
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Bridging the Gap Between Logic and Probabilistic Model Checking

Permalink
https://escholarship.org/uc/item/5979985g

Author
Zhao, Yang

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5979985g
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

RIVERSIDE

Bridging the Gap Between Logic and Probabilistic Model Checking

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Yang Zhao

August 2013

Dissertation Committee:

Professor Gianfranco Ciardo, Chairperson
Professor Zizhong Chen
Professor Christian Shelton
Professor Neal Young



Copyright by
Yang Zhao

2013



The Dissertation of Yang Zhao is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

First and foremost, I would like to express my deepest appreciation to Dr. Ciardo, the best

advisor I could imagine. His knowledge, patience, and advising make my thesis possible. I

will never forget the nice experiences discussing with him and the spark of ideas we ignited

together during the past five years.

My research also receives supports from Dr. Kristin Y. Rozier at NASA Ames

Research Center and Dr. Radu Siminiceanu at National Institute of Aerospace. My summer

interns in NASA and NIA greatly extend my prospective on formal methods.

I would also thank my friends here in UCR: Min Wan, Malcolm Mumme, Xiaoqing

Jin, Diego Villasenor, Yousra Lembachar, Xin He, Lei Wang, Zhe Wu, and Li Yan. Without

their help, my life in UCR would have been much more difficult.

Thank Amy and Madie from Department of CSE, you are the best and most

helpful staffs.

Finally, the best gift I received while at UCR is the love from my wife, Xiaoquan

(well, technically, Dr. Zhou :)).

iv



To my little Yang Yang, and our homeland, China.

v



ABSTRACT OF THE DISSERTATION

Bridging the Gap Between Logic and Probabilistic Model Checking

by

Yang Zhao

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2013

Professor Gianfranco Ciardo, Chairperson

Fast development of hardware/software design requires more versatile and powerful verifi-

cation methods to help engineers understand, verify, and debug their systems. The scope

of system verification now is not limited to finding functional errors at the logic level, but

also includes analyzing and predicting the bottlenecks in performance and dependability.

Model checking, which was originally proposed to verify discrete-state systems, has been

further extended to the verification of probabilistic systems. Many techniques from other

communities, such as Markov chain analysis, are involved in the model checking process.

Traditional and new verification techniques must be integrated into a platform that can

handle both the logic and probabilistic aspects of a given model.

Symbolic model checking using decision diagrams has achieved great success in

verifying many practical software and hardware systems, and is still the primary approach

to logic verification. Recent research shows that decision diagrams can be successfully

employed in probabilistic model checking. This thesis is devoted to future improving the

capability of decision diagram techniques in model checking. Specifically, this thesis explores

vi



the application of a family of decision diagrams, including multi-way decision diagrams and

edge-valued multi-way decision diagrams, to several topics in both classic and probabilistic

model checking.

My thesis consists of two parts of work: In the first part, I extend the existing sat-

uration algorithm, which was originally proposed for state-space generation, to CTL model

checking, strongly-connected component enumeration, and shortest witness generation for

various properties. The second part of the thesis focuses on probabilistic model checking

using decision diagrams. I propose a new and more efficient algorithm to carry out the

Gauss-Seidel iterative method, which is a key step in probabilistic model checking. This

technique can be applied to both steady-state solution of continuous-time Markov chains

and CSL model checking. Then, I introduce a new bounding semantics of CSL to tackle

truncation errors in numerical analysis and correctly evaluate nested CSL formulas.

The proposed techniques have been integrated into the SmArT tool developed in

our lab. Experimental results demonstrate that SmArT is a promising platform to handle

both logic and quantitative verification for many practical systems.

vii



Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Model checking: logic and probabilistic . . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8
2.1 Decision diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Multi-way decision diagrams . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Edge-valued Multi-way decision diagrams . . . . . . . . . . . . . . . 14

2.2 Discrete-state systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Symbolic state-space generation and saturation . . . . . . . . . . . . 23
2.2.2 Computation Tree Logic . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 CTL model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 CTMCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Steady-state solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Transient analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.4 CSL model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

I Logic model checking 44

3 Constrained saturation and CTL model checking 45
3.1 Constrained saturation for the EU operator . . . . . . . . . . . . . . . . . . 47
3.2 Transitive closure and the EG operator . . . . . . . . . . . . . . . . . . . . . 52
3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Results for the EU computation . . . . . . . . . . . . . . . . . . . . . 54

viii



3.3.2 Results for the EG computation . . . . . . . . . . . . . . . . . . . . . 56
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 SCC enumeration 60
4.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Using saturation in the XB algorithm . . . . . . . . . . . . . . . . . . . . . 66
4.3 Computing the TC with saturation . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Fair cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Shortest EG witness generation 79
5.1 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Computing TCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Shortest witness generation beyond EG . . . . . . . . . . . . . . . . . 89
5.3.2 Shortest fair witness . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

II Probabilistic model checking 99

6 EVMDD-based two-phase Gauss-Seidel iteration 100
6.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Symbolic iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Transition rate matrix and probability vector storage . . . . . . . . . 105
6.2.2 Symbolic Jacobi iterations . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.3 Symbolic Gauss-Seidel iterations . . . . . . . . . . . . . . . . . . . . 110

6.3 Speeding up the iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4 Complexity and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 A bounding semantics for CSL 127
7.1 Bounding the probability in CSL model checking . . . . . . . . . . . . . . . 129

7.1.1 Time-bounded until . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.1.2 Unbounded until . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.1.3 Point-interval and general interval until . . . . . . . . . . . . . . . . 133

7.2 Semantics for CSL formulas with bounds . . . . . . . . . . . . . . . . . . . . 133
7.3 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

ix



8 Implementation: SMART tool 144
8.1 Logic model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2 Probabilistic model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9 Conclusion 148
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 152

x



List of Figures

2.1 Quasi-reduced MDD (left), quasi-reduced sparse MDD (middle), and fully-
reduced MDD (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Union operation on fully-reduced BDDs. . . . . . . . . . . . . . . . . . . . . 15
2.3 An EV+MDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Pseudocode for Normalize. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Pseudocode for Min and Sum. . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 An example of firing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 (a) The discrete-state model for a 2-bit counter; (b) MDDs encoding the

next-state function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 The relational product operator. . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 State-space generation using breadth-first search. . . . . . . . . . . . . . . . 28
2.10 The (forward) saturation algorithm. . . . . . . . . . . . . . . . . . . . . . . 29
2.11 Traditional CTL model checking algorithms. . . . . . . . . . . . . . . . . . . 33
2.12 Encoding a CTMC with an EV+MDD and an EV∗MDD. . . . . . . . . . . . 39
2.13 Backward computation of the probability vector for φU[0,t]ψ. . . . . . . . . 42

3.1 Saturation-based EU model checking algorithms. . . . . . . . . . . . . . . . 47
3.2 Saturation using a constrained next-state function (EUsatConsNSF ). . . . . 50
3.3 Constrained saturation (EUconsSat). . . . . . . . . . . . . . . . . . . . . . . 51
3.4 EG computation based on BFS v.s. transitive closure. . . . . . . . . . . . . . 58

4.1 Lockstep for SCC computation. . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 XB algorithm for terminal SCC computation. . . . . . . . . . . . . . . . . 65
4.3 Improved XB algorithm to compute SCCs using saturation. . . . . . . . . . 68
4.4 Improved XB algorithm to compute terminal SCCs using saturation. . . . . 68
4.5 Building the TC using saturation (continued on Figure 4.6). . . . . . . . . . 70
4.6 Building the TC using saturation. . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Computing recurrent states using TC. . . . . . . . . . . . . . . . . . . . . . 72
4.8 Computing fair cycles using TC. . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 BFS-based algorithm to generate a witness for EGφ. . . . . . . . . . . . . . 83
5.2 Computing TCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xi



5.3 Building TCDφ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 A witness for EF(r ∧ EG¬s). . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Runtime and witness length of the BFS-based algorithm on slot, cqn, and

arbiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 EV∗MDD (a) and Kronecker (b) representations of transition rate. . . . . . 103
6.2 Jacobi iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Gauss-Seidel iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 Two-phase iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Top level Gauss Seidel iteration for unbounded U operator. . . . . . . . . . 113
6.6 Algorithm to preprocess and build the cache array. . . . . . . . . . . . . . . 115
6.7 Structure of the cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.8 Runtime (sec) per iteration: Act-Cl2-GSD vs. our plain algorithm. . . . . . 123
6.9 Experimental results comparing PRISM with the proposed algorithms. . . 124

7.1 Modified Fox-Glynn algorithm for lower bounds on Poisson probabilities. . . 130
7.2 An example of computing ν(S1). . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3 Model checking algorithm for UI generating bounds. . . . . . . . . . . . . . 134
7.4 Algorithm for the evaluation of nested CSL formulas. . . . . . . . . . . . . . 137
7.5 Algorithm for refining the evaluation of nested CSL formulas. . . . . . . . . 138
7.6 Embedded system bounded until: size of lower and upper bound sets satis-

fying the formula (left) and probability bounds for the initial state (right). . 139
7.7 Embedded system unbounded until: size of lower and upper bound sets sat-

isfying the formula (left) and probability bounds for the initial state (right). 140
7.8 High-level state transition of the AAC system. . . . . . . . . . . . . . . . . 141

8.1 The infrastructure of SmArT. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xii



List of Tables

2.1 Algorithms for model checking CSL [4]. . . . . . . . . . . . . . . . . . . . . 43

3.1 Results for the EU computation. . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Results for the EG computation. . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Results for SCC and terminal SCC computation. . . . . . . . . . . . . . . . 78

5.1 Results for EG witness generation. . . . . . . . . . . . . . . . . . . . . . . . 96

7.1 Results for Formula 7.4 using top-down refinement. . . . . . . . . . . . . . . 142
7.2 Results for Formula 7.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.1 Functionality of decision diagrams. . . . . . . . . . . . . . . . . . . . . . . . 149
9.2 The application of (improved) Saturation. . . . . . . . . . . . . . . . . . . . 149

xiii



Chapter 1

Introduction

Verification is the process of checking whether an implementation, either using

software or hardware, conforms to the given specification. When the system under verifica-

tion is simple, a high confidence in the correctness of the system can be achieved by testing.

As the complexity of software and hardware design grows, efforts on system testing and

debugging keep increasing, and verification becomes the bottleneck in current software and

hardware design flow.

Formal verification has long been a dream in both academia and industry. The

objective of formal verification is to automatically prove or disprove the correctness of

a system compared to the intended behavior. Unlike traditional system testing, formal

verification does not require to generate test cases, and hopefully, once the system passes the

verification, its correctness is ensured. There are several approaches in formal verification:

static analysis, theorem proving, model checking, and so on. This thesis only focuses on

model checking.

1



1.1 Model checking: logic and probabilistic

Model checking is an important and successful state-of-the-art approach in formal

verification. Given a model of a real system, M, and the specification Φ, described using

a formal language, model checking is the process to exhaustively and automatically check

whether M |= Φ and identify the “counterexamples”, which are system executions that

violate Φ. Thus, research in model checking can be categorized according to the type of

model M and the formal language used to express Φ. This thesis focuses on two types of

model checking: logic and probabilistic model checking.

Logic model checking was originally proposed by Clarke and Emerson [27], and by

Queille and Sifakis [67]. M is described as a (finite) discrete-state system, and Φ is described

using temporal logic, like Computational Tree Logic (CTL) or Linear Tree Logic (LTL). A

(logic) model checker identifies whether there is a possible path inM that proves or violates

Φ. One simple yet typical model checking problem is the reachability of a systemM: given

a set of “unsafe” states, check whether unsafe states are reachable from initial states in

M. If so, a path from an initial state to an unsafe state is returned as a counterexample.

Otherwise, it is guaranteed that no such a path exists inM, i.e.,M will never reach unsafe

states. In a nutshell, model checking focuses on the existence of some unexpected behaviors.

Inspired by dependability and performance analysis, probabilistic model checking

addresses the probabilities of certain system behaviors. For example, hardware failures

are inevitable in large computer systems, and we need to study the probability of these

failures and their effects on service availability. This thesis considers probabilistic model

checking problems in which M is described as a continuous-time Markov chain (CTMC),

2



and Φ is described using Continuous Stochastic Logic (CSL). Extended from logic model

checking, probabilistic model checking combines techniques from logic verification, Markov

chain analysis, and timed automata. Integrating logic and probabilistic model checking

techniques into a new platform becomes a natural approach to handle both the logic and

quantitative aspects of given models.

1.2 Challenges

The key step in logic model checking is to exhaustively search among all possible

system executions. Thus, the complexity of a näıve approach is at least O(E), where E is the

number of edges in the state transition graph generated from the model. As the number of

states in the model grows, the näıve approach becomes infeasible. “State-space explosion”

describes the combinatorial blow up of the state space, which is the primary difficulties

encountered by model checking techniques. The formidable memory consumption needed

when storing and manipulating a potentially huge number of states is the main obstacle.

Two approaches have been extensively studied: explicit model checking and sym-

bolic model checking, to overcome the state-space explosion and build practical model

checkers. Explicit model checking is based on the explicit storage of states, and often em-

ploys state compression [42] and partial-order reduction [64] to reduce both the memory

and runtime consumption in the traversal. Symbolic model checking [29, 56, 57] employs

advanced algebra and represents states implicitly. For example, SAT-based model check-

ing [2, 6, 79] converts a model checking problem to a boolean satisfiability (SAT) problem

and solves it using a SAT solver, while BDD-based model checking encodes and manipu-

3



lates sets of states using Binary Decision Diagrams (BDDs). This thesis focuses on symbolic

model checking utilizing decision diagrams.

Symbolic model checking has achieved great success by adopting Binary Decision

Diagrams (BDDs) [8]. BDDs have been widely utilized as a time and space efficient data

structure to perform operations such as union, intersection, and relational product over sets

of states. Unlike explicit approaches, BDDs do not store or manipulate the states one by

one, but represent sets of states using acyclic graphs whose size does not necessarily grow

with the size of the set. BDDs are able to handle a large number of states using relatively

small amount of memory. Hence, BDD-based techniques provide a feasible approach to

verify complex systems that otherwise could not even be stored.

One difficulty that BDD-based model checking encounters is to verify asynchronous

systems. Previous successes achieved by BDD-based model checking were mainly in hard-

ware verification, like VLSI design or bus protocols, where system transitions are synchro-

nized by a global clock. In asynchronous systems, such synchronization does not exist, and

several events may occur in any arbitrary order. The performance of traditional BDD-

based model checking deteriorates due to the complex transition relations of asynchronous

systems. As many-core CPUs and multi-thread programs prevails, software debugging and

testing become much more difficult, and the verification of asynchronous systems draws

more attention in both academia and industry. This difficulty motivates us to find more

efficient algorithms for asynchronous systems.

Turning to probabilistic model checking, the problem of state-space explosion be-

comes even worse because we need to handle both the large state space and also the proba-

4



bilities of different states. Decision diagrams were originally designed for discrete structures

rather than structures containing continuous values, thus several extensions have been pro-

posed to enable BDDs to encode real-value functions. However, as Chapter 6 shows, these

extensions do not scale in some cases. Moreover, probabilistic model checking involves

sophisticated numerical algorithms, like Gauss-Seidel iterations, and no existing implemen-

tation is available for decision diagrams. To fully exploit the advantages of decision diagrams

in probabilistic model checking, new algorithms for numerical analysis based on decision

diagrams must be developed.

Finally, practical system design requires versatile tools, which can not only find

error at logic level, but also predict bottleneck in performance and dependability. It requires

to integrate logic and probabilistic model checking into one single platform.

1.3 Contributions

This thesis focuses on improving the efficiency of both logic and probabilistic model

checking. The work in this thesis is based on a family of decision diagram data structures,

including Multi-way Decision Diagrams (MDDs) and Edge-valued MDDs (EVMDDs). This

thesis shows that decision diagrams can be efficiently applied to both logic and probabilis-

tic model checking for asynchronous systems, and thus have great potential as the key

data structure in a unified model checking platform handling both logic and probabilistic

properties.

The contributions of this thesis mainly lie along three aspects:

5



1. I extend the application of the existing saturation algorithm from state-space gener-

ate to CTL model checking and proposed constrained saturation. For model checking

CTL operator EU, the new algorithm using constrained saturation is able to achieve

a clear speedup and reduce the peek memory consumption over a mainstream BDD-

based model checker. Furthermore, I employ constrained saturation to compute the

transitive closure, which has long been considered infeasible for non-trivial models.

The transitive closure can be employed to check the CTL EG operator, and to enu-

merate strongly-connected components in transition systems. Although, in general,

building the transitive closure is still expensive, my experiments show that in some

cases where traditional algorithms do not work, the transitive closure based algorithm

provides a good substitutes.

2. I proposed a two-phase algorithm for stationary solution of continuous-time Markov

chains. This algorithm carries out Gauss-Seidel iterations based on the decision dia-

gram encoding the transition rate matrix. Experimental results show that the two-

phase algorithm achieves comparable, if not better, speed with a mainstream tool

and reduces the memory consumption at the same time. This thesis also introduces

a bounding semantics for CSL formulas to tackle truncation errors in the numerical

analysis. Then, we study the bounding semantics for a subset of nested CSL formulas.

3. All the above new algorithms have been implemented in our symbolic model checker,

called SmArT, which is built on decision diagram library “MDDL”. This platform is

now able to handle both logic and probabilistic model checking problems.

6



1.4 Structure

Chapter 2 reviews the required background knowledge, and the rest of the thesis

is divided into two parts: on logic model checking and on probabilistic model checking,

respectively.

The first part of my thesis covers three topics in logic model checking: first, I

extend the saturation algorithm to CTL model checking and proposed constrained satura-

tion (Chapter 3); second, I present two approaches to strongly-connected component (SCC)

enumeration (Chapter 4), both of which employ the saturation algorithm; finally, I propose

a new algorithm to build the transitive closure with distance, and show its application in

finding EG and many other types of shortest witnesses (Chapter 5).

The second part of my thesis focuses on probabilistic model checking using decision

diagram techniques. I introduce a new algorithm to carry out the Gauss-Seidel iteration,

using EVMDDs to encode the CTMC (Chapter 6). This technique is a key step in numerical

analysis and can be applied to both stationary solution and CSL model checking. Finally,

I explore a new bounding CSL semantics (Chapter 7).

At the end of this thesis, I introduce the implementation of SmArT and its new

features (Chapter 8). Chapter 9 summarizes the whole thesis and points out future work.

7



Chapter 2

Preliminaries

This chapter reviews required background. Section 2.1 introduces the definition of

three types of decision diagrams. Section 2.2 reviews discrete-state systems and assumptions

for these systems. CTL and CTL model checking algorithms are also reviewed. Section 2.3

reviews the definition of continuous-time model checking, and CSL model checking algo-

rithms.

2.1 Decision diagrams

This section reviews the key data structure, decision diagrams, in this thesis. While

BDDs are the most widely used decision diagrams, we employ multi-way decision diagrams,

which extend variable domains to arbitrary bounded integers. This choice is not a novelty

by itself, but facilities the algorithms in following chapters.

Binary decision diagrams (BDDs) are the most widely used symbolic data struc-

tures to store and manipulate sets of states. The invention of BDDs [54] was motivated by

8



the design and analysis of digital circuits, where BDDs were proposed to encode general

boolean functions. Bryant [8] proves that if the order of the variables in a BDD is fixed, there

is a unique BDD structure corresponding to a given boolean function, and this property

is called canonicity. BDD-based model checking has achieved great success [12, 11] in the

verification of many real systems and is still a mainstream technique in formal verification.

Many different decision diagrams derived from BDDs have been proposed to tackle

different problems. Definition 1 defines the most general rules shared by all decision dia-

grams in this thesis.

Definition 1 A decision diagram is a directed, acyclic graph that contains a set of nodes

N and satisfies the following rules:

1. Each node p ∈ N is located on level l ∈ {0, 1, · · · , L}, where L is the highest level in

this decision diagram. Let p.lvl denote the level of node p.

2. p is a terminal node iff p.lvl = 0. There is no outgoing edge from terminal node to

any other nodes.

3. If p is not a terminal node, it may have outgoing edge with an index i ∈ N, denoted

by p[i], pointing to a different node q ∈ N (self-loop is not allowed). Moreover,

q.lvl < p.lvl , which guarantees that there is not cycle in this graph.

4. Canonicity rule: given nodes p, q ∈ N with p.lvl = q.lvl > 0, if ∀i, p[i] = q[i], then

p = q. In other words, decision diagrams do not allow duplicated nodes.

In the application of decision diagrams, each level l ∈ {1, · · · , L} often corresponds

to a variable vl, so an order between variables v1, · · · , vL is defined. In this thesis, we assume

9



the variable order is fixed before decision diagrams are created. The size and structure of a

decision diagram are often changed by applying a different variable order.

To completely define a type of the decision diagram, there are several other rules

required besides the definition above:

• Domain: for all nodes on level k, the range of the indices of outgoing edges.

• Range: number of terminal nodes and their meanings.

• Reduction rules: it determines whether and when a node would not be stored. As an

extreme case, quasi-reduced decision diagrams require that for any edge p[i] pointing

to node q, it always has q.lvl = p.lvl − 1, while there are other reduction rules.

For example, BDDs have the following rules besides those in Definition 1.

Definition 2 Binary decision diagrams are decision diagrams satisfying:

• Domain: for all nodes, there are at most two outgoing edges with indices either 0 or

1.

• Range: there are only two terminal nodes, called 0 and 1.

• Reduction rules: BDDs are fully reduced, it means there is no redundant node q that

q[0] = q[1] stored in a BDD.

Let p[0] or p[1] be the destination node of p’s 0- or 1-edge. Due to the fully-reduced

rule, it is possible that node p[i] = q and q.lvl < p.lvl − 1, which means the nodes on levels

q.lvl +1, · · · , p.lvl − 1 are skipped by this edge. The fully-reduced rule ensures that indices

on those levels do not affect the destination terminal node of this path.

10



A BDD node p on level k ≤ L defines a function fp : B
L → B that:

fp(iL, · · · , i1) = fq(iL, · · · , i1) if k > 0 and p[ik] = q,

and f0(iL, · · · , i1) = 0, f1(iL, · · · , i1) = 1, where iL, · · · , i1 are boolean values. If we consider

fp as the characteristic function of a set X ⊆ B
L, node p can be considered as an encoding

of X that (iL, · · · , i1) ∈ X iff fp(iL, · · · , i1) = 1.

2.1.1 Multi-way decision diagrams

The definition of Multi-way Decision Diagrams (MDDs) [44] subsumes that of

BDDs, and allows arbitrary finite integer values on each level.

Definition 3 Multi-way Decision Diagrams (MDDs) are decision diagrams satisfying:

• Domain: for nodes on level k, there are at most nk outgoing edges, with indices

0 · · ·nk − 1. Let Xk = {0 · · ·nk − 1}. Let p[i] = q where q is the destination node for

p’s outgoing edge with index i

• Range: there are only two terminal nodes with values 0 and 1, denoted by 0 and 1,

respectively.

• Reduction rules: we consider both fully- and quasi- reduced MDDs, see definitions

below.

In the rest of this thesis, we use a, p, q or s to denote an MDD node. Compared

with BDDs, MDDs just extend the domain from boolean to Xk on level k.

11



We first consider a quasi-reduced MDD, if p[i] = q, it is required that q.lvl =

p.lvl−1. Thus, the boolean function encoded by an MDD node p at level k > 1 is recursively

defined as fp where:

fp(ik, ik−1, · · · , i1) = fp[ik]((ik−1, · · · , i1)).

with terminal cases f0 = 0 and f1 = 1. Fig. 2.1 (left) shows an example of quasi-reduced

MDDs. p on level L also encodes a set B(p) ⊆ XL × XL−1 · · · X1 s.t. (iL, · · · , i1) ∈ B(p) iff

fp(iL, · · · , i1) = 1

We often only care about paths leading to terminal 1, thus we do not need to

explicitly store terminal 0, and nodes from which no path leads to 1. In other words, every

node p stored in an MDD must have at least one path leading to terminal 1. If p[k] is not

stored, it is called a zero child, denoted by p[k] = NULL, meaning there is no path from

p’s child with index k leading to terminal 1. This type of storage is called sparse storage.

Fig. 2.1 (middle) shows an example of quasi-reduced sparse MDDs. In the remainder of

this thesis, “quasi-reduced MDDs” always refers to sparse-stored quasi-reduced MDDs.

Similar with BDDs, fully-reduced MDDs eliminate all redundant nodes. A node p

on level l is redundant if ∀il, jl ∈ Xl, p[il] = p[jl]. The function that a non-terminal node p

on level k ≤ L in a fully-reduced MDD encodes is:

fp(iL, · · · , i1) = fp[ik](iL, · · · , i1),

with terminal cases f0 = 0 and f1 = 1. Redundant nodes reflect the fact that the values

of variables corresponding to the skipped levels do not affect the result, given the values of

12



variables on upper levels. Similarly, p on level l ≤ L encodes a set B(p) ⊆ XL×XL−1 · · · X1

s.t. (iL, · · · , i1) ∈ B(p) iff fp(iL, · · · , i1) = 1.

As we mentioned in Definition 1, canonicity is a very important property, which

guarantees that in an MDD (using either quasi- and fully-reduced rule), p 6= q iff B(p) 6=

B(q).

Canonicity can be achieved recursively by fulfilling the following two rules:

• No two terminal nodes have the same value, i.e., fp 6= fq for any terminal nodes p 6= q.

• Given non-terminal nodes p and q on level k, if there are p[ik] = q[ik] for all ik ∈ Xk,

p = q.

It is easy to prove that, if the above rules are enforced, canonicity in the MDD

can be achieved. The first rule is trivial, and the second rule can be satisfied by using

unique table, which is a hash table storing pointers to nodes. The hash value of a node n

is determined by its level k and n[ik] for all ik ∈ Xk. When trying to create a new node

p, all its child nodes must first be stored in the unique table, and the unique table checks

whether there is an existing node q such that q.lvl = p.lvl and p[i] = q[i] for all i ∈ Xk. If

0 1

0 1 2

0 1

0 1 2

0 1 2 3

0 1 20 1 2

0 1

0 1 20 1 2

0 10 1

1

1 2 3

0 1 20 1 2

0 1 1 0 1

0 1 20

0

2

0 1

0 1 2 3

0 1 20 1 2

0 1 2

0 1

20 1

Figure 2.1: Quasi-reduced MDD (left), quasi-reduced sparse MDD (middle), and fully-
reduced MDD (right)

13



so, no new node is created but the pointer pointing to q is returned. If not, we create a new

node as p and store its pointer in the unique table.

Given MDD nodes p and q encoding sets B(p),B(q) ⊆ XL×· · ·×X1, set operations,

like union, intersection, and minus, can be executed symbolically using operations on the

MDD. Figure 2.2 shows the pseudo code for the union operation. Function Union returns an

MDD node r where B(r) = B(p)∪B(q). Similar algorithms are available for the intersection

and minus operations.

An important strategy to reduce the complexity of MDD operations, like union, is

to maintain an operation cache. Operation cache is a hash table storing the results obtained

from previous computations. Before the real computation, a search in the operation cache is

carried out (Line 4 in Figure 2.2) to find if the same operation has been computed before. If

so, the previous result is returned directly, and thus the duplicated operations on the same

nodes will be avoided. Assume we have an ideal operation cache, which keeps a complete

history of previous computations, the complexity of union operation is O(|p| × |q|), where

|p| and |q| are numbers of nodes in the MDD that is reachable from p and q, respectively.

2.1.2 Edge-valued Multi-way decision diagrams

Edge-Valued Multi-way Decision Diagrams (EVMDDs) are an extension of Multi-

way Decision Diagrams (MDDs). An integer or real value is associated to each edge of the

diagram, enabling them to encode integer or real functions over XL×XL−1×· · ·×X1, instead

of boolean functions like MDDs. Widely used Multi-terminal Binary Decision Diagrams

(MTBDDs, and the similar Algebraic Decision Diagrams, ADDs) [53] or Multi-terminal

14



mdd Union(mdd p,mdd q) is
1 if p = 0 or q = 1 then return q;

2 if q = 0 or p = 1 then return p;

3 if p = q then return p;

4 if InCacheUnion({p, q}, r) then return r;

5 lp ← p.lvl ; lq ← q.lvl ;

6 if lp = lq then foreach i ∈ Xlp r[i]← Union(p[i], q[i]); endfor

7 else if lp < lq then foreach i ∈ Xlq r[i]← Union(p, q[i]); endfor

8 else if lp > lq then foreach i ∈ Xlp r[i]← Union(p[i], q); endfor

9 endif

10 r ← UniqueTableInsert(r);

11 CacheAddUnion({p, q}, r);

12 return r;

Figure 2.2: Union operation on fully-reduced BDDs.

Multi-way Decision Diagrams (MTMDDs) are natural extensions of BDDs and MDDs to

real values. In this thesis, however, we employ Edge-Valued Multi-way Decision Diagrams

(EVMDDs) [21], which have the advantage of being more compact: [69] proves that an

EVMDD never contains more nodes than the equivalent MTMDD under the same variable

order. It is easy to find examples (like in Figure 2.3) where the EVMDD is exponentially

more compact than the equivalent MTMDD for the same or even for any variable order.

Definition 4 EVMDDs are decision diagrams where:

• Domain: for nodes on level k, there are at most nk outgoing edges, with indices in

{0 · · ·nk − 1}.

• Range: the only terminal node is Ω.

• Edge value: for any non-terminal node p, each of its outgoing edge with index i

pointing to q has an associated value ρ, we write p[ik] = 〈p[ik].v,p[ik].ch〉 = 〈ρ,q〉.

• Reduction rules: we first consider quasi-reduction.

15



When referring to a node p in an EVMDD, we use 〈σ,p〉 to denote there is a

“dangling edge” pointing to p with a value σ attached.

We use two versions of EVMDDs, multiplicative EV∗MDDs and additive EV+MDDs.

The above properties are shared by both, but they differ in three aspects. First, EV+MDD

edges have value in Z ∪ {∞} (where “∞” is greater than any positive number and can be

interpreted as “undefined”), while EV∗MDD edges have value in R≥0.

Second, the edge values are combined in different ways: given a value σ and an

EVMDD node p with p.lvl = k, in EV∗MDDs, the pair 〈σ,p〉 encodes the function recursively

defined by

f〈σ,p〉(iL, ..., i1) =





σ if k=0, i.e., p=Ω

σ · fp[ik](iL, ..., i1) if k>0, i.e., p 6=Ω,

while in EV+MDD,

f〈σ,p〉(iL, ..., i1) =





σ if k=0, i.e., p=Ω

σ + fp[ik](iL, ..., i1) if k>0, i.e., p 6=Ω.

Thus, for an EV∗MDD node p at level L, f〈σ,p〉(iL, ..., i1) equals σ times the product of the

values encountered along the path from p to Ω corresponding to iL, iL−1, . . . , i1, in order,

while, if p is an EV+MDD node, it equals σ plus the sum of the values on this path.

The final difference is about normalization and default edges. An EV∗MDD node

is normalized if all edge values are in [0, 1] and at least one is 1, while edges with value 0 are

the default, thus do not need to be stored explicitly (the identity of the corresponding child

node is irrelevant, since the function value will be 0 whenever a default edge is taken). Thus,

a function f : X → R≥0 is (canonically) encoded by 〈σ,p〉 where σ = max{f(i) : i ∈ X} and

16



p is a node at level L, with the exception of the constant function f ≡ 0, which we represent

by 〈0,Ω〉. An EV+MDD node is instead normalized if all edge values are non-negative and

at least one is zero, while ∞ is the default value, so that a function f : X → Z ∪ {∞} is

(canonically) encoded by 〈σ,p〉 where σ = min{f(i) : i ∈ X} and p is a node at level L,

with the exception of the constant function f ≡ ∞, which we represent by 〈∞,Ω〉. For both

EV+MDDs and EV∗MDDs, if p[ik].v is the default value, we write p[ik] = ⊥ to indicate that

ithk edge of p is default.

Figure 2.3 shows an example of EV+MDD, which encodes a function:

f(v4, v3, v2, v1) = 18 · v4 + 6 · v3 + 3 · v2 + v1.

Function Normalize in Figure 2.4 describes the procedure to normalize an EV+MDD.

As examples, we show three EV+MDD operations that are extensively used in

Chapter 6:

- Min: given two EV+MDDs 〈ρ,a〉 and 〈σ,b〉, return an EV+MDD 〈µ,r〉 encoding func-

tion min(f〈ρ,a〉, f〈σ,b〉).

- Sum: given two EV+MDDs 〈ρ,a〉 and 〈σ,b〉, return an EV+MDD 〈µ,r〉 encoding func-

tion f〈ρ,a〉 + f〈σ,b〉.

- MinState: given an EV+MDD 〈ρ,a〉, return a state i such that f〈ρ,a〉(i) is the minimum

value of function f〈ρ,a〉.

Figure 2.5 shows procedures Min and Sum. These algorithms run recursively on

each level, without having to enumerate every state of a potentially huge state space. It

17



 0
1 2 30

0 18 36 54

1 20
0 6

1 20
0 1 2

10
0 3

Ω

12

v4

v3

v2

v1

Figure 2.3: An
EV+MDD.

evmdd Normalize(evmdd .node a)
1 if a = Ω then return 〈0,Ω〉;

2 level k ← a.lvl ;

3 b← NewNode(k); • create a node at level k

4 for ik ∈ {0, ..., nk − 1} do

5 〈µ,s〉 ← Normalize(a[ik].node);

6 b[ik]← 〈µ+ a[ik].val,s〉;

7 endfor

8 ρ← min
{
b[ik].val : ik ∈ {0, ..., nk − 1}

}

9 for ik ∈ {0, ..., nk − 1} do

10 b[ik].val← b[ik].val − ρ • b[ik].val ≥ 0 and ∃ik, b[ik].val = 0

11 endfor

12 return 〈ρ,b〉;

Figure 2.4: Pseudocode for Normalize.

is known [53] that the number of recursive calls of the generic Apply operation, including

Min and Sum, for EVMDDs at most equals those for the MTMDDs representing the same

function. Procedure MinState is even simpler: since each non-terminal node must have at

least one edge with an associated value of 0, we can simply follow any 0-value path from

the root 〈ρ∗,r∗〉 to Ω. The function encoded by the EV+MDD evaluates to the minimum

possible value, ρ∗, for any state corresponding to such a path.

2.2 Discrete-state systems

The execution of almost all software/hardware systems can be discretized as a

transitions graph (V,E), where vertex v ∈ V represent a state of the system, and an edge

represents called a transition between system states. For example, a 2-bit counter has four

states {00, 01, 10, 11}. At any given time, the counter must be in one and only one of these

four states. After a transition occurs, the state of the system may change. In our example

of counter, there are four possible transitions: 00→ 01, 01→ 10, 10→ 11, and 11→ 00.

18



evmdd Min(evmdd 〈ρ,p〉, evmdd 〈σ,q〉)
1 int µ← min{ρ, σ}; level k ← p.lvl ;

2 if ρ =∞ then return 〈σ,q〉;

3 if σ =∞ then return 〈ρ,p〉;

4 if p = q then return 〈µ,p〉; • includes the case k = 0, i.e. p = q = Ω

5 if InCacheMin(〈p, q, ρ− σ, r〉) then return 〈µ,r〉; •Assume ρ ≥ σ, if not, swap two parameters.

6 node r ← NewNode(k);

7 for ik ∈ Sk do

8 r[ik]← Min(〈ρ− µ+ p[ik].val ,p[ik].node〉, 〈σ − µ+ q[ik].val ,q[ik].node〉);

9 endfor

10 〈γ,r〉←Normalize(r);

11 InsertUT (r); CacheAddMin(〈p, q, ρ− σ, r〉);

12 return 〈µ+ γ,r〉;

evmdd Sum(evmdd 〈ρ,p〉, evmdd 〈σ,q〉)
1 int µ← ρ+ σ; level k ← p.lvl ;

2 if ρ =∞ or σ =∞ then return 〈∞,Ω〉;

3 if InCacheSum(〈p, q, 〈γ,r〉〉) then return 〈µ+ γ,r〉;

4 node r ← NewNode(k);

5 for ik ∈ Sk do

6 r[ik]←Sum(p[ik], q[ik]);

7 endfor

8 〈γ,r〉←Normalize(r);

9 InsertUT (r); CacheAddSum(〈p, q, 〈γ,r〉〉);

10 return 〈µ+ γ,r〉;

Figure 2.5: Pseudocode for Min and Sum.

When modeling a real system, instead of building a low-level transition graph,

which is often huge, we describe a high-level model that consists of several components and

events. At any given time, each component has a local state within a local state space,

and the (global) state of the system is given by the combination of the local states of all

components. In the above example of 2-bit counter, the system can be partitioned into two

components: the lower bit and the higher bit. The local state space of both components is

{0, 1}. Note that not all possible combinations of the local states may be included in the

state space, i.e., some of the “potential” global states may not in fact be reachable in the

system.

19



In a high-level model, all possible transitions are described as a set of events, each

of which consists of:

• Guard : the condition controlling when an event may occur

• Effect : a function mapping the source (current) state to a (non-empty and finite) set

of possible destination states reached by taking this event

An event is enabled in a state iff its guard condition is satisfied in this state. In each

transition, one and only one enabled event is fired. When there are multiple enabled events

in a state, one of these event is fired nondeterministically.

We now give the formal definition of discrete-state model as follows:

Definition 5 A discrete-state model D is defined as (Ŝ,Sinit, E ,N ) where

• the potential state space Ŝ = SL × SL−1 × · · · × S1. Sk is the local state space for

kth submodel; Thus, each (global) state i is a tuple (iL, · · · , i1), where ik ∈ Sk, for

L ≥ k ≥ 1;

• the set of initial states is Sinit ⊆ Ŝ;

• the set of (asynchronous) events is E;

• the next-state function N : Ŝ → 2Ŝ is described in disjunctively partitioned form as

N =
⋃
e∈E Ne, where Ne is the next-state function for event e ∈ E. N (i) denotes the

set of states that can be nondeterministically reached in one step from i.

In this thesis, we use X ,Y, and Z to denote sets of states, i, j, and k ∈ Ŝ to denote

(global) states where il, jl, and kl are the local state of the lth submodels, respectively.

20



The next-state function Ne describes both the guard and effect for an event e.

e is enabled in state i iff Ne(i) 6= ∅. N is the disjunction of Ne for all e ∈ E . Let

Ne(X ) =
⋃

i∈X Ne(i), and a similar notation also applies to N .

Correspondingly, P and Pe denote the previous-state functions, e.g., Pe(i) is the

set of states that can reach i in one step by firing event e. If j ∈ Ne(i), then i ∈ Pe(j). P

denotes the previous-state function, e.g., P(i) is the set of states that can reach i in one

step. Similarly, Pe(X ) can also be defined.

As a typical example of discrete-state mode, Petri nets [65] are often used to model

protocols and asynchronous systems.

Definition 6 A Petri net as a tuple (P,T ,D−,D+,sinit) where:

• P is a set of places, drawn as circles, and T is a set of transitions, drawn as rectan-

gles, satisfying P ∩ T = ∅.

• D− : P × T → N and D+ : P × T → N are the input arc and the output arc

cardinalities, respectively.

• sinit ∈ N
|P| is the initial marking, specifying a number of tokens initially present in

each place.

If the current marking is i ∈ N
|P|, we say that α ∈ T is enabled in i, written

α ∈ T (i), iff ∀p ∈ P,D−
p,α ≤ ip. Then, α ∈ T (i) can fire, changing the marking to j,

written i
α
⇁j, satisfying ∀p ∈ P, jp = ip −D−

p,α +D+
p,α.

The above definition is for standard Petri nets, while in the application, we also

consider the following two extensions:

21



• D◦ : P × T → N ∪ {∞} are the inhibitor arc cardinalities, so that transition α is

disabled in marking i if there is a place p such that D◦
p,α ≤ ip.

• D−,D+ : P × T × N
|P| → N are the marking-dependent input and output arc

cardinalities so that α is enabled in i iff, ∀p ∈ P, D−
p,α(i) ≤ ip and, if α fires, it leads

to marking j satisfying jp = ip−D−
p,α(i)+D+

p,α(i). Both D−
p,α and D+

p,α are evaluated

on the current, not the new, marking.

These two extensions can also be combined, allowing marking-dependent inhibitor

arc cardinalities. Inhibitor arcs alone suffice to achieve Turing-equivalence, while self-

modifying behavior may or may not, depending on the type of functions allowed to specify

arc cardinalities.

Figure 2.6 shows markings of an extended Petri net before and after a transition

is fired. Circles and the rectangle represent places and a transition respectively. Numbers

in places indicate numbers of tokens in corresponding places, and numbers on arcs are their

cardinalities (default cardinality is 1). The arrow with a circle represents an inhibitor arc.

After the transition is fired, it is no longer enabled since it is inhibited by the inhibitor arc.

p1

p2

p3

2

5

1

2

2

p1

p2

p3

1

3

2

2

2

fire

Figure 2.6: An example of firing

22



2.2.1 Symbolic state-space generation and saturation

Within the potential state space, we are often interested in the (real) state space,

S, which is the set of states that can be reached from the initial states. S can be recursively

defined as follows:

1. Sinit ⊆ S;

2. if i ∈ S, then N (i) ⊆ S.

Thus, S can be computed as follows:

Sinit ∪N (Sinit) ∪ N
2(Sinit) ∪ · · · ,

where N 2(X ) = N (N (X )) and N k+1(X ) = N (N k(X )).

Considering the storage of S and N for a given system D, the size of S could be

potentially huge for many real systems, and the size of possible transitions in N could be

as large as |S| × |S|. Efficient data structures are required to encode S and N before we

can carry out verification and analysis. Currently, there are two main approaches, explicit

and symbolic. The explicit approach utilizes an explicit data structure to store each state.

Although the data structure for each state may be efficient, as S grows, the scale of the

model that can be handled using the explicit approach is always limited by the memory.

The symbolic approach utilizes symbolic structure to encode a set of states. The merit

of this approach is that the memory consumption does not necessarily grows with S, so

the symbolic approach could handle models with a huge state space (say, more than 1020

states [12]), which is not possible for the explicit approach. However, the memory and

runtime consumption for the symbolic approach is not less predictable.

23



Encoding sets of states

To encode discrete-state system D, we can simply set the domain Xk of level l to

the local state space Sk in D. An MDD node p can encode the characteristic function of a

set of states X such that

(iL, · · · , i1) ∈ X iff fp(iL, · · · , i1) = 1,

where ik ∈ {0, · · · , nl− 1}. There are two ways to encode a set of states Y ⊆ SL× · · · × S1:

using either quasi-reduced or fully-reduced L-level MDDs. As a guideline, we use a quasi-

reduced MDD to encode sets of states within a real state space S, and a fully-reduced MDD

to encode properties defined on potential state space Ŝ.

Fully-reduced MDDs allow edges to skip levels corresponding to “don’t care” sub-

models. For example, when considering all global states where the kth submodel is in local

state ik, the fully-reduced MDD contains only one node on level k. Fully-reduced MDDs can

often compactly encode a set of states satisfying a property referring only some of the sub-

models in given discrete-state system, and the levels that corresponds to other submodels

are all skipped.

Quasi-reduced MDDs are used to enumerate states in S, since each path from a

top-level (L) node to a terminal node only represent one specific global states. Given a

quasi-reduced MDD node n on level L, we can compute the number of states, denoted by

|B(n)|, by counting the number of paths from node n to terminal 1.

24



Encoding the next-state functions

The encoding of the next-state functions is in fact to encode a set of tuples

(iL, · · · , i1, i
′
L, · · · , i

′
1) such that (i′L, · · · , i

′
1) ∈ N (iL, · · · , i1) holds. Thus, next-state func-

tion N can be encoded using an MDD node on level 2L, and in this thesis we always use the

interleaved order: iL, i
′
L, ..., i1, i

′
1, where ik in “from” states are placed on unprimed level k

and ik in “to” states on primed level k′. Let Unprimed(k) = Unprimed(k′) = k. According

to previous experience, interleaved order often results in a compact encoding of next-state

functions.

A fundamental property enjoyed by most asynchronous systems, locality, can be

exploited to obtain a compact symbolic expression. An event e is independent of the kth

submodel if its enabling does not depend on ik and its firing does not change the value of

ik. A level k belongs to the support set of event e, denoted supp(e), if e is not independent

of k. We define Top(e) to be the top level in supp(e), and let Ek be the set of events

{e ∈ E : Top(e) = k}. Also, we let Nk be the next-state function corresponding to all events

in Ek, i.e., Nk =
⋃
e∈Ek
Ne. If e ∈ Ek, since e does not affect SL, . . . ,Sk+1, Ne(iL, . . . , i1)

can be computed as (iL, . . . , ik+1)×Ne(ik, . . . , i1). When the set of states is encoded with

an MDD, firing Ne only modifies the subtree rooted at nodes on level k in the MDD.

We use the quasi-identity-fully (QIF) reduction rule [77] for MDDs encoding next-

state functions. For an event e with Top(e) = k, Ne is encoded with a 2k-level MDD since

e does not affect states on levels L, . . . , k + 1 levels, which are skipped in this MDD. The

advantages of the QIF reduction rule is that the application of Ne only needs to start at

25



level Top(e), and not all the way up, at level L. We refer interested readers to [77] for more

details about this encoding.

Figure 2.7(a) shows the discrete-state model for a 2-bit counter and Figure 2.7(b)

shows the next-state functions encoded with MDDs. N1 represents the transition {i2 =

x, i1 = 0} → {i′2 = x, i′1 = 1}, where x is an arbitrary value. Thus this transition is

independent of v2. According to the QIF reduction rule, the top two levels are skipped in

the MDD encoding N1, as shown in Figure 2.7(b).

The problem of state-space generation refers to computing S, which is often per-

formed before model checking and other analysis. For many models, even if the state space

is finite, the size of each local state space is unknown a priori. After state-space generation,

S, the sets Sk, and their sizes nk are consequently known in the following discussion.

The relational product is a key operation in symbolic model checking. Given a set

of state encoded by a quasi-reduced MDD node s, and MDD node r encoding the next-state

function N , the relational product computes a QFI-reduced MDD node t encoding the set

N (B(s)). This process is also called image computation. The pseudo code for the relational

produce is shown in Figure 2.8.

If MDD node r encodes the previous-state function P, the relational produce

RelProd(s, r) computes the set P(B(s)), which is called preimage computation. Based on

the image and preimage computations, symbolic state-space exploration can be carried out

in either forward or backward direction. The forward reachable states from a set of states

X can be computed by ReachF (X ) = X ∪ N (X ) ∪ N 2(X ) ∪ · · · . Analogously, we let

ReachB(X ) = X ∪ P(X ) ∪ P2(X ) ∪ · · · .

26



i2i1 → i
0
2i
0
1

00 01

11 10

10

0

0

0

1

1

1

1 1

N2

N1

i2

i
0
2

i1

i
0
1

discrete-state system next-state functions

(a)

(b)

Figure 2.7: (a) The discrete-state model for a 2-bit counter; (b) MDDs encoding the next-
state function.

A straight-forward algorithm for state-space generation is to compute ReachF (Sinit)

using breadth-first search, as shown in Figure 2.9, where s encodes the set of initial states

and r encodes N .

Traditional symbolic state-space generation algorithms use some variant of sym-

bolic image computation. The simplest approach is a breadth-first search (BFS) directly

implementing the definition of S as Sinit ∪ N (Sinit) ∪N
2(Sinit) ∪ · · · .

Saturation [18, 19, 20] employs a different approach, recursively computing local

fixpoints and exploiting locality in the next-state functions. Locality is a fundamental

property enjoyed by asynchronous systems, expresses the fact that most events affect only

few systems components.

The key idea of saturation is to fire events in an order consistent with their Top:

we attempt firing events in Ek on node a at level k only after having exhaustively fired

27



mdd RelProd(mdd s, r)
1 level ls ← s.lvl ; level lr ← Unprimed(r.lvl)

2 mdd t← 0;

3 if s = 1 and r = 1 then return 1; else create t s.t. ∀i ∈ Sls .t[i] = 0 endif; • terminal case

4 if InCacheRelProd(s, r, t) then return t; endif;

5 if ls = lr then

6 foreach i, i′ ∈ Sls s.t. s[i], r[i][i′] 6= 0 do

7 t[i′]← Union(t[i′],RelProd(s[i], r[i][i′]));

8 endfor;

9 else

10 foreach i ∈ Sls s.t. s[i] 6= 0 do

11 t[i]← Union(t[i],RelProd(s[i], r));

12 endfor

13 endif

14 t← InsertUT (t);

15 CacheAddRelProd(s, r, t);

16 return t;

Figure 2.8: The relational product operator.

mdd SSGen(mdd s, r)
1 mdd po ← 0; mdd pn ← s; • po is the set of old states, and pn is the set of new states.

2 while po 6= pn do

3 po = pn;

4 pn = Union(po,RelProd(po, r);

5 endwhile

6 return po;

Figure 2.9: State-space generation using breadth-first search.

events in Eh, for all h < k, on nodes below a, until no new states are found. Then, a is

saturated if it is a fixed point w.r.t. events independent of the levels above k: ∀h, k ≥ h ≥

1, ∀e ∈ Eh,B(a) ⊇ Ne(B(a)).

Figure 2.10 shows the pseudocode of the saturation algorithm. Given a discrete-

state model, NL, ...,N1 are globally available. The pseudocode shows a forward exploration,

as it uses the next-state functions, but it can naturally be used for backward exploration

by replacing Nk with Pk. The input parameter s is the root node to be saturated, thus it is

28



mdd SaturateF (mdd s)
1 if InCacheSaturateF (s, t) then return t; • don’t repeat work

2 level k ← s.lvl ;

3 mdd t← 0;

4 foreach i ∈ Sk s.t. s[i] 6= 0 do • first, saturate nodes below

5 t[i]← SaturateF (s[i]);

6 endfor;

7 repeat • keep firing Nk until reaching convergence

8 foreach i, i′ ∈ Sk s.t. Nk[i][i
′] 6= 0 do

9 t[i′]← Union(t[i′],RelProdSat(t[i],Nk[i][i
′]));

10 endfor;

11 until t does not change;

12 t←InsertUT (t); •Unique Table to avoid duplicate nodes

13 CacheAddSaturateF (s, t); • to avoid repeating work later

14 return t;

mdd RelProdSat(mdd s, r)
1 level k ← s.lvl ;

2 mdd t← 0;

3 if s = 1 and r = 1 then return 1; endif; • terminal case

4 if InCacheRelProdSat (s, r, t) then return t; endif;

5 foreach i, i′ ∈ Sk s.t. r[i][i′] 6= 0 do

6 t[i′]← Union(t[i′],RelProdSat(s[i], r[i][i′]));

7 endfor;

8 t← InsertUT (t); • analogous to RelProd until here...

9 t← SaturateF (t); • ...but now we saturate t before returning

10 CacheAddRelProdSat (s, r, t);

11 return t;

Figure 2.10: The (forward) saturation algorithm.

initially set to the root of the MDD encoding Sinit. SaturateF saturates the nodes of MDD

s in order, from the bottom level to the top level. Unlike the traditional relational product

operation, RelProdSat always returns a saturated MDD.

2.2.2 Computation Tree Logic

Computation Tree Logic (CTL) [27] is a widely used temporal logic because of its

simple yet expressive syntax. All CTL properties are state properties and can be checked

by manipulating sets of states.

29



For a discrete-state system D, we first define a set of atomic propositions A and

in the remainder of this thesis we use φ, ψ, ϕ, and χ ∈ A to denote atomic propositions.

A proposition either holds or does not hold on a given state. Let labelling function L be

S → 2A, mapping a state to the set of propositions that hold on this state, so that i |= φ

iff φ ∈ L(i). Let Sat(φ) = {i | i |= φ}.

A path σ in D is an infinite sequence of states i0i1i2 · · · , where for any k ≥ 0,

ik+1 ∈ N (ik). Let σ[k] = ik.

CTL defines four temporal operators X,U,F, and G and two path quantifiers

E and A. Temporal operators express properties for paths in the system:

• Xφ: neXt operator, σ |= Xφ iff σ[1] |= φ;

• φUψ: Until operator, σ |= φUψ iff ∃k ≥ 0 s.t. σ[k] |= ψ and ∀0 ≤ l < k, σ[l] |= φ;

• Fψ: Finally operator, σ |= Fψ iff ∃k ≥ 0 s.t. σ[k] |= ψ. Fψ is equivalent to TrueUψ;

• Gψ: Global operator, σ |= Gφ iff ∀k ≥ 0, σ[k] |= ψ.

The syntax of CTL formulas is defined recursively as follows:

• each atomic proposition φ is a CTL formula;

• if F1 and F2 are CTL formulas, so are

- ¬F1, F1 ∨F2, F1 ∧F2,

- EXF1, E[F1UF2], EGF1, EFF1,

- AXF1, A[F1UF2], AGF1, AFF1.

30



In other word, CTL requires temporal operators and path quantifiers to appear in

pairs. CTL formulas are state properties and their semantics are given as follows:

• i |= φ iff φ ∈ L(i).

• i |= ¬F iff i 2 F

• i |= F1 ∨F2 iff i � F1 ∨ i � F2

• i |= F1 ∧F2 iff i � F1 ∧ i � F2

• i |= EΦ iff ∃σ s.t. σ[0] = i ∧ σ |= Φ

• i |= AΦ iff ∀σ with σ[0] = i. σ |= Φ,

where Φ is a path formula in one of the four forms: XF1, F1UF2, GF1, or FF1.

For a discrete-state system D and CTL formula F , if ∀i ∈ Sinit , i |= F , then

D |= F . Thus, the key step in model checking a CTL formula F is to compute the set of

states {i | i |= F}.

2.2.3 CTL model checking

AX,AU,AF, and AG operators can be equivalently converted to E operators:

• AXφ = ¬EX¬φ

• AφUψ = ¬(E[¬ψU¬(φ ∨ ψ)] ∨ EG(¬ψ))

• AFψ = ¬EG(¬ψ)

• AGψ = ¬E(trueU¬ψ).

31



Thus {EX,EU,EG} is a complete set of operators for CTL, that is, it can be used

to express any other CTL operator. The EXφ operator can be easily computed as the

relational product P(Sat(φ)), where P is the previous-state function. As a special case

of EU, building the set of states satisfying EFφ is instead essentially the same process as

state-space generation, the only differences being that we start from Sat(φ) instead of Sinit

and that we go backwards instead of forwards, thus we use P (or Pα, or Pk, as appropriate)

instead of N .

The traditional algorithm to obtain the set of states satisfying EφUψ computes a

least fixpoint (see EUtrad in Figure 2.11; all sets of states and relations over states in our

pseudocode are encoded using MDDs, of course). Starting from Sat(ψ), it computes the

intersection of the preimage of the explored states within the states in Sat(φ). The newly

computed states are added to the explored states, for the next iteration. The number of

iterations is thus equal to the maximum distance from states in Sat(φ) \ Sat(ψ) to states

in Sat(ψ).

The traditional EG algorithm (see EGtrad in Figure 2.11) computes a greatest

fixpoint by iteratively eliminating states without successors in the working set X .

2.3 CTMCs

Definition 7 A (labeled) CTMCM is a tuple (S,R, Init ,A, L) where:

- S is the state space (a set of states), which in our case is generated from a discrete-

state model (Ŝ,Sinit , E ,N ) and S ⊆ Ŝ = SL × · · · S1.

32



EUtrad(in Sat(φ),Sat(ψ)): set of state
1 declare X : set of states

2 X ← Sat(ψ);

3 repeat

4 X ← X ∪ (P(X ) ∩ Sat(φ));

5 until X does not change;

6 return X ;

EGtrad(in Sat(φ)): set of state
1 declare X : set of states

2 X ← Sat(φ);

3 repeat

4 X ← X ∩ P(X );

5 until X does not change;

6 return X ;

Figure 2.11: Traditional CTL model checking algorithms.

- R : S × S → R
≥0 is the transition rate matrix. When in state i, M remains in i

for an exponentially distributed amount of time with rate E(i) =
∑

j6=iR[i, j], then it

moves to state j with probability R[i, j]/E(i).

- Init : S → [0, 1] is the initial distribution. Init(i) is the probability that M is state i

at time 0, thus
∑

i∈S Init(i) = 1.

- A is a set of atomic propositions.

- L : S → 2A is a labeling. L(i) are the atomic propositions holding in state i. We still

use φ and ψ to denote propositions.

- An ordinary CTMC is similarly defined, without the A and L components.

We consider homogeneous CTMCs, in which the transition rates are independent

of the time. In CTMC analysis, we often use the infinitesimal generator matrix Q, which

satisfies Q[i, j] = R[i, j] for i 6= j and Q[i, i] = −E[i].

In the implementation, instead of Q, we store R and a vector h where h[i] =

1/E[i] is the expected holding time in state i. Symbolic approaches (including Kronecker

descriptors, see discussion in Chapter 6) might actually encode a supermatrix R̂ ∈ R
Ŝ×Ŝ
≥0

33



of R, satisfying R̂[i, j] = 0 for reachable states i ∈ S and unreachable states j ∈ Ŝ \ S,

that is, the “reachable rows” of R̂ do not contain additional transitions. However, R̂[i, j]

is not required to be zero for unreachable states i; in particular, R̂ can contain nonzero

entries from unreachable states to reachable states, and this can complicate the numerical

iterations.

We then define vector π(t) : S → [0, 1] such that π[i](t) is the probability thatM

is in state i at time t, thus
∑

i∈S π[i](t) = 1. The dynamic characterization of a CTMC is

given by Kolmogorov equation:

dπ(t)

dt
= π(t)Q. (2.1)

There are two important types of analysis on CTMCs: steady-state analysis studies

the probability distribution limt→∞ π(t), while transient analysis studies π(t) for a given

time t.

2.3.1 Steady-state solution

Given an ergodic CTMC, in which all states are included in a single strongly con-

nected component (SCC), the steady-state solution is independent of the initial distribution,

let π ∈ R
S
≥0 be the steady-state probability vector, where π[i] is the steady-state probability

of state i. π can be computed as the solution of the linear system

πQ = 0 subject to
∑

i∈S

π[i] = 1. (2.2)

Chapter 6 focuses on solving this linear system.

34



For a non-ergodic CTMC, the states can be classified as recurrent states, denoted

by Sr, which are states in terminal SCCs, and transient states, denoted by St, which are not

in terminal SCCs. The set of states in a terminal SCC is called a recurrent class, and we

use R1, · · · ,Rm to denote the states in each recurrent class. Given sufficiently long time,

a CTMC will eventually be in its recurrent states, which means only recurrent states have

non-zero steady-state probabilities.

The first step is to compute the probability to reach each recurrent class. We

ignore the time spent on each state and only consider the transition probabilities from one

state to the others. A CTMC can be converted to a discrete-time Markov chain (DTMC),

called embedded Markov chain (EMC) whose transition probability matrix is denoted by

Pe and:

Pe [i, j] = R[i, j] · h[i].

We make all states in Sr absorbing. If i ∈ Sr, Pe [i, i] = 1. Pe can be block-

partitioned as

Pe =




PStSt PStSr

0 I




so that

lim
k→∞

Pk
e =




0
∑∞

k=0(P
k
StSt

)PStSr

0 I


 ,

where I is the identity matrix. π(0)
∑∞

k=0(P
k
StSt

)PStSr give the probability of reaching each

recurrent state, denoted by Prob(i), where i is the destination recurrent state.

The steady-state solution for a non-ergodic CTMC is dependent to the initial dis-

tribution, because the initial distribution determines the probability to reach each recurrent

35



class. We first assume there is a single inital state i0 in the CTMC, and the steady-state

solution can be computed by following steps:

1. Enumerate all recurrent classes R1, · · · ,Rm.

2. Compute the steady-state solution in each recurrent class; let πk[i] be the steady-state

solution on state i in Rk;

3. Compute the probability of reaching each recurrent class Rk, denoted by Prob(Rk).

Prob(Rk) =
∑

i∈Rk
Prob(i).

4. The steady-state probability on state k ∈ Rk, π[k], is given by πk[k] · Prob(Rk).

Chapter 4 introduces the algorithm to enumerate terminal SCCs.

2.3.2 Transient analysis

Transient solution can be obtained by solving the differential equation 2.1. Alter-

natively, we consider a widely adopted method called uniformization.

Definition 8 GivenM = (S,R, Init) and a rate q > max i∈S{E(i)}, the uniformization of

M is a discrete-time Markov chain (DTMC)Munif = (S,P, Init), where P[i, j] = R[i, j]/q

for i 6= j and P[i, i] = 1−
∑

j∈S\{i}P[i, j].

Pu = I+
1

q
Q .

Instead of solving Equation 2.1

π(t) =
∞∑

k=0

π(0)Pk
u · Poisson[k],

36



where Poisson[k] = e−qt (qt)
k

k! . Given an acceptable error ǫ, the infinite sum can be trun-

cated and only computed on the range [Lǫ, Rǫ]. [38] introduced an algorithm for precisely

computing Lǫ, Rǫ and Poisson probabilities within this range.

While π(t) describes the probability distribution of M at time t starting from a

given initial distribution at time t = 0, model checking often requires us to “go backwards”:

given a “target” state j, we need to compute vector ν(j, t) : S → [0, 1], where ν[i](j, t) is

the probability of reaching j at time t starting from state i at time 0, so that, if Init(i) = 1,

then ν[i](j, t) = π[j](t). Note that ν(j, t) is not a probability distribution but a vector

of probabilities, i.e., its elements do not sum to 1 in general. Finally, define ν(X , t) =

∑
j∈X ν(j, t).

For ν(X , t), there is instead the “backward solution” [47]:

ν(X , t) =
∞∑

k=0

Pk
δ
X · Poisson[k],

where δ
X : S → {0, 1} is the indicator vector satisfying δX [i] = 1 iff i ∈ X .

To summarize this section, two matrices can be induced from transition rate ma-

trix R in CTMCM: Pe from the embedded Markov chain and Pu from the uniformization.

In the following discussion, we omit the subscripts and refer to one of the matrices without

causing confusions: when considering transient analysis, P refers to Pu and when consid-

ering steady-state analysis, P refers to Pe.

In the implementation, an EV∗MDDM encodes a transition rate matrix R while

an EV+MDD I encodes a function mapping each state in S to a unique integer index in

{0, ..., |S|− 1} and each state in Ŝ \ S to ∞ (strictly speaking,M is 〈ρmax,r〉 where ρmax is

37



the largest entry in R and r is an EV∗MDD node, while I is 〈0,o〉 where o is an EV+MDD

node). Fig. 2.12 shows an example of CTMC and itsM and I.

2.3.3 CSL

Continuous stochastic logic (CSL) [4] extends CTL to probability and timing as-

pects. Instead of discrete-state systems, CSL formulas are defined on CTMCs. There are

two temporal operators, U (“until”) and X (“next”), in CSL, while the path quantifiers E

and A in CTL are replaced by the probabilistic operators regarding the steady state and

transient solution of the CTMC.

A run ofM, σ, is an infinite timed path: (i0, t0)→ (i1, t1)→ · · · , where ik is the

state entered at time tk and t0 = 0. Let σ[k] be ik, and τ [k] = tk+1 − tk be the length of

the kth sojourn time, in σ[k]. The state ofM at time t is σ@t = σ[k] iff tk ≤ t < tk+1.

We adopt the definition of CSL in [4]. Let p ∈ [0, 1] be a probability, ⊲⊳ be one of

the {≤, <,≥, >} operators, and I ⊂ R≥0 be a nonempty interval of the following types.

• time-bounded: [0, t], t > 0;

• unbounded: [0,∞), so that X[0,∞) and U[0,∞) are simply written as X and U;

• point-interval: [t, t], t ≥ 0;

• general interval: [t, t′], t′ > t > 0.

The syntax of CSL formulas over a set of atomic propositions A is defined induc-

tively as follows:

• Each atomic proposition φ ∈ A is a CSL formula.

38



1

0 1

0
0 2

0 1

0

Ω

0 0child index edge value

i2i1 → i
0
2i
0
1

00 01

11 10

1

0 1

0
1 1

1 1

Ω

0 1
1 1

0
1

1
1

1
1

0
1

i2

i1

i2

i1

i
0
2

i
0
1

q

q

q

q

q

CTMC

I M

Figure 2.12: Encoding a CTMC with an EV+MDD and an EV∗MDD.

• If F1 and F2 are state formulas, so are ¬F1 , F1 ∧F2 , S⊲⊳p(F1) , P⊲⊳p(X
I
F2) , and

P⊲⊳p(F1U
I
F2)

In CSL, a path formula Φ is in one of the two forms: XIF or F1U
I
F2. Prob(i,Φ)

is the probability measure of all paths satisfying Φ starting from the state i.

The semantics of P and S operators is defined as follows [4]:

• Given CSL formula F , i |= S⊲⊳p(F ) iff from the initial distribution π(0) satisfying

π[i](0) = 1 and π[j](0) = 0 for all j 6= i, the consequent steady-state solution π

satisfies π(Sat(φ)) ⊲⊳ p, where π(Sat(φ)) =
∑

i∈Sat(φ) π[i].

• Given path formula Φ, i |= P⊲⊳p(Φ) iff Prob(i,Φ) ⊲⊳ p.

The relation |= for CSL path formulas in defined by:

• σ |= XIψ iff σ[1] |= ψ ∧ δ(σ, 0) ∈ I.

39



• σ |= φUIψ iff ∃t ∈ I.(σ@t |= ψ ∧ (∀t′ ∈ [0, t).σ@t′ |= φ).

2.3.4 CSL model checking

The P operator

This section reviews model checking algorithms for the until operator. The result

of this formula is a set of states whose probabilities satisfy ⊲⊳ p in P⊲⊳p. The key step is to

calculate the vector Prob(φUIψ).

Time-bounded and unbounded U.

We first introduce a conversion of M = (S,R, Init) into MX = (S,RX , Init),

where states in X are absorbing, and then into the uniformized DTMC

RX [i, j] = R[i, j] and PX
u [i, j] = R[i, j]/q if i 6= j else 1−E[i]/q if i /∈ X ;

RX [i, j] = 0 and PX
u [i, j] = 0 if i 6= j else 01 if i ∈ X .

We simplify the notation PX to P when X is clear in the context.

We first discuss the time-bounded and unbounded until operator. Before numerical

analysis, we partition S into three sets of states:

S1={i ∈ S | i |= ψ}, S0={i ∈ S | i 2 EφUψ}, and S?={i ∈ S | i |= (EφUψ) \ S1}.

For states in S0, which do not satisfy EφUψ, the probability is 0 for sure, while for states

in S1, which satisfy ψ, this probability is 1. Thus, we have

i ∈ S1 ⇒ ∀t > 0,Prob(i, φU[0,t]ψ) = 1 and i ∈ S0 ⇒ ∀t > 0,Prob(i, φU[0,t]ψ) = 0

1While, conceptually, PX [i, i] should be 1 for absorbing state i, we set it to 0 here to simplify Equation 2.3.

40



so we only need to calculate the probabilities for states in S?.

Computing the probability vector Prob(φU[0,t]ψ) onM is equivalent to comput-

ing ν(S1, t) on MS0∪S1 , which we can do using transient analysis and uniformization. A

backward approach [47] is more desirable because it directly returns the vector ν(S1, t), its

pseudo-code is shown in Figure 2.13.

For unbouned until, we introduce the following transition matrix Pe for the em-

bedded Markov chain:

RX [i, j] = R[i, j] and PX
e [i, j] = R[i, j]/E[i] if i 6= j else 0 if i /∈ X ;

RX [i, j] = 0 and PX
e [i, j] = 0 if i 6= j else 0 if i ∈ X .

Prob(φ U ψ) = ν(S1) where ν(S1) = limt→∞ ν(S1, t) is the solution of the linear

system:

Pe · ν + Iψ = ν, (2.3)

where Iψ[i] = 1 iff i ∈ Sat(ψ) and Iψ[i] = 0 otherwise.

Given the potentially huge state space, direct methods such as Gaussian elim-

ination do not scale, thus iterative methods are normally employed. For example, the

Gauss-Seidel iteration

ν
(k+1)[i] =

∑

j≺i

Pe[i, j]ν
(k+1)[j] +

∑

j≻i

Pe[i, j]ν
(k)[j] + Iψ[i] (2.4)

can be used to converge to a (numerically close) answer.

Point-interval and general interval U.

The algorithms for both operators employ transient analysis, similar to that for

time-bounded U. For P⊲⊳p(φU
[t,t]ψ), we redefine ψ as ψ ∧ φ, since the probability of moving

41



mdd BoundedUntil(A φ,A ψ) is
1 p, Lε, Rε ← FoxGlynn(qt, ε); •Poisson probability, left and right bound w.r.t ε

2 ν ← 0; b← Iψ • Iψ[i] = 1 iff i ∈ Sat(ψ)

3 for k = 1 to Rε − 1 do

4 b← P · b; •P: transition matrix forMφUψ
unif

5 if k ≥ Lε then ν ← ν + p[k] · b;

6 endfor;

7 return ν;

Figure 2.13: Backward computation of the probability vector for φU[0,t]ψ.

from Sat(φ) to Sat(ψ∧¬φ) exactly at time t is obviously 0. We can then generateM
Sat(¬φ)
unif

and obtain the desired Prob(φU[t,t]ψ) as the vector ν(Sat(ψ), t) computed forM
Sat(¬φ)
unif .

P⊲⊳p(φU
[t,t′]ψ) requires two rounds of transient analysis: first we generateM

Sat(¬φ∨ψ)
unif

and compute ν last(Sat(ψ), t
′−t), the probability of reaching ψ states within the last t′−t

time units starting from each state; then we generate M
Sat(¬φ)
unif with P = PSat(¬φ) and

compute:
Rε∑

k=Lε

Pk
ν last(Sat(ψ), t

′−t) · Poisson[k],

which is a backward transient analysis similar to that in Fig. 2.13 but starting from the

probability vector ν last(Sat(ψ), t
′−t) instead of δψ.

The S operator.

The S operator requires a steady-state solution. If the CTMC is ergodic, thus the

steady-state solution is independent of the initial distribution, either all states or no state

satisfying S⊲⊳p(φ), depending on whether π(Sat(φ)) ⊲⊳ p holds.

For reducible CTMCs, which contains more than one terminal SCC in the transi-

tion graph, we have to check whether S⊲⊳p(φ) on each recurrent class one by one. The first

42



step is to enumerate recurrent classes R1, · · · ,Rm. We then solve the steady-state solution

for each recurrent class and let πn be the steady-state solution for recurrent class n.

For i ∈ Rk, i ∈ S⊲⊳p(φ) iff

πn(Sat(φ)) ⊲⊳ p,

and for i ∈ St, i ∈ S⊲⊳p(φ) iff

∑

n

Prob(i,Rn)πn(Sat(φ)) ⊲⊳ p.

Operator Algorithm

S⊲⊳p(φ) (ergodic CTMCs) solve linear system πQ = 0

(reducible CTMCs) solve linear system πQ = 0 on each terminal

SCCs, and then solve the probabilistic reachability on transient states

P⊲⊳p(φU
[0,t]ψ) use uniformization and then transient analysis in Figure 2.13

P⊲⊳p(φUψ) solve linear system Pν +B = ν

P⊲⊳p(φU
[t,t′]ψ) Single or multiple rounds of transient analysis

Table 2.1: Algorithms for model checking CSL [4].

Table 2.1 summarize the CSL model checking algorithms. As it shows, both the

steady-state solution and the unbounded until operator require to solve linear systems,

which will be addressed in Chapter 6. Chapter 7 will discuss truncation errors for operators

U[0,t] and U[t,t′].

43



Part I

Logic model checking

44



Chapter 3

Constrained saturation and CTL

model checking

CTL model checking is an important state-of-the-art approach in formal verifi-

cation. Paired with the use of BDDs [8], which provide a time and space efficient data

structure to perform operations such as union, intersection, and relational product over

sets of states, symbolic model checking [56] is one of the most successful techniques to

verify industrial hardware and embedded software systems.

Mainstream symbolic model checkers, such as NuSMV [25], employ methods based

on breath-first search (BFS). The saturation algorithm employs a very different philos-

ophy, recursively computing “local fixpoints”. A series of publications has proven the

clear advantages of saturation for state-space generation over traditional symbolic ap-

proaches [17, 19, 20, 77], while extending its applicability to increasingly general settings.

45



A saturation-based EU computation algorithm was instead proposed in [22] (see

EUsat in Figure 3.1). First, it partitions the set E of events into safe, ES , and unsafe,

EU = E \ ES , where α ∈ E is safe iff Pα(Sat(φ) ∪ Sat(ψ)) ⊆ Sat(φ), i.e., it is such that,

following its firing backwards, we can only find states in Sat(φ) (alternatively, we can restrict

all sets by intersecting them with the reachable states Srch in the above test). The algorithm

iteratively (1) saturates the MDD encoding the set of explored states using only safe events,

then (2) fires each unsafe event once using PU =
⋃
α∈EU

Pα in breadth-first fashion, then

(3) intersects the result with Sat(φ), and finally (4) adds the result to the working set X .

However, this attempt have been only partially successful since it is not general enough. If

there is no safe event in the system for a given EU property, then this algorithm degrades

to normal BFS-based algorithm. [22] also attempts to compute set of states satisfying EGφ

using forward and backward EU saturation from a single state in Sat(φ). However, this

approach is more efficient than the traditional algorithm only in very special cases.

This chapter addresses CTL model checking for asynchronous systems by propos-

ing an extended constrained saturation algorithm. This algorithm constrains the saturation-

based state-space exploration to a given set of states without explicitly executing the ex-

pensive intersection operations normally required to implement CTL operators. Further-

more, unlike the original approach [22] where the next-state function had to satisfy a Kro-

necker expression, the proposed algorithm is fully general, as it employs a disjunctive-then-

conjunctive encoding that exploits the common characteristics of asynchronous systems.

Constrained saturation can be used to compute the set of states satisfying an EU formula

46



EUsat(in Sat(φ),Sat(ψ)): set of state
1 declare X ,Y: set of state; EU , ES : set of event;

2 ClassifyEvents(Sat(φ) ∪ Sat(ψ), EU , ES)

3 X ← Sat(ψ);

4 Saturate(X , ES)

5 repeat

6 Y ← X ;

7 X ← X ∪ (PU (X ) ∩ (Sat(φ) ∪ Sat(ψ)))

8 if X 6= Y then

9 Saturate(X , ES)

10 until X = Y;

11 return X ;

Figure 3.1: Saturation-based EU model checking algorithms.

as well as to efficiently compute the backward transitive closure, which we in turn use for a

new algorithm to compute the set of states satisfying an EG formula.

The remainder of this chapter is organized as follows. Section 3.1 introduces

constrained saturation and new EU computation algorithm. Section 3.2 proposes a new EG

computation algorithm based on the backward transitive closure. We conclude this chapter

and outline future work in the last section.

3.1 Constrained saturation for the EU operator

The set of states satisfying EφUψ is a least fixpoint, where the saturation algorithm

could be efficiently employed. However, the challenge arises from the need to “filter out”

the states not in Sat(φ) before exploring their predecessors. Failure to do so can results in

paths which temporarily go out of Sat(φ), so that the result may include some states not

satisfying EφUψ. The saturation algorithm does not find states in breadth-first-search order,

as the process of saturating a node often consists of firing a series of events. Performing

47



an expensive intersection operation after each firing would be enormously less time and

memory efficient.

The advantage of Algorithm EUsat [22] over EUtrad depends on the structure of

the model. If there are no safe events with respect to a given property φ, EUsat degrades to

the simple breadth-first exploration of EUtrad . To overcome this difficulty, we propose two

approaches, both aimed at exploring only states in Sat(φ) without requiring an expensive

intersection operation after each firing.

1. Saturation with constrained next-state functions.

For each Pk, we build a constrained inverse next-state function Pk,Sat(φ) such that

j ∈ Pk,Sat(φ)(i)⇐⇒ (j ∈ Sat(φ)) ∧ j ∈ Pk(i).

Algorithm ConsNSF in Figure 3.2 builds the MDD representation of Pα,Sat(φ).

2. Constrained saturation.

This is the main contribution of our chapter. We do not explicitly constrain

the next-state functions, but perform instead a “check-and-fire” step when computing the

constrained preimage (function ConsRelProd in the pseudocode of Figure 3.3), based on

the following observation:

B(t)=RelProd(s, r) ∩ B(a)⇐⇒ B(t[i′])=
⋃

i∈Sl

RelProd(s[i], r[i][i′]) ∩ B(a[i′]), (3.1)

where t and s are L-level MDDs encoding sets of states, l = s.lvl, and r is a 2L-level encoding

a next-state function. This can be considered as a form of ITE operator [8], widely used

48



in BDD operations, but extended from boolean to integer variables. The overall process

of EU computation based on constrained saturation is then shown in Figure 3.3. The key

differences from the saturation algorithm in [20] are marked with a “⋆”.

The idea of the first approach is straightforward: all constrained next-state func-

tions Pα,Sat(φ) are forced to be safe by definition. According to the saturation-based EU

computation algorithm in Figure 2.11, the result is obtained in a single call to Saturate. The

downside of this approach is a possible decrease in locality. A property φ is dependent on

level k if the value of ik affects the satisfiability of φ, i.e., if the (fully-reduced) encoding of φ

has nodes at level k. After constraining a next-state function Nα with φ, the levels on which

φ depends become part of the support, thus, Top(Pα,Sat(φ)) = max{Top(φ),Top(Pα)}. If

Sat(φ) depends on level L, all events belong to EL and the saturation algorithm degrades

to BFS, losing its advantages.

The second approach, constrained saturation, does not modify the transition rela-

tion explicitly, but constrains the state exploration “on-the-fly” following the “check-and-

fire” policy. This policy guarantees that the state exploration is constrained to set Sat(φ).

At the same time, it retains the advantages of saturation due to exploiting event locality

and employing recursive local fixpoint computations. In the pseudocode shown in Fig-

ure 3.3, assuming p is the MDD encoding the constraint, the “check-and-fire” policy can be

summarized into two cases:

1. If p[i] = 0, s[i] is kept unchanged without adding new states (line 4 in function

ConsSaturate).

49



mdd EUsatConsNSF (mdd Sat(φ), mdd Sat(ψ))
1 foreach α ∈ E do Pα,Sat(φ) ← ConsNSF (Sat(φ),Pα);

2 mdd s←Saturate(Sat(ψ));

3 s← intersection(s,Srch);

4 return s;

mdd ConsNSF (mdd a,mdd r)
1 if a = 1 and r = 1 then return 1;

2 if InCacheConsNSF (a,r,t) then return t;

3 mdd t← 0; level lr ← r.lvl ; level la← a.lvl ;

4 if lr < la then

5 foreach i ∈ Sla s.t. a[i] 6= 0 do t[i][i]← ConsNSF (a[i ], r);

6 else if lr > la then

7 foreach i, i′ ∈ Slr s.t. r[i][i′] 6= 0 do t[i][i′]← ConsNSF (a, r [i ][i ′]);

8 else • lr = la

9 foreach i,i′∈Slr s.t. r[i][i′] 6=0 and a[i′] 6=0 do t[i][i′]←ConsNSF (a[i′],r[i][i′]);

10 CacheAddConsNSF (a, r, t);

11 return t;

Figure 3.2: Saturation using a constrained next-state function (EUsatConsNSF ).

2. When computing the relational product, check whether the newly generated local

state is included in p on each level (line 7 in function ConsSaturate and line 5 in

function ConsRelProd). If instead p[i′] = 0 in formula (3.1), the relational product

stops the recursive execution and returns 0.

Another tradeoff affecting efficiency is how to select the set of states Sat(φ) when

checking EφUψ. In high-level models, Sat(φ) is often associated with an atomic property,

e.g., “place a of the Petri Net is empty” or a “localized” property dependent on just a few

levels. There are then two reasonable choices to define Sat(φ):

• Sat(φ) = Sat(φ)pot: include all states in the potential state space S that satisfy the

given property, even if they are not reachable (recall that the potential state space is

finite because the bound for each local state space Sk is known).

50



mdd EUconsSat(mdd a,mdd b) • a: the constraint; b: the set being saturated

1 mdd s← ConsSaturate(a, b);

2 s← intersection(s,Srch);

3 return s;

mdd ConsSaturate(mdd a,mdd s) • a: the constraint; s: the set being saturated

1 if InCacheConsSaturate(a, s, t) then return t;

2 level l← s.lvl ; mdd t← NewNode(l); mdd r ← Pl;

3 foreach i ∈ Sl s.t. s[i] 6= 0 do

4 ⋆ if a[i′] 6= 0 then t[i]←ConsSaturate(a[i], s[i]); else t[i]←s[i];

5 repeat

6 foreach i, i′ ∈ Sl s.t. r[i][i
′] 6=0 do

7 ⋆ if a[i′] 6= 0 then

8 mdd u←ConsRelProd(a[i′],t[i],r[i][i′]); t[i′]← Or(t[i′], u);

9 until t does not change;

10 t←UniqueTableInsert(t); CacheAddConsSaturate(a, s, t);

11 return t;

mdd ConsRelProd(mdd a,mdd s,mdd r)
1 if s = 1 and r = 1 then return 1;

2 if InCacheConsRelProd (a, s, r, t) then return t;

3 level l← s.lvl ; mdd t← 0;

4 foreach i, i′ ∈ Sl s.t. r[i][i′] 6=0 do

5 ⋆ if a[i′] 6= 0 then

6 ⋆ mdd u←ConsRelProd(a[i′],s[i],r[i][i′]);

7 ⋆ if u 6= 0 then

8 ⋆ if t = 0 then t← NewNode(l);

9 ⋆ t[i′]← Or(t[i′], u);

10 t← ConsSaturate(a,UniqueTableInsert(t)); CacheAddConsRelProd (a, s, r, t);

11 return t;

Figure 3.3: Constrained saturation (EUconsSat).

• Sat(φ) = Sat(φ)rch: include in Sat(φ) only the reachable states that satisfy the given

property, Sat(φ)rch = Sat(φ)pot ∩ Srch.

We are normally only interested in reachable states and, of course, backward state

exploration from unreachable states can only lead to more unreachable states; all these

unreachable states can be filtered out after saturation, without affecting the correctness of

the result (unlike the discussion at the beginning of this section, pertaining to filtering out

51



states not in Sat(φ)). Exploration including the unreachable states might result in greater

time and memory requirements, in which case using Sat(φ)rch is preferable for algorithmic

efficiency. On the other hand, Sat(φ)pot is often dependent on very few levels, while, for most

models, Sat(φ)rch is a strict subset of S, thus depends on many levels, and this increases

the complexity of algorithm, especially for the first approach. In the ideal case, we can

constrain the state exploration to Sat(φ)rch with an acceptable overhead.

The experimental results in Section 3.3 demonstrate that constrained saturation

using Sat(φ)rch tends to perform much better than saturation with constrained next-state

functions in both runtime and memory consumption. We select it as our main method to

compute the EU operator, as well as the transition closure, which we introduce in the next

section.

3.2 Transitive closure and the EG operator

The EGφ property describes the existence of a path in Sat(φ) from a state leading

to a nontrivial strongly-connected component (SCC), where φ holds in all states along the

path and in the SCC. In this section, we propose a new EGφ computation algorithm based

on the transitive closure, built using constrained saturation.

The following defines the (backward) transitive closure of a set of states X within

Sat(φ), denoted with T bX ,Sat(φ) (supper-script b means “backward”).

Definition 9 Given a state i ∈ X , j ∈ T bX ,Sat(φ)(i) iff there exists a nontrivial (i.e., positive

length) forward path σ from j to i and all states in σ belong to Sat(φ).

52



If j ∈ T bX ,Sat(φ)(i), we know that j is in Sat(φ). Since it is not always necessary

to compute the transitive closure for all i ∈ S, we can build the transitive closure starting

only from states in X , to reduce time and memory consumption.

Claim 1: If j∈T bS,Sat(φ)(i), then ∃i
′∈P(i) ∩ Sat(φ) s.t. j∈ConsSaturate(Sat(φ), {i′}).

This claim comes from the definition of constrained saturation and suggests a

way of building the transitive closure efficiently. Starting from the MDD encoding Sat(φ),

appropriately restricted to Sat(φ), we compute the constrained saturation for states encoded

at the primed levels. Analogous to constrained saturation, this process can be performed

bottom-up recursively on each level.

Claim 2: j |= EGφ iff ∃i ∈ Sat(φ) s.t. i ∈ T b
Sat(φ),Sat(φ)(i) and j ∈ T b

Sat(φ),Sat(φ)(i).

From this claim, we can obtain an algorithm to compute the set of states sat-

isfying EGφ. Given a 2L-level MDD encoding the transitive closure, it is easy to obtain

the set of states Sscc = {i : i ∈ T b
Sat(φ),Sat(φ)(i)}. These states belong to SCCs where

property Sat(φ) holds continuously. Then, the result of EGφ can be obtained computing

RelProd(Sscc, T bSat(φ),Sat(φ)).

Building the transitive closure is a time and memory intensive task, constituting

the bottleneck for our new EG algorithm. On the other hand, the transitive closure contains

more information than the basic EG property and has further applications. We discuss one of

them: EG computation under a weak fairness constraint. Fairness is widely used in formal

specification of protocols; in particular, weak fairness specifies that there is an infinite

execution on which some states, say in F , appear infinitely often. The difficulty lies in that

the fact that executions in SCCs which do not contains states in F must be eliminated

53



to guarantee the fairness, and the traditional symbolic EG algorithm cannot handle this

problem. However, this extension is easy in our framework, as discussed next.

Claim 3: EGφ under a weak fairness constraint F holds in state j iff ∃i ∈ F s.t. i ∈

T bF∩Sat(φ),Sat(φ)(i) and j ∈ T bF∩Sat(φ),Sat(φ)(i).

Since i ∈ F , the SCCs containing such a state satisfy the fairness constraint.

We only need to build transitive closure on these states. An interesting point is that

many fewer state pairs are in T bF∩Sat(φ),Sat(φ) than in T b
Sat(φ),Sat(φ). Although, in symbolic

approaches, fewer states do not always lead to smaller MDDs, thus to lower time and

memory requirements, it is often the case in our framework that considering fairness will

reduce the runtime, which is quite the opposite of what happens with traditional approaches.

3.3 Experimental results

We implemented the proposed approach in SmArT [16] and report on experiments

run on an Intel Xeon 3.0Ghz workstation with 3GB RAM under SuSE Linux 9.1. Detailed

descriptions of the models we use in the experiments can be found in the SmArT User

Manual [15]. The state space size for each model is controlled by a parameter N . For

comparison, we study each model in both SmArT and NuSMV version 2.4.3 [1].

3.3.1 Results for the EU computation

Table 3.1 shows the results for each EU query. Runtime (seconds), final (mem-f)

and peak memory (mem-p) consumption (Kbytes) required by NuSMV, by the old version

54



of SmArT [22], and by our new approach are shown in the corresponding columns, for each

model. We compare the following five approaches:

- BFS : the traditional EU algorithm implemented in SmArT

- ConNSFSat-Ppot: Saturation using constrained next-state functions, where the next-

state functions are constrained using Ppot

- ConNSFSat-Prch: Saturation using constrained next-state functions, where the next-

state functions are constrained using Prch.

- ConSat-Sat(φ)pot: Constrained saturation with Sat(φ)pot.

- ConSat-Sat(φ)rch: Constrained saturation with Sat(φ)rch.

Our main method, constrained saturation using Prch, outperforms (sometimes by

orders of magnitude) NuSMV and other methods in both time and memory. In comparison

with NuSMV, the saturation-based methods excel because of the local fixpoint iteration

scheme. The improvement of our new work over our old approach [22] can be attributed

to both the MDD encoding of the next-state function and the more advanced saturation

schemes.

Overall, ConSat requires less runtime as well as less memory than ConNSFSat,

because the constrained next-state functions often impose overhead on relational product

operations. The difference between the results of ConNSFSat-Ppot and ConNSFSat-Prch

shows the tradeoff discussed at the end of Section 3.1. ConSat constrained with Sat(φ)rch

is more advantageous than with Sat(φ)pot because ConSat is not sensitive to the complexity

55



of the constraint set due to our lightweight “check-and-fire” policy. The reduction in state

exploration becomes the dominant factor for efficiency.

3.3.2 Results for the EG computation

Table 3.2 compares the results of NuSMV, BFS (SmArT-BFS) and the method in

Section 3.2 (SmArT-RchRel) for EG computation with or without fairness constraints. For

BFS, the number of iterations is listed in column itr.

Without fairness, traditional BFS (in NuSMV or SmArT-BFS) is often orders-of-

magnitude faster than our algorithm based on the reachability relation. This result is not

surprising due to the time and memory complexity of building the transitive closure, even

if this is done using saturation.

Another experiment is provided to show the merit of our algorithm. We build a

simple model with a long path from an SCC where EGφ holds to a terminal state, with φ

holding on every state on this path. We parameterize the length of the path to control the

number of iterations which a traditional EG algorithm will require to reach the fixpoint. For

different numbers of iterations, from 500 to 50,000, we compare the runtimes (in seconds)

of traditional (BFS) search and our algorithm (SatTR) in Figure 3.4. As the number of

iterations grows, the runtime of our algorithm grows much slower than that of the traditional

algorithm, due to the efficient state exploration scheme in constrained saturation.

If we consider fairness, as discussed in Section 3.2, the time and memory complexity

of building the transitive closure is often reduced, while that of the traditional algorithm

56



Table 3.1: Results for the EU computation.

57



Model

EG query Fairness

NuSMV SmArT-BFS SmArT-RchRel NuSMV SmArT-RchRel

sec KB(f) itr secKB(f)KB(p) sec KB(f) KB(p) sec KB secKB(f)KB(p)

leader EG(status0 6= leader) pref0 = 1

3 0.2 9,308 14 0.1 139 196 4.9 934 1,115 0.6 11,428 0.02 266 268

4 3.0 50,187 18< 0.1 400 436 791.6 5,999 7,225 11.2 49,655 207.4 5,271 6,394

phil. EG(phil0 6= eat) phil0 = has left fork

10 0.1 7,193 4< 0.1 95 95 0.1 170 170 0.2 8,447< 0.1 113 113

50 3.0 50,187 4< 0.1 220 241 0.2 682 682 1,244.5 75,274< 0.1 393 399

100 – – 4 0.1 444 562 1.1 1,180 1,191 – – 0.1 704 705

robin EG(true) p1 = Ask

10 2.3 70,581 1< 0.1 86 86 0.1 437 437 73.5 73,145< 0.1 222 222

50 – – 1 0.1 1,263 1,263 4.8 15,676 15,676 – – 0.3 1,902 1,902

100 – – 1 1.0 7,688 7,688 53.9 100,719 102,941 – – 1.5 9,317 9,317

fms EG¬(P1s = P2s = P3s = N) P1s = N

5 0.8 18,474 1< 0.1 61 135 1.9 1,022 1,024 2.5 35,238 0.27 419 475

10 16.5 60,559 1< 0.1 128 220 1,062.4 4,338 6,231 191.8 62,188 77.7 607 1,050

kanban EG(P1out > 0 ∨ P2out > 0 ∨ P3out > 0 ∨ P4out > 0) P1out = N

8 2.1 42,925 1< 0.1 279 415 1,131.1 1,949 2,714 2.2 43,511 6.2 1,303 1,486

10 4.4 58,693 1< 0.1 529 930 – – – 4.6 58,705 27.0 2,507 2,939

Table 3.2: Results for the EG computation.

Figure 3.4: EG computation based on BFS v.s. transitive closure.

58



in NuSMV increases. The advantage of our algorithm is easily observable in this case,

especially for some complex models which are not even manageable in NuSMV.

3.4 Summary

In this chapter, we focused on symbolic CTL model checking based on the idea of

the saturation algorithm. To constrain state exploration to a given set of states, we present

a constrained saturation algorithm. The “check-and-fire” policy filters out the states not

in the given set when saturating MDD nodes recursively. For the EG operator, we first

symbolically build the transitive closure, using constrained saturation, then compute the

set of states satisfying EGφ. We discussed desirable properties of our new EU and EG

algorithms and analyzed a set of experimental results.

Constrained saturation enables building the transitive closure for some complex

systems. The application of the transitive closure could be further extended to SCC con-

struction, a basic problem in emptiness checking for Büchi automata. Another future work

is to reduce the cost of building the transitive closure. For SCC enumeration, X in TX ,S can

be refined to reduce the computation complexity. Next chapter presents these techniques.

59



Chapter 4

SCC enumeration

Finding strongly connected components (SCCs) is a basic problem in graph theory.

For discrete-state models, some interesting properties, such as those expressible in Linear

Time Logic (LTL) [48] and fair CTL [28], are correlated with the existence of SCCs in the

state-transition graph. The same problem is also central to the language emptiness check

for ω-automata [41, 48]. For large discrete-state models, it is impractical to find SCCs

using explicit depth-first state-space search [76] since its complexity is at least linear in the

size of the graph, motivating the study of symbolic SCC computation. In this chapter, the

objective is to build the set of states in SCCs.

The structure of SCCs in a graph is captured by its quotient graph, obtained by

collapsing each SCC into a single node. This graph is acyclic, thus defines a partial order

on the SCCs. Terminal SCCs (or bottom SCCs) are nontrivial SCCs corresponding to leaf

nodes in the quotient graph. For Markov chains [74] it is important to classify the reachable

60



states as recurrent (belonging to terminal SCCs) or transient (all other states), since the

probability that a Markov chain returns to a given state equals 1 iff that state is recurrent.

The complexity of these problems arises from two aspects: having to explore a

huge state space (almost always the case in real-life problems) and having to deal with a

large number of SCCs or terminal SCCs (sometimes the case in real-life problems). The

former, known as state explosion [28], is the main obstacle to formal verification due to

the obvious burden it imposes on computational resources. Traditional BDD approaches

cope with this problem by employing image and preimage computations for state-space

exploration but, while successful for fully synchronous systems [12], they do not work as

well for asynchronous systems [20]. The latter constitutes the bottleneck for one class

of previous work [80, 81], which enumerates SCCs one by one. Section 4.1 analyzes this

problem in more detail.

We address the computation of states in SCCs or terminal SCCs by improving

two previous approaches: one proposed by Xie-Beerel (XB) [80, 81] and one based on com-

puting the transitive closure (TC) of the transition relation [41]. We apply the saturation

algorithm [20] to both to cope with the cost of state-space exploration. Our previous work

demonstrated clear advantages for saturation in state-space generation [20] (summarized in

Section 2.2.1) and CTL model checking [22, 82] over traditional symbolic approaches. In

this chapter, we employ saturation for SCC analysis. Saturation greatly improve the XB

algorithm over its original version using BFS. With regards to a potentially huge number

of SCCs, the TC algorithm has the advantage of exploring all SCCs symbolically instead of

enumerating them one by one. However, as previously proposed, computing the TC often

61



requires large amount of runtime and memory [41], to the point that [68] claims that the

TC algorithm is “infeasible for large examples”. To disprove this myth, we propose a new

saturation algorithm to compute the TC, making it a practical method of SCC computation

for complex systems. Furthermore, we present an algorithm to compute the recurrent states

(i.e., states in terminal SCCs) based on the TC.

Then, we consider fair cycle detection, a problem related to SCC computation,

but even more challenging. In Section 4.4, we discuss algorithms for detecting fair cycles

satisfying Streett fairness (strong fairness) [70].

The remainder of this chapter is organized as follows. Section 5.1 introduces the

relevant background on the data structures we use and saturation. Section 4.2 introduces

an improved XB algorithm using saturation. Section 4.3 proposes our new algorithm to

compute the TC using saturation and the corresponding algorithms for SCC and terminal

SCC computation. Section 4.4 deals with the problem of finding fair cycles. Section 4.5

compares the performance of our algorithms and Lockstep. We discuss future work in the

last section.

4.1 Previous work

Symbolic SCC analysis has been widely explored [33, 37, 39, 40, 68, 73], and much

effort has been spent on computing the SCC hull, which includes states in SCCs, and along

paths connection SCCs. A family of SCC hull algorithms [73] employing BFS iteration is

available. Although closely related, there is crucial difference between SCC hull computation

and our work, because an SCC hull contains not only states in nontrivial SCCs, but also

62



states on the paths between them, constituting a superset of our desired result. In non-

probabilistic model checking, computing the SCC hull aims at detecting the existence of

reachable fair cycles, which is critical to verify fair CTL, LTL and ω-automata properties.

However, for Markov chains, the aim of SCC analysis is to collect the states belonging to

(trivial or nontrivial) terminal SCCs [3, 24],. To this end, an SCC hull must be further

decomposed into states that are in an SCC and those that are not. To the best of our

knowledge, no existing efficient symbolic algorithm is available for this task. Hence, SCC

hull computation algorithms are not applicable to our problem and we will not discuss them

further. Instead, we review two categories of related previous work, which can compute the

precise set of states in SCCs: the TC and the XB algorithms.

Hojati et al. [41] presented a symbolic algorithm to test ω-regular language con-

tainment by computing the TC N ∪N 2 ∪ N 3 ∪ · · · . Section 4.3 discusses the TC in more

detail. Matsunaga et al. [55] proposed a symbolic procedure to compute the TC but the

runtime is so poor that building the TC has long been considered impractical for complex

systems.

Xie et al. [81] proposed an algorithm, referred to as the XB algorithm in this

chapter, combining explicit state enumeration and symbolic state-space exploration. They

explicitly pick a state as a “seed”, compute the forward and backward reachable states

from the seed, and find the SCC containing this seed as the intersection of these two sets of

states. Bloem et al. [7] presented an improved algorithm called Lockstep (Figure 4.1) which,

given a seed, instead of computing the forward and backward reachable states separately,

it alternates BFS iterations between the two so that it can stop as soon as one of the two

63



mdd Lockstep(mdd p) • initially, B(p) = S
1 if (p = 0) then return 0;

2 mdd s← PickState(p); • pick a seed s from B(p)

3 mdd a← 0; • a accumulates the answer

4 mdd f ← 0; • f accumulates the forward set from s

5 mdd b← 0; • b accumulates the backward set from s

6 mdd c← 0; • c will be the SCC containing s, if any

7 mdd f ′ ← Intersect(ImageF (s), p); mdd b′ ← Intersect(ImageB(s), p);

8 while f ′ 6= 0 and b′ 6= 0 do

9 f ← Union(f, f ′); b← Union(b, b′);

10 f ′ ← Diff (Intersect(ImageF (f ′), p), f); b′ ← Diff (Intersect(ImageB(b′), p), b);

11 endwhile;

12 if (f ′ = 0) then

13 mdd v ← f ; • v remembers the set that converged first, f

14 while Intersect(b′, f) 6= 0 do • continue exploring backward

15 b′ ← Diff (Intersect(ImageB(b′), p), b); b← Union(b, b′);

16 endwhile;

17 else

18 mdd v ← b; • v remembers the set that converged first, b

19 while Intersect(f ′, b) 6= 0 do • continue exploring forward

20 f ′ ← Diff (Intersect(ImageF (f ′), p), f); f ← Union(f, f ′);

21 endwhile;

22 endif;

23 if Intersect(f, b) 6= 0 then

24 c← Intersect(f, b); • s belongs to the nontrivial SCC c

25 endif;

26 a←Union(c,Lockstep(Diff (v,c)),Lockstep(Diff (p,Union(v,s)))); • divide and conquer in p

27 return a;

Figure 4.1: Lockstep for SCC computation.

converges. This optimization achieves a O(n logn) complexity, compared to the O(n2) of

the XB algorithm, computed in terms of number of image and preimage computations,

where n is the number of reachable states. Our experiments show that Lockstep works very

well when the number of SCCs is manageable. However, as the number of SCCs grows, the

exhaustive enumeration of SCCs becomes a formidable problem for both the XB and the

Lockstep algorithms.

64



mdd XB TSCC (mdd p) • initially, B(p) = S
1 mdd a←0; • a collects the states in nontrivial terminal SCCs

2 mdd s, f, b;

3 while (p 6= 0) do

4 s←PickState(p); • pick a seed s from B(p)

5 f ← Intersect(ReachF (s), p);

6 b← Intersect(ReachB(s), p);

7 if Diff (f, b) = 0 then •B(f) is a subset of B(b)

8 a← Union(a, f); • add the new terminal SCC to a

9 endif;

10 p← Diff (p, b); • don’t consider the states in B(b) again

11 endwhile;

12 return a;

Figure 4.2: XB algorithm for terminal SCC computation.

Xie et al. [80] proposed a similar idea to compute the recurrent states in large

Markov chains (XB TSCC in Figure 4.2). From a randomly picked seed i, if the set of

forward reachable states ReachF (i) is a subset of the set of backward reachable states

ReachB(i), then ReachF (i) is a terminal SCC; otherwise, ReachB(i) contains no terminal

SCC and can be eliminated from further consideration. Functions ReachF and ReachB

were implemented using BFS.

Our work is the first to employ saturation in SCC analysis. The two approaches

we propose build upon the above two previous approaches. For the XB algorithm, we

replace BFS state-space exploration with saturation. For the TC approach, we propose a

new algorithm to compute TC using saturation.

65



4.2 Using saturation in the XB algorithm

A natural improvement to the XB algorithm is to employ saturation to explore the

forward and backward reachable states. Figure 4.3 shows the pseudocode of our algorithms:

the two versions of XBSat shown in the figure compute the states in SCCs, or just in the

terminal SCCs, respectively. Unlike Lockstep, which uses the set that converges first to

bound the other, our algorithm cannot interleave the two computations or even predict

which one will converge first, since saturation does not run in a step-by-step manner. One

obvious approach is then to run a forward and a backward saturation and intersect the

results. However, we experimentally found that we can do better by bounding one of the

two saturations with the other. In Figure 4.3, for example, we always “bet” on forward

exploration and use it to bound backward exploration (Line 7). This bet is of course

most beneficial when (unconstrained) backward exploration is much slower than forward

exploration. Thus, there is a trade-off between using the slower BFS, which however allows

us to interleave the two explorations, and the faster saturation, which does not. Performance

is also affected by which seed is picked in each iteration and, for a fair comparison, we pick

the same seed in both algorithms at each iteration.

Both our new algorithm and Lockstep improve the original XB algorithm, in dif-

ferent ways. Lockstep aims at reducing the number of steps by carefully scheduling the

image and preimage computations, while our algorithm leverages event locality. Measuring

complexity in number of BFS steps, O(n logn) for Lockstep [7], is not meaningful for satura-

tion, which uses light-weight event firings instead of global image computations. Moreover,

we argue that the number of steps is too rough a measure of complexity because the cost

66



of each symbolic step varies greatly, exponentially with the number of levels in the worst

case. Instead, saturation aims at reducing the real cost in symbolic manipulation: it avoids

building many unnecessary intermediate MDD nodes. Thus, while Lockstep ensures a tight

bound on the number of steps, saturation often executes fewer node operations, thus lower

runtime and memory requirements. Our experimental results show that, for most models

we studied, the improved XB algorithm using saturation outperforms Lockstep, sometimes

by orders of magnitude.

4.3 Computing the TC with saturation

We now define the forward and the backward TC, T and T b, of a discrete-state

model.

Definition 10 The transitive closure T ⊆ S × S contains all (i, j) such that there is a

nontrivial (i.e., positive length) path from i to j, denoted by i → j. Analogously, we let

(i, j) ∈ T b iff j→ i.

T b represents a relation between states, and thus it can be encoded with a 2L-level

MDD with the same variable order as next-state functions. ik is placed on level k (unprimed

level) and jk on level k′ (primed level), where Unprimed(k)=Unprimed(k′)=k. As T and

T b are symmetric, we focus on the algorithm to compute T b. After T b has been built, T

is obtained by simply swapping the unprimed and primed levels in the MDD encoding T b,

written as T =Invert(T b).

67



mdd XBSat(mdd p) • initially, B(p) = S
1 if p = 0 then return 0; endif;

2 mdd a← 0;

3 mdd s← PickState(p); • pick a seed s from B(p)

4 mdd f ′ ← Intersect(ImageF (s), p);

5 mdd b′ ← Intersect(ImageB(s), p);

6 mdd f ← Intersect(SaturateF (f ′), p); • forward reachable states from s in p

7 mdd b← Intersect(ConsSatB(f, b′), p); • the intersection of backward and forward reachable

states

8 if b 6= 0 then a← b; endif; • b 6=∅ is a set of states in an SCC

9 a← Union(a,XBSat(Diff (f, b)),XBSat(Diff (p, f)));

10 return a;

Figure 4.3: Improved XB algorithm to compute SCCs using saturation.

mdd XBSat(mdd p) • initially, B(p) = S
1 if p = 0 then return 0; endif;

2 mdd a← 0;

3 mdd s← PickState(p); • pick a seed s from B(p)

4 mdd f ′ ← Intersect(ImageF (s), p);

5 mdd b′ ← Intersect(ImageB(s), p);

6 mdd f ← Intersect(SaturateF (f ′), p); • forward reachable states from s in p

7 mdd b← Intersect(SaturateB(b′), p); • backward reachable states from s in p

8 if Diff (f, b) = 0 then a← Union(a, f); endif; •B(f) is a terminal SCC if B(f) ⊆ B(b)

9 a← Union(a,XBSat(Diff (p, b))); • recursion in the remaining state space

10 return a;

Figure 4.4: Improved XB algorithm to compute terminal SCCs using saturation.

We base our algorithm on the following observation:

(i, j) ∈ T b ⇔ ∃k ∈ P(i) ∧ j ∈ B(ConsSatB(S, s)),

where B(s) = {k}. Instead of running saturation on j for each pair (i, j), we propose an

algorithm that executes on the 2L-level MDD encoding P. Line 1 in function SCC TC of

Figure 4.5 computes T b by calling TransClosSat , which runs bottom-up recursively. As for

the constrained saturation in Figure 3.3, this function runs node-wise on primed level and

68



fires lower level events exhaustively until the local fixed point is obtained. This procedure

ensures the following properties.

Property 1: Given a k-level MDD a and 2k-level MDD n, TransClosSat(a, n) returns a

2k-level MDD t s.t. ∀(i, j) ∈ B(n),k ∈ B(ConsSatB(a, j))⇒ (i,k) ∈ B(t).

Property 2: TransClosSat(S,P) = T b.

The top-level pseudocode of the SCC computation using TC is shown as SCC TC

in Figure 4.5. Function TCtoSCC extracts all states i such that (i, i) ∈ T b. Unlike SCC

enumeration algorithms such as XB or Lockstep, a TC approach does not necessarily suffer

from a large number of SCCs. Nevertheless, due to the complexity of building T b, this

approach had been considered infeasible for complex systems. By employing saturation,

instead, our algorithm to compute T b completes on some large models, such as the dining

philosopher problem with 1000 philosophers, while, for models containing many SCCs, it

may succeed where other algorithms have no hope. Thus, while the TC approach is not as

robust as Lockstep, it can be used as an alternative to it when Lockstep cannot enumerate

all SCCs.

T b can also be used to find recurrent states, i.e., states in terminal SCCs. State j

is in a terminal SCC if, for any state i, j→ i ⇒ i→ j. Given two states i, j, let j 7→ i mean

j→ i and i 6→ j. We can encode this relation with a 2L-level MDD, obtained as T b \ T . The

pseudocode for this algorithm is shown as TSCC TC in Figure 4.7. The set {(i, j) | j 7→ i}

is encoded with a 2L-level MDD r∗. Then, the set of states {j | ∃i, j 7→ i}, which do not

belong to terminal SCCs, is computed by existentially quantifying out the unprimed levels

69



mdd SCC TC (P)
1 mdd T b ← TransClosSat(S,P);

2 mdd SCC ← TCtoSCC (T b);

3 return SCC;

mdd TransClosSat(mdd a,mdd n)
1 if n = 1 then return 1; endif;

2 if InCacheTransClosSat (a, n, t) then return t; endif;

3 level k ← n.lvl ; •L ≥ U(k) ≥ 1

4 mdd t← 0;

5 mdd r ← PU(k);

6 foreach i, j ∈ Sk s.t. n[i][j] 6= 0 do

7 if a[j] 6= 0 then • first, saturate nodes below

8 t[i][j]← TransClosSat(a[j], n[i][j]);

9 else • no new path in this sub-space since a[i] 6= 0

10 t[i][j]← n[i][j];

11 endif;

12 endfor;

13 foreach i ∈ SU(k) s.t. n[i] 6= 0 do

14 repeat • compute the local fixed point

15 foreach j,j′∈SU(k) s.t. n[i][j] 6=0∧r[j][j′] 6=0∧a[j′] 6=0 do • r is applied to the primed levels

of n

16 t[i][j′]←Union(t[i][j′],TCRelProdSat(a[j′],t[i][j],r[j][j′]));

17 endfor;

18 until t does not change;

19 endfor;

20 t← UniqueTableInsert(t);

21 CacheAddTransClosSat (a, n, t);

22 return t; • t is a 2L-level MDD encoding TransClosSat(a, n)

Figure 4.5: Building the TC using saturation (continued on Figure 4.6).

70



mdd TCRelProdSat(mdd a,mdd n,mdd r)
1 if n = 1 and r = 1 then return 1; endif;

2 if InCacheTCRelProdSat (a, n, r, t) then return t; endif;

3 level k ← n.lvl ; •L ≥ U(k) ≥ 1

4 mdd t← 0;

5 foreach i ∈ SU(k) s.t. n[i] 6= 0 do

6 foreach j,j′∈SU(k) s.t. n[i][j] 6=0∧r[j][j′] 6=0∧a[j′] 6=0 do • r is applied on primed levels in n

7 t[i][j′]←Union(t[i][j′],TCRelProdSat(a[j′],n[i][j],r[j][j′]));

8 endfor;

9 endfor;

10 t←TransClosSat(a,UniqueTableInsert(t)); • return a saturated result

11 CacheAddTCRelProdSat (a, n, r, t);

12 return t;

mdd TCtoSCC (mdd n)
1 if n = 1 return 1; endif;

2 if InCacheTCtoSCC (n, t) then return t; endif;

3 level k ← n.lvl ; •L ≥ U(k) ≥ 1

4 mdd t← 0;

5 foreach i ∈ SU(k) s.t. n[i][i] 6= 0 do

6 t[i]← TCtoSCC (n[i][i]);

7 endfor;

8 t← UniqueTableInsert(t);

9 CacheAddTCtoSCC (n, t);

10 return t; • t is an L-level MDD enconding {i : (i, i) ∈ B(n)

Figure 4.6: Building the TC using saturation.

71



(Line 5), and stored in MDD nontscc. All other states are the recurrent states belonging

to terminal SCCs.

mdd TSCC TC (P)
1 mdd T b ← TransClosSat(P);

2 mdd T ← Inverse(T b); • swap adjacent levels k and k′

3 mdd scc← TCtoSCC (T b);

4 mdd r∗ ← Diff (T b, T );

5 mdd nontscc← QuantUnpr(r∗); • quantify out unprimed levels in r∗ and get an L-level MDD

6 mdd recurrent← Diff (scc, nontscc);

7 return recurrent;

Figure 4.7: Computing recurrent states using TC.

To the best of our knowledge, this is the first TC-based algorithm for terminal SCC

computation. This algorithm is more costly in runtime and memory than SCC computation

because of the need to obtain the 7→ relation. However, by employing TransClosSat , it works

for most of the models we considered. Moreover, for models with a huge number of terminal

SCCs, this algorithm is, again, the only feasible approach.

4.4 Fair cycles

One application of the SCC computation is to check the language emptiness of an

ω-automaton. The language of an ω-automaton is nonempty if there is a nontrivial cycle

which satisfies a certain fairness condition, i.e., a fair cycle. Thus, it is necessary to extend

the SCC computation to finding fair cycles. Two widely used fairness conditions are Büchi

fairness (weak fairness) and Streett fairness (strong fairness) [28].

72



Strong fairness is specified with a set of pairs of sets {(R1, C1), . . . , (Rn, Cn)} and

a cycle satisfies it iff, for each (Rm, Cm), either no state of Rm is in the cycle or some state

of Cm is in the cycle. Weak fairness is specified with a set of sets of states {F1,F2, . . . ,Fn}.

Its semantics is expressed by the special case of strong fairness where, in each pair, Rm = S

and Cm = Fm, thus we focus on strong fairness.

Lockstep is also able to find strongly fair cycles [7], but might suffer from SCC

refinement [7, Figure 4]. This occurs when an SCC intersects a Ri but not Ci. Then, we

need to to filter out all states in Ri and run Lockstep on the remaining states in this SCC.

This process may enumerate all states in the worst case, as with SCC enumeration. Here,

we present a TC approach that avoids enumeration. To the best of our knowledge, this is

the first TC approach for fair cycle detection. The following defines the constrained TC.

Definition 11 Given a set of states X , the constrained backward TC is T bX = TransClosSat(X ,P).

T bX specifies the relation between two states i and j, such that (i, j) ∈ T bX ⇔ j→

t1→t2→ . . .→ i and t1, t2, . . . , i ∈ X . Thus, the set of states belonging to some (strongly)

fair cycle is given by:

⋂

m=1,...,n

(
TCtoSCC (T bS\Rm

) ∪ {i | ∃cm∈Cm, (T (cm, i) ∩ T
b(cm, i))}

)
.

If (i,i)∈T bS\Rm
, there is a nontrivial path from i to i that avoidsRm. Thus, TCtoSCC (T bS\Rm

)

returns the states in cycles that contain no state in Rm and satisfy strong fairness. If

(i,cm) ∈ (T (cm,i)∩T b(cm,i)), i belongs to a cycle which contains cm. The subformula in

the second line corresponds to the states in a cycle containing at least one state in Cm,

satisfying strong fairness.

73



mdd FairSCC TC (S,P, {(R1, C1), . . . , (Rn, Cn)})
1 mdd T b←TransClosSat(S,P);

2 mdd T ←Inverse(T b);

3 mdd s←S;

4 foreach m = 1, · · · , n do

5 mdd c←TCtoSCC (TransClosSat(Diff (S,Rm),P));

6 mdd d←Intersect(T b, T );

7 d←QuantUnpr(Intersect(d,Cross(Cm,S))); •Cross(Cm,S) = {(cm,i) : cm∈Rm∧i ∈ S}

8 s← Intersect(s,Union(c, d));

9 endfor;

10 return s;

Figure 4.8: Computing fair cycles using TC.

The pseudocode in Figure 4.8 computes the above formula. For each (Rm, Cm), c

encodes the states in cycles that do not intersect Rm, d encodes the states in cycles that

intersect Cm, and Cross(Cm,S) returns a 2L-level MDD encoding the cross-product of Cm

and S. The cost mainly lies in computing the intersection of T b and T , which is similar to

computing the relation 7→. Moreover, the complexity grows linearly with the size n of the

fairness condition.

4.5 Experimental results

We implemented our algorithms in SmArT [16] and report experimental results

running on an Intel Xeon 3.0Ghz workstation with 3GB RAM under SuSE Linux 9.1.

The models, described as Petri nets and translated into the input language of SmArT, in-

clude the closed queue network (cqn) of [81], two implementations of arbiters (arbiter1,

arbiter2) [1], one which guarantees fairness and the other which does not, the queen place-

ment problem (queens), the dining philosopher problem (phil), and the leader selection

74



protocol (leader) [15]. The size for each model is controlled by a parameter N . The number

of SCCs (terminal SCCs) and states in SCCs (terminal SCCs) for each model is listed in

column “SCC count” (“TSCC count”) and column “SCC states” (“TSCC states”), respec-

tively. We set an upper bound of 2hr for runtime and 1GB for the unique table (used

to canonically store the MDD nodes). The main metrics of our comparison are runtime

and peak memory consumption (for unique table plus operation cache, required for efficient

dynamic programming implementation of MDD operation), which are measured in seconds

and megabytes, respectively.

The top part of Table 4.1 compares three algorithms for SCC computation: the TC

algorithm (column “TC”) of Section 4.3, the improved XB algorithm (column “XBSAT”)

of Section 4.2, and Lockstep (column “Lockstep”). We can see that the improved XB

algorithm using saturation is better than Lockstep for most models, in both runtime and

memory. Compared with the SCC enumeration algorithms, the TC algorithm is often more

expensive but, for queens and arbiter2, it completes within the time limit while the other

two algorithms fail. For arbiter2 (“*” means the number of states in SCCs is computed from

the model structure, i not using XB.), our TC algorithm explores over 10150 SCCs in a few

seconds, while it is obviously not feasible to exhaustively enumerate all SCCs in reasonable

time. To the best of our knowledge, this is the best result of SCC computation reported,

confirming the main advantage of the TC algorithm: its insensitivity to the number of

SCCs. With the help of our new algorithm, the TC can be built for some large systems,

such as the dining philosopher problem with 1000 philosophers.

75



The bottom part of Table 4.1 compares three algorithms for terminal SCC com-

putation: XBSat (column “XBSat”) presented in Sections 4.2 , TSCC TC (column “TC”)

presented in Sections 4.3, and the BFS XB algorithm XB TSCC (column “XBBFS”) shown

in Figure 4.2. The basic trends are similar to those for SCC computation: algorithm XBSat

works consistently better than the traditional method, while TSCC TC is less efficient for

most models. In the framework of the XB algorithm, computing terminal SCCs is faster

than computing SCC because a larger set of states is pruned at each recursion. On the

contrary, TSCC TC is more expensive than SCC TC due to the computation of the 7→

relation. As a consequence, TSCC TC suffers even more from large memory and runtime

requirement. Nevertheless, for models with large numbers of terminal SCCs, such as queens,

TSCC TC outperforms the BFS XB algorithm.

Some conclusions can be drawn from the above results and discussion. First, satu-

ration is effective in speeding up SCC and terminal SCC computation within the framework

of the XB algorithm. Second, our new saturation algorithm makes TC computation feasible

for some complex models containing up to 10150 states. Third, SCC computation based on

TC is superior to SCC enumeration algorithms, which find SCCs one-by-one, for models

with huge numbers of SCCs.

Although the TC approach is not as robust as Lockstep, especially when the

number of SCCs in the model is manageable, we argue that it should be considered as

a reasonable alternative worth of further research. Given a new model with an unknown

number of existing SCCs, employing both of these approaches at the same time will be

ideal. Current trend of multi-core computers provide a possible means of parallelizing these

76



two algorithms. Some of the common data structures, like MDDs encoding the state space

and next-state functions, could then even be shared.

4.6 Summary

We focused on improving two previous approaches for SCC computation, the Xie-

Beerel (XB) and the transitive closure (TC) algorithms, using saturation. For the asyn-

chronous models we study, the improved XB algorithm using saturation achieves a clear

speedup and our new algorithm to compute TC using saturation is experimentally shown

to be capable of handling models with up to 10150 of SCCs. We argue that the TC-based

approach is worth further research because of its ability to deal with models having huge

numbers of SCCs.

SCC analysis can be an important step to simplify Markov chain analysis and

stochastic model checking, as shown in [3, 24]. I will present the application of SCC enu-

meration in Part 2.

77



Results for the SCC computation

Model
SCC count SCC states

TC XBSat Lockstep

name N mem time mem time mem time

cqn

10 11 2.09e+10 34.2 13.6 3.4 < 0.1 4.0 3.9

15 16 2.20e+15 64.4 73.8 5.0 0.2 89.1 44.5

20 21 2.32e+20 72.7 687.8 25.8 0.5 118.7 275.0

phil

100 1 4.96e+62 5.0 0.5 3.2 < 0.1 52.0 4.5

500 1 3.03e+316 33.0 4.0 24.5 0.1 – to

1000 1 9.18e+626 40.5 7.8 29.1 0.3 – to

queens

10 3.22e+4 3.23e+4 8.2 1.6 64.4 14.5 63.9 12.4

11 1.53e+5 1.53e+5 45.8 9.0 94.2 108.6 96.3 93.6

12 7.95e+5 7.95e+5 184.8 60.6 170.2 1220.4 281.9 1663.9

13 4.37e+6 4.37e+6 916.5 840.6 – to – to

leader

3 4 6.78e+2 6.0 1.4 20.8 < 0.1 20.8 < 0.1

4 11 9.50e+3 70.3 73.1 25.4 1.1 23.8 0.3

5 26 1.25e+5 116.6 3830.4 35.6 40.8 49.4 6.4

6 57 1.54e+6 – to 41.6 1494.9 417.2 387.9

arbiter1

10 1 2.05e+4 24.1 1.2 21.4 < 0.1 21.8 0.1

15 1 9.83e+5 128.3 63.0 45.1 < 0.1 62.1 6.8

20 1 4.19e+7 mo – 709.7 < 0.1 mo –

arbiter2

10 1024 1.02e+4 20.3 < 0.1 26.2 0.7 31.1 1.1

15 32768 4.91e+5 20.4 < 0.1 31.1 51.8 211.3 990.3

20 1.05e+6 2.10e+7 20.4 < 0.1 31.2 2393.3 – to

500 3.27e+150 (1.64e+151)* 41.0 4.0 – to – to

Results for the terminal SCC computation

Model
TSCC count TSCC states

TC XBSat XBBFS

name N mem time mem time mem time

cqn

10 10 2.09e+10 37.9 15.5 21.4 < 0.1 33.5 3.4

15 15 2.18e+15 64.8 79.6 23.0 0.3 59.4 33.7

20 20 2.31e+20 72.7 691.3 26.2 0.8 90.0 280.5

phil

100 2 2 26.5 0.5 20.9 < 0.1 39.2 8.7

500 2 2 34.3 4.1 23.2 < 0.1 – to

1000 2 2 44.4 11.3 26.5 0.2 – to

queens

10 1.28e+4 1.28e+4 36.2 3.0 46.7 2.8 62.3 35.1

11 6.11e+4 6.11e+4 76.5 19.3 70.6 24.5 145.2 364.2

12 3.14e+5 3.14e+5 244.1 205.4 98.8 179.4 mo –

13 1.72e+6 1.72e+6 mo – 269.0 1940.81 mo –

leader

3 3 3 26.6 1.5 20.7 < 0.1 21.4 0.1

4 4 4 70.6 75.1 24.4 0.9 38.0 4.5

5 5 5 119.3 3845.3 30.6 26.9 41.1 87.6

6 6 6 – to 39.0 492.9 44.8 1341.5

arbiter1

10 1 2.05e+4 24.1 1.2 20.4 < 0.1 22.4 0.4

15 1 9.83e+5 128.3 63.1 20.4 < 0.1 65.3 23.3

20 1 4.19e+7 mo – 20.5 < 0.1 – to

arbiter2

10 1 1 20.4 < 0.1 20.9 < 0.1 39.6 6.4

15 1 1 20.5 < 0.1 40.6 4.6 – to

20 1 1 20.5 < 0.1 450.0 2897.8 – to

Table 4.1: Results for SCC and terminal SCC computation.

78



Chapter 5

Shortest EG witness generation

As we review in the preliminaries, counterexample generation to universal path

property can be converted to an equivalent witness generation to an existential property,

in the context of CTL. Thus, we only focus on shortest witness generation. Many ef-

forts [32][72][21][45] have been made on this topic. Unlike EX or EU witnesses, which are

finite paths, EG witnesses are “lasso-shaped” [32], i.e., they contain a prefix leading to a

cycle. Locating this cycle is the crucial, and difficult step in witness generation, and it is

even more difficult to find a shortest (length of handle plus cycle) witness.

In this chapter, we utilize Edge-Valued Multi-way Decision Diagrams (EVMDDs)

to encode the Transitive Closure with Distance (TCD), and employ an advanced algorithm

for symbolic exploration, saturation [20], to efficiently build the EVMDD encoding the

TCD.

The remainder of this chapter is structured as follows: Section 5.1 introduces

the relevant background on CTL and the symbolic data structure we use. Section 5.2.1

79



presents our approach, stressing the computation of the TCD using the saturation algorithm.

Section 5.3 extends our approach to a more general class of shortest witness generation

problems. Section 5.4 offers some experimental results. We summarize this chapter and

outline future work in the last section.

5.1 Background and related work

Recall that only a generator subset of CTL operators, e.g., {EX,EU,EG}, needs to

be implemented in a model checker, as the all other CTL operators can be expressed using

the generator set and ordinary boolean operators. If a property with path quantifier A is

violated, there must be an execution, i.e., a counterexample, which violates the temporal

operator following the path quantifier. Conversely, if a property with path quantifier E

holds, there must be an execution, i.e., a witness, which conforms to the temporal operator.

The correspondence between counterexamples to universal “A” properties and witnesses to

existential “E” properties is as follows:

a counterexample to is the same as a witness to

AXφ EX(¬φ)

AGφ EF(¬φ)

A[φUψ] E[¬ψU(¬φ ∧ ¬ψ)] ∨ EG(¬ψ)

AFφ EG(¬φ)

Clarke et al. [32] proposed the first symbolic approach to CTL witness generation.

Using symbolic breath-first search, witness generations for EX and EU can naturally guar-

antee minimality, but the problem is much more difficult for the EG operator. A witness to

80



EGφ is composed of a path from the initial state to a cycle, such that all states along that

path and on the cycle satisfy φ. According to CTL semantics, if a state satisfies EGφ, it must

have a successor that also satisfies EGφ. Thus, we can incrementally build a path of states

satisfying EGφ, which must finally lead to a state already on the path, closing the cycle and

resulting in a witness. Figure 5.1 shows the pseudocode of this algorithm, which can be

easily implemented using BDDs or MDDs. A witness generation algorithm for weakly fair

EG was also proposed in [32] based on this idea. Since there might be multiple successors

satisfying EGφ, the algorithm is nondeterministic and the length of the witness depends in

general on which state is chosen at each step. We stress that, while the pseudocode uses

a symbolic encoding, this algorithm is largely explicit, as it follows a single specific path.

Decision diagrams help very little, especially if N (i) is a very small set for each i.

The work most related to ours was presented by Schuppan et al. in [71, 72], which

proposed a framework to convert a liveness property to a reachability problem by performing

a state-recording translation, so that a shortest witness for EGφ can then be generated using

breadth-first search (BFS). The bottleneck of this approach mainly lies in the BFS over

the quadratic state space of the original system. Our previous work [21] has shown that

saturation can effectively speed up shortest trace generation. This chapter extends the

idea of [21] to the generation of shortest EGφ witness. Instead of exploring a quadratic

state space using BFS like [71], we employ saturation, usually more efficient than BFS for

asynchronous systems, to build the TCD encoded as an EVMDD.

Orthogonal to symbolic algorithms, explicit-state model checkers adopt techniques

such as heuristic-guided search [75] and crucial event identification [45] to shorten the

81



generated witnesses. These techniques aim at achieving both an efficient of state-space

exploration and shorter witnesses. Still, none of these algorithms is guaranteed to find a

shortest EG witness.

5.2 Overview

A witness to EGφ in a finite-state system, often described as lasso-shaped wit-

ness [6], is an infinite path consisting of a finite prefix leading to a cycle, We provide the

following definition to discuss EG witnesses in more detail:

Definition 12 Given φ ∈ A, a finite acyclic path πs= sinit→ i1→· · ·→ in is a φ-stem of

length n ≥ 0 if sinit, i1, . . . , in ∈ Sat(φ); a (cyclic) path πc : i1 → · · · → im → i1 is a φ-cycle

of length m ≥ 1 if i1, . . . , im ∈ Sat(φ). Let stem(φ, i) be the set of φ-stems that terminate

in state i and cycle(φ, i) be the set of φ-cycles that start in state i; when φ is understood,

we simply write stem(i) and cycle(i). ✷

An EGφ witness is composed of a φ-stem leading to a φ-cycle. We say that state k

which terminates a φ-stem and also starts a φ-cycle is a knot. The initial state is the knot in

witnesses which have the 0-length stems. If EGφ holds in the initial state, a state k ∈ Sat(φ)

induces a set of witnesses witness(k)=stem(k)×cycle(k), i.e., all combinations of φ-stems

in stem(k) and φ-cycles in cycle(k). A shortest witness among witness(k) consists of a

shortest stem(k) and a shortest cycle(k). Hence, finding the shortest EGφ witness can be

seen as the minimization problem (let |π| be the length of path π):

min
k∈Sat(φ)

(
min

πs∈stem(k)
(|πs|) + min

πc∈cycle(k)
(|πc|)

)
. (5.1)

82



EGwitnessBFS (stateset P) is •P is the MDD encoding Sat(φ)
1 stateset Q←EG(P); •witness exists only if sinit ∈ Q

2 stateset X ←∅; • set of states in the witness

3 stateset Y←{sinit}; • current frontier

4 while (X ∩ Y = ∅) do

5 state i←pick(Y); print i;

6 X ←X ∪ {i}; Y←N (i) ∩ Q;

7 endwhile

8 i←pick(X ∩ Y); print i;

Figure 5.1: BFS-based algorithm to generate a witness for EGφ.

Given a knot state k, algorithms in [32, 21] can efficiently find the shortest stem(k)

and cycle(k). The difficulty lies in finding a knot state k∗ that induces a globally shortest

witness in Equation 5.1. This difficulty can be attributed to the lack of algorithms able to

compute the distance information between pairs of states in a huge state space. We attack

the problem from this angle by computing the transitive closure with distance (TCD).

Definition 13 (Transitive Closure with Distance). Function TCDφ : S × S → N
+ ∪

{∞} is such that TCDφ(i, j) is the length of a non-zero shortest path i→ s1 → s2 → · · · → j

where i, s1, s2, . . . , j ∈ Sat(φ), and TCDφ(i, j) =∞ if no such path exists. Let TCD triv
φ (i, j)

be an extension of TCDφ(i, j) that:

TCD triv
φ (i, j) =





0 if i= j

TCDφ(i, j) otherwise

.

Also, let TCD−1
φ (i, j) = TCDφ(j, i). ✷

As the base case, TCDφ(i, j) = 1 if i and j satisfy φ and j ∈ N (i). Define

TCDstem
φ (i) , TCD triv

φ (sinit, i)

TCDcycle
φ (i) , TCDφ(i, i).

83



Formula 5.1 can then be rewritten as:

min
k∈Sat(φ)

(TCDstem
φ (k) + TCDcycle

φ (k)).

TCDφ is a two-parameter function, thus must be encoded with a 2L-level EV+MDD,

while TCDstem
φ and TCDcycle

φ are single-parameter functions which can be encoded with L-

level EV+MDDs and are obtained from TCDφ through symbolic manipulation. Thus, our

algorithm for EG witness generation consists of the following steps:

1. Build the 2L-level EV+MDD encoding TCDφ.

2. Build L-level EV+MDDs encoding TCDstem
φ and TCDcycle

φ . Compute the sum of these

two EV+MDDs, which encodes length of the shortest witness induced by each state

k ∈ Sat(φ).

3. Extract a knot state that achieves the minimum value in the resulting function.

4. Find the shortest paths from the initial state to the knot (φ-stem) and from the knot

to itself (φ-cycle). These two paths form a shortest witness for EGφ.

As the computation of TCDφ is the most time and memory intensive step in the

overall procedure, we discuss it in detail in next section.

5.2.1 Computing TCD

Building TCDφ is essentially the classic all-pair shortest path problem in a modi-

fied graph from the original discrete-state system where only states (vertices) in Sat(φ) and

transitions (edges) between these states are retained. All edges have unit weight, so the

84



distance between i and j equals TCDφ(i, j). Instead of using a distance matrix, however,

we utilize a 2L-level EV+MDD 〈τ ,t〉 to encode the distance between each pair of states:

f〈τ ,t〉(iL, jL, iL−1, jL−1, . . . , i1, j1) = TCDφ(i, j),

where i, j ∈ Sat(φ), and we interleave the levels for i and j. To correlate local states with

their submodels, the levels of ik and jk in 2L-level EV+MDD are referred to by k and k′,

respectively (unprimed and primed levels are interleaved in our implementation), and we

let Unprimed(k) = Unprimed(k′) = k.

The procedure to build 〈τ ,t〉 is analogous to a symbolic implementation of Dijk-

stra’s algorithm. We start from the EV+MDD 〈τ1,t1〉 encoding

f〈τ1,t1〉(i, j) =





1 if ∃α ∈ E , j ∈ Nα(i)

∞ otherwise

(so that τ1 = 1 and all values associated with outgoing edges are either 0 or ∞), and use

Nα to build a new EV+MDD Nα(〈τ ,t〉) satisfying

fNα(〈τ ,t〉)(i, j) = min

(
min

k∈pre(j)

(
f〈τ ,t〉(i,k)

)
,∞

)
,

where pre(j) = {k ∈ Sat(φ) : j ∈ Nα(k)}. Then, 〈τ ,t〉 can be updated:

〈τ ,t〉 ← Min(〈τ ,t〉,Nα(〈τ ,t〉)+1).

We can iteratively update 〈τ ,t〉 for any event α ∈ E , until achieving convergence. It is

easy to prove that this procedure always terminates and that the fixpoint is the answer

to the all-pair shortest path problem, regardless of the order of updates, as long as all

next-state functions are considered often enough. However, different orders might lead to

85



huge variations in the size of the EV+MDDs encoding the intermediate results, as well as

the runtime. Saturation [20] has been shown to be an effective fixpoint iteration scheme

that tends to minimize peak memory consumption and accelerate convergence. Recall the

idea of exploiting the locality and event partition based on the top, Nk(〈τ ,t〉) can also be

computed locally and 〈τ ,t〉 can be updated solely considering nodes at or below level k,

instead of recomputing the overall EV+MDD. Moreover, we can repeatedly update 〈τ ,t〉

using Nk, . . . ,N1 until convergence, at which point we say that the nodes are saturated on

level k. 〈τ ,t〉 is saturated on level k iff

∀j ≤ k, 〈τ ,t〉 ≡ Min(〈τ ,t〉,Nj(〈τ ,t〉)+1).

We divide the iteration into L phases according to the saturation scheme. The kth phase

begins only after 〈τ ,t〉 is saturated up to level k−1 and completes when it is saturated up to

level k. An important idea is that every time we compute Nk(〈τ ,t〉), we expect to keep the

results saturated up to level k. These L-phase local fixpoint iterations execute bottom-up,

until reaching the global fixpoint.

Figure 5.2 and 5.3 shows the pseudocode to compute TCDφ. This algorithm

augments the transitive closure algorithm of [82] by computing distances between state pairs

instead of a simple boolean reachability relation. MDD a encodes the set of states Sat(φ).

Lines 5-7 and 12-14 in procedure TCDSat , and Lines 7-9 in procedure TCDRelProdSat

constrain all paths between pairs of states to be along states in the set encoded by MDD a.

We assume that the MDDs encoding {NL, . . . ,N1} have been computed and are globally

available. As we use the QFI-reduction rule [77], Nk is an MDD with the root at level k.

86



ComputeTCD(mdd a) • a encodes Sat(φ)
1 evmdd 〈1,t0〉←EVMDDencode(N );

2 return TCDSat(a, 〈1,t0〉);

Figure 5.2: Computing TCD .

The main procedure is a dual recursion between TCDSat and TCDRelProdSat .

TCDSat computes the fixpoint in the kth phase. In Line 13, it calls TCDRelProdSat on

lower levels to compute Nk(〈τ ,t〉). TCDRelProdSat computes Nk(〈τ ,t〉) recursively and

saturate the results at the end (Line 13) and thus returns a saturated result; this reflects

the idea of aggressively computing local fixpoints on nodes as soon as they have been created.

According to our experience [21, 20, 82], this scheme greatly speeds up convergence and

reduces memory requirements in intermediate results for typical asynchronous systems.

While the saturation scheme exploits asynchronous event locality to speed up

iterations, our algorithm does not impose any requirement on the system under verification.

For systems where no natural asynchronous partition of the transition relation exists, such

as fully synchronous systems, our algorithm is still applicable by letting NL =N and an

empty Nk for 1 ≤ k < L. In this case, the algorithm degrades to a stepwise procedure

always operating from the top level, but still benefits from the efficiency of EV+MDDs.

In our experience, using an asynchronous partition and saturation, when possible, results

in much faster runtime than using the monolithic next-state function and the stepwise

procedure. Thus, although Section 5.4 only discusses asynchronous systems, the algorithm

in this chapter is fully general.

87



evmdd TCDSat(mdd a, evmdd 〈µ,n〉)
1 if n = Ω then return 〈µ,Ω〉;

2 if InCacheTCDSat(a, n, 〈λ,r〉) then return 〈λ+ µ,r〉;

3 level k ← n.lvl ; node t← NewNode(k); mdd r ← NUnprimed(k)

4 for i, j ∈ SUnprimed(k) s.t. n[i][j].val 6=∞ do

5 if a[j] 6= 0 then • constrain the path in a

6 t[i][j]←TCDSat(a[j], n[i][j]);

7 else t[i][j]←n[i][j]; endif

8 endfor

9 for i ∈ SUnprimed(l) s.t. n[i].val 6=∞ do

10 repeat

11 for j,j′∈Sl s.t. n[i][j].val 6=∞∧r[j][j′].node 6=0 do

12 if a[j′] 6=0 then • constrain the path in a

13 〈η,u〉←TCDRelProdSat(a[j′], n[i][j], r[j][j′]);

14 t[i][j′]← Min(t[i][j′], 〈η + 1,u〉); • incr. distance

15 endif

16 endfor

17 until 〈λ,t〉 does not change;

18 endfor

19 〈λ,t〉←Normalize(t); InsertUT (t); CacheAddTCDSat(a, n, 〈λ,t〉);

20 return 〈λ+ µ,t〉;

evmdd TCDRelProdSat(mdd a, evmdd 〈µ,n〉,mdd r)
1 if n = Ω then return 〈µ,Ω〉; • r = 1 in this case

2 if InCacheTCDRelProdSat (a, n, r, 〈λ,t〉) then

3 return 〈λ+ µ,t〉;

4 level k ← n.lvl ; node t← NewNode(k);

5 for i ∈ SUnprimed(k) s.t. n[i].val 6=∞ do

6 for j, j′ ∈ SUnprimed(k) s.t. n[i][j].val 6=∞∧ r[j][j
′] 6=0 do

7 if a[j′] 6= 0 then • constrain the path in a

8 〈η,u〉←TCDRelProdSat(a[j′], n[i][j], r[j][j′]);

9 t[i][j′]← Min(t[i][j′], 〈η,u〉);

10 endif

11 endfor

12 endfor

13 〈λ,t〉 ← TCDSat(a,Normalize(t)); InsertUT (t); CacheAddTCDRelProdSat (a, n, r, 〈λ,t〉);

14 return 〈λ+ µ,t〉;

Figure 5.3: Building TCDφ.

5.3 Discussion

In this section, we discuss two extensions of our approach proposed above. First,

Section 5.3.1 applies the idea of the above section to shortest witness generation for other

properties. Then, we tackle fairness in EG. 88



5.3.1 Shortest witness generation beyond EG

We extend the approach of Section 5.2.1 to shortest witness generation (SWG) for

more general properties of the form Eψ, where ψ is a path formula and Eψ does not nec-

essarily a CTL property. The resulting witnesses also constitute shortest counterexamples

for A¬ψ.

Reviewing our TCD-based algorithm for shortest EGφ witness generation, we can

summarize the following steps:

1. Represent the length of a witness as a function, usually the sum of several witness

segments. This is the objective of the minimization problem we need to solve and the

minimal value is the shortest length of witnesses.

2. Encode the objective function with an EV+MDD based on TCD, usually the sum of

several EV+MDDs, each of which corresponds to a witness segment.

3. Find a minimum solution using MinState from EV+MDD encoding the objective func-

tion. The solution can be several states “inducing” the shortest witness.

4. Build each witness segment, which is a shortest path between two states, and connect

these segments sequentially to obtain a shortest witness.

In SWG for EG, the objective function is Formula 5.1, the sum of stem and cycle. The central

step is to find a minimal solution, knot k∗, inducing a shortest witness. The extension of

this approach to a complete framework able to handle all path formulas is non-trivial and

beyond the scope of this chapter. Instead, we present the basic idea in an informal way, by

discussing the following two widely used properties.

89



•Witnesses for E(GFφ). It descripts a witness as shown in Figure 5.3.1, which is a path

from the initial state to a cycle containing a state satisfying φ.

sinit

k
p

We introduce function CycleDist based on TCD :

CycleDist(i, j) =





TCD(i, i) if i = j

TCD(i, j) + TCD−1(i, j) otherwise,

where TCD = TCD true . Then, we need to find a state pair (k,p), where k is the knot,

which connects the stem and the cycle, and p ∈ Sat(φ), which belongs to the cycle. Each

witnesses consists of three segments: paths from sinit to k, from k to p, and from p to k.

The objective function for the minimization problem is

min
k∈S,p∈Sat(φ)

(
TCDstem(k) + CycleDist(k,p)

)
. (5.2)

The minimal solution (k∗,p∗) induces a shortest witness, consisting of three witness seg-

ments.

• Witnesses for E[F(r ∧ G¬s)]. These are counterexamples to CTL properties of the

form AG(r → AFs), which describe liveness: e.g., once a process issues a request (r), it will

be eventually satisfied (s). Witnesses for E[F(r ∧ G¬s)] reflect possible starvation in the

system. For notational consistency with the previous section, let φ = ¬s.

There are two types of witnesses for this property, as shown in Figure 5.4, where

each circle denotes a state and solid black circles denote states in Sat(φ). We can solve these

two cases separately and then find a global minimal result. In the first case, Figure 5.4(a),

90



a witness consists of paths from sinit to a state r ∈ Sr and from r to a knot k, on a φ-cycle,

and such that φ holds along the path between r and k. In this case, there are three witness

segments and the minimization objective is:

min
r,k∈Sat(φ)

(
TCDstem(r) + TCD triv

φ (r,k) + TCDcycle
φ (k)

)
.

In the second case, Figure 5.4(b), the stem leads to a knot k on a φ-cycle that contains a

state r ∈ Sr. This case is similar to the SWG problem for EGFφ, except for replacing TCD

with TCDφ in CycleDist , to constrain the cycles to Sat(φ). A shortest witness for this case

can then be generated accordingly.

5.3.2 Shortest fair witness

In this section, we consider Büchi fairness, which can be specified with n > 0 sets

of states F1,F2, . . . ,Fn. A fair witness is a path leading to a fair cycle, which contains a

state im ∈ Fm for each Fm. To simplify the discussion, we only explain how to generate

shortest fair witness for EGtrue, as the same idea can be extended to other properties. The

complexity of this problem has been shown to be NP-complete in [32].

We employ the idea in [71] by adding a fairness flag Sf as a submodel in TCD.

f ∈ Sf can be considered as a n-bit array, where ith bit indicates whether the ith fairness

constraint has been fulfilled on a path. Let ⊥∈ Sf be the initial state where all bits are

0, and ⊤∈Sf be the state where all bits are 1, as all constraints are fulfilled. Define the

operation Set(f ,m) to set the mth bit to 1. The new TCD, denoted by TCDf , can be

expressed as an integer function on (i, j, f), encoding the length of the shortest path that

starts in i, ends in j, and satisfies the fair constraints indicated by f . TCDf can be build

91



sinit

r
i sinit r

i (b)(a)

Figure 5.4: A witness for EF(r ∧ EG¬s).

recursively by the following rule, using a similar algorithm as the one discussed above:

j∈N (i)⇒ TCDf (i, j,⊥) = 1

∧ min
j∈N−1(k)

(TCDf (i, j, f))=d⇒ TCDf (i,k, f)=d+1

∧TCDf (i, j, f)=d ∧ j∈Fm ⇒ TCDf (i, j,Set(f ,m))=d+1.

Now the problem can be converted to witness generation without fair constraints.

The minimization objective is:

min
k∈S

(
TCDstem(k) + TCDf (k,k,⊤)

)
.

The resulting witness can be mapped to the original system by eliminating n auxiliary

steps that set fairness flag. This approach shares the same complexity with that in [71],

and retains the benefits of using EV+MDDs and saturation.

5.4 Experimental results

We implemented the proposed approach in SmArT [16] and report experimental re-

sults running on an Intel Xeon 2.53GHz workstation with 36GB RAM under Linux 2.6.18.

We also implemented the BFS-based algorithm of Figure 5.1 using MDD in SmArT. We com-

pare our results with those from the verification tool SAL [31]. Petri net models for SmArT

92



were converted to models in the SAL input language. The results from these algorithms

are in the following columns:

• “SMART-TCD”: the TCD-based algorithm we propose. If it completes in the time

limit, it returns a shortest witness with length L∗, used as an oracle for the other algorithms.

• “SAL-BMC”: Bounded model checker in SAL. We have two sets of runtimes, by setting

the bound B to L∗ and L∗ − 1 respectively, so that SAL-BMC tackles a satisfiable or

unsatisfiable SAT problem, respectively.

• “SMART-BFS”: MDD-based witness generation implemented in SmArT according to

the algorithm in Figure 5.1. For the BFS-based algorithm, we run two sets of experiments.

In Column “100 runs”, we run the BFS-based algorithm 100 times and list the length

of the shortest witness generated among these 100 runs, as well as the total runtime for

the 100 runs, in subcolumn “L” and “time” respectively. In Column “runs till shortest”,

since we know L∗ from SmArT-TCD, we run the BFS-based algorithm repeatedly until it

generates one of the shortest witnesses. The number of runs and runtimes required to

generate the shortest witness using the BFS-based algorithm are listed in subcolumns “R”

and “time”, respectively. Also here we set a runtime limit of one hour. Since the BFS-based

algorithm is randomized, the results in subcolumns “R” and “time” are the average over

100 experiments.

• “SAL-WMC”: BDD-based symbolic model checker in SAL. It generates a witness of

length L without optimization.

The comparison metrics are runtime (columns “time”, all measured in seconds)

and length of the generated witness. Table 5.1 presents results on eight models, including

93



mutual exclusion protocols (peterson and bakery in [63]), leader election protocol (leader),

the dining philosopher problem (phil), a closed queue network (cqn), an arbiter protocol

(arbiter), a factory automation model (kanban), and the two robin and slot protocols [15].

The sizes of the state spaces of these models are parameterized by an integer N . The first

three columns list the model names, the parameters, and the sizes of state spaces.

A bounded model checker can find the shortest witness using binary search; this

requires running a SAT solver O(⌈log2L
∗⌉) times, to both generate a shortest counterex-

ample and prove that no shorter counterexamples exist. Thus, the sum of the runtimes for

B=L∗ and B=L∗−1 is a reasonable lower bound for the runtime required by SAL-BMC to

find a shortest witness. The results in Column “SmArT-TCD” and “SAL-BMC” shows that

SAL-BMC achieves obvious speedup over SmArT-TCD only on kanban, but performs much

worse in robin, slot and cqn. Even provided with L∗ as the bound, SAL-BMC still requires

much more time to find the witness in these three models. These results demonstrate the

efficiency of our approach.

SAL-WMC and SmArT-BFS are based on the same idea, but use different data

structures, i.e., BDDs vs. MDDs. Neither of them can guarantee shortest witnesses. How-

ever, SmArT-BFS runs much faster than SAL-WMC, due to the efficiency of our MDD

library and our encoding of next-state functions. It is not surprising that SmArT-BFS runs

orders of magnitude faster than SmArT-TCD because computing TCD is much more expen-

sive than the image computations in SmArT-BFS. On the other hand, SmArT-TCD generates

much shorter witness for slot , arbiter and cqn than SmArT-BFS. Thanks to EV+MDD and

saturation, SmArT-TCD completes on complex models with more than 1010 states and, on

94



cqn and phils, it runs even faster than SAL-WMC, which does not attempt to minimize

the witness length.

For cqn and arbiter, SmArT-TCD generates much shorter witnesses than SAL,

while SmArT-BFS fails to find a shortest witness within the time limit. Figure 5.5 illustrates

how the runtime increases and the shortest length of witnesses found decreases as the BFS-

based algorithm runs repeatedly and cumulatively in model slot5, cqn20, and arbiter10.

Similar results can be observed in arbiter. The x-axis (in logarithmic scale) indicates the

total number of runs, the solid line (associated with the left y-axis) shows the total runtime,

and the dotted line (associated with the right y-axis) shows the shortest length of witnesses

found. For comparison, the thin solid line and the dotted line mark the runtime SmArT-

TCD and L∗, respectively. We can see that runtime grows almost linearly, and many runs

(recall that the x-axis is in logarithmic scale) are needed to find a short witness. Within

the given runtime, the SmArT-BFS produces much longer witnesses than the SmArT-TCD.

This is analogous to simulation-based verification, which, while it provides good coverage

for simple designs, requires unacceptable runtimes to reach corner cases in complex designs.

SmArT-BFS randomly chooses the next step at each iteration, just as in unguided simulation.

If there are only a few witnesses, as in phils and kanban, SmArT-BFS can find a shortest

witness in few runs with high probability, although, even in these cases, it cannot prove that

there is no shorter witness without exhaustively searching all possible witnesses. If there

are many witnesses, SmArT-BFS might instead only be able to generate very long witnesses

even after a long runtime, as Figure 5.5 illustrates. In this case the SmArT-TCD becomes a

better choice to generate a short witness, indeed a guaranteed shortest witness.

95



Model N SS

SMART-TCD SAL-BMC SAL-WMC SMART-BFS

L∗ time
time time

L time
100 runs runs till shortest

B=L∗ B=L∗−1 L time R time

kanban

6 1.12×107 3 7.93 0.0 0.1 18 10.37 3 < 0.01 2.96 < 0.01

8 1.33×108 3 67.86 0.1 0.1 10 16.85 3 < 0.01 3.00 < 0.01

10 1.00×109 3 441.28 0.1 0.1 10 62.09 3 < 0.01 2.97 < 0.01

leader

3 8.49×102 15 0.47 0.1 8.56 15 0.03 15 0.03 3.36 < 0.01

4 1.15×104 20 34.60 0.47 1017.33 59 0.80 20 0.18 11.75 0.03

5 1.50×105 25 4746.63 4.14 TO 149 14.30 25 0.52 100.67 0.58

phils

10 1.86×106 4 0.05 0.08 0.04 38 0.32 4 0.04 21.91 0.01

20 3.46×1012 4 0.26 0.05 0.25 47 42.07 4 0.06 24.90 0.02

100 4.96×1062 4 45.58 0.57 35.98 – TO 4 0.13 26.85 0.06

robin

10 2.30×104 40 0.07 5.35 TO 43 0.35 40 0.04 1.08 < 0.01

20 4.71×107 80 0.30 321.24 TO 83 8.42 80 0.27 1.06 0.01

30 7.24×1010 120 0.78 3957.47 TO 120 152.07 120 0.65 1.04 0.03

slot

5 5.38×104 17 2.26 11.95 5.18 131 0.17 21 0.10 3620.16 4.16

6 5.75×105 20 11.08 0.84 142.49 182 0.78 25 0.24 93411.96 243.99

7 6.22×106 23 46.00 4197.17 611.84 483 2.43 46 0.51 – TO

arbiter

10 2.04×104 10 0.26 1.27 2.45 37 0.1 20 0.05 – TO

15 9.83×105 15 19.31 33.01 49.71 74 0.44 39 0.11 – TO

20 4.19×107 20 2625.28 1597.63 1025.43 107 0.91 58 0.32 – TO

cqn

20 1.93×1011 40 9.76 5682.55 2542.93 – TO 150 2.51 – TO

30 1.66×1017 60 183.20 TO TO – TO 322 10.17 – TO

40 1.51×1023 80 3322.41 TO TO – TO 625 25.97 – TO

peterson
2 2.28×102 11 0.11 0.02 0.08 12 0.06 12 < 0.01 866.04 0.05

3 1.47×104 24 477.29 7.84 244.54 37 0.61 37 0.32 – TO

bakery
2 1.11×103 11 0.27 0.04 0.10 11 0.1 22 0.04 1100.66 0.10

3 1.39×105 – TO N/A N/A 161 2.71 65 2.21 N/A N/A

Table 5.1: Results for EG witness generation.

5.5 Summary

We presented a saturation-based algorithm for shortest EG witness generation. We

proposed a symbolic techniques using EV+MDDs to compute the Transitive Closure with

Distance (TCD), which compactly represents distances between each pair of states. Then,

the shortest EG witness can be identified symbolically. We also extended this approach to

tackle shortest witness generation for other properties and shortest fair witness generation.

Computing TCD is the bottleneck in our approach. Techniques to speed up this

computation should be investigated, including dynamic variable ordering. Coupled with

EV+MDDs, the transitive closure provides an elegant way of analyzing quantitative proper-

96



Figure 5.5: Runtime and witness length of the BFS-based algorithm on slot, cqn, and
arbiter.

97



ties of traces in complex asynchronous systems, such as probabilistic model checking, which

we intend to investigate in future work.

98



Part II

Probabilistic model checking

99



Chapter 6

EVMDD-based two-phase

Gauss-Seidel iteration

In this chapter, we address two problems: the steady-state solution of ergodic

CTMCs and the unbounded until, both of which require to solve linear systems. We present

a new symbolic approach for these two problems using iterative methods, based on EVMDDs

to store an indexing function for the structured states and the transition rate matrix. The

approach is memory efficient for general structured CTMCs, and supports both Jacobi and

Gauss-Seidel iterations. In particular, our main contribution is a new two-phase algorithm

to perform Gauss-Seidel iterations with a reduced overhead for the traversal of the decision

diagram (a cost also encountered by Kronecker-based approaches). Then, we show how

even better speedup can be achieved through a caching scheme. The complexity of our

algorithm is linear in the number of nonzero entries in the transition rate matrix, and, even

more importantly, it is independent of the number L of submodels in which the CTMC

100



is decomposed under most common conditions. This is an improvement over previous

structured methods, which are plagued by this L factor in practice. The advantages of our

algorithm are supported by experimental results and a comparison with the tool PRISM.

Assuming the CTMC is ergodic, let π ∈ R
S
≥0 be the steady-state probability vector,

where π[i] is the steady-state probability of state i. π can be computed as the solution of

the linear system πQ = 0 subject to
∑

i∈S π[i] = 1.

Iterative methods (where a new approximation πnew of π is computed from the

current approximation πold ), are usually employed to solve linear systems. For steady-state

solution, we consider the Jacobi iteration,

π
new [j] = h[j] ·

∑

i6=j

π
old [i] ·R[i, j], (6.1)

and the Gauss-Seidel iteration, which has usually faster convergence and requires a total

order on S, i.e., for any two states i 6= j, either i ≻ j or i ≺ j,

π
new [j] = h[j] ·


∑

i≺j

π
new [i] ·R[i, j] +

∑

i≻j

π
old [i] ·R[i, j]


 . (6.2)

As we discussed in Chapter 2, given P⊲⊳p(φUψ), the state space can be partitioned

into S0,S1, and S?, and we only need to compute the probabilities for states in S?. Let ν

be the solution where for all i ∈ S?, ν[i] is the probability Prob(i, φUψ). ν is the solution

of the linear system Peν +B = ν where B[i] =
∑

j∈S1
Pe[i, j]. The Gauss-Seidel iteration

for this linear system is:

ν
(k+1)[i] =

∑

j≺i

ν
(k+1)[j] ·Pe[i, j] +

∑

j≻i

ν
(k)[j] ·Pe[i, j] +B[i].

We do not need to create a separate Pe just for unbounded until. With Q and h in

place, we utilize decision diagram exploration to carry out the above computation only for

101



states in S?. The algorithm for unbounded until is pretty similar to that for steady-state

solution of an ergodic CTMC, thus we focus first on the steady-state solution and then

apply it to the unbounded until.

6.1 Previous work

Plateau [66] presented the first algorithm to solve structured Markov chains en-

coded by a Kronecker descriptor, i.e., a sum (over the set of events E) of Kronecker products

(over the L submodels) of local matrices: R̂ =
∑

e∈E

⊗L
k=1Rk,e, where Rk,e ∈ R

Xk×Xk . The

numerical solution used the shuffle algorithm to multiply a full vector by a Kronecker de-

scriptor, whose apparently excellent complexity is studied in [9, 36]; its generalization is

presented in [30]. However, [10] points out that a better complexity than explicit vector-by-

sparse-matrix multiplication is achieved only when the matrices Rk,e are not very sparse,

that is, when

η(R̂)/|Ŝ| > L
1

L−1 . (6.3)

and this is rarely the case, as R̂ contains at most |E| nonzero entries per row for practical

systems.

To make things worse, Kronecker-based algorithms suffer from three drawbacks.

First, as initially proposed, a “potential” probability vector π̂ of size |Ŝ| is employed; in

practical models, |Ŝ| ≫ |S|, thus much memory is wasted. A modified version operating

on the “actual” probability vector π can be used, but at the cost of additional indexing

overhead [10]. Second, not all nonzero entries defined by a Kronecker descriptor correspond

to possible transitions in the CTMC, if Ŝ ⊃ S: some describe transitions from unreachable

102



1

1

0
1 1

1

Ω

Μ

0
1

1
1

0
1

i2

i1

i
0
2

i
0
1

q

i2




0 q

q 0




i1




0 0

1 0




0

1

0 1

1

10

0

(a) (b)

Figure 6.1: EV∗MDD (a) and Kronecker (b) representations of transition rate.

states to reachable states. In each Gauss-Seidel iteration, this requires a test to avoid

unnecessary computations (when using π̂) or array indexing errors (when using π). Finally,

a Kronecker descriptor can always be defined, but sometimes at the cost of splitting events

(resulting in a set E of exponential size) or merging state variables (resulting in sets Xk of

exponential size), either way making the approach unfeasible in such cases.

Iterative methods perform a sequence of multiplications of the probability (row)

vector and the column vectors of the rate matrix. Unlike Jacobi, Gauss-Seidel requires the

column vectors to be accessed in order, which increases the complexity when the matrix is

stored with Kronecker descriptors or decision diagrams. With a Kronecker descriptor, each

matrix must be repeatedly traversed to derive different columns, this is the main overhead

in the previous algorithms. In the worst case, a Kronecker approach has an overhead factor

103



L when Ŝ = S (i.e., when there are no spurious entries from unreachable states to reachable

states); however, if Ŝ ⊃ S, the overhead is even higher, η(R̂[Ŝ,S])/η(R) · L.

More recent work has then employed decision diagrams of various types to store R.

PRISM [52], perhaps the best known probabilistic model checker, uses multi-terminal binary

decision diagrams (MTBDDs) [26] to store R. A hybrid approach is normally used, which

stores R as a single MTBDD and π as a full probability vector of size |S|. Furthermore, [50]

even explores this approach when the probability vector (which is then the main storage

limitation) is kept on disk. While MTBDDs are general (they can encode any matrix),

they do not help mitigate the overhead in accessing the columns of R. Hence, prior to

performing Gauss-Seidel iterations, PRISM converts the MTBDD storing R into a two-

level data structure [58], equivalent to splitting R into many submatrices and using sparse

storage for them. This scheme often results in compact encoding and fast runtime, as fast as

with a traditional sparse method, in spite of the overhead to derive the submatrices; however,

it has potentially large matrix storage requirements, especially when few submatrices can

be reused in the storage scheme, as shown in Section 6.5.

Our algorithm can also be categorized as hybrid, as it stores π in full. The dif-

ference is that we store R using EV∗MDDs, which can be more compact than MTBDDs,

and, more fundamentally, it uses a two-phase scheme to carry out Gauss-Seidel iterations,

resulting in better complexity.

104



6.2 Symbolic iterative methods

We now describe how we store R and I using EVMDDs. Then, we introduce our

implementation of Jacobi in Section 6.2.2 and our main contribution, a two-phase algorithm

for Gauss-Seidel, in Section 6.2.3.

6.2.1 Transition rate matrix and probability vector storage

Compared with MTBDDs using the same variable order, EVMDDs have been

shown to be at least as compact, and possibly exponentially more compact [69]. In par-

ticular, we use an EV∗MDD M to encode R̂, since this often requires less memory than

encoding R. However, encoding R does result in tighter upper-bound complexity, as we

will see. All algorithms we introduce work with either approach.

As usual when encoding transition relations or matrices with decision diagrams,

we employ an interleaved order for the 2L levels of the EV∗MDD M, i.e., we interleave

the “from” state variables with the “to” state variables. Thus,M has a path labeled with

(iL, jL, ..., i1, j1) from the root to Ω having total value r > 0 iff the CTMC contains a

transition from i = (iL, ..., i1) to j = (jL, ..., j1) with rate r. To simplify the notation, from

now on we call level 2l inM the (unprimed) level l and level 2l − 1 the primed level l, or

l′. We also write the 2L-tuple (iL, jL, ..., i1, j1) as i||j, so that the rate R[i, j] is retrieved in

M asM[i||j].

We use instead an EV+MDD I to encode the indexing function [60] that maps

a potential state i to ∞ if it is unreachable, or to its lexicographic position in S, i.e., its

105



void JacobiIteration(EV∗MDDM, EV+MDD I) •M = 〈ρmax,r〉; I = 〈0,o〉
1 pi old← “initial guess”;

2 num iter ← 0;

3 repeat

4 pi new ← “zero vector”;

5 JacobiRecur(M, I, I);

6 foreach i ∈ {0, ..., |S| − 1} do pi new[i]← pi new[i] · h[i];

7 swap(pi old, pi new);

8 num iter ← num iter + 1;

9 until num iter > MAX ITER or converged(pi old, pi new);

void JacobiRecur(EV∗MDD 〈rate,m〉, EV+MDD 〈src idx ,src〉, EV+MDD 〈des idx,des〉) • src.lvl =

des .lvl
1 k ← src.lvl ;

2 if (src = des = Ω) do

3 pi new[des idx ]← pi new[des idx ] + pi old[src idx ] ∗ rate;

4 return;

5 endif

6 for i from 0 to nk−1 s.t. m[i] 6= ⊥ and src[i] 6= ⊥ do

7 for j from 0 to nk−1 s.t. m[i][j] 6= ⊥ and des [j] 6= ⊥ do

8 r offset ← src[i].v; c offset ← des[j].v;

9 s← src idx+r offset ; d← des idx+c offset ;

10 JacobiRecur( 〈rate ·m[i][j].v,m[i][j].ch〉, 〈s,src[i].ch〉, 〈d,des[j].ch〉);

11 endforeach

12 endforeach

Figure 6.2: Jacobi iteration.

index i in π, otherwise (i is called offset in [10]). This indexing also determines the order

of computations in Gauss-Seidel iterations.

Definition 14 (Order on local states) In the local state space Sk, we define a total order

0 ≺ 1 ≺ · · · ≺ nk−1. Let i�j iff i=j or i≺j, i≻j iff j≺ i, and i�j iff j� i.

Definition 15 (Lexicographic order on states and interleaved state pairs) In the state space

S, we define a total order such that i = (iL, ..., i1) ≻ j = (jL, ..., j1) iff there is an m such

that ik = jk for L ≥ k > m and im ≻ jm. Let i � j iff i = j or i ≺ j, i ≺ j iff j ≻ i, and

106



void GaussSeidelIteration(EV∗MDDM, EV+MDD I)
1 Initialize(prob vector); num iter = 0;

2 repeat

3 GSForward(M, I, I);

4 foreach i ∈ {0, ..., |S| − 1} do prob vector[i] ∗ h[i];

5 GSBackward(M, I, I);

6 num iter ← num iter + 1;

7 until num iter > MAX ITER or converged(...); • see text for possible convergence tests

void GSForward(EV∗MDD 〈rate,m〉, EV+MDD 〈src idx ,src〉, 〈des idx,des〉)
1 ⋆assert src idx � des idx ; •Constraint for Forward phase

2 if (src = des = Ω) then

3 ⋆ if (first time to write(des idx )) then π[des idx ]← π[src idx ] ∗ rate; • see text

4 ⋆ else π[des idx ]← π[des idx ] + π[src idx ] ∗ rate; endif

5 return;

6 endif

7 for i from 0 to nk−1 s.t. m[i] 6= ⊥ and src[i] 6= ⊥ do

8 for j from 0 to nk−1 s.t. m[i][j] 6= ⊥ and des [j] 6= ⊥ do

9 ⋆ if (src idx≻des idx or i � j) then

10 r offset ← src[i].v; c offset ← des[j].v;

11 s← src idx+r offset ; d← des idx+c offset ;

12 ⋆ GSForward(〈rate ·m[i][j].v,m[i][j].ch〉, 〈s,src[i].ch〉, 〈d,des [j].ch〉);

13 endif

14 endfor

15 endfor

void GSBackward(EV∗MDD 〈rate,m〉, EV+MDD 〈src idx ,src〉, 〈des idx,des〉)
1 ⋆assert src idx � des idx ; •Constraint for Backward phase

2 if (src = des = Ω) then

3 π[des idx ]← π[des idx ] + π[src idx ] ∗ rate ∗ h[src idx ]

4 return;

5 endif

6 for i from 0 to nk−1 s.t. m[i] 6= ⊥ and src[i] 6= ⊥ do

7 for j from 0 to nk−1 s.t. m[i][j] 6= ⊥ and des [j] 6= ⊥ do

8 ⋆ if (src idx≺des idx or i � j) then

9 r offset ← src[i].v; c offset ← des[j].v;

10 s← src idx+r offset ; d← des idx+c offset ;

11 ⋆ GSBackward(〈rate ·m[i][j].v,m[i][j].ch〉, 〈s ,src[i].ch〉, 〈d ,des[j].ch〉);

12 endif

13 endfor

14 endfor

Figure 6.3: Gauss-Seidel iteration.

107



i � j iff j � i. An exactly analogous total order can be defined on interleaved state pairs,

i.e., 2L-tuples of the form i||j.

For example, the state lexicographic order in Fig. 2.12 is 00 ≺ 01 ≺ 10 ≺ 11,

and is encoded by EV+MDD I. States 00, 01, 10, 11 are mapped to indices from 0 to 3.

The indexing function encoding we use was introduced in [60], although there it was not

formalized as an EV+MDD, and it is optimal, in the sense that, for given a variable order, it

corresponds to a minimum size EV+MDD among all the possible total orders for S (the proof

for this property is based on the fact that this EV+MDD is isomorphic to the MDD encoding

S). Considering instead interleaved state pairs, we have, for example, 01||10 ≺ 10||11, since

(01||10) = (0110), (10||11) = (1101) and (0110) ≺ (1101).

The following Lemma is immediately proven:

Lemma 16 If i ≺ i′ and j ≺ j′, then (i||j) ≺ (i′||j′).

Note that Lemma 16 does not hold in the reverse direction, i.e., (i||j) ≺ (i′||j′)

implies that at least one of i ≺ i′ and j ≺ j′ holds, but not necessarily both.

6.2.2 Symbolic Jacobi iterations

Function JacobiIteration in Fig. 6.2 shows our Jacobi iteration. To simplify nota-

tion, we let

m[i][j].ch , (m[i].ch)[j].ch

m[i][j].v , m[i].v · (m[i].ch)[j].v.

108



Starting from their root nodes, JacobiRecur simultaneously traversesM and two copies of

I in a depth-first fashion. Each recursive call to JacobiRecur executes on an EV∗MDD node

m inM and two EV+MDD nodes src and des in I. We call tuple (m, src, des) a snapshot,

indicating the current position of the traversal. When reaching the terminal nodes, a path

i||j has been traversed inM, thus Line 3 multiplies πold [i] by R[i, j] and adds the result to

πnew [j]. The pseudocode uses pi old and pi new instead of the semantically equivalent πold

and πnew to stress that the former are accessed using state indices, which, for i and j, are

given by I[i] and I[j], respectively. Analogously, the rate R[i, j] is given byM[i||j]. Even if

M stores R̂ and not just R, JacobiRecur never traverses i||j inM if i or j is unreachable,

because this procedure ensures that (iL, ..., i1) and (jL, ..., j1) are indexed in I so they are

in S.

We now focus on the order in which the path i||j is traversed inM. JacobiRecur

implements Equation 6.1 by traversing all reachable pairs i||j in lexicographic order, as

defined above, since in each step, local lexicographic order is followed in Lines 6 and 7.

Thus, the following Lemma holds.

Lemma 17 Given i, i′, j, j′ ∈ S, JacobiRecur traverses path i||j inM before traversing i′||j′

iff i||j ≺ i′||j′.

Lemma 17 reveals the relationship between lexicographic order and the order of

EVMDD-based computation. This relationship is exploited to carry out the Gauss-Seidel

iteration in the next subsection.

An important point about performance should be made: the cost of performing

the “for i” and “for j” loops in JacobiRecur is proportional to the number of nonzerom[i][j],

109



not (nk)
2, since our decision diagrams library employs a sparse representation for nodes, so

that only the nonzero children of a node are stored, in order.

6.2.3 Symbolic Gauss-Seidel iterations

We divide each Gauss-Seidel iteration into two phases. The forward phase con-

siders only transitions from states with higher index to states with lower index, or forward

transitions, and generates an intermediate result πint , a vector of size |S|:

π
int [j] = h[j] ·

∑

i≻j

π
old [i] ·R[i, j].

The subsequent backward phase considers instead transitions from states with lower index

to states with higher index, or backward transitions, and generates the result πnew , also a

vector of size |S|:

π
new [j] = π

int [j] + h[j] ·
∑

i≺j

π
int [i] ·R[i, j].

Fig. 6.4 illustrates this two-phase iteration. Squares stand for entries in the prob-

ability vector in ascending lexicographic order from left to right, i.e., i ≺ j ≺ k, and edges

stand for transitions. It can be shown that this two-phase computation implements Equa-

tion 6.2 with the same number of additions and multiplications. However, its memory

i j k... ... ......

(a) Forward phase

i j k... ... ......

(b) Backward phase Q i,j Q j,k

Q j,i Q k,j

Figure 6.4: Two-phase iteration.

110



requirements appear higher, as it uses and additional vector πint . Thus, it would be desir-

able if, in both phases, we could directly overwrite the old values in the same array, without

having to allocate πint . To achieve this goal, we must enforce some constraints on the order

in which the probability vector entries are updated:

• In the forward phase, when rewriting the entry for j, all computation corresponding

to transitions from j to i, where i ≺ j, must have been completed, i.e., the old value

of the entry for j will not be used in the remaining portion of the forward iteration.

• In the backward phase, when using the value of the entry for j to rewrite the value

of the entry for k, all computation corresponding to the transition from i to j, where

i ≻ j, must have been completed, i.e., at that point, the entry for j has its new value

and can be used to compute the value for k.

The pseudo-code GaussSeidelIteration in Fig. 6.3 depicts the proposed algorithm

for Gauss-Seidel iteration. In each iteration, first GSForward , then GSBackward , are in-

voked to execute the forward and backward phases in sequence. The differences between

GSForward or GSBackward and JacobiRecur are indicated with ⋆ and are needed to con-

strain the traversal only to forward or backward transitions, where src idx > des idx or

src idx < des idx , respectively. The traversals executed by GSForward or GSBackward are

a subset of those executed by JacobiRecur , following the same order of JacobiRecur , i.e., if

i||j is traversed before i′||j′ in GSForward or GSBackward , the same holds in JacobiRecur .

What we need to prove now is that GSForward and GSBackward satisfy the above con-

straints, thus, together, produce the same result as one Gauss-Seidel iteration.

111



Lemma 18 Assume i ≺ j ≺ k. Then:

• (Forward phase) In GSForward, when k||j is traversed, all paths j||i corresponding to

a positive rate have been traversed.

• (Backward phase) In GSBackward, when j||k is traversed, all paths i||j corresponding

to a positive rate have been traversed.

In the forward phase, given any two paths j||i and k||j, Lemma 1 ensures that j||i ≺

k||j since j ≺ k and i ≺ j. Because GSForward executes the same order as JacobiRecur ,

Lemma 2 holds and j||i should be traversed before k||j, Similarly, we can prove the case in

the backward phase.

Given the lemmas we proved, the next theorem follows immediately.

Theorem: Procedure GaussSeidelIteration in Fig. 6.3 correctly implements the update of

π specified by Equation 6.2.

In GSForward , when updating an entry in the probability vector, we need to first

identify whether the value is the old value from previous iteration or the intermediate result

in current forward iteration. In the former case, we overwrite the old value with the newly

computed result, which is safe as we proved above; in the latter case, we add the new results

to this entry. We can check which case applies using a simple “trick”: before GSForward ,

we negate each value in the probability vector and we store a positive value for an entry

after updating this entry in GSForward . When updating an entry, we check if this entry is

negative, in which case we know that it is the first time we update it in the current iteration.

112



Another implementation issue is convergence checking. Since we overwrite the old

values before the new values are available in the probability vector, we either have to choose

a convergence checking method which does not depend on the difference between old and

new vectors (e.g., residual computation), or accept to store two vectors (πnew and either

πold or the vector πnew some number of iterations, e.g., 10, before, which, as some authors

have suggested, tends to reduce the possibility of erroneously mistaking slow convergence

for achieved convergence). In our implementation, we store πold in each iteration, but we

stress that this is only for convergence checking, not for the iteration.

Symbolic Gauss-Seidel iteration for unbounded until

Figure 6.5 shows the top-level pseudo code for this algorithm. P is the EV∗MDD

encoding the transition probability matrix. The difference with Figure 6.3 is thatGSBackward

performs first and then GSForward .

void GSIterationUnboundedU (EV∗MDD P, EV+MDD I)
1 Initialize(prob vector);

2 num iter = 0;

3 repeat

4 GSBackward(P, I, I);

5 foreach i ∈ {0, ..., |S| − 1} do prob vector[i] +B[i];

6 GSForward(P, I, I);

7 num iter ← num iter + 1;

8 until num iter > MAX ITER or converged(...); • see text for possible convergence tests

Figure 6.5: Top level Gauss Seidel iteration for unbounded U operator.

If we initialize ν(0) to be a zero vector, the following theorem from [5] holds.

Theorem 19 In a Gauss-Seidel iteration, if ν(0) = 0, then ν(k+1) ≥ ν(k).

113



This means that, as the iteration proceeds, ν(k) grows monotonically. We can

judge whether convergence is reached by checking the sum of all probabilities in ν. If

∑
ν(k+1) −

∑
ν(k) < ε, where ε is an acceptable error, we can terminate the Gauss-Seidel

iteration. Thus, we do not need to store the old vector ν(k) when computing ν(k+1).

6.3 Speeding up the iteration

In the following discussion, we refer to the algorithm in last section as the “plain”

algorithm. The main performance issue in the plain algorithm is multiple traversals of the

same snapshot. In one iteration, there can be multiple paths leading to the same snapshot,

thus multiple recursions on this snapshot will be repeated in one iteration. Meanwhile,

each iteration repeats the same procedure. Caching some intermediate results can avoid

duplicate computation and substantially speed up the iteration. In this section, we introduce

a cache scheme to speed-up the iteration, especially our two-phase iteration. [52] proposed

a similar idea, storing some intermediate results in submatrices attached to MTBDD nodes,

but our scheme has two important differences. First, instead of storing the rate values in the

submatrices, each rate value is factored into two parts, based on the EV∗MDD, and stored

in a data structure consisting of two levels of arrays. More submatrices can be shared with

this scheme than with that of [52]. Second, to facilitate our two-phase iteration, the cache

scheme preserves the order of decision diagram traversal. More sophisticated cache schemes

might be explored in the future, but the experimental results of Section 6.5 show that even

this simple scheme is able to balance memory and runtime well.

114



void Preprocess(EV∗MDD 〈rate,m〉, EV+MDD 〈src idx ,src〉, 〈des idx ,des〉)
1 if num path(m) < THRESHOLD then

2 entry array a← empty array(); CacheRecur(〈1.0,m〉, 〈0,src〉, 〈0,des〉, a);

3 Push(CacheArray , (cache entry(rate, src idx , des idx ), a));

4 return;

5 endif

6 for i from 0 to nk−1 s.t. m[i] 6= ⊥ and src[i] 6= ⊥ do

7 for j from 0 to nk−1 s.t. m[i][j] 6= ⊥ and des [j] 6= ⊥ do

8 r offset ← src[i].v; c offset ← des[j].v;

9 Preprocess( 〈rate ·m[i][j].v,m[i][j].ch〉, 〈src idx+r offset ,src[i].ch〉, 〈des idx+c offset ,des[j].ch〉);

10 endforeach

11 endforeach

void CacheRecur(EV∗MDD 〈rate,m〉, EV+MDD 〈src idx ,src〉,〈des idx ,des〉, entry array a)
1 if src = des = Ω then

2 Push(a, cache entry(rate, src idx , des idx )); return;

3 endif

4 for i from 0 to nk−1 s.t. m[i] 6= ⊥ and src[i] 6= ⊥ do

5 for j from 0 to nk−1 s.t. m[i][j] 6= ⊥ and des [j] 6= ⊥ do

6 r offset ← src[i].v; c offset ← des[j].v;

7 CacheRecur(〈rate ·m[i][j].v,m[i][j].ch〉, 〈src idx+r offset ,src[i].ch〉, 〈des idx+c offset ,des[j].ch〉);

8 endforeach

9 endforeach

void GSForwardCache()
1 foreach a in CacheArray do

2 rateA ← a.rate; src idxA ← a.src idx ; des idxA ← a.des idx ;

3 if src idxA � des idxA then

4 foreach b in a.cache array do

5 rateB ← b.rate; src idxB ← b.src idx ; des idxB ← b.des idx ;

6 if (src idxB≻des idxB or src idxA ≻ des idxA) then

7 rate ← rateA ∗ rateB ; src idx ← src idxA + src idxB ; des idx ← des idxA + des idxB ;

8 if (first time to write[des idx ]) then π[des idx ]← π[src idx ] ∗ rate;

9 else π[des idx ]← π[des idx ] + π[src idx ] ∗ rate;

10 endif

11 endfor

12 endif

13 endfor

Figure 6.6: Algorithm to preprocess and build the cache array.

First, we select a set SP of split point nodes on unprimed levels inM forming a cut

in the decision diagram, so that each path from the root ofM to Ω is split into two parts:

from the root to a node m ∈ SP and from m to Ω. Each iteration reaches the nodes of

115



SP in the same order, thus results in the same computation of (rateA, src idxA, des idxA),

representing the partial transition rate and source and destination indices calculated within

the recursion up to that point (subscript A stands for “above-path”). On the other hand,

the recursion started on snapshot (m, src, des), regardless of how this snapshot is reached,

generates the same sequence of (rateB, src idxB, des idxB) triplets, representing the factor

for the resulting transition rate and the source and destination index additions based on the

“below-path” (subscript B stands for “below-path”). The indices and value of a nonzero

entry in R can be derived by first finding the above-path and below-path corresponding to

this entry and then multiplying rateA and rateB for the rate, or adding src idxA to src idxB

and des idxA to des idxB for the source and destination indices.

As the base of our cache structure, a cache entry is defined as a tuple (rate,

src idx , des idx ). The structure of the cache illustrated in Fig. 6.7 is a two-level array, with

a top-level storing above-path cache entries and linking to a bottom-level array of storing

below-path cache entries. Since several different traversals can lead to the same snapshot

(m, src, des), the corresponding bottom-level array can be reused, as shown in Fig. 6.7,

where there are two pointers to the same bottom-level array from the top-level array.

Fig. 6.6 shows how to build the cache. Preprocess(M, I, I) is called prior to be-

ginning the steady-state solution computation. Preprocess and CacheRecur traverse the

decision diagrams just as JacobiRecur does. When Preprocess reaches a node m from

which the number of below-paths emanating from it is less than a threshold, it identi-

fies m as a split point and invokes CacheRecur to create the bottom-level array stored

in a. When CacheRecur reaches the terminal level, it pushes the obtained cache entry

116



Cache entry 

for below-path
Pointer

...

Cache array

Ω

M

src, des

Cache entry 

for above-path

...

...

m

rateA, src idxA, des idxA

rateB, src idxB, des idxB

...

Figure 6.7: Structure of the cache.

(rate, src idx , des idx ) to the end of a. After that, the pointer to a is stored in the top-level

cache array, CacheArray , associated with the cache entry storing the above-path when in-

voking CacheRecur . After the cache array is built, we can execute Jacobi or Gauss-Seidel

by traversing the top-level array in order and following each link to the bottom-level arrays

as they are encountered. Function GSForwardCache in Fig. 6.7 shows the pseudo-code for

forward Gauss-Seidel iteration using the cache.

The number of cache entries stored is given by:

∑

m∈SP

(A (m) + P(m))

where A (m) is the number of paths from the root to the node m in SP and P(m) is the

number of below-paths, from m to Ω. The two limiting cases, the cut consisting of just

the root or just Ω, correspond to storing R as a sparse matrix in a single bottom-level

array or in the top-level array, respectively. There exist optimal sets SP that minimize

memory consumption, but our algorithm Preprocess based on the numbers of below-paths

from a split point is just a heuristic to find a hopefully good SP . As future work, we intend

117



to explore multiple-level cache structures and investigate the trade-off between memory

consumption and runtime on different cache structures.

6.4 Complexity and discussion

Since Gauss-Seidel imposes a restriction on the order in which entries of the prob-

ability vector are computed, thus entries of the transition rate matrix are accessed, while

Jacobi does not, it is obvious that the complexity of one Gauss-Seidel iteration is at least

that of one Jacobi iteration (the advantage of Gauss-Seidel stems from the potentially bet-

ter convergence rate, thus lower number of iterations). Using our approach, the complexity

of a Gauss-Seidel iteration is at most twice that of a Jacobi iteration, since both GSFoward

and GSBackward traverse a subset of the entries JacobiRecur does. Thus, we can focus on

the complexity of a Jacobi iteration as specified in Fig. 6.2, and compare it with alternative

approaches.

Explicit storage algorithms can achieve an essentially optimal complexity when we

have “access by column”, meaning that we can access the columns ofR in order and traverse

only the nonzero entries in a given column, all of which is easy to provide in an explicit

sparse storage setting. Thus, one Gauss-Seidel iteration requires traversing the matrix once

and has complexity O(η(R)) which, to the best of our knowledge, can only be surpassed by

the shuffle algorithm in the very special cases where Equation 6.3 holds.

If a cache array is built and exploited, the complexity of each iteration is still

O(η(R)), but the multiplicative constant is worse than for sparse storage because more

computation is required to calculate indices and rates.

118



Considering the plain algorithm introduced in Section 6.2.2, the number of “real”

computations executed in Line 3 of JacobiRecur is O(η(R)). The following discussion

focuses on the overhead for decision diagram traversal. Before each recursion, two new

indices and a new rate are computed, costing two additions and one multiplication.

The overhead of traversal can be measured by the number of recursive calls to

JacobiRecur . As mentioned, the complexity of nonterminal recursion is determined by the

number of nonzero m[i][j], denoted by C (m). Thus, each node m inM contributes a cost

A (m) · C (m), where A (m) counts the paths from the root ofM to m. In the worst case,

all these paths are traversed and the overall complexity of traversal is

L∑

k=1

∑

m.lvl=k

A (m) · C (m).

For k = 1, we have

∑

m.lvl=1

A (m) · C (m) = P(M) = η(R), (6.4)

where P(M) denotes the number of (nonzero) paths inM.

Moreover, considering adjacent levels, we have

∑

m.lvl=k+1

A (m) · C (m) =
∑

q.lvl=k

A (q).

Letting
∑

m.lvl=k A (m) · C (m) = (
∑

m.lvl=k A (m)) · Ck, where Ck represents the average

value of C (m) for the nodes m at level k, the overall complexity can be written as:

η(R) +
η(R)

C1
+

η(R)

C1 · C2
+ · · ·+

η(R)

C1 · · · ·CL−1
. (6.5)

The worst-case complexity O(L · η(R)) is reached when Ck≈1 for all 1≤k≤L−1.

If min{Ck : 1≤ k≤L − 1}=Cmin> 1, the complexity becomes O(η(R)), since the sum in

119



Equation 6.5 is bounded by the sum of a geometric sequence with ratio 1/Cmin starting with

η(R). Moreover, the larger Cmin is, the closer the performance of our algorithm is to that of

a sparse matrix approach. The lowest overhead is achieved when Ck = (nk)
2, corresponding

to CTMCs with full transition rate matrices. For a given η(R), a sparser R increases the

complexity of our algorithm, but no more than L times the best-case complexity.

A previous Kronecker-based algorithm for Gauss-Seidel iterations using actual

state space, called Act-Cl2-GSD in [10], is based on vector multiplication and the central

step is to obtain a column of R from the Kronecker descriptor. A similar idea can be

implemented in our setting and, in this case, the overall complexity becomes

L∑

k=1

∑

m.lvl=k

A (m) ·P(m),

where P(m) is the number of paths below m. This complexity is always worse than that

of our new approach, substantially so if R is very dense since, then, P(m) ≫ C (m)

especially for m at higher levels. The improvement comes from our two-phase iteration,

which traverses any path in A (m) only twice for any m, while Act-Cl2-GSD could traverse

such path many (up to |S|) times. To the best of our knowledge, this is the best complexity

for a symbolic algorithm implementing Gauss-Seidel iterations on the actual state space.

Equation 6.4 applies if M stores R. If instead M stores R̂, we must replace R

with R̂ in the above results. In some (perhaps many, or even most) models, η(R̂)≫ η(R),

and that is the reason we choose to store R. Thanks to EV∗MDDs, we can often store

R with reasonable memory consumption. The complexity of our proposed algorithms can

then be summarized as follows:

120



• If a cache array is employed, the complexity of a Jacobi or Gauss-Seidel iteration is

O(η(R)).

• Using the plain algorithms of Sections 6.2.2 and 6.2.3, the upper-bound complexity

of a Jacobi or Gauss-Seidel iteration is O(L · η(R)). However, if Cmin > 1, this

complexity is reduced to O(η(R)).

• IfM encodes η(R̂), the complexity of a Jacobi or Gauss-Seidel iteration is O(L·η(R̂)).

However, if Cmin > 1, this complexity is again reduced to O(η(R̂)).

Since the hybrid engine in PRISM stores split submatrices of R, its complexity

is also O(η(R)). Compared with our algorithm, the hybrid engine in PRISM also saves

computation because it does not need to multiply edge values as it descends the diagram.

However, we argue that the main problem of the hybrid engine in PRISM is the potentially

formidable memory consumption when the scheme of storing split submatrices fails to scale,

as we will see in the experimental results. It is worth noting that the proposed algorithm

and the above complexity are applicable if R is encoded using MTBDD. The only difference

in the algorithm, if using MTBDD, is that rate values are not calculated by multiplying the

edge values during the traversal, but obtained directly from terminal nodes, and the same

complexity holds. However, the size of the MTBDD encoding R may be larger than that

of EV∗MDD.

121



6.5 Experimental results

We implemented Gauss-Seidel using the plain algorithm of Section 6.2 and the

cache scheme enhancement of Section 6.3 in our stochastic analysis tool SmArT [16] and

run experiments on an Intel Xeon 2.53GHz workstation with 36GB RAM running Linux

2.6.18. We use four CTMC models distributed with PRISM as benchmarks. The most

important criteria in our comparison are runtime per iteration and memory consumption

for the transition rate matrix storage (including any cache).

First, we compare the runtime of our plain algorithm with Act-Cl2-GSD in [10], a

symbolic algorithm for Gauss-Seidel iteration on actual state space. Although the original

Act-Cl2-GSD employs Kronecker-based storage for R̃, we implemented it in SmArT using

EV∗MDD storage of R (experimentally, we observed that this did not substantially affected

performance or memory requirements of the method). The runtime per iteration is listed

in Fig. 6.8. These results clearly show that our algorithm greatly outperforms the previous

algorithm, consistent with the theoretical results of the last section.

Then, we compare our algorithm with PRISM using both its sparse and hybrid

engines. Fig. 6.9 lists both runtime and memory experimental results, where “MO” means

“out of memory”, “TO” means the total runtime is more than 8 hours, and “NA” means

“not available”. The second and third column in the table report the size of the state

space and the average number of nonzero entries in each row of R, indicating how sparse

R is. In PRISM, the sparse engine employs sparse storage for R, while the hybrid engine

uses MTBDD and sparse submatrices. PRISM memory consumption is listed in Columns

“sparse” and “hybrid”, the latter using the format M + S, where M is the memory for

122



N |S| Act-Cl2-GSD [10] Plain algorithm

cluster L = 16

16 1.01×104 0.07 <0.001

32 3.86×104 0.40 0.002

64 1.51×105 2.41 0.006

fms L = 8

3 6.52×103 0.03 <0.001

4 3.59×104 0.26 0.003

5 1.52×105 1.70 0.015

kanban L = 16

2 4.63×103 0.02 <0.001

3 5.84×104 0.36 0.003

4 4.54×105 3.36 0.027

polling L = 2N + 1

13 1.59×105 1.05 0.069

14 3.44×105 2.54 0.015

15 7.37×105 6.08 0.037

Figure 6.8: Runtime (sec) per iteration: Act-Cl2-GSD vs. our plain algorithm.

MTBDDs and S is the memory for sparse submatrices. Our plain algorithm uses EV∗MDDs

and our cache algorithm uses a cache list to store R. Column “R̂+Cache” lists the memory

to encode R̂ plus the memory for the cache list, and Column “R” lists the memory to

encode R. We report the number of iterations (Column “Iter.”) and the average runtime

per iteration, in seconds. The main comparison is between the proposed algorithm with

cache and the hybrid engine in PRISM, and for these two, we list the runtime per iteration

and total runtime, including both the runtime for iterations and building the auxiliary data

structures, in two columns. EV∗MDDs are much more compact than sparse storage and,

except for model “cluster”, use less memory than MTBDDs do in PRISM. The inefficiency

of EV∗MDDs in “cluster” is due to some large nodes with N outgoing edges, and it could

be solved by splitting a single level into several levels in the EV∗MDD. Our cache scheme,

although simple, often uses less memory than PRISM, while achieving comparable runtime,

123



N |S|
η(R)
|S|

Memory for R (Mb) Runtime (sec)

PRISM Proposed PRISM Proposed

Sparse Hybrid R R̃+Cache Iter. SparseH(iter|total) Iter. PlainC(iter|total)

cluster L = 16

128 5.97×105 2.56 11.70.03+0.12 0.40 0.12+0.48 306 0.02 0.03 9 297 0.44 0.03 9

256 2.37×106 2.56 46.50.03+0.28 0.79 0.24+0.95 329 0.07 0.19 62 574 1.85 0.17 99

512 9.46×106 2.56 538.20.03+0.42 1.57 0.47+1.90 358 0.21 0.81 2931104 7.81 0.81 940

10243.78×107 2.55 740.80.03+0.85 3.14 0.94+3.80 397 2.39 3.20 12761104 31.75 3.50 7805

fms L = 8

7 1.63×106 1.15 53.3 5.8+6.7 1.30 0.76+8.81 144 0.07 0.16 29 188 2.32 0.21 41

8 4.45×106 1.09 151.210.3+15.3 1.93 1.14+16.91 151 0.20 0.47 87 205 6.55 0.70 145

9 1.10×107 1.06 388.514.7+35.0 3.05 1.69+34.39 159 0.51 1.66 306 221 16.96 1.87 415

10 2.53×107 1.03 918.919.3+71.8 4.25 2.36+62.50 166 1.20 4.23 798 238 40.04 4.14 989

kanban L = 16

6 1.12×107 1.88 452.1 0.4+2.9 0.13 0.02+3.02 232 0.53 0.99 233 226 15.49 1.03 232

7 4.16×107 1.91 1740.8 0.4+6.3 0.17 0.02+6.37 296 2.54 4.06 1215 289 57.46 4.34 1255

8 1.33×108 1.92 5836.8 0.7+17.5 0.22 0.02+12.34 365 6.66 13.15 4847 358 TO 14.69 5261

9 3.84×108 1.94 MO 0.7+37.1 0.27 0.02+7.65 493 MO 38.52 17044 432 TO 40.58 17533

polling L = 2N + 1

20 3.14×107 2.18 1331.2 0.1+18.1 0.06 0.10+5.13 36 1.61 2.29 87 36 61.75 2.00 72

21 6.60×107 2.19 2867.2 0.2+40.1 0.07 0.11+6.64 47 3.35 4.90 241 36137.50 4.11 148

22 1.38×108 2.20 6246.4 0.2+40.1 0.07 0.13+10.41 60 7.56 10.94 681 37297.52 8.97 332

23 2.89×108 2.20 MO 0.2+88.1 0.08 0.14+13.45 72 MO 22.48 1679 38646.69 19.62 746

flip L = N

14 1.64×104 13.99 1.0 7.0+1.0<0.01 (<0.01)+0.08 48 0.15<0.01 42 48 0.03<0.01 <1

15 3.28×104 14.99 2.2 13.6+2.5<0.01 (<0.01)+0.13 52 0.32<0.01 284 52 0.06<0.01 <1

16 6.55×104 16.00 12.1 26.7+4.1<0.01 (<0.01)+0.19 55 0.71 0.04 1400 55 0.13<0.01 <1

20 1.04×106 20.16 NA NA<0.01 (<0.01)+1.01 NA NA NA NA 70 2.50 0.21 15

Figure 6.9: Experimental results comparing PRISM with the proposed algorithms.

even if, as we pointed out at the end of Section 6.4, our algorithm using EV∗MDDs needs to

multiply edge values, unlike the hybrid engine in PRISM. The sparse storage in PRISM and

our plain algorithm, not surprisingly, are the fastest and slowest, respectively. The hybrid

engine in PRISM and our algorithm with cache perform almost equally well.

For the first four models, the submatrix storage for R in PRISM’s hybrid engine

scales well because many submatrices in R turn out to be the same, substantially reducing

storage requirements. We consider a model called “flip”1, modeling random flips on N

bits. The rates of flips are determined by multiplying functions of each local state, thus the

1The PRISM and SmArT files for flip are available at http://www.cs.ucr.edu/∼zhaoy/QEST2012.html

124



number of different rate values grow exponentially with N , and no submatrix can be shared.

We can see from the table that the memory for sparse submatrices in the hybrid engine is

close to that for sparse storage of R, and the memory for MTBDDs is much larger than that

for the corresponding EV∗MDDs. The hybrid engine also requires large amount of runtime

to build sparse submatrices, making it much slower than our algorithm. We cannot report

results from PRISM for N>16 because PRISM crashes unexpectedly in those cases, so we

put “NA” in the corresponding cells.

We can reach the following conclusions based on our experimental results. First,

our algorithm achieves an obvious speedup compared with previous symbolic algorithm for

Gauss-Seidel iterations on the actual state space. Second, thanks to EV∗MDDs, our storage

of the transition rate matrix is often more compact than using MTBDDs, and able to tackle

some models, like flip, on which MTBDDs do not scale. Third, enhanced with our cache

scheme, our algorithm achieves a runtime comparable with PRISM.

6.6 Summary

We presented a symbolic algorithm to compute the stationary solution of ergodic

structured CTMCs using Jacobi or Gauss-Seidel. EV∗MDDs are used to store the transition

rate matrix on the actual state space. By exploiting a lexicographic order on the state space,

the Gauss-Seidel iteration can be implemented using a two-phase traversal that allows it

to achieve a complexity of O(η(R)), which has never been achieved in previous work with

structured representations.

125



Our algorithm raises some interesting questions. First, the variable order not only

affects the size of decision diagrams, but also the lexicographic order of the state space and,

consequently, the convergence rate of Gauss-Seidel. This relationship ought to be studied in

future work. Second, the proposed cache scheme affects the efficiency of our algorithm and

the trade-off between memory and runtime when building the cache needs to be studied

in greater detail. Finally, while we only addressed Jacobi and Gauss-Seidel, it is worth

exploring the use of our algorithm for more sophisticated iterative methods, such as the

multi-level algorithm [43], which could achieve faster convergence.

126



Chapter 7

A bounding semantics for CSL

This chapters tackles the truncation errors in iterative methods, which are widely

used in probabilistic model checking. Unlike CTL, where the result is obtained by exploring

the state space, the set of states corresponding to a CSL formula is generated by comparing

real values obtained from a numerical analysis against some given threshold. Errors and

approximations in the numerical analysis steps are inevitable, and may propagate to the

resulting set of states. For example, if we seek the set of states with probability ≤ 0.5 (with

respect to some condition) and the computed probability on a state is between 0.49 and

0.51, it is not clear whether this state belongs to the result. No matter how high we set

the required precision in the numerical analysis, such cases can never be ruled out. Thus,

the correctness of CSL results may not be guaranteed due to numerical errors, especially

under resource constraints (runtime, memory). In other words, the exact semantics of CSL,

defined as a resulting set of states, is not generally achievable in practice.

127



Worse yet, due to the inability to compute an exact result for a given CSL formula,

nested CSL formulas are even more difficult to handle in the current CSL model-checking

framework. While a nested CTL formula can be evaluated by simply following its syntax

tree from leaf nodes to the root, the corresponding approach for nested CSL formulas can

only be proposed after we are able to handle errors in CSL model checking.

We propose a solution to the above problems by defining the result of a CSL

formula using bounds (sets). The lower bound set gives the states that “must” satisfy

the threshold on the probability and the higher bound set gives the set of states that

“might” satisfy the threshold, based on the given precision of the numerical analysis. We

focus on the error introduced in the truncation of the iteration and modify the CSL model

checking algorithm to provide and support our new CSL semantics with bounds. The

proposed algorithms handle nested CSL formulas by taking into account uncertainty in the

subformulas.

Using lower and upper bounds to handle model checking uncertainty is not a

new idea. In the probabilistic setting, [35] and [46] discuss the application of three-value

logic, which reflects a similar idea as our lower and upper bounds. The main difference

between our chapter and these previous works is the source of uncertainty. In [35] and [46],

uncertainty comes from abstracting models, while in this chapter we discuss the inherent

uncertainty arising from the numerical analysis employed in CSL model checking itself.

The proposed bounding semantics and techniques for nested CSL formulas also apply to

the problem settings in [35] and [46], where abstraction on Markov chains is carried out.

128



The rest of the chapter is structured as follows. Section 7.1 presents new algorithms

to generate bounds on the exact result. Section 7.2 introduces an approach to handle nested

CSL formulas. Section 7.3 shows the application of our new techniques to two nontrivial

cases. The last section concludes the chapter and points out future work.

7.1 Bounding the probability in CSL model checking

We now introduce our numerical technique to tackle truncation errors and generate

bounds when computing the UI operator. Sections 7.1.1 and 7.1.2 focus on the time-

bounded and unbounded U operators, respectively, and exploit the monotonic property of

the probability vector being computed. Section 7.1.3 briefly introduces how to handle the

point-interval and general interval U operators.

7.1.1 Time-bounded until

Given M and formula P⊲⊳p(φU
[0,t]ψ), we first compute the partition {S0,S1,S?},

then apply the conversion of Section 2.3.3 to obtain CTMCMS0∪S1 . Consequently, Prob(φU[0,t]ψ)

forM equals ν(S1, t) forM
S0∪S1 . The following equality

ν(S?, t) + ν(S1, t) + ν(S0, t) = 1 where 1 is a vector of 1’s

holds at any time t ≥ 0, since the state of MS0∪S1 is in one of S1, S0, or S?. From now

on, let the l and u superscripts indicate lower and upper bounds on the corresponding

quantities, respectively. Then, if we can compute ν l(S1, t), ν
l(S?, t), and νl(S0, t), we can

let νu(S1, t) = 1− ν l(S?, t)− ν l(S0, t).

129



In the traditional use of uniformization, ν(S1, t) is calculated by truncating an

infinite sum:
∞∑

k=0

Pk
δ
ψ · Poisson[k] ≈

Rε∑

k=Lε

Pk
δ
ψ · p[k].

We compute the approximate Poisson probability p[k]≈ Poisson[k] for Lε ≤ k ≤Rε using

the Fox-Glynn algorithm [38], which first finds the left and right truncation points Lε and

Rε that ensure
∑Rε

k=Lε
Poisson[k] ≥ 1 − ε, where ε is the specified acceptable truncation

error, then computes p[k] based on the recurrence

p[k − 1] · qt = p[k] · k with normalization

Rε∑

k=Lε

p[k] = 1, (7.1)

which results in p[k] > Poisson[k]. To calculate a lower bound ν l(S1, t), we first need to

obtain a lower bound pl[k] for the Poisson probability Poisson[k], thus we substitute the

normalization in Equation 7.1 with

Rε∑

k=Lε

pl[k] = 1− ε. (7.2)

Fig. 7.1 shows the pseudo-code of our modified Fox-Glynn algorithm generating

lower bounds for the Poisson probabilities. We then have

ν
l(S1, t) =

Rε∑

k=Lε

Pk
δ
ψ · pl[k] <

∞∑

k=0

Pk
δ
ψ · Poisson[k] = ν(S1, t).

{Lε, Rε, p
l[Lε, ..., Rε]} FoxGlynnLB(qt, ε) is

1 m← ⌊qt⌋;

2 Lε, Rε, w[m]← Finder(λ, ε);

3 w[Lε, ..., Rε]← ComputeWeight(Lε, Rε, w[m]);

4 W ← sumup(w[Lε, ..., Rε]);

5 W ←W/(1− ε); •Upper bound on overall weight

6 pl[Lε, ..., Rε]← w[Lε, ..., Rε]/W ; • Lower bound on Poisson probabilities

7 return Lε, Rε, p
l[Lε, ..., Rε];

Figure 7.1: Modified Fox-Glynn algorithm for lower bounds on Poisson probabilities.

130



We could compute ν l(S?, t) and νl(S0, t) with the same technique, but for νu(S1, t)

we do not need to do that. Considering Eq. 7.2, we have

ν
l(S?, t) + ν

l(S1, t) + ν
l(S0, t) = (1− ε) · 1 and ν

l(S?, t) + ν(S1, t) + ν
l(S0, t) ≤ 1,

which means that we can define the upper bound

ν
u(S1, t) = ν

l(S1, t) + ε · 1 = 1− ν
l(S?, t)− ν

l(S0, t) ≥ ν(S1, t).

By adjusting ε, we can obtain arbitrarily tight bounds.

7.1.2 Unbounded until

Again, we first buildMS0∪S1 so that Prob(φUψ) inM equals ν(S1) (recall that

ν(S1) = limt→∞ ν(S1, t)) in MS0∪S1 . Eventually, MS0∪S1 will be absorbed in S0 or S1,

thus

ν(S1) + ν(S0) = 1.

Hence, as long as we obtain the lower bounds ν l(S1) and ν l(S0), we can define the upper

bound νu(S1) = 1− νl(S0).

ν(S1) is the solution ν of the linear system Pν + δ
ψ = ν, which can be solved

using Gauss-Seidel iterations

ν(k+1)[i] =
∑

j≺i

P[i, j]ν(k+1)[j] +
∑

j≻i

P[i, j]ν(k)[j] + δψ[i].

A practical criterion to terminate the iteration is ||ν(k+1) − ν(k)|| < ε, where ε is again a

parameter expressing the error tolerance. This criterion does not guarantee that the result is

close to the actual solution, thus the error is not predictable from ε. Fig. 7.2 shows a simple

131



example, S? contains two states and we compute ν[i](S1). It is clear that ν[i](S1)=0.5 for

any p, since the two top states are bisimilar. However, if p≪ ε, a näive convergence test

stops the iteration at ν[i](S1)=p/2, which is far from the actual result.

If we initialize ν(0) to be the zero vector, the following theorem holds (Theorem

5.8 in [5]).

Theorem: If ν(0) = 0, ν(k+1) ≥ ν(k) for all k ≥ 0.

This theorem holds for the most widely used iterative methods such as Power,

Jacobi, Gauss-Seidel, and SOR. It guarantees that the computed ν using one of these

iterative methods naturally gives a lower bound ν l(S1). We can similarly compute the

lower bound ν l(S0) with a second numerical solution, and let νu(S1) = 1− ν l(S0).

Unlike the case of time-bounded until, it is difficult to predict the distance between

ν l(S1) and νu(S1), since there is no simple relation between ε and ||νu − ν l||. However,

||νu − ν l|| provides a much better criterion for convergence check. Still, in the example of

Fig. 7.2 with p≪ ε, a näive convergence test stops the iteration at ν[i](S1) = p/2, and we

obtain the bounds νl[i](S1) = p/2 and νu[i](S1) = 1− p/2, which alert us that there is still

a huge uncertainty in the result, thus the iteration should proceed further (with a smaller

ε).

1− p

1− p

S1 S0

i j

p/2
p/2 p/2

p/2

Figure 7.2: An example of computing ν(S1).

132



7.1.3 Point-interval and general interval until

In both cases, we employ the analysis of Section 7.1.1. For P⊲⊳p(φU
[t,t]ψ), where

ψ implies φ, we generateM
Sat(¬φ)
unif and compute [ν l(Sat(ψ), t),νu(Sat(ψ), t)] as the bounds

for Prob(φU[t,t]ψ).

Bounding the probability for φU[t,t′]ψ requires multiple transient analysis rounds.

We first compute [ν llast(Sat(ψ), t
′−t),νulast(Sat(ψ), t

′−t)] inM
Sat(¬φ∨ψ)
unif . Then inM

Sat(¬φ)
unif ,

Rε∑

k=Lε

Pk
ν
l
last(Sat(ψ), t

′−t) · pl[k]

gives the bound Probl(φU[t,t′]ψ). The upper bound can be computed by considering that

any path is described by exactly one of these path formulas:

φU[0,t](¬φ) φU[t,t′]ψ φU[t,t′](¬ψ ∧ ¬φ) φU[t′,t′](φ ∧ ¬ψ)

so that we can obtain Probu(φU[t,t′]ψ) by

1− (Probl(φU[0,t](¬φ)) +Probl(φU[t,t′](¬ψ ∧ ¬φ)) +Probl(φU[t′,t′](φ ∧ ¬ψ))).

To summarize the above discussion, Fig. 7.3 depicts the algorithm for UI , which

returns a pair of “lower and upper sets” [X l,X u] satisfying X l ⊆ X ⊆ X u, where X is the

set satisfying the until formula.

7.2 Semantics for CSL formulas with bounds

This section addresses nested CSL formulas under our semantics with bounds.

To accommodate the bounds generated by the above algorithms, we need to redefine the

133



bound UntilBounds(interval I,StateSet Y,StateSet Z,float ε) is
1 if I = [0, t] then

2 Build P forMS0∪S1

unif for uniformizing rate q; • S1 = Z,S0 = S\E(YUZ)

3 νl = BoundedUntil(qt,Y,Z, ε); •Replace FoxGlynn by FoxGlynnLB in Fig. 7.1

4 νu = νl + ε · 1;

5 elseif I = [0,∞) then

6 Build P forMS0∪S1

unif for uniformizing rate q;

7 νl ← GaussSeidel(P, δS1 , ε); νu ← 1−GaussSeidel(P, δS0 , ε);

8 elseif I = [t, t] then

9 Build P forM
S\Y
unif for uniformizing rate q;

10 νl = BoundedUntil(qt,Y,Z, ε); νu = νl + ε · 1;

11 elseif I = [t, t′] then

12 · · · •See Section 7.1.3

13 endif

14 return P⊲⊳p[ν
l,νu];

Figure 7.3: Model checking algorithm for UI generating bounds.

semantics of CSL. Specifically, we replace the exact set of states with the lower and upper

bounds of this set.

Definition 7.2.1 The evaluation of a CSL state formula F returns a pair of state sets

[eval l(F ),evalu(F )] satisfying eval l(F ) ⊆ eval(F ) ⊆ evalu(F ).

• eval(ψ) = [Sat(ψ),Sat(ψ)]

• eval(¬F ) = [S\evalu(F ),S\eval l(F )]

• eval(F1 ∧F2) = [eval l(F1) ∩ eval l(F2),eval
u(F1) ∩ evalu(F2)]

• eval(F1 ∨F2) = [eval l(F1) ∪ eval l(F2),eval
u(F1) ∪ evalu(F2)]

• eval(P≥p(X
I
F )) = [P≥pProb(XIeval l(F )),P≥pProb(XIevalu(F ))]

• eval(P≤p(X
I
F )) = [P≤pProb[XIevalu(F )],P≤pProb(XIeval l(F ))]

134



• eval(P≥p(F1U
I
F2)) =

[P≥pProbl(eval l(F1)U
Ieval l(F2)),P≥pProbu(evalu(F1)U

Ievalu(F2))]

• eval(P≤p(F1U
I
F2)) =

[P≤pProbu(evalu(F1)U
Ievalu(F2)),P≤pProbl(eval l(F1)U

Ieval l(F2))].

For the evaluation of nested formulas, we can still follow the syntax tree order

from leaves to the root, and always enforce a high precision (small ε) when evaluating

each subformula. The drawback of this approach is the potentially high and unnecessary

cost. Instead, we can start from a low precision, and, if the resulting bounds are not

tight enough, refine by incrementally increasing the precision for evaluating each level of

subformula. The merit of this approach is the possibility of focusing the expensive numerical

analysis efforts on the important subformulas. However, depending on the order in which

we refine subformulas, this may result in unnecessarily going back and forth between the

evaluation of outer and inner subformulas.

We propose the framework in Fig. 7.4 and 7.5 to evaluate nested CSL formulas

and we only consider the evaluation of P⊲⊳p(F1U
I
F2) since the evaluation of P⊲⊳p(X

I
F ) can

be simply reduced to that of F . Eval is the top-level function to evaluate the UI operator,

and all subformulas are assumed to be of the form P⊲⊳p(F1U
I
F2). We first evaluate with

an initial precision and invoke Function EvalError , which evaluates the whole formula

with error parameter ε. For the refinement, we give two different orders: RefineTopDown

and RefineBottomUp. The former first increases the precision for evaluating the top-level

formula, then, when it does not further tighten the resulting bounds, it refines the results

from subformulas; the latter instead first refines subformulas, then the top-level formula. As

135



the following case studies show, these two orders of refinement generally result in different

costs to eventually reach sufficiently tight bounds.

7.3 Case studies

We consider two models, one for an embedded system and the other for the Ad-

vanced Airspace Concept (AAC) system. The embedded system model is described in [61]

and also released as an example with PRISM [51]. The AAC system model describes the

reliability in an airspace control protocol which was recently proposed; [83] provides the

details about this protocol and also discusses the model-checking scheme for this system.

We demonstrate the algorithms in Section 7.1 for non-nested CSL formulas, then show

preliminary results on nested CSL formulas.

Embedded system

This system consists of a main processor, an input processor, an output processor,

two actuators, and three sensors, each associated with a failure rate. The main processor

maintains a count of the number of retries when receiving data from sensors or sending

data to actuators and, if the count exceeds a threshold, the entire system fails. More details

about this model are available in [61].

First, we check the time-bounded until property “the system runs without failure

until the count reaches threshold 3 within 12 hours”, written as:

[X l,X u] := P≤0.005[Normal U[0,12×3600] InOutFail ].

136



bound Eval(P⊲⊳p(F1U
I
F2)) is

1 ε← InitialValue;

2 [X l,X u]← EvalError(P⊲⊳p(F1U
I
F2), ε);

3 while |X u| − |X l| > acceptable do

4 [X l,X u]← RefineTopDown/RefineBottomUp(F1U
I
F2);

5 endwhile;

6 return [X l,X u];

bound EvalError(F , ε) is
1 if F in form P⊲⊳p(F1U

I
F2);

2 [Y l,Yu]← EvalError(F1, ε); [Z l,Zu]← EvalError(F2, ε);

3 [X l,X u]← bounds from UntilBounds(I,Y l,Z l, ε),UntilBounds(I,Yu,Zu, ε);

4 else if F in form φ or ¬φ • base case, atomic proposition

5 X l,X u ← Sat(φ) or S\Sat(φ)

6 else if F in form F1 ∨F2 or F1 ∧F2

7 [Y l,Yu]← EvalError(F1, ε); [Z l,Zu]← EvalError(F2, ε);

8 [X l,X u]← [Y l ∨ Z l,Yu ∨ Zu] or [Y l ∧ Z l,Yu ∧ Zu];

9 endif

10 Set [X l,X u] and ε as CurrentResult and CurrentPrecision for F ;

11 return [X l,X u];

Figure 7.4: Algorithm for the evaluation of nested CSL formulas.

For initial state s0, the calculated probability bounds are [νl[s0],ν
u[s0]], In Fig. 7.6, the

horizontal axis represents the error parameter ε. The left of Fig. 7.6 shows the size of X l

and X u while the right shows νl[s0] and ν
u[s0]; as we discussed, νu[s0]− ν

l[s0] = ε. When

ε ≤ 0.0013, we obtain an exact result for this formula, i.e., X l = X u.

We then check the unbounded until formula “the embedded system eventually fails

with probability ≤ 0.2”, written as:

[X l,X u] := P≤0.2[Normal U InOutFail ].

Again, the left of Fig. 7.7 shows the size of X l and X u while the right shows νl[s0] and

νu[s0]. In general νu[s0]− ν
l[s0] does not have a simple relation with ε, but, in this case, it

decreases almost linearly as ε decreases, which is desirable.

137



bound RefineTopDown(P⊲⊳p(F1U
I
F2)) is

1 ε← CurrentPrecision for P⊲⊳p(F1U
I
F2);

2 Reduce ε;

3 [Y l,Yu]← CurrentResult for (F1);

4 [Z l,Zu]← CurrentResult for (F2);

5 oldbound ← CurrentResult for P⊲⊳p(F1U
I
F2);

6 repeat

7 [X l,X u]← bounds from UntilBounds(I,Y l,Z l, ε),UntilBounds(I,Yu,Zu, ε);

8 if oldbound = [X l,X u] then

9 [Y l,Yu]← RefineTopDown(F1); [Z l,Zu]← RefineTopDown(F2);

10 else

11 oldbound ← [X l,X u];

12 Reduce ε;

13 endif

14 until |X u| − |X l| ≤ acceptable;

15 Set [X l,X u] and ε as CurrentResult and CurrentPrecision for F ;

16 return [X l,X u];

bound RefineBottomUp(P⊲⊳p(F1U
I
F2)) is

1 ε← CurrentPrecision for P⊲⊳p(F1U
I
F2);

2 [Y l,Yu]← RefineBottomUp(F1); [Z l,Zu]← RefineBottomUp(F2);

3 oldbound ← CurrentResult for P⊲⊳p(F1U
I
F2);

4 repeat

5 [X l,X u]← bounds from UntilBounds(I,Y l,Z l, ε),UntilBounds(I,Yu,Zu, ε);

6 if oldbound = [X l,X u] then

7 Reduce ε;

8 else

9 oldbound ← [X l,X u];

10 [Y l,Yu]← RefineBottomUp(F1); [Z l,Zu]← RefineBottomUp(F2);

11 endif

12 until |X u| − |X l| ≤ acceptable;

13 Set [X l,X u] and ε as CurrentResult and CurrentPrecision for F ;

14 return [X l,X u];

Figure 7.5: Algorithm for refining the evaluation of nested CSL formulas.

Advanced Airspace Concept (AAC)

This model depicts conflict detection and resolution between a pair of aircraft.

To ensure safe separation between aircraft, the AAC system provides three subsystems:

AutoResolver, TSAFE, and TCAS, which can detect and resolve potential future conflicts.

To resolve a detected conflict, a resolution is calculated automatically and sent to the pilot of

138



Figure 7.6: Embedded system bounded until: size of lower and upper bound sets satisfying
the formula (left) and probability bounds for the initial state (right).

the involved aircraft. The pilot is then responsible for executing the most urgent resolution

first. Fig. 7.8 shows the high-level state transition in the AAC system for a pair of aircraft.

First, we define “dangerous states” to be those where a TSAFE alert rises and,

with probability greater than 0.05 it will not be resolved within 3 minutes (180 seconds).

Dangerous states can be described using the CSL formula:

[Dl,Du] :=TSAFEalert ∧ P≤0.95[TSAFEalert U[0,180] ¬TSAFEalert ]. (7.3)

139



Figure 7.7: Embedded system unbounded until: size of lower and upper bound sets satis-
fying the formula (left) and probability bounds for the initial state (right).

Then, we study the probability that, from a state without TSAFE alert on, the

system reaches dangerous states within 5 minutes (300 seconds).

[X l,X u] :=P≤0.01[¬TSAFEalert U[0,300] [Dl,Du]]. (7.4)

We use εd and εn to denote the error parameters for Formula 7.3 and 7.4, respec-

tively. For this experiment, we keep refining the bound [X l,X u] until X l = X u (of course,

in practice this might be neither achievable nor necessary). We first try to evaluate For-

140



No
conflict

Auto-
Resolver

alert

TSAFE
alert

TCAS
alert

Alert rises

Conflict resolved

Figure 7.8: High-level state transition of the AAC system.

mula 7.4 employing top-down refinement, and obtain the results in Table 7.1. For each row,

we also tried to refine by just reducing εn, but this did not generate tighter bounds [X l,X u]

than those listed. In the first two rows, [Dl,Du] is too loose to obtain an exact result for

the outer formula; from the third row, instead, while there is still uncertainty in the result

of the inner subformula, [Dl,Du] is tight enough to generate an exact result for the nested

formula. Thus, the model checking procedure could stop at εd = εn = 0.001.

We also study the formula using a larger probability threshold:

[X l,X u] :=P≤0.1[¬TSAFEalert U[0,300] [Dl,Du]]. (7.5)

We start from εd = εn = 0.1 and refine. Using the bottom-up approach, we should first

refine the subformula to tighter bounds, then go back to the top level. From Fig. 7.1, we

know that εd = 0.0001 ensures an exact result for the subformula. However, Table 7.2 shows,

refining the top-level formula directly produces an exact result, so it is in fact unnecessary

to refine the subformula. This is because the probability threshold P≤0.1 is so slack that a

precise evaluation on the top-level is sufficient to get an exact result even with very loose

bounds on the subformula.

141



εd = εn |D
l| |Du| |X l| |X u| νl[s0] νu[s0]

0.01 480 2160 224 1532 0.0439 0.0539

0.005 480 1392 224 1532 0.0441 0.0491

0.001 480 576 1532 1532 0.0443 0.0453

0.0005 480 576 1532 1532 0.0443 0.0448

0.0001 480 480 1532 1532 0.0443 0.0444

Table 7.1: Results for Formula 7.4 using top-down refinement.

εd εn |Dl| |Du| |X l| |X u| νl[s0] ν
u[s0]

0.1
0.1 432 2160 224 5453 0.000 0.1400

0.01 432 2160 5453 5453 0.000 0.0539

Table 7.2: Results for Formula 7.5.

We can see that finding a scheme for nested formula requires us to identify the

“bottleneck” of the precision for the final result. For Formula 7.4, the bottleneck lies in the

inner formula, while for Formula 7.5 the bottleneck lies in the outer formula. However, it is

difficult to come up with the best general scheme without several trials, thus finding good

heuristics for efficient evaluation of nested CSL formulas is an interesting future work.

142



7.4 Summary

Since iterative methods are widely utilized in CSL model checking, truncation er-

rors must be considered to ensure correctness of the results. In this paper, we investigated

a bounding semantics of CSL formulas with the UI operator. We first improved the CSL

model checking algorithm by providing lower and upper bounds, to support the bounding

semantics. Then, we applied the bounding semantics to nested CSL formulas and studied

approaches for their evaluations. We demonstrated the new algorithms on two case studies.

The results show that, for nested CSL formulas, appropriately scheduling the precision on

different subformulas could achieve tight bounds and even exact results, with less computa-

tional cost. However, finding an optimal scheme is nontrivial. Thus we believe that finding

good heuristics to guide the evaluation of nested CSL formulas is an important line of future

investigation.

143



Chapter 8

Implementation: SMART tool

Constrained
saturation

Two-phase
GS iteration

CTL model checking
SCC enumeration

Logic MC Probabilistic MC
Stationary solution 
CSL model checking
Bounding semantics

State space generation

Data 
structures

Algorithms

Applications

Multi-way decision diagrams (MDDs)
Edge-valued MDDs (EVMDDs)

Figure 8.1: The infrastructure of SmArT.

All the proposed techniques have been implemented in our tool SmArT (the Stochas-

tic Model checking Analyzer for Reliability and Timing ). Figure 8.1 shows the structure

of SmArT. The important features discussed in this thesis are highlighed in red. Currently,

144



SmArT takes in high-level description (a stochastic Petri net) and generates the underlying

CTMC. It is able to answer a set of logic and quantitative queries. The user manual for

SmArT is available at [15].

8.1 Logic model checking

CTL model checking

SmArT now supports EX, EU, and EG queries, each of which returns a resulting set

encoded with an MDD nonde (key word mdd). The follow code snippet shows these queries:

mdd psi := ...

mdd phi := ...

mdd ex := EX(psi);

mdd eu := EU(phi, psi);

#EGMethod {EG_BFS, EG_TC}

mdd eg := EG(psi);

There are two options for EG algorithm: BFS (default) and transitive closure, which are

introduced in Chapter 3.

SCC enumeration

SmArT supports SCC and terminal SCC computation and returns a set of states

that belong to SCC or terminal SCC. The following code snippet shows these two queries:

#SCCMethod {FMSD06_SAT, SAT_TRANSCLOSURE, Lockstep};

mdd scc := scc();

#TSCCMethod {XB_SAT, SAT_TRANSCLOSURE, XB_BFS};

mdd rec := tscc();

There are three algorithms available for SCC computation query scc: improved Lockstep

using saturation algorithm (FMSD06 SAT, default), new algorithm based on transitive clo-

145



sure (SAT TRANSCLOSURE), and the previous Lockstep implemented with BFS (Lockstep).

Also, there are three algorithms available for terminal SCC computation query tscc: Xie-

Beerel algorithm using Saturation (XB SAT, default), new algorithm based on transitive clo-

sure (SAT TRANSCLOSURE), and the previous Xie-Beerel algorithm implemented with BFS

(XB BFS).

Shortest EG witness generation

As Chapter 5 shows, SmArT is able to generate a shortest EG witness. The query

is in the following form:

mdd eg := EGtrace(psi);

The above query returns the set of state EGψ and prints out one of the shortest witness for

EGψ.

8.2 Probabilistic model checking

As an objective of our project, we will eventually implement four approaches

to handle the stochastic properties: exact solution, bounding solution, simulation, and

approximation. Approximation of steady-state solution using EVMDDs is implemented

based on a previous idea in [78].

First, SmArT now supports steady-state solution of ergodic CTMCs using the sym-

bolic Jacobi and Gauss-Seidel iteration introduced in Chapter 6. Given a state formula F,

SmArT is able to compute the stationary reward, which can be expressed as:

∑

i∈S

π[i] · f(i),

146



where f(i) is a map f : S → R indicating the weight of i and the reward is the weighted

sum of the stationary probabilities for all states. SmArT provides the following two queries:

real prob := prob ss(ψ); //
∑

i|=ψ

π[i]

real prob := avg ss(f); //
∑

i∈S

π[i] · f(i)

As a new feature, SmArT now supports CSL formulas using bounding semantics:

P≤p(φU
[t1,t2]ψ) and P≤p(φUψ). It employs the technique introduced in Chapter 7. The

following code snippet shows a CSL query:

mdd phi, psi := ...

real varepsilon :=

mdd s := PU(t1, t2, phi, psi, p, {false, true}, varepsilon);

where parameter false or true determines whether it returns a lower or an upper bound

for the resulting set of states. If t1=t2=0, it will compute the query P≤p(φUψ).

147



Chapter 9

Conclusion

9.1 Summary

In this thesis, we explored one topic in each chapter, covering both logic and

probabilistic model checking. In this subsection, we provide a big picture of our framework,

in which three components: decision diagrams, saturation, and two-phase Gauss-Seidel

iteration, constitute the cornerstones. First, we summarize the functionality of each type

of decision diagrams in this thesis in Table 9.1. Secondly, we summarize the application of

(improved) Saturation in Table 9.2.

Finally, there are two applications for the proposed symbolic Gauss-Seidel itera-

tion: stationary solution for ergodic CTMCs (Section 6.2) and unbounded U in probabilistic

model checking (Section 6.2.3). From another dimension, we proposed a bounding semantics

for U operators in Chapter 7 together with a way to compute it.

148



DD Type Encoding Section and Citation

MDD Sets of states, next- or previous- state function Section 2.1.1

Transitive closure Section 4.3

EV+MDD Distance function [21]

Transitive closure with distance Section 5.2.1

Indexing function Section 6.2

EV∗MDD Transition rate matrix R or probability matrix P Section 6.2.1

Table 9.1: Functionality of decision diagrams.

Within this “trilogy”, decision diagrams provide support for both saturation and

symbolic Gauss-Seidel iteration, which implement functionality in logic and probabilistic

model checking, respectively. Because of their compactness, decision diagrams have long

been considered as an excellent data structure for the storage of discrete-state systems. My

work in the thesis further show that coupled with Saturation and two-phase Gauss-Seidel

Application Section and Citation

State-space generation [18]

Constrained-saturation in EU model checking Section 3.1

Transitive closure for EG model checking and SCC enumeration Section 3.2 and 4.3

Transitive closure with distance for shortest EG witness generation Section 5.2.1

Table 9.2: The application of (improved) Saturation.

149



iterations, decision diagrams have great potential to perform efficiently in both logic and

probabilistic model checking engine.

9.2 Future work

Parallelization has become a trend in software engineering in recent years. Since

the frequence of CPUs might not be further improved, more efforts are devoted to algo-

rithms utilizing multi-thread and multi-core programming paradigm for better runtime per-

formance on runtime. Decision diagrams are known to be extremely difficult to parallelize

since many operations in decision diagrams are inherently serial.

There have been at least two approaches to the parallelization of DD-based model

checking: the first is to parallelize the low-level operations in a decision diagram library,

like in [49, 62, 59]. The second is to parallelize the high-level algorithm such as Saturation,

like in [13, 14, 34]. However, none of these attempts has shown obvious improvements on

runtime in general. [23] compares the parallelizing explicit algorithms, which is much more

straightforward than (single thread) symbolic algorithms. The argument between symbolic

algorithms and explicit algorithms, especially when taking parallelization into consideration,

will still continue, and finding good parallelization schemes for DD-based algorithms is worth

further research.

The newly proposed two-phase Gauss-Seidel iteration shows great parallelization

potential. In a nutshell, it executes a DFS on EV∗MDD. While the elements in the prob-

ability vector must be updated following DFS order, the traversal could be in any order

and thus could be parallelized. Moreover, the EV∗MDD encoding the transition matrix is

150



often compact (a few Mbytes for many non-trivial models) and, while the computation is

intensive, some hardware speedup scheme, like GPU, might be applicable.

151



Bibliography

[1] NuSMV: a new symbolic model checker. Available at http://nusmv.irst.itc.it/.

[2] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on SAT-
solvers. In Proc. TACAS, volume 1785 of LNCS, pages 411–425. Springer, 2000.

[3] E. Ábrahám, N. Jansen, R. Wimmer, J.-P. Katoen, and B. Becker. DTMC model
checking by SCC reduction. In QEST, pages 37–46, 2010.

[4] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking algorithms for
continuous-time Markov chains. IEEE Trans. Softw. Eng., 29(6):524–541, June 2003.

[5] A. Berman and R. Plemmons. Nonnegative Matrices. SIAM, 1979.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. TACAS, pages 193–207. Springer, 1999.

[7] R. Bloem, H. N. Gabow, and F. Somenzi. An Algorithm for Strongly Connected
Component Analysis in n logn Symbolic Steps. In Formal Methods in Computer Aided
Design, pages 37–54. Springer-Verlag, 2000.

[8] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 35(8):677–691, Aug. 1986.

[9] P. Buchholz. A class of hierarchical queueing networks and their analysis. Queueing
Systems., 15:59–80, 1994.

[10] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-efficient
Kronecker operations with applications to the solution of Markov models. INFORMS
J. Comp., 12(3):203–222, 2000.

[11] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic
model checking for sequential circuit verification. IEEE Trans. CAD of Integr. Circ.
and Syst., 13(4):401–424, Apr. 1994.

152



[12] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98:142–170,
1992.

[13] M.-Y. Chung and G. Ciardo. Saturation NOW. In Proc. Quantitative Evaluation of
SysTems (QEST), pages 272–281. IEEE Comp. Soc. Press, 2004.

[14] M.-Y. Chung and G. Ciardo. A dynamic firing speculation to speedup distributed sym-
bolic state-space generation. In Proc. International Parallel & Distributed Processing
Symposium (IPDPS). IEEE Comp. Soc. Press, 2006. Electronic proceedings.

[15] G. Ciardo et al. SMART: Stochastic Model checking Analyzer for Reliability and
Timing, User Manual. Available at http://www.cs.ucr.edu/∼ciardo/SMART/.

[16] G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Logical and stochastic
modeling with SMART. Perf. Eval., 63:578–608, 2006.

[17] G. Ciardo, G. Lüttgen, and A. S. Miner. Exploiting interleaving semantics in symbolic
state-space generation. Formal Methods in System Design, 31:63–100, 2007.

[18] G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration strategy
for symbolic state space generation. In Proc. TACAS, LNCS 2031, pages 328–342.
Springer, 2001.

[19] G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In Proc. TACAS,
LNCS 2619, pages 379–393. Springer, 2003.

[20] G. Ciardo, R. Marmorstein, and R. Siminiceanu. The saturation algorithm for symbolic
state space exploration. Software Tools for Technology Transfer, 8(1):4–25, 2006.

[21] G. Ciardo and R. Siminiceanu. Using edge-valued decision diagrams for symbolic
generation of shortest paths. In Proc. FMCAD, LNCS 2517, pages 256–273. Springer,
2002.

[22] G. Ciardo and R. Siminiceanu. Structural symbolic CTL model checking of asyn-
chronous systems. In Proc. CAV, LNCS 2725, pages 40–53. Springer, 2003.

[23] G. Ciardo, Y. Zhao, and X. Jin. Parallel symbolic state-space exploration is difficult,
but what is the alternative? EPTCS, 14:1–17, 2009.

[24] F. Ciesinski, C. Baier, M. Grösser, and J. Klein. Reduction techniques for model
checking Markov decision processes. In Proceedings of the 2008 Fifth International
Conference on Quantitative Evaluation of Systems, pages 45–54. IEEE Computer So-
ciety, 2008.

[25] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: an open source tool for symbolic model
checking. In Proc. CAV, LNCS 2404. Springer, July 2002.

153



[26] E. Clarke, M. Fujita, P. C. McGeer, J. C.-Y. Yang, and X. Zhao. Multi-terminal binary
decision diagrams: an efficient data structure for matrix representation. In IWLS ’93
International Workshop on Logic Synthesis, May 1993.

[27] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Progr. Lang. and
Syst., 8(2):244–263, Apr. 1986.

[28] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[29] E. M. Clarke, K. L. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic
model checking. In Proc. CAV, LNCS 1102, pages 419–422, 1996.

[30] R. M. Czekster, P. Fernandes, J.-M. Vincent, and T. Webber. Split: a flexible and
efficient algorithm to vector-descriptor product. In Proc. ValueTools, pages 83:1–83:8.
ICST, 2007.

[31] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari. SAL
2. In Proc. CAV, LNCS 3114, pages 496–500. Springer, July 2004.

[32] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient generation of coun-
terexamples and witnesses in symbolic model checking. In 32nd Design Automation
Conference (DAC 95), pages 427–432, 1995.

[33] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional
mu-Calculus). In Proceedings, Symposium on Logic in Computer Science, 16-18 June
1986, Cambridge, Massachusetts, USA, pages 267–278. IEEE Computer Society, 1986.

[34] J. Ezekiel, G. Lüttgen, and G. Ciardo. Parallelising symbolic state-space generators.
In Proc. CAV, LNCS 4590, pages 268–280. Springer, 2007.

[35] H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic systems. In Model
Checking Software, LNCS 3925, pages 71–88. Springer, 2006.

[36] P. Fernandes, B. Plateau, and W. J. Stewart. Efficient descriptor-vector multiplication
in stochastic automata networks. J. ACM, 45(3):381–414, 1998.

[37] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In Proceedings of the 7th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Proc. TACAS,
pages 420–434. Springer, 2001.

[38] B. L. Fox and P. W. Glynn. Computing Poisson Probabilities. Comm. ACM, 31(4):440–
445, Apr. 1988.

[39] G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian analysis of large finite
state machines. IEEE Trans. CAD of Integr. Circ. and Syst., 15(12):1479–1493, Dec.
1996.

154



[40] R. H. Hardin, R. P. Kurshan, S. K. Shukla, and M. Y. Vardi. A new heuristic for bad
cycle detection using bdds. Formal Methods in System Design, 18(2):131–140, 2001.

[41] R. Hojati, H. J. Touati, R. P. Kurshan, and R. K. Brayton. Efficient ω-regular language
containment. In CAV, pages 396–409, 1992.

[42] G. J. Holzmann. State compression in spin: Recursive indexing and compression train-
ing runs. In Proceedings of Third International SPIN Workshop, 1997.

[43] G. Horton and S. T. Leutenegger. A multi-level solution algorithm for steady state
Markov chains. In Proc. ACM SIGMETRICS, pages 191–200, May 1994.

[44] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued decision
diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

[45] S. Kashyap and V. K. Garg. Producing short counterexamples using “crucial events”.
In Proc. CAV, CAV ’08, pages 491–503. Springer, 2008.

[46] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-Valued abstraction for
continuous-time Markov chains. In Proc. CAV, LNCS 4590, pages 311–324. Springer,
July 2007.

[47] J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic CTMC
model checking. In Process Algebra and Probabilistic Methods. Performance Modelling
and Verification, LNCS 2165, pages 23–38. Springer, 2001. 10.1007/3-540-44804-7 2.

[48] Y. Kesten, A. Pnueli, and L.-o. Raviv. Algorithmic verification of linear temporal
logic specifications. In ICALP ’98: Proceedings of the 25th International Colloquium
on Automata, Languages and Programming, pages 1–16, London, UK, 1998. Springer-
Verlag.

[49] S. Kimura and E. M. Clarke. A parallel algorithm for constructing binary decision
diagrams. In Proc. Int. Conf. on Computer Design (ICCD), pages 220–223. IEEE
Comp. Soc. Press, Sept. 1990.

[50] M. Kwiatkowska, R. Mehmood, G. Norman, and D. Parker. A symbolic out-of-core
solution method for Markov models. Electronic Notes in Theoretical Computer Science,
68(4):589 – 604, 2002.

[51] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In Proc. CAV, LNCS 6806, pages 585–591. Springer, 2011.

[52] M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking
with PRISM: a hybrid approach. Software Tools for Technology Transfer, 6(2):128–142,
2004.

[53] Y.-T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-level hierar-
chical verification. In Proceedings of the 29th Conference on Design Automation, pages
608–613. IEEE Computer Society Press, June 1992.

155



[54] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell Syst.
Techn. J., 38(4):985–999, July 1959.

[55] Y. Matsunaga, P. McGeer, and R. Brayton. On computing the transitive closure of
a state transition relation. In Design Automation, 1993. 30th Conference on, pages
260–265, June 1993.

[56] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Prob-
lem. PhD thesis, School of Computer Science, Carnegie Mellon University, May 1992.
CMU-CS-92-131.

[57] K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[58] R. Mehmood, D. Parker, and M. Kwiatkowska. An efficient BDD-based implementation
of Gauss-Seidel for CTMC analysis. Technical report, University of Birmingham, 2003.

[59] K. Milvang-Jensen and A. J. Hu. BDDNOW: A parallel bdd package. In Proc. FMCAD,
LNCS 1522, pages 501–507. Springer, Nov. 1998.

[60] A. S. Miner. Data structures for the analysis of large structured Markov models. PhD
thesis, College of William and Mary, 2000.

[61] J. K. Muppala, G. Ciardo, and K. S. Trivedi. Stochastic reward nets for reliability
prediction. Communications in Reliability, Maintenability and Serviceability, 1(2):9–
20, 1994.

[62] Y. Parasuram, E. Stabler, and S.-K. Chin. Parallel implementation of BDD algorithms
using a distributed shared memory. In The 27th Hawaii International Conference on
System Sciences (HICSS’94), volume 1, pages 16–25. IEEE Comp. Soc. Press, 1994.

[63] R. Pelánek. BEEM: benchmarks for explicit model checkers. In Proceedings of the 14th
international SPIN conference on Model checking software, pages 263–267. Springer,
2007.

[64] D. Peled. Ten years of partial order reduction. In A. Hu and M. Vardi, editors,
Computer Aided Verification, volume 1427 of Lecture Notes in Computer Science, pages
17–28. Springer, 1998.

[65] C. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, 1962.

[66] B. Plateau. On the stochastic structure of parallelism and synchronisation models for
distributed algorithms. In Proc. ACM SIGMETRICS, pages 147–153, May 1985.

[67] J. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In 5th International Symposium in Programming, LNCS 137, pages 337–351. Springer,
April 1982.

156



[68] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms for
the computation of fair cycles. In FMCAD ’00: Proceedings of the Third International
Conference on Formal Methods in Computer-Aided Design, pages 143–160, London,
UK, 2000. Springer-Verlag.

[69] P. Roux and R. Siminiceanu. Model Checking with Edge-valued Decision Diagrams. In
Proceedings of the Second NASA Formal Methods Symposium (NFM 2010), NASA/CP-
2010-216215, pages 222–226. NASA, April 2010.

[70] S. Safra and M. Y. Vardi. On omega-automata and temporal logic. In Proceedings of
the Twenty-First Annual ACM Symposium on Theory of Computing, 15-17 May 1989,
Seattle, Washington, USA, pages 127–137. ACM, 1989.

[71] V. Schuppan and A. Biere. Efficient reduction of finite state model checking to reach-
ability analysis. Software Tools for Technology Transfer, 5(2):185–204, March 2004.

[72] V. Schuppan and A. Biere. Shortest counterexamples for symbolic model checking of
LTL with past. In Proc. TACAS, LNCS 3440, pages 493–509. Springer, 2005.

[73] F. Somenzi, K. Ravi, and R. Bloem. Analysis of symbolic SCC hull algorithms. In
FMCAD ’02: Proceedings of the 4th International Conference on Formal Methods in
Computer-Aided Design, pages 88–105, London, UK, 2002. Springer-Verlag.

[74] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

[75] J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein, and S. Leue. Heuristic-guided
counterexample search in FLAVERS. In Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software engineering, SIGSOFT ’04/FSE-
12, pages 201–210. ACM, 2004.

[76] R. Tarjan. Depth-first search and linear graph algorithms. In Proceedings of the 12th
Annual Symposium on Switching and Automata Theory (swat 1971), pages 114–121,
Washington, DC, USA, 1971. IEEE Computer Society.

[77] M. Wan and G. Ciardo. Symbolic state-space generation of asynchronous systems using
extensible decision diagrams. In Proc. SOFSEM, LNCS 5404, pages 582–594. Springer,
2009.

[78] M. Wan, G. Ciardo, and A. S. Miner. Approximate steady-state analysis of large
Markov models based on the structure of their decision diagram encoding. Perf. Eval.,
68:463–486, 2011.

[79] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagrams
and SAT procedures for efficient symbolic model checking. In Proc. CAV, pages 124–
138, 2000.

[80] A. Xie and P. A. Beerel. Efficient state classification of finite-state Markov chains.
IEEE Trans. on CAD of Integrated Circuits and Systems, 17(12):1334–1339, 1998.

157



[81] A. Xie and P. A. Beerel. Implicit enumeration of strongly connected components and
an application to formal verification. IEEE Trans. on CAD of Integrated Circuits and
Systems, 19(10):1225–1230, 2000.

[82] Y. Zhao and G. Ciardo. Symbolic CTL model checking of asynchronous systems using
constrained saturation. In Proc. ATVA, LNCS 5799, pages 368–381. Springer, 2009.

[83] Y. Zhao and K. Y. Rozier. Formal specification and verification of a coordination
protocol for an automated air traffic control system. In Proc. AVoCS, volume 53 of
Electronic Communications of the EASST. European Association of Software Science
and Technology, 2012.

158




