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Abstract

Revealing associations among various structural and functional patterns of the brain can yield 

highly informative results about the healthy and disordered brain. Studies using neuroimaging 

data have more recently begun to utilize the information within as well as across various 

functional and anatomical domains (i.e., groups of brain networks). However, most whole-brain 

approaches assume similar complexity of interactions throughout the brain. Here we investigate 

the hypothesis that interactions between brain networks capture varying amounts of complexity, 

and that we can better capture this information by varying the complexity of the model subspace 

structure based on available training data. To do this, we employ a Bayesian optimization-based 

framework known as the Tree Parzen Estimator (TPE) to identify, exploit and analyze patterns 

of variation in the information encoded by temporal information extracted from functional 

magnetic resonance imaging (fMRI) subdomains of the brain. Using a repeated cross-validation 

procedure on a schizophrenia classification task, we demonstrate evidence that interactions 

between specific functional subdomains are better characterized by more sophisticated model 

architectures compared to less complicated ones required by the others for optimally contributing 

towards classification and understanding the brain’s functional interactions. We show that 

functional subdomains known to be involved in schizophrenia require more complex architectures 

to optimally unravel discriminatory information about the disorder. Our study points to the need 

for adaptive, hierarchical learning frameworks that cater differently to the features from different 

subdomains, not only for a better prediction but also for enabling the identification of features 

predicting the outcome of interest.

*Corresponding Author: Ishaan Batta, ibatta@gatech.edu. 
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1 INTRODUCTION

Numerous works have studied brain disorders by employing multilayered machine learning 

(ML) approaches to neuroimaging data. In most cases, the main focus of these studies is to 

increase the accuracy with which the subjects having a certain condition can be classified 

from unaffected controls. However, not many studies focus on probing the predictive power 

of features encoded by the neuroimaging data. In addition to improving the classification 

capabilities of developed classifiers, it is equally important to localize the brain regions or 

groups of brain regions (subdomains) that are the most discriminative for a given disorder. 

Recently, deep learning classifiers have been applied widely in studies involving the use 

of neuroimaging data for classification. So far, previous work has used the desired features 

directly as a single input to the learning framework without any subdomaining of the feature 

set (Srinivasagopalan et al., 2019; Ulloa et al., 2015; Han et al., 2017). The prevailing 

methodologies inherently employ two implicit assumptions which may not necessarily 

hold, namely a homogeneity in the feature set for use as a single input set and a high 

uniformity in the complexity of feature interactions between subdomains, ignoring the need 

for flexible architectures. Mainstream architectures based upon these assumptions leave little 

room for interpretation because the parameters learned in multi-layered learning models 

are non-linear combinations of the input features. While using branched architectures 

can be of help with interpretation in terms of subdomains in the data, various studies 

which use multi-branched architectures on neuroimaging data have mainly focused only on 

accuracy improvement rather than interpretability and used these architectures to cater to 

the multimodal (Ulloa et al., 2015, 2018) and even multi-atlas scenarios (Zeng et al., 2018). 

Even in most of these cases, there is little flexibility in the architectures in terms of the 

depths of the branches. Introducing such flexibility in model complexity of multi-branched 

architectures allows for studying subdomains in terms of the nature of information they 

encode towards discriminating between two or more groups of subjects. No studies have 

explored the use of architectures designed to treat subdomains in the data differently and 

also reflect the variability with which different subdomains in the data encode predictive 

information. To overcome these limitations, this study introduces flexible ML architectures 

that take into account the variations in the complexity of interactions between subdomains 

in the data. Our approach demonstrates the need for as well as the benefit of disengaging 

the implicit assumption of feature homogeneity and uniform complexity in the nature of 

predictive information.

It is vital to identify interactions of functional and anatomical networks of high predictive 

value towards certain targeted applications. Moreover, it is equally important to study the 

diversity in the way this predictive information is encoded in the data with respect to 

the anatomical and functional subdomains of the brain. As mentioned before, the latter 

variation necessitates the use of architectures that are capable of incorporating inputs with 
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varying information complexities in the data subdomains. Given the complex manner in 

which interactions between various regions of the brain occur, it is reasonable that certain 

subdomains of the brain may need deeper architectures for better prediction, which may be 

indicative of a greater degree of non-linear interactions in these subdomains. In this study, 

we analyze the pattern in which various subdomains for functional magnetic resonance 

imaging (fMRI) data encode information in a schizophrenia classification task. We use 

a multilayer perceptron (MLP) classifier for studying the functional connectivity features 

associated with schizophrenia classification. Towards this goal, we use the intra-network 

and inter-network connections at the level of subdomains, termed as subdomain interactions 

(SDIs) in this paper to create separate input layers in the multi-branched architecture. 

The input layers in our multi-branched architecture are followed by a variable number of 

hidden layers in each of the branches before a late fusion step as detailed in the methods 

section. By optimizing over this flexible multi-branched architecture search space, we 

show that different subdomain interactions encode discriminatory information with variable 

complexity and certain subdomain interactions associated with schizophrenia consistently 

need more complex frameworks while others require simpler ones.

One of the potential concerns with allowing such flexibility in the depth is the vast 

architecture search space generated due to the multiple parameters involved. Performing 

optimization over this space is a hyperparameter optimization problem, a well studied field 

in machine learning (Shahriari et al., 2015; Luo, 2016; Bergstra et al., 2013b, 2011). It is 

computationally impractical to linearly traverse through exponentially huge hyper-parameter 

search spaces with standard methods such as random search or grid search. Bayesian 

optimization frameworks resolve this issue by heuristically traversing parts of the search 

space that are more likely to cover a solution close to the optimal one. Here we employ a 

Bayesian method known as the Tree Parzen Estimator (TPE) to realize the hyper-parameter 

optimization stage (Bergstra et al., 2011). Starting with a set of initial randomly chosen 

points in the search space, the TPE algorithm traverses new points in each of its iterations 

using a simpler (i.e., faster) surrogate function and calculating a metric for the expected 

improvement in classification accuracy subsection 2.4. In this way, the search space is 

traversed without having to compute the actual function (in this case, the validation accuracy 

of the architecture) and selecting a new point which would be more optimal with high 

probability. Analyzing the final architecture returned by the TPE procedure can reveal 

specific associative patterns corresponding to each subdomain. By studying the patterns in 

the associations of subdomains in the optimized architectures, we illustrate that allowing for 

and optimizing over subdomain specific variation in architectures not only enables superior 

prediction, but also reveals how certain subdomain interactions bear higher complexity 

of information while others have less complex information. Moreover, with the rapid 

increase in multimodal datasets for mental disorders, it is crucial to develop methodologies 

synthesizing features from subdomains spanning more than one modality. Our study 

also gives initial insights towards the need for developing such flexible frameworks for 

multimodal studies. Frameworks catering to and analyzing subdomain variation can be of 

immense use in various fields of study.

The flow of the paper, shown in Figure 1 and detailed in methods section, is as follows: 

a) Spatially constrained independent component analysis (scICA) on the preprocessed 
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fMRI dataset is used to calculate the functional connectivity for pairs of components 

of interest subject-by-subject; b) Categorizing the feature set of component-component 

functional connectivity into subsets based on subdomains (brain networks) of the two 

components involved (the inter-network or inter-network connections are termed as 

subdomain interactions (SDIs) throughout the paper); c) Using the subdomained features 

as inputs to the multi-branch MLP architecture with flexible depth, with hyper-parameter 

optimization (TPE algorithm) on the architecture search space to determine the optimal 

variability in depth for each SDI (Figure 1b); d) Comparison of the performance of TPE 

with existing learning methods; (e) Analysis of patterns associated with certain SDIs in 

the validated optimal architectures returned by the TPE procedure. We demonstrate the 

working, performance and interpretation of the TPE algorithm in the results section. Lastly, 

we discuss the interpretation of these results in the discussion section.

2 METHODS AND MATERIALS

2.1 Datasets and Pre-Processing

This study uses two independent datasets, the Function Biomedical Informatics Research 

Network (fBIRN) dataset (Keator et al., 2016) and the Center of Biomedical Research 

Excellence (COBRE) dataset (Aine et al., 2017). Subjects with large head motion (≥ 3deg 

and ≥ 3mm) during the scan and with functional data leading to bad full brain normalization 

were excluded. After applying this criteria for exclusion, the fBIRN dataset consisted of 160 

healthy controls (HC) with age 19 – 59 years (mean 37.04 ± 10.86), 45/115 females/males 

and 151 subjects who had schizophrenia (SZ) with age 18–62 years (mean 38.77 ± 11.63), 

36/115 females/males, whereas the COBRE dataset consisted of 89 healthy controls (HC) 

with age 18–65 years (mean 38.09 ± 11.67), 25/64 females/males and 68 SZ with age 19–65 

years (mean 37.79 ± 14.45), 11/57 females/males. For avoiding confounding effects, HC and 

SZ subjects of both datasets were matched by age and gender (age: p = 0.1758 (fBIRN), 

0.8874 (COBRE); gender: p = 0.3912 (fBIRN), 0.0794 (COBRE)).

Data collection for fBIRN dataset was done using 3-T Siemens Tim Trio scanners for six 

out of seven sites and 3-T General Electric Discovery MR750 scanner for one site. The 

same resting-state parameters were used across the scanners a standard gradient echo-planar 

imaging (EPI) sequence, repetition time (TR)/echo time (TE) = 2000/30 ms, voxel spacing 

size = 3.4375 × 3.4375 × 4 mm, slice gap = 1 mm, flip angle (FA) = 77°, field of view 

(FOV) = 220 × 220 mm, number of excitations (NEX) = 1, and number of volumes = 162. 

Participants had their eyes closed and were instructed to rest quietly during the scanner. 

The COBRE data was collected on a single site using a 3-T Siemens Trio scanner. For the 

COBRE data, a gradient-echo EPI sequence was used to acquire T2-weighted functional 

images with the following parameters: TE =29 ms, TR = 2000 ms, flip angle (FA) = 75°, 

slice thickness = 3.5 mm, slice gap = 1.05 mm, field of view 240 mm, matrix size = 64 × 64, 

voxel size = 3.75 mm × 3.75 mm × 4.55 mm and number of volumes = 149. For the duration 

of the scan, subjects were instructed to keep their eyes open and passively stare at a central 

cross.

For both the datasets, the statistical parametric mapping (SPM12, http://

www.fil.ion.ucl.ac.uk/spm/) toolbox based on the Matlab 2016 platform was used to 
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preprocess fMRI data. To ensure equilibrium of the signal and adaptation of the subjects to 

scanner noise, the first five scans were removed. The SPM toolbox was used for performing 

slice timing correction and rigid body head motion correction. Warping of the fMRI data 

into the standard Montreal Neurological Institute (MNI) space was done using an echo-

planar imaging (EPI) template. The data were slightly resampled to 3 × 3 ×3 mm3 isotropic 

voxels. For smoothing the data, a Gaussian kernel with a full width at half maximum 

(FWHM) of 6 mm was used. This was followed by further feature extraction detailed in 

subsequent sections.

2.2 Connectivity Features and Subdomain Interactions

To estimate intrinsic connectivity networks from the fMRI data, the scICA approach 

described in (Du and Fan, 2013) with the Neuromark (Du et al., 2019a,b) template as 

reference maps was used. ICA was run for a model order of 100, out of which 53 

consistent and reproducible independent non-artifactual components (ICs) were retained. 

The functional connectivity matrix was computed based on the static correlation between 

the time courses of pairs of two ICs. All the 53 ICs have been arranged into 7 distinct 

functional subdomains (disjoint exhaustive sets of ICs), namely the areas falling under 

the following subdomains: default mode network (DMN), visual (VIS), auditory (AU), 

cognitive control (CC), sensorimotor (SM), cerebellar (CB) and sub-cortical (SC). Based on 

this categorization, 28 subdomain interaction (SDI) features were created where each SDI 

represents the set of intra-network or inter-network connections between all possible pairs 

of ICs for a given pair functional subdomains or pair of functional subdomains respectively 

(See Figure 2). As an example, the features in the SDI named DMN-VIS refer to entries 

from the functional connectivity matrix (fMRI time-series correlations) corresponding to the 

connections between the DMN and VIS subdomain scICA components. Such connections 

are termed as inter-network connections. On the other hand, the intra-network connections 

comprise connections within the same domain, for example, the SDI named DMN-DMN 

would correspond to the connections where both of the scICA components belong to the 

DMN subdomain. Thus, connectivity features for the 28 SDIs consist of 21 sub-matrices for 

the inter-network connections and 7 sub-matrices for intra-network connections. Hence the 

SDI features are simply sub-matrices of the 53 × 53 functional connectivity matrix created 

using 53 scICA components.

2.3 Architecture Search Space

A multilayer perceptron (MLP) architecture with multiple branches was used with input 

layer consisting of the 28 SDI features from the 7 subdomains (sets of ICs) as described 

in subsection 2.2. At the input level, the architecture has 28 branches for each SDI i.e., 

a sub-matrix of the 53×53 static functional connectivity matrix. Each input layer is then 

fed into a variable number of fully connected hidden layers and a late fusion layer, finally 

followed by a fully connected layer (Figure 1b). In each branch, a constant factor of 0.1 

was used to reduce the number of units in subsequent hidden layers, starting with the 

input layer. Optimizing the variation in the number of fully connected layers in the branch 

corresponding to each SDI can give insights into understanding the nature of information 

that is encoded by the component interactions for the subdomains involved in the SDI. SDIs 

which consistently require no or a small number of layers in an optimized architecture can 
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be said to contain more linear or direct information for the task at hand (schizophrenia 

classification), whereas the SDIs which require a higher number of fully connected layers 

can be said to contain more complex and indirect information. For controlling the model 

complexity, the number of fully connected hidden layers in each branch were limited to vary 

between 0 to 2. In the exponential search space thus generated with a total of 328 possible 

configurations, a 28 length vector x can be used to represent each point, with each element 

xi ∈ {0, 1, 2} denoting the number of fully connected layers in the branch for the i-th SDI 

(Figure 1b).

2.4 Tree-structured Parzen Estimator (TPE) for Hyper-Parameter Optimization

Optimizing hyper-parameters that span an exponential search space has been a well-studied 

problem in machine learning. In similar lines, Bergstra et al. (2011) had proposed the TPE 

algorithm which is used for hyper-parameter optimization in this work. TPE is a sequential 

model-based optimization (SMBO) framework which essentially estimates the conditional 

and marginal probabilities p(x|y) and p(y) to perform hyper-parameter optimization on 

hyper-parameters x and cost function y. After spanning an initial set of points selected 

randomly from the search space and computing the cost function for them, TPE utilizes this 

information to create a surrogate cost function. The surrogate function is then used to select 

the next set of points in the traversal sequence based on the estimates of the cost function. 

Towards this goal, two groups made up of the upper quartile and the lower quartile are 

created based on a splitting value y* of the cost function at the randomly selected points. 

The two probability density functions, g(x) and l(x) for the upper and lower quartiles of the 

cost function respectively is then defined as in Equation 1:

p(x ∣ y) = g(x) if y > y*
l(x) if y ≤ y* (1)

Having estimated l(x) and g(x), the subsequent iterations of the TPE algorithm involve the 

optimization of the Expected Improvement function defined in Equation 2:

EIy*(x) = ∫
−∞

y*
y* − y p(y ∣ x)dy ∝ g(x)/l(x) (2)

The expected improvement function EIy*(x) can be shown to be proportional to l(x)/g(x) 

(Bergstra et al., 2011). This means that if points are sampled from l(x) with high probability 

and from g(x) with lower probability, then the expected improvement is maximized, thus 

minimizing the cost function. In each iteration, the algorithm returns the point x* having the 

largest value of EIy*(x) and the distributions l(x), g(x) are updated accordingly. An example 

showing how TPE works is provided in Figure 1c and indicates convergence towards the true 

optimal on a quadratic cost function (x − 1)2 optimized for a real valued parameter x.

2.5 Analysis of Learned Models

Using features from each SDI as inputs, the MLP architecture with 28 branches as described 

in subsection 2.3 was optimized using the TPE implementation in the HyperOpt python 

library (Bergstra et al., 2013a). We used a repeated random sub-sampling cross-validation 
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procedure for running the TPE algorithm for 50 repetitions on the functional connectivity 

data, resulting in a set of optimized architecture vectors x(r)
r = 1
50 . The mean across 

repetitions of the validation accuracy has been plotted against TPE iterations in Figure 5.

The final prediction model, represented by the vector x*, was created using 

the most frequent number of hidden layers across repetitions for each SDI 

in the TPE-optimized architectures. The final architecture vector x* is defined 

as, xi* i = 1
28 = argmaxl ∈ 0, 1, 2 ∑r = 1

50 1 xi
(r) = l i = 1

28
, where x(r) represents the TPE-

optimized architecture for the rth repetition and 1 .  is the indicator function. The multi-

branched MLP architecture generated using the final architecture vector x* was run on 

a held-out test data for 50 repetitions, resulting in 50 test accuracy values. It should be 

noted that while the random splits for training and testing were different for each of the 50 

repetitions, the same random splits were used across all methods for a given repetition to 

avoid any unwanted differences in results due to different training data.

2.6 Performance Comparison with Classification Methods

To study the performance of the TPE-optimized architecture, a comparison was made with 

baseline methods run for 50 repetitions on held-out test data with 20% of the total number of 

samples. These methods included standard machine learning models, neural network based 

models, and multi-branched architectures with as well as without flexible branch-depth. The 

set of methods and corresponding parameters used are detailed subsequently.

2.6.1 Standard Machine Learning Models—Standard classification models used for 

comparison include logistic regression (LOG), support vector machine (SVM) with radial 

kernel, and random forest classifier (RFC). The learning parameters like regularization 

strength for logistic regression and SVM were optimized using grid search with 5-fold 

repeated cross validation using the training data.

2.6.2 Non-Branched Neural Network Architectures—In addition to the standard 

models, we used neural network based architectures including the multilayer perceptron 

(MLP) and a feed-forward neural network with encoder-decoder architecture (FNN) (LeCun 

et al., 2015) as shown in Figure 3 (a),(b). Both the networks involve the vectorized 

resting state functional connectivity matrix as the input features. While MLP involves fully 

connected hidden layers of decreasing size between input and output layers, FNN uses an 

encoder-decoder scheme with an initial set of fully connected hidden layers of decreasing 

size (encoding layers) followed by a set of layers of decreasing size (decoding layers). 

For both MLP and FNN, the depth of the network was tuned between single, double and 

triple layered architectures along with tuning of other network parameters. The depths 

corresponding to the highest accuracy score were selected (double layered for MLP and 

triple layered for FNN).

Additionally, we also employed the BrainNetCNN architecture (also denoted as BCNN 

in this paper) recently introduced by (Kawahara et al., 2017) as a non-branched neural 

network based method for comparison. Unlike MLP and FNN, BrainNetCNN utilizes 
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the mathematical structure of the functional connectivity matrix. As shown in Figure 3 

(c), BrainNetCNN feeds the functional connectivity matrix input to Edge-to-Edge (E2E), 

Edge-to-Node (E2N), Node-to-Graph (N2G) layers followed by a fully connected linear 

layer before computing the output for classification (Kawahara et al., 2017). The E2E layer 

connects each element from a particular filter from the incoming input matrix to an element 

in the outgoing matrix of the same size. The E2N layer connects each diagonal entry of 

the incoming matrix to an entry in the outgoing vector, while the N2G layer is a fully 

connected hidden layer feeding into subsequent fully connected linear layers that lead to the 

output layer for classification. BrainNetCNN has been employed by various studies (He et 

al., 2020; Pervaiz et al., 2020; Li et al., 2018) for both classification and regression problems 

and is known to perform while reducing the parameter space due to the convolutional 

layers. We used the python code provided by (He et al., 2020) for the implementation of 

BrainNetCNN in the context of this study.

2.6.3 Branched Neural Network Architectures without Flexibility—The standard 

machine learning models and non-branched architectures do not involve any subdomaining 

of the input features as done in the TPE procedure. For an even closer comparison, we 

also used three types of branched multilayer perceptron architectures without any tuning 

or flexibility in depths of individual branches i.e. uniform depth for each branch, unlike 

the TPE framework. These are denoted in the paper by UNIF0, UNIF1, UNIF2 based on 

the constant depths of the branches before a fully connected fusion layer (See Figure 3 

(d)). Note that the MLP, FNN and BCNN architectures described previously have all the 

static functional connectivity features in the input layer, which are further fed to subsequent 

layers without any branching. While these non-branched architectures serve as a baseline 

to compare multi-branched vs. non-branched architecture scenarios, the UNIF architectures 

serve as a baseline for comparing uniform vs. flexible depth in the branch corresponding to 

each SDI (Figure 3). Thus, against the architectures x(r)’s returned by TPE that have variable 

values of layer-depth, the UNIF architectures essentially is an architecture in the same 

architecture search space of the TPE algorithm, but with a constant layer-depth of 1, 2 or 3 

before the late-fusion step. Therefore, the depth-vector for UNIF1 is u1(r) = u1 i
(r)

i = 1
28

 with 

u1 i
(r) = 1∀1 ≤ i ≤ 28, where u1i

(r) represents the number of layers used on top of ith SDI in the 

architecture UNIF1 for the rth repetition. Thus, the depth-vector for the UNIF2 architecture 

is u2
(r) = u2i

(r)
i = 1
28

 where u2i
(r) = 2∀1 ≤ i ≤ 28. Similarly, the architecture UNIF0 is designed 

to have no layer on top of each SDI branch before the late fusion step in the multi-branch 

MLP architecture i.e., the UNIF0 architecture’s depth-vector is u0(r) = u0i
(r)

i = 1
28

 where 

u0i
(r) = 0∀1 ≤ i ≤ 28.

2.6.4 Branched Neural Network Architectures with Non-Uniform Branch-
Depth—In addition to branching, a significant feature in the TPE framework is the 

optimization of over the variable branch-depth. By using a Bayesian approach for this 

optimization, TPE arrives at a resultant architecture in which the depths for all branches 

need not be uniform. However, to compare the performance with additional baseline hyper-
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parameter optimization methods, we used random search (RNDS) and grid search (GRDS) 

as possible replacements for the TPE optimization procedure. Essentially, RNDS and GRDS 

tuning procedures are the most similar to TPE than the other aforementioned methods 

in terms of the way the architecture is structured and optimized. The performances were 

measured on held-out test data using architectures optimized with the same number of 

iterations for RNDS, GRDS, and TPE.

3 RESULTS

3.1 scICA components

After running the scICA framework on the fMRI data, 53 non-artifactual, reproducible 

independent components (ICs) were obtained. Table 1 shows the peak coordinates for 

the components along with the brain region corresponding to the component. Following 

this, static correlations between the time courses of these 53 components were computed 

resulting in a 53×53 functional connectivity matrix. The 53 ICs were assigned to 7 

functional subdomains or sets of components (Table 1,Figure 4). 28 pair-wise subdomain 

interactions (SDIs) resulting from the 7 subdomains were constructed. The SDIs are defined 

by the sets of intra-network or inter-network connections between all possible pairs of 

subdomains; thus, there were 21 SDIs corresponding to inter-network connections and 7 for 

the intra-network connections (Figure 2).

3.2 Performance using TPE

Starting with an initial set of randomly selected points in the hyper-parameter search 

space, the TPE optimization procedure subsequently selects new points to traverse using 

the expected improvement metric and the surrogate cost function which is computationally 

faster (subsection 2.4). Figure 5 shows the validation accuracy plotted against time 

(iterations). The validation accuracy, which is the objective function being optimized, 

increases with the TPE iterations. The procedure returns an optimal architecture for 

each of the 50 repetitions. The most frequently occurring number of hidden layers for 

each SDI across repetitions are used to define the final architecture. The test accuracy 

values on held-out data were obtained for 50 independent repetitions by using the final 

architectures constructed after running the TPE optimization algorithm (Figure 6). The final 

TPE models reported a slightly higher prediction accuracy on held-out test data than the 

baseline standard machine learning methods (SVM, logistic regression and random forest 

classifier). Specifically, we observed a mean prediction accuracy of 0.81 for fBIRN and 

0.78 for COBRE for the proposed TPE-optimized architecture. For both the datasets, TPE 

also performs significantly better (p < 0.05) than the non-branched neural network based 

methods (MLP, FNN, BCNN) as well as multi-branch architectures with uniform depth in 

each branch (UNIF0, UNIF1 and UNIF2). Interestingly, the TPE optimization procedure 

also results in significantly better (p < 0.05) test accuracy than other optimization techniques 

for branched architectures with variable branch-depth (RNDS, GRDS). The results have 

been summarized in Table 2 as well as Figure 6. The results show that treating features from 

certain subdomains differently in terms of the complexity of architecture required can result 

in superior prediction performance. In fact, this improvement over the baseline methods also 
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allows for a meaningful analysis of variability in the nature of information carried by the 

various subdomain interactions in the data.

3.3 Feature Stability

While the TPE algorithm gives the best performance, the next step would be to analyze 

the subdomain interactions (SDIs) requiring deeper or shallower hidden layers in the multi-

branched MLP architecture. However, before checking for this characteristic variation in 

the SDIs, it is relevant to check whether the features learned by the optimized architecture 

have consistent discriminative power for each SDI in terms of their importance towards 

prediction. For this purpose, impurity-based feature prediction power (Louppe et al., 2013), 

also known as Mean Decrease Impurity (MDI), was computed by running random forest 

classifier on the parameters learned in the late fusion layer (Figure 1b) of the optimized TPE 

architecture. These were compared with the impurity-based prediction power by running 

random forest classifier on the features in the input layer of the network (i.e., the functional 

connectivity features). The comparison was made by obtaining the prediction power vectors 

for both the aforementioned cases and computing the cumulative prediction power for 

elements belonging to each subdomain interaction (SDI). The cumulative prediction power 

of each SDI for the prediction task, averaged over 50 repetitions of the algorithm on held-out 

test data is plotted in Figure 7. The results indicate that the prediction power of SDI 

parameters learned in the late fusion step of the final architecture is highly correlated (0.9 

for fBIRN and 0.81 for COBRE) with the prediction power of the same SDI features in 

the functional connectivity input features. This observation suggests that the TPE-optimized 

architecture learned appropriate brain representations as the SDI features retained similar 

properties in terms of the prediction accuracy on the schizophrenia classification task as well 

as the importance of each SDI in the prediction. With these properties being similar, the TPE 

procedure that optimizes based on the depth by each SDI in the multi-branched architecture, 

can be said to additionally provide insights into the complexity of the information stored in 

the SDIs. The results from the analysis of this variation in the nature of information across 

the SDIs (as defined in subsection 2.5) is done in the subsequent subsection.

3.4 Analyzing Optimal Models

After having ensured that the TPE procedure for optimizing the multi-branched MLP 

architecture is consistent in terms of prediction accuracy on held-out test data and also 

shows a similar trend in the importance of SDIs, an analysis on the variation in depth 

required by various SDIs in the final architecture returned by TPE was done as described 

in subsection 2.5. This was done by considering the most frequently occurring number of 

fully connected layers across all repetitions of TPE for each SDI. The relationship between 7 

subdomains (networks) in terms of the number of fully connected layers needed for optimal 

decoding of information in each pair of networks (SDI) in the final architecture is shown in 

Figure 8. A notable observation here is that in the final architecture of both the fBIRN and 

COBRE datasets, the number of fully connected layers required by each SDI is the same for 

19 out of the 28 SDIs (Figure 9), which indicates a very similar common pattern across the 

two independent datasets in terms of complexity of information in subdomain interactions. 

Note that the number of such common values across two datasets can be modelled using a 

random variable which is distributed according to the binomial distribution B(k, n, p), where 
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k is the number of successes (=19), n is the number of trials (=28) and p is the probability of 

a success, which in this case is the probability of having the same depth in both datasets for 

a particular SDI, given by 3
32 = 1

3 . A binomial test was done to check whether the observed 

number of common values (= 19) is significantly different from the expected number (= 

28/3) in the case of the binomial distribution. This test indicates that the result is significant 

with a p-value of 2.09 × 10−4.

3.5 Biological Interpretation

Using the TPE framework, functional connectivity features between brain regions belonging 

to various functional subdomains were used to analyze them in terms of the complexity 

involved for uncovering predictive information for schizophrenia classification. While most 

deep learning architectures do not allow for analyzing specific region-wise functional 

connectivity input features due to the mixing up in subsequent hidden layers, the TPE 

framework mixes the region-level features only within the branch corresponding to the 

functional subdomains that the regions belong to. Thus, the results, upon optimization for 

complexity required by various subdomain interactions, can be interpreted in terms of the 

functional connectivity subdomains. Figure 9 summarizes these findings in terms of the 

7 functional connectivity subdomains involving brain regions belonging to default mode 

network (DMN), visual (VIS), auditory (AU), cognitive control (CC), sensorimotor (SM), 

cerebellar (CB) and sub-cortical (SC) areas.

With schizophrenia being a cognitive disorder involving audio-visual hallucinations 

occurring as if being sensed in real even while the subject is not actively engaged in 

a task, it is interesting to note that the same is reflected by the functional subdomains 

involved in these functions (CC, DMN, SM, VIS, AUD) requiring higher complexity 

models. Cognitive control deficits are well known to be prevalent in patients diagnosed 

with schizophrenia, with cognitive control known to regulate a lot of other cognitive systems 

including behavioral disorganization (Lesh et al., 2011). According to the cognitive control 

model, failures to retrieve episodic memories are mainly mediated through frontal areas 

involved in cognitive control (Ragland et al., 2009). Additionally, previous studies have 

revealed that impaired connectivity in the DMN is associated with reduction in capacity to 

effectively retrieve episodic memories and process self referential information (Dunn et al., 

2014; Kim, 2010). Thus, the associations between CC and DMN domains are evident from 

these observations. The connectivity of the DMN regions with the SM and VIS regions is 

also known to be affected in schizophrenia (Wang et al., 2015). The role of connectivity 

between regions belonging to the SM, VIS and CC subdomains is also known in the case 

of schizophrenia (Kaufmann et al., 2015; Javitt and Freedman, 2015). Previous studies have 

found significant differences in the connectivity within the SM/VIS regions as well as their 

connectivity with the CC regions (Kaufmann et al., 2015; Javitt and Freedman, 2015; Butler 

and Javitt, 2005; Gaebler et al., 2015). Many studies have shown that inter-subdomain 

connectivity is affected in schizophrenia for the CC, VIS, SM, DMN and AUD areas (Javitt, 

2009; Kim et al., 2009). This is in line with the observation that the inter-subdomain 

connections between regions from all these subdomains require more complexity (Figure 9).
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4 DISCUSSION

In this work we focus on developing a new approach for modeling differing values 

of variation and complexity with which information is encoded in the functional 

subdomain interactions (SDIs). We evaluate this approach in the context of a schizophrenia 

classification problem. The results show that allowing for differing subspace complexity 

can result in improved performance of the models (Figure 6), and enables us to identify 

meaningful differences in the modeling of different subdomains in the data, effectively 

using the resulting model complexity to determine whether their data contains more or less 

complex information about the prediction (Figure 9), given the model performance is at par 

with baseline frameworks. This trend of variation in the nature of information encoded in 

various functional subdomain interactions is significantly consistent (p-value = 2.09 × 10−4) 

across the independent datasets used in this study, our findings showed that 19 out of the 28 

SDIs had the same depth in the optimized architectures for both the datasets.

Notably, it can be observed that the connections from the cognitive control (CC) to the 

visual (VIS) and sensorimotor (SM) subdomains require deeper models for both datasets 

(Figure 9(a)), indicating more complex models are needed to capture links between higher-

order cognition (CC) and lower-order sensory areas (VIS, SM). Connectivity of components 

from SM, VIS and CC subdomains is well known to be affected in schizophrenia (Kaufmann 

et al., 2015; Javitt and Freedman, 2015). In fact, differences have been observed for both 

the focal (within SM and VIS components) as well as distal (between SM/VIS and CC 

components) connectivity in schizophrenia (Kaufmann et al., 2015; Javitt and Freedman, 

2015; Butler and Javitt, 2005; Gaebler et al., 2015). The observation of auditory (AUD) 

subdomain to VIS subdomain connections requiring deeper models is interesting given 

previous work highlighting the disruptions in these areas in schizophrenia (Lynall et al., 

2010; Calhoun et al., 2009; Gallinat et al., 2002; Rotarska-Jagiela et al., 2010; Yu et al., 

2012) are connected in a complex manner and are implicated in auditory hallucinations 

and visual saccades, both of which are disrupted in schizophrenia, respectively. Changes 

in connectivity between the default mode network (DMN) and cognitive control (CC) 

areas are also well known, especially between the precuneus and the prefrontal cortex 

(Wolf et al., 2011). Interestingly, all SDIs involving the functional connectivity between 

components from the same network (i.e., self-connections in Figure 9) require shallower 

models, indicating that connections within a given network may encode less complex 

information compared to SDIs with inter-network connections, even if the former (intra-

network connections) are known to be involved in schizophrenia (Garrity et al., 2007).

The TPE-optimized architectures perform significantly better than the corresponding 

architectures that do not allow for any variation in the depth required for various SDIs 

(UNIF0, UNIF1, UNIF2) as well as other hyperparameter optimization techniques (GRDS, 

RNDS) on flexible branched architectures. Moreover, we also show by comparison with 

baseline methods that the multi-branched architecture also learns features that are consistent 

in terms of their discriminative power. Unlike the standard non-branched deep learning 

architectures like MLP, FNN Encoder-Decoder and BrainNetCNN, it is possible to track 

feature importance in standard ML classifiers. However, the framework presented in this 

work is not only consistent with standard machine learning models in terms of feature 
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importance, but also additionally allows for analyzing the variation in the nature of 

information in feature subdomains. Results from our work further emphasize the importance 

of questioning the assumption that various features from data as complex as neuroimaging 

data would require architectures with the same complexity irrespective of the subdomains of 

the brain. While it is apparent that certain subdomains contain more complex information 

for a given application, we provide an interpretable framework that analyzes as well 

exploits this variability for better understanding and classifying a given condition, in this 

case schizophrenia. A similar analysis could be extended to other brain disorders and 

diseases in future work, providing biomarkers for these conditions in terms of complexity of 

information in the subdomains of the brain.

It should be noted that the TPE framework is less prone to over-fitting because it involves 

the use of branched fully connected architecture, thus requiring much fewer parameters 

than conventional non-branched fully connected architectures. Additionally, to avoid over-

fitting we performed the whole TPE procedure is repeated with random sub-sampling, 

which resulted in a very low standard deviation in the test accuracy across repetitions, 

similar to other standard machine learning methods. Thus, TPE is able to generalize 

better without over-fitting. In future, work should also be focused on extending this 

analysis to study more parameter optimization methods as well as introducing more types 

of flexibility in the frameworks, while avoiding the risk of over-fitting. Approaches to 

automatically determine the model structure/depth and including additional measures of 

model complexity would be quite powerful and is not well studied. Furthermore, developing 

flexible architectures like these does not only give insights towards identifying relationships 

between brain subdomains of the same modality, but it can also be extended to create 

adaptable yet rigorous frameworks that exploit complex interrelationships from subdomains 

in a multimodal setting.
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Figure 1. 
(a) A step-by-step description of the whole analysis. (b) An architecture in the search space 

that TPE optimizes over, defined by the vector xi i = 1
28 , with xi ∈ {0, 1, 2} representing the 

number of fully connected hidden layers on top of the input node corresponding to data from 

the i-th subdomain interaction (SDI). Data for each SDI is a sub-matrix of the full static 

functional connectivity matrix with connections from participating subdomain(s). (c) TPE 

search space traversal on a toy example with a quadratic cost function (x − 1)2 to narrow 

down the search closer to the optimal value.
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Figure 2. 
Illustration of how the functional connectivity matrix for the 53 components (53 × 53 in 

size) is divided into subdomain interactions (SDIs) that form the input to the branched 

Multilayer Perceptron (MLP) architecture. Each colored sub-matrix represents a certain 

SDI i.e., the set of functional connectivity values between components of a given pair 

of subdomains. The 7 subdomains include: default mode network (DMN), visual (VIS), 

auditory (AU), cognitive control (CC), sensorimotor (SM), cerebellar (CB) and sub-cortical 

(SC). A total of 28 SDIs, which are sub-matrices of the full functional connectivity matrix, 

are colored in different colors. Since the number of subdomains is 7, a total of 7C2 = 21 out 

of the 28 SDIs correspond to inter-network connections (e.g. DMN-VIS) while 7 correspond 

to intra-network connections (e.g. DMN-DMN).
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Figure 3. 
A schematic diagram for neural network based methods used for performance comparison 

with the TPE based approach. In addition to standard machine learning models like SVM, 

logistic regression (LOG) and random forest classifier (RFC), baseline non-branched neural 

network architectures used were (a) multilayer perceptron (MLP), (b) feedforward neural 

network with encoder-decoder architecture (FNN) and (c) BrainNetCNN. Branched neural 

network architectures included (d) uniform architectures, UNIF0, UNIF1 and UNIF2, 

representing non-flexible multi-branched architectures with 0, 1 and 2 fully connected 

layers before the fusion step and above input layer in each SDI branch of the architecture 

respectively. (e) As the third baseline neural network methods, existing hyper-parameter 

optimization techniques including random search (RNDS) and grid search (GRDS) were 

used to optimize the domain of branched architectures with variable branch-depth, 

representing the same class as TPE.
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Figure 4. 
The components obtained from the scICA procedure Neuromark are shown in different 

colors. Each map shows the components belonging to a particular subdomains i.e., networks 

of brain. The 7 subdomains include: default mode network (DMN), visual (VIS), auditory 

(AU), cognitive control (CC), sensorimotor (SM), cerebellar (CB) and sub-cortical (SC). 

subdomain interaction (SDI) features built using these subdomains and components were 

used as input to the multi-branch MLP architecture optimized for variable branch-depth 

by the TPE algorithm. The SDI features are comprised of functional connectivity (static 

time-series correlation) between pairs of components belonging the same subdomain 

(intra-network connections) or different subdomains (inter-network conenctions). The 7 

subdomains shown above lead to the creation of 28 SDIs, with 7C2 = 21 corresponding 

to the inter-network connections (Eg. DMN-VIS) and 7 corresponding to the intra-network 

connections (Eg. DMN-DMN).
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Figure 5. 
Mean validation accuracy vs. time point (iterations) for 50 repetitions of the TPE algorithm 

over the architecture search space depicted in Figure 1b. The mean test accuracy using the 

final architecture on held-out data for each repetition is also shown. The points traversed in 

the search space are selected based on expected improvement (Equation 2).
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Figure 6. 
Mean validation accuracy with error-bar for 50 repetitions of the TPE-optimized final 

architecture in comparison to baseline methods for (a) fBIRN and (b) COBRE datasets 

along with p-values for two-sample t-test on the mean test accuracy across 50 repetitions, 

shown in (c),(d). Methods used for performance comparison with TPE approach include 

simple machine learning models (SVM, LOG, RFC), Non-Branched Neural Network 

Architectures (MLP, FNN, BCNN), Branched Neural Network Architectures without 

Flexibility (UNIF0, UNIF1, UNIF2) and also Branched Neural Network Architectures 

with Non-Uniform Branch-Depth (GRDS, RNDS). See Figure 3 and subsection 2.6 for 

visualization and detailed explanation of these methods. The architecture created from 

the repeated optimizations using the TPE procedure is termed as TPE in the plots. 

It can be noted that for both the datasets, the accuracy obtained by using the TPE-

optimized architecture is significantly higher than the accuracies from uniformly branched 

architectures (UNIF0, UNIF1), indicating the need for flexible architectures. Moreover, the 

accuracy with TPE is slightly higher than the accuracy for the other baseline methods, 

showing the scope of interpretability in the optimized model in terms of certain subdomain 

interactions (SDIs) with higher complexity requiring deeper while others requiring shallow 

architectures.
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Figure 7. 
To check whether the relative importance of SDI parameters learned in the fusion layer 

of MLP architecture is similar to the functional connectivity features of the corresponding 

SDI, Random Forest classifier was used to compute purity-based feature importance on 

the parameters in the fusion layer as well as the input layer (connectivity features). 

The prediction power vector obtained for both these cases was divided into 28 bins 

corresponding to each SDI and summed to get the cumulative prediction power of each 

of the SDIs. The above plots show the cumulative prediction power of SDIs, averaged over 

50 repetitions, in the learned parameters inside the fusion layer (marked as TPE on the 

y-axis) and in the functional connectivity features in the input layer (marked as RFC on the 

x-axis). There was a high correlation of 0.9 and 0.81 between these prediction power values 

for (a) fBIRN and (b) COBRE datasets respectively. This means that in addition to being 

consistent in terms of the prediction accuracy, the TPE algorithm is also consistent in terms 

of the importance that the SDIs have for the prediction task.

Batta et al. Page 22

Neuroinformatics. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
(a),(b) Visualization of the depth (in terms of the number of fully connected layers) in 

the final optimized architecture required by various subdomain interactions (SDIs) (intra-

network or inter-network functional connectivity). SDIs consistently requiring higher depth 

across repetitions of the algorithm can be said to carry more complex information towards 

the classification objective.
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Figure 9. 
Connectogram showing SDIs requiring the same depth i.e., number of fully connected 

layers, in the TPE-optimized architectures for both COBRE and fBIRN datasets. The depth 

required by SDIs was the same for 19 out of 28 SDIs, indicating a common pattern across 

datasets in terms of certain SDIs requiring deeper models while others requiring shallower 

ones for a better prediction.
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Table 1.

Peak coordinates and primary brain regions for the 53 components (ICs) obtained using scICA (Neuromark 

framework) on the fMRI time series data. The 53 components were divided into 7 subdomains (resting-state 

networks) as shown in different colors in the table. The time-series from every possible pair of these 53 

components was used to compute the static functional connectivity (SFNC) features using Pearson correlation. 

The SFNC features were then divided into 28 subdomain interactions (SDIs) based on the subdomain(s) to 

which a given pair of components for the SFNC feature belongs (See Figure 4).

Primary region for 
component (IC ID) X Y Z Subdomain Primary region for 

component (IC ID) X Y Z Subdomain

Caudate (69) 6.5 10.5 5.5 Inferior parietal lobule 
([IPL], 68) 45.5 −61.5 43.5

Subthalamus/
hypothalamus (53) −2.5 −13.5 −1.5 Insula (33) −30.5 22.5 −3.5

Putamen (98) −26.5 1.5 −0.5 Subcortical Superior medial frontal 
gyrus ([SMFG], 43) −0.5 50.5 29.5

Caudate (99) 21.5 10.5 −3.5 Inferior frontal gyrus 
([IFG], 70) −48.5 34.5 −0.5

Thalamus (45) −12.5 −18.5 11.5
Right inferior frontal gyrus 

([R IFG], 61) 53.5 22.5 13.5

Superior temporal gyrus 
([STG], 21) 62.5 −22.5 7.5

Auditory

Middle frontal gyrus 
([MiFG], 55) −41.5 19.5 26.5

Middle temporal gyrus 
([MTG], 56) −42.5 −6.5 10.5 Inferior parietal lobule 

([IPL], 63) −53.5 −49.5 43.5

Postcentral gyrus 
([PoCG], 3) 56.5 −4.5 28.5 Left inferior parietal lobue 

([R IPL], 79) 44.5 −34.5 46.5

Left postcentral gyrus 
([L PoCG], 9) −38.5 −22.5 56.5 Supplementary motor area 

([SMA], 84) −6.5 13.5 64.5 Cognitive 
Control

Paracentral lobule 
([ParaCL], 2) 0.5 −22.5 65.5 Superior frontal gyrus 

([SFG], 96) −24.5 26.5 49.5

Right postcentral gyrus 
([R PoCG], 11) 38.5 −19.5 55.5 Middle frontal gyrus 

([MiFG], 88) 30.5 41.5 28.5

Superior parietal lobule 
([SPL], 27) −18.5 −43.5 65.5 Sensorimotor Hippocampus ([HiPP], 48) 23.5 −9.5 −16.5

Paracentral lobule 
([ParaCL], 54) −18.5 −9.5 56.5 Left inferior parietal lobue 

([L IPL], 81) 45.5 −61.5 43.5

Precentral gyrus 
([PreCG], 66) −42.5 −7.5 46.5 Middle cingulate cortex 

([MCC], 37) −15.5 20.5 37.5

Superior parietal lobule 
([SPL], 80) 20.5 −63.5 58.5 Inferior frontal gyrus 

([IFG], 67) 39.5 44.5 −0.5

Postcentral gyrus 
([PoCG], 72) −47.5 −27.5 43.5 Middle frontal gyrus 

([MiFG], 38) −26.5 47.5 5.5

Calcarine gyrus 
([CalcarineG], 16) −12.5 −66.5 8.5 Hippocampus ([HiPP], 83) −24.5 −36.5 1.5

Middle occipital gyrus 
([MOG], 5) −23.5 −93.5 −0.5 Precuneus(32) −8.5 −66.5 35.5

Middle temporal gyrus 
([MTG], 62) 48.5 −60.5 10.5 Precuneus(40) −12.5 −54.5 14.5

Cuneus(15) 15.5 −91.5 22.5 Anterior cingulate cortex 
([ACC], 23) −2.5 35.5 2.5

Rightmiddle occipital 
gyrus ([R MOG], 12) 38.5 −73.5 6.5 Visual Posterior cingulate cortex 

([PCC], 71) −5.5 −28.5 26.5 Default 
mode
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Primary region for 
component (IC ID) X Y Z Subdomain Primary region for 

component (IC ID) X Y Z Subdomain

Fusiform gyrus (93) 29.5 −42.5 −12.5 Anterior cingulate cortex 
([ACC], 17) −9.5 46.5 −10.5

Inferior occipital gyrus 
([IOG], 20) −36.5 −76.5 −4.5 Precuneus (51) −0.5 −48.5 49.5

Lingual gyrus 
([LingualG], 8) −8.5 −81.5 −4.5 Posterior cingulate cortex 

([PCC], 94) −2.5 54.5 31.5

Middle temporal gyrus 
([MTG], 77) −44.5 −57.5 −7.5 Cerebellum ([CB], 13) −30.5 −54.5 −42.5

CerebellumCerebellum ([CB], 18) −32.5 −79.5 −37.5

Cerebellum ([CB], 4) 20.5 −48.5 −40.5

Cerebellum ([CB], 7) 30.5 −63.5 −40.5
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Table 2.

Test accuracy scores for all the classification methods used on fBIRN and COBRE datasets. See Figure 3 and 

subsection 2.6 for visualization and detailed explanation of these methods respectively.

Method Architecture Category Test Accuracy (fBIRN) (mean ± std) Test Accuracy (COBRE) (mean ± std)

SVM Linear 79.492 ± 4.886 73.688 ± 6.646

LOG Linear 79.651 ±4.430 72.062 ± 8.254

RFC Linear 74.032 ± 4.674 69.625 ± 8.818

MLP Neural Net 78.603 ± 5.813 73.312 ±7.132

FNN Neural Net 78.667 ±5.189 69.062 ± 6.967

BCNN Neural Net 75.429 ± 4.701 71.812 ±6.011

UNIF0 Branched 78.571 ±4.924 71.125 ±8.138

UNIF1 Branched 77.302 ±4.515 69.062 ±6.351

UNIF2 Branched 77.270 ± 4.767 70.250 ± 6.502

RNDS Branched + Flexible 77.048 ±4.910 71.250 ±8.077

GRDS Branched + Flexible 77.746 ± 4.747 72.625 ±6.142

TPE Branched + Flexible 81.052 ± 4.515 78.188 ± 6.468
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