming Techniques

This subsection provides an analysis for phase-control transmit beamforming, noting that

the corresponding analysis for receive beamforming is similarly obtained in a straightfor-

ward manner. Consider a planar antenna array with uniform spacing between horizontal

and vertical elements, i.e., dx=dy=
λc

2
, where λc is the carrier wavelength. Define the beam-

space transformation on the x-axis and y-axis as Ωx=kdx sin(θ) cos(ϕ)=π sin(θ) cos(ϕ),

and Ωy=kdy sin(θ) sin(ϕ)=π sin(θ) sin(ϕ), where k = 2π
λc

is the wave number, θ is the ele-

vation angle, and ϕ is the azimuth angle. The conventional planar array setup is shown
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Figure 4.2: Co-ordinate system of planar array with uniform spacing. Reprinted, with
permission, from [23] © 2019 IEEE.

in Fig. 4.2. Hence, the transmit power array factor simplifies to [65],

atx (Ωx, N) ≜

[
1 e−jΩx . . . e−jΩx(N−1)

]T
,

atx (Ωy, N) ≜

[
1 e−jΩy . . . e−jΩy(N−1)

]T (4.10)

btx (φ) ≜ b
(x)
tx (φx)⊗ b

(y)
tx (φy) , (4.11)

Atx(Ωx,Ωy,φx,φy)=
(
atx (Ωx)

Hb
(x)
tx (φx)

)
·
(
atx (Ωy)

Hb
(y)
tx (φy)

)
,

Atx(Ωx,Ωy,φx,φy)= A
(x)
tx (Ωx,φx)A

(y)
tx (Ωy,φy),

(4.12)

where b
(x)
tx (φx) and b

(y)
tx (φy) are the beamforming vectors along the x and y coordinates

of the planar array in [26, Fig. 1], respectively. The Kronecker product operation is

denoted by ⊗. The array factor can be maximized at a given steering direction by using

the conventional Constant Phase Offset (CPO) beamforming technique [23, 22, 20, 65],

yielding the beamforming vectors:

b
(x)
tx (ωx) =

1√
Nx

[
1 e−jωx . . . e−jωx(Nx−1)

]T
, (4.13)
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b
(y)
tx (ωy) =

1√
Ny

[
1 e−jωy . . . e−jωy(Ny−1)

]T
, (4.14)

where ωx = π sin(θ0) cos(ϕ0) and ωy = π sin(θ0) sin(ϕ0) are the beam space transformation

of the elevation and azimuth steering angles θ0 and ϕ0, respectively. In this setting, the

highest possible array factor, 10 log10(Ntx) dB, is guaranteed at the steering direction. It

is worthwhile to note in passing that if a single beam is scheduled by the base station

to serve a user, then maximizing the array factor at the dominant channel direction

between the UE and the gNB will consequently boost the perceived user SNR, defined in

(4.9). Hence, the average beamforming array factor across users is the objective function

of choice for the beam steering design approaches introduced later on in this chapter.

Additionally, in [22], the authors showed that the low-complexity dominant directional

beamforming scheme suffers only a minimal SNR loss (less than a dB loss for over 50% of

the users in channels with up to Nc = 5 clusters) relative to even the best beamforming

scheme. Consequently, single serving beam per user with CPO beamforming at the

channel dominant direction has been widely employed in practice [20, 22, 66].

Both transmitter and receiver typically operate with predefined “codebooks” of beam-

forming vectors, wherein each codebook entry corresponds to a beam steering direction.

An increase in codebook size hinders beam tracking and beam alignment due to the

inherent increase in beam measurement time (sweep time) and thus compromises the

system responsiveness to user and environment dynamics.

4.3 Optimal Beam Steering Directions

This section covers our main contributions, namely, the development of codebook design

methods to approach beam steering optimality. Note that we only focus on designing

the pointing angles of the codebook for CPO beams, without recourse to other design
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aspects such as beam shape, side lobes level, etc. The beamforming vectors are stored as

codebook entries, such that each entry corresponds to an angular direction. Specifically,

each codebook entry corresponds to an elevation and azimuth angle pair. The simplest

(and most common) beam steering approach is to quantize the elevation and azimuth

field-of-view uniformly into Nb pointing directions, similar to [21, 67], where Nb is the

number of beams (entries) in the codebook. A somewhat more sophisticated approach

quantizes the beam-space field-of-view Ωx, and Ωy uniformly, which is known as the

Discrete Fourier Transform (DFT) codebook [68, 66].

It is important to note that the beam shape is direction-dependent, i.e., different beam

steering angles result in wider or narrower beams, as depicted in Fig. 4.3. Moreover, a

common simplifying assumption is that the UE positions are uniformly distributed on

the horizontal plane [64], which nevertheless results in a non-uniform distribution of user

angles ϕi and θi across the angular space, where i is the user index. Uniform distribution

of steering angles implies that the beams’ density across the angular space remains un-

changed in the regions of space at which the beams are wider or in the regions of space

at which there is low or no user density. Hence, we conclude that uniform distribution of

beam steering angles across the field-of-view is virtually always suboptimal, even under

simplistic assumptions such as uniform user distribution on a plane.

4.3.1 Heuristic Non-uniform Beam Steering

First, we propose a heuristic non-uniform approach to overcome some shortcomings of

the uniform approach. The central idea of this heuristic approach is to adapt the density

of steering directions to the direction-dependent beam width, i.e., the density of pointing

angles decreases when the beams become wider and vice versa. Let ϕ ≤ 360, and θ ≤ 90

be the field-of-view in degrees, and let Ωx ≤ 2π, and Ωy ≤ π be the corresponding beam-
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Figure 4.3: The power array factor slice for 5×5 planar array using CPO beamforming.
For each steering direction, the slice is taken at θ = θ0. Reprinted, with permission,
from [62] © 2019 IEEE.

space field-of-view. Define the number of elevation beams as N θ
b . Furthermore, define the

X dB azimuth beam width for CPO beamforming ξX(θ0) as the beam width in degrees

of power array factor slice at θ = θ0, such that the power array factor drops by X dB

from its maximum. The 3-dB beam width, ξ3dB(θ0), is shown in Fig. 4.3 for θ0 = 15o

and θ0 = 60o. Consequently, the heuristic non-uniform beam placement algorithm is

proposed as:

1. Initialize the beam steering set to an empty set, A = ∅.

2. Quantize Ωy uniformly into N θ
b samples as:

ζk =
Ωy · k
N θ

b

+
Ωy

2N θ
b

, k ∈
{
0, 1, . . . , N θ

b − 1
}

(4.15)

Note that this will result in a non-uniform quantization of the elevation angles, i.e., the

elevation angles are quantized uniformly only in the sin angle domain.

3. For every elevation pointing angle, [k = 0, k ≤ N θ
b − 1, k ++] do
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Figure 4.4: Heat map of the absolute array factor, denoted by

|A(x)
tx (Ωx,φx)A

(y)
tx (Ωy,φy)|, across the overall coverage area for an indoor sys-

tem scenario considering access points mounted on the ceiling. The array size is
(5× 5), and the field-of-view is

(
ϕ = 360o, θ = 90o

)
. The steering directions are

marked with cross signs. Reprinted, with permission, from [62] © 2019 IEEE.

(a) Calculate the X dB beam width ξX(θ0) for ϕ0 = 0, and θ0 = sin−1
(
ζk
π

)
, this beam

width is used to determine the corresponding beam density at the current iterate

elevation direction.

(b) Calculate the kth elevation pointing angles set (which contains one element): Θk
b ={

sin−1
(
ζk
π

)}
.

(c) Calculate the number of azimuth beams at the kth iterate:

Nϕ
b,k =

⌈
ϕ

(βkξX(θ0))

⌉
, (4.16)

where ⌈·⌉ is the ceiling operation, and βk is the beam density factor. Hence, the

number of beams at a given elevation angle is proportional to the azimuth field-

of-view divided by the X dB beam width, where the parameters X and βk, which

control the degree of beam overlap in the azimuth direction, and provide the neces-

sary degree of freedom in order to achieve the required codebook size.
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Figure 4.5: CDF of the power array factor across the overall coverage area for an
indoor system scenario considering access points mounted on the ceiling. The array
size is (5×5), and the field-of-view is

(
ϕ = 360o, θ = 90o

)
.

(d) Calculate the kth azimuth pointing angles set by uniformly quantizing the azimuth

field-of-view in the angle domain into Nϕ
b,k points:

Φk
b =

{
ϕ · ℓ
Nϕ

b,k

+
ϕ

2Nϕ
b,k

}
, ℓ∈

{
0, . . . , Nϕ

b,k− 1
}
. (4.17)

(e) The beam steering codebook expands to include the Cartesian product of Θk
b and

Φk
b as:

A = A ∪
{
Θk

b × Φk
b

}
, (4.18)

where ∪ and × denotes the union and the Cartesian product of sets, respectively.

4. The codebook size is calculated as, Nb =
∑

k N
ϕ
b,k.

Although this technique accounts for the non-uniform beam width, it does not account

for users location distribution, which is potentially time-varying. However, this heuristic
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non-uniform beam steering technique aims to maximize the beam coverage across the field

of view as shown in Fig. 4.4, and is useful in cases where user statistics are unknown

or hard to obtain. The considerable improvements in the power array factor can be

quantitatively observed in Fig. 4.5, where the 10th percentile of the power array factor

across the angular space, for an indoor system scenario with access points mounted on

the ceiling, is improved by about 2 dB in comparison with the conventional uniform

distribution of steering directions scheme.

4.3.2 K-means-based Beam Steering

Our second approach to this problem is to pursue an iterative framework that guarantees

convergence to (at least locally) optimal performance. The first key realization is that

the beam steering problem at hand is effectively equivalent to a generalized clustering

problem (albeit with an unusual distortion measure). The space to be divided into

regions is the 2-dimensional angular space, with boundaries specified by the transmitter

field-of-view. The data vectors to be clustered are the users’ angle vectors as seen from

the transmitter local coordinate system, which are denoted as ψi = [ϕi θi]
T. For each

cluster, a single beam steering direction, which we will also refer to as the cluster centroid,

is chosen to serve any of the users in the cluster. We now turn to the distortion measure

that determines the assignment of a user to any cluster. An obvious option is to employ

the traditional Mean-Squared Error (MSE) distortion measure. In other words, assign

the user, i.e., the user’s angle vector, to the nearest cluster representative (or cluster

centroid), in the MSE distortion sense. This option is suboptimal, due to the fact that

the absolute array factor beam width is direction-dependent, and the MSE distortion

measure only takes into account the angular distance between the user angular vector

and the centroid. In other words, the beam steering direction nearest to the user angular
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vector in the MSE sense does not necessarily yield the largest transmit array factor.

Thus, the MSE distortion measure is mismatched with the true objective. In the ideal

setting (asymptotically high resolution of codebook entries), the maximum attainable

absolute array factor
√

NxNy could be achieved at any user position. However, this is not

realizable in practice, where practical considerations limit the codebook size. Motivated

by the above considerations, we define a new distortion measure between the ith vector

ψi and the jth codebook entry χj:

d(ψi,χj) =
√

NxNy − |A(x)
tx (ψi,χj)||A(y)

tx (ψi,χj)|, (4.19)

where |A(x)
tx (ψi,χj)| and |A(y)

tx (ψi,χj)| are the per-dimension absolute array factors. For

example, if the CPO technique (directional beam) is employed, the per-dimension array

factors are

∣∣∣A(x)
tx (ψ,χ)

∣∣∣ = ∣∣∣A(x)
tx ([ϕ θ]T, [ϕ0 θ0]

T)
∣∣∣

=
1√
Nx

[
sin
(
Nxπ
2

(cos(ϕ) sin(θ)− cos(ϕ0) sin(θ0))
)

sin
(
π
2
(cos(ϕ) sin(θ)− cos(ϕ0) sin(θ0))

) ],∣∣∣A(y)
tx (ψ,χ)

∣∣∣ = ∣∣∣A(y)
tx ([ϕ θ]T, [ϕ0 θ0]

T)
∣∣∣

=
1√
Ny

[
sin
(

Nyπ

2
(sin(ϕ) sin(θ)− sin(ϕ0) sin(θ0))

)
sin
(
π
2
(sin(ϕ) sin(θ)− sin(ϕ0) sin(θ0))

) ].
(4.20)

In other words, the distortion between ith user and jth beam steering angle is defined as

the decrease in absolute array factor, relative to the maximum achievable value (in the

ideal setting). This will subsequently take into account the direction-dependent beam

width, and thus users are assigned to clusters at which the transmit array factor is

maximized.

Next, a variant of the K-means algorithm is derived to optimize the codebook of
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beam steering angles. Each algorithm iteration (analogous to the Lloyd iteration in the

compression setting) consists of the following two main steps:

1. Fix the beam steering angles codebook {χj}, and assign each user to the steering

angle incurring the least distortion. Let Sj be the set of users assigned to steering angle

χj, also called the jth cluster. The clustering partition is given by the (generalized)

nearest neighbor rule. Specifically, cluster j is given by:

Sj = {i : d(ψi,χj) ≤ d(ψi,χk), ∀k ̸= j} . (4.21)

2. Fix the clustering partition {Sj} and optimize the steering angles codebook to min-

imize the average distortion. Specifically, adjust each steering angle χj so that it mini-

mizes its cluster’s average distortion:

χj = argmin
χ

1

|Sj|
∑
i∈Sj

d(ψi,χ), j = 1, 2, . . . , Nb, (4.22)

where |·| denotes the set cardinality. A necessary condition for optimality can be obtained

by setting the gradient with respect to χ to zero:

1

|Sj|
∑
i∈Sj

∂

∂χ
d(ψi,χ) = 0 , j = 1, 2, . . . , Nb, (4.23)

Numerical search with finite resolution in the 2D angular space or gradient descent al-

gorithms with multiple initialization points or both can be employed to solve the min-

imization problem of (4.22). Note that the traditional K-means “centroid” rule which

computes each codebook entry as the cluster sample average,

χj =
1

|Sj|
∑
i∈Sj

ψi, (4.24)
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is valid for the squared error distortion measure, where (4.23) simplifies to (4.24), but

that is not the case for our distortion measure.

In every “Lloyd iteration”, one can evaluate the average distortion as,

D =
1

|S1 ∪ S2 · · · ∪ SNb
|

Nb∑
j=1

∑
i∈Sj

d(ψi,χj), (4.25)

where ∪ denotes the set union operation.

It is straightforward to show that the two steps of the main iteration guarantee that D

is monotonically non-increasing, and in fact monotonically decreasing until convergence

(under mild assumptions regarding treatment of ties in the nearest neighbor step). Addi-

tionally, note that as Nb →∞, the codebook average distortion asymptotically vanishes,

i.e., D → 0, which is consistent with standard requirements of distortion measures and

represents the “ideal setting” at the limit of high resolution.

4.3.3 DA-based Beam Steering

One major drawback of the classical K-means clustering algorithm, is that it only guar-

antees convergence to a locally optimal solution, while in many cases of interest the

cost surface is riddled with poor local minima. Deterministic annealing has been demon-

strated to be highly effective in avoiding poor local minima, when conventional distortion

measures are used, and has become the method of choice in numerous disciplines [6].

Unlike the K-means algorithm, DA considers a probabilistic assignment between the

users’ angular vectors {ψi} and codebook entries or cluster centroids {χj}. Let the

association probabilities be denoted as p(j|i). In this case, the overall average distortion
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in the system due to quantization of beam pointing angle is given by the expectation,

D =
∑
i

∑
j

p(j|i)p(i)d(ψi,χj), (4.26)

where p(i) is the prior probability of a user positioned at the angular vector ψi. Note

that minimizing the distortion with respect to the free parameters {χj, p(j|i)} would

immediately lead to hard association between the user and the nearest codebook entry,

where the term “nearest” is used in the sense of the distortion measure. Instead, the

distortion is minimized subject to an imposed level of randomness, which is naturally

measured by Shannon’s entropy H. Hence, the Lagrangian function to be minimized can

be written as,

L = D − TH, (4.27)

where,

H = −
∑
i

∑
j

p(j|i)p(i) log (p(j|i)p(i)) , (4.28)

and T (“temperature”) is the Lagrangian parameter. Next, an iterative approach, which

is an appropriately designed random relative of the K-means algorithm, is employed to

minimize the Lagrangian function:

1. Initialize temperature, T = Tmax and beam steering angles’ codebook {χj}.

2. Fix the codebook {χj} and find the random clustering partition (i.e., probabilistic

assignment of users to steering angles) which minimizes the Lagrangian cost:

{p(j|i)} = argmin
{p(j|i)}

L, ∀i,∀j (4.29)

Note that the solution must further impose the constraint
∑

j p(j|i) = 1,∀i, which di-

rectly yields a random relative of the nearest neighbor rule, given by the Gibbs distribu-
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tion:

p(j|i) =
exp

(
−d(ψi,χj)

T

)
Zi

, (4.30)

where the normalization constant is

Zi =
∑
j

exp

(
−d(ψi,χj)

T

)
, (4.31)

sometimes called the partition function in physics.

3. Fix the random clustering partition, {p(j|i)} and optimize the steering angles code-

book to minimize the Lagrangian cost. Specifically,

{χj} = argmin
{χj}
L = argmin

{χj}
D, (4.32)

where we used the fact that the entropy is determined by the (fixed) clustering partition,

and hence can be discarded from L in this step. Noting further that D is additive in the

contributions of individual steering angles we obtain:

χj = argmin
χ

∑
i

p(j|i)p(i)d(ψi,χ), (4.33)

or as necessary condition for optimality, the random relative of the centroid rule:

∑
i

p(j|i)p(i) ∂

∂χ
d(ψi,χ) = 0 , j = 1, 2, . . . , Nb, (4.34)

Numerical search with finite resolution in the 2D angular space or gradient descent

algorithms with multiple initialization points or both can be employed to solve the min-

imization problem of (4.33).
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4. Check if convergence condition satisfied, else go to step 2.

5. Cool the system, e.g., T = αT , with α < 1. If the prescribed minimum temperature

is reached, then terminate the algorithm.

6. Perturb the codebook entries to check for possible splitting of codebook centroids,

also known as phase transition, then go to step 2.

At T = 0, the DA algorithm degenerates to the K-means algorithm, however the anneal-

ing process until then eliminates the sensitivity to initialization. In step 4, convergence

can be checked by comparing ∆L
L to a convergence threshold. It is important to note that

by gradual cooling, the system undergoes a series of phase transitions at corresponding

“critical temperatures”, in analogy to physical systems, wherein the cardinality of the

codebook grows. See [6] for extensive analysis of DA’s sequence of phase transitions

through which the cardinality of the codebook grows, as well as for demonstration that

the algorithm is invariant to initialization. The derived DA algorithm, for the optimiza-

tion of beam steering directions problem, is outlined in Fig. 4.6.

4.4 Experimental Results

The beam steering angles optimization algorithms are first evaluated in terms of the

average and the 10th percentile of the array factor seen across all users. The competing

beam placement schemes are: i) DFT-based beam steering as defined in [68, 66] ii)

Uniform beam steering as employed in [21, 67], iii) Heuristic non-uniform beam steering

for which preliminary results are published in [62], iv) k-means-based beam steering for

which preliminary results are published in [26], and finally v) DA-based beam steering

proposed in Section 4.3. The former two (DFT-based and uniform beam steering) serve

as baseline reference for the comparison, and the latter three are the proposed schemes
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Figure 4.6: Flow chart of the proposed DA-based beam steering algorithm. Reprinted,
with permission, from [63] © 2021 IEEE.

presented in this chapter. For uniform beam steering and heuristic non-uniform beam

steering algorithms, the number of elevation beams N θ
b ∈ {1, 2, . . . , 16}, and the selected

value of N θ
b is numerically optimized for each codebook size Nb, to maximize the average

array factor. The gNBs are assumed to be equipped with 32 × 8 planar arrays. The

performance is evaluated for a variety of UE distributions. First, the UE angles, seen

from the gNB local co-ordinate system, are assumed to be uniformly distributed over

the field-of-view (ϕ = 180◦, θ = 90◦). Fig. 4.7 depicts the average power array factor

and its 10th percentile in dB versus the beam codebook size. The proposed DA-based
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Figure 4.7: The UEs’ angles are assumed uniformly distributed. Average (sold lines)
and 10th percentile (dashed lines) of power array factor for competing beam steering
design methods. Reprinted, with permission, from [63] © 2021 IEEE.

beam steering approach offers gains of up to 4 dB and 7.2 dB, in the average power array

factor and its 10th percentile, respectively, when compared with the baseline methods.

Note that the codebooks are designed to maximize the average power array factor over

all users, which sometimes results in a degraded 10th percentile performance, as seen for

DFT-based codebook at Nb = 48.

Next, to test the approaches in a less simplistic scenario, the users’ angles were

distributed as a mixture of bi-variate Gaussians in the angular field-of-view (ϕ = 180◦, θ =

90◦). The underlying premise of this model is that users often tend to cluster around

certain locations such as shops, traffic lights, bus stops, etc. The average power array

factor and its 10th percentile are plotted for this scenario in Fig. 4.8. Note that in this

case, the proposed DA-based codebook design offers up to 6 dB and 12.5 dB improvements

in the average power array factor and its 10th percentile, respectively, when compared

with uniform or DFT-based beam steering approaches.
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Figure 4.8: The UEs’ angles are assumed to be distributed as a mixture of bi-variate
Gaussians. Average (sold lines) and 10th percentile (dashed lines) of power array
factor for competing beam steering design methods. Reprinted, with permission,
from [63] © 2021 IEEE.

We next consider the simple UE distribution suggested in [64] for outdoor Urban

Micro (UMi) system scenarios, where UE positions are uniformly distributed on the

horizontal plane. Under this UE distribution assumption, two network layouts were

simulated: i) The gNBs are placed in a Manhattan-like grid, and sectorized into 4 sectors,

or ii) The gNBs are placed in a hexagonal grid, and sectorized into 3 sectors. The inter-

site distance for both network layouts is 200 m. The average power array factor and its

10th percentile are plotted for this scenario in Fig. 4.9 and Fig. 4.10. The proposed

DA-based design method outperforms the baseline methods by up to 5.5 dB and 13 dB

in the average power array factor and its 10th percentile, respectively. It is noteworthy

that the DA algorithm offers larger gains over the baseline schemes when the UE angles

are non-uniformly distributed. This is to be expected because DA can adapt and exploit

irregularities in the UE distribution, for example by placing more beams at the angular
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Figure 4.9: The UEs’ positions are uniformly distributed across the horizontal plane
in a Manhattan-like network grid. Average (sold lines) and 10th percentile (dashed
lines) of power array factor for competing beam steering design methods. Reprinted,
with permission, from [63] © 2021 IEEE.

directions pointing at areas that are more densely populated by UEs. This flexibility

is not available to the uniform beam steering method or the DFT-based beam steering

method, thus putting them at significant disadvantage in likely scenarios of non-uniform

UE distribution.

To provide further evidence for the practical benefits of the proposed beam place-

ment algorithms, a full-fledged system simulation was carried out for outdoor cellular

5G settings. The simulation assumptions are summarized in Table 4.1. A random TDM

scheduler is employed per base station sector, where each sector schedules randomly one

of the active users. For each gNB-UE link, the transmit beam that maximize the received

SNR is enabled, where beams are selected from a predefined beamforming codebook that

is designed offline. The average SNR performance, calculated using (4.9), is depicted in

Fig. 4.11. The proposed beam steering algorithms offer up to 4.5 dB and 6.5 dB improve-

ments in the average SNR seen over all users for Manhattan-like, or hexagonal network
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Figure 4.10: The UEs’ positions are uniformly distributed across the horizontal plane
in a hexagonal network grid. Average (sold lines) and 10th percentile (dashed lines)
of power array factor for competing beam steering design methods. Reprinted, with
permission, from [63] © 2021 IEEE.

grids, respectively. Note that while the simulation is for the simple channel (consisting

of one ray), the results and conclusions are readily extendable to more complex channels.

It is further important to emphasize that the performance gains are achieved at no op-

erational cost, because typical beam steering codebooks are designed offline and stored

in memory. Thus, the operational complexity of deploying any of the competing code-

books is the same. On the other hand, during their design phase, both the k-means and

DA-based algorithms require prior information (or assumptions) on user statistics, which

is implicit in the training data used. If the system experiences a dynamic user distribu-

tion, DA-based and k-means algorithm would require additional operational complexity

in order to track user statistics and update codebooks accordingly.
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Table 4.1: Summary of System Simulation Assumptions. Reprinted, with permission,
from [63] © 2021 IEEE

Metric Value
System Scenario UMi
Direction of Transmission Downlink (gNB to UE)
Carrier Frequency & Bandwidth fc = 28 GHz, B = 100 MHz
Sub-carrier Spacing ∆f = 120 kHz
Number of Clusters & Rays Nc = 1 and Mr = 1
Path-loss Model 3GPP model in [64]
Network Layout Manhattan-like or Hex. grid
Inter-site Distance D = 200 meters
Number of gNBs 25 sites or 19 sites
Number of UEs per site 10 UEs
Avg. TX Power Per PA 23 dBm [62, 69]
gNB Antenna Array Size Ntx = 256 elements
gNB Element Power Model According to [64]
gNB Max. Element Gain Gtx = 8 dBi
UE Antenna Array Size Nrx = 1 element
UE Element Power Model Omni Antenna Element
UE Max. Element Gain Grx = 0 dBi
UE Noise Figure 10 log10(Fn) = 8 dB
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Figure 4.11: System SNR performance for competing beam steering design methods
in Manhattan-like network gird (solid lines) or hexagonal network grid (dashed lines).
The UEs’ positions are uniformly distributed across the horizontal plane. Reprinted,
with permission, from [63] © 2021 IEEE.
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Chapter 5

Reformulation of Supervised

Learning System into Stochastic

Rate-Distortion Framework

5.1 A Reformulated System Model for Efficient Ma-

chine Learning

We propose to reformulate the supervised learning system within a rate-distortion frame-

work. The main question posed is: what is the minimum amount of information (in bits)

that can be extracted by a learning system to produce desired outputs at a specified

accuracy or distortion requirement? The proposed system model, depicted in Fig. 5.1, is

composed of a set of L simpler learning system, e.g., DNN, with L denoting the length

of the input’s super-symbols. The DNNs are tasked to extract the minimum amount

of information necessary to enable reading the desired outputs from a codebook at a

required accuracy. Let S be the number of layers in the overall equivalent DNN, where
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Figure 5.1: System model of the proposed reformulated supervised learning system
within rate-distortion framework.

the number of nodes in each of the layers is Ns, s ∈ {1, 2, . . . , S}. Furthermore, let

ws
i,j, i ∈ {1, 2, . . . , Ns}, j ∈ {1, 2, . . . , Ns+1}, be the weight associated with the link con-

necting the i-th node in a layer s to the j-th node in the subsequent layer. The k-th

input vector in the training set consists of L sub-vectors or super symbols, each of length

M , i.e., x(k) = [x̃1(k), . . . , x̃L(k)], where x̃ℓ(k) is the ℓ-th M -length sub-vector, with

k ∈ {1, 2, . . . , K}. Source sub-vectors {x̃ℓ(k)} are generated independently, with the

stationary and ergodic M -th joint distribution PM = Px̃ = {PM(x̃) : x̃ ∈ XM}. The

output at each node of the DNN at layer s, for the input vector x, denoted as osx,j, is

computed as,
osx,j = f(qsx,j), qsx,j =

Ns−1∑
i=1

ws−1
i,j os−1

x,i , (5.1)

where f(·) is the activation function, o1x,j = xj, and xj is the j-th element in the input

vector x. For ease of notation, denote the outputs at the last DNN layer as {px,j = oSx,j},

which are each bounded between 0 and 1.
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5.2 The Mechanism of the Proposed Reformulated

Learning System Model

In this section, we explain how an output class is generated for the k-th input source

vector x(k). First, the DNN produce an index vector zx(k), which is used afterwards

to retrieve a codeword that represents the given input from the codebook. Denote the

codebook obtained, after the training stage is completed, as C = {y(j), j ∈ {1, . . . , 2NS}}.

Hence, the codeword that represents the k-th input vector, is y(zx(k)). We assume

that the codewords are of width L, i.e., the ℓ-th sub-vector in the k-th input pattern

xℓ(k) is mapped to ℓ-th sample yℓ in the codeword. For example, if we consider a digit

classification learning system, where the system’s goal is to classify a sequence of L images

of handwritten digits, each into one of the predefined digit classes, then the ℓ-th letter in

the codeword, with ℓ = 1, . . . , L, indicates the classified digit of the ℓ-th input sub-vector.

In this example, the reproduction alphabet Y would obviously be the space of all possible

digits, i.e., Y = {0, 1, . . . , 9}. One should now train both components of the system, i.e.,

the DNN and the codebook, to generate outputs that minimize a specified cost function

averaged over all input patterns. The training of the proposed system operates in an

iterative manner, i.e., first a DNN is trained for a given codebook, then a codebook is

trained for a fixed DNN, and these two steps are repeated until convergence.

Note that the output of the DNN are soft in nature during the training stage, i.e., it

produces a probability distribution over codebook locations, unlike the majority of learn-

ing system where a hard output is obtained for each input, specifying the output class

with probability one. However, after the training stage is completed, the soft outputs of

the DNN in the proposed learning system converges to hard outputs, i.e., the probability

distribution induced by the probability vector [px(k),1 . . . px(k),NS
] collapses onto a single
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codeword for any input pattern. The mechanism of such convergence is governed by the

deterministic annealing framework and is explained in detail in Section 5.4. Similarly, the

codewords in the codebook are soft in nature during the training stage, i.e., the codebook

contains a set of L-dimensional distributions Qz,n,L = {[Q(1)
z,n,L(y), . . . , Q

(L)
z,n,L(y)] : y ∈ Y},

where z ∈ BNS is the codebook location, and n is the training iteration index. This set

of distributions specifies the probability of an output letter y ∈ Y at the ℓ-th codeword

positions and any the z-th codebook location. After the training stage is completed,

the codebook distributions are replaced with hard codewords, and the mechanism of

this replacement is illustrated in detail in Section 5.3. In the next sections, the training

techniques of the codebook and the DNN are illustrated.

5.3 Codebook Regeneration within the NTS Frame-

work

First, it is worth noting that an optimal length-constrained codebook, will maximize the

end-to-end accuracy achieved by the learning system. Due to the soft nature of the DNN

outputs, the DNN ultimately performs a probabilistic mapping of the input vectors into

codebook locations according to the distribution Pz|x(k)(z) =
∏NS

j=1 p
zj
x(k),j(1−px(k),j)(1−zj).

For this reason, in an optimal system, each codebook location must therefore have its

unique codewords’ statistics to best represent, in the minimum distortion sense, the source

vectors that are mapped or clustered into that codebook location. Hence, in the training

stage, we assume that there exists a set of temporarily mini-codebooks at each location z,

denoted as Cz, each is used to capture the statistics of the input vectors that are clustered

to location z. The statistics of the codewords in Cz are recorded in the form of location-

dependent codeword distributions Qz,n,L. Furthermore, define Qn,L = {QnL
(y), y ∈ Y} as
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the memoryless codebook reproduction distribution that is used to generate codewords in

any of the codebook locations z, which consequently populate the mini-codebooks {Cz}.

Throughout this paper, we assume that the learning system is supervised, let y∗ℓ (k) be

the label or true output for the ℓ-th sub-vector in the k-th input pattern, i.e., x̃ℓ(k). In

this setup, we denote ρ : Y×Y → [0,∞) for an arbitrary non-negative distortion measure

or cost function, where the distortion over vectors is assumed as average distortion over

sub-vectors, i.e.,

ρ (x(k),y) =
1

L

L∑
ℓ=1

ρ(x̃ℓ(k), yℓ) =
1

L

L∑
ℓ=1

ρ(y∗ℓ (k), yℓ). (5.2)

In order to train or update the set distributions Qz,n,L in iteration n, first the mini-

codebooks {Cz} need to be populated with codewords as follows: For a given DNN,

and the k-th input source word x(k), the system rolls the dice according to Pz|x(k)(z),

to generate the r-th index vector zx(k)(r). Then, the system generates an r-th random

codeword y(r) according to the current memoryless codebook reproduction distribution

Qn,L. If y(r) d-matches the current source vector x(k), i.e., y(r) satisfies ρ(x(k),y(r)) ≤

d, then this codeword is recorded in a “mini-codebook” at location zx(k)(r), and the

system proceeds to the next training input pattern. If the d-match event is not achieved,

the system generates a new index vector zx̃(k)(r+1) and a new random codeword y(r+1)

until a d-matching codeword is found and recorded in one of the mini-codebooks. After

all the training sequences have been processed, i.e., after K source words have been

processed, the system updates the set of distributions {Qz,n,L, ∀z ∈ B2NS } by finding the

maximum likelihood distributions that would have generated the set of codewords that d-

matched the source words in each of the mini-codebooks {Cz}. Let Cz = {y(z)(jkz), kz ∈

{1, . . . , Kz}}, and
∑

z Kz = K, be the set of codewords that have d-matched source

words at codebook location z.

97



Reformulation of Supervised Learning System into Stochastic Rate-Distortion Framework
Chapter 5

Lemma 4: The maximum likelihood codebook reproduction distribution, that would

have generated the set of d-matching codewords at every codebook locations, is computed

as, i.e.,

Q̂ML = Qz,n+1,L = {[Q(1)
z,n,L(y), Q

(2)
z,n,L(y), . . . , Q

(L)
z,n,L(y)]} (5.3)

Q
(ℓ)
z,n,L(y) =

1

Kz

Kz∑
k=1

I
y
(z)
ℓ (jkz ),y

, (5.4)

where the indicator function I
y
(z)
ℓ ,y

equals one, if the ℓ-th element in the d-matching code-

word y(z)(jkz), denoted as y
(z)
ℓ (jkz), is equal to y, and equals zero otherwise. Note that

Lemma 4 is a direct generalization of Lemma 1 for nonidentical distributions across the L

codeword symbols. Similarly, the system updates the codebook reproduction distribution

Qn,L, that generates i.i.d. code letters, by taking the average of all location-dependent

codebook distributions (across codebook locations z and super-symbol positions ℓ, i.e.,

Qn,L(y) =
1

LK

∑
z

Kz∑
k=1

L∑
ℓ=1

I
y
(z)
ℓ (jkz ),y

. (5.5)

After the training stage is completed, each of the codebook reproduction distributions

Qz,n,L is replaced with the most likely codeword to be generated from that distribution.

Next, we show the asymptotic performance of the proposed codebook that is designed

within an NTS framework.

Corollary 4 The sequence of codebook reproduction distributions Qn,L converges asymp-

totically as K → ∞, n → ∞, L → ∞, and for fixed sub-vector length M , to the distri-

bution Q∗
Px̃,d

in probability, where Q∗
Px̃,d

is the optimal codebook reproduction distribution

that achieves the M-th order rate-distortion bound R(Px̃, d).

Note that Corollary 4 immediately follows Corollaries 1 and 2 on convergence of

NTS algorithm for sources with memory. Corollary 4 establishes that, asymptotically,

the stochastic codebook tends to a codebook generated by the optimal distribution that
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achieves the rate-distortion bound. It is hence (by Shannon) the shortest codebook

possible guaranteed to contain an entry, within the required distortion (accuracy) for

randomly generated source examples. It thus minimizes the number of (output) bits

learned by the DNN. In other words, a smaller codebook implies a simpler network that

is used to index this codebook and hence a more efficient learning system.

5.4 Deep Neural Network Training within the De-

terministic Annealing Framework

Now, we turn our attention to the other part of the system training. For a given set

of distributions that represents the statistics of the d-matching codewords at locations

z ∈ BNS , i.e., {Qz,n,L}, how is the DNN trained? To answer this question, first let us

define the average end-to-end distortion seen over all input patterns in the training set,

D=
K∑
k=1

Px(x(k))D(x(k))=

K∑
k=1

Px(x(k))
∑

z∈BNS

Pz|x(k)(z)

(
1

L

L∑
ℓ=1

∑
y∈Y

Qℓ
z,n,L(y)ρ (y

∗
ℓ (k), y)

)
,

(5.6)

where Px(x(k)) and Pz|x(k)(z) denote the probability of generating source vector x(k) and

the conditional probability of generating index vector z, respectively. The latter is com-

puted as Pz|x(k)(z) =
∏NS

j=1 p
zj
x(k),j(1−px(k),j)(1−zj), where px(k),j are the DNN outputs, and

zj is the j-th element in z. The classical back propagation methodology in [70] performs

gradient descent on the weights, i.e., ∆ws
i,j ∝ −

∂D(x(k))
∂ws

i,j
. However, back-propagation’s

gradient decent only guarantees convergence to a locally optimal solution, while in many

cases of interest the cost surface is riddled with poor local minima. Multiple heuristic

methods have been proposed over the decades to combat this difficulty [71, 72, 73, 74].
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They range from repeated optimization with different initialization, to modification of

weight update steps based on second derivatives, or weights update based on momentum

and more. However, significant gains are yet to be recouped by a principled attack on

the problem. This motivates the use of powerful optimization tools, i.e. the DA.

Here, DA embeds DNN training within a rate-distortion (or statistical physics) opti-

mization framework. The Lagrangian or free energy is given by,

L = D − TH =
K∑
k=1

Px(x(k))L(x(k)), (5.7)

H =−
K∑
k=1

∑
z∈BNS

Px(x(k))Pz|x(k)(z) log
(
Px(x(k))Pz|x(k)(z)

)
. (5.8)

For the ease of notation, the index of the input k will be dropped in subsequent anal-

ysis, hence, x = x(k). Gradient descent is performed on the effective cost function or

Lagrangian, i.e., accounting for the entropy or randomness constraint: ∆ws
i,j ∝ −

∂L(x)
∂ws

i,j
,

and by applying the chain rule:

−∂L(x)
∂ws

i,j

= −∂L(x)
∂qs+1

x,j

∂qs+1
x,j

∂ws
i,j

= −∂L(x)
∂qs+1

x,j

osx,i, (5.9)

i.e., it can be rewritten as,

−∂L(x)
∂ws

i,j

= δs+1
x,j o

s
x,i, where, δs+1

x,j = −∂L(x)
∂qs+1

x,j

, (5.10)

and, δs+1
x,j = −∂L(x)

∂os+1
x,j

∂os+1
x,j

∂qs+1
x,j

= −∂L(x)
∂os+1

x,j

f ′ (qs+1
x,j

)
(5.11)
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Next, it is straightforward to show that at the output layer,

∂L(x)
∂oSx,j

=
∑

z∈BNS

∂Pz|x(z)

∂oSx,j

((
1

L

L∑
ℓ=1

∑
y∈Y

Qℓ
z,n,L(y)ρ (y

∗
ℓ (k), y)

)
+

T
(
1 + log(Px(x)Pz|x(z))

))
,

(5.12)

∂Pz|x(z)

∂oSx,j
= (−1)1−zj

NS∏
i ̸=j

pzix,i(1− px,i)
(1−zi). (5.13)

Finally, δsx,j at any non-output layer can be computed recursively, or back-propagated

as,

δsx,j = f ′(qsx,j)

Ns+1∑
i=1

δs+1
x,i w

s
j,i. (5.14)

Conditioned on a given set of codebook reproduction distributions {Qz,n,L}, the un-

restricted conditional distribution Pz|x(z) that minimizes the Lagrangian function L is

the Gibbs Distribution [6], i.e.,

P ∗
z|x(z) =

1

Ax

exp

[
− 1

T

(
1

L

L∑
ℓ=1

∑
y∈Y

Qℓ
z,n,L(y)ρ (y

∗
ℓ (k), y)

)]
, (5.15)

where Ax is the normalization constant. However, the conditional distribution Pz|x(z)

that can actually be obtained by the DNN is constrained by system topology and pa-

rameters, such as weights, number of nodes per layer, activation function, etc. We note

in passing that an optimal system should further adapt these parameters based on the

current temperature, an extension left for future work. At very high temperature, the

optimal conditional distribution is the uniform distribution over all codebook locations.

However, at zero temperature, the optimal conditional distribution collapses on the code-

book location with the smallest distortion [6].
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5.5 Toy Example

As preliminary validation of our proposed learning system model, we consider a digit

classification toy example using the MNIST handwritten digit data-set [75]. In this toy

example, we assume that each input vector consists of either one, two, or three blocks

of 28 × 28 gray-scale pixel images containing handwritten digits, i.e., L ∈ {1, 2, 3}, and

M = 784. The distortion function considered is the average Hamming distortion measure,

i.e., if the digit is classified correctly, the distortion vanishes, otherwise the distortion per

incorrect digit classification is equal to one. The distortion threshold for d-match events

of codebook training is set to zero. We compare two learning systems:

S1) A simple fully-connected DNN that contains one hidden layers, with 100 nodes.

The output of this DNN is 4 bits, estimating the binary representation of the input the

digit(s) for L = 1. As L increases, each input sub-vector is fed into an independent sub-

DNN with the same complexity, e.g. for L = 3, three independent sub-DNNs are used for

every input sub-vector, with one hidden layer, 100 nodes and 4 output nodes, as shown

in Fig. 5.1. This system contains no codebook, and the network weights are trained via

the traditional back-propagation algorithm with gradient descent, as introduced in [70].

This system is considered the baseline.

S2) The second learning system contains the same DNN as S1, for fair comparison.

This system additionally includes a codebook of outputs which is trained within the

NTS framework proposed in Section 5.3. Similar to S1, the DNN weights are trained

via the traditional back-propagation algorithm with gradient descent. Thus, this system

immediately reflects the benefit of introducing a codebook in the learning process.

S3) Finally, the third system contains the same DNN and codebook as S2. However,

the DNN in this system is trained within the DA framework as proposed in Section 5.4.
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Table 5.1: Average training (left) and test (right) digit classification accuracy results
for the 3 competing systems

S1: Baseline S2: NTS S3: NTS+DA
L=1 97.9% 94.1% 97.9% 94.3% 98.6% 94.4%
L=2 51.0% 48.0% 83.3% 80.9% 98.9% 94.6%
L=3 36.5% 35.2% 79.7% 76.4% 99.0% 94.65%

Thus, S3 immediately shows the benefit of the DA training framework in comparison to

S2 that employs the standard back-propagation technique.

It is worth noting that the set of output nodes of the DNN, per input digit, is compressed

to cardinality of only ⌈log2(|Y|)⌉. This is unlike the conventional “winner-take-all” DNNs

in [76, 77, 78], where the set of output nodes has cardinality that equals the size of the

output alphabet |Y|. While this might result in some performance degradation, it is the

only viable solution in practical examples in which the cardinality of the output alphabet

or the number of possible classes is very large. It is also worth noting that as L increases,

the cardinality of the set of all possible label combinations (i.e., the set of all output

nodes in the winner-takes-all scenario) increases exponentially as, |YL|, which provides

a further compelling reason to compress the output of the DNN as proposed in systems

S1, S2 and S3.

Table 5.1 shows the training and test accuracy achieved by the three competing

systems. It can be shown that the systems with trained codebooks, i.e., S2 and S3,

outperforms the baseline system S1 by up to 61.4% and 58.9% in the training and

test set accuracy, respectively. It is worth noting that S2 and S3 have the same DNN

as S1. Furthermore, it can be seen that at higher input dimension, when the cost

function is riddled with poor local minima, the proposed non-convex optimization DA

framework for DNN training significantly outperforms the standard back-propagation

descent algorithm in the training and test set accuracy, respectively, i.e. the performance
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gains are pronounced as the input length L increases. Note that the discrepancy between

training and test sets accuracy results exists for higher input dimension, due to the

limited availability of input images in the training set.
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Conclusion

The core of this work presents methods and techniques to optimally design codebooks.

More specifically, a tractable and asymptotically optimal stochastic codebook generating

and adaptation algorithm is devised which is applicable to the vast majority of sources.

We propose a complete overhaul to the original iterative NTS algorithm in [10] in order to

address its fundamental flaws. First, an ML-framework is designed and leveraged at each

NTS iteration n, to estimate the most likely codebook reproduction distribution that

would have generated a sequence of K d-matching codewords to a respective sequence of

independently generated source words. In Theorems 1-2, and Corollaries 1-2, it is proven

that for sources, potentially with memory, over discrete alphabet spaces, given a fixed

source word length L, and memory-depth M , the reproduction distribution of the gen-

eralized recursive NTS algorithm converges, in probability, asymptotically, as K → ∞,

and n → ∞, to the optimal “achievable” codebook reproduction distribution among a

set of distributions constrained by the string length L. It was further shown that, if L

is sent to infinity, the proposed NTS algorithm finds the optimal codebook reproduction

distribution Q∗
PM ,d that achieves the M -th order rate-distortion bound R(PM , d). Af-

terwords, we developed a variant of the NTS algorithm for sources with finite memory
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depth, i.e., source with finite order Markov property over discrete alphabet spaces. In

Theorems 3-4, we further show that convergence to the optimal constrained codebook

reproduction distribution is achieved, without the recourse of sending the memory depth

M to infinity. Next, we expand the NTS algorithm to more general sources over abstract

or continuous alphabet spaces. It is important to emphasize that the standard concept

of types, which is at the heart of the NTS work on discrete alphabet sources, and was

specifically instrumental in showing asymptotic convergence to the reconstruction distri-

bution that achieves the rate-distortion bound, does not apply to continuous alphabet

sources. Hence, the generalization of the NTS algorithm to continuous alphabet sources

is, in fact, fundamentally more challenging. For this type of source, we start working

with probability measures over abstract alphabet spaces rather than the method of types.

In Theorems 5-7, we extend the NTS convergence to the optimal results to sources over

abstract alphabet spaces, by showing that the reproduction distribution, obtained by the

generalized NTS algorithm, converges in the weak convergence sense almost surely, to

the optimal distribution which achieves the M -th order rate-distortion bound asymptot-

ically in K, n, and L. Furthermore, for a fixed and finite string length L, the codebook

reproduction distribution on YML converges to the optimal distribution Q∗
PL
M ,γ

, in the

weak convergence sense, that achieves the rate distortion function R(PL
M , γ) albeit for

an auxiliary distortion measure ρ(d), and the extreme distortion constraint γ = 0. After-

wards, to provide a further compelling evidence on the practicality of the proposed NTS

algorithm, the rate of convergence of the NTS algorithm is studied with respect to i the

number of NTS iterations n, ii) the statistical depth K and finally iii) the source word

length L. Moreover, toy examples, which consider binary asymmetric sources, are shown

to provide further evidence of the fact that the proposed NTS algorithm in addition to

being asymptotically optimal is also tractable.

Next, in order to further assess the effectiveness of the proposed codebook design and
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adaptation techniques, methodologies for optimal codebook generation and adaptation

are developed and employed in two promising example applications, that can greatly

benefit of such algorithms, in the areas of i) wireless communications and ii) machine

learning. In particular, for millimeter wave wireless systems, we investigate the problem

of finding the optimal beam steering codebook to match user statistics. Ultimately, a

powerful non-convex optimization technique is derived within the framework of determin-

istic annealing, to avoid poor local minima on the cost surface (that might result from

the state-of-the-art k-means beam steering codebook design approach). The proposed

DA-based beam steering algorithm outperforms the baseline uniform steering approaches

by up to 6 dB and 12.5 dB in the average and the 10th percentile of power array factor,

respectively. Additionally, in a full-fledged system simulation for an outdoor cellular 5G

setting, the DA-based algorithms yields SNR gains of up to 6.5 dB. It is noted that the

gains in power array factor or in SNR can be traded for significantly reduced codebook

size. This would, in turn, reduce the beam management complexity, and hence enhance

robustness to user dynamics.

Finally, for machine learning applications, we reformulate the classical supervised

learning problem within a rate-distortion framework, by dividing this problem into two

parts (Fig. 5.1). The first part of the proposed framework extracts, i.e., learns, the

minimal necessary number of information bits from the source examples by a simplified

learning system (e.g., deep network). The learned bits are used to generate an index in

order to retrieve the desired outputs from a trained codebook, which satisfies a distortion

or accuracy requirement. Note that the fewer bits of information we require the system to

learn from the source, the easier the learning task in terms of system complexity, gener-

alization and training data requirements. The system optimizes its components through

an iterative setup alternating between two main steps: i) regenerating the codebook

within the asymptotically optimal NTS framework for a fixed DNN, and ii) optimizing
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the DNN parameters within the powerful non-convex DA optimization framework for a

fixed codebook. A toy example shows compelling evidence of the superior performance

of the proposed system model, thus providing concrete confirmation of its effectiveness.
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Appendix A

Asymptotic Performance Evaluation

of Natural Type Selection Algorithm

A.1 Lemma 1: Maximum Likelihood Estimation of Codebook

Reproduction Distribution

We prove this lemma for memory depth M = 1, while noting that specialization to

M ≥ 1 is straightforward. Let CL(d) = {y(j1),y(j2), . . . ,y(jK)} be the set of L-

length d-matching i.i.d. codewords to the P1-distributed input source words over X :

{x(i1),x(i2), . . . ,x(iK)} (with n being the NTS iteration index), i.e.,

ρ (x(ik),y(jk)) ≤ d, x(ik) ∈ X L, yjk ∈ YM , ∀k ∈ {1, 2, . . . , K} . (A.1)

The i.i.d. property of codewords includes two aspects, independence and identical dis-

tribution, so it would be great, beyond independence, to compute the ML generating

distribution. Next, we assume that the input alphabet X and reproduction alphabet Y

are discrete alphabet spaces. The ML estimator of the codebook generating distribution,

in the next NTS iteration, finds the most likely distribution that generates the set of
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codewords in CL(d). Consequently, the ML estimator would maximize the joint proba-

bility of generating the codewords in CL(d), and hence can be mathematically written

as,

Qn+1,1,L,K = argmax
Q̂∈Q

P(y(j1),y(j2), . . . ,y(jK)|Q̂), (A.2)

where the subscript “1” stands for M = 1, P(y(j1),y(j2), . . . ,y(jK)|Q̂) is the joint prob-

ability of generating the codewords {y(jk)} conditioned on the generating distribution

Q̂, and Q is the set of valid distributions that produce i.i.d. symbols over Y , i.e.,

Q =

{
Q ∈ R|Y| :

∑
y∈Y

Q (y) = 1, Q(y) ≥ 0 ∀y ∈ Y

}
. (A.3)

It is worth noting that we are restricting the set distributions to distributions that only

generate i.i.d. code letters (or super-symbols when generalized to M > 1). The likelihood

function shown in (A.2) depends on the codewords y(jk), 1≤ k ≤K only through the

codewords’ types [45]. Let Qn,1,L(y(jk)) be the type of the d-matching codeword y(jk)

at iteration n, i.e., the frequency of occurrence of every code letter y ∈ Y as seen in the

codeword y(jk). Then, the ML formulation in (A.2) can be written as,

Qn+1,1,L,K=argmax
Q̂∈Q

P(Qn,1,L(y(j1)), . . . Qn,1,L(y(jK))|Q̂). (A.4)

where P(Qn,1,L(y(j1)), . . . Qn,1,L(y(jK))|Q̂) is the joint probability of generating the types

of the codewords {y(jk)} conditioned on the generating distribution Q̂. For the ease of

notation, denote Qn,1,L(y(jk)) as Qk. Taking the property of statistical independence

between codewords into consideration, we get,

Qn+1,1,L,K = argmax
Q̂∈Q

K∏
k=1

P(Qk|Q̂). (A.5)
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The probability of generating a codeword of type Q given that the generating distribution

is Q̂ is written as, [45],

P(Q|Q̂) = exp
{
−L

(
H(Q) +D

(
Q||Q̂

))}
, (A.6)

where H(Q) denotes the entropy function calculated over the type Q, and D(·||·) is the

KL divergence function. Combining (A.5) and (A.6) yields,

Qn+1,1,L,K =argmax
Q̂∈Q

K∏
k=1

exp
{
−L

(
H (Qk) +D

(
Qk||Q̂

))}
, (A.7)

Qn+1,1,L,K =argmax
Q̂∈Q

exp

{
−L

K∑
k=1

(
H (Qk)+D

(
Qk||Q̂

))}
, (A.8)

The loge(·) function is monotonically increasing, and the entropy term H(Qk) doesn’t

depend on Q̂, hence the expression in (A.8) simplifies to,

Qn+1,1,L,K = argmin
Q̂∈Q

K∑
k=1

(
D
(
Qk||Q̂

))
(A.9)

In summary, the ML estimate of the codebook reproduction distribution is the one that

minimizes the sum of KL divergences towards the types of the d-matching codewords

subject to the constraints in (A.3). The Lagrangian function to be minimized, that takes

into account the constraint
∑
y

Q̂(y) = 1, can thus be written as,

L =
K∑
k=1

(
D
(
Qk||Q̂

))
+ β

(∑
y∈Y

Q̂ (y)− 1

)
, (A.10)
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where β is the Lagrange multiplier. Hence,

L =
K∑
k=1

(∑
y∈Y

Qk(y) log

(
Qk(y)

Q̂(y)

))
+ β

(∑
y∈Y

Q̂ (y)− 1

)
. (A.11)

Next, taking partial derivative with respect to Q̂(y), for any y ∈ Y , yields,

∂L
∂Q̂(y)

= −
K∑
k=1

Qk(y)

Q̂ML(y)
+ β = 0. (A.12)

Q̂ML(y) =
1

β

K∑
k=1

Qk(y). (A.13)

Finally, setting the constraint
∑
y∈Y

Q̂ML(y) = 1 results in,

Qn+1,1,L,K = Q̂ML =
1

K

K∑
k=1

Qn,1,L(y(jk)). (A.14)

■

A.2 Lemma 2: Variance of the Unbiased ML Estimate of Code-

book Reproduction Distribution with Finite Statistical Depth

As shown in Lemma 1, and upon generalization for M ≥ 1, given a discrete reproduction

alphabet space Y , the ML estimate of the codebook reproduction distribution in every

NTS iteration n simplifies to,

Q̂ML(y) =
1

K

K∑
k=1

Qk(y), ∀y ∈ YM , (A.15)

where Qk is the M -th order type of the k-th d-matching codeword, and K is the number

of d-match operations the algorithm observes before updating the codebook reproduc-
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tion distribution, i.e., the statistical depth. For statistically independent d-matching

codewords, we have,

E[Q̂ML(y)] = E[Qk(y)], ∀y ∈ YM , (A.16)

where E[·] denotes the expectation of the argument. The expectation in (A.16) is taken

over the distribution of the d-matching codewords’ types. Thus, this establishes that the

estimator is unbiased. Finally, the variance of the maximum likelihood estimate decays

proportional to 1/K as follows,

VAR[Q̂ML(y)] =
1

K
VAR[Qk(y)], ∀y ∈ YM . (A.17)

■

A.3 Lemma 3: ML Estimate of Codebook Reproduction Distri-

bution with Markov Property

Given a set of d-matching L-length codewords y(jk), k = 1, . . . , K, where y(jk) =

(y1(jk), y2(jk), . . . , yL(jk)) and yℓ(jk) ∈ Y , the maximum likelihood estimator for the

codebook distribution transition matrix, having an M -th order Markov property is for-

mulated as,

Q̂ML = argmax
Q̂∈Q

P(y(j1), . . . ,y(jk)|Q̂), (A.18)

where Q is the set of all valid transition distribution matrices that satisfy the stationary

assumption, and P(y(j1), . . . ,y(jk)|Q̂) is the joint probability of generating the types of

the codewords {y(jk)} conditioned on the generating distribution transition matrix Q̂.

Next, by the independence of the d-match events, the maximum likelihood formulation

is written as,
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Q̂ML = argmax
Q̂∈Q

K∏
k=1

P(y(jk)|Q̂). (A.19)

Next, we have,

P(y|Q̂) = P(Y1 = y1)
L∏

ℓ=2

Qyℓ−1,yℓ , (A.20)

where yℓ is the ℓ-th element in the codeword y. Let the number of transition from state i

to state j in the codeword y be denoted as N(i )j|y). Then the probability of generating

a codeword y conditioned on the state transition probability matrix Q̂ is simplified to,

P(y|Q̂) =
M∏

m=1

P(Ym = ym |Ym−1 = ym−1, . . . , Y1 = y1)
∏

(i,j)∈S2

Q̂
N(i)j|y)
j|i . (A.21)

Taking the log of P (y|Q̂) results in,

log(P(y|Q̂)) =
m∑

m=1

log(P(Ym = ym |Ym−1 = ym−1, . . . , Y1 = y1)) +

∑
(i,j)∈S2

N(i )j|y) log(Q̂j|i).

(A.22)

Hence,

Q̂ML = argmax
Q̂∈Q

{
K∑
k=1

log(P(Ym = ym(jk) |Ym−1 = ym−1(jk), . . . , Y1 = y1(jk))) +

K∑
k=1

∑
(i,j)∈S2

N(i )j|y(jk)) log(Q̂j|i)

}
.

(A.23)

For sufficiently large codeword lengths L, one can ignore the first sum term in (A.23),

hence,

Q̂ML ≈ argmax
Q̂∈Q


K∑
k=1

∑
(i,j)∈S2

N(i )j|y(jk)) log(Q̂j|i)

 . (A.24)
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The Lagrangian function that enforces the set of constraints,
∑
j∈S

Q̂j|i = 1, can be written

as,

L =
K∑
k=1

∑
(i,j)∈S2

N(i )j|y(jk)) log(Q̂j|i)−
∑
i∈S

λi

(∑
j∈S

Q̂j|i − 1

)
. (A.25)

Differentiating with respect to Q̂j|i results in,

∂L
∂Q̂j|i

=
K∑
k=1

N(i )j|y(jk))
Q̂ML

j|i

− λi = 0 (A.26)

Q̂ML
j|i =

K∑
k=1

N(i )j|y(jk))

K∑
k=1

∑
j′∈S

N(i )j′|y(jk))
. (A.27)

A.4 Theorem 1: Conditional Limit Theorem for Tractable NTS

Algorithm over Discrete Alphabets

Let x(ik) and y(jk), k = 1, 2, . . . , K, be a sequence of d-matching L-length source words

and codewords, where source words are generated with letter distributions P over discrete

alphabets X , and the code letters are distributed (prior to d-match events) according to

Q over the discrete alphabet Y . The distribution of code letter might obviously be altered

post d-match events. Each codeword y(jk) d-matches source word x(ik) independent of

other codewords, i.e., the d-matching events are obviously independent. Furthermore,

the empirical distributions of the d-matching codewords’ letters on Y , depend on the

source distribution P , the codebook reproduction distribution Q, the string length L,

and the set of d-matching balls around source realizations x ∈ X L, defined as,

BL(x, d) =
{
y : y ∈ YL, ρ(x,y) ≤ d

}
, ∀x ∈ X L. (A.28)
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Hence, this concludes that the empirical distributions of d-matching codewords are i.i.d.

because P , Q, L and the set of d-matching balls {BL(x, d), ∀x ∈ X L} are unchanged

across the d-matching events. This together with weak law of large numbers implies the

first part of Theorem 1. In order to show the second part of Theorem 1, define UL(d) as

the set of all possible pairs of L-length source words and codewords that can d-match,

i.e.,

UL(d)≜
{
(x,y) : x ∈ X L,y ∈ YL, ρ(x,y) ≤ d

}
. (A.29)

Without loss of generality, we assume that the source distribution over the discrete

X L is strictly positive, i.e., PL(x) > 0,∀x ∈ X L. Note that, by Lemma 1, the ML

codebook reproduction distribution is the y-marginal of a K-average input-output joint

distribution over d-matching source words and codewords. Hence, the ML distribution

is the y-marginal of a joint distribution over the set UL(d). Next, for every source

realization x ∈ X L, define WL(x, d) as the set of all conditional distributions that would

generate a joint distribution
(
PL(x)W (y|x)

)
which guarantee d-matching codewords with

probability one, i.e.,

WL(x, d)=
{
W (y|x) :W (y|x)≥0,W (y|x) = 0,∀y /∈ BL(x, d),W (YL|x)=1

}
. (A.30)

Hence, the set of all possibleK-average joint distributions that is obtained after observing

a set of K independent d-match event, for sufficiently large K, is calculated as,

EL,K(P, d) =
{
V :V

(
X L,YL

)
= 1, V (x,y) =

n(x,y)PL(x)W (y|x)
K

,

W (y|x) ∈ WL(x, d), n(x,y) ∈ {0, . . . , K}
} (A.31)

This implies that the set EL,K(P, d) contains all possible L-th order types with denom-

inator K that generates d-matching source and code pairs with probability one. It is
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important to reiterate that by Lemma 1, the ML estimate of the next iteration code-

book reproduction distribution Q̂ML, that most likely generates the set of d-matching

codewords, is the K-average of the d-matching codewords’ types, and hence the joint

input-output L-th order type, with y-marginal equals to Q̂ML, must belong to EL,K(P, d).

Next, we turn our attention to the concatenated source and code blocks. Let x̄ and ȳ

be the KL-length blocks constructed by concatenating (x(i1), . . . ,x(iK)) source words,

and (y(j1), . . . ,y(jK)) codewords, respectively. We will show that for any δ > 0, and

sufficiently large K,

P (D(Qȳ||Q∗
L(P,Q, d)) > 3δ|Vx̄,ȳ∈EL,K(P, d)) ≤ (K + 1)2|X

L||YL|e−Kδ. (A.32)

In other words, if we condition on the event that the joint distribution of (x̄, ȳ), denoted

as Vx̄,ȳ over X L×YL, belongs to EL,K(P, d), the distribution of ȳ, denoted as Qȳ, is with

high probability close in the divergence-sense to Q∗
L(P,Q, d), defined in (3.10). Since

closeness in divergence also implies closeness in the L1 sense [45, Lemma 11.6.1], and by

part i) of Theorem 1, i.e., the average type of the d-matching codeword converges to the

expected type E[Qk], this establishes part ii) of Theorem 1. We start by verifying that,

as K →∞, EL,K(P, d) approaches EL(P, d) by (3.13) and (A.31), hence define,

D∗ = min
V ∈EL(P,d)

D
(
V
∣∣∣∣PL ×QL

)
, (A.33)

where PL and QL denotes the L-dimensional product distributions over X L and YL,

respectively. Then following [51, 45, Th. 11.6.2], we obtain,

P
(
D
(
Vx̄,ȳ||PL×QL

)
>D∗+ 3δ, Vx̄,ȳ ∈ EL,K(P, d)

)
=

∑
V ′∈EL,K(P,d)∩PL,K×QL,K :

D(V ′||PL×QL)>D∗+3δ

P(Ty(V
′)),

(A.34)
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where the probability of type class of V ′ is denoted by P(Ty(V
′)), PL,K , and QL,K are

the sets of all possible L-th order input and output types with denominator K. Then,

by [45, Th. 11.1.4] which bounds the probability of type classes,

P

(
D
(
Vx̄,ȳ||PL×QL

)
>D∗+3δ, Vx̄,ȳ ∈ EL,K(P, d)

)
≤

∑
V ′∈EL,K(P,d)∩PL,K×QL,K :

D(V ′||PL×QL)>D∗+3δ

exp
(
−KD

(
V ′||PL ×QL

))
,

(A.35)

P

(
D
(
Vx̄,ȳ||PL×QL

)
>D∗+3δ, Vx̄,ȳ ∈ EL,K(P, d)

)
≤

∑
V ′∈EL,K(P,d)∩PK×QK :

D(V ′||PL×QL)>D∗+3δ

exp (−K(D∗ + 3δ)) ,
(A.36)

P

(
D
(
Vx̄,ȳ||PL×QL

)
>D∗+3δ, Vx̄,ȳ ∈ EL,K(P, d)

)
≤

(K + 1)|X
L||YL| exp (−K (D∗ + 3δ)),

(A.37)

since there are only a polynomial number of joint types. Then, again by [45, Th. 11.1.4],

we observe that,

P
(
D
(
Vx̄,ȳ||PL×QL

)
≤D∗+ 2δ, Vx̄,ȳ ∈ EL,K(P, d)

)
=

∑
V ′∈EL,K(P,d)∩PK×QK :

D(V ′||PL×QL)≤D∗+2δ

P(Ty(V
′)),

(A.38)

P

(
D
(
Vx̄,ȳ||PL×QL

)
≤D∗+2δ, Vx̄,ȳ ∈ EL,K(P, d)

)
≥

∑
V ′∈EL,K(P,d)∩PK×QK :

D(V ′||PL×QL)≤D∗+2δ

exp
(
−KD

(
V ′||PL ×QL

))
(K + 1)|XL||YL| ,

(A.39)
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P

(
D
(
Vx̄,ȳ||PL×QL

)
≤D∗+2δ, Vx̄,ȳ ∈ EL,K(P, d)

)
≥

∑
V ′∈EL,K(P,d)∩PK×QK :

D(V ′||PL×QL)≤D∗+2δ

exp (−K(D∗ + 2δ))

(K + 1)|XL||YL| ,
(A.40)

P

(
D
(
Vx̄,ȳ||PL×QL

)
≤D∗ + 2δ, Vx̄,ȳ∈EL,K(P, d)

)
≥ exp (−K (D∗ + 2δ))

(K + 1)|XL||YL| , (A.41)

since for sufficiently large K, there exists at least one term in the summation, i.e., there

exists one joint type V ′ in EL,K(P, d) such that,

D
(
V ′||PL ×QL

)
≤ D∗ + 2δ. (A.42)

Next, taking into account that the probability of one event is larger than or equal to the

probability of the intersection, we have,

P (Vx̄,ȳ ∈EL,K(P, d))≥
exp (−K (D∗+2δ))

(K + 1)|XL||YL| . (A.43)

By Bayes’ law we get,

P

(
D
(
Vx̄,ȳ||PL×QL

)
>D∗+ 3δ

∣∣∣ Vx̄,ȳ ∈ EL,K(P, d)

)
≤ (K + 1)2|X

L||YL| exp (−Kδ).

(A.44)

By the “Pythagorean” theorem [45, Th. 11.6.1], we have,

D(Vx̄,ȳ||V ∗
L )+D

(
V ∗
L ||PL×QL

)
≤D

(
Vx̄,ȳ||PL×QL

)
, (A.45)

where, for ease of notation, V ∗
L = V ∗

L (P,Q, d). Hence, D
(
Vx̄,ȳ||PL ×QL

)
≤ D∗ + 3δ

implies that,

D(Vx̄,ȳ||V ∗
L ) ≤ 3δ. (A.46)
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Next, by the data processing inequality, we have,

D(Qȳ||Q∗
L(P,Q, d)) ≤ D(Vx̄,ȳ||V ∗

L ) (A.47)

D
(
QMarg.

ȳ

∣∣∣∣∣∣ Q∗
L(P,Q, d)Marg.

)
≤ D(Qȳ||Q∗

L(P,Q, d)) (A.48)

since in (A.47), both are the respective L-dimensional y-marginals of the joint distribu-

tions on YL, and in (A.48), both are the respective marginal distributions on Y . Finally,

it is important to note that by Lemma 1, the next iteration ML codebook reproduction

distribution is the average type of d-matching codewords, hence,

Qn,1,L,K = QMarg.
ȳ (A.49)

Consequently, part ii) of Theorem 1 follows from (A.44) and part i) of Theorem 1 as

follows,

Qn,1,L,K → E[Qk] = Q∗
L(P,Q, d)Marg. as K →∞ w.p. 1. (A.50)

■

A.5 Theorem 2: Discrete Alphabet NTS Algorithm, Alternating

Minimization over Convex Sets

we can write RL(P, d) as a double minimization over convex sets, i.e.,

RL(P, d) = min
Q

min
V ∈EL(P,d)

D
(
V
∣∣∣∣ PL ×QL

)
. (A.51)

Next we show that, for a fixed V , the reproduction distribution Q on Y which minimizes

D
(
V
∣∣∣∣ PL ×QL

)
is the y-marginal of V on Y . Define the Lagrangian function to be
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minimized as,

L = D
(
V ||PL ×QL

)
+ β

(∑
y∈Y

Q(y)− 1

)
, (A.52)

L =
∑
x∈XL

∑
y∈YL

−V (x,y) log


L∏

ℓ=1

P (xℓ)
L∏

ℓ=1

Q(yℓ)

V (x,y)

+ β

(∑
y∈Y

Q(y)− 1

)
, (A.53)

where x = (x1, . . . , xL) is a source word realization, y = (y1, . . . , yL) is a codeword real-

ization, β is the Lagrangian multiplier, and the second term (A.53) enforces the necessary

constraint of a valid distribution, i.e.,
∑
y∈Y

Q(y) = 1. Performing straight forward partial

differentiation with respect to Q(y′) (with y′ ∈ Y) yields,

∂L
∂Q(y′)

=
∑
x∈XL

∑
y∈YL

−V (x,y)
L N(y′|y)
Q(y′)

+ β, (A.54)

where N(y′|y) is the frequency of occurrence of y′ as seen in y. Next, setting (A.54) to

0, results in, ∑
y∈YL

L N(y′|y)
Q(y′)

∑
x∈XL

V (x,y) = β, (A.55)

Q(y′) =
∑
y∈YL

N(y′|y)
∑
x∈XL

V (x,y), (A.56)

which is exactly the y-marginal of V on Y . On the other hand, for a fixed Q and distortion

constraint d, the joint distribution which minimizes D
(
V
∣∣∣∣PL ×QL

)
over EL(P, d) will

induce Q∗
L(P,Q, d)Marg.. By the results of Theorem 1, the recursion in Algorithm 5

performs exactly this minimization over the convex sets, as shown in Fig. A.1, i.e.,

V ∗
L (P,Q0,1,L, d)→ (PL ×Q∗

L(P,Q0,1,L, d))→

V ∗
L (P,Q1,1,L, d)→ (PL ×Q∗

L(P,Q1,1,L, d)) . . .

(A.57)
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It should be noted that the distance in the alternating minimization is measured by

divergence. Hence, by [79, Th. 3], the sequences of divergences and distributions will

converge to the minimum divergence, i.e., RL(P, d), and the corresponding reproduction

distributionQ∗
L(P, d)

Marg.. Next, to show part ii) of Theorem 2 stated in (3.16), first verify

that the minimum coding rate with constrained reproduction distribution Q, denoted as

R(P,Q, d), is written as [10],

R(P,Q, d) = min
W :ρ(P,W )≤d

I(P,W ) +D([P ◦W ]y ||Q), (A.58)

R(P,Q,d)= min
W :ρ(P,W )≤d

D(P ◦W ||P×Q), (A.59)

Hence, R(P, d) follows from (A.59) as,

R(P, d) = min
Q

min
W :ρ(P,W )≤d

D(P ◦W ||P×Q). (A.60)

Now, as L→∞, and by law of large numbers, it is straight forward to show that,

EL(P, d)→
{
V :V=PL◦W ′,E[ρ(X,Y)]≤d

}
, (A.61)

where the expectation in E[ρ(X,Y)] is over the joint distribution PL◦W ′. Consequently,

as L→∞, and from (3.17), (A.51), and (A.60),

RL(P,Q,d)→ min
W :E[ρ(X̃,Ỹ)]≤d

D
(
PL◦W ||PL×QL

)
, (A.62)

1

L
RL(P, d)→ R(P, d). (A.63)

Thus, by the definition of Q∗
L(P, d) in (3.17), and the definition of the rate-distortion
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Figure A.1: Alternating Minimization over Convex Sets Induced by the Natural Type
Selection Algorithm.

function achieving distribution Q∗
P,d, part ii) of Theorem 2 follows. ■

A.6 Theorem 3: Conditional Limit Theorem for Tractable NTS

Algorithm for Markov Sources

In the subsequent analysis, without loss of generality, we will only consider the case for

which K = 1. Note that the distribution of the long source and code blocks s and c

(formed by concatenating K d-matching source and code words, respectively) do not

change for K > 1, as L → ∞, because it is the K-average of identical converging

distributions, as will be shown by this theorem. Let the length Lx,y be the number of

letters of the source sub-stream sx that is reproduced by the code sub-stream cy, such

that
∑

Lx,y = L. For asymptotically large Lx,y, we define the set Ex,y(dx,y) as in (3.29).

Thus Ex,y(dx,y) denotes a set of all joint distributions on X ×Y that satisfies the source

distribution P (X|x) and distortion level dx,y. Note that, by the strong law of large

numbers, the realizations of the instantaneous source types PLx,y of the source letters in

the sub-stream sx that were represented by code letters in the sub-stream cy, converge

almost surely to P (X|x). Next, define the minimum divergence D∗ as,

D∗ = min
M(y|x)

dx,y,Vx,y

∑
x∈XM

M(x)
∑

y∈YM

M(y|x) D(Vx,y||P (X|x)×Q(Y |y)), (A.64)
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such that M(y|x), dx,y and Vx,y satisfy,

∑
x,y

M(x)M(y|x)ρ(x1, y1) =
∑
x,y

M(x)M(y|x)dx,y ≤ d, Vx,y ∈ Ex,y(dx,y), (A.65)

with x1 and y1 being the left most letters in x and y, respectively. Let M∗(y|x), d∗x,y, and

V ∗
x,y be the optimization variables that achieve the minimum in (A.64). Furthermore,

define D∗
y ≜

∑
x

M∗(x|y)D(V ∗
x,y||P (X|x) × Q(Y |y)),∀y ∈ YM , where M∗(x|y) can be

calculated from M(x) and M∗(y|x) from Bayes’ law. Hence, we have, D∗ =
∑
y

M(y)D∗
y,

with M(y) =
∑
x′

M(x′)M∗(y|x′). We will show that for any δ > 0, and sufficiently large

L =
∑
x,y

Lx,y,

P

(∑
x

M(x|y)D(QC|x,y||Q∗(P (X|x), Q(Y |y), d∗x,y)) > 3δ|VS,C∈EL(d)

)
≤
∏
x

(LM(y)M∗(x|y) + 1)2|X ||Y|e−Lδ.

(A.66)

In other words, if we condition on the event that the joint distribution of the random

source and code block pair (with K = 1) S, and C, denoted as VS,C over X ×Y , belongs

to EL(d), the average conditional distribution of the codewords is with high probability

close, in the divergence-sense, to
∑
x

M(x|y)Q∗(P (X|x), Q(Y |y), d∗x,y). Since closeness

in divergence also implies closeness in the L1 sense [45, Lemma 11.6.1], this establishes

Theorem 1. Then following [51, 45, Th. 11.6.2], we obtain,

P

(∑
x

M(x|y)D
(
VS,C|x,y||P (X|x)×Q(Y |y)

)
>D∗+ 3δ, VS,C ∈ EL(d)

)
=∑

V
′
x,y∈Ex,y(dx,y)∩PLx,y×QLx,y :∑

x
M(x|y)D(V

′
x,y||P (X|x)×Q(Y |y))>D∗

y+3δ∑
x,y

M(x,y)ρ(x1,y1)=
∑
x,y

M(x,y)dx,y≤d

∏
x

P(Ty(V
′

x,y)), (A.67)

where the probability of type class of V
′
x,y is denoted by P(Ty(V

′
x,y)), PLx,y , and QLx,y

are the sets of all possible input and output types with denominator Lx,y. Then, by [45,
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Th. 11.1.4] which bounds the probability of type classes,

P

(∑
x

M(x|y)D
(
VS,C|x,y||P (X|x)×Q(Y |y)

)
>D∗

y+ 3δ, VS,C ∈ EL(d)

)
≤∏

x

(Lx,y + 1)|X ||Y| exp
(
−L

(
D∗

y + 3δ
))

,
(A.68)

since there are only a polynomial number of joint types. Then, again by [45, Th. 11.1.4],

we observe that,

P

(∑
x

M(x|y)D
(
VS,C|x,y||P (X|x)×Q(Y |y)

)
≤D∗

y+ 2δ, VS,C ∈ EL(d)

)
=∑

V
′
x,y∈Ex,y(dx,y)∩PLx,y×QLx,y :∑

x
M(x|y)D(V

′
x,y||P (X|x)×Q(Y |y))≤D∗

y+2δ∑
x,y

M(x,y)ρ(x1,y1)=
∑
x,y

M(x,y)dx,y≤d

∏
x

P(Ty(V
′

x,y)) ≥
exp(−L(D∗

y + 2δ))∏
x

(Lx,y + 1)|X ||Y| , (A.69)

since for sufficiently large L, there exists at least one term in the summation, i.e., there

exists a set of joint types V
′
x,y in ELx,y(dx,y),∀x ∈ XM ,∀y ∈ YM , such that,

∑
x

M(x|y)D
(
V

′

x,y||P (X|x)×Q(Y |y)
)
≤ D∗

y + 2δ, and
∑
x,y

M(x,y)dx,y ≤ d. (A.70)

Next, taking into account that the probability of one event is larger than or equal to the

probability of the intersection, we have,

P (VS,C ∈ EL(d))≥
exp

(
−L

(
D∗

y+2δ
))∏

x

(Lx,y + 1)|X ||Y| . (A.71)

By Bayes’ law we get,

P

(∑
x

M(x|y)D
(
VS,C|x,y||P (X|x)×Q(Y |y)

)
>D∗

y+ 3δ
∣∣∣ VS,C ∈ EL(d)

)
≤∏

x

(Lx,y + 1)2|X ||Y| exp (−Lδ).
(A.72)

By the “Pythagorean” theorem [45, Th. 11.6.1], we have,

D(VS,C|x,y||V ∗
x,y)+D

(
V ∗
x,y||P (X|x)×Q(Y |y)

)
≤D

(
VS,C|x,y||P (X|x)×Q(Y |y)

)
. (A.73)

125



Asymptotic Performance Evaluation of Natural Type Selection Algorithm Chapter A

Hence,
∑
x

M(x|y)D
(
VS,C|x,y||P (X|x)×Q(Y |y)

)
≤ D∗

y + 3δ implies that,∑
x

M(x|y)D(VS,C|x,y||V ∗
x,y) ≤ 3δ. (A.74)

Finally, by the data processing inequality, we have,

∑
x

M(x|y)D(QC|x,y||Q∗(P (X|x), Q(Y |y), d∗x,y)) ≤
∑
x

M(x|y)D(VS,C|x,y||V ∗
x,y), (A.75)

since, both are the respective y-marginals of the joint types. Hence, Theorem 3 follows

from (A.72) as desired. Furthermore, it is worth noting that,

R(P (X|x), Q(Y |y), dx,y) = min
V ∈Ex,y(dx,y)

D(V ||P (X|x)×Q(Y |y)). (A.76)

Hence, by [38], the minimum in (A.64) is achieved by adding the output-constrained

rate-distortion functions at points of equal slopes in all co-ordinates, implying (3.30). ■

A.7 Theorem 4: NTS Algorithm Alternating Minimization over

Convex Sets for Markov Sources

We can write the average rate-distortion function over all source-code cross sub-streams

{sx, cy}, that can be achieved by an output distribution with M -th order Markov prop-

erty, as an average of double minimization over convex sets, i.e.,

R(d) = min
Q(Y |y)

min
M(y|x)
dx,y,Vx,y

∑
x,y

M(x)M(y|x) D
(
Vx,y

∣∣∣∣ P (X|x)×Q(Y |y)
)
. (A.77)

such that M(y|x), dx,y and Vx,y satisfy conditions in (A.65). For ease of notation, let,

D =
∑
x,y

M(x)M(y|x) D
(
Vx,y

∣∣∣∣ P (X|x)×Q(Y |y)
)
. (A.78)

It should be noted that all constraints on optimization variables in (A.77) are convex,

and it is easy to verify that this yields convex sets. It is easy to show that, for a fixed

set of joint distributions {Vx,y}, the reproduction conditional distribution Q(Y |y) which
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minimizes the average divergence D is the y-marginal of
∑

x M(x|y)Vx,y on Y . On

the other hand, for a fixed set of conditional distributions {Q(Y |y)} and distortion con-

straint d, the joint distribution which minimizes D under constraints in (A.65) will induce

Q(Y |y) =
∑

xM∗(x|y)Q∗(P (X|x), Q(Y |y), d∗x,y). By the results of Theorem 3, the re-

cursion in Algorithm 6 performs exactly this minimization over the convex sets. It should

be noted that the distance in the alternating minimization is measured by divergence.

Hence, by [79, Th. 3], the sequences of divergences and distributions will converge to the

minimum average divergence, i.e., R(d), and the corresponding conditional reproduction

distributions. ■

A.8 Theorem 5: Conditional Limit Theorem For Tractable NTS

Algorithm over Abstract Alphabets

We assume that the alphabet spaces X and Y are complete separable metric spaces

(often called Polish spaces), equipped with their associated Borel σ-field X ′ and Y ′,

respectively. Let x(ik) and y(jk), k = 1, 2, . . . , K, be a sequence of d-matching ML-

length words that are generated with the product probability measure PL
M over XML,

and Qn−1,M,L over YML, respectively. For the ease of notation, denote Qn−1,M,L as

QL
M . In other words, ρ(x(ik),y(jk)) ≤ d,∀k ∈ {1, 2, . . . , K}. Now let us consider

the realizations of the concatenated d-matching source and code vectors, similar to

Theorem 1, (also called blocks here and after) x = (x(i1) x(i2) . . .x(iK)), and y =

(y(j1) y(j2) . . .y(jK)). Furthermore, let QY be the random empirical distribution of

the random concatenated d-matching code block Y. Note that the source block realiza-

tion x and code block realization y satisfies a stricter distortion requirement, due to the

inherent maximum distortion constraint over sub-blocks. In order to capture such stricter

distortion requirement, we define a scalar-valued auxiliary distortion function as follows:
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(
ρ(d) : XML × YML → {0, 1}

)
, which is additive across the K ML-length sub-blocks, i.e.,

ρ(d) (x(ik),y(jk)) =

0 if ρ (x(ik),y(jk)) ≤ d,

1 otherwise
(A.79)

ρ(d)(x,y) =
1

K

K∑
k=1

ρ(d) (x(ik),y(jk)) , (A.80)

Note that by setting ρ(d)(x,y) = 0, we impose a requirement of maximum distortion d

per sub-block, over the K sub-blocks. Hence, the condition ρ (x(ik),y(jk)) ≤ d implies

that ρ(d)(x,y) = 0, or in other words, the auxiliary distortion function ρ(d)(·) is satisfied

between x and y with zero distortion constraint. Next, we show that the empirical

distribution of the code block y (formed by concatenating the d-matching codewords) is

unaltered regardless if the d-matching events for each source word and codeword pair,

occurred independently or jointly. In view of (A.79) and by the independent generation

of every ML-length part of the source blocks, and code blocks, as well as the definition

of the distortion measure ρ(d) at distortion level γ = 0, we have,

P
(
ρ(d)

(
X,Y

)
= 0

∣∣ X = x
)
=

K∏
k=1

P
(
ρ(d) (X(ik),Y(jk)) = 0

∣∣ X(ik) = x(ik)
)
.

(A.81)

P
(
ρ(d)

(
X,Y

)
= 0

∣∣ X = x
)
=

K∏
k=1

P
(
ρ (X(ik),Y(jk)) ≤ d

∣∣ X(ik) = x(ik)
)
. (A.82)

Hence, the δ-match event
(
for ρ(d) with γ = 0

)
between the MLK-length random

source block X and code block Y implies a sequence of d-match events for every ML-

length respective sub-blocks X(ik), and Y(jk). This, together with the independent

generation of every ML-length source and code sub-blocks, immediately shows that for

every (measurable) E ⊂ YML, QY(E) is unchanged whether the d-match events occurred
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independently or jointly across the K source and respective code sub-blocks. Next define

Q∗
PL
M ,QL

M ,γ
as the optimal distribution that minimize the coding rate for a given current

codebook reproduction distributionQL
M , and for the auxiliary distortion measure ρ(d)(·) at

distortion level γ, as in (3.40), where the definition is repeated here for better readability,

Q∗
PL
M ,QL

M ,γ = arg inf
Q′

{
Imin(P

L
M ||Q′, γ) +D(Q′||QL

M)
}
, (A.83)

Imin

(
PL
M ||Q′, γ

)
= inf

V :[V ]x=PL
M , [V ]y=Q′,

EV (ρ(d)(X,Y))≤γ

I (X,Y) , (A.84)

Now we invoke Theorem 3 in [41], with straight forward extension to sources with memory,

for every (measurable) E ⊂ YML, the probability,

P
(∣∣Q̂Y(E)−Q∗

PL
M ,QL

M ,γ(E)
∣∣ >ϵ

∣∣ ρ(d)(X,Y)=0,X=x
)
→ 0, (A.85)

as K → ∞, exponentially fast, where Q̂Y is the random empirical distribution of the

random code block Y on YML. Thus conditioning on the PL
M -almost every realization

x (as K → ∞) and the γ-match event ρ(d)(X,Y) = γ = 0, the probability that the

difference between empirical distributions Q̂Y and Q∗
PL
M ,QL

M ,γ
over any (measurable) E ⊂

YML is larger than ϵ, with ϵ > 0, goes to zero asymptotically in K. Note that the

effective lengths of the source or code blocks are L ≜ LK, hence sending K → ∞,

obviously implies that L→∞. Furthermore, by [41], we have,

P
(∣∣Q̂Y(E)−Q∗

PL
M ,QL

M ,γ(E)
∣∣ >ϵ

∣∣ ρ(d)(X,Y)=0,X=x
)

=

P
(∣∣QY(E)−Q∗

PL
M ,QL

M ,γ(E)
∣∣ >ϵ

∣∣X=x
)
.

(A.86)
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This together with Borel-Cantelli lemma, and [41], we conclude that for any measurable

set E ⊂ YML,

QY(E)→ Q∗
PL
M ,QL

M ,γ(E), as K →∞, w.p. 1. (A.87)

Since YML is a Polish space, then there exists a countable convergence determining class

E = {Ei} ⊂ YML. Therefore, with probability one we have,

QY(Ei)→ Q∗
PL
M ,QL

M ,γ(Ei), as K →∞, ∀i, (A.88)

which subsequently implies Theorem 5. ■

A.9 Theorem 6: Abstract Alphabet NTS Algorithm, Alternating

Minimization over Convex Sets

Using the same arguments as Theorem 2 and Theorem 4, it is straightforward to ver-

ify that the sets of joint distributions {PL
M × QL

M : any QL
M}, and the γ-constrained

set
{
V : [V ]x = PL

M , EV

(
ρ(d)(X,Y)

)
≤ γ

}
are convex sets. Furthermore, it should be

noted that for a fixed joint distribution V , the reproduction distribution which mini-

mizes D(V ||PL
M × QL

M) is the y-marginal of V on YML. On the other hand, for a fixed

QL
M and distortion constraint γ, the joint distribution which minimizes D(V ||PL

M ×QL
M)

over
{
V : [V ]x = PL

M , EV

(
ρ(d)(X,Y)

)
≤ γ

}
will induce Q∗

PL
M ,QL

M ,γ
. Hence, by Theorem

5, the recursion in Algorithm 7, achieves a sequence of alternating minimization across

convex sets.

V ∗
PL
M ,Q0,M,L,γ

→
(
PL
M ×Q∗

PL
M ,Q0,M,L,γ

)
→ V ∗

PL
M ,Q1,M,L,γ

→
(
PL
M ×Q∗

PL
M ,Q1,M,L,γ

)
. . . ,

(A.89)
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where,

V ∗
PL
M ,Qn,M,L,γ

≜ arg inf
V :[V ]x=PL

M ,

EV (ρ(d)(X,Y))≤γ

D
(
V ||PL

M ×Qn,M,L

)
. (A.90)

It should be noted that the distance in the alternating minimization is measured by

divergence. Hence, by [79, Th. 3], the sequences of divergences and distributions will

converge to the minimum divergence, i.e., R(PL
M , 0), and the corresponding optimum

reproduction distribution Q∗
PL
M ,0

on YML asymptotically in K and n. ■

A.10 Theorem 7: Convergence of the NTS Codebook Reproduc-

tion Distribution for Abstract Alphabet Sources

We assume that the alphabet spaces X and Y are complete separable metric spaces (often

called Polish spaces), equipped with their associated Borel σ-field X ′ and Y ′, respectively.

Let x(ik) and y(jk), k = 1, 2, . . . , K, be a sequence of d-matching ML-length words that

are generated with the product probability measure PL
M over XML, and Qn−1,M,L over

YML, respectively. For the ease of notation, denote Qn−1,M,L as QL
M . In other words,

ρ(x(ik),y(jk)) ≤ d,∀k ∈ {1, . . . , K}. It can be shown by [41, Th. 3] and straight forward

generalization to sources with memory, i.e.,M > 1, that the marginal probability measure

of the d-matching codeword converges in the weak convergence sense to Q∗
PM ,QMarg.

n−1,M,L,d
,

defined in (3.40), as L goes to infinity, i.e.,

z ≜ y(jk), QMarg.
y(jk)

=
1

L

L∑
ℓ=1

δzℓ , ∀k, (A.91)

QMarg.
y(jk)

=⇒ Q∗
PM ,QMarg.

n−1,M,L,d
, as L→∞, (A.92)

where zℓ is the ℓ-th super-symbol in the codeword z, and QMarg.
y(jk)

is the marginal empirical

probability measure of y(jk) on the alphabet YM . Hence, by the definition of Qn,M,L in
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(3.36), the marginal probability measure QMarg.
n,M,L converges weakly to Q∗

PM ,QMarg.
n−1,M,L,d

, as

L→∞, as well. The M -th order joint rate-distortion function in (2.7) can be rewritten

as [10, 41]

R(PM , d) = inf
Q

inf
V :[V ]x=PM ,

EV (ρ(X,Y))≤d

D (V ||PM ×Q) , (A.93)

here the inner infimum is taken over all joint distributions V of the random M -length

sub-vectors or super-symbols (X,Y) such that the x-marginal of V is PM , and the ex-

pected distortion EV (ρ (X,Y)) ≤ d. Finally, similar to Theorems 2, 4, 6, the marginal

distributions obtained by the recursion in (3.36), as L → ∞, result in a sequence of

alternating minimization across convex sets, i.e.,

V ∗
PM ,QMarg.

0,M ,d
→
(
PM ×Q∗

PM ,QMarg.
0,M ,d

)
→ V ∗

PM ,QMarg.
1,M ,d

→
(
PM ×Q∗

PM ,QMarg.
1,M ,d

)
. . . ,

(A.94)

where, QMarg.
n,M is the marginal probability measure of Qn,M , and,

V ∗
PM ,QMarg.

n,M ,d
≜ arg min

V :[V ]x=PM ,
EV (ρ(X,Y))≤d

D
(
V ||PM ×QMarg.

n,M

)
. (A.95)

The sequence of divergences will converge to the minimum divergence, i.e., R(PM , d), and

the marginal probability measure QMarg.
n,M,L will converge to the corresponding optimum

reproduction distribution Q∗
PM ,d asymptotically in n and L. ■
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