
UCLA
UCLA Electronic Theses and Dissertations

Title
Connecting Theory and Practice in Modern Cryptography

Permalink
https://escholarship.org/uc/item/58m327sf

Author
Kumarasubramanian, Abishek

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/58m327sf
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Connecting Theory and Practice in Modern

Cryptography

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Abishek Kumarasubramanian

2014

c© Copyright by

Abishek Kumarasubramanian

2014

Abstract of the Dissertation

Connecting Theory and Practice in Modern

Cryptography

by

Abishek Kumarasubramanian

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Amit Sahai, Chair

Cryptography is an active field of theoretical research. It is also a place where many un-

proven, but time-tested practical ideas exist. This work exposits a few strands that connect

these two sides of the Cryptographic coin.

The two main results presented are,

1. The first traitor tracing scheme based on prime order bilinear groups. While prime

order bilinear groups are practical, existing schemes for traitor tracing were based

on the more structurally rich, but much less practical composite order bilinear groups.

Our work brings the rich structure of composite order bilinear groups and the efficiency

of prime order groups together.

2. A formal model for CAPTCHAs which captures the intuition that any automaton

must request human help to solve CAPTCHA problems. We use this model to obtain

positive results in the field of concurrent security. This is the first result that brings

CAPTCHA, a widely adopted practical security tool, into main stream cryptography

to achieve tasks that are known to be theoretically impossible in the plain model.

ii

The dissertation of Abishek Kumarasubramanian is approved.

Don Blasius

Eli Gafni

Rafail Ostrovsky

Amit Sahai, Committee Chair

University of California, Los Angeles

2014

iii

To Amma, Appa and Bharath. . .

iv

Table of Contents

1 Introduction1 Introduction . 1

1.1 Efficient traitor tracing1.1 Efficient traitor tracing . 2

1.2 Cryptography using Captcha puzzles1.2 Cryptography using Captcha puzzles . 6

2 Efficient Traitor Tracing2 Efficient Traitor Tracing . 12

2.1 Preliminary Definitions2.1 Preliminary Definitions . 12

2.1.1 Traitor Tracing2.1.1 Traitor Tracing . 12

2.1.2 Trace & Revoke2.1.2 Trace & Revoke . 13

2.1.3 PLBE2.1.3 PLBE . 13

2.1.4 AugBE2.1.4 AugBE . 16

2.1.5 Equivalence of Traitor Tracing and PLBE2.1.5 Equivalence of Traitor Tracing and PLBE 18

2.2 Background on Bilinear Maps2.2 Background on Bilinear Maps . 18

2.2.1 Bilinear Groups2.2.1 Bilinear Groups . 18

2.2.2 Complexity Assumptions2.2.2 Complexity Assumptions . 19

2.3 Key Ideas2.3 Key Ideas . 20

2.4 Our Construction2.4 Our Construction . 22

2.4.1 AugBE using Symmetric Bilinear Groups2.4.1 AugBE using Symmetric Bilinear Groups 23

2.4.2 AugBE using Asymmetric Bilinear Groups2.4.2 AugBE using Asymmetric Bilinear Groups 26

2.4.3 PLBE2.4.3 PLBE . 29

2.5 Security Proof2.5 Security Proof . 29

2.5.1 Index Hiding2.5.1 Index Hiding . 29

2.5.2 Message Hiding2.5.2 Message Hiding . 42

2.6 Implementation2.6 Implementation . 43

v

2.6.1 Encryption Time2.6.1 Encryption Time . 45

2.6.2 Ciphertext Size2.6.2 Ciphertext Size . 46

2.6.3 Decryption Time2.6.3 Decryption Time . 48

2.6.4 Comparison with the ElGamal Encryption2.6.4 Comparison with the ElGamal Encryption 48

2.7 Conclusion2.7 Conclusion . 49

3 Cryptography using Captcha3 Cryptography using Captcha . 51

3.1 Preliminaries3.1 Preliminaries . 51

3.2 Modeling Captcha Puzzles3.2 Modeling Captcha Puzzles . 53

3.3 A Straight-line Extractable Commitment Scheme3.3 A Straight-line Extractable Commitment Scheme 58

3.4 Constructing UC-Puzzles using Captcha3.4 Constructing UC-Puzzles using Captcha 63

3.5 Conclusion3.5 Conclusion . 68

4 Concurrent Non-Malleable Zero Knowledge4 Concurrent Non-Malleable Zero Knowledge 70

4.1 Proof of Theorem 3.3.23.3.24.1 Proof of Theorem 3.3.23.3.2 . 70

4.2 Proof of UC Puzzle Construction4.2 Proof of UC Puzzle Construction . 75

4.3 Brief Review of Protocol Composition4.3 Brief Review of Protocol Composition . 79

4.3.1 Universal Composition4.3.1 Universal Composition . 80

4.3.2 Concurrent Self Composition4.3.2 Concurrent Self Composition . 83

4.4 Concurrent NMZK: Constant Round, Straight-line4.4 Concurrent NMZK: Constant Round, Straight-line 84

4.5 Negative Results4.5 Negative Results . 86

4.5.1 Universal Composition in the Direct Access Model4.5.1 Universal Composition in the Direct Access Model 86

4.5.2 Concurrent Self-composition of general functionalities4.5.2 Concurrent Self-composition of general functionalities 89

ReferencesReferences . 91

vi

List of Figures

2.1 Illustration: [BSW06BSW06] Traitor tracing scheme2.1 Illustration: [BSW06BSW06] Traitor tracing scheme 24

2.2 Encryption Time (in secs) of traitor tracing schemes2.2 Encryption Time (in secs) of traitor tracing schemes 43

2.3 Ciphertext Size (in bytes) of traitor tracing schemes2.3 Ciphertext Size (in bytes) of traitor tracing schemes 45

2.4 Decryption time of traitor tracing schemes2.4 Decryption time of traitor tracing schemes 45

2.5 Ciphertext Size2.5 Ciphertext Size . 47

2.6 Encryption Time2.6 Encryption Time . 48

3.1 Straightline Extractable Commitment Protocol 〈CH ,R〉3.1 Straightline Extractable Commitment Protocol 〈CH ,R〉 61

3.2 UC Puzzle 〈SH , R〉 using a Captcha puzzle system C := (G,H)3.2 UC Puzzle 〈SH , R〉 using a Captcha puzzle system C := (G,H) 68

4.1 Straight-Line Concurrent Non-Malleable Zero-Knowledge (P,V).4.1 Straight-Line Concurrent Non-Malleable Zero-Knowledge (P,V). 86

4.2 A one-time commitment functionality [CF01CF01] Fcom4.2 A one-time commitment functionality [CF01CF01] Fcom 87

vii

List of Tables

2.1 Encryption Time of traitor tracing schemes2.1 Encryption Time of traitor tracing schemes 44

2.2 CipherText Size (in bytes) of traitor tracing schemes2.2 CipherText Size (in bytes) of traitor tracing schemes 46

2.3 Encryption Time and CipherText size (in bytes)2.3 Encryption Time and CipherText size (in bytes) 47

viii

Acknowledgments

I begin with infinite gratitude to my advisors Prof. Rafail Ostrovsky and Prof. Amit Sahai.

I vividly remember every part of my journey with Amit and Rafi from being a clueless first-

year grad student to the Ph.D candidate that I am today. As excellent researchers, advisors

and people; Amit and Rafi have significantly shaped my thought processes and I am indebted

to them for that.

Acknowledgements are due to my fellow labmates, seniors and juniors, who made my

Ph.D thoroughly enjoyable as colleagues. Nishanth Chandran, Vipul Goyal, Abhishek Jain

and Omkant Pandey were great examples that I learnt from. Thank you Shweta Agrawal,

Sanjam Garg, Ran Gelles, Hemantha Maji, Alessandra Scafuro, Alan Roytman and Akshay

Wadia for being there every day for that coffee, question, discussion and beer. Finally,

thanks to the new students and my students from the various classes I taught at UCLA for

giving me the satisfication of having passed on a little drop of the little drop that I learnt for

myself during my Ph.D. Special thanks to my alma matter, Rajsekar and Ranjit for being

the invisible hand that motivated me.

I would like to take this opportunity to thank people in my personal life who have made

quite the influence. Thank you Anandan and Kentaro and Pandu for being great inspirations

that nudged me towards this direction in my life. Thank you Venkie and Vidya for supporting

and infusing energy in me whenever I needed it. Buvana, Satya and DJ, I thank you guys

for listening to every little thing that I had to say throughout my Ph.D.

To those whose names I did not mention, I thank you all for making me who I am today.

Every one of you in your own unique way.

ix

CHAPTER 1

Introduction

The need for cryptography has existed for many centuries, starting with the substitution

ciphers of hieroglyphs [WikWik] much before the invention of formal methods and turing ma-

chines. Methods and techniques used back then relied on their efficacy rather than formal

proofs. This practice, motivated primarily by defense purposes, has resulted in a whole slew

of algorithms and developments which we will call loosely as the field of computer security.

A look at the latest standards for cryptographic algorithms, such as the one published by

the N.I.S.T [NINI], shows the same principles of efficiency and efficacy guiding today’s con-

structions.

Complimentary to computer security, one could consider the work of Shannon [Sha48Sha48]

which introduced the one-time pad and information theoretically secure cryptography as the

beginning of the field of, which we will call loosely as, theoretical cryptography and provable

security. Cryptography as a field considered many theoretical problems such as key-exchange,

public-key encryption, secure multi party computation, concurrent and universally-composable

security amongst many others [DH76DH76, RSA78RSA78, Yao82Yao82, CLO02CLO02]. It is a rich and diverse field

with many beautiful results and ideas.

Given this general situation, this work attempts to connect the dots between these two

worlds by bringing in features from one world into the other. More specifically, we present two

works by the authors on this theme. First, we present constructions and implementation of

efficient traitor tracing schemes. The key contribution of this work is the improved efficiency,

making schemes that were known to be theoretically feasible more practical. These are

introduced in Section 1.11.1 and our full results are presented in Chapter 22. Then, we provide

theoretical modeling of Captcha. Captcha is a widely used security primitive, with the

1

specific purpose of identifying the presence of a human in a protocol. Our work is a first step

towards modeling and analyzing its potential as a formal cryptographic assumption deriving

theoretical possibilities and impossibilites from it. This work is introduced in Section 1.21.2

and our full results are presented in Chapter 33 and Chapter 44.

1.1 Efficient traitor tracing

Consider a scenario in which a content distributor, like a cable/radio broadcaster, wants to

broadcast content while making sure that only those users who have paid for the service

have access to the content. In such a system, each user will need a decoder with a secret

key in order to decrypt the content. A näıve solution to achieve this would be to use an

encryption system such that the corresponding secret key is known to all legitimate users.

The broadcasting authority can then encrypt the content and broadcast the ciphertext. All

legitimate users with the secret key will be able to decrypt the content. But if a dishonest

user sells his key, then an attacker could build pirate decoders which it could then distribute,

allowing unauthorized users to decrypt all future broadcast content without ever having to

communicate with the attacker again. A malicious user could also use his own key to build

pirate decoders. The problem is that in this system, there is no way to identify rogue users.

A traitor tracing or trace & revoke system is designed to solve this problem. The purpose of

a trace & revoke system, introduced by Chor et al. [CFN94CFN94], is to help content distributors

identify rogue users and revoke their secret keys. If revocation is not desired, one can have

just traitor tracing schemes, which helps the distributor identify the keys used in a pirate

decoder. The content distributor can then hold the corresponding rogue user responsible for

the loss incurred.

It should be observed that a traitor tracing system is not designed to help to protect

any particular content. The problem of traitor tracing is distinct from what is commonly

referred to as “Digital Rights Management” (DRM). DRM systems have traditionally been

concerned with protecting the widespread distribution of content that is already in the hands

of the (perceived) attacker. Clearly, there are fundamental obstacles to achieving this goal,

2

since the attacker can simply record what he sees and then retransmit this. In a trace &

revoke system, an authority can use the tracing mechanisms to identify all of the key material

(actively) used in a pirate box and then disable these keys from being used to access future

broadcasts. The use of trace & revoke systems best fits application such as satellite radio or

other active broadcast services where users are interested in having a device that can access

the current broadcast, without having to be in constant communication with a dishonest

party.11 Given a pirate decoder, the challenge in a trace & revoke system is to identify at

least one of the users whose key must have been used to construct the pirate decoder and

then revoke that key from the system. As such, traitor tracing can be seen as providing a

type of cryptographic method for digital forensics – once a decoding box is discovered in

the wild, the associated cryptographic tracing algorithm allows one to (provably) associate

a particular user’s secret key with the box.

A näıve solution to the problem just described (in a system of N users) would be to have

N instances of an off-the-shelf encryption system such that the ith secret key is known to

the ith user. The broadcasting authority could encrypt the content under each public key

and broadcast all the ciphertexts22. Each legitimate user will then be able to decrypt the

part of ciphertext corresponding to its private key. Given a pirate decoder, it is also possible

for this system to identify at least one of the rogue users whose key was used to build it.

We could then revoke this key by simply not encrypting under it in future broadcasts. But

this system is very inefficient. For this system, the ciphertext size is linear in the number

of users. We provide an efficient implementation of this näıve solution using a fast Elgamal

encryption scheme and compare it with the performance of our scheme in Section 2.6.22.6.2.

Previous Work. To overcome this limitation of inefficiency, many results with different

levels of security have been proposed. A weak security property that has been the subject of

the greatest amount of previous work is the t-collusion-resistant traitor tracing. A t-collusion-

resistant tracing [BF99BF99,KD98KD98,NP00NP00,KY02bKY02b,DF03DF03,MSK02MSK02,TSZ03TSZ03,CPP05CPP05] system will work

1Traitor tracing systems are not appropriate for systems where “protecting” released content is considered
the highest priority.

2Note that here, the content itself would be a secret key for a private-key encryption scheme (such as
AES), which would then be used to encrypt the actual content.

3

as long as the pirate uses fewer than t user keys in building the pirate box. Prior to [BSW06BSW06],

all such schemes required a ciphertext size blow-up at least linear in this parameter t.

A system that allows for traitor tracing regardless of how many users’ keys are cap-

tured by the attacker is called fully collusion-resistant. Boneh, Sahai, and Waters [BSW06BSW06]

presented the first fully collusion-resistant traitor tracing system with O(
√
N) size cipher-

texts and public keys. A fully-collusion-resistant traitor tracing system with constant size

ciphertexts [BN08BN08] has also been constructed, but at the cost of enormous private key sizes

(quadratic in the number of users).

Another issue of concern in traitor tracing systems is the need for a tracing authority,

e.g [BSW06BSW06,BN08BN08] which use a secret tracing key to identify rogue users. [CPP05CPP05,WHI01WHI01,

Pfi96Pfi96, PW97PW97, KY02aKY02a] allow for a public tracing algorithm that does not require any secret

inputs. Other systems such as the one in [BGW05BGW05, BW06BW06] provide security only against a

static adversary and achieve O(1) size ciphertext and private key, but need O(N) size public

key (which is used in the decryption algorithm).

When considering only broadcast encryption, [BW06BW06] acheive adaptive security with

O(1) size ciphertext and private key (O(N) size public key) and also provide a system with

O(
√
N) ciphertext and public key. [GW09GW09] obtain adaptively secure broadcast encryption

with O(1) cipher-text, O(N) private and public key. The recent work of [Wat09Wat09] obtains

identical parameters and also provides identity based encryption.

Building on [BSW06BSW06], Boneh and Waters [BW06BW06] presented a fully collusion resistant,

publicly traceable trace & revoke scheme, representing the “state-of-the-art” prior to this

work. However, [BW06BW06] crucially makes use of composite order bilinear groups, which lead to

significant losses in efficiency that make the scheme impractical in many settings. The goal

of the present work is to build new techniques to achieve order-of-magnitude improvements

in efficiency without sacrificing any security.

Our Contribution. We present a new traitor tracing system that achieves the same strong

security properties as [BSW06BSW06], but avoids the use of composite order bilinear groups. In-

stead, using new techniques, our scheme is based on prime order bilinear groups, and its

4

security depends on the hardness of the widely believed decisional linear assumption. This

allows for shorter group elements and much more efficient schemes (see Section 2.62.6). We

also extend this to build publicly traceable trace & revoke schemes, improving similarly in

efficiency over [BW06BW06].

Hardness assumptions in composite order bilinear groups are limited by known attacks on

factoring their modulii. Because of sub-exponential attacks against factoring, for appropriate

security, large composite order groups must be used. When compared with prime order

bilinear groups, for the same level of practical security (see Section 2.62.6 for details), a simple

exponentiation in composite order bilinear groups is about 25 times slower than one in

prime order groups. Also, one pairing operation in these larger composite order groups is

approximately 30 times costlier than a pairing in prime order groups. The main contribution

of this research is to present traitor tracing schemes based on prime order bilinear groups

making them practical.

We also implement our protocol using the PBC library [LynLyn] (see Section 2.62.6). We

compare the efficiency our traitor tracing scheme with an implementation of [BSW06BSW06]. We

obtain encryption times up to 6 times better than [BSW06BSW06] and ciphertexts that are 50%

smaller. Decryption is 10 times faster.

We note that the techniques we use are general and can be used to convert other cryp-

tosystems based on composite order groups to ones based on prime order bilinear groups.

In this respect, our work is similar to generic methods described in a very recent concurrent

and independent work by Freeman [Fre09Fre09]. However, our schemes are different from the

work of [Fre09Fre09]. His work focuses on generality and while our work is on optimizing and

implementing efficient traitor tracing systems. He provides a traitor tracing scheme using

asymmetric bilinear groups while we provide schemes based on both symmetric and asym-

metric groups. Also, our asymmetric construction is more efficient than his construction,

which does not have any known implementation.

5

1.2 Cryptography using Captcha puzzles

Captcha is an acronym for Completely Automated Public Turing test to tell Computers

and Humans Apart. These are puzzles that are easy for humans but hard to solve for

automated computer programs. They are used to confirm the “presence of a human” in a

communication channel. As an illustration of a scenario where such a confirmation is very

important, consider the problem of spam. To carry out their nefarious activities, spammers

need to create a large number of fake email accounts. Creating a new email account usually

requires the filling-in of an online form. If the spammers were to manually fill-in all these

forms, then the process would be too slow, and they would not be able to generate a number

of fake addresses. However, it is relatively simple to write a script (or an automated bot)

to quickly fill-in the forms automatically without human intervention. Thus, it is crucial for

the email service provider to ensure that the party filling-in the form is an actual human,

and not an automated script. This is achieved by asking the party to solve a Captcha,

which can only be sovled by a human33. A common example of a Captcha puzzle involves

the distorted image of a word, and the party is asked to identify the word in the image.

The definition of Captcha stipulates certain limitations on the power of machines, in

particular, that they cannot solve Captcha puzzles efficiently. This gives rise to two distinct

questions which are interesting from a cryptographic point of view. Firstly, what are the

underlying hard problems upon which Captcha puzzles can be based? Von Ahn, Blum,

Hopper and Langford [ABH03ABH03] study this question formally, and provide constructions based

on the conjectured hardness of certain Artificial Intelligence problems.

The second direction of investigation, and the one which we are concerned with in this

paper, is to use Captchas as a tool for achieving general cryptographic tasks. There have

been only a few examples of use of Captchas in this regard. Von Ahn, Blum, Hopper

and Langford [ABH03ABH03] use Captchas for image-based steganography. Canetti, Halevi and

Steiner [CHS06CHS06] construct a scheme to thwart off-line dictionary attacks on encrypted data

using Captchas. [DC12DC12] present an encryption protocol using Captcha that is secure

3For many more uses of Captcha, see [CAPCAP]

6

against non-human profiling adversaries. And recently, Dziembowski [Dzi10Dzi10] constructs a

“human” key agreement protocol using only Captchas. We continue this line of work in

the current paper, and investigate the use of Captchas in zero-knowledge and UC secure

protocols. On the face of it, it is unclear how Captchas may be used for constructing

such protocols, or even for constructing building blocks for these protocols, like commitment

schemes. However, motivated by current Captcha theory, we define a new extraction

property of Captchas that allows us to use them for designing these protocols.

We now give an overview of our contributions. We formally define Captchas in Sec-

tion 3.23.2, but give an informal overview of the model here to make the following discussion

cogent. Firstly, modelling Captcha puzzles invariably involves modelling humans who are

the key tenets in distinguishing Captchas from just another one-way function. Follow-

ing [CHS06CHS06] we model the presence of a human entity as an oracle H that is capable of

solving Captcha puzzles. A party generates a Captcha puzzle by running a (standard)

PPT generation algorithm denoted by G. This algorithm outputs a puzzle-solution pair

(z, a). All parties have access to a “human” oracle denoted by H. To “solve” a Captcha

puzzle, a party simply queries its oracle with the puzzle and obtains the solution in response.

This allows us to distinguish between two classes of machines. Standard PPT machines for

which solving Captchas is a hard problem and oracle PPT machines with oracle access to

H which may solve Captchas efficiently.

The starting point of our work is the observation that if a machine must solve a given

Captcha puzzle (called challenge), it must send one or more Captcha-queries to a human.

These queries are likely to be correlated to the challenge puzzle since otherwise they would

be of no help in solving the challenge puzzle. Access to these queries, with the help of

another human, may therefore provide us with some knowledge about the internal state of a

(potentially) malicious machine! This is formulated in our definition of an human extractable

Captcha (Definition 3.2.23.2.2). Informally, we make the following assumption about Captcha

puzzles. Consider two randomly chosen Captcha puzzles (p0, p1) of which an adversary

obtains only one to solve, say pb, where the value of b is not known to the challenger. Then

by merely looking at his queries to a human oracle H, and with the help of a human, a

7

challenger must be able to identify the value of b. More precisely, we augment the human

oracle H to possess this added ability. We then model adversaries in our protocols as oracle

PPT machines with access to a Captcha solving oracle, but whose internal state can be

“extracted” by another oracle PPT machine.

It is clear that this idea, i.e.—the idea of learning something non-trivial about a machine’s

secret by looking at its Captcha-queries—connects Captcha puzzles with main-stream

questions in cryptography much more than ever. This work uses this feature present in

Captchas to construct building blocks for zero-knowledge protocols which admit “straight-

line” simulation. It is then natural to investigate that if we can get “straight-line” simula-

tion, then perhaps we can answer the following questions as well: construction of plain-

text aware encryption schemes [BR94BR94], “straight-line” extractable commitment schemes,

constant-round fully concurrent zero-knowledge for NP [DNS98DNS98], fully concurrent two/multi-

party computation [Lin03aLin03a, PR03PR03, Pas04Pas04], universal composition without trusted setup as-

sumptions [Can01Can01,CLO02CLO02], and so on.

Our Contribution. In section 3.33.3 (theorem 3.3.23.3.2), as the first main result of this work, we

construct a commitment scheme which admits “straight-line” extraction. That is, the com-

mitted value can be extracted by looking at the Captcha-queries made by the committer

to a human oracle.

The starting point (ignoring for a moment an important difficulty) behind our commit-

ment protocol is the following. The receiver R chooses two independent Captcha puzzles

(z0, z1). To commit to a bit b, the sender C will select zb using the 1-2-OT protocol and com-

mit to its solution ab using an ordinary (perfectly-binding) commitment scheme. Since the

committer cannot solve the puzzle itself, it must query a human to obtain the solution. By

looking at the puzzles C queries to the human, an extractor (with the help of another human

oracle) can detect the bit being committed. Since the other puzzle z1−b is computationally

hidden from C, this should indeed be possible.

As alluded above, the main difficulty with this approach is that a cheating sender may

not query the human on any of the two puzzles, but might still be able to commit to a correct

8

value by obtaining solutions to some related puzzles. This is the issue of malleability that

we discuss shortly, and also in section 3.23.2.

We then use this commitment scheme as a tool to obtain new results in protocol com-

position. First off, it is straightforward to see that given such a scheme, one can obtain

a constant-round concurrent zero-knowledge protocol for all of NP. In fact, by using our

commitment scheme in place of the “PRS-preamble” [PRS02PRS02] in the protocol of Barak,

Prabhakaran, and Sahai [BPS06BPS06], we obtain a constant-round protocol for concurrent non-

malleable zero-knowledge [BPS06BPS06] (see appendix 4.44.4).44

As a natural extension, we investigate the issue of incorporating Captcha puzzles in the

UC framework introduced by Canetti [Can01Can01]. The situation turns out to be very sensitive

to the modelling of Captcha puzzles in the UC framework. We discuss two different ways

of incorporating Captcha puzzles in the UC framework: 55

• Indirect Access Model: In this model, the environment Z is not given direct

access to a human H. Instead, the environment is given access to H only through the

adversary A. This model was proposed in the work of Canetti et. al. [CHS06CHS06], who

constructed a UC-secure protocol for password-based key-generation functionality. We

call this model the indirect access model.

• Direct Access Model: In this model, the environment is given a direct access to

H. In particular, the queries made by Z to H are not visible to the adversary A, in

this model.

In the indirect access model, we show how to construct UC-secure protocols for all func-

tionalities. In section 3.43.4, as the second main result of this work, we construct a constant-

round UC-puzzle protocol as defined by Lin, Pass, and Venkitasubramaniam [LPV09LPV09]. By

4For readers familiar with concurrent non-malleability, our protocol admits “straight-line” simulation,
but the extraction of witnesses from a man-in-the-middle is not straight-line. Also, another modification is
needed to the protocol of [BPS06BPS06]: we need to use a constant round non-malleable commitment scheme and
not that of [DDN00DDN00]. We can use any of the schemes presented in [PR05PR05,PPV08PPV08,LP11LP11,Goy11Goy11].

5We assume basic familiarity with the model of universal composition, and briefly recall it in appendix
4.3.14.3.1 .

9

the results of [LPV09LPV09], UC-puzzles are sufficient to obtain UC-secure protocols for gen-

eral functionalities. Our protocol for UC-puzzles is obtained by combining our commit-

ment scheme with a “cut-and-choose” protocol and (standard) zero-knowledge proofs for

NP [GMW86GMW86,Blu87Blu87].

In contrast, in the direct access model, it is easy to show that UC-secure computa-

tion is impossible for most functionalities. A formal statement is obtained by essentially

reproducing the Canetti-Fischlin impossibility result for UC-commitments [CF01CF01] (details

reproduced in appendix 4.5.14.5.1). The situation turns out to be the same for concurrent

self-composition of two-party protocols: by reproducing the steps of Lindell’s impossibility

results [Lin03bLin03b,Lin08Lin08], concurrent self-composition in this model can be shown equivalent to

universal composition. This means that secure computation of (most) functionalities in the

concurrent self-composition model is impossible even with Captcha puzzles.

On modelling Captcha puzzles in the UC framework. The fact that UC-computation

is possible in the indirect access model but concurrent self-composition is impossible raises

the question whether indirect access model is the “right” model. What does a positive result

in this model mean? To understand this, let us compare the indirect access model to the

other “trusted setup” models such as the Common-Random-String (CRS) model [BSM91BSM91].

In the CRS-model, the simulator S is in control of generating the CRS in the ideal world—

this enables S to have a “trapdoor” to continue its actions without having to “rewind” the

environment. We can view the indirect access model as some sort of a setup (i.e., access to

H) controlled by the simulator in the ideal world. The fact that S can see the queries made

by Z to H in the indirect-access-model, is then analogous to S controlling the CRS in the

CRS-model. The only difference between these two settings is that the indirect-access-model

does not require any trusted third party. viewed this way, the indirect-access-model can be

seen as a “hybrid” model that stands somewhere between a trusted setup (such as the CRS

model) and the plain model.

10

Beyond Conservative Adversaries. An inherent difficulty when dealing with Captcha

puzzles, is that of malleability. Informally, this means that given a challenge puzzle z, it might

be possible for an algorithm A to efficiently generate a new puzzle z′ such that given the

solution of z′, A can efficiently solve z. Such a malleability attack makes it difficult to reduce

the security of a cryptographic scheme to the “hardness” of solving Captcha puzzles.

To overcome this, previous works [CHS06CHS06, Dzi10Dzi10] only prove security against a very re-

stricted class of adversaries called conservative adversaries. Such adversaries are essentially

those who do not launch the ‘malleability’ attack: that is, they only query H on Captcha

instances that are provided to them by the system. In both of these works, it is possible that

a PPT adversary, on input a puzzle z may produce a puzzle z′ such that the solutions of z and

z′ are related. But both works consider only restricted adversaries which are prohibited from

querying H with such a mauled puzzle z′. As noted in [CHS06CHS06,Dzi10Dzi10], this an unreasonable

restriction, especially knowing that Captcha puzzles are in fact easily malleable.

In contrast, in this work, we prove the security of our schemes against the standard class

of all probabilistic polynomial time (ppt) adversaries. The key-idea that enables us to go

beyond the class of conservative adversaries is the formulation of the notion of an human-

extractable Captcha puzzle. Informally speaking, an human-extractable Captcha puzzle,

has the following property: suppose that a ppt algorithm A can solve a challenge puzzle z,

and makes queries q̄ to the human H during this process; then there is a ppt algorithm which

on input the queries q̄, can distinguish with the help of the human that q̄ are correlated to

z and not to some other randomly generated puzzle, say z′′.

We discuss this notion at length in section 3.23.2, and many other issues related to formal-

izing Captcha puzzles. This section essentially builds and improves upon previous works

of [ABH03ABH03, CHS06CHS06, Dzi10Dzi10] to give a unified framework for working with Captcha puzzles.

We view the notion of human-extractable Captcha puzzles as an important contribution

to prove security beyond the class of conservative adversaries.

11

CHAPTER 2

Efficient Traitor Tracing

2.1 Preliminary Definitions

2.1.1 Traitor Tracing

A traitor tracing system provides protection for a broadcast encrypter. It consists of four

algorithms: Setup, Encrypt, Decrypt and Trace. The Setup algorithm generates the secret

keys for all the users in the system and the public parameters for the system. By using these

public parameters and the algorithm Encrypt, any user can encrypt a message to all the

users in the system. A recipient can use his secret key and the Decrypt algorithm to decrypt

a ciphertext.

In case an authority discovers a pirate decoder, it can then use the Trace algorithm to

identify at least one of the users whose private key must have been used in the construction

of the pirate decoder. A publicly traceable scheme is one where the Trace algorithm has no

secret inputs, i.e there are no tracing secret keys.

The desired security properties of a traitor tracing system are the following:

• Semantic Security: An adversary that does not have access to the secret key of

any user should not be able to distinguish between encryptions of two messages of its

choice.

• Traceability Against Arbitrary Collusion: Consider a case where an adversary

has access to an arbitrary number of keys of its choice and generates a pirate decoder.

Then the tracing algorithm should be able to use the pirate decoder and detect at least

one of the users whose key must have been used to construct the pirate decoder.

12

2.1.2 Trace & Revoke

A Trace & Revoke system is a traitor tracing system that provides an additional property

of user revocation. Once a set of rogue users are identified, the system allows for all honest

parties to encrypt to the rest of the honest users securely. The system consists of four

algorithms Setup, Encrypt, Decrypt and Trace. The Setup algorithm generates the secret

keys for all the users in the system and the public parameters for the system. The Encrypt

algorithm can be used to encrypt a message to any subset of users of the system. Decrypt

is used to decrypt a valid ciphertext. In a secure Trace & Revoke system, the Decrypt

algorithm of a user succeeds if and only if the encryption was intended for him (he belongs

to the set of users that the message was encrypted to). The Trace algorithm is used to

identify the key used inside a pirate decoder.

Boneh et al. [BSW06BSW06] introduce a new primitive, Private Linear Broadcast Encryption

(PLBE) and showed that a PLBE is sufficient for implementing a fully collusion-resistant

traitor tracing scheme. In this paper, we give an informal treatment (see [BSW06BSW06] for details)

of traitor tracing systems and their relation to PLBE and present an improved PLBE scheme.

However, we recall details on PLBE definitions and its security properties.

Boneh and Waters [BW06BW06] introduce a new primitive, Augmented Broadcast Encryption

(AugBE) and use an AugBE scheme (based on composite order bilinear groups) to implement

a fully collusion-resistant trace & revoke scheme, secure against adaptive adversaries. We

present an improved AugBE scheme based only on prime order groups.

2.1.3 PLBE

A Private Linear Broadcast Encryption (PLBE) system consists of four algorithms: SetupPLBE,

EncryptPLBE, DecryptPLBE, TrEncryptPLBE. The algorithms described below are similar

to the BSW PLBE system [BSW06BSW06] except that our system does not need a tracing key.

• (PK,K1, K2 . . . KN)
$←− SetupPLBE(λ): SetupPLBE algorithm takes as input the secu-

rity parameter λ and sets up the public parameters PK for the system along with

13

generating the secret keys (K1, K2 . . . KN) for all the users in the system. N is the

number of users in the system.

• C $←− EncryptPLBE(PK,M): Any user can encrypt a message M using just the public

key PK, and any user that possess one of the secret keys can decrypt the ciphertext.

• M ← DecryptPLBE(C,Ki, i): Any user i having access to the private key Ki can

decrypt a ciphertext C and obtain the corresponding message M .

• C $←− TrEncryptPLBE(PK, i,M): The TrEncryptPLBE algorithm takes in a message

M and encrypts it to ciphertext C such that only users {i . . . N} with secret keys

(Ki, Ki+1 . . . KN) can decrypt the message. This algorithm is used only for tracing.

2.1.3.1 Desired Security Properties.

A PLBE system is considered secure if no adversary has significant advantage in the following

games:

• Indistinguishability: This property requires that the ciphertexts generated by EncryptPLBE(PK,M)

and TrEncryptPLBE(PK, 1,M) are indistinguishable. The game between the adver-

sary and the challenger proceeds as follows.

– Setup: The challenger runs the SetupPLBE algorithm and sends the generated

public key PK and the secret keys K1, K2 . . . KN to the adversary.

– Challenge: The adversary sends a message M to the challenger. The challenger

flips an unbiased coin and obtains a random β ∈ {0, 1}. If β = 0, it then sets the

ciphertext as C
$←− EncryptPLBE(PK,M), and as C

$←− TrEncryptPLBE(PK, 1,M)

otherwise. It sends C to the adversary.

– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of the adversary is AdvID = |Pr[β′ = β]− 1
2
|.

• Index Hiding: This property prevents an adversary from distinguishing between

TrEncryptPLBE(PK, i,M) and TrEncryptPLBE(PK, i + 1,M) when the adversary

14

knows all the secret keys except the ith secret key. The game between the adversary

and the challenger proceeds as follows. The game takes the index i as input which is

given as input to both the challenger and the adversary.

– Setup: The challenger runs the SetupPLBE algorithm and sends the generated

public key PK and the secret keys K1, K2 . . . Ki−1, Ki+1 . . . KN to the adversary.

The adversary does not know Ki.

– Challenge: The adversary sends a message M to the challenger. The challenger

flips an unbiased coin and obtains a random β ∈ {0, 1}. It sets the ciphertext as

C
$←− TrEncryptPLBE(PK, i+ β,M) and sends it to the adversary.

– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of the adversary is AdvIH [i] = |Pr[β′ = β]− 1
2
|.

• Message Hiding: This property requires that an adversary can not break semantic

security when encryption is performed on input i = N + 1. The game between the

adversary and the challenger proceeds as follows.

– Setup: The challenger runs the SetupPLBE algorithm and sends the generated

public key PK and the secret keys K1, K2 . . . KN to the adversary.

– Challenge: The adversary sends messages M0,M1 to the challenger. The chal-

lenger flips an unbiased coin and obtains a random β ∈ {0, 1}. It sets the cipher-

text as C
$←− TrEncryptPLBE(PK,N + 1,Mβ) and sends it to the adversary.

– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of the adversary is AdvMH = |Pr[β′ = β]− 1
2
|.

Definition 2.1.1. An N-user PLBE system is considered secure if for all polynomial time

adversaries AdvID, AdvIH [i] for all i ∈ {1 . . . N} and AdvMH are negligible in the security

parameter λ.

15

2.1.4 AugBE

An Augmented Broadcast Encryption (AugBE) [BW06BW06] system consists of three algorithms:

SetupAugBE, EncryptAugBE, DecryptAugBE.

• (PK,K1, K2 . . . KN)
$←− SetupAugBE(λ): SetupAugBE

algorithm takes as input the security parameter λ and sets up the public parameters

PK for the system along with generating the secret keys (K1, K2 . . . KN) for all the

users in the system. N is the number of users in the system.

• C $←− EncryptAugBE(S, PK, i,M): This algorithm takes as input a subset S ⊆ {1, . . . , N}

of users, the public key PK, and an index 1 ≤ i ≤ N + 1, and a message M. The algo-

rithms outputs a ciphertext which can be decrypted by any user belonging to the set

S ∩ {i, . . . , N}. the ciphertext.

• M ← DecryptAugBE(S, j,Kj, C, PK): A user j having access to the private key Kj

can decrypt a ciphertext C and obtain the corresponding message M . If he is not able

to decrypt he outputs ⊥.

AugBE and PLBE system consists of similar algorithms. The only difference between

the AugBE and PLBE systems is that PLBE algorithms do not take set S as input. The

set of all users is implied each time set S is referred to. We refer the reader to [BSW06BSW06] for

further details.

2.1.4.1 Desired Security Properties.

We now describe the security properties required of an AugBE system. The security prop-

erties required of a PLBE system are implied by the ones for an AugBE system under the

condition that the set S is the set of all users. An AugBE system is considered secure if no

adversary has significant advantage in the following games:

• Index Hiding: This property prevents an adversary from distinguishing between

EncryptAugBE(S, PK, i,M) and EncryptAugBE(S, i + 1, PK,M) when the adversary

16

knows all the secret keys except the ith secret key. Also when i /∈ S, an adversary with

access to all the private keys in the system, should not be able to tell if the encryption

has been done to index i or i+ 1. The game between the adversary and the challenger

proceeds as follows. The game takes the index i as input which is given as input to

both the challenger and the adversary.

– Setup: The challenger runs the SetupAugBE algorithm and sends the generated

public key PK and the secret keys K1, K2 . . . Ki−1, Ki+1 . . . KN to the adversary.

The adversary does not know Ki.

– Query: The adversary outputs a bit s′ ∈ {0, 1}. If s′ = 1, the challenger sends

the adversary Ki, else he does nothing.

– Challenge: The adversary sends a message M and a set S ⊆ {1, . . . , N} to the

challenger. The only restriction is if s′ = 1 then i /∈ S. The challenger flips

an unbiased coin and obtains a random β ∈ {0, 1}. It sets the ciphertext as

C
$←− EncryptAugBE(S, PK, i+ β,M) and sends it to the adversary.

– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of the adversary is AdvIH [i] = |Pr[β′ = β]− 1
2
|.

• Message Hiding: This property requires that an adversary can not break semantic

security when encryption is performed on input i = N + 1. The game between the

adversary and the challenger proceeds as follows.

– Setup: The challenger runs the SetupAugBE algorithm and sends the generated

public key PK and the secret keys K1, K2 . . . KN to the adversary.

– Challenge: The adversary sends messages M0,M1 and a set S ⊂ {1, . . . , N}

to the challenger. The challenger flips an unbiased coin and obtains a random

β ∈ {0, 1}. It sets the ciphertext as C
$←− EncryptAugBE(S, PK,N + 1,Mβ) and

sends it to the adversary.

– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

17

The advantage of the adversary is AdvMH = |Pr[β′ = β]− 1
2
|.

Definition 2.1.2. An N-user AugBE system is considered secure if for all polynomial time

adversaries AdvID, AdvIH [i] for all i ∈ {1 . . . N} and AdvMH are negligible in the security

parameter λ.

2.1.5 Equivalence of Traitor Tracing and PLBE

We have presented an intuition behind the argument. A more formal argument appears

in [BSW06BSW06]. The tracing algorithm will be given a pirate decoder that is able to decrypt

messages encrypted using TrEncrypt(PK, 1,M) with significant probability. The proba-

bility of success of this pirate decoder, when encryption is done to user N + 1, should be

negligible because of the message hiding game. The tracing algorithm of the traitor tracing

scheme estimates the probability of success of the adversary when the ciphertext is gener-

ated using TrEncrypt(PK, i,M) for every i ∈ {1 . . . N + 1}. Since the probability is being

reduced from significant to negligible between encryptions to TrEncrypt(PK, 1,M) and

TrEncrypt(PK,N +1,M), the probability must fall significantly for some i ∈ {1 . . . N +1}.

We argue that the given pirate decoder could not have done this without the knowledge of

the ith key. If it didn’t know the ith key, then we could use this pirate decoder as an adversary

in the Index Hiding game with parameter i and distinguish between TrEncrypt(PK, i,M)

and TrEncrypt(PK, i + 1,M) with significant probability. But this can not be true for a

secure PLBE. Hence, we can use a secure PLBE to construct a traitor tracing scheme.

2.2 Background on Bilinear Maps

2.2.1 Bilinear Groups

Symmetric and Asymmetric Bilinear Groups of Prime Order. Consider three mul-

tiplicative cyclic groups G1,G2,GT of prime orders (possibly different). Let g1 be a generator

of G1 and g2 a generator of G2. Let r be the order of G1, the smaller of the two groups. We

define an efficiently computable bilinear map e : G1×G2 → GT with the properties: (1) e is

18

non-degenerate: e(g1, g2) should not evaluate to the identity element of GT . (2) The map is

bilinear: ∀u ∈ G1, ∀v ∈ G2 and a, b ∈ Zr we should have e(ua, vb) = e(u, v)ab. Such groups

are refereed to as Asymmetric Bilinear Groups of Prime Order. Bilinear groups in which

G1 = G2 ≡ G are called Symmetric Bilinear Groups of Prime Order. It can be seen that for

such groups the bilinear map is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Bilinear Groups of Composite Order. Bilinear groups of composite order are similar

to the ones of prime order. The key difference is that the order of the groups G and GT is

composite. Lets say the order is n, where n = pq, p and q are large primes depending on

the security parameter. We will use Gp and Gq to denote the order p and q subgroups of G,

respectively.

2.2.2 Complexity Assumptions

Let G be an algorithm that takes the security parameter λ as input and generates the tuple

(r,G,GT , e).

Decision 3-party Diffie Hellman. This assumption is popular and has been used

previously in a number of schemes including the PLBE scheme [BSW06BSW06]. A challenger

generates a bilinear group G using (r,G,GT , e)
$←− G(λ). It generates a random generator g

for the group G. It chooses a, b, c
$←− Zr.

An algorithm A, solving the Decision 3-party Diffie Hellman problem is given Z =

(r,G,GT , e, g, g
a, gb, gc). The challenger flips an unbiased coin and obtains a random β ∈

{0, 1}. If β = 0, it then sets T = gabc and T = R otherwise, where R
$←− G. It then sends T

to A. The adversary returns a guess β′ ∈ {0, 1} of β. The advantage of A in this game is

AdvD3DH = |Pr[β = β′] − 1
2
|. The Decision 3-party Diffie Hellman assumption states that

this advantage is negligible in the security parameter.

Decisional Linear Assumption. This is a simple extension of the Decisional Diffie

Hellman (DDH) Assumption introduced in [BBS04aBBS04a] for bilinear groups in which the DDH

assumption is actually easy. A challenger generates a bilinear group G using (r,G,GT , e)
$←−

G(λ). It generates a random generator g for the group G. It chooses a, b, c, x, y
$←− Zr.

19

An algorithm A, solving the Decisional Linear Assumption problem is given

Z = (r,G,GT , e, g, g
a, gb, gc, gax, gby).

The challenger flips an unbiased coin and obtains a random β ∈ {0, 1}. If β = 0, it then

sets T = gc(x+y) and T = R otherwise, where R
$←− G. It then sends T to A. The adversary

returns a guess β′ ∈ {0, 1} of β. The advantage of A in this game is AdvDLN = |Pr[β =

β′]− 1
2
|. Decisional Linear Assumption states that this advantage is negligible in the security

parameter.

External Diffie Hellman Assumption. The External Diffie Hellman (XDH) assump-

tion states that the Decisional Diffie Hellman (DDH) assumption is hard in the group G1.

(Not necessarily hard in G2). This assumption is believed to be true in asymmetric pairings

generated using special MNT curves [MNT00MNT00,BBS04bBBS04b].

Subgroup Decision Assumption. This problem was introduced by Boneh et al. [BGN05BGN05]

and states that for a bilinear group G of composite order n = pq, any algorithm A, given

a random element g ∈ G and a random element gq ∈ Gq, can not distinguish between a

random element in G and a random element in Gq. This assumption is for composite order

groups. We do not use this assumption in this work.

2.3 Key Ideas

We now present the intuition behind the working of [BSW06BSW06] for composite order bilinear

groups and provide a generic construction to achieve the same properties using prime order

bilinear groups. Consider a composite order bilinear group Gn of order n, where n = pq

and p, q are primes. Let us denote elements belonging to the p-order subgroup (called Gp)

and the q-order subgroup (called Gq) of Gn by subscripts p and q, respectively. The BSW

scheme [BSW06BSW06] (and most other composite order bilinear group based schemes) relies on

the fact that if gp ∈ Gp and gq ∈ Gq, then e(gp, gq) = 1. The same effect can be obtained

in a prime order group by using vector spaces. For a group G of prime order r, with

generator g, consider tuples of elements (ga, gb) (analogous to gq) and (g−b, ga) (analogous

20

to gp) belonging to the vector space V = G2 (analogous to Gn), where a, b are random in

Zr. Define vectors ~v1 = (a, b) and ~v2 = (−b, a). Note that they are orthogonal vectors. The

subspace Vp (analogous to Gp) corresponds to the set of elements (gap̃, gbp̃) such that p̃ ∈ Zr;

and similarly subspace, Vq (analogous to Gq) corresponds to the set of elements (g−bq̃, gaq̃)

such that q̃ ∈ Zr. It is easy to see that pairing an element of Vp with an element of Vq

computed11 as e(ga, g−b) · e(gb, ga) yields the identity element (analogous to e(gp, gq) = 1).

Now we need to build on an analog of the subgroup decision assumption (SDH). SDH

informally states that given an element of G and an element of Gq, it is hard to distinguish

a random element in Gq from a random element in G. But this assumption does not hold

with Vp and Vq. Given an element (u, v) ∈ Vq, we can construct (v−1, u) ∈ Vp. Using these

two elements, it is trivial to distinguish an element in Vq from an element in V .

To fix this problem we consider a 3-dimensional vector space, V = G3. Consider ~v1 =

(a, 0, c), ~v2 = (0, b, c) and ~v3 = ~v1 × ~v2, where a, b, c are random elements in Zr. Now

let us define the subspace Vq by all elements (gaq̃, gbq̃
′
, gc(q̃+q̃

′)) such that q̃, q̃′ ∈ Zr, and

let the subspace Vp be defined by elements (g−bcp̃, g−acp̃, gabp̃) such that p̃ ∈ Zr. For this

system, also pairing an element of Vq with an element of Vp yields the identity element.

This system also has an analog of the subgroup decision assumption. Given (ga, gb, gc), we

want it to be hard to distinguish a random element (gaq̃, gbq̃
′
, gc(q̃+q̃

′)) ∈ Vq from an element

(gx1 , gx2 , gx3) ∈ V , where x1, x2, x3 are random. This follows directly from the decisional

linear assumption [BBS04aBBS04a].

The main difference between the subspaces defined using composite order bilinear groups

and subspaces defined using prime order bilinear groups is the flexibility in the way elements

from the sub-spaces can be manipulated. In the case of composite order bilinear groups,

it is easy to randomize elements from the sub-space Vq; but on the other hand, for prime

order groups similar randomization is hard. This prevents the transformation from being

applicable in general.

A direct compilation of the BSW traitor tracing scheme with the new ideas presented

1e((gx, gy), (gx
′
, gy

′
)) is evaluated as e(gx, gx

′
) · e(gy, gy′

).

21

earlier doesn’t work because of the reasons mentioned in the previous paragraph. But this

can be fixed by allowing the encrypter to define the subspaces at the time of encryption.

This was not possible in the BSW traitor tracing scheme [BSW06BSW06] because the construction

was dependent on the primes p, q. More generally, this trick allows, and in fact, necessitates

a late binding of the parameters that define the subspaces. Other schemes satisfying this

property should also be easy to simplify using our trick. Another crucial difference between

our scheme and the BSW scheme is that our scheme does not have subspaces in the target

group. Even some of the elements in the base group are not moved to the vector space.

2.4 Our Construction

In this paper we present two new traitor tracing schemes and corresponding trace & re-

voke systems. As already pointed out in section 2.22.2 a PLBE scheme is sufficient to con-

struct a traitor tracing system and an AugBE scheme is sufficient to construct a trace &

revoke system. In this section we present our PLBE and AugBE improving on the previous

schemes [BSW06BSW06, BW06BW06]. The schemes in the symmetric and the asymmetric prime order

bilinear groups are fundamentally different. It should be noted that all our schemes allow

for public traceability. The PLBE schemes can be obtained by dropping certain terms from

the AugBE scheme which we describe towards the end of the section.

The number of users in the system, N , is assumed to be equal to m2 for some m. If the

number of users is not a perfect square, then we add some dummy users to pad N to the

next perfect square. These dummy users do not take part in the system in any way. We

arrange the users in an m ×m matrix. The user u : 1 ≤ u ≤ N in the system is identified

by the (x, y) entry of the matrix, where 1 ≤ x, y ≤ m and u = (x− 1) ·m+ y.

The ciphertext generated by EncryptAugBE consists of a ciphertext component for every

row and a component for every column. For each row x the ciphertext consists of (Ax, Bx,

~Rx,
~̃
Rx) and for every column y the ciphertext consists of (~Cy,

~̃
Cy).

Fully collusion resistant traitor tracing (or trace & revoke) is hard because we need to

garble parts of the ciphertext making sure that it only impacts a certain subset of the users.

22

This is made possible by having a ciphertext term have components along different subspaces.

For the purposes of this paper, we use the notation V to represent the space of ciphertext

elements. The elements in this space can have orthogonal components along Vq and Vp. The

information about the sub-space Vq is public while the information for Vp is private.

An encryption to position (i, j) means that only users (x, y) with x > i or x = i & y ≥ j

can decrypt the message. An encryption to position (i, j) is obtained in the following way.

(It is further illustrated in Figure 2.12.1.)

• Column Ciphertext Components: Column ciphertext components for columns

y ≥ j are well formed in both subspaces Vp and Vq, while for columns y < j are well

formed in Vq but are random in Vp.

• Row Ciphertext Components: Row ciphertext components for rows x < i are

completely random, and these recipients can not obtain the message information the-

oretically. For row x = i, the row ciphertext is well formed in both Vp and Vq. And

for rows x > i they are well formed in Vq and have no component in Vp.

A user in row i will be able to decrypt if the column ciphertext is also well formed in

both Vp and Vq. However a user in rows x > i, will always be able to decrypt because

the row ciphertexts for x > i do not have any component in Vp, and the component of

column ciphertexts in Vp will simply cancel out with the row ciphertexts.

In the AugBE scheme in addition to the above properties there is a set S that specifies the

set of users to which encryption is done. In other words only users in that set can decrypt.

2.4.1 AugBE using Symmetric Bilinear Groups

We introduce some notation before we go further and describe the scheme. For a given vector

~v = (v1, . . . vi), by g~v we mean the vector (gv1 . . . gvi). A pairing e on two vectors ~R and

~C is defined by multiplication after the componentwise pairing operation, i.e. e(~R, ~C) =∏i
k=1 e(Rk, Ck), where e is the pairing operation on the underlying group elements. Given a

set S of users to which encryption is to be done let Sx = {y : (x, y) ∈ S}.
23

︸ ︷︷ ︸
Well formed in both Vp, Vq

︷ ︸︸ ︷Well formed only in Vq
?

Column
j

-Row i } ← ♣

 ← ♥

← ♠

Key:

♥ — “Random”

♣ — “Vp and Vq”

♠ — “Vq”

Figure 2.1: Illustration: [BSW06BSW06] Traitor tracing scheme

The AugBE scheme consists of the algorithms: SetupAugBE, EncryptAugBE, DecryptAugBE.

• (PK,K(1,1), · · ·K(1,m), K(2,1) · · ·K(m,m))← SetupAugBE (1λ, N = m2)

The SetupAugBE algorithm takes as input the security parameter λ and the number of

users N in the system. The algorithm generates a prime order groups G with a pairing

e : G × G → GT. It outputs, g the generator of G and let r (depends on the security

parameter) denote the size of G. It then chooses random r1, r2, r3, . . . rm, c1, c2 . . . cm,

α1, α2 . . . αm ∈ Zr. The public key PK of the AugBE system (along with the group

description) is set to:

g, E1 = gr1 , E2 = gr2 , . . . , Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

g,H1 = gc1 , H2 = gc2 , . . . , Hm = gcm

u1, u2, . . . , um ∈ G.

The secret key of each user (x, y) is K(x,y) = {gαx · grxcy · uσx,yy , gσx,y , ∀i, (i 6= y), u
σx,y
y }.

24

• C ← EncryptAugBE(PK, S, (i, j),M)

This algorithm allows the tracing party to encrypt a message to the recipients who

have row value greater than i or those who have row value equal to i and column value

greater than or equal to j and belonging to the set S. The algorithm chooses random

t, η, s1, s2 . . . sm ∈ Zr. It also chooses random a, b, c ∈ Zr and sets ~v1 = (a, 0, c),

~v2 = (0, b, c) and ~v3 = ~v1 × ~v2. All elements g~v when ~v is a linear combination of

~v1 and ~v2 define the Vq space. These elements define the space Vp when the vector ~v

is parallel to ~v3. Choose ~w1, ~w2, . . . , ~wm, ~vc ∈ Z3
r. Let ~v′

c = ~vc + vcr · ~v3 be another

vector, with vcr randomly chosen from Zr.

For each row, 1 ≤ x < i, choose random ~zx ∈ Z3
r and ax, bx ∈ Zr . The row cipher text

components are,

~Rx = g ~zx ~̃
Rx = gη ~zx

Ax = gax Bx = Gbx
x

Tx = (
∏
k∈Sx

uk)
ax

For row, x = i, pick random ~vi randomly ∈ Z3
r. Note that ~vi · ~v′

c 6= ~vi · ~vc. This

prevents parties (i, y), with y < j from decrypting the message.

The row cipher text component for x = i is,

~Ri = grisi ~vi ~̃
Ri = gηrisi ~vi

Ai = gsit(~vi· ~vc) Bi = M ·Gsit(~vi· ~vc)
i

Ti = (
∏
k∈Si

uk)
sit(~vi· ~vc)

For rows, x > i, pick random ~vx = q̃x ~v1 + q̃′x ~v2 where q̃x, q̃
′
x are random ∈ Zr. Note

that ~vx · ~v′
c = ~vx · ~vc. This allows all parties (x, y) to decrypt the message, if x > i.

25

The row cipher text components for all x > i are,

~Rx = grxsx ~vx ~̃
Rx = gηrxsx ~vx

Ax = gsxt(~vx· ~vc) Bx = M ·Gsxt(~vx· ~vc)
x

Tx = (
∏
k∈Sx

uk)
sxt(~vx· ~vc)

And for every column y < j, the column ciphertext components are,

~Cy = gcyt
~v′
c · gη ~wy ~̃

Cy = g ~wy

And for every column y ≥ j, the column ciphertext components are,

~Cy = gcyt ~vc · gη ~wy ~̃
Cy = g ~wy

• M ← DecryptAugBE(C, S,K(x,y), (x, y))

Let K ′(x,y) = gαxgrxcy
∏

k∈Sx u
σx,y
k be the key used by recipient (x, y). Note that user

(x, y) can always compute the product when y ∈ Sx and cannot compute this product

otherwise.

M =
Bx

e(K′
(x,y)

,Ax)

e(Tx,g
σx,y)

· e(
~Rx, ~Cy)

e(
~̃
Rx,

~̃
Cy)

The broadcast encryption procedure is to obtained by encrypting using EncryptAugBE(PK, 0,M).

This illustrates the public traceability of our system.The correctness of decryption follows

by inspection.

2.4.2 AugBE using Asymmetric Bilinear Groups

The AugBE scheme consists of the algorithms: SetupAugBE, EncryptAugBE, DecryptAugBE.

• (PK,K(1,1), · · ·K(1,m), K(2,1) · · ·K(m,m))← SetupAugBE (1λ, N = m2)

The SetupAugBE algorithm takes as input the security parameter λ and the number of

users N in the system. The algorithm generates two prime order groups G1,G2 with

a pairing e : G1 × G2 → GT. It outputs, g1 and g2, generators of G1 and G2 and let

26

r (depends on the security parameter) denote the size of G1. It then chooses random

r1, r2, r3, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm ∈ Zr. The public key PK of the AugBE

system (along with the group description) is set to:

g1, E1 = gr11 , E2 = gr21 , . . . , Em = grm1 ,

G1 = e(g1, g2)α1 , G2 = e(g1, g2)α2 , . . . , Gm = e(g1, g2)αm ,

g2, H1 = gc12 , H2 = gc22 , . . . , Hm = gcm2

u1, u2, . . . , um ∈ G2.

The secret key of each user (x, y) is K(x,y) = {gαx2 · g
rxcy
2 · uσx,yy , g

σx,y
2 ,∀i, (i 6= y), u

σx,y
y }.

• C ← EncryptAugBE(PK, S, (i, j),M)

The algorithm chooses random t, η, s1, s2 . . . sm ∈ Zr and ~w1, ~w2, . . . , ~wm, ~v1, ~vc ∈ Z2
r.

Let ~v2 be a random vector ∈ Z2
r such that ~v1 · ~v2 = 0. Let ~v′

c = ~vc +vcr · ~v2 be another

vector, with vcr randomly chosen from Zr. Note that, ~v′
c · ~v1 = ~vc · ~v1, a key property

we will use in the correctness of our scheme.

All elements g~v when ~v is a along ~v1 define the Vq space. These elements belong to

the space Vp when the vector ~v is parallel to ~v2. Based on the XDH assumption the

details about the Vp space are private.

For each row, 1 ≤ x < i, pick random ~zx ∈ Z2
r and ax, bx ∈ Zr . The row cipher text

components are,

~Rx = g ~zx
1

~̃
Rx = gη ~zx

1

Ax = gax1 Bx = Gbx
x

Tx = (
∏
k∈Sx

uk)
ax

For row, x = i, pick random vector ~vi ∈ Z2
r. Note that ~vi · ~v′

c 6= ~vi · ~vc. This is prevent

parties (i, y), with y < j from decrypting the message.

27

The row cipher text component for x = i is,

~Ri = grisi ~vi
1

~̃
Ri = gηrisi ~vi

1

Ai = g
sit(~vi· ~vc)
2 Bi = M ·Gsit(~vi· ~vc)

i

Ti = (
∏
k∈Si

uk)
sit(~vi· ~vc)

For rows, x > i, pick random v′x ∈ Zr, let ~vx = v′x · v1. Note that ~vx · ~v′
c = ~vx · ~vc.

This allows all parties (x, y), for all values of y to decrypt the message, if x > i.

The row cipher text components for all x > i are,

~Rx = grxsx ~vx
1

~̃
Rx = gηrxsx ~vx

1

Ax = g
sxt(~vx· ~vc)
2 Bx = M ·Gsxt(~vx· ~vc)

x

Tx = (
∏
k∈Sx

uk)
sxt(~vx· ~vc)

And for every column y < j, the column ciphertext components are,

~Cy = g
cyt ~v′

c
2 · gη ~wy

2
~̃
Cy = g

~wy

2

And for every column y ≥ j, the column ciphertext components are,

~Cy = g
cyt ~vc

2 · gη ~wy

2
~̃
Cy = g

~wy

2

• M ← DecryptPLBE(C, S,K(x,y), (x, y))

Let K ′(x,y) = gαx2 g
rxcy
2

∏
k∈Sx u

σx,y
k be the key used by recipient (x, y). Note that user

(x, y) can always compute the product when y ∈ Sx and cannot compute this product

otherwise.

M =
Bx

e(Ax,K′
(x,y)

)

e(Tx,g
σx,y
2)

· e(
~Rx, ~Cy)

e(
~̃
Rx,

~̃
Cy)

The normal encryption procedure is to just encrypt to

EncryptAugBE(PK, 0,M). This illustrates the public traceability of our system. The cor-

rectness of decryption follows by inspection.

28

2.4.3 PLBE

The two AugBE schemes based on symmetric and asymmetric prime order groups respec-

tively can be converted to the corresponding PLBE schemes by removing the u terms from

the public key. We will also need to get rid of the u and σ terms in the secret key. Row

ciphertexts will not include Tx terms and decryption will not require a pairing corresponding

to the term Tx. Rest of the parts of the scheme remain the same. Details can be found in

an earlier version [GKS09GKS09] of this paper.

2.5 Security Proof

Here we only give the proof for the AugBE scheme using symmetric prime order bilinear

groups. The proof for the AugBE scheme based on asymmetric prime order bilinear groups

is also similar. The only difference is that security depends on the XDH assumption. The

security of the PLBE schemes is implied by the security of the AugBE schemes.

2.5.1 Index Hiding

Theorem 2.5.1. If the Decision 3-party Diffie Hellman assumption and the decisional linear

assumption hold, then no probabilistic polynomial time adversary can distinguish between an

encryption to two adjacent recipients in the index hiding game for any (i, j) where 1 ≤ i, j ≤

m with non-negligible probability.

Proof. We consider two possible cases. First, when the adversary tries to distinguish be-

tween ciphertexts encrypted to (i, j) and (i, j+1) when 1 ≤ j < m. Second, when the adver-

sary tries to distinguish between ciphertexts encrypted to (i,m) and (i+1, 1) when 1 ≤ i < m.

The first case follows by Lemma 2.5.22.5.2 and the second case follows by Lemma 2.5.32.5.3.

Lemma 2.5.2. If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic

polynomial time adversary can distinguish between an encryption to recipient (i, j) and (i, j+

1) in the index hiding game for any (i, j) where j < m with non-negligible probability.

29

Proof. This proof is similar to proof of Lemma 5.2 of [BSW06BSW06]. Consider an adversary A

that succeeds in the index hiding game with a probability greater than ε. The adversary is

considered successful if it can distinguish between encryptions made to positions (i, j) and

(i, j + 1). We build a reduction R that uses A to solve the Decision 3-party Diffie Hellman

problem. The reduction receives the Decision 3-party Diffie Hellman challenge as:

G, g, A = ga, B = gb, C = gc, T

and it is expected to guess if T is gabc or if it is random.

In this system two cases arise. The simulator guesses the challenge value s′ and gener-

ates the public parameters correctly. In case the value of the s′ does not match the value

later provided by the adversary then the simulator aborts. Since the simulator will success-

fully guess the right value of s′ with probability at least 1/2 the simulation will work with

probability at least 1/2.

Case 1: s′ = 0: In the Setup phase the reduction based on the input (i, j) (the row

and column the adversary will attack) sets up the public and the private parameters. The

reduction chooses random r1, r2, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm, δ1, δ2 . . . δm ∈ Zr. It also

chooses σx,y ∈ Zr for every x, y ∈ {1 . . .m}. It sets up the public parameters as:

g, E1 = gr1 , E2 = gr2 , . . . Ei = Bri . . . , Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

H1 = gc1 , H2 = gc2 , . . . Hj = Ccj . . . , Hm = gcm

u1 = gδ1 , u2 = gδ2 . . . um = gδm

And the private key K(x,y) of user (x,y) is:

K(x,y) = {gαx ·Brx·cy · uσx,yy } : x = i, y 6= j

K(x,y) = {gαx · Crx·cy · uσx,yy } : x 6= i, y = j

K(x,y) = {gαx · grx·cy · uσx,yy } : x 6= i, y 6= j

The private keys also contain {gσx,y ,∀i, (i 6= y), u
σx,y
y } for each user (x, y). Note that the

distribution of the public and private parameters matches the distribution of parameters in

the real scheme.

30

In the challenge phase the adversary sends the message M ∈ GT to the reduction. The

reduction then chooses random t, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It

also chooses random a, b, c ∈ Zr and sets ~v1 = (a, 0, c), ~v2 = (0, b, c) and ~v3 = (−bc,−ac, ab).

Set gη = B.

It then sets ~vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr. Let ~vq

denote the projection of ~v along the plane formed by ~v1 and ~v2. And let ~vp be the component

along ~v3.

It also chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x < i and k ∈ {1, 2, 3} and sets up

the ciphertext as follows.

x < i : Rx,k = gz1,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}

Ax = gz2,x

Bx = e(g, g)z3,x

Tx = Ax
∑
k∈Sx δk

(2.5.1)

It sets ~vi = q̃i · ~v3 + q̃′i · ~v3 + p̃i · ~v3 where q̃i, q̃
′
i, p̃i are random in Zr.

x = i : Ri,k = grivi,ksi : k = {1, 2, 3}

R̃i,k = Brivi,ksi : k = {1, 2, 3}

Ai = Asit(
~v
p
i ·

~v
p
c) · gsit(~v

q
i ·

~v
q
c)

Bi = M · e(g, Ai)αi

Ti = Ai
∑
k∈Si

δk

31

For each x ∈ {i+ 1 · · ·m}, it picks ~vx = ~vq
x = q̃x · ~v1 + q̃′x · ~v2 where q̃x, q̃

′
x are random in Zr.

x > i : Rx,k = grxv
q
x,ksx : k = {1, 2, 3}

R̃x,k = Brxv
q
x,ksx : k = {1, 2, 3}

Ax = Bsxt(
~v
q
x· ~vc)

Bx = M · e(g,B)αxsxt(
~v
q
x· ~vc)

Tx = Ax
∑
k∈Sx δk

Choose a random z ∈ Zr and for k = {1, 2, 3}.

y < j : Cy,k = gzv
p
c,k ·Bwy,k

C̃y,k = g−cytv
q
c,k · gwy,k

y = j : Cy,k = T cytv
p
c,k ·Bwy,k

C̃y,k = C−cyv
q
c,kt · gwy,k

y > j : Cy,k = Bwy,k

C̃y,k = A−cyv
p
c,kt · g−cytv

q
c,k · gwy,k

If T corresponds to gabc, then the ciphertext corresponding to (i, j) is well formed; and

if T is randomly chosen, then the encryption corresponds to (i, j + 1). The reduction will

receive the guess γ from A and it passes on the same value to the Decision 3-party Diffie

Hellman challenger. The advantage of the reduction is exactly equal to the advantage of the

adversary A.

Case 2: s′ = 1: In the Setup phase the reduction based on the input (i, j) (the row

and column the adversary will attack) sets up the public and the private parameters. The

reduction chooses random r1, r2, . . . rm, c1, c2 . . . cm, α1, α2 . . . αm, δ1, δ2 . . . δ
′
j . . . δm ∈ Zr. It

also chooses σx,y ∈ Zr for every x, y ∈ {1 . . .m}&y 6= j. It also chooses σ′(x,j) ∈ Zr for every

32

x ∈ {1 . . .m}. It sets up the public parameters as:

g, E1 = gr1 , E2 = gr2 , . . . Ei = Bri . . . , Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

H1 = gc1 , H2 = gc2 , . . . Hj = Ccj . . . , Hm = gcm

u1 = gδ1 , u2 = gδ2 . . . uj = Cδ′j . . . um = gδm

(2.5.2)

In our system δj = c · δ′j. Set σ(i,j) = − brxcy
δ′j

+
σ′
(i,j)

δ′j
. And the private key K(x,y) of user (x,y)

is:

K(x,y) = {gαx ·Brx·cy · uσx,yy , gσx,y} : x = i, y 6= j

K(x,y) = {gαx · Crx·cy · uσx,yy , Bσx,y} : x 6= i, y = j

K(i,j) = {gαx · Cσ′
i,j , gσi,j} : x = i, y = j

K(i,j) = {gαx · grx·cy · uσx,yy , Bσx,y} : x 6= i, y 6= j

The secret key also contain ∀i, (i 6= y), u
σx,y
y for each user (x, y). Note that the distribution of

the public and private parameters matches the distribution of parameters in the real scheme.

In the challenge phase the adversary sends the message M ∈ GT to the reduction. The

reduction then chooses random t, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It

also chooses random a, b, c ∈ Zr and sets ~v1 = (a, 0, c), ~v2 = (0, b, c) and ~v3 = (−bc,−ac, ab).

Set gη = B.

It then sets ~vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr. Let ~vq

denote the projection of ~v along the plane formed by ~v1 and ~v2. And let ~vp be the component

along ~v3.

It also chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x < i and k ∈ {1, 2, 3} and sets up

the ciphertext as follows.

x < i : Rx,k = gz1,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}

Ax = gz2,x

Bx = e(g, g)z3,x

Tx = Ax
∑
k∈Sx δk

(2.5.3)

33

It sets ~vi = q̃i · ~v3 + q̃′i · ~v3 + p̃i · ~v3 where q̃i, q̃
′
i, p̃i are random in Zr. The ciphertext for row

i can be easily generated because we do not need to use δj.

x = i : Ri,k = grivi,ksi : k = {1, 2, 3}

R̃i,k = Brivi,ksi : k = {1, 2, 3}

Ai = Asit(
~v
p
i ·

~v
p
c) · gsit(~v

q
i ·

~v
q
c)

Bi = M · e(g, Ai)αi

Ti = Ai
∑
k∈Si

δk

For each x ∈ {i+ 1 · · ·m}, it picks ~vx = ~vq
x = q̃x · ~v1 + q̃′x · ~v2 where q̃x, q̃

′
x are random in Zr.

The terms with δj can be separated and evaluated as all values σ(x,y) for x > i are known.

x > i : Rx,k = grxv
q
x,ksx : k = {1, 2, 3}

R̃x,k = Brxv
q
x,ksx : k = {1, 2, 3}

Ax = Bsxt(
~v
q
x· ~vc)

Bx = M · e(g,B)αxsxt(
~v
q
x· ~vc)

Tx = (
∏
k∈Sx

uk)
sxt(

~v
q
x· ~vc)

Choose a random z ∈ Zr.

y < j : Cy,k = gzv
p
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = g−cytv
q
c,k · gwy,k : k = {1, 2, 3}

y = j : Cy,k = T cytv
p
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = C−cyv
q
c,kt · gwy,k : k = {1, 2, 3}

y > j : Cy,k = Bwy,k : k = {1, 2, 3}

C̃y,k = A−cyv
p
c,kt · g−cytv

q
c,k · gwy,k : k = {1, 2, 3}

If T corresponds to gabc, then the ciphertext corresponding to (i, j) is well formed; and

if T is randomly chosen, then the encryption corresponds to (i, j + 1). The reduction will

receive the guess γ from A and it passes on the same value to the Decision 3-party Diffie

Hellman challenger. The advantage of the reduction is exactly equal to the advantage of the

adversary A.

34

Lemma 2.5.3. If the Decision 3-party Diffie Hellman assumption and the decisional linear

assumption hold, then no probabilistic polynomial time adversary can distinguish between an

encryption to recipient (i,m) and (i+ 1, 1) in the index hiding game for any 1 ≤ i < m with

non-negligible probability.

Proof. The proof of this lemma follows from a series of lemmas that establish the indistin-

guishability of the following games.

• H1 Encrypt to column22 m, row i is the target row,33 row i+ 1 is the greater-than row.44

• H2 Encrypt to column m+ 1, row i is the target row, row i+ 1 is the greater-than row.

• H3 Encrypt to column m+ 1, row i is the less-than row, row i+ 1 is the greater-than

row (no target row).

• H4 Encrypt to column 1, row i is the less-than row, row i + 1 is the greater-than row

(no target row).

• H5 Encrypt to column 1, row i is the less-than row, row i+ 1 is the target row.

It can be observed that game H1 corresponds to the encryption being done to (i,m) and

game H5 corresponds to encryption to (i + 1, 1). The indistinguishability of the games H1

and H5, which follows from Lemmas 2.5.42.5.4, 2.5.52.5.5, 2.5.62.5.6, and 2.5.72.5.7, implies the lemma.

Lemma 2.5.4. If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic

polynomial time adversary can distinguish between games H1 and H2 with non-negligible

probability.

Proof. This lemma can be proved by applying the result of Lemma 2.5.22.5.2.

Lemma 2.5.5. If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic

polynomial time adversary can distinguish between games H2 and H3 with non-negligible

probability.

2Columns greater than or equal to m are well formed, both in Vp and Vq.
3The row for which the row component of the ciphertext has well formed components, both in Vp and Vq.
4The first row with the row component of ciphertexts only in Vq.

35

Proof. The basic intuition behind the proof is to embed the problem in the ~vp
c part of ~vc.

Since all columns have a random component in Vp, we don’t need to actually generate this

part. Consider an adversary A that can distinguish between H2 and H3 with a probability

greater than ε. We build a reduction R that uses A to solve the Decision 3-party Diffie

Hellman problem. The reduction receives the Decision 3-party Diffie Hellman challenge as:

G, g, A = ga, B = gb, C = gc, T

and it is expected to guess if T is gabc or if it is random.

Next, in the setup phase the reduction based on the input i (the row the adversary wants

to attack) sets up the public and the private parameters. The reduction chooses random

r1, r2, . . . ri−1, ri+1 . . . rm, c1, c2 . . . cm, α1, α2 . . . αi−1, αi+1 . . . αm, δ1, δ2 . . . δm ∈ Zr. It also

chooses σx,y ∈ Zr for every x, y ∈ {1 . . .m}. It sets gαx = ga·b and grx = B. It doesn’t know

gab but can generate Gi = e(A,B) and Kx,y = gabg((cy−a)b) = Bcy . It sets up the public

parameters as:

g, E1 = gr1 . . . Ei = B . . . Em = grm ,

G1 = e(g, g)α1 , . . . Gi = e(A,B), . . . , Gm = e(g, g)αm ,

H1 = gc1 · A−1, H2 = gc2 · A−1 . . . Hm = gcm · A−1

u1 = gδ1 , u2 = gδ2 . . . um = gδm

(2.5.4)

And the private key K(x,y) of user (x,y) is:

K(x,y) = {gαx · (gcy · A−1)
rx · uσx,yy , gσx,y ,∀i, (i 6= y), uσx,yy }

: x 6= i

K(x,y) = {Bcy · uσx,yy , gσx,y ,∀i, (i 6= y), uσx,yy } : x = i

Note that the distribution of the public and private parameters matches the distribution of

parameters in the real scheme.

In the challenge phase the adversary sends the message M ∈ GT to the reduction.

The reduction then chooses random t, η, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zq where

k = {1, 2, 3}. It also chooses random a, b, c ∈ Zr and sets ~v1 = (a, 0, c), ~v2 = (0, b, c)

36

and ~v3 = (−bc,−ac, ab). It then sets ~uc = (uc,1, uc,2, uc,3) where uc,1, uc,2, uc,3 are chosen

randomly in Zr. Let ~uq denote the projection of ~u along the plane formed by ~v1 and ~v2

and ~up denote the projection of ~u along ~v3. Let gv
p
c,k = Cupc,k . Note that by using this value

of vpc,k, we will not be able to generate a column ciphertext that has the right component

in Vp; but since all columns are random in Vp, we do not need to generate this term. Let

gv
′p
c,k = gz·u

p
c,k , where z is random in Zr. It also sets , ~vi = q̃i · ~v1 + q̃′i · ~v2 + p̃i · ~v3 where

q̃i, q̃
′
i, p̃i are random in Zr. It also chooses random z1,x,k, z2,x, z3,x ∈ Zq where 1 ≤ x < i and

k ∈ {1, 2, 3}.

Then it creates the ciphertext as:

x < i : Rx,k = gz1,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}

Ax = gz2,x

Bx = e(g, g)33,x

Tx = Ax
∑
k∈Sx δk

x = i : Ri,k = Bvi,ksi : k = {1, 2, 3}

R̃i,k = Bvi,ksiη : k = {1, 2, 3}

Ai = gsit(
~v
q
i ·

~v
q
c) · Csit(

~v
p
i ·

~u
p
c)

Bi = M · e(A,B)sit(
~v
q
i ·

~v
q
c)e(g, T)tsi(

~v
p
i ·

~u
p
c)

Ti = Ai
∑
k∈Si

δk

For each x ∈ {i+ 1 · · ·m}, it picks ~vx = ~vq
x = q̃x · ~v1 + q̃′x · ~v2 where q̃x, q̃

′
x are random in Zr.

x > i : Rx,k = grxv
q
x,ksx : k = {1, 2, 3}

R̃x,k = grxv
q
x,ksxη : k = {1, 2, 3}

Ax = gsxt(
~v
q
x· ~vq

c)

Bx = M · e(g, g)αxsxt(
~v
q
x· ~vq

c)

Tx = Ax
∑
k∈Sx δk

37

Cy,k =
(
gcy · A−1

)t(vqc,k+v′pc,k) · gwy,kη : k = {1, 2, 3}

C̃y,k = gwy,k : k = {1, 2, 3}

If T corresponds to gabc, then the ciphertext corresponding to row i corresponds to the

target row; and if T is randomly chosen, then the encryption corresponds to game H3. The

reduction will receive the guess γ from A, and it passes on the same value to the Decision

3-party Diffie Hellman challenger. The advantage of the reduction is exactly equal to the

advantage of the adversary A.

Lemma 2.5.6. If the Decision 3-party Diffie Hellman assumption holds, then no probabilistic

polynomial time adversary can distinguish between games H3 and H4 with non-negligible

probability.

Proof. H3 to H4 can be expressed as a series of games H3,m+1, H3,m · · · H3,1. In the

game H3,j, all column ciphertexts (Cy, C̃y) are well formed for all y such that j ≤ y ≤ m.

It can be seen that H3,1 is the same as H4, and H3,m is the same as H3. We prove the

indistinguishability of games H3,j and H3,j+1 for all j where 1 ≤ j ≤ m. The proof for this is

similar to that of Lemma 2.5.22.5.2. Consider an adversary A that solves the index hiding game

with a probability greater than ε. The adversary is considered successful if it can distinguish

between games H3,j and H3,j+1. We build a reduction R that uses A to solve the Decision

3-party Diffie Hellman problem. The reduction receives the Decision 3-party Diffie Hellman

challenge as:

G, g, A = ga, B = gb, C = gc, T

and it is expected to guess if T is gabc or if it is random.

Next, in the Setup phase the reduction based on the input (i, j) (the row and column the

adversary will attack) sets up the public and the private parameters. The reduction chooses

random r1, r2, . . . rm, c1, c2 . . . cm, α1, α2 . . . αmδ1, δ2 . . . δm ∈ Zr. It also chooses σx,y ∈ Zr for

38

every x, y ∈ {1 . . .m}. It sets up the public parameters as:

g, E1 = gr1 , E2 = gr2 , . . . Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . , Gm = e(g, g)αm ,

H1 = gc1 , H2 = gc2 , . . . Hj = Ccj . . . , Hm = gcm

u1 = gδ1 , u2 = gδ2 . . . um = gδm

(2.5.5)

And the private key K(x,y) of user (x,y) is:

K(x,y) = {gαx · grx·cy · uσx,yy , gσx,y ,∀i, (i 6= y), uσx,yy } : y 6= j

K(x,y) = {gαx · Crx·cy · uσx,yy , gσx,y ,∀i, (i 6= y), uσx,yy } : y = j

Note that the distribution of the public and private parameters matches the distribution

of parameters in the real scheme.

In the challenge phase the adversary sends the message M ∈ GT to the reduction. The

reduction then chooses random t, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}. It

also chooses random a, b, c ∈ Zr and sets ~v1 = (a, 0, c), ~v2 = (0, b, c) and ~v3 = (−bc,−ac, ab).

Set gη = B.

It then sets ~vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr. Let ~vq

denote the projection of ~v along the plane formed by ~v1 and ~v2. And ~vp be the component

along ~v3.

It chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x < i and k ∈ {1, 2, 3} and sets up the

ciphertext as follows.

x ≤ i : Rx,k = gz1,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}

Ax = gz2,x

Bx = e(g, g)z3,x

Tx = Ax
∑
k∈Sx δk

(2.5.6)

39

For each x ∈ {i+ 1 · · ·m}, it picks ~vx = ~vq
x = q̃x · ~v1 + q̃′x · ~v2 where q̃x, q̃

′
x are random in Zr.

x > i : Rx,k = grxv
q
x,ksx : k = {1, 2, 3}

R̃x,k = Brxv
q
x,ksx : k = {1, 2, 3}

Ax = Bsxt(
~v
q
x· ~vc)

Bx = M · e(g,B)αxsxt(
~v
q
x· ~vc)

Tx = Ax
∑
k∈Sx δk

Choose a random z ∈ Zr.

y < j : Cy,k = gzv
p
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = g−cytv
q
c,k · gwy,k : k = {1, 2, 3}

y = j : Cy,k = T cytv
p
c,k ·Bwy,k : k = {1, 2, 3}

C̃y,k = C−cyv
q
c,kt · gwy,k : k = {1, 2, 3}

y > j : Cy,k = Bwy,k : k = {1, 2, 3}

C̃y,k = A−cyv
p
c,kt · g−cytv

q
c,k · gwy,k : k = {1, 2, 3}

If T corresponds to gabc, then we are in game H3,j; and if T is randomly chosen, then the

encryption corresponds to the game H3,j+1. The reduction will receive the guess γ from

A, and it passes on the same value to the Decision 3-party Diffie Hellman challenger. The

advantage of the reduction is exactly equal to the advantage of the adversary A.

Lemma 2.5.7. If the decisional linear assumption holds, then no probabilistic polynomial

time adversary can distinguish between games H4 and H5 with non-negligible probability.

Proof. Consider an adversary A that can distinguish between games H4 and H5 with a

probability greater than ε. We build a reduction R that uses A to solve the decisional linear

problem. The reduction receives the decisional linear challenge as:

G, g, ga, gb, gc, gax, gby, T

and it is expected to guess if T is gc(x+y) or if it is random.

40

Next, in the Setup phase the reduction based on the input i (the row the adversary

will attack) sets up the public and the private parameters. The reduction chooses random

r1, r2, . . . rm, c1, c2 . . . cm, α1, α2 . . . αmδ1, δ2 . . . δm ∈ Zr. It also chooses σx,y ∈ Zr for every

x, y ∈ {1 . . .m}. It sets up the public parameters as:

g, E1 = gr1 , E2 = gr2 , . . . Em = grm ,

G1 = e(g, g)α1 , G2 = e(g, g)α2 , . . . Gm = e(g, g)αm ,

H1 = gc1 , H2 = gc2 , . . . Hm = gcm

u1 = gδ1 , u2 = gδ2 . . . um = gδm

(2.5.7)

And the private key K(x,y) of user (x,y) is:

K(x,y) = {gαx · grx·cy · uσx,yy , g
σx,y
2 ,∀i, (i 6= y), uσx,yy } : ∀x, y

Note that the distribution of the public and private parameters matches the distribution of

parameters in the real scheme.

It sets gv1,1 = ga, gv1,2 = g0, gv1,3 = gc, gv2,1 = g0, gv2,2 = gb and gv2,3 = gc. A valid

decisional linear tuple will lie in the subspace formed by vectors ~v1 and ~v2. A decisional

linear problem tuple will be used for setting row ciphertext for row i+ 1. A valid tuple leads

to encryption as in game H4, and a random tuple will cause the encryption to be as in game

H5.

In the challenge phase the adversary sends the message M ∈ GT to the reduction. The

reduction then chooses random t, η, w1,k, w2,k, . . . wm,k, s1, s2 . . . sm ∈ Zr where k = {1, 2, 3}.

It then sets ~vc = (vc,1, vc,2, vc,3) where vc,1, vc,2, vc,3 are chosen randomly in Zr.

g(~vx· ~vc) =
3∏

k=1

[gvx,k]vc,k

It also chooses random z1,x,k, z2,x, z3,x ∈ Zr where 1 ≤ x ≤ i and k ∈ {1, 2, 3}. Then it

41

creates the ciphertext as follows.

x ≤ i : Rx,k = gzq,x,k : k = {1, 2, 3}

R̃x,k = gz1,x,kη : k = {1, 2, 3}

Ax = gz2,x

Bx = e(g, g)z3,x

Tx = Ax
∑
k∈Sx δk

It sets gvi+1,1 = gax, gvi+1,2 = gby and gvi+1,3 = T . For each x ∈ {i + 2 · · ·m}, it picks

gvx,1 = gaq̃x , gvx,2 = gbq̃
′
x and gvx,3 = gc(q̃x+q̃′x) where q̃x, q̃

′
x are random in Zr.

x > i : Rx,k = grxvx,ksx : k = {1, 2, 3}

R̃x,k = grxvx,ksxη : k = {1, 2, 3}

Ax = gsxt(~vx· ~vc)

Bx = M · e(g, g)αxsxt(~vx· ~vc)

Tx = Ax
∑
k∈Sx δk

Cy,k = gcytvc,k · gwy,kη C̃y,k = gwy,k : k = {1, 2, 3}

If T corresponds to gc(x+y), then the ciphertext corresponds to game H4; and if T is randomly

chosen, then it corresponds to game H5. The reduction will receive the guess γ from A, and it

passes on the same value to the decisional linear challenger. The advantage of the reduction

is exactly equal to the advantage of the adversary A.

2.5.2 Message Hiding

Theorem 2.5.8. No adversary can distinguish between two ciphertexts when the encryption

is done to the (m+ 1, 1).

Proof. This means that all rows will be completely random and independent of the message.

Hence, information theoretically the adversary has no way of identifying which message has

been encrypted.

42

2.6 Implementation

We provide the first implementation of fully collusion resistant traitor tracing and trace

& revoke schemes. We use only prime order bilinear groups in this implementation. We

implement all of our schemes using the Pairing Based Crypto (PBC) library [LynLyn]. For

schemes that use asymmetric bilinear groups, we generate them using MNT curves [MNT00MNT00].

The group size is 170 bits long, the group representations are 512 bits long, and the security

is equivalent to 1024 bits of discrete log. It is also believed that the XDH assumption

holds on these curves (Section 8.1 [BLS01BLS01]). For symmetric bilinear groups, we use super

singular curves (with fastest pairing times but bad group element size). We use 512 bit group

representations and have 1024 bits of discrete log security. One can choose other alternative

symmetric groups that have smaller group size with faster exponentiation but slower pairing

operations. This kind of tradeoff was not possible in previous systems [BSW06BSW06,BW06BW06].

Figure 2.2: Encryption Time (in secs) of traitor tracing schemes

We contrast our schemes’ efficiency with an implementation of [BSW06BSW06]. [BSW06BSW06] only

provides traitor tracing functionality. We compare our traitor tracing scheme with [BSW06BSW06]

in Tables 2.12.1,2.22.2 and Figure 2.42.4. We also provide additional data on our trace & revoke

implementation (Table 2.32.3)). Currently, the only known way to generate composite order

groups is by using symmetric bilinear groups. Also, their subgroup decision assumption man-

dates that the order of the composite group be at least 1024 bits (to avoid sub-exponential

factoring based attacks). We compare the encryption time, decryption time and ciphertext

43

Table 2.1: Encryption Time of traitor tracing schemes

Users Boneh et

al.

Symmetric

PLBE

Asymmetric

PLBE

Skewed

Asymm.

25 1.977s 0.749s 0.494s 0.3611s

100 3.971s 1.503s 1s 0.694s

225 6.069s 2.183s 1.512s 1.081s

400 8.2s 2.922s 3.187s 1.424s

1225 13.898s 5.1885s 3.495s 2.523s

2500 21.046s 7.227s 5.104s 3.583s

5625 29.681s 10.797s 8.069s 6.056s

10000 40.189s 14.552s 10.099s 8.074s

22500 - 21.769s 16.028s 10.577s

sizes as the number of users grow for all these schemes.

A real implementation of broadcast encryption will use a symmetric key cipher under

some key K [BSW06BSW06]. But this key K still needs to be distributed and one can use

our schemes for key distribution. By converting our encryption system to a Key Encap-

sulation Mechanism we can save on computation. Under this optimization, we do not

need to evaluate Bx or include it in the ciphertext. A user (x, y) can extract the key

Kx = e(K(x,y), Ax)

3∏
i=1

e(R̃x, C̃y)

3∏
i=1

e(Rx, Cy)

. The ciphertext would now have to contain an encryption

of K under each of the Kx. The user can then derive K from an encryption of it under Kx.

In Table 2.12.1 and 2.22.2 we provide a comparison of our PLBE scheme for the case of

symmetric and asymmetric prime order groups with that of [BSW06BSW06] (which uses composite

order groups). The implementation was done on an Intel i3 2.9GHz quad core desktop PC

with 2GB RAM. The groups were chosen to guarantee 1024 bits of discrete log security for

encryption time and ciphertext size.

44

Figure 2.3: Ciphertext Size (in bytes) of traitor tracing schemes

2.6.1 Encryption Time

The encryption time (Table 2.12.1, Figure 2.22.2) is heavily dependent on a large number of

exponentiation operations, one for each row of ciphertext. It depends on the number of

users as O(
√
N), explaining the parabolic nature of the graph(s). The cost of exponentiation

operations in elliptic curves depend both on group representation size and the actual order of

the group. The order of symmetric groups that we have chosen for this implementation are

constructed to be of the form 2a ± 2b ± 1, for some integers a, b. This makes exponentiation

in them very efficient. The asymmetric order groups are efficient because of their smaller

group size. The composite order groups perform significantly worse by a factor of 6.

Figure 2.4: Decryption time of traitor tracing schemes

45

Table 2.2: CipherText Size (in bytes) of traitor tracing schemes

Users Boneh

et.al

Symmetric

PLBE

Asymmetric

PLBE

Skewed

Asymm.

25 7800 8960 4400 3840

100 15600 17920 8800 7680

225 23400 26880 13200 11840

400 31200 35840 17600 15680

1225 54600 62720 30800 27360

2500 78000 89600 44000 39200

5625 117000 134400 66000 58720

10000 156000 179200 88000 78400

22500 - 268800 132000 117440

2.6.2 Ciphertext Size

The ciphertext size (Table 2.22.2, Figure 2.32.3) is dependent on the representation size of the

elliptic curve and the number of group elements used. Our construction, although using a

larger number of group elements, has smaller total ciphertext size (in the asymmetric case)

because the group sizes are significantly smaller. The asymmetric groups, by their nature

allows us to optimize ciphertext size by increasing the number of rows and decreasing the

columns in (Fig. 2.12.1). We call this the Skewed Asymmetric group version. Note that by

design, most of the group elements in the ciphertext are placed in the smaller group G1.

Skewing has no effect on security proofs and allows us to optimize on ciphertext size.

Calculations show that using 25×16(= 400) rectangle for generating ciphertexts produces

only 15680 bytes which gives us a 50% improvement compared to the scheme of [BSW06BSW06]

We provide and implement efficient broadcast, trace & revoke system. Table 2.32.3 provides

encryption times and ciphertext size (in bytes) for up to 5625 users. The security guaranteed

on the elliptic curves used are 1024 bit discrete log security.

46

Table 2.3: Encryption Time and CipherText size (in bytes)

Users Symm.

Enc. Time

Asymm. Enc.

Time

Symm. Cipher-

text Size

Asymm. Ci-

phertext Size

25 0.611s 0.540s 9600B 4600B

100 1.179s 1.027s 19200B 9200B

225 1.695s 1.550s 28800B 13800B

400 2.213s 2.059s 38400B 18400B

1225 3.765s 3.594s 67200B 32200B

2500 5.272s 5.248s 96000B 46000B

5625 8.104s 7.759s 144000B 69000B

Figure 2.5: Ciphertext Size

47

2.6.3 Decryption Time

The decryption time for the various scenarios (Figure 2.42.4) above are relatively constant and

independent of the number of users for each scheme. This is because decryption time is

dominated by the cost of pairing operations on the elliptic curves. The composite order

schemes decrypt at 0.296s per ciphertext and the primer order symmetric and asymmetric

groups decrypt at 0.051s and 0.032s respectively. Thus we see the prime order groups are

relative similar w.r.t decryption times and are 10 times faster due to faster pairing operations

in these groups.

2.6.4 Comparison with the ElGamal Encryption

We compare the efficiency of our scheme with an implementation of a näıve (but optimized)

ElGamal based traitor tracing scheme. The advantage of using an ElGamal based scheme

is that the group that it works on could support very efficient arithmentic operations (we

choose the multiplicative group Z∗p for a 1024 bit prime p) making encryption very fast.

The disadvantage is that for N users ElGamal based systems use O(N) steps whereas our

scheme uses O(
√
N) steps. We observe that the ElGamal implementation has a huge cipher-

text size overload compared to our scheme (Figure 2.52.5). We also observe that asymptotic

improvements in the encryption time begin to show up for as few as 2500 users (Figure 2.62.6).

Figure 2.6: Encryption Time

48

2.7 Conclusion

Boneh et al. [BSW06BSW06,BW06BW06] provide traitor tracing and trace & revoke systems using com-

posite order bilinear groups. These groups have large exponentiation and pairing times

making them impractical. We provide the first implementation of a traitor tracing and trace

& revoke systems, using symmetric and asymmetric prime order bilinear groups. Our imple-

mentation and comparisons with [BSW06BSW06] show that we achieve about 10 times faster de-

cryption, 6 times faster encryption and 50% reduction in ciphertext size. The ideas presented

in this work are general and can be applied to convert other composite order cryptosystems

to efficient prime order based cryptosystems.

49

Part 2

50

CHAPTER 3

Cryptography using Captcha

3.1 Preliminaries

In this work, to model “access to a human”, we will provide some parties (modeled as

interactive Turing machines–ITM) oracle access to a function H. An ITM M with oracle

access to H is an ordinary ITM except that it has two special tapes: a write-only query tape

and a read-only answer tape. When M writes a string q on its query tape, the value H(q) is

written on its answer tape. If q is not a valid query (i.e., not in the domain of H), a special

symbol ⊥ is written on the output tape. Such a query and answer step is counted as one

step in the running time of M . We use the notation MH to mean that M has oracle access

to H. The reader is referred to [Gol01Gol01,AB09AB09] for a detailed treatment of this notion.

Notation. The output of an oracle ITM MH is denoted by a triplet (out, q̄, ā) where out, q̄,

and ā denote the contents of M ’s output tape, a vector of strings written to the query tape

in the current execution, and the answer to the queries present in q̄ respectively.

Let k ∈ N denote the security parameter, where N is the set of natural numbers. All

parties are assumed to receive 1k as an implicit input (even if not mentioned explicitly).

When we say that an (I)TM M (perhaps with access to an oracle H) runs in polynomial

time, we mean that there exists a polynomial T (·) such that for every input, the total number

of steps taken by M are at most T (k). For two strings a and b, their concatenation is denoted

by a ◦ b. The statistical distance between two distributions X, Y is denoted ∆(X, Y).

In all places, we only use standard notations (with their usual meaning) for describing

algorithms, random variables, experiments, protocol transcripts and so on. We assume famil-

51

iarity with standard concepts such as computational indistinguishability, negligible functions,

and so on (see [Gol01Gol01]).

Statistically Secure Oblivious Transfer We now recall the notion of a statistically

secure, two message oblivious transfer (OT) protocol, as defined by Halevi and Kalai [HK10HK10].

Definition 3.1.1. (Statistically Secure Oblivious Transfer), [HK10HK10] Let `(·) be a

polynomial and k ∈ N the security parameter. A two-message, two-party protocol 〈Sot, Rot〉

is said to be a statistically secure oblivious transfer protocol for bit-strings of length `(k) such

that both the sender Sot and the receiver Rot are ppt ITMs receiving 1k as common input;

in addition, Sot gets as input two strings (m0,m1) ∈ {0, 1}`(k) × {0, 1}`(k) and Rot gets as

input a choice bit b ∈ {0, 1}. We require that the following conditions are satisfied:

• Functionality: If the sender and the receiver follow the protocol then for every k ∈ N,

every (m0,m1) ∈ {0, 1}`(k) × {0, 1}`(k), and every b ∈ {0, 1}, the receiver outputs mb.

• Receiver security: The ensembles {Rot(1k, 0)}k∈N and {Rot(1k, 1)}k∈N are computa-

tionally indistinguishable, where {Rot(1k, b)}k∈N denotes the (first and only) message

sent by Rot on input (1k, b). That is,

{Rot(1k, 0)}k∈N
c≡{Rot(1k, 1)}k∈N

• Sender security: There exists a negligible function negl(·) such that for every (m0,m1) ∈

{0, 1}`(k) × {0, 1}`(k), every first message α ∈ {0, 1}∗ (from an arbitrary and possibly

unbounded malicious receiver), and every sufficiently large k ∈ N, it holds that either

∆0(k) := ∆(Sot(1k,m0,m1, α), Sot(1k,m0, 0
`(k), α)) or,

∆1(k) := ∆(Sot(1k,m0,m1, α), Sot(1k, 0`(k),m1, α))

is negligible, where Sot(1k,m0,m1, α) denotes the (only) response of the honest sender

Sot with input (1k,m0,m1) when the receiver’s first message is α.

Statistically secure OT can be constructed from a vareity of cryptographic assumptions.

In [HK10HK10], Halevi and Kalai construct protocols satisfying the above definition under the

52

assumption that verifiable smooth projective hash families with hard subset membership prob-

lem exist (which in turn, can be constructed from a variety of standard assumptions such

as the quadratic-residue problem). [HO09HO09] show the equivalence of 2-message statistically

secure oblivious transfer and lossy encryption.

3.2 Modeling Captcha Puzzles

As said earlier, Captcha puzzles are problem instances that are easy for “humans” but hard

for computers to solve. Let us first consider the “hardness” of such puzzles for computers.

To model “hardness,” one approach is to consider an asymptotic formulation. That is,

we envision a randomized generation algorithm G which on input a security parameter 1k,

outputs a puzzle from a (discrete and finite) set Pk called the puzzle-space. Indeed, this is

the formulation that previous works [ABH03ABH03,Dzi10Dzi10,CHS06CHS06] as well as our work here follow.

assume that there is a fixed polynomial `(·) such that every puzzle instance z ∈ Pk is a bit

string of length at most `(k).

Of course, not all Captcha puzzle systems satisfy such an asymptotic formulation.

It is possible to have a (natural) non-asymptotic formulation to define Captcha puzzles

which takes into consideration this issue and defines hardness in terms of a “human popula-

tion” [ABH03ABH03]. However, a non-asymptotic formulation will be insufficient for cryptographic

purposes. For many puzzles, typically hardness can be amplified by sequential or parallel

repetition [CHS04CHS04].

Usually, Captcha puzzles have a unique and well defined solution associated with every

puzzle instance. We capture this by introducing a discrete and finite set Sk, called the

solution-space, and a corresponding solution function Hk : Pk → Sk which maps a puzzle

instance z ∈ Pk to its corresponding solution. Without loss of generality we assume that

every element of Sk is a bit string of length k. We will require that G generates puzzles

together with their solutions. This restriction is also required in previous works [ABH03ABH03,

Dzi10Dzi10]. To facilitate the idea that the puzzle-generation is a completely automated process,

G will not be given “access to a human.”

53

With this formulation, we can view “humans” as computational devices which can “ef-

ficiently” compute the solution function Hk. Therefore, to capture “access to a human”,

the algorithms can simply be provided with oracle access to the family of solution functions

H := {Hk}k∈N. Recall that by definition, oracle-access to H means that algorithms can only

provide an input z to some function Hk′ in the family H, and then read its output Hk′(z);

if z is not in the domain Pk′ , the response to the query is set to a special symbol, denoted

⊥. Every query to Hk′ will be assumed to contribute one step to the running time of the

querying algorithm. The discussion so far leads to the following definition for Captcha

puzzles.

Definition 3.2.1. (Captcha Puzzles) Let `(·) be a polynomial, and S := {Sk}k∈N and

P := {Pk}k∈N be such that Pk ⊆ {0, 1}`(k) and Sk ⊆ {0, 1}k. A Captcha puzzle system

C := (G,H) over (P ,S) is a pair such that G is a randomized polynomial time turing

machine, called the generation algorithm, and H := {Hk}k∈N is a collection of solution

functions such that Hk : Pk → Sk. Algorithm G, on input a security parameter k ∈ N,

outputs a tuple (z, a) ∈ Pk×Sk such that Hk(z) = a. We require that there exists a negligible

function negl(·) such that for every ppt algorithm A, and every sufficiently large k ∈ N, we

have that:

pinv(k) := Pr
[
(z, a)← G(1k);A(1k, z) = a

]
≤ negl(k)

where the probability is taken over the randomness of both G and A.

Turing Machines vs Oracle Turing Machines. We emphasize that the Captcha

puzzle generation algorithm G is an ordinary turing machine with no access to any oracles.

Furthermore, the security of a Captcha system holds only against ppt adversaries A who

are turing machines. It does not hold against oracle turing machines with oracle access

to H. However, we use Captcha systems defined as above in protocols which guarantee

security against adversaries who may even have access to the oracle H. This distinction

between machines which have access to an (human) oracle and machines which don’t occurs

throughout the text.

54

The Issue of Malleability. As noted earlier, Captcha puzzles are usually easily mal-

leable [DDN00DDN00]. That is, given a challenge puzzle z, it might be possible for an algorithm A

to efficiently generate a new puzzle z′ 6= z such that given the solution of z′, A can efficiently

solve z. It turns out that in all previous works this creates several difficulties in the security

proofs. In particular, in reducing the “security” of a cryptographic scheme to the “hardness”

of the Captcha puzzle, it becomes unclear how to handle such an adversary.

Due to this, previous works [Dzi10Dzi10,CHS06CHS06] only prove security against a very restricted

class of adversaries called the conservative adversaries. Such adversaries are essentially those

who do not query Hk on any Captcha instances other than the ones that are provided to

them by the system. To facilitate a proof against all ppt adversaries, we develop the notion

of human-extractable Captcha puzzles below.

Human-Extractable Captcha Puzzles. The notion of human-extractable Captcha

puzzles stems from the intuition that if a ppt algorithm A can solve a random instance z

produced by G, then it must make queries q̄ = (q1, q2, . . .) to (functions in) H that contain

sufficient information about z. More formally, suppose that z1 and z2 are generated by two

random and independent executions of G. IfA is given z1 as input and it produces the correct

solution, then the queries q̄ will contain sufficient information about z1 and no information

about z2 (since z2 is independent of z1 and never seen by A). Therefore, by looking at

the queries q̄, it should be possible with the help of the human to deduce which of the two

instances is solved by A. We say that a Captcha puzzle system is human-extractable if

there exists a ppt algorithm Extr which, by looking at the queries q̄, can tell with the help of

the human which of the two instances was solved by A. The formal definition follows; recall

the convention that output of oracle Turing machines includes the queries q̄ they make to H

and corresponding answers ā received.

Definition 3.2.2. (Human-extractable Captcha) A Captcha puzzle system C :=

(G,H) is said to be human-extractable if there exists an oracle ppt algorithm ExtrH , called

the extractor, and a negligible function negl(·), such that for every oracle ppt algorithm AH ,

55

and every sufficiently large k ∈ N, we have that:

pfail(k) := Pr


(z0, s0)← G(1k); (z1, s1)← G(1k); b

$← {0, 1} ;

(s, q̄, ā)← AH(1k, zb); b
′ ← ExtrH(1k, (z0, z1), q̄);

s = sb ∧ b′ 6= b

 ≤ negl(k)

where the probability is taken over the randomness of G,A, and Extr.

Observe that except with negligible probability, s0 6= s1, since otherwise one can break

the hardness of C(definition 3.2.13.2.1).

We believe that the notion of human-extractable Captcha puzzles is a very natural

notion; it may be of independent interest and find applications elsewhere. We note that while

assuming the existence of human-extractable Captcha puzzles may be a strong assumption,

it is very different from the usual extractability assumptions in the literature such as the

Knowledge-Of-Exponent (koe) assumption [HT98HT98, BP04BP04]. In particular, often it might be

possible to empirically test whether a given Captcha system is human-extractable. For

example, one approach for such a test is to just ask sufficiently many humans to correlate

the queries q̄ to one of the puzzles z0 or z1. If sufficiently many humans can correctly

correlate q̄ to zb with probability noticeably better than 1/2, one can already conclude some

form of weak extraction. Such weak extractability can then be amplified by using techniques

from parallel repetition. In contrast, there is no such hope for koe assumption (and other

problems with similar “non-black-box” flavor) since they are not falsifiable [Nao03Nao03].

In this work, we only concern ourselves with human-extractable Captcha puzzles. Thus

we drop the adjective human-extractable as convenient.

Drawbacks of Our Approach and Other Considerations. While our framework sig-

nificantly improves upon previous works [Dzi10Dzi10,CHS06CHS06], it still has certain drawbacks which

are impossible to eliminate in an asymptotic formulation such as ours.

The first drawback is that as the value of k increases, the solution becomes larger. It

is not clear if the humans can consistently answer such a long solution. Therefore, such a

formulation can become unsuitable for even very small values of k. The second drawback is

56

that the current formulation enforces strict “rules” on how a human and a Turing machine

communicate via oracle access to H. This does not capture “malicious” humans who can

communicate with their computers in arbitrary ways. It is not even clear how to formally

define such “malicious” humans for our purpose.

Finally, definition 3.2.13.2.1 enforces the condition that |Sk| is super-polynomial in k. For

many Captcha puzzle systems in use today, |Sk| may be small (e.g., polynomial in k or

even a constant). Such Captcha puzzles are not directly usable in our setting. Observe

that if |Sk| is small, clearly A can solve a given challenge puzzle with noticeable probability.

Therefore, it makes sense to consider the following weaker variant in definition 3.2.13.2.1: instead

of requiring pinv to be negligible, we can consider it to be a small constant ε. Likewise, we

can also consider weakening the extractability condition by in definition 3.2.23.2.2 by requiring

pfail to be only noticeably better than 1/2.

A subtle point to observe here is that while it might be possible to individually amplify

pinv and pfail by using parallel or sequential repetitions, it may not be possible to amplify

both at the same time. Indeed, when |Sk| is small, the adversary A can simply ask one

Captcha puzzle for every solution a ∈ Sk multiple times and “hide” the challenge puzzle

zb (in some mauled form z′b) somewhere in this large list of queries. Such a list of queries

might have sufficient correlation with both z0 and z1 simply because the solutions of these

both are in Sk and A has asked at least one puzzle for each solution in the whole space. In

this case, even though parallel repetition may amplify pinv, extraction might completely fail

because the correlation corresponding to the challenge puzzle is not easy to observe in A’s

queries and answers.

As a consequence of this, our formulation essentially rules out the possibility of using such

“weak” Captcha puzzles for which both pinv and pfail are not suitable. This is admittedly

a strong limitation, which seems to come at the cost of proving security beyond the class of

conservative adversaries.

57

3.3 A Straight-line Extractable Commitment Scheme

In this section we present a straight-line extractable commitment scheme which uses human-

extractable Captcha puzzles. The hiding and binding properties of this commitment

scheme rely on standard cryptographic assumptions, and the straight-line extraction prop-

erty relies on the extraction property of Captcha puzzles.

We briefly recall the notion of secure commitment schemes, with emphasis on the changes

from the standard definition and then define the notion of straight-line extractable commit-

ments.

Commitment Schemes. First, we present a definition of commitment schemes aug-

mented with Captcha puzzles. Let C := (G,H) be a Captcha puzzle system, and let

ComC := 〈CH ,R〉 be a two-party interactive protocol where (only) C has oracle access to

the solution function family H11. We say that ComC is a commitment scheme if: both C

and R are ppt (interactive) TM receiving 1k as the common input; in addition, C receives

a string m ∈ {0, 1}k. Further, we require C to privately output a decommitment string

d, and R to privately output an auxiliary string aux. The transcript of the interaction is

called the commitment string, denoted by c. During the course of the interaction, let q̄

and ā be the queries and answers obtained by C via queries to the Captcha oracle H.

To denote the sampling of an honest execution of ComC, we use the following notation:

(c, (d, q̄, ā), aux)← 〈CH(1k,m),R(1k)〉.

Notice that (d, q̄, ā) is the output of oracle ITM CH as defined in section 3.13.1. For con-

venience, we associate a polynomial time algorithm DCom which on input (c, d, aux) either

outputs a message m, or ⊥. It is required that for all honest executions where C commits

to m, DCom always outputs m. We say that ComC is an ordinary commitment scheme if q̄

(and hence ā) is an empty string.

Furthermore, our definition of a commitment scheme allows for stateful commitments. In

1The reason we do not provide R with access to H, is because our construction does not need it, and
therefore we would like to avoid cluttering the notation. In general, however, both parties can have access
to H. Also, in our adversarial model, we consider all malicious receivers to have access to the oracle H

58

particular the output aux might be necessary for a successful decommitment of the committed

message.

We assume that the reader is familiar with perfect/statistical binding and computational

hiding properties of a commitment scheme. Informally, straight-line extraction property

means that there exists an extractor ComExtrH which on input the commitment string c

(possibly from an interaction with a malicious committer), aux (from an honest receiver),

and q̄, outputs the committed message m (if one exists), except with negligible probability.

If m is not well defined, there is no guarantee about the output of ComExtr.

For any commitment, we useM =M(c, aux) to denote a possible decommitment message

defined by the commitment string c and the receiver state aux. If such a message is not well

defined (say there could be multiple such messages or none at all) for a particular (c, aux),

then define M(c, aux) = ⊥.

Definition 3.3.1. (Straight-line Extractable Commitment) A statistically-binding

computationally-hiding commitment scheme ComC := 〈CH ,R〉 defined over a human-extractable

Captcha puzzle system C := (G,H) is said to admit straight-line extraction if there exists

a ppt algorithm ComExtrH (the extractor) and a negligible function negl(·), such that for

every ppt algorithm Ĉ (a malicious committer whose input could be arbitrary), and every

sufficiently large k ∈ N, we have that:

Pr

 (c∗, (d∗, q̄, ā), aux)← 〈ĈH(1k, ·),R(1k)〉;M =M(c∗, aux);

m← ComExtrH(1k, q̄, (c∗, aux)) : (M 6= ⊥) ∧ (m 6=M)

 ≤ negl(k)

where the probability is taken over the randomness of Ĉ,R, and ComExtr.

The Commitment Protocol. At a high level, the receiver R of our protocol will choose

two Captcha puzzles (z0, z1) (along with their solutions s0, s1). To commit to bit b, the

sender C will select zb using the OT protocol and commit to its solution sb using an ordinary

(perfectly-binding) commitment scheme 〈Cpb, Rpb〉. The solution to the puzzle is obtained

by querying H on zb. To decommit, first decommit to sb which the receiver verifies; and then

the receiver accepts b as the decommitted bit if the solution it received is equal to sb. To

59

facilitate this task, the receiver outputs an auxiliary string aux which contains (z0, z1, s0, s1).

To commit to a k-bit string m ∈ {0, 1}k, this atomic protocol is repeated in parallel k-times

(with some minor modifications as in Figure 3.13.1)

For convenience we assume that 〈Cpb, Rpb〉 is non-interactive (i.e., C sends only one

message to R) for committing strings of length k2. The decommitment string then consists

of the committed messages and the randomness of Cpb. The formal description of our

protocol appears in figure 3.13.1.

Theorem 3.3.2. Assume that 〈Cpb, Rpb〉 is an ordinary, non-interactive, perfectly-binding

and computationally-hiding commitment scheme, C = (G,H) is a human-extractable Captcha

puzzle system, and 〈Sot, Rot〉 is a two-round statistically-secure oblivious transfer protocol.

Then, protocol ComC = 〈CH ,R〉 described in figure 3.13.1 is a 3-round perfectly-binding and

computationally-hiding commitment scheme which admits straight-line extraction.

Proof. [Sketch] Statistical binding of our scheme follows from perfect binding of 〈Cpb, Rpb〉

and the fact that except with negligible probability over the randomness of G, s0
i 6= s1

i for

every i ∈ [k] (since otherwise pinv(k) will not be negligible).

In addition, the computational-hiding of this scheme follows by a standard hybrid argu-

ment which uses the following two conditions: the receiver security property of 〈Sot, Rot〉,

and computational-hiding of 〈Cpb, Rpb〉. The proof of this part is standard, and omitted.

We now show that the scheme admits straight-line extraction. Suppose that string

(c∗, (d∗, q̄, ā), aux) represents the output of an execution of our commitment protocol; then

by statistical binding of our commitment scheme, except with negligible probability there is

a unique message defined by this string. In fact, this unique message is completely defined

by only the strings (c∗, {z0
i , z

1
i }ki=1), where {z0

i , z
1
i }ki=1 are Captcha puzzles of the honest

receiver (included in aux). Recall that to refer to this message, we use the variable M, and

write M(c∗, aux) to explicitly mention a transcript.

Now suppose that for a commitment scheme, it holds that Pr[M 6= ⊥] is negligible,

then straight-line extraction property as in Definition 3.3.13.3.1 holds trivially. Therefore, in

our analysis, it suffices to analyze malicious committers who satisfy the condition that

60

Let k be the security parameter, C := (G,H) a human-extractable Captcha puz-

zle system, 〈Cpb, Rpb〉 a non-interactive perfectly-binding commitment scheme for

strings of length k2, and 〈Sot, Rot〉 a two-message two-party OT protocol.

Commitment. Let m = (m1, . . . ,mk) ∈ {0, 1}k be the message to be committed.

1. Captcha Generation: For every i ∈ [k], R generates a pair of independent

Captcha puzzles: (z0
i , s

0
i)← G(1k) and (z1

i , s
1
i)← G(1k).

2. Parallel OT: C and R perform k parallel executions of OT, where the ith

execution proceeds as follows. Party R acts as the OT-sender Sot on input

(z0
i , z

1
i) and party C acts the OT-receiver Rot on input the bit mi. At the

end of the execution, let the puzzle instances obtained by C be zm1
1 , . . . , zmkk .

3. Commit to Captcha Solutions: For every i ∈ [k], C queries Hk on zmii

to obtain the solution smii . Let s̄ := sm1
1 ◦ . . . ◦ s

mk
k , which is of length k2. C

commits to s̄ using protocol 〈Cpb, Rpb〉. Let r be the randomness used and

c be the message sent by C in this step.

4. Outputs: R sets aux = {(z0
i , z

1
i , s

0
i , s

1
i)}ki=1, and C sets d = (s̄, r).

Decommitment. On input the commitment transcript, and strings d = (s̄, r) and

aux = {(z0
i , z

1
i , s

0
i , s

1
i)}ki=1 do the following: parse the transcript to obtain string c

from the last step, and verify that (s̄, r) is a valid decommitment for c. If yes, parse

s̄ = a1 ◦ . . .◦ak and test that for every i ∈ [k], there exists a unique bit bi such that

ai = sbii . If any test fails, output ⊥; otherwise output m = (b1, . . . , bk).

Figure 3.1: Straightline Extractable Commitment Protocol 〈CH ,R〉

the event M 6= ⊥ happens with non-negligible probability. The formal description of our

commitment-extractor, ComExtr, follows. It uses the (extractor-)machine Extr guaranteed

for the Captcha system C (by definition 3.2.23.2.2), to extract m bit-by-bit.

61

Algorithm ComExtrH(1k, q̄, (c∗, aux)):

1. Parse aux to obtain the puzzles {z0
i , z

1
i }ki=1.

2. For every i ∈ [k], set bi ← ExtrH(1k, (z0
i , z

1
i), q̄). If ExtrH outputs ⊥, then set bi = ⊥.

3. Output the string b1 ◦ . . . ◦ bk.

Observe that the extraction algorithm does not use the solutions {s0
i , s

1
i }ki=1 included in

the string aux, and this information is redundant. Also, the output of the algorithm above,

may include the ⊥ symbols in some places.

We say that ComExtrH(1k, q̄, (c∗, aux)) fails at step i if bi = ⊥ or if bi 6= Mi, where

Mi denotes the ith bit of the unique message M if it exists. Further, let pi(k) denote the

probability that this happens. Define the following probability pi(k) over the randomness of

Ĉ and R and Extr:

pi(k) := Pr

 (c∗, (d∗, q̄, ā), aux)← 〈ĈH(1k, ·),R(1k)〉;M :=M(c∗, aux);

bi = ExtrH(1k, (z0
i , z

1
i), q̄) :Mi 6= ⊥ ∧ bi 6=Mi

 (3.3.1)

We remark again, that pi(k) is not affected by the actual solutions {s0
i , s

1
i }ki=1 included

in aux in the equation above. This is becauseM is completely defined by c∗ and the puzzles

{z0
i , z

1
i }ki=1, and every other expression in the equation does not depend on aux.

If we prove that pi(k) is negligible for every i ∈ [k], then by union bound, it follows that,

except with negligible probability, the output of ComExtr is always equal toM (orM equals

⊥). This will complete the proof of the theorem. To show pi(k) is negligible, we construct

an adversary for the extraction game in Definition 3.2.23.2.2(we will call such an adversary an

Captcha extraction adversary), and then show that pi(k) and pfail are negligibly close.

Informally, the proof follows from the fact that when the commitment adversary solves

a particular Captcha puzzle, say zbi , and commits to its solution sbi , the “other” Captcha

puzzle z1−b
i is statistically hidden from his view due to the statistical security of the OT

protocol. Thus, this commitment adversary can be converted to a Captcha extraction

adversary by setting zib = z̃, where z̃ is the Captcha puzzle that the Captcha extraction

62

adversary gets to see in the extraction game (Definition 3.2.23.2.2). Due to space limitations, we

defer the formal proof to Appendix 4.14.1.

3.4 Constructing UC-Puzzles using Captcha

We provided a basic background in the section 1.21.2 to our results on protocol composition,

and mentioned that there are two ways in which we can incorporate Captcha puzzles in the

UC-framework: the indirect access model, and the direct access model. This section is about

constructing UC puzzles [LPV09LPV09] in the indirect access model. Recall that in the indirect

access model, the environment Z is not given direct access to a human (or the solution

function family of the Captcha system) H; instead, Z must access H exclusively through

the adversary A. This allows the simulator to look at the queries of Z, which in turn allows

for a positive result. Due to space constraints, we shall assume basic familiarity with the

UC-framework [Can01Can01], and directly work with the notion of UC-puzzles. A more detailed

review of the UC framework, and concurrent composition, is given in appendix 4.34.3 .

Lin, Pass and Venkitasubramaniam [LPV09LPV09] defined the notion of a UC puzzle, and

demonstrated that to obtain universal-composition in a particular model (e.g., the CRS

model), it suffices to construct a UC puzzle in that model. We will adopt this approach,

and construct a UC puzzle using Captcha. We recall the notion of a UC-puzzle with nec-

essary details, and refer the reader to [LPV09LPV09] for an extensive exposition. Our formulation

directly incorporates Captcha puzzles in the definition and hence does not refer to any

setup T ; other than this semantic change, the description here is essentially identical to that

of [LPV09LPV09].

The UC-puzzle is a protocol which consists of two parties—a sender S, and a receiver R,

and a PPT-relation R. Let C := (G,H) be a Captcha puzzle system. Only the sender will

be given oracle access toH, and the resulting protocol will be denoted by 〈SH , R〉. Informally,

we want that the protocol be sound : no efficient receiver R∗ can successfully complete an

interaction with S and also obtain a “trapdoor” y such that R(TRANS, y) = 1, where

63

TRANS is the transcript of that execution. We also require statistical UC-simulation: for

every efficient adversary A participating as a sender in many executions of the protocol with

multiple receivers R1, . . . , Rm, and communicating with an environment Z simultaneously,

there exists a simulator Sim which can statistically simulate the view of A for Z and output

trapdoors to all successfully completed puzzles at the same time.

Formally, we consider a concurrent execution of the protocol 〈SH , R〉 for an adversary A.

In the concurrent execution, A exchanges messages with a puzzle-environment Z and par-

ticipates as a sender concurrently in m = poly(k) (puzzle)-protocols with honest receivers

R1, . . . , Rm. At the onset of a execution, Z outputs a session identifier sid that all receivers

receive as input. Thereafter, Z is allowed to exchange messages only with the adversary A.

In particular, for any queries to the Captcha solving oracle, Z cannot query H; instead, it

can send its queries to A, who in turn, can query H for Z, and report the answer back to

Z. We compare a real and an ideal execution.

Real Execution. The real execution consists of the adversary A, which interacts with Z,

and participates as a sender in m concurrent interactions of 〈SH , R〉. Further, the adversary

and the honest receivers have access to H which they can query and receive the solutions

over secure channels. The environment Z does not have access to H; it can query H, by

sending its queries to A, who queries H with the query and reports the answers back to Z.

Without loss of generality, we assume that after every interaction, A honestly sends TRANS

to Z, where TRANS is the transcript of execution. Let realHA,Z(k) be the random variable

that describes the output of Z in the real execution.

Ideal Execution. The ideal execution consists of a ppt machine (the simulator) with

oracle access to H, denoted SimH . On input 1k, SimH interacts with the environment Z. At

the end of the execution, the environment produces an output. We denote the output of Z

in the ideal execution by the random variable idealSimH ,Z(k).

Definition 3.4.1. (UC-Puzzle, adapted from [LPV09LPV09]) Let C := (G,H) be a Captcha

64

puzzle system. A pair (〈SH , R〉,R) is called UC-puzzle for a polynomial time computable re-

lation R and the Captcha puzzle system C, if the following conditions hold:

• Soundness. There exists a negligible function negl(·) such that for every ppt receiver

A, and every sufficiently large k, the probability that A, after an execution with the

sender SH on common input 1k, outputs y such that y ∈ R(TRANS) where TRANS is

the transcript of the message exchanged in the interaction, is at most negl(k).

• Statistical Simulation. For every ppt adversary A participating in a concurrent

puzzle execution, there exists an oracle ppt machine called the simulator, SimH , such

that for every ppt environment Z and every sufficiently large k, the random variables

realHA,Z(k) and idealSimH ,Z(k) are statistically close over k ∈ N, and whenever Sim

sends a message of the form TRANS to Z, it outputs y in its special output tape such

that y ∈ R(TRANS).

Some Tools and Notation. To construct the UC-puzzle, we will use our straight-line ex-

tractable commitment scheme ComC := 〈CH ,R〉 from figure 3.13.1. However, this commitment

scheme is too weak for our purposes. In particular, it has the following issues: it is possible

for a cheating committer to commit to an invalid string ⊥ (simply by committing incorrect

solutions to Captcha puzzles), and this event cannot be detected by the receiver. We

would like to ensure that if the receiver accepts the transcript, then except with negligible

probability, there be a unique and valid string fixed by the transcript of the communication.

However, since the Captcha solutions cannot be verified by a ppt Turing machine, we

cannot use zero-knowledge proofs right-away to guarantee this.

Therefore, we resort to using our extractable commitment scheme along with an ordinary

commitment scheme, and then use simple “cut-and-choose” techniques to ensure that the two

commitment schemes commit to same values. Once this is ensured, the ordinary commitment

scheme will provide us with NP-relations which we can work with.

Formally, let 〈Cpb, Rpb〉 be a non-interactive perfectly-binding and computationally-

hiding commitment scheme; and let ComC := 〈CH ,R〉 be our extractable-commitment scheme

65

in figure 3.13.1 defined over an human-extractable Captcha puzzle system C := (G,H). Then,

define the following commitment scheme:

Scheme Ĉom(v):

To commit to a value v, the sender commits to v twice: first commit to v using

the protocol 〈Cpb, Rpb〉, then commit to v using the protocol 〈CH ,R〉. The Receiver

accepts the commitment if both, Rpb and R, accept their respective commitments.

To open to a value v, the sender executes the opening phases of both Cpb and ComC; and

if both opening phases accept v as the decommitted value, the receiver of Ĉom also accepts v

as the decommitted value. That fact that Ĉom is statistically-binding and computationally-

hiding follows directly from the corresponding properties of 〈Cpb, Rpb〉 and 〈CH ,R〉. Now

define the following 3-round “cut-and-choose” protocol for committing to a string s, which

is essentially taken from [Ros04Ros04,PRS02PRS02], except that it uses the scheme Ĉom:

Scheme PRSCom(s):

1. Sender selects 2k strings { si0 }ki=1, { si1 }ki=1 such that s = si0 ⊕ s1
1. Now the sender

commits to string s, as well as all 2k strings { si0 }ki=1, { si1 }ki=1 using the special

commitment scheme Ĉom.

2. Receiver sends a uniformly selected challenge σ = σ1 ◦ . . . ◦ σk ∈ { 0, 1 }k.

3. Sender opens to siσi for each 1 ≤ i ≤ k by sending the decommitment information

for Ĉom. Receiver accepts the commitment phase, if these are valid openings.

To open the committed string s according to the scheme PRSCom, the sender simply

opens the rest of commitment values as well, i.e., decommitment to s as well as to the

remaining k unopened strings. The fact that PRSCom is actually a statistically-binding

and computationally-hiding commitment scheme follows (only) from the fact that Ĉom is

a statistically-binding and computationally-hiding commitment scheme. This is a standard

proof, and is omitted (see, e.g., [Ros04Ros04,PRS02PRS02]).

66

For convenience, we define the notion of well-formedness of PRSCom. Informally, we say

that a PRS commitment is well formed if each pair of commitments in the first step is indeed

to valid shares of s.

Definition 3.4.2. (Partial Transcripts) Let 〈ρ, (ρ1
0, ρ

1
1), . . . , (ρk0, ρ

k
1)〉 be the transcripts

of the commit phases of the 2k + 1 executions of Ĉom in Step 1 of a successfully completed

execution of PRSCom. For each (i, b) ∈ { 1, . . . , k }×{ 0, 1 }, parse ρib as a pair of transcripts

(τ ib , θ
i
b), where τ ib is the transcript of the commit phase of 〈Cpb, Rpb〉, and θib is the transcript

of the commit phase of 〈CH ,R〉, in the (i, b)-execution of Ĉom. Similarly, let ρ = (τ, θ).

Define the partial transcript to be the tuple 〈τ, (τ 1
0 , τ

1
1), . . . , (τ k0 , τ

k
1)〉.

Definition 3.4.3. (Well-formed PRS) Let Ψ = 〈τ, (τ 1
0 , τ

1
1), . . . , (τ k0 , τ

k
1)〉 be the partial

transcript of the commitment phase of PRSCom. Then, we say Ψ is well-formed if for every

1 ≤ i ≤ k: si0 ⊕ si1 = s where sib and s denote the strings committed in τ ib and τ respectively

and b ∈ {0, 1}.

For a partial transcript Ψ = 〈τ, (τ 1
0 , τ

1
1), . . . , (τ k0 , τ

k
1)〉 we define the string committed in Ψ,

sΨ, as follows: if Ψ is well-formed, then sΨ := s, where s is the string committed in τ . Else,

sΨ :=⊥.

Note that as 〈Cpb, Rpb〉 is a perfectly-binding commitment scheme, given Ψ, the state-

ment that “Ψ is well-formed” is an NP-statement where the witness consists of all the

committed strings along with the correct openings (which, in turn, is just the randomness

used by algorithm Cpb).

The UC-puzzle System. The construction of our UC-puzzle over an human-extractable

Captcha puzzle system C := (G,H), denoted
(
〈SH , R〉,R

)
appears in figure 3.23.2.

R(TRANS, s) = 1 if and only if:

1. TRANS := ((z, fk), τ2, τ3) ∈ {0, 1}`1(k), and s ∈ {0, 1}k.

2. z = fk(s), where (z, fk) represents sender’s Phase-1 message

3. τ3, representing the transcript of ZK-proof in Phase-3, is accepting.

67

All parties are given k as the security parameter, and { fk }k∈N is a family

of one-way permutations such that fk : {0, 1}k → {0, 1}`
′(k).

Phase-1. Sender chooses a string s ∈ { 0, 1 }k uniformly, and sends z =

fk(s) and the description of fk.

Phase-2. Sender commits to the string s using the scheme PRSCom(s).

Let Ψ := 〈τ, (τ 1
0 , τ

1
1), . . . , (τ k0 , τ

k
1)〉 be the partial transcript. If the

zero-knowledge proof is accepting, the Receiver accepts and halts.

Figure 3.2: UC Puzzle 〈SH , R〉 using a Captcha puzzle system C := (G,H)

The string s is defined to be the trapdoor of the accepting execution TRANS.

Theorem 3.4.4. Assume that {fk}k∈N is a family of one-way permutations, and that C :=

(G,H) is an human-extractable Captcha puzzle system. Then, the protocol 〈SH , R〉 in

figure 3.23.2 is a UC puzzle.

Due to space constraints, we refer the reader to a complete proof of this theorem provided

in appendix 4.24.2 . Very briefly and informally, the high-level ideas of the proof proceed

as follows. First, the cut-and-choose method in PRSCom ensures that the corresponding

components of two commitment schemes (included in Ĉom), are indeed equal with high

probability. Then, the ZK-proof guarantees that for one of them that the XOR of the

majority of pairs committed to yield a unique and well defined value, say sΨ and that it is

equal to the desired trapdoor s, with high probability. Then, sΨ can be recovered from the

extractable-commitment part to prove the statistical simulation. Soundness is proven using

a standard hybrid argument.

3.5 Conclusion

Open Questions and Future Work. Our work presents a basic technique using human-

extractable Captcha puzzles to enable straight-line extraction and shows how to incorpo-

rate it into the framework of protocol composition to obtain new and interesting feasibility

68

results. However, many other important questions remain to be answered. For examples,

can we obtain zero-knowledge proofs for NP in 3 or less rounds?22 Can we obtain plain-

text aware encryption-schemes? What about non-interactive non-malleable commitments

without setup [DDN00DDN00,CIO98CIO98,CKO01CKO01,PPV08PPV08]?

One interesting direction is to consider improving upon the recent work of Goyal, Jain,

and Ostrovsky on generating a password-based session-keys in the concurrent setting [GJO10GJO10].

One of the main difficulties in [GJO10GJO10] is to get a control on the number of times the sim-

ulator rewinds any given session. They accomplish this by using the technique of precise-

simulation [MP06MP06,PPS08PPS08]. However, since we obtain straight-line simulation, it seems likely

that our techniques could be used to improve the results in [GJO10GJO10]. The reason we are not

able to do this is that our techniques are limited to only simulation—they do not yield both

straight-line simulation and extraction, whereas [GJO10GJO10] needs a control over both.

Another interesting direction is to explore the design of extractable Captcha puzzles.

In general, investigating the feasibility and drawbacks of the asymptotic formulation for

Captcha puzzles presented here and in [ABH03ABH03, CHS06CHS06, Dzi10Dzi10] is an interesting question

in its own right. We presented a discussion of these details in section 3.23.2, however they still

present numerous questions for future work.

2By using standard techniques, e.g., coin-tossing using our commitment scheme along with Blum’s pro-
tocol [Blu87Blu87], we can obtain a 5-round (concurrent) zero-knowledge protocol. But we do not know how to
reduce it to 3 rounds.

69

CHAPTER 4

Concurrent Non-Malleable Zero Knowledge

4.1 Proof of Theorem 3.3.23.3.2

In this section we present the complete proof of security of our extractable commitment

scheme.

Theorem 4.1.1 (Restated). Assume that 〈Cpb, Rpb〉 is an ordinary, non-interactive, perfectly-

binding and computationally-hiding commitment scheme, C = (G,H) is a human-extractable

Captcha puzzle system, and 〈Sot, Rot〉 is a two-round statistically-secure oblivious trans-

fer protocol. Then, protocol ComC = 〈CH ,R〉 described in figure 3.13.1 is a 3-round perfectly-

binding and computationally-hiding commitment scheme which admits straight-line extrac-

tion.

Proof. Statistical binding of our scheme follows from perfect binding of 〈Cpb, Rpb〉 and

the fact that except with negligible probability over the randomness of G, s0
i 6= s1

i for every

i ∈ [k] (since otherwise pinv(k) will not be negligible).

In addition, the computational-hiding of this scheme follows by a standard hybrid argu-

ment which uses the following two conditions: the receiver security property of 〈Sot, Rot〉,

and computational-hiding of 〈Cpb, Rpb〉. The proof of this part is standard, and omitted.

We now show that the scheme admits straight-line extraction. Suppose that string

(c∗, (d∗, q̄, ā), aux) represents the output of an execution of our commitment protocol; then

by statistical binding of our commitment scheme, except with negligible probability there is

a unique message defined by this string. In fact, this unique message is completely defined

by only the strings (c∗, {z0
i , z

1
i }ki=1), where {z0

i , z
1
i }ki=1 are Captcha puzzles of the honest

70

receiver (included in aux). Recall that to refer to this message, we use the variable M, and

write M(c∗, aux) to explicitly mention a transcript.

Now suppose that for a commitment scheme, it holds that Pr[M 6= ⊥] is negligible,

then straight-line extraction property as in Definition 3.3.13.3.1 holds trivially. Therefore, in

our analysis, it suffices to analyze malicious committers who satisfy the condition that

the event M 6= ⊥ happens with non-negligible probability. The formal description of our

commitment-extractor, ComExtr, follows. It uses the (extractor-)machine Extr guaranteed

for the Captcha system C (by definition 3.2.23.2.2), to extract m bit-by-bit.

Algorithm ComExtrH(1k, q̄, (c∗, aux)):

1. Parse aux to obtain the puzzles {z0
i , z

1
i }ki=1.

2. For every i ∈ [k], set bi ← ExtrH(1k, (z0
i , z

1
i), q̄). If ExtrH outputs ⊥, then set bi = ⊥.

3. Output the string b1 ◦ . . . ◦ bk.

Observe that the extraction algorithm does not use the solutions {s0
i , s

1
i }ki=1 included in

the string aux, and this information is redundant. Also, the output of the algorithm above,

may include the ⊥ symbols in some places.

We say that ComExtrH(1k, q̄, (c∗, aux)) fails at step i if bi = ⊥ or if bi 6= Mi, where

Mi denotes the ith bit of the unique message M if it exists. Further, let pi(k) denote the

probability that this happens. Define the following probability pi(k) over the randomness of

Ĉ and R and Extr:

pi(k) := Pr

 (c∗, (d∗, q̄, ā), aux)← 〈ĈH(1k, ·),R(1k)〉;M :=M(c∗, aux);

bi = ExtrH(1k, (z0
i , z

1
i), q̄) :Mi 6= ⊥ ∧ bi 6=Mi

 (4.1.1)

We remark again, that pi(k) is not affected by the actual solutions {s0
i , s

1
i }ki=1 included

in aux in the equation above. This is becauseM is completely defined by c∗ and the puzzles

{z0
i , z

1
i }ki=1, and every other expression in the equation does not depend on aux.

If we prove that pi(k) is negligible for every i ∈ [k], then by union bound, it follows that,

except with negligible probability, the output of ComExtr is always equal toM (orM equals

71

⊥). This will complete the proof of the theorem. To show pi(k) is negligible, we construct

an adversary for the extraction game in Definition 3.2.23.2.2(we will call such an adversary an

Captcha extraction adversary), and then show that pi(k) and pfail are negligibly close.

Informally, the proof follows from the fact that when the commitment adversary solves

a particular Captcha puzzle, say zbi , and commits to its solution sbi , the “other” Captcha

puzzle z1−b
i is statistically hidden from his view due to the statistical security of the OT

protocol. Thus, this commitment adversary can be converted to a Captcha extraction

adversary by setting zib = z̃, where z̃ is the Captcha puzzle that the Captcha extraction

adversary gets to see in the extraction game (Definition 3.2.23.2.2).

To prove the above statement formally, we analyze the following hybrid games.

Hybrid H1. In this hybrid experiment, we consider the interaction of Ĉ with the following

simulator S. Simulator S interacts with Ĉ on common input 1k exactly like an honest

receiver R of our commitment protocol except that in session i, the messages corresponding

to the OT protocol are forwarded to an external (honest) OT-sender Sot. The OT-sender

Sot is given inputs (x0, x1) where (xb, sb) ← G(1k) for b ∈ {0, 1} by S. At the end of the

experiment, denote by let (d′, q̄′, ā′) denote the contents of output tape of Ĉ, and c′ denote the

commitment string. Define the puzzles and solutions corresponding to session i as follows:

z0
i = x0, z

1
i = x1, s

0
i = ⊥, s1

i = ⊥. By defining these values, we have completely defined aux′

(which includes puzzles and solutions for all sessions). Define (c′, (d′, q̄′, ā′), aux′) to be the

output of H1.

Let q1(k) denote the probability that the event in equation (4.1.14.1.1) occurs, when we replace

the string (c∗, (d∗, q̄, ā), aux) by the output of H1—i.e., (c′, (d′, q̄′, ā′), aux′).

Observe that except for the solutions (s0
i , s

1
i), all components of the string (c′, (d′, q̄′, ā′), aux′),

are distributed identically to the corresponding components of string (c∗, (d∗, q̄, ā), aux). Fur-

ther, as noted earlier, the event in equation (4.1.14.1.1) is independent of (s0
i , s

1
i). Therefore,

ComExtr fails at step i with probability pi(k) even if we use the strings (c′, (d′, q̄′, ā′), aux′)

sampled according to Hybrid 1, in equation 4.1.14.1.1. Therefore, we have that q1(k) = pi(k).

Note that experiment H1 is a polynomial time process.

72

Before going to the next set of hybrid experiments, we make some observations. Recall

that our protocol consists of k parallel OT-executions; let us denote them by OT1, . . . ,OTk.

Each OT-execution has exactly 2-rounds, and the message corresponding to execution OTi,

say αi is forwarded to Sot(in H1). To compute αi, our simulator S, selects a random-tape

r which is independent from the randomness used to sample x0 and x1 of experiment H1.

Let R be the domain from which r is sampled.

Consider an exponential number of experiments Hr, defined below, one for each r ∈ R.

We show that in each one of them, qr(k), defined analogous to q1(k), is negligible. We

note that unlike “standard” hybrid arguments which use indistinguishability of consecutive

hybrids, we have that q1(k) is related to qr(k) via equation 4.1.24.1.2.

Hybrid Hr. This experiment is identical to H1 except that the randomness sampled by

S apart from that used to sample (x0, x1) of is fixed to the string r. The output of this

experiment is defined exactly as in Hr. Let qr(k) denote the probability that event in

equation (4.1.14.1.1) occurs when we replace the string (c∗, (d∗, q̄, ā), aux) by the output of H1.

By definition, we have that for all k ∈ N:

q1(k) =
∑
r∈R

qr(k) · Pr[r is the randomness sampled by S] ≤ max
r
qr(k) (4.1.2)

We consider the hybrids Hr to enable us to use the statistical security property of the

OT protocol. Consider any r (one that makes the value qr(k) maximum is most convenient).

To measure qr, we will make use of definition 3.1.13.1.1 and get rid of one of the puzzles (x0, x1).

Note that, every string r ∈ R results in our simulator S sending a string αi to Sot. Since r

generates αi, and r is hardwired in Hr, this experiment always sends the same string αi to

Sot, who responds with some reply, say β ← Sot((x0, x1), αi). By definition 3.1.13.1.1, it holds

that random-variable β is statistically-close to one of the following: either Sot((x0, 0
`(k)), αi)

or Sot((0`(k), x1), αi). Let γ(r) be the bit that indicates which of these two cases is true

73

(with ties broken arbitrarily). Note that the value of γ(r) for every r ∈ R, is fixed and can

be given to a non-uniform machine as an advice.

Hybrid H1
r. This hybrid is identical to Hr, except that it non-uniformly receives the value

of the bit γ(r). The output of this experiment is therefore distributed identically to that of

Hr.

Hybrid H2
r. This hybrid is identical to Hr except for the following difference: instead

of computing β ← Sot((x0, x1), αi) it computes the output of Sot on either (x0, 0
`(k)) or

(0`(k), x1) depending upon the value of γ(r). If γ(r) = 0, Sot is given ((x0, 0
`(k)), αi) as

input; else, if γ(r) = 1, it is given ((0`(k), x1), αi).

By construction, and by definition 3.1.13.1.1, it holds that the output of this distribution

is statistically-close to that of H1
r , with distance ∆γ(r)(k). Therefore, if q′r(k) denotes the

probability that the event in equation (4.1.14.1.1) occurs, when we replace the string (c∗, (d∗, q̄, ā)

by the output of H2
r , then

q′r(k) ≤ qr(k) + ∆γ(r)(k) (4.1.3)

Next, we show that q′r is at most pfail(k) as defined in definition 3.2.23.2.2. To see this, consider

the following adversary for breaking the extractability property of the Captcha system C.

Adversary AHC . The adversary incorporates the entire hybrid experiment H2
r , including

the values of r and γ(r) . The adversary receives a challenge puzzle z as input. The

execution of the adversary, on input z, internally simulates H2
r (including the honest sender

Sot), except for the following difference: if γ(r) = 0, it sets x0 = z, and otherwise it sets

x1 = z. Note that AC must use its oracle H to correctly simulateH2
r since the hybrid includes

a cheating committer Ĉ who requires access to H.

When the execution of Hr
2 halts, let the contents of the tapes of the cheating committer Ĉ,

corresponding to the ith-execution be (d∗i , q̄, ā). The decommitment information d∗i includes

a value s∗i , supposedly a solution for xγ(r) = z. The adversary outputs s∗i as its solution to

the challenge z.

74

First off, note that if M 6= ⊥, it holds that except with negligible probability s∗i is a

unique and well-defined value, which is indeed the solution of z. Next, observe that the

internal execution of AC, on input z sampled honestly using G, is in fact identical to that of

H2
r . Finally, observe that the queries made by A, are independent of the “other” Captcha

puzzle. That is, if γ(r) = 0, the queries made by A are independent of x1 or any other

puzzle. The case for γ(r) = 1 is symmetric.

Therefore, if the event in equation (4.1.14.1.1) occurs on outputs of Hr
2 with probability q′r(k),

then it must happen with same probability in internal execution of A on a random challenge

puzzle. But occurrence of this event is equivalent to the failure of the Captcha extractor

as defined in definition 3.2.23.2.2. Therefore, it holds that q′r(k) ≤ pfail(k). By combining the

results from all the hybrids in the sequence, we conclude that pi(k) is at most negligible.

This completes the proof straight-line extraction.

4.2 Proof of UC Puzzle Construction

We now prove that (〈SH , R〉,R), as defined in Section 3.43.4, is a UC puzzle, and begin with the

soundness property. Recall that the soundness property requires that no malicious receiver

can output the trapdoor s. In our case, the trapdoor is the pre-image (under the one-way

permutation family { fk }k∈N) of the first message of the protocol, z. We will show that if

there exists a malicious receiver that succeeds in outputting the trapdoor with non-negligible

probability, then there exists an adversary that inverts the one-way permutation with some

non-negligible probability. Informally, it will follow from the hiding property of PRSCom,

and the zero-knowledge property of the proof in Phase 3, that the receiver does not learn

s from Phases 2 and 3 of the protocol. Thus, if it succesfully outputs the trapdoor, it

must do so by inverting the one-way permutation. As a technical point, note that when we

are constructing the adversary for fk(·), we are no longer inside the UC framework, and in

particular, we are allowed to rewind the adversary. Details follow.

Lemma 4.2.1. For any malicious receiver R∗H , the probability that it outputs s such that

R(TRANS, s) = 1, where TRANS is an accepting transcript, is negligible in n.

75

Proof. Let R∗H be a malicious receiver that outputs the correct pre-image for the first

message of an accepting execution with probability ε. We construct an adversary A that

inverts fk(·) with probability negligibly close to ε. We construct A through a series of hybrid

adversaries, wherein we maintain the invariant that each intermediate adversary outputs the

pre-image with probability negligibly close to ε. As observed before, we are no longer in the

UC framwork and are thus allowed to rewind the adversary.

Hybrid A0: Adversary A0 starts an internal execution of 〈SH , R∗H〉 along with the envi-

ronment. In particular, A0 starts by setting the random tapes of the environment and R∗H ,

and starts simulating the execution of 〈SH , R∗H〉, conveying messages between the various

parties. The adversary A0 simulates an honest SH itself. In the end, A0 outputs whatever

R∗H outputs. It is clear that this internal simulation is identical to the real execution, and

A0 outputs the correct pre-image of the first message with probability ε.

Hybrid A1: Adversary A1 is the same as A0 except that in Phase 3, instead of giving the

zero-knowledge proof from SH to R∗H , it uses the simulator. More precisely, let SimZK be

the simulator for the zero-knowledge proof in Phaes 3. Adversary A1 runs the execution of

the puzzle similar to A0, except that it conveys all Phase 3 messages from R∗H to SimZK,

and all SimZK messages back to R∗H . If SimZK needs to rewind the verifier, then A1 rewinds

the entire execution, including the environment and the honest sender. This is simply done

be restarting the entire execution with same random tapes for the environment and R∗H ,

and using same messages from the sender till the point of rewind.

We claim that A1 outputs the trapdoor with probability negligibly close to ε: consider

the following stand-alone malicious verifier V̄ H for the zero-knowledge proof used in Phase

3 - verifier V̄ H has access to SH , R∗H and the environment, and starts an execution as in

hybrid A0. The verifier V̄ H relays the the Phase 3 messages from the R∗H to the external

prover, and sends the responses of the external prover back to R∗H . Finally, V̄ H outputs

whatever R∗H outputs.

Note that the output ofA0 is identical to the output of an interaction of V̄ H with a real ZK

76

prover, while the output of A1 is identical to the output of a simulation. If the probabilities of

outputting the trapdoor by A0 and A1 differ noticeably, then we can distinguish between the

real interaction and a simulation of the ZK protocol, which contradicts the zero-knowledge

property.

Hybrid A2: Adversary A2 is the same as A1 except in Phase 2, instead of committing to

s, it commits to all-zeros string. The rest of the execution is the same.

we claim that the probabilities that A1 and A2 output the trapdoor are negligibly close.

Consider the following malicious receiver R̄H for PRSCom, that interacts with the external

challenger. The challenger either commits to the all-zeros string, or to a random string,

and R̄H tries to distinguish between the two cases. Receiver R̄H has access to SH , R∗H and

the environment, and starts an execution as in A1. It runs the PRSCom protocol with the

challenger on one side, and conveys the messages to R∗H on the other side. In the end, it

outputs whatever R∗H outuputs.

Observe that the output of A1 is identical to the output of the above game when the

challenger commits to a random string, while the output ofA2 is identical to the output of the

above game when the challenger commits to the all-zeros string. Thus, if the probability of

outputting the trapdoor differ noticeably, then we contradict the hiding property of PRSCom.

Our final adversary A receives fk(s) from the external challenger, for a randomly chosen

s. It runs the same execution as A2, except that in Step 1, it sends fk(s) to R∗H . This

execution is identical to the execution of A2, and thus A outputs the correct pre-image with

probability negligibly close to ε. It follows from the hardness of fk(·) that ε is negligible in

n.

Now we consider the simulation and extraction property. It is easy to statistically simulate

a malicious sender’s view, as the simulator only has to play the honest receivers’ parts. For

extraction, we can extract from the ExtCom part of Ĉom.

Lemma 4.2.2. Let S∗H be a malicious sender. Then there exists a simulator SimH that

statistically simulates the view of S∗H . Further, the probability that S∗H sends an accepting

77

transcript TRANS to the environment and SimH does not output the trapdoor s such that

R(TRANS, s) = 1, is negligible in n.

Proof. The simulator SimH , on input 1k, starts an internal execution of the adversary S∗H

on input 1k. All messages that S∗H sends to receivers are handled by SimH by emulating

honest receiver strategies. All communicatin between S∗H and the environment is relayed

back and forth by SimH . As the simulator plays the honest receiver strategy, idealSimH ,Z(k)

and realHA,Z(k) are identical.

We now show how SimH extracts the trapdoor. For each puzzle execution j, for each

(i, b) ∈ [k]×{ 0, 1 }, let tji,b := (q̄, c, aux)ji,b be the queries, transcript and auxilliary information

corresponding to the (i, b)th execution of of ExtCom in the jth puzzle execution. Once a

puzzle execution terminates, the simulator runs procedure TrapExtr (described below) on

input { tji,b }(i,b)∈[k]×{0,1}. This procedure returns a string sj, which SimH outputs as the

trapdoor for the jth puzzle execution. We call { tji,b }(i,b)∈[k]×{0,1} the extraction transcript of

the puzzle execution.

Algorithm TrapExtr({ ti,b }(i,b)∈[k]×{0,1})

1. For each (i, b) ∈ [k]× { 0, 1 }, obtain sib ← ComExtr(1k, ti,b).

2. For each i ∈ [k], set si = si0⊕si1. Let s be the most frequent string in the sequence

(s1, . . . , sk). Output s.

We prove that TrapExtr returns the correct trapdoor with overwhelming probability.

First, observe that soundness of the zero-knowledge proof in Phase 3 of the UC Puzzle

immediately implies the following lemma,

Proposition 4.2.3. The probability (over that random coins of the receiver) that the zero-

knowledge proof in Phase 3 of puzzle execution is accepting and the partial transcript of that

execution, Ψ, is not well-formed, is negligible in k.

78

Next, we show that whenever that partial transcript is well-formed, the string returned

by TrapExtr is the same as the string commited in partial transcript Ψ, with overwhelming

probability.

Proposition 4.2.4. Let Ψ be the partial transcript of a puzzle execution, and let sΨ be the

string committed in Ψ. Further, let s be the string returned by TrapExtr when run on the

extraction transcript of the puzzle execution. Then conditioned on the event that Ψ is well

formed, the probability (over receiver’s random coins) that sΨ 6= s is negligible in k.

Proof. For a particular execution of Ĉom, we say that the commitment is invalid if the

strings committed in both the commit phases (that is, Cpb and ExtCom) are not the same.

Note that if the number of invalid commitments is ω(log(k)), then with probability negligibly

close to 1, the reciever will reject. Thus, given that Ψ is well-formed, more than half of Ĉom

exeuctions are valid. Therefore, the probability that sΨ 6= s is negligible.

Finally we observe that it follows from the soundness of the zero-knowledge proof in

Phase 3 of the puzzle that with all but negligible probability, fk(sΨ) = z. The lemma follows

from combining this with Propositions 4.2.34.2.3 and 4.2.44.2.4.

4.3 Brief Review of Protocol Composition

Protocol composition is a general term to describe how the security of various cryptographic

protocols behave when they execute in a complex environment in which many other types

of protocols are running at the same time. Roughly speaking, there are mainly three types

of protocol compositions considered in the literature: self-composition, general-composition,

and universal-composition. Barring some technical conditions, a sequence of results in the

literature shows that for most “interesting” functionalities (except Zero Knowledge), all three

notions are essentially (equivalent and) impossible to achieve [CF01CF01,Lin03aLin03a,Lin03bLin03b,Lin04Lin04].

In section 3.43.4, we constructed UC puzzle. Below, we provide a brief review of UC

framework, and how to incorporate the Captcha systems in this framework. This is followed

79

by a brief discussion about the modeling, and concurrent self-composition. For a detailed

exposition of these topics we refer the reader to the works of Canetti [Can01Can01] and Lindell

[Lin03bLin03b].

4.3.1 Universal Composition

The framework for universal composition considers the execution of a protocol π in a complex

environment by introducing a special entity, called the environment Z.

The environment drives the whole execution. The execution of π with the environment

Z, an adversary A, and a trusted party G proceeds as follows. To start an execution of π,

Z initiates a protocol execution session, identified by session identifier sid, and activates all

parties and assigns a unique identifier to each of them at invocation. An honest party, upon

activation, starts executing π on inputs provided by Z; adversarially controlled parties may

deviate from the protocol arbitrarily. During the execution, Z is allowed to interact with A

arbitrarily; in addition, it can see all the outputs of honest parties. We assume asynchronous

authenticated communication over point-to-point channels; the scheduling of all messages

is controlled by the adversary/environment. Some protocol executions may involve calls to

“trusted parties” G, who compute a specific functionality for the parties. Let k be the secu-

rity parameter. We consider two types of executions.

Ideal Execution. Let F be a functionality (i.e., a trusted party); and let πideal be the

“ideal protocol” which instructs its parties to call F with their private inputs. At the end of

the computation, the parties then receive the output of the computation from F . The ideal

model execution of functionality F is then execution of protocol πideal with environment Z,

adversary A, and trusted party F . At the end of the execution, Z outputs a bit, denoted

by the random variable idealFπideal,A,Z(k).

Real Execution. Let π be a multiparty protocol implementing F . The real model exe-

cution of π, is the execution of π with Z, and A. Note that there are no calls to F in this

80

execution. At the end of the execution, Z outputs a bit, denoted by the random variable

realπ,A,Z(k).

Informally speaking, we say that π UC-realizes F , if π is a secure emulation of the

protocol πideal. This is formulated by saying that for every adversary A participating in

the real model execution of π, there exists an adversary A’, called the simulator, which

participates in the ideal model execution of F such that no environment Z can tell apart

whether it is interacting with A or A’. That is, variables idealFπideal,A′,Z(k) and realπ,A,Z(k)

are computationally indistinguishable.

Modeling Access to H. Let C := (G,H) be an extractable Captcha puzzle system. To

incorporate the use of C in the UC framework, we provide all entities—i.e., the honest parties,

the adversary A, and the environment Z—access to the solution function H.11 Note that

providing access to H in the UC framework is not a new formulation; it has been considered

before by Canetti, Halevi, and Steiner [CHS06CHS06], who construct a UC-secure password-based

key-generation protocol in this model. We follow the same approach and allow the honest

parties and the adversary A to directly access the solution function H.

However, we observe that there are two different ways in which we the environment Z

can access H. This is a crucial point and the difference between what is possible and what

is not.

• Indirect Access: The work of Canetti et. al. [CHS06CHS06], does not provide Z direct

access to H. Instead, in their framework, all queries of Z to H are first sent to A, who

queries H and obtains the answers. These answers are then forwarded to Z. We call

this, the indirect access model.

1In analogy with the “trusted set up” models such as the CRS model, we assume that all parties are
using the same Captcha puzzle system C. However, we insist that this is not essential to obtain our
results. If there are multiple types of Captcha puzzles C1, . . . , Cpoly(k) in use, then all we really need is that
the simulator can access the queries made by cheating parties to the corresponding solution functions, say
H1, . . . ,Hpoly(k).

81

• Direct Access: In the direct access model, Z is given direct access to H. In partic-

ular, A cannot see the queries sent by Z to H.

In section 3.43.4, we prove that in the indirect access model, under the assumption that ex-

tractable Captcha puzzles and one-way permutations exist, for every ppt functionality F ,

there exists a protocol π that UC-realizes F .

On the other hand, in the direct access model, clearly there is no advantage that a

simulator (acting in the ideal world for adversary A) will have compared to the classical

UC-framework. This is because since A cannot see the queries of Z, the simulator will also

not be able to do so. Therefore, existing impossibility results for the UC-framework should

also hold in the direct-access model. This is indeed quite trivial to show—for example by

reproducing the proof of Canetti-Fischlin [CF01CF01] for commitment schemes (see Appendix

4.5.14.5.1).

Discussion. An interesting question to consider is which of these two models is the “right”

model. Let us first compare the indirect access model to the other “trusted setup” models

such as the CRS-model. In the CRS-model, the simulator S is in control of generating

the CRS in the ideal world—this enables S to have a “trapdoor” to continue its actions

without having to “rewind” the environment. All parties, including the environment Z use

the (same) CRS generated S. Viewed this way, the indirect access model can be seen as

some sort of a setup (i.e., the oracle H) where all parties, including Z, use the same setup.

However, the indirect access model is better than the CRS model (or other “trusted setup”

models) in the sense that there is no trust involved. That is, in the indirect access model,

there is no party who is trusted to generate the setup according to some specific settings,

e.g., a random string in case of the CRS-model.

However, since the environment must access H through the adversary (enforcing, in some

sense, the same setup condition), the indirect access model does not retain the true spirit

of the plain or the vanilla model (where there is no setup to begin with). Intuitively, the

Captcha model does not have any setup since every party is going to have its own “human”

helping it to solve the Captcha puzzles: e,.g., our commitment scheme in section 3.33.3, is a

82

scheme in the plain model. However, intuitively, in the plain model (irrespective of access

no H), UC-security should ideally imply self-composition. The fact that the positive results

in the indirect access model, do not carry over to the setting of self-composition, show that

the direct access model is more natural and retains the true spirit of the plain model.

4.3.2 Concurrent Self Composition

Concurrent self composition, refers to the situation where many instances of a single protocol

π are executed concurrently many times on the network. The concurrent attack model has

a specific meaning in which the adversary is allowed to control the schedule and delivery

of various protocol messages. The adversary can corrupt parties participating in various

execution of π, either adaptively (i.e., in the middle of the execution) or statically (before

any of the protocol executions begin).

In a series of results, Lindell [Lin03aLin03a, Lin03bLin03b, Lin04Lin04] proves a general theorem which,

informally speaking, shows that for the so called “bi-directional bit-transmitting function-

alities”, security in the concurrent self-composition model implies security in the universal-

composition model. It is not hard to see that his proof in fact holds in our setting (where

access to H is granted to all parties) as well with respect to the direct access model (i.e.

where environment accesses H directly and not through the adversary). Therefore, we ob-

tain similar impossibility results for concurrent self-composition.

While the class of bi-directional bit-transmitting functionalities includes almost all in-

teresting functionalities, zero-knowledge functionality does not fall in this class. Indeed,

it is possible to have concurrent self-composition for zero-knowledge. By modifying Blum-

Hamiltonicity protocol so that verifier’s challenge is decided by using a coin-tossing phase (in

which verifier first commits to its challenge using our extractable commitment scheme from

figure 3.13.1), we can obtain constant-round and straight-line concurrent zero-knowledge for

NP. Likewise, by replacing the initial PRS-phase by our extractable commitment scheme,

the protocol of Barak, Prabhakaran, and Sahai [BPS06BPS06] yields a concurrent non-malleable

zero-knowledge protocol which is constant-round with straight-line simulation. For com-

83

pleteness, the resulting protocol is given in appendix 4.44.4.

One might wonder, if we can get straight-line simulation in concurrent NMZK, why are

we not able to obtain UC-Zero-knowledge in the direct access model. The reason is that our

protocol (in appendix 4.44.4) can only guarantee straight-line simulation, but not straight-line

extraction of the witness from man-in-the-middle. Also, there cannot be any method to

convert this protocol so that one gets both simulation and extraction in straight-line since

such a construction will imply UC-ZK which in turn will imply UC-security for computing

all ppt functionalities in the direct access model [CLO02CLO02], which is impossible.

4.4 Concurrent NMZK: Constant Round, Straight-line

We assume basic familiarity with zero-knowledge protocols and their execution in a con-

current non-malleable experiment. Briefly, in such an experiment a man-in-the-middle A

interacts with many provers P1, . . . , Pm on “left” side, and with many verifiers V1, . . . , Vm

or “right” side. Interaction of A with Pi is called the ith-left-session; likewise, A’s interac-

tion with Vi is called ith-right-session. The statements being proven to A by the provers

are chosen before the execution; the statements on right that A proves to the verifiers are

chosen adaptively by A as the interaction proceeds. A controls the scheduling and delivery

of all messages in this experiment. Without loss of generality, we can assume that A is a

deterministic polynomial time machine with z ∈ {0, 1}∗ as its auxiliary input. Concurrent

Non-Malleable Zero-Knowledge is defined as follows ([BPS06BPS06,PR05PR05]):

Definition 4.4.1 (Concurrent Non-Malleable Zero-Knowledge). A protocol is a Concurrent

Non-Malleable Zero Knowledge (CNMZK) argument of knowledge for membership in an NP

language L with witness relation R (that is, y ∈ L iff there exists w such that R(y, w) = 1),

if it is an interactive proof system between a prover and a verifier such that

Completeness: if both the prover and the verifier are honest, then for every (y, w) such

that R(y, w) = 1, the verifier will accept the proof, and

Soundness, Zero-Knowledge and Non-Malleability: for every (non-uniform PPT)

84

adversary A interacting with provers P1, . . . , PmL in mL “left sessions” and verifiers

V1, . . . , VmR in mR “right sessions” of the protocol (with A controlling the scheduling

of all the sessions), there exists a simulator S such that for every set of “left inputs”

y1, . . . , ymL , we have S(y1, . . . , ymL) = (ν, z1, . . . , zmR), such that

1. ν is a simulated view of A: i.e., ν is distributed indistinguishably from the view

of A (for any set of witnesses (w1, . . . , wmL) that P1, . . . , PmL are provided with).

2. For all i ∈ {1, . . . ,mR}, if in the ith right hand side session in ν the common

input is xi and the verifier Vi accepts the proof, then zi is a valid witness to the

membership of xi in the language, except with negligible probability (zi =⊥ if Vi

does not accept.)

Further, we call the protocol a black-box CNMZK if there exists a universal simulator SBB

such that for any adversary A, it is the case that S = SABB satisfies the above requirements.

To obtain concurrent non-malleable zero-knowledge (CNMZK), we use the protocol of

Barak-Prabhakaran-Sahai [BPS06BPS06]. Briefly, the protocol has five phases, of which the first

phase is the the PRS-preamble [PRS02PRS02]. We obtain our protocol by using our extractable

commitment scheme from section 3.33.3 in phase I, instead of the PRS preamble. The protocol

uses following ingredients, all of which can be constructed from standard number theoretic

assumptions (or even general assumptions such as Claw Free permutations [GK96GK96]): a two-

round statistically-hiding commitment scheme denoted ComSH [GK96GK96], a (constant round)

statistical zero-knowledge argument-of-knowledge for NP, denoted szkaok [Blu87Blu87, GK96GK96],

and a (constant round) non-malleable commitment scheme denoted ComNM [Goy11Goy11, LP11LP11,

PR05PR05,PPV08PPV08]. The resulting protocol is depicted in figure 4.14.1.

To prove the security of their protocol BPS only require the following two properties

form the PRS-preamble: computational-hiding of the PRS-challenge, and extraction of each

session-wise PRS-challenge (by means of rewinding) as soon as the PRS-phase ends. Since

both of these properties are also satisfied by our extractable commitment scheme, we do

not need to change the proof of BPS. In addition, since there are no rewindings involved

85

Common Input: x ∈ L.

Prover’s Auxiliary Input: y ∈ RL(x).

Phase I: (V ↔ P) The verifier chooses a random string ρ and commits

to it using the commitment scheme ComC := 〈CH ,R〉 from section 3.33.3.

Phase II: (P ↔ V) P commits to the all-zero string using ComSH.

Then it uses szkaok to prove knowledge of the randomness and inputs

to this execution of ComSH.

Phase III: (V ↔ P) Execute the Opening Phase of ComC . Let the

committed string (as revealed by the verifier) be σ.

Phase IV: (P ↔ V) P commits to the witness y using ComNM.

Phase V: (P ↔ V) P proves the following statement using szkaok: ei-

ther the value committed to in Phase IV is y such that y ∈ RL(x), or the

value committed to in Phase II is σ. P uses the witness corresponding

to the first part of the statement.

Figure 4.1: Straight-Line Concurrent Non-Malleable Zero-Knowledge (P,V).

during simulation (to extract the PRS-challenge), the proof in fact gets simpler. Note that

the extraction of witness is performed from Phase IV which still uses rewindings. The details

are omitted.

4.5 Negative Results

4.5.1 Universal Composition in the Direct Access Model

Canetti and Fischlin [CF01CF01] prove that universally composable commitments are impossi-

ble to construct in the plain model. We reproduce here the details of their result in our

framework where we assume that there exists Captcha puzzles (as in Definition 3.2.13.2.1) and

86

the environment has direct access to a Captcha solving oracle H. This implies that the

environment’s queries cannot be seen by the ideal world adversary. For this, we just focus

on the the one-time commitment functionality, and prove that it is impossible to UC-realize

it in direct access model. This functionality is shown in figure 4.24.2.

Functionality Fcom

Fcom acts in the presence of parties PH
1 · · ·PH

n and an ideal model adversary SH

1. Upon receiving the message (Commit, sid , Pi, Pj, b), from the party Pi, b ∈ {0, 1} record

the value b and send the message (Receipt, sid , Pi, Pj) to S and Pj, who writes it to

his output tape. Ignore any subsequent (Commit, · · ·) messages

2. Upon receiving the message (Open, sid , Pi, Pj) from Pi, if some bit b was previously

recorded, send (Open, sid , Pi, Pj, b) to S and Pj (who writes it to his output tape) and

halt. Else do nothing. Halt.

Figure 4.2: A one-time commitment functionality [CF01CF01] Fcom

In any commitment protocol which attempts to implement the functionality Figure 4.24.2,

denote by C the committer Pi and by R the receiver Pj.

Definition 4.5.1. (Terminating Commitment Protocol) A commitment protocol π =

〈CH ,RH〉 is called terminating if there is a non-negligible probability that RH outputs (Receipt, · · ·)

and moreover if the receiver, upon getting a valid decommitment for a session id sid and a

committed bit b from the sender, outputs (Open, sid , C,R, b) with non-negligible probability

We say that a protocol is bilateral if only two parties participate in the protocol and all

other parties are idle and do not send or receive messages.

Theorem 4.5.2. There exists no bilateral terminating commitment protocol π that UC se-

curely realizes the functionality Fcom in the direct access model of Captcha puzzles. This

holds even if the ideal-model adversary SH is allowed to depend on the environment ZH .

Our impossibility result is a restatement of Canetti-Fischlin impossibility [CF01CF01] in the

87

plain model. We present it here for completeness, but the details are precisely as is from

[CF01CF01]. It proceeds as follows.

Recall that all turing machines described below are oracle turing machines. Assuming

that a Captcha puzzle system (Definition 3.2.13.2.1) exists, and modelling it in the UC frame-

work via the direct access model, all turing machines described below have access to the

solution oracle H. Informally, let π be any protocol attempting to realize the functionality

Fcom securely. We would like to construct an adversary A2 and environment Z2 such that no

ideal world adversary exists satisfying the definition of UC security. To this goal, let Z1 and

A1 be the environment and adversary who do the following. The adversary A1 corrupts the

committer C and forwards all messages that he receives from the environment on behalf of

the committer. The environment chooses a bit b at random and executes the honest protocol

with b as input. Then Z1 advises the corrupt committer to start the decommitment phase,

and once again lets the adversary A1 forward messages generated by Z1 on behalf of the

committer. When the receiver R outputs a bit b′, the environment outputs 1, iff b equals b′.

Observe the following about the adversary A1 and π,

1. A1 sees nothing but the messages of the protocol. In particular, A1 does not make any

oracle queries itself.

2. By definition of UC security, there exists an ideal model adversary S1 such that S1

sends a (Commit, sid , C,R, b′) message to the functionality Fcom. Moreover, by the

indistinguishability property of UC security, Pr[b = b′] differs only negligibly between

the real and ideal executions.

3. By the definition of a terminating commitment protocol, Pr[b = b′] is non-negligible.

Formally, Let π = (CH ,RH) be any terminating protocol that UC-securely implements

the functionality Fcom. Let AH1 and ZH1 be the adversary and environment as above. Let

SH1 be the ideal model advesary (possibly depending on ZH1) whose existence is guaranteed

by the definition of UC-security. Note that due to us assuming the direct access model for

Captcha,

88

• the environment can execute a honest committer’s protocol (as it can access the human

oracle to solve the Captcha puzzles in ComExtr).

• the view of the ideal model adversary SH1 and that of the real adversaryAH1 both consist

of only the messages of the protocol, and in particular, neither of these machines make

any oracle queries.

To prove a contradiction, consider the following environment and adversary ZH2 and AH2 .

The environment ZH2 instructs the committer to pick a (secret) bit b randomly and commit

to it using an honest execution of the protocol π. The adversary AH2 , corrupts the receiver

and then obtains all the messages sent to the now corrupted receiver and forwards it to

an internal copy of the simulator SH1 from the previous experiment. When SH1 sends a

(Commit, · · · , b′) message to Fcom, the adversary forwards the bit b′ to the environment. The

environment outputs 1 if b = b′ and 0 otherwise.

The contradictions follow from the following observation. In the real world experiment

of the above protocol, using SH1 internally, adversary A2 obtains an advantage in guess

the bit b. However in the ideal world execution of the protocol, since a decommitment is

not being done, the ideal world adversary, S2 (even if it depends on Z2) has no advantage

over 1
2

in guessing the bit b. Thus for every ideal world adversary S2 the environment is

capable of distinguishing the real world from the ideal world, contradicting the definition of

UC-security.

4.5.2 Concurrent Self-composition of general functionalities

As noted earlier, much like the Canetti-Fischlin impossibility result, it is possible to repeat

the proof of Lindell [Lin08Lin08] step-by-step with intuitive changes to obtain a negative result

for concurrent self-composition of general functionalities when modelling Captcha puzzles

via the direct access model. Here we briefly discuss the steps involved in Lindell’s result.

We recommend that the reader familiarizes himself with the proof of [Lin08Lin08].

At a very high level, the first step in Lindell’s result is to show that concurrent self-

composition implies concurrent general-composition. The proof outline for this step is as

89

follows. For any bi-directional bit-transmitting functionality F , if there exists a secure

self-composing protocol π which implements F , it can be used concurrently many times to

simulate the execution of π concurrently composed with any general protocol G by transmit-

ting the messages of G bit-by-bit. This step remains completely unaltered and goes through

in our setting as well; this is because in our model, the only difference is that machines are

equipped with with oracle access to H. This is only a “cosmetic” change which does not

affect simulation of G by using π concurrently many times.

The next step (to complete negative result of Lindell), shows that general composition

implies universal composition for the case of so called specialized simulator UC [Lin03bLin03b].

Once again, since the only modification in our model is to equip machines with access to H,

this step also goes through without any change. Finally, the result of Canetti-Fischlin (repro-

duced in theorem 4.5.24.5.2 for our model) proves that specialized-simulator UC is not possible

for the commitment functionality. This is essentially the entire outline of our impossibility

claim for concurrent self-composition of bi-directional bit-transmitting functionalities. A

complete proof can be obtained by a step-by-step reproduction of Lindell’s results.

90

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[ABH03] Luis Von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford.
“Captcha: Using Hard AI Problems for Security.” In EUROCRYPT, pp. 294–
311, 2003.

[BBS04a] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short group signatures.” In
Proceedings of CRYPTO .04, LNCS series, pp. 41–55. Springer-Verlag, 2004.

[BBS04b] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures.” In
Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Com-
puter Science, pp. 41–55. Springer, 2004.

[BF99] Dan Boneh and Matthew K. Franklin. “An Efficient Public Key Traitor Tracing
Scheme.” In CRYPTO ’99: Proceedings of the 19th Annual International Cryp-
tology Conference on Advances in Cryptology, pp. 338–353, London, UK, 1999.
Springer-Verlag.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF Formulas on
Ciphertexts.” In Second Theory of Cryptography Conference, TCC, volume 3378
of LNCS, pp. 325–341, 2005.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. “Collusion Resistant Broadcast
Encryption with Short Ciphertexts and Private Keys.” In CRYPTO, pp. 258–
275, 2005.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil
Pairing.” In ASIACRYPT ’01: Proceedings of the 7th International Conference
on the Theory and Application of Cryptology and Information Security, pp. 514–
532, London, UK, 2001. Springer-Verlag.

[Blu87] Manual Blum. “How to prove a theorem so no one else can claim it.” In Inter-
national Congress of Mathematicians, pp. 1444–1451, 1987.

[BN08] Dan Boneh and Moni Naor. “Traitor tracing with constant size ciphertext.” In
ACM Conference on Computer and Communications Security, pp. 501–510, 2008.

[BP04] Mihir Bellare and Adriana Palacio. “The Knowledge-of-Exponent Assumptions
and 3-Round Zero-Knowledge Protocols.” In CRYPTO, pp. 273–289, 2004.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. “Concurrent Non-Malleable
Zero Knowledge.” In FOCS, pp. 345–354. IEEE Computer Society, 2006.

[BR94] Mihir Bellare and Phillip Rogaway. “Optimal Asymmetric Encryption.” In EU-
ROCRYPT, pp. 92–111, 1994.

91

[BSM91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. “Nonin-
teractive Zero-Knowledge.” SIAM J. Comput., 20(6):1084–1118, 1991.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. “Fully collusion resistant traitor
tracing with short ciphertexts and private keys.” In EUROCRYPT 2006, volume
4004 of LNCS, pp. 573–592. Springer-Verlag, 2006.

[BW06] Dan Boneh and Brent Waters. “A fully collusion resistant broadcast, trace, and
revoke system.” In CCS ’06: Proceedings of the 13th ACM conference on Com-
puter and communications security, pp. 211–220, New York, NY, USA, 2006.
ACM.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols.” In FOCS, pp. 136–145, 2001.

[CAP] The Official CAPTCHA Site. “www.captcha.netwww.captcha.net.”.

[CF01] Ran Canetti and Marc Fischlin. “Universally Composable Commitments.” In
CRYPTO, pp. 19–40, 2001.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. “Tracing Traitors.” In CRYPTO ’94:
Proceedings of the 14th Annual International Cryptology Conference on Advances
in Cryptology, pp. 257–270, London, UK, 1994. Springer-Verlag.

[CHS04] Ran Canetti, Shai Halevi, and Michael Steiner. “Hardness Amplification of
Weakly Verifiable Puzzles.” In TCC, pp. 17–33. Springer-Verlag, 2004.

[CHS06] Ran Canetti, Shai Halevi, and Michael Steiner. “Mitigating Dictionary Attacks
on Password-Protected Local Storage.” In ADVANCES IN CRYPTOLOGY,
CRYPTO. Springer-Verlag, 2006.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. “Non-Interactive and
Non-Malleable Commitment.” In STOC, pp. 141–150, 1998.

[CKO01] Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. “Ef-
ficient and Non-interactive Non-malleable Commitment.” In EUROCRYPT, pp.
40–59, 2001.

[CLO02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. “Universally
composable two-party and multi-party secure computation.” In STOC, pp. 494–
503, 2002.

[CPP05] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. “Public Traceability
in Traitor Tracing Schemes.” In EUROCRYPT, pp. 542–558, 2005.

[DC12] Sandra Diaz-Santiago and Debrup Chakraborty. “On Securing Communication
from Profilers.” In SECRYPT, pp. 154–162, 2012.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. “Non-Malleable Cryptography.”
SIAM J. on Computing, 30(2):391–437, 2000.

92

www.captcha.net

[DF03] Yevgeniy Dodis and Nelly Fazio. “Public Key Trace and Revoke Scheme Secure
against Adaptive Chosen Ciphertext Attack.” In Public Key Cryptography, pp.
100–115, 2003.

[DH76] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography.”
IEEE Transactions on Information Theory, November 1976.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. “Concurrent Zero-Knowledge.” In
STOC, pp. 409–418, 1998.

[Dzi10] Stefan Dziembowski. “How to Pair with a Human.” In SCN, pp. 200–218, 2010.

[Fre09] David Mandell Freeman. “Converting pairing-based cryptosystems from
composite-order groups to prime-order groups.” In Preprint, 2009.

[GJO10] Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. “Password-Authenticated
Session-Key Generation on the Internet in the Plain Model.” In CRYPTO, pp.
277–294, 2010.

[GK96] Oded Goldreich and Ariel Kahan. “How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP.” J. Cryptology, 9(3):167–190, 1996.

[GKS09] Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent Wa-
ters. “Building Efficient Fully Collusion-Resilient Traitor Tracing and Re-
vocation Schemes.” Cryptology ePrint Archive, Report 2009/532, 2009.
http://eprint.iacr.org/http://eprint.iacr.org/.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing
But their Validity and a Methodology of Cryptographic Protocol Design (Ex-
tended Abstract).” In FOCS, pp. 174–187, 1986.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Univer-
sity Press, 2001.

[Goy11] Vipul Goyal. “Constant round non-malleable protocols using one way functions.”
In STOC, pp. 695–704, 2011.

[GW09] Craig Gentry and Brent Waters. “Adaptive Security in Broadcast Encryption
Systems (with Short Ciphertexts).” In EUROCRYPT, pp. 171–188, 2009.

[HK10] Shai Halevi and Yael Kalai. “Smooth Projective Hashing and Two-Message
Oblivious Transfer.” Journal of Cryptology, pp. 1–36, 2010. 10.1007/s00145-
010-9092-8.

[HO09] Brett Hemenway and Rafail Ostrovsky. “Lossy Trapdoor Functions from Smooth
Homomorphic Hash Proof Systems.” Electronic Colloquium on Computational
Complexity (ECCC), 16:127, 2009.

[HT98] Satoshi Hada and Toshiaki Tanaka. “On the Existence of 3-Round Zero-
Knowledge Protocols.” In CRYPTO, pp. 408–423, 1998.

93

http://eprint.iacr.org/

[KD98] Kaoru Kurosawa and Yvo Desmedt. “Optimum Traitor Tracing and Asymmetric
Schemes.” In EUROCRYPT, pp. 145–157, 1998.

[KY02a] Aggelos Kiayias and Moti Yung. “Breaking and Repairing Asymmetric Public-
Key Traitor Tracing.” In Digital Rights Management Workshop, pp. 32–50, 2002.

[KY02b] Aggelos Kiayias and Moti Yung. “Traitor Tracing with Constant Transmission
Rate.” In EUROCRYPT, pp. 450–465, 2002.

[Lin03a] Yehuda Lindell. “Bounded-concurrent secure two-party computation without
setup assumptions.” In STOC, pp. 683–692, 2003.

[Lin03b] Yehuda Lindell. “General Composition and Universal Composability in Secure
Multi-Party Computation.” In In 44th FOCS, pp. 394–403, 2003.

[Lin04] Yehuda Lindell. “Lower Bounds for Concurrent Self Composition.” In Moni
Naor, editor, Theory of Cryptography, volume 2951 of Lecture Notes in Computer
Science, pp. 203–222. Springer Berlin / Heidelberg, 2004.

[Lin08] Yehuda Lindell. “Lower Bounds and Impossibility Results for Concurrent Self
Composition.” Journal of Cryptology, 21:200–249, 2008. 10.1007/s00145-007-
9015-5.

[LP11] Huijia Lin and Rafael Pass. “Constant-round non-malleable commitments from
any one-way function.” In STOC, pp. 705–714, 2011.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. “A uni-
fied framework for concurrent security: universal composability from stand-alone
non-malleability.” In STOC, pp. 179–188, 2009.

[Lyn] Ben Lynn. “The Pairing-Based Cryptography Library.”.

[MNT00] Atsuko Miyaji, Masaki Nakabayashi, and Shunzo Takano. “Characterization of
Elliptic Curve Traces under FR-Reduction.” In ICISC, pp. 90–108, 2000.

[MP06] Silvio Micali and Rafael Pass. “Local zero knowledge.” In STOC, pp. 306–315,
2006.

[MSK02] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. “A new traitor tracing.”
In IEICE Trans. Fundamentals, pp. E85–A(2):481484, 2002.

[Nao03] Moni Naor. “On Cryptographic Assumptions and Challenges.” In CRYPTO, pp.
96–109, 2003.

[NI] N.I.S.T. “N.I.S.T Cryptography ToolkitN.I.S.T Cryptography Toolkit.”.

[NP00] Moni Naor and Benny Pinkas. “Efficient Trace and Revoke Schemes.” In Finan-
cial Cryptography, pp. 1–20, 2000.

94

http://csrc.nist.gov/groups/ST/toolkit/index.html

[Pas04] Rafael Pass. “Bounded-concurrent secure multi-party computation with a dis-
honest majority.” In STOC, pp. 232–241, 2004.

[Pfi96] Birgit Pfitzmann. “Trials of Traced Traitors.” In Information Hiding, pp. 49–64,
1996.

[PPS08] Omkant Pandey, Rafael Pass, Amit Sahai, Wei-Lung Dustin Tseng, and Muthu-
ramakrishnan Venkitasubramaniam. “Precise Concurrent Zero Knowledge.” In
EUROCRYPT, pp. 397–414, 2008.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. “Adaptive One-Way
Functions and Applications.” In CRYPTO, pp. 57–74, 2008.

[PR03] Rafael Pass and Alon Rosen. “Bounded-Concurrent Secure Two-Party Compu-
tation in a Constant Number of Rounds.” In FOCS, 2003.

[PR05] Rafael Pass and Alon Rosen. “New and improved constructions of non-malleable
cryptographic protocols.” In STOC, pp. 533–542, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. “Concurrent Zero Knowledge
with Logarithmic Round-Complexity.” In FOCS, pp. 366–375, 2002.

[PW97] Birgit Pfitzmann and Michael Waidner. “Asymmetric Fingerprinting for Larger
Collusions.” In ACM Conference on Computer and Communications Security,
pp. 151–160, 1997.

[Ros04] Alon Rosen. “A Note on Constant-Round Zero-Knowledge Proofs for NP.” In
TCC, pp. 191–202, 2004.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems.” Commun. ACM,
21(2):120–126, 1978.

[Sha48] Claude Shannon. “A Mathematical Theory of Communication.” Bell System
Technical Journal, 27:379–423, 623–656, July, October 1948.

[TSZ03] V. D. Tô, R. Safavi-Naini, and F. Zhang. “New traitor tracing schemes using
bilinear map.” In DRM ’03: Proceedings of the 3rd ACM workshop on Digital
rights management, pp. 67–76, New York, NY, USA, 2003. ACM.

[Wat09] Brent Waters. “Dual System Encryption: Realizing Fully Secure IBE and HIBE
under Simple Assumptions.” In CRYPTO, pp. 619–636, 2009.

[WHI01] Yuji Watanabe, Goichiro Hanaoka, and Hideki Imai. “Efficient Asymmetric
Public-Key Traitor Tracing without Trusted Agents.” In CT-RSA, pp. 392–407,
2001.

[Wik] Wikipedia. “History of CryptographyHistory of Cryptography.”.

[Yao82] Andrew Chi-Chih Yao. “Protocols for Secure Computations (Extended Ab-
stract).” In FOCS, pp. 160–164. IEEE Computer Society, 1982.

95

http://en.wikipedia.org/wiki/History_of_cryptography

	Introduction
	Efficient traitor tracing
	Cryptography using Captcha puzzles

	Efficient Traitor Tracing
	Preliminary Definitions
	Traitor Tracing
	Trace & Revoke
	PLBE
	AugBE
	Equivalence of Traitor Tracing and PLBE

	Background on Bilinear Maps
	Bilinear Groups
	Complexity Assumptions

	Key Ideas
	Our Construction
	AugBE using Symmetric Bilinear Groups
	AugBE using Asymmetric Bilinear Groups
	PLBE

	Security Proof
	Index Hiding
	Message Hiding

	Implementation
	Encryption Time
	Ciphertext Size
	Decryption Time
	Comparison with the ElGamal Encryption

	Conclusion

	Cryptography using Captcha
	Preliminaries
	Modeling Captcha Puzzles
	A Straight-line Extractable Commitment Scheme
	Constructing UC-Puzzles using Captcha
	Conclusion

	Concurrent Non-Malleable Zero Knowledge
	Proof of Theorem 3.3.2
	Proof of UC Puzzle Construction
	Brief Review of Protocol Composition
	Universal Composition
	Concurrent Self Composition

	Concurrent NMZK: Constant Round, Straight-line
	Negative Results
	Universal Composition in the Direct Access Model
	Concurrent Self-composition of general functionalities

	References

