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SUMMARY

Sporadic gliomas in companion dogs provide a window on the interaction between tumorigenic 

mechanisms and host environment. We compared the molecular profiles of canine gliomas with 

those of human pediatric and adult gliomas to characterize evolutionarily conserved mammalian 

mutational processes in gliomagenesis. Employing whole-genome, exome, transcriptome, and 

methylation sequencing of 83 canine gliomas, we found alterations shared between canine and 

human gliomas such as the receptor tyrosine kinases, TP53 and cell-cycle pathways, and IDH1 
R132. Canine gliomas showed high similarity with human pediatric gliomas per robust 

aneuploidy, mutational rates, relative timing of mutations, and DNA-methylation patterns. Our 
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cross-species comparative genomic analysis provides unique insights into glioma etiology and the 

chronology of glioma-causing somatic alterations.

In Brief

Amin et al. characterize the molecular landscape of canine gliomas and compare it with that of 

human pediatric and adult gliomas, revealing high similarity between human pediatric and canine 

gliomas. The cross-species analysis identifies conserved glioma drivers and aneuploidy as a 

hallmark of high-grade disease.

Graphical Abstract

INTRODUCTION

The natural history of cancer is marked by temporal acquisition of diverse genetic and 

epigenetic aberrations. The inevitable intratumoral and interpatient heterogeneity among 

evolving cancer cells poses a major obstacle in our understanding of cancer evolution and 

designing effective treatment strategies (Alizadeh et al., 2015). Recent developments in 

high-throughput lineage tracing, organoid cultures, and patient-derived xenografts have 

provided better resolution of heterogeneity and driver events. Nonetheless, in the absence of 

natural host response, preclinical in vitro and rodent models are unable to fully recapitulate a 

spontaneously evolving tumor’s life history. This limitation challenges the accuracy of 
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predicting therapeutic responses in these preclinical models, especially response to 

immunotherapies (Buque and Galluzzi, 2018).

Somatic evolution of cancers may follow convergent patterns across mammalian species by 

selecting cells that carry beneficial mutations in highly conserved regions, i.e., genes and 

their regulatory non-coding regions enabling one or more cancer hallmarks (Hanahan and 

Weinberg, 2011). Unlike induced cancer models, comparative genomics of spontaneous 

tumors across species provides a unique advantage to identify defects in such shared, 

evolutionarily constrained regions (Lindblad-Toh et al., 2011) and to evaluate the importance 

of host context in the tumor’s evolution. In addition to their natural tumorigenesis, 

spontaneous cancers in dogs are marked by the presence of a fully functional tumor 

microenvironment (Khanna et al., 2006; LeBlanc et al., 2016). Cancer cells are subject to 

clonal selection and drift, and the resulting tumor is molded by selection pressure from the 

tissue context (DeGregori, 2017; Fortunato et al., 2017). This Darwinian adaptation may 

select for somatic alterations in evolutionarily conserved regions in both dogs and humans 

that are relevant to tumorigenesis.

Sporadic gliomas occur in companion dogs at frequencies similar to those in humans 

(Snyder et al., 2006; Song et al., 2013). Genomic characterization of canine glioma has a 

distinct merit, in that dogs are diagnosed in the adult stage of life but with an age distribution 

that is comparable with human pediatric disease. This seeming conundrum in fact creates an 

opportunity to compare somatic drivers and their relative timing in canine glioma with those 

in human glioma. Studies involving comparative genomics of spontaneous canine cancers 

have already enabled identification of breed-specific, disease-risk loci under strong 

evolutionary constraints and with known roles in human cancer, e.g., germline FGF4 
retrogene expression in chondrodysplasia (Parker et al., 2009), somatic BRAF V600E 

mutation in canine invasive transitional cell carcinoma of the bladder (Decker et al., 2015b), 

recurrent somatic SETD2 mutations in canine osteosarcoma (Sakthikumar et al., 2018), and 

TP53 pathway alterations in canine melanoma (Hendricks et al., 2018; Wong et al., 2019). 

Earlier studies in canine gliomas have characterized somatic copy-number alterations 

syntenic with those in human adult gliomas (Dickinson et al., 2016) and have identified 

genetic susceptibility factors near genes such as CAMKK2, P2RX7, and DVL2 (Mansour et 

al., 2018; Truve et al., 2016).

Here, we have performed comparative genomic, transcriptomic, and epigenetic profiling 

across three population structures, canine glioma, human adult glioma, and human pediatric 

glioma, to study somatic evolutionary traits of glioma across two species and in different age 

groups. We leveraged genomic profiles to infer molecular life history in order to understand 

cross-species convergent evolution of glioma (Aktipis et al., 2013; Stearns, 1992).

RESULTS

Human Glioma Driver Events Are Frequently Found in Canine Disease

We performed whole-genome, exome, transcriptome, and methylation sequencing (373 

libraries) on canine gliomas (n = 83) and germline (n = 67) samples from 83 dogs (NCBI 

SRA accession: PRJNA579792), with all samples obtained via necropsy. Using the recently 
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updated criteria for diagnostic histopathological classification (Koehler et al., 2018), 46 

cases were classified as oligodendroglioma, 31 cases as astrocytoma, and 6 cases as 

undefined glioma (Table S1). We defined a common set of 81 cases for which whole-

genome and exome data were available with minimum of 30× coverage in exome regions 

(Table S1 and Figure S1A; STAR Methods). From mutation calls derived from all 81 cases, 

we detected somatic mutational driver events using dNdS (Martincorena et al., 2017), 

MuSiC2 (Dees et al., 2012), and a semi-supervised comparison with known cancer drivers in 

human adult and human pediatric cancers (Bailey et al., 2018; Gröbner et al., 2018; Mansour 

et al., 2018) (Figure 1A and Table S2; STAR Methods). We detected mutations in genes 

associated with human pediatric (Mackay et al., 2017) and adult glioma (Brennan et al., 

2013; Ceccarelli et al., 2016) such as the TP53, PDGFRA, PIK3CA, and EGFR (Figure 

S1B), as well as recurrent hotspot and mutually exclusive mutations with high oncogenic 

impact according to the Catalog of Somatic Mutations in Cancer (COSMIC) database (Tate 

et al., 2019) in PIK3CA H1047R/L (n = 8), PDGFRA K385I/M (n = 6), IDH1 R132C (n = 

3), and SPOP P94R (n = 1; 1 shared with PIK3CA H1047R) (Figure 1B and Table S3). 

These mutations were also identified as being under positive selection or as significantly 

mutated genes using the dNdS (Martincorena et al., 2017) approach (Table S2) and thus 

indicating driver mutations of canine gliomas. Mutations affecting the IDH1 R132 codon are 

a defining characteristic of low-grade adult gliomas (Cancer Genome Atlas Research 

Network et al., 2015) and were detected infrequently in pediatric and canine gliomas (n = 

3/81). Overall, 36/81 (44%) of canine gliomas carried at least one significantly mutated 

gene. This proportion was comparable with published findings in human pediatric gliomas 

(114/217, 52%, chi-square p value 0.54) (Gröbner et al., 2018) but contrasted with the 

frequency at which adult gliomas contain at least one significantly mutated gene alteration 

(753/812, 93%, chi-square p value 0.0004). To demonstrate similarity between canine 

gliomas and human gliomas, we summarized levels of somatic coding mutations, high-level 

copy amplifications and deep deletions in gene sets reflecting previously reported cancer 

hallmarks (Table S4). We tallied weighted pathway contributions per cohort (canine, adult, 

pediatric) by the number of coding mutations within each cohort and genes per pathway. 

Adult glioma is commonly separated into subtypes on the basis of IDH mutation as well as 

chromosome arm 1p and 19q deletion, resulting in three subtypes: (1) IDH wild type; (2) 

IDH mutant with codeletion (IDHmut-codel); and (3) IDH mutant without codeletion 

(IDHmut-noncodel) (Louis et al., 2016). Pediatric high-grade gliomas are separated based 

on histone H3 mutation status into two subtypes: histone H3 gene mutant (H3 mutant) 

versus wild type (H3 wild type) (Louis et al., 2016). We did not include low-grade pediatric 

gliomas in our comparison due to the paucity of somatic alterations in these glioma types 

(Jones et al., 2013; Pollack et al., 2019; Zhang et al., 2013). We found that canine gliomas 

were most similar to pediatric H3 wild-type gliomas at the pathway alteration level, i.e., 

comparable hallmark enrichment with no significant difference between groups. Pediatric 

H3 mutant, adult IDH wild type, and IDHmut-noncodel gliomas showed increased 

frequency of gene mutations in cancer hallmarks such as deregulating cellular energetics, 

genomic instability, and resisting cell death (Figures 1C and S1C). Among all 11 cancer 

hallmarks tested, “avoiding immune destruction” scored low across both canine and human 

gliomas (Table S4), potentially owing to the immune-cold nature of gliomas (Boussiotis and 

Charest, 2018; Brown et al., 2018).

Amin et al. Page 5

Cancer Cell. Author manuscript; available in PMC 2021 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We compared mutation burden between canine and a variety of human pediatric and adult 

cohorts using coding mutation rates from 4,761 human patients (Bailey et al., 2018; 

Ceccarelli et al., 2016; Gröbner et al., 2018; Mansour et al., 2018) (STAR Methods). The 

somatic mutation rate of canine glioma (0.34 coding mutations per megabase; 95% 

confidence interval [CI]: 0.15–0.6) was similar to that of human pediatric gliomas (Figures 

1D and S1D). High-grade canine gliomas (n = 63/81) had mutation rates comparable with 

those of pediatric H3-mutant and H3 wild-type subtypes (0.34, 0.27, 0.25 coding mutations 

per megabase, respectively; Wilcoxon p value 0.18 and 0.1; Figure S1E), but significantly 

lower than in human adult IDH-mutant and IDH wild-type gliomas (0.77 and 1.67 coding 

mutations per megabase, respectively; Wilcoxon p values of 8 × 10−9 or less). Low mutation 

burden has been linked to fewer mutations in cancer-driving genes (Martincorena et al., 

2017) and may explain the relative paucity of significantly mutated genes observed in canine 

gliomas, including weaker positive selection (q > 0.1) for known and mutated cancer genes 

(n = 50; Figure S1F). These results demonstrate that the landscape of somatic single-

nucleotide variants is similar to that of human glioma, and suggests that canine glioma 

aligns more closely with human pediatric glioma than with adult disease.

Aneuploidy Is a Major Driver of Canine and Pediatric High-Grade Glioma

We compared the DNA copy-number landscape of glioma across species with a focus on the 

>50% of canine gliomas (45/81) without evidence of significantly mutated genes. No focal 

copy-number amplifications were detected among canine gliomas. Human glioma tumor-

suppressor gene CDKN2A/B was homozygously deleted in 8/67 (12%, all astrocytomas), 

and PTEN in 2/67 (3%) of canine glioma genomes (Figures 2A and S2A). Together, 67/81 

(83%) patients with canine glioma contained somatic mutations and/or focal copy alterations 

in known human glioma drivers (Figure S1E). Contrasting with the limited presence of focal 

DNA copy-number alterations was the high frequency of arm-level copy gains (canine 

chromosomes 7q, 13q, 16q, 20q, 34q, 35q, and 38q) and arm-level losses (canine 

chromosomes 1q, 5q, 12q, 22q, and 26q) (Figure S2B). The most frequent arm-level 

alteration comprised the shared syntenic regions of glioma drivers PDGFRA, KIT, and 

MYC (Figure S2C) and typically resulted in more than four copies of these genes (canine 

13q+; 11/67 cases, 16%). Other common arm-level alterations included PIK3CA (canine 

34q+) and the HIST1 cluster (canine 35q+) as well as hemizygous loss of heterozygosity of 

tumor-suppressor genes TP53, RB1, and PTEN (Figure 2A).

We quantified the prevalence of aneuploidy across the canine, human pediatric, and adult 

glioma populations (Taylor et al., 2018). For copy-number estimation, matched tumor-

normal whole-genome sequencing profiles from canine (n = 67) and pediatric gliomas (n = 

50) (Mansour et al., 2018), and Affymetrix SNP6 profiles for adult gliomas (n = 969) 

(Ceccarelli et al., 2016) were analyzed (STAR Methods). We calculated aneuploidy as the 

proportion of the copy-number segmented genome that was non-diploid (STAR Methods). 

Canine glioma independent of tumor grade had a median of 25% genome aneuploidy, which 

was significantly higher than that in adult IDH-mutant tumors (8%–9% of genome) and 

marginally higher than in adult IDH wild-type glioma (18% of genome) (Figure 2B). In 

contrast, pediatric H3 wild type (19% of genome) and H3 mutant (26% of genome) showed 

rates of aneuploidy comparable with that of canine glioma. We then searched for aneuploidy 
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within syntenic regions, which may be subject to selection pressure during gliomagenesis. 

We mapped canine chromosome arms to their human counterparts and used unsupervised 

hierarchical clustering of the most variable syntenic aneuploid regions to identify regions of 

shared aneuploidy (Figure 2C). The analysis revealed three aneuploidy clusters. The first 

cluster (blue dendrogram) consisted of human 1p/19q codeletions seen commonly in adult 

IDH-mutant gliomas but observed in 20%–36% of canine (across four canine chromosomes 

of cases) and 25% of H3 wild-type and H3-mutant human pediatric gliomas. The second 

cluster (red dendrogram) consisted of arm-level aneuploidy of human 7p (EGFR) and 10q 

(PTEN) arms characteristic of human adult IDH wild-type (86% and 92% of patients, 

respectively) and pediatric H3-mutant and H3 wild-type gliomas (33% and 75% of patients) 

for which 5% and 14% of canine gliomas showed arm-level aneuploidy in the EGFR and 

PTEN regions, respectively. None of three IDH1 mutant canine gliomas shared these 

syntenic aberrations, suggesting a mutually exclusive pattern as observed in human gliomas. 

The third cluster (black dendrogram) consisted of human 4p/8q and syntenic canine 13q 

arm, which contains the genes PDGFRA and MYC, amplified in 78% of canine gliomas. 

The ACVR1 and the HIST1 genes are frequently mutated in pediatric high-grade gliomas 

and in particular H3.1K27M diffuse intrinsic pontine glioma (Mackay et al., 2017). We 

observed loss of the syntenic human 2q/canine 36q region (containing ACVR1) within 37%, 

28%, and 17% of canine, pediatric H3 wild-type, and H3-mutant gliomas, respectively. In 

contrast, this alteration was not observed in human pediatric or adult IDH-mutant glioma 

and was present in 6% of IDH wild-type adult gliomas. Similarly, human chromosome arm 

6p/canine chromosome arm 35q, containing the HIST1 gene cluster, was frequently 

amplified in canine gliomas (70%) and pediatric H3 wild-type (50%) and H3-mutant 

gliomas (13%) but not in pediatric low-grade or adult gliomas (<5%).

We measured intratumoral heterogeneity using the Shannon Diversity Index per each patient 

tumor sample across canine gliomas and different molecular subtypes of human gliomas. 

Shannon entropy value correlated with the proportion of variants per subclone and the total 

number of subclones in a tumor sample, i.e., values near zero indicated lower intratumoral 

diversity (homogeneity or a dominant clone), while values closer to 1 or higher were 

associated with increased diversity and tumors consisting of more than one subclone (Wolf 

et al., 2019). We found that the canine gliomas showed a relatively bimodal distribution, 

with 25% of canine gliomas (15/60; 7 cases had no resolved clonal structure for intratumoral 

heterogeneity analysis) being very heterogeneous (Shannon Diversity Index ≥ 0.45—third 

quartile) while remaining cases showed patterns suggesting clonal dominance (median 

Shannon Diversity Index 0.03, 95% CI: 0.02–0.07). Intratumoral heterogeneity of canine 

gliomas was comparable with adult IDH wild type or IDHmut-noncodels (unpaired two-

tailed Wilcoxon test p value >0.18). In contrast, canine gliomas had significantly higher 

heterogeneity over H3 wild-type (p value 0.002) and H3-mutant (p value 0.007) pediatric 

gliomas (Figure S2D).

To better understand the potential functional versus non-functional nature of intratumor 

heterogeneity (Jamal-Hanjani et al., 2017), we asked whether frequent driver mutations 

found in canine gliomas (Figure 1A) are part of major (dominant) versus minor clone, and 

how these driver events compare with measured heterogeneity across molecular subtypes in 

human pediatric and adult gliomas (Williams et al., 2016). We observed that among less 
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heterogeneous tumor samples (Shannon entropy near 0), shared driver events across canine 

and adult gliomas are part of major clones, including PIK3CA mutations in canine gliomas, 

IDH1/2 mutations in IDH-mutant adult gliomas, and EGFR somatic mutations in adult IDH 

wild-type GBM (Figure 2D). Among tumor samples with increased heterogeneity, we found 

mutations in PDGFRA in canine gliomas (n = 7/60) and H3 wild-type pediatric gliomas (n = 

2/14), whereas mutations in TP53 (n = 9/20) and PTEN (3/20) were seen among IDH wild-

type and IDHmut-noncodel patients. We did not observe significant enrichment of driver 

events within minor clone(s).

Collectively, the observed high degree of aneuploidy and clonal nature of somatic drivers in 

canine glioma may suggest progressive genomic instability. Comparing the aneuploidy score 

among canine gliomas with high versus low coding mutational rate showed significant 

increases (Figure S2E; Wilcoxon p value 0.006) in aneuploidy among patients with a high 

mutational rate, suggesting that an underlying mutational process promotes genomic 

instability during gliomagenesis.

DNA Damage-Related Mutational Processes Shape Somatic Driver Landscape and 
Maintain Genomic Instability

We leveraged known mutational signatures from adult (COSMIC v2, 1 to 30) and pediatric 

cancers (T1 to T12) to estimate and compare underlying mutational processes across canine 

and human gliomas (Alexandrov et al., 2013; Gröbner et al., 2018; Mansour et al., 2018) 

(Table S5). The most enriched signatures across all canine gliomas (Figure S3A) were 

associated with aging (COSMIC signature 1, pediatric signature T1), mismatch repair 

deficiency (COSMIC signature 15), APOBEC-AID (COSMIC signature 2, 9), homologous 

repair defect signatures (COSMIC signature 8, pediatric signature T3), and signatures with 

unknown relevance (COSMIC signature 12, pediatric signature T10 and T11). Among the 

nine canine gliomas with the highest mutation rates (median coding mutation rate of 0.55 

per megabase) (Figure 3A), there was significant (Wilcoxon p value 0.025) enrichment of 

two additional mismatch repair signatures (pediatric signature T9 or COSMIC signature 6, 

15) (Figure S3B). A frameshift indel in mismatch repair gene MSH6 was detected in one 

case with an outlier mutation frequency (coding mutation rate of 5.04 per MB) (Figure 

S3C). Among the remaining cases (median coding mutation rate of 0.25 per MB), 

homologous repair defect or “BRCAness” signatures (COSMIC signature 3 or pediatric 

signature T3, COSMIC signature 8 or pediatric signature T6) were the second most 

prominent signatures after clock-like signatures (COSMIC signature 1, 5). Homologous 

repair defect signatures have been reported to be enriched in pediatric high-grade gliomas 

with higher genomic instability (Gröbner et al., 2018). The known human signatures were 

validated by clustering de novo constructed signatures for all three cohorts (canine, human 

adult, and pediatric gliomas). Independent of cohort type, we observed significant cosine 

similarity (>0.8; Figures 3B and S3D) of de novo signatures with known homologous repair 

defect mutational processes (including COSMIC signature 3/pediatric signature T3, 

COSMIC signature 8/pediatric signature T6), further implying a role for these mutational 

processes in cross-species gliomagenesis.
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Next, we determined the relative contribution of mutational processes (with deconvoluted 

human signatures as a proxy) in generating mutations within significantly mutated genes, 

thus to identify the dominant mutational process(es) active during tumor evolution (Figure 

3C). Although clock-like processes (COSMIC signature 1, 5) largely contributed to an age-

related increase in mutations, including in driver genes, we found that homologous repair 

defect signatures (COSMIC signature 3, 8) contributed (26%, 21/81 cases) to driver 

mutations across all three cohorts, emphasizing that homologous repair defect can not only 

serve as a potential source for driver mutations but also fuel progressive genomic instability 

along with observed high aneuploidy (Blank et al., 2015; Targa and Rancati, 2018) in high-

grade gliomas across all three cohorts.

Comparative Molecular Timing Analysis Highlights Context-Specific Early and Late Drivers 
of Gliomagenesis

We inferred the sequential order of somatic alterations during gliomagenesis by estimating 

clonality of glioma driver events (Figure 3D) (Jolly and Van Loo, 2018; Shinde et al., 2018). 

In brief, significantly mutated genes were timed as occurring early (clonal) to late 

(subclonal) during tumor evolution based on their cancer cell fraction after accounting for 

tumor purity, ploidy, and copy-number status (STAR Methods). We observed clonal 

PDGFRA and EGFR mutations as the only shared and early event across all three cohorts. 

Subsequent whole chromosome 13 amplification bearing the PDGFRA mutant allele marked 

the emergence of the most recent common ancestor in six canine gliomas (Figure S3E), 

which grew to be a dominant clone at the time of diagnosis. IDH1 mutation marks an 

initiating event in IDH-mutant human gliomas (Barthel et al., 2018). Correspondingly, IDH1 
mutations were ubiquitously timed as an initiating event (cancer cell fraction [CCF] > 0.9) in 

three canine and three human adult IDH1 mutant cases, and as an early event in one case of 

pediatric glioma (CCF = 0.83). We observed NF1 frameshift mutations mostly as a late 

event across all cohorts, whereas PIK3CA mutations appeared as an early event for canine 

and human pediatric gliomas. Although the relatively uniform timing patterns of these 

known glioma drivers suggest convergent evolution in varied contexts, i.e., presence of 

hotspot mutations in shared drivers (PDGFRA, PIK3CA) during clonal evolution of glioma 

across two species and different age groups, we also observed an oscillating pattern of 

timing and consequent underlying natural selection for a set of epigenetic drivers in the 

lysine methyltransferase (MLL) family (Rao and Dou, 2015). MLL3 (KMT2C) gene 

mutations were clonal events in canine and pediatric gliomas but subclonal in adult gliomas, 

whereas ARID5B mutations showed the inverse pattern (Figure 3D). MLL family genes 

include some of the most commonly mutated genes in pediatric cancers, including gliomas 

(Huether et al., 2014; Sturm et al., 2014), but not in adult gliomas (Bailey et al., 2018).

Canine Gliomas Are Classified as Pediatric Glioma by DNA Methylation

We hypothesized that epigenetic deregulation in canine gliomas may carry a tumor-specific 

methylation pattern reflecting underlying tumor pathology, as has been observed across 

human brain tumors (Capper et al., 2018). We leveraged reduced representation bisulfite 

sequencing of canine gliomas to generate genome-wide DNA-methylation profiles to 

classify canine gliomas according to a classification model widely used for human brain 

tumors (Capper et al., 2018). As the human brain tumor classifier was developed using the 
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Illumina human 450k array platform, we developed a logistic regression model to enable 

classification of the sequencing-based canine DNA-methylation profiles. We found that the 

model classified 35/45 (78%) of canine samples as pediatric glioma (Figure 4). Six of 45 

(13%) samples were classified as IDH wild-type adult glioma, and 4/45 (9%) samples were 

classified as IDH-mutant adult glioma. Of the three samples carrying an IDH1 R132 

mutation, one was classified as IDH-mutant adult glioma, with a classification probability of 

99%, while a second IDH-mutant sample had a relatively high classification probability for 

IDH-mutant adult glioma (40%), in parallel with a 57% pediatric glioma classification 

probability. The third sample had a low classification probability for IDH-mutant adult 

glioma (13%) and was classified as pediatric glioma with an 84% probability. Although the 

majority of canine samples were classified as pediatric glioma, the age of diagnosis of the 

patients in our canine cohort exceeded the age of sexual maturity in canines, which is 

reached between 10 months and 2 years of age (Thompson et al., 2017). The distribution of 

age of diagnosis of canine tumors classified as pediatric suggests that classification was a 

function of methylation profile similarity rather than chronological age. Adult human high-

grade glioma tends to be restricted to the cerebral hemispheres, whereas pediatric high-grade 

gliomas occur throughout the central nervous system with about half of pediatric high-grade 

gliomas occurring in midline locations (Mackay et al., 2017). Of ten midline canine tumors 

(six cerebellar, four midline), eight were classified by DNA methylation as pediatric glioma 

and two were labeled as adult IDH mutant (Figure S4A).

DNA-methylation profiles have been used to estimate molecular age (Pai et al., 2011). We 

used this approach to compare the level of age acceleration in canine and human glioma. No 

significant difference was observed in inferred DNA-methylation age between canine tumors 

classified as adult glioma versus those classified as pediatric among tumors with a 

classification probability greater than 50% (5.945 versus 5.958, p value 0.9125), consistent 

with the lack of correlation observed between canine methylation classification and 

chronological age. The normalized mean age acceleration was significantly higher for 

human pediatric glioma samples (2.5) than either human adult glioma (0.8) or canine glioma 

samples (−0.18) (Figure S4B). Unlike human samples, the DNA-methylation-inferred age 

did not correlate with chronological age for canine samples (Pearson correlation coefficient 

0.21), which may reflect limitations in the aging clock model derived for canids, rather than 

biological differences in canine tumor methylation. The DNA-methylation profile of canine 

glioma further corroborates the evidence that glioma in dogs is generally more similar to 

human pediatric glioma than human adult glioma.

Immune Microenvironment

As spontaneous tumors arising in immune-competent hosts, canine gliomas represent an 

excellent resource through which to improve our understanding of how the immune system 

responds to and affects brain tumor development. To obtain a baseline understanding of how 

the canine glioma (n = 11) immune microenvironment compares with that of adult (n = 11) 

and pediatric human gliomas (n = 5), we used immunohistochemistry to profile the 

frequency of the various immune populations including monocytes (CD14), T cells (CD3), 

B cells (CD79A), macrophage/microglia (IBA1), and M2 polarized innate immune cells 

(CD163) using antibodies that had been validated for cross-species staining. Tissue 
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segmentation was performed so that cell quantification was analyzed in a total of 33,029 

fields within the gliomas. Notably, there are many key shared immunological features 

between the human and canine gliomas such as the relative scarcity of both CD3+ T cell and 

CD79A+ B cells and a marked predominance of IBA1+ macrophage/microglia and CD163+ 

M2 polarized innate immune cells, especially in high-grade and pediatric gliomas as 

previously described (Wei et al., 2019), indicating that dogs with spontaneously arising 

gliomas may be valid models for the testing of immune therapeutics (Figures 5A and 5B). 

Our immunohistochemistry results converged with the relative immune cell fractions derived 

from RNA-sequencing data by using the leukocyte gene signaturebased CIBERSORT 

deconvolution method (Newman et al., 2015), which we applied on gene expression profiles 

from human adult (n = 703), pediatric (n = 92), and canine glioma (n = 40) (Figure S5). The 

relative immune cell fractions found in each glioma type were well correlated with one 

another, with the low-grade pediatric glioma exhibiting the lowest correlation with high-

grade canine glioma (Rho = 0.83).

DISCUSSION

Comparative genomic oncology is a robust approach for identifying evolutionarily 

conserved drivers and for studying the natural history of spontaneous tumors in an immune-

competent host, e.g., in domestic dogs (Decker et al., 2015a; Frampton et al., 2018; Tollis et 

al., 2017). Our cross-species analysis using comprehensive molecular profiling of sporadic 

gliomas highlights two key findings. First, convergent evolution of gliomas is observed 

across canine, human pediatric, and human adult gliomas, with shared molecular traits such 

as shared hotspot and mutually exclusive mutations in PDGFRA and PIK3CA, and in genes 

associated with the p53 and cell-cycle pathways, among others. This is further supported by 

aneuploidy being prevalent among canine and human pediatric high-grade gliomas, which 

are potentially under selection pressure within shared syntenic regions of the genome. Also, 

DNA damagerelated mutational processes such as homologous recombination defects 

constitute a major source for progressive genomic instability, and generate somatic 

variations upon which natural selection acts to produce shared molecular and 

histopathological features of glioma. Second, the molecular landscape of canine gliomas 

resembles that of human pediatric gliomas based on the observed pattern of somatic 

alterations among non-shared drivers and DNA-methylation patterns. We did not observe 

canine counterparts of rare human glioma variants such as pleomorphic xanthoastrocytoma, 

giant cell glioblastoma, or pilocytic astrocytoma, by histopathology or by association in 

somatic drivers. To make a definitive claim that the canine gliomas are similar to one of the 

major categories of either adult or pediatric molecularly defined gliomas, additional 

characterization studies are needed that compare canine and human glioma in terms of 

cellular states (Neftel et al., 2019) as defined by single-cell transcriptomics.

Convergent evolution can reflect a footprint of adaptation to similar selective pressures 

(Fortunato et al., 2017). While such convergence is well appreciated in human cancers, and 

in particular treatment-resistant cancers (Venkatesan et al., 2017), our observation of such 

molecular and phenotypic convergence across two species provides a strong indicator of 

variations under selective pressures exerted by the tissue or ecological context (DeGregori, 

2017; Schneider et al., 2017). We note that convergent evolution should not discount a 
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possibility of drivers unique to canine gliomas, especially within the context of germline 

variants (Mansour et al., 2018; Truve et al., 2016) and non-coding regulatory regions 

(Lindblad-Toh et al., 2011; Villar et al., 2015). Characterization of such species-specific 

drivers can be of much value to identify evolutionary linchpins, which if abrogated can drive 

oncogenesis with similar histopathological and clinical traits. Further studies are needed to 

help understand how the time point at which tissue samples used in our comparative analysis 

were obtained, necropsy for canine samples, and diagnosis for human samples affects our 

results.

The molecular life history of a tumor is marked by multiple, often successive aberrations in 

genes (Armitage and Doll, 1954; Nowell, 1976). Accordingly, cancer is largely a disease of 

old age except in cases with early exposures to mutagens, e.g., germline or acquired defects 

in one or more hallmarks of cancer (Hanahan and Weinberg, 2011). The median age of 

occurrence for canine gliomas in our cohort was 9 years, i.e., dogs in their adult stage of life. 

However, we demonstrate that canine gliomas have a significantly lower somatic mutation 

rate and, consequently, a lower number of significantly mutated genes than adult human 

gliomas. The mutation burden of canine glioma is also less than what has been reported for 

other canine cancers, although a direct comparison would require additional standardization 

of sequencing and data-preprocessing methods (Hendricks et al., 2018; Lorch et al., 2019; 

Sakthikumar et al., 2018).

Canine gliomas harbor significantly higher aneuploidy than adult human high-grade 

gliomas, and are more similar to human pediatric gliomas (Gröbner et al., 2018; Mackay et 

al., 2017). We find additional support for aneuploidy as a major driver in canine and 

pediatric H3-mutant and H3 wild-type high-grade gliomas with the observation of 

aneuploidy in regions of shared synteny containing the HIST1 and PDGFRA genes, known 

pediatric glioma drivers (Gröbner et al., 2018; Mackay et al., 2017), and in noting shared 

homologous repair defects as a mutational process that could drive genomic instability 

(Blank et al., 2015; Targa and Rancati, 2018). Recent efforts to engineer aneuploidy have 

provided better understanding of the functional role of aneuploidy and how it can be targeted 

in cancer (Bakhoum and Cantley, 2018; Taylor et al., 2018). Canine high-grade gliomas 

carrying aneuploidy, especially among syntenic regions carrying the HIST1 and ACVR1 
genes, can be utilized as a preclinical model for such functional screening as well as to 

validate recent studies showing its role in immune evasion (Bakhoum et al., 2018; Davoli et 

al., 2017).

Tissue context and tumor microenvironment are critical factors for tumorigenesis (Haigis et 

al., 2019; Wang et al., 2017), and current models are unable to accurately represent the 

development of spontaneous tumors (Buque and Galluzzi, 2018). This renders preclinical 

evaluation ineffective and increases costs of clinical trials and results in minimal yields for 

patients. Preclinical trials of dog glioma patients enable identification of evolutionarily 

constrained and potentially targetable drivers, but simultaneously benefit dogs with glioma 

by offering treatment options that otherwise are prohibitive due to associated healthcare 

costs (LeBlanc et al., 2016). Future efforts leveraging results from the comparative genomics 

of glioma to study immune-mediated host responses can shed light on the complex interplay 

between the tumor and host immune response and also aid in optimizing ongoing parallel 
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canine clinical trials (Addissie and Klingemann, 2018) in order to improve an otherwise 

limited response to immunotherapies in canine and human gliomas. Our findings of canine 

gliomas with low tumor mutational burden but with a clonal nature of somatic drivers would 

be relevant in development of a preclinical model to dissect the interplay between mutation 

burden and immune escape during tumor evolution due to loss of clonal neoantigens 

(McGranahan and Swanton, 2019; Wolf et al., 2019). With respect to the immune 

microenvironment, differences in immune cell gene expression patterns between species 

could confound immune cell comparisons by under- or overestimating the presence of 

specific immune cell types. Despite these potential differences, comparative transcriptomic 

analyses of mouse and human immune cells have shown that the cells in each species exhibit 

a high degree of global conservation with one another, and signatures derived from murine 

immune cells have provided accurate immune infiltration estimates in human cancer types 

(Shay et al., 2013; Varn et al., 2017). Thus, the estimates in this study provide a baseline for 

how the relative fractions of major immune cells compare among adult, pediatric, and canine 

gliomas. We would have liked to have done further immune characterization including 

expression profiling of immune checkpoint response markers such as PD-1+ tumor-

infiltrating lymphocytes and PD-L1 immune and tumor expression, but these antibodies have 

not been validated in canines. Moving forward, signatures derived from canine immune cells 

will be of value in examining the presence of more specific immune cell types.

In summary, our study shows that the comparative molecular life history of gliomas details 

conserved drivers of glioma at both the genetic and epigenetic levels, with aneuploidy as a 

major hallmark of high-grade disease. Our results effectively position preclinical models of 

spontaneous canine glioma for use in understanding glioma drivers, and evaluating therapies 

targeting aneuploidy as well as immunotherapies, with relevance to all human gliomas and 

pediatric disease in particular.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for data resources should be directed to and will be 

fulfilled by the Lead Contact, Roel Verhaak (roel. verhaak@jax.org). This study did not 

generate new unique reagents.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Canine Patients and Tissue Samples—Tissue samples from canine patients with 

gliomas were acquired with material transfer agreements from Auburn University College of 

Veterinary Medicine, Colorado State University, Texas A&M College of Veterinary 

Medicine & Biomedical Sciences, UC Davis School of Veterinary Medicine and Virginia-

MD College of Veterinary Medicine. Tissue samples from resected tumor (n=83) and 

matched normal tissue (n=67 or paired cases) were collected at the surgical treatment or 

immediately following euthanasia. There were also four additional dog patients where we 

had adequate DNA and RNA for methylation (n=48) and RNA-seq (n=40) profiling but 

unable to do WGS/Exome sequencing because of failed library preparation (Table S1). 

Matched normal tissue were from post-necropsy sample of contra-lateral healthy brain tissue 
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(n=38), white blood cells (n=13), and remaining 17 samples from other tissues. Samples 

were archived in snap-frozen (n=37/67 paired cases; n=8/16 tumor-only cases) and 

Formalin-Fixed Paraffin-Embedded (FFPE, n=30/67 paired cases; n=8/16 tumor-only cases) 

state. Samples were then shipped to sequencing core facilities for sample preparation, 

quality control and sequencing (see STAR Methods Details below).

METHOD DETAILS

Published Data Sources—For comparison to human glioma, we downloaded both - raw 

sequencing data and processed tables for human pediatric and adult gliomas with 

appropriate controlled-data access agreements where needed. We used published mutation 

rates (Figure 1D) and mutational signatures (Figure 3) from pan-cancer datasets from adults 

(n=3,281) and pediatric (n=961) cohorts (Alexandrov et al., 2013; Bailey et al., 2018; 

Gröbner et al., 2018). For aneuploidy and molecular life history analysis (details below), we 

downloaded raw sequencing data and analyzed whole genomes from 53 pediatric gliomas 

(Ma et al., 2018; St. Jude Cloud Pediatric Cancer Genome Project, https://

pecan.stjude.cloud), SNP6 data from adult gliomas – IDHwt (n=517), IDHmut-codel 

(n=171), and IDHmut-noncodel (n=281) cases (Ceccarelli et al., 2016), as well as whole 

genomes from 23 adult GBMs (Brennan et al., 2013). For coding mutation rate calculation, 

we used a subset of TCGA glioma set where exome/whole genome based variant calls were 

available: IDHwt (n=371), IDHmut-non-codel (n=268), and IDHmut-codel (n=169).

Sample Preparation—DNA/RNA extraction - Genomic DNA and total RNA of fresh 

frozen tissue and FFPE tissue from paraffin scrolls were were extracted simultaneously 

using AllPrep DNA/RNA Mini Kit (Qiagen) and AllPrep DNA/RNA FFPE Kit (Qiagen) 

according to the manufacturer’s instructions, respectively. Additional DNase treatment was 

performed on-column for RNA purification. WGS sample preparation - 200–400ng of DNA 

was sheared to 400bp using a LE220 focused-ultrasonicator (Covaris) and size selected 

using Ampure XP beads (Beckman Coulter). The fragments were treated with end-repair, A-

tailing, and ligation of Illumina compatible adapters (Integrated DNA Technologies) using 

the KAPA Hyper Prep Kit (Illumina) (KAPA Biosystems/ Roche). For FFPE samples, 5 to 

10 cycles of PCR amplification were performed. Quantification of libraries were performed 

using real-time qPCR (Thermo Fisher). Libraries were sequenced paired end reads of 151bp 

on Illumina Hiseq X-Ten (Novogene). WES sample preparation - Sample were prepared as 

described above in the WGS sample preparation, targeting 200bp with PCR amplification. 

Target capture was performed using SeqCap EZ Canine Exome Custom Design (canine 

140702_canFam3_exomeplus_BB_EZ_HX1 probe set) (Broeckx et al., 2015) (Roche 

Nimblegen). Briefly, WGS libraries were hybridized with capture probes using Nimblegen 

SepCap EZ Kit (Roche Nimblegen) according to manufacturer’s instruction. Captured 

fragments were PCR amplified and purified using Ampure XP beads.

Quantification of libraries were performed using real-time qPCR (Thermo Fisher). Libraries 

were sequenced paired end of 76bp on Hiseq4000 (Illumina). RNA-seq sample preparation - 

RNA-seq libraries were prepared with KAPA Stranded mRNA-Seq kit (Kapa Biosystem/ 

Roche) according to manufacturer’s instruction. First, poly A RNA was isolated from 300ng 

total RNA using oligo-dT magnetic beads. Purified RNA was then fragmented at 85°C for 6 

Amin et al. Page 14

Cancer Cell. Author manuscript; available in PMC 2021 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pecan.stjude.cloud/
https://pecan.stjude.cloud/


mins, targeting fragments range 250–300bp. Fragmented RNA is reverse-transcribed with an 

incubation of 25°C for 10mins, 42°C for 15 mins and an inactivation step at 70°C for 

15mins. This was followed by second strand synthesis at 16°C, 60 mins. Double stranded 

cDNA (dscDNA) fragments were purified using Ampure XP beads (Beckman). The 

dscDNA were then A-tailed, and ligated with illumina compatible adaptors (IDT). Adaptor-

ligated DNA was purified using Ampure XP beads. This is followed by 10 cycles of PCR 

amplification. The final library was cleaned up using AMpure XP beads. Quantification of 

libraries were performed using real-time qPCR (Thermo Fisher). Sequencing was performed 

on Hiseq4000 (Illumina) generating paired end reads of 75bp. Reduced Representation 

Bisulfite Sequencing (RRBS) sample preparation - Library preparation for RRBS was 

performed using Premium RRBS Kit (Diagenode) according to manufacturer’s instructions. 

Briefly, 100ng of DNA was used for each sample, which was enzymatically digested, end-

repaired and ligated with an adaptor. Subsequently, 8 samples with different adaptors were 

pooled together and subjected to bisulfite treatment. After purification steps following 

bisulfite conversion, the pooled DNA was amplified with 9–14 cycles of PCR and then 

cleaned up with Ampure XP beads. Quantification of libraries were performed using real-

time qPCR (Thermo Fisher). Libraries were sequenced single end 101bp on Hiseq2500 

(Illumina).

Sequencing Alignments, QC, and Fingerprinting—DNA alignments - DNA 

alignments for whole genome (WGS) and exome sequencing was done using bwa-mem 

(version 0.7.15-r1140) (Fleshner and Chernett, 1997) with -M -t 12 argument and against 

CanFam3.1 reference genome from UCSC, https://genome.ucsc.edu/cgi-bin/hgGateway?

db=canFam3 (md5: 112bc809596d22c896d7e9bcbe68ede6). For each sample, fastq files 

were aligned per read group and then merged using Picard tools (v2.18.0, http://

broadinstitute.github.io/picard) SortSam command to make an interim bam file. Final, 

analysis-ready bam file per sample – tumor and normal bam, if available – was created by 

series of steps following best practices guidelines from GATK4 (version 4.0.8.1) (DePristo 

et al., 2011), namely MarkDuplicates, Indel Realignment, and Base Quality Score 
Recalibration (BQSR). Alignment QC metrics were calculated using GATK4 

DepthOfCoverage (for WGS) and CollectHSMetrics (for exome) as well as Qualimap 

(version 2.2.1) (Okonechnikov et al., 2016) bamqc for merged bam files. Coverage statistics 

were also based on regions of interest (ROIs) which consisted of exonic region-level 

annotations for biotypes: protein-coding gene, microrna, lincrna, and pseudogene from 

Ensembl gene annotations for canine genome (v91 and higher). We flagged samples as 

failed QC if merged bam file has a genome-wide coverage of < 30% or > 75% of ROIs have 

30% or lesser coverage. Accordingly, three samples (of three cases) failed QC step and they 

were removed from all analyses. Note that 77 cases in patient tissues and samples section 

represent all cases which passed QC at WGS, exome, RNA-seq, and methylation level data 

preprocessing. RNA alignments - Raw fastq files from paired-end RNA-seq assay for 41 

tumor samples and 3 matched normal tissue samples were first preprocessed through fastp 
(version 0.19.5) (Chen et al., 2018) to perform read-based quality pruning, including adapter 

trimming. Resulting fastq files were then used as input for kallisto quant (version 0.45.0) – a 

pseudoalignment based method to quantify RNA abundance at transcript-level in transcripts 

per million (TPM) counts format. We then used sleuth R package (version 0.30.0) (Pimentel 
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et al., 2017) to output model-based, gene-level normalized TPM matrix which was also 

corrected for potential batch effects due to RNA-seq data derived from two sequencing core 

facilities and tissue archival (snap-frozen vs FFPE). Detailed workflow, including command-

line parameters for model fitting are in extended methods section. RRBS alignments - Raw 

fastq files from RRBS assay for 45 tumor samples were processed through FastQC (version 

0.11.7, https://www.bioinformatics.babraham.ac.uk/projects/fastqc) and Trim Galore 

(version 0.5.0, https://github.com/FelixKrueger/TrimGalore) for quality control, filtering low 

quality base calls, and adapter trimming. Trimmed reads were then mapped to a bisulfite 

converted reference genome (canFam3.1, obtained from Ensembl release 85) using the 

Bismark Bisulfite Mapper (v0.19.1) with the Bowtie2 short read aligner (v2.2.3) (Krueger 

and Andrews, 2011), allowing for one non-bisulfite mismatch per read. Cytosine 

methylation calls were made for the mapped reads using the Bismark methylation extractor 

(version 0.19). The resulting methylation values were obtained as β-values, calculated as the 

ratio of methylated to total reads at a given CpG site. DNA fingerprinting – DNA 

fingerprinting for each of WGS and exome tumor-normal and tumor-only bam files was 

done using NGSCheckMate tool (version 1.0.0) (Lee et al., 2017). Germline snps in protein-

coding regions was used as a variant reference panel to allow simultaneous fingerprinting of 

WGS and exome libraries. NGSCheckMate does sample pairing QC based on shared 

germline variants found in samples (tumor and normal tissue from the same patient) and also 

model difference between samples (or libraries) based on sequencing depth-dependent 

variation in allelic fraction of reference variants. Fingerprint results for WGS and exome 

samples from 77 canine glioma did not show mixture of tumor-normal or cross-patient 

sample contamination (See Figure S1F).

Somatic Variant Calling—Somatic variant calls were called on the merged whole 

genome and exome bam files using three callers: GATK4 (version 4.0.8.1) (McKenna et al., 

2010) Mutect2 (Cibulskis et al., 2013), VarScan2 (version 2.4.2), and LoFreq (version 

2.1.3.1) (Wilm et al., 2012). Matching and fingerprint validated WGS and exome files per 

sample were merged using Picard tools (v2.18.0, http://broadinstitute.github.io/picard), 

MergeSamFiles command. Three somatic callers were then run in either paired tumor – 

matched normal (n=57) or tumor-only (n=20) mode. Mutect2 was first run in panel-of-

normals (PON) mode using 57 matched normal samples. Resulting PON file was used for 

calling somatic variant calls using Mutect2 in both, paired and tumor-only mode along with 

options: –germline-resources 

58indiv.unifiedgenotyper.recalibrated_95.5_filtered.pass_snp.fill_tags.vcf.gz –af-of-alleles-

not-in-resource 0.008621. Tumor-only Mutect2 mode was run using default arguments and 

paired Mutect2 calls had following arguments: –initial-tumor-lod 2.0 –normal-lod 2.2 –

tumor-lod-to-emit 3.0 –pcr-indel-model CONSERVATIVE. Throughout the process of using 

GATK4 based tools, including Mutect2, we followed best practices guidelines (DePristo et 

al., 2011) where practical for canine genome, e.g., in contrast to human genome, population 

level resources are limited for canine genome. VarScan2 paired mode was run with a 

command: somatic and arguments: –min-coverage 8 –min-coverage-normal 6 –min-

coverage-tumor 8 –min-reads2 2 –min-avg-qual 15 –min-var-freq 0.08 –min-freq-for-hom 

0.75 –tumor-purity 1.0 –strand-filter 1 –somatic-p-value 0.05 –output-vcf 1. VarScan2 

tumor-only mode was run using command: mpileup2cns and arguments: –min-coverage 8 –
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min-reads2 2 –min-avg-qual 15 –min-var-freq 0.08 –min-freq-for-hom 0.75 –strand-filter 1 

–p-value 0.05 –variants –output-vcf 1. LoFreq paired mode was run using command: 

somatic and arguments: –threads 4 –call-indels –min-cov 7 –verbose and tumor-only mode 

was run using command: call and arguments: –call-indels –sig 0.05 –min-cov 7 –verbose -s. 

Resulting raw somatic calls - single nucleotide variants (SNV) and small insertions and/or 

deletions (Indels) - from three callers were then subject to filtering based on caller-specific 

filters and hard filters. Briefly, Mutect2 calls were subject to extensive filtering based on 

germline risk, artifacts arising due to sequencing platforms, tissue archival (FFPE), repeat 

regions, etc. See extended methods and https://software.broadinstitute.org/gatk/

documentation/article?id=11136). VarScan2 somatic filters were applied as per developer’s 

guidelines (Koboldt et al., 2013). Hard filters were based upon filtering out variants present 

in dbSNP and PONs created via GATK4 Mutect2. Filtered somatic calls from three callers 

(in VCF version 4.2 format) were then subject to consensus somatic calls using SomaticSeq 

(version 3.1.0) (Fang et al., 2015) in majority voting mode with priority given to Mutect2 

filtered (PASS) calls followed by consensus voting based on calls present in VarScan2 and 

LoFreq filtered calls. Resulting consensus VCF file for 77 cases were finally converted to 

Variant Effect Predictor (VEP version 91) (McLaren et al., 2016) annotated vcfs and 

Mutation Annotation Format (MAF, https://docs.gdc.cancer.gov/Data/File_Formats/

MAF_Format) using vcf2maf utility (https://github.com/mskcc/vcf2maf). Annotated VCFs 

and MAFs were used for all of downstream analyses.

Significantly Mutated Genes (SMGs) Analysis—SMG analysis in canine gliomas 

(Figures 1A, 1C, and 2A) with paired tumor-normal samples (n=57) was performed using 

dNdS (Martincorena et al., 2017) and MuSiC2 (version 0.2) (Dees et al., 2012). We 

excluded tumor-only cases for being conservative in SMG analysis and minimize false-

positives. Also, MuSiC2 required matched normal tissue required matched normal tissue for 

SMG analysis. Detailed parameters for SMG analysis are in extended methods. Detailed 

output from both methods are in Table S2.

Cancer Hallmark Analysis—Cancer hallmarks were defined according to published ten 

hallmarks (Hanahan and Weinberg, 2011) and one additional hallmark, i.e. epigenetic 

(Imielinski et al., 2012). A pool of 268 known glioma (Ceccarelli et al., 2016; Mackay et al., 

2017) and pan-cancer driver genes (Gröbner et al., 2018; Bailey et al., 2018) were mapped to 

hallmarks following a previously published computer-assisted manual curation method 

(Table S4) (Iorio et al., 2018). Based on WHO molecular classification of brain tumors, 

somatic SNV and copy-number data from patients with human adult gliomas (AG) 

(Ceccarelli et al., 2016) were stratified into IDHwt (n=373), IDHmut-codel (n=169) and 

IDHmut-noncodel (n=268) subgroups while corresponding data from patients with human 

pediatric glioma (PG) (Mackay et al., 2017) were subgrouped based on mutations in Histone 

H3 gene, namely H3mut (n=200) and high-grade H3wt (n=126). For canine patients with 

glioma (CG), we used somatic mutations and copy-number calls from 67 cases with paired 

tumor-normal samples. For each of the six cohorts coding mutations were mapped to eleven 

hallmarks and coverage adjusted relative proportions of patients harboring an alteration in a 

given hallmark were calculated. For comparisons between cohorts a two-sided Fisher’s exact 

test was applied (Table S4).
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Quantifying Somatic Mutation Rates—Somatic mutations (SNVs and Indels) rate was 

estimated within coding genes and adjusted based on relative per-base coverage with 

minimum coverage of 30X in coding regions (Figure 1D). Coding mutation rates for human 

pediatric (n=961) and adult cancers (n=3,800, includes 811 adult gliomas) were taken from 

published studies (Ceccarelli et al., 2016; Gröbner et al., 2018; Mansour et al., 2018).

Somatic Copy Number Segmentation—Somatic copy-numbers were called for paired 

tumor-normal cases (n=56) using HMMCopy tool (version 1.22.0) using author’s 

recommendations. In brief, GC counts and mappability files for CanFam3.1 genome were 

generated with 1000 bp window size. Read counts for each of tumor and normal bam files 

were generated using 1000 bp window size. Resulting count, mappability and count files 

were feed into HMMCopy algorithm (http://bioconductor.org/packages/release/bioc/html/

HMMcopy.html) and segmentations were called using Viterbi algorithm. Segmented copy 

number calls were used to generate Integrated Genome Viewer (IGV) copy-number plots 

and GISTIC2 (version 2.0.22) based somatic copy number significance (Mermel et al., 

2011), including calling gene-level deep deletions, loss-of-heterozygosity (LOH), and 

amplifications (Figure 2A) as well as inferring aneuploidy metrics (Figures 2B and 2C). 

Segmented copy number for pediatric gliomas (n=53) were called by using cloud-based 

TitanCNA workflow (https://dxapp.verhaaklab.com/dnanexus_ngsapp). Segmented copy 

number for adult gliomas were derived from SNP6 based platform from the TCGA Broad 

Firehose platform (version stddata__2016_01_28) with following download urls: http://

gdac.broadinstitute.org/runs/stddata__2016_01_28/data/GBM/20160128/

gdac.broadinstitute.org_GBM.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_

3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz and 

http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/LGG/20160128/

gdac.broadinstitute.org_LGG.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_

3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz Only 

primary tumor cases from TCGA GBM (n=577) and TCGA LGG (n=513) cohort were used 

for downstream analyses, i.e., pathway analysis (Figure 1C) and aneuploidy metrics (Figures 

2B–2D).

Allele Specific Copy-Number Analysis—We derived allele-specific copy numbers and 

copy-number based clonality inference (including purity and ploidy estimates) using 

TitanCNA algorithm (version 1.19.1) (Ha et al., 2014). Snakemake (version 5.2.1) based 

workflow (Koster and Rahmann, 2018) was implemented using default arguments and 

genome-specific germline dbSNP resource (see under extended STAR Methods) (https://

github.com/gavinha/TitanCNA/tree/master/scripts/snakemake) for WGS paired tumor-

normal samples from 56 canine patients. For pediatric gliomas (n=53) and adult gbms with 

WGS data (n=23), allele-specific copy-number calls were used from TitanCNA workflow. 

Allele-specific copy-numbers were used for mutational signature and molecular timing 

analysis (Figure 3).

Aneuploidy Metrics—The simplest metric of aneuploidy was computed by taking the size 

of all non-neutral segments divided by the size of all segments. The resulting aneuploidy 

value indicates the proportion of the segmented genome that is non-diploid. In parallel, an 
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arm-level aneuploidy score modeled after a previously described method was computed 

(Taylor et al., 2018). Briefly, adjacent segments with identical arm-level calls (−1, 0 or 1) 

were merged into a single segment with a single call. For each merged/reduced segment, the 

proportion of the chromosome arm it spans was calculated. Segments spanning greater than 

80% of the arm length resulted in a call of either −1 (loss), 0 (neutral) or +1 (gain) to the 

entire arm, or NA if no contiguous segment spanned at least 80% of the arm’s length. For 

each sample the number of arms with a non-neutral event was finally counted. The resulting 

aneuploidy score is a positive integer with a minimum value of 0 (no chromosomal arm-

level events detected) and a maximum value of 38 (total number of autosomal chromosome 

arms – given all of canine chromosomes are either acrocentric or telocentric).

Clustering Shared Syntenic Regions—Shared syntenic regions between CanFam3.1 

and hg19 reference genome were downloaded from Ensembl BioMart (version 94) database 

using orthologous mapped Ensembl gene ids. Arm-level synteny was based on arm-level 

aneuploidy scores of shared syntenic regions in the respective, canine and human genomes. 

Hierarchical clustering of proportion of patients per molecular subtype having syntenic arm-

level aneuploidy was then carried out for each of canine, human pediatric and adult cohort 

(Figure 2C).

Estimating Intra-tumoral Heterogeneity—We estimated patient-level ITH based on 

whole-genome derived subclonal structure and number of somatic variants in each of these 

subclones. Subclonal structure and cellular prevalence or cancer cell fraction of each tumor 

subclone (and underlying somatic variants) was derived using TITAN allele-specific copy 

number calls. Since accuracy of inferred subclonal structure depends largely on sequencing 

read depth and number of somatic variants per inferred subclone, we limited estimation of 

subclonal structure for maximum five subclones per patient given a minimum sequencing 

read depth of 30X for whole genome data we had across all three cohorts. Shannon entropy 

was then calculated using entropy function in the R package: entropy by taking number of 

somatic variants per subclone per patient as a vector. A resulting Shannon entropy value was 

used to plot figures along with cancer cell fraction and number of clones derived per patient. 

We acknowledge that our estimation of ITH and resolving subclonal structure can be 

improved with higher depth of sequencing (100X or more) to detect subclonal structures 

(number of clones) (Deshwar et al., 2015).

Mutational Signature Analysis—Mutational signature analysis was performed in two-

parts. First, de-novo signatures (Figure 3B) were constructed for canine (n=81), human 

pediatric (n=53) and adult cohort (n=23) using somatic snvs from whole-genome data. 

Signatures were constructed using non-negative matrix factorization (nmf R package, 

version 0.21.0) with brunet approach and 100 iterations with expected range of signatures 

between 2 to 10. Optimal signatures were then selected using nmfEstimateRank function to 

match number of de-novo signatures (clusters) − 1 where inflection point for cophenetic 

correlation coefficient was observed. Accordingly, three de-novo signatures were found in 

canine and human pediatric gliomas while five in adult glioblastoma cohort. In the second 

part, known human mutational signatures from COSMIC (v2, n=30) and published pediatric 

cancer signature from two studies, T1 to T11 (Mansour et al., 2018) and P1 (Gröbner et al., 
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2018) were pooled together and used to deconvolute (MutationalPattern R package, version 

1.6.2) mutational trinucleotide context (n=96) from somatic snvs in each of three cohorts. 

Somatic ultra-hypermutation cases from pediatric (n=3) and adult cohort (n=1) were 

excluded from signature analysis. Cosine similarities of known signatures with de-novo 

signatures was then calculated and clustered using hierarchical clustering (Figure 3B). 

Absolute and relative contribution of known signatures per sample was then quantified using 

fit_to_signatures function which finds the linear combination of signatures that closely 

resembles 96 context based mutational matrix by solving the nonnegative least-squares 

constraints problem. We then selected top contributing signatures per cohort based on 

signatures which contributed per sample to higher than 3rd quartile of median value of each 

signature’s contribution (rowMedian) per cohort (Figure S3A). Top contributing signatures 

were further calculated using outlier profling on canine patients showing highest mutational 

load (>3rd quartile of median coding mutation rate per megabase) and plotted in Figure 3A. 

Outlier sample detection was done using car::outlierTest function in R to label true outliers 

from entire cohort (2 cases) while correcting for confounding effects due to type of tissue 

archival (snap-frozen vs ffpe) and analysis type (tumor-matched normal versus tumor-only 

somatic variant calling). This was followed by second run of outlier by first excluding true 

outliers (2 cases), and then labelling outliers (six cases) based on chi-squared statistics using 

outliers::scores function in R. Signatures contributing to driver mutations (Figure 3C) were 

calculated based on first getting relative proportion of trinucleotide context per snv and then 

finding known signatures with maximum value for the same trinucleotide context. Known 

signatures were combined to a single group where they are shown in literature as potential 

underlying process, e.g., aging group is associated with COSMIC signature 1 and 5, and 

show significant cosine similarity (> 0.9) with pediatric signatures T1 and T4, respectively. 

Table S5 provides mapping between signature and known/proposed mechanisms, if any.

Molecular Timing Analysis and Natural History of Tumors—Probabilistic 

estimation of relative timing of driver mutations (among 79 observed somatic snvs in cancer 

driver genes) was based on existing methods (Gerstung et al., 2017; Jolly and Van Loo, 

2018) with several steps carried out using Palimpsest R package (version 1.0.0; https://

github.com/FunGeST/Palimpsest) (Shinde et al., 2018) and custom R scripts based on 

published approach (McGranahan et al., 2015): First step involved categorizing somatic 

drivers into clonal vs subclonal events using estimated cancer cell fraction (CCF) which is 

estimated fraction of cancer cells with a somatic snv. CCF per somatic snv was a product of 

variant allelic fraction (VAF) of a somatic snv, adjusted by local copy number of gene locus 

and whole tumor sample (ploidy) as well as purity estimate (tumor cell content) inferred 

from TitanCNA algorithm (Detailed under copy number estimation section above). A clonal 

(early) vs subclonal (late) mutation was then classified based on upper boundary of CCF was 

above 0.95 (clonal) or not (subclonal). Second, we timed copy number gain and copy-neutral 

LOH regions based on VAF of somatic snvs in these copy regions, i.e., early mutations prior 

to copy gain will have higher VAF relative to VAF of late mutations after copy gain. Third, 

we ordered mutations in four sequential categories: early clonal, early subclonal, late clonal, 

and late subclonal. We note here that early subclonal and late clonal categories are result of 

underlying parallel and/or convergent evolution of multiple clones (Venkatesan and 

Swanton, 2016) and/or a technical limitation (given ~60X depth of merged bam files and 
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lack of spatial sequencing data) in resolving polyclonal structure of a tumor sample 

(Deshwar et al., 2015). We then tally frequency of each of these four categories per somatic 

driver mutation and get the average frequency of each category per driver mutation at cohort 

(canine, pediatric, adult) level. These average frequencies are converted to winning tables, 

similar to sports statistics where each driver mutation competes with remaining driver 

mutations with winning being an early somatic event based on order of events using 

clonality (Jolly and Van Loo, 2018) (step 3). Finally, a winning table is then passed to 

Bradley-Terry model (BradleyTerryScalable R package, version 0.1.0.9000) to estimate 

winning probability (driver event being an early event) based on a Bayesian maximum a 

posteriori probability (MAP) estimate. Resulting winning probability per driver mutation is 

subtracted from 1 to plot multiple density plots (ggridges R package, version: 0.5.1.9000) 

with X-axis now showing a probability of event being a late event (Figure 3D). We note that 

density plots are based on kernel density estimates and thus, may extend their tails 

(probability distribution) beyond 1 or less than zero (https://serialmentor.com/dataviz/

histograms-density-plots.html).

Class Prediction Using Methylation Data—To compare the methylation patterns of 

human and canine glioma, the LIBLINEAR library was used to fit an L2-regularized logistic 

regression classifier. Model training and validation was performed on the human glioma 

samples and normal controls in the GSE109381 dataset (Capper et al., 2018), with the 

methylation status of CpGs located in regions of the human genome orthologous to canine 

CpG islands used to predict DNA methylation-based subtypes of glioma. The methylation 

categories designated as regression outcome variables were derived from the World Health 

Organization classification of gliomas: IDH-wild-type adult glioma, IDH-mutant, 1p/19q-

intact adult glioma, IDH-mutant, 1p/19q-codeleted adult glioma, adult normal control, 

pediatric glioma, and pediatric normal control. After model fitting, the logistic regression 

classifier was applied to the canine samples, using the β-values of CpGs orthologous to the 

selected 11,495 Illumina 450K probes as input data. For classifier CpG sites in the canine 

samples with no methylation observations, β-values were predicted using the DNA module 

of the DeepCpG algorithm, a deep learning algorithm that predicts methylation state based 

on local DNA sequence context (Angermueller et al., 2017). The logistic regression 

classifier outputs the probability that a sample matches a given methylation category. 

Category probabilities were calculated for the canine samples, and these probabilities were 

compared with sample age, anatomical location, tumor grade, tumor purity, and mutation 

rate (Figure 4).

Immunohistochemistry

Staining: Hematoxylin & Eosin staining was used to classify glioma grade and lineage. The 

immunohistochemistry panel included those antibodies that have been documented to work 

in canine tissues and include myeloid microglia/macrophages (IBA1), monocytes (CD14) 

and their M2 skew subtype (CD163), and lymphoid T cells (CD3) and B cells (CD79a). 

Slides with 5um sections, were deparaffinized and rehydrated in a dry incubator (60°C for 1 

hour), xylene, and histological grade ethanol. Antigen retrieval was performed using citrate 

buffer and a pressure cooker at 120°C23 for 12 minutes. Quenching for endogenous 

peroxidase was performed with 3% H2O2 for 15 minutes at room temperature. Non-specific 
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binding was minimized using ready-to-use protein blocker (Dako) applied for 15 minutes 

before the application of the primary antibody overnight at 4°C. All the washing was done 

using 1x T-PBS buffer mixed with 0.1% Tween 20. The biotinylated secondary antibody was 

applied for 30 minutes at room temperature followed by three washes with buffer for 5 

minutes each. Color development was performed using the DAKO DAB kit and color 

change was monitored until an appropriate detectable level was achieved (10–60 sec 

depending on the antibody). Slides were counterstained with hematoxylin (25 seconds) and 

bluing buffer, then rehydrated and cover-slipped with long lasting mounting solution. The 

immunohistochemistry quantification were done blindly relative to the tumor pathology. 

Scanning and tissue segmentation - Scanning and analysis were performed using the 

PerkinElmer Vectra Automated Quantitative Pathology Imaging System and the inForm Cell 

Analysis software (ver 2.4). Slides were scanned twice on low- and high-power fields as 

follows: the first scan was of the whole slide on low power field (10x) for manual tissue 

segmentation to identify three tumor regions/categories as necrotic center, tumor and 

invasive edge under the neuropathologist’s supervision/direction. For each region, every 

fourth field was imaged (25%) on high-power field (20x) and resulted in 21 to 274 fields per 

slide, which varies according to the size of the tissue and presence or absence of necrosis. 

For the training set, heterogeneous fields were randomly selected to include tissue, non-

tissue and damaged areas. Hematoxylin and DAB was used to identify the nuclei. Positive 

and negative cells were distinguished visually and three optical densities (OD) thresholds 

were set accordingly. The thresholds allowed 4-bin (0 = negative, +1 = weak positive, +2 = 

intermediate, +3 = strong positive) sorting of cells depending on the positivity and its 

intensity. The intermediate positivity threshold was calculated as the midpoint after setting 

the lower and higher threshold. The algorithm of the training set was applied for all the high-

power fields captured. The results were inspected and the nonspecific and defective fields 

were removed before compiling the dataset. The same process was applied for all seven 

markers (Figure 5).

CIBERSORT Based Expression Analysis—Processed RNA-seq expression matrices 

from canine (n=40; 25 HGG, 14 LGG, 1 unknown grade), adult (n=703; 529 LGG, 174 

GBM), and pediatric glioma (n=92; 42 LGG, 50 HGG) were each run as separate jobs into 

the CIBERSORT webserver (https://cibersort.stanford.edu) and processed in relative mode 

using the following parameters: Signature Genes: LM22 CIBERSORT default, Permutations 

run: 100, Quantile normalization disabled (Newman et al., 2015). The resulting cellular 

fraction tables were then collapsed from 22 cell types into 11 based on lineage, using 

groupings from a prior publication (Gentles et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R version 3.6.1. Statistical details for analyses are 

described in the respective sub-section under the Method Details section above and 

summarized in figure legends. p value of <0.05 were considered statistically significant. No 

statistical methods were used to predetermine study sample size.
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DATA AND CODE AVAILABILITY

Sequencing data generated during this study is available in the Binary Alignment Map 

(BAM) format at the NCBI SRA database with the BioProject accession ID PRJNA579792 

[URL: https://dataview.ncbi.nlm.nih.gov/object/PRJNA579792]. Software code used to 

generate figures is available at https://github.com/TheJacksonLaboratory/canineglioma and 

documented at the URL, https://canineglioma.verhaaklab.com.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Diffuse gliomas are the most common malignant brain tumors, with high-grade tumors 

carrying a dismal prognosis. Preclinical models have proven themselves as poor 

predictors of clinical efficacy. Spontaneous glioma in dogs provides an attractive 

alternative model because of their comparable tumor microenvironment and tumor life 

history. We determined the similarities and differences between human and canine 

gliomas through genomic profiling, and leveraged our datasets to identify conserved 

somatic drivers, mutational processes, and temporal ordering of somatic glioma events 

across species. Canine gliomas resemble human gliomas at (epi-)genetic levels and are 

more reminiscent of pediatric than adult disease, thus rationalizing sporadic canine 

glioma as a preclinical model tailored to measuring treatment efficacies in patients with 

canine or human glioma.
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Highlights

• Genomic, epigenomic, and transcriptomic characterization of sporadic glioma 

in dogs

• Somatic alterations in canine glioma converge with human glioma drivers

• Canine glioma resemble pediatric human glioma by mutation rate and DNA 

methylation

• Microenvironment similarity between canine and human pediatric and adult 

glioma
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Figure 1. Comparative Somatic Landscape of Canine and Human Gliomas
(A) Somatic variants in canine gliomas. Top bar plot shows patient-wise frequency of 

somatic variants (n = 46 of 81 canine patients) and right-side bar plot shows gene-wise 

frequency of somatic variant types. Bottom annotations show relevant patient-specific 

annotations.

(B) Gene lollipop plots showing recurrent hotspot mutations for three genes: PIK3CA, 

IDH1, and SPOP. All hotspot mutations are ortholog to validated COSMIC mutations in 

human cancers.
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(C) Hallmark enrichment of somatic cancer drivers (mutations and copy-number alterations) 

across canine glioma (CG) and WHO molecular subtypes of human adult (IDH wild-type, 

IDHmut-codel, IDHmut-noncodel) and pediatric (H3-mutant and H3 wild-type) high-grade 

glioma. y axis represents proportion of patients in the respective cohort harboring mutations 

in selected five hallmarks. Two-sided Fisher’s exact test was used for comparison of 

proportions between cohorts. p values less than the threshold (p < 0.05) are shown (*p < 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

(D) Somatic mutation rate across canine and human brain tumors: Box plot showing somatic 

mutation rates as coding mutations per megabase in log1p or log(x+1) scale. x axis shows 11 

types of pediatric brain tumors (Gröbner et al., 2018), canine glioma (n = 81), adult pediatric 

high-grade gliomas separated by H3 mutant and H3 wild type, and adult gliomas separated 

by IDH mutation and 1p/19q codeletion status (far right). Each box spans the first and third 

quartiles with the median in the center. The lower and upper whiskers extend up to 1.5 times 

interquartile range, and values outside whiskers are outliers. PA, pilocytic astrocytoma; 

ATRT, atypical teratoid rhabdoid tumor; EPD_ST, ependymoma supratentorial; ETMR, 

embryonal tumors with multilayered rosettes; MB, medulloblastoma. Tumors are sorted in 

ascending order by increasing mutation rate.

See also Figure S1 and Tables S1, S2, S3, and S4.
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Figure 2. Aneuploidy Is a Major Driver of High-Grade Gliomas
(A) Focal somatic copy alterations in canine gliomas (n = 43 of 67 canine patients). Squared 

symbol in cell suggests either amplification (>4 copies) or deep deletion (2 copy loss) based 

on GISTIC2 gene-level calls (STAR Methods). Top bar plot shows patient-wise frequency of 

somatic variants and copy-number alterations, and right-side bar plot shows driver-wise 

frequency of somatic variant types, including copy-number alterations. Bottom annotations 

show relevant patient-specific annotations.
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(B) Comparative aneuploidy score: box plots showing fraction of genome with aneuploidy 

(y axis) for canine gliomas (n = 67), H3-mutant (n = 10), and H3 wild-type (n = 13) 

pediatric high-grade gliomas, and human adult glioma (n = 969), separated by IDH mutation 

and 1p/19q codeletion status. Each box spans the first and third quartiles with the median in 

the center. The lower and upper whiskers extend up to 1.58 times interquartile rage divided 

by square root of samples per box plot (displayed as dots; STAR Methods), and values 

outside whiskers are outliers. p values were calculated using two-sided Wilcoxon rank-sum 

non-parametric test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

(C) Aneuploidy metrics across shared syntenic regions of canine and human genome: 

Heatmap showing comparative aneuploidy across three cohorts. Each column shows the 

proportion of patients with the most variable arm-level aneuploidy (present or absent) for a 

given shared syntenic region. x-axis label shows syntenic chromosome arms for human (H) 

and canine (C) genome. Each row represents canine glioma and molecular subgroups of 

human high-grade pediatric and adult glioma as detailed in (B), plus pediatric low-grade 

gliomas (PG_LGG). Colored dendrogram branches (blue, red, and black) represent three 

aneuploidy clusters described in the main text. Corresponding glioma driver alterations are 

highlighted below syntenic chromosome arms.

(D) Scatterplot showing distribution of somatic glioma driver genes with respect to their 

cellular prevalence (cancer cell fraction) and intratumoral heterogeneity (Shannon entropy) 

across canine and molecular subtypes of human pediatric and adult gliomas. Each circle 

represents a clonal cluster assignment per tumor sample. Size of the circle represents a major 

(1 clone) versus minor subclones (ranging from 2 to 4). Labeled genes represent glioma 

drivers shown in Figure 1A. Darker to lighter blue scale for circle and driver genes it may 

contain (arrows) represents the increase in intratumoral heterogeneity as measured by 

Shannon entropy.

See also Figure S2 and Table S3.
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Figure 3. Molecular Life History Analysis Using Mutational Signatures and Timing Analysis
(A) Deconvolution of known human mutational signatures on canine glioma somatic variant 

data. Stacked bar plots show relative contribution of known human mutational signatures in 

individual canine patients. Signature contributions were aggregated based on their grouping 

into proposed mechanism. Only signatures with a relative contribution of more than a third 

quartile per sample are shown in the plot. Plot on the left side shows eight cases with highest 

mutational frequency (based on outlier mutational profile, STAR Methods) and plot on the 

right side shows nine representative cases with median signature contribution within 

interquartile range. Signatures with no proposed mechanism are grouped into the unknown 
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category. APOBEC AID, activation-induced cytidine deaminases; HR defect, homologous 

repair defect; MMR, mismatch repair; TMZ-induced, alkylating agent temozolomide-

associated signature.

(B) Hierarchical clustering of cosine similarities between known human mutational 

signatures and de novo signatures constructed using available whole-genome data from 

canine (CG), pediatric (PG), and adult (AG) data. Higher cosine similarity (red color) 

indicates higher resemblance of de novo signature to known mutational signature. Only one 

of three cluster groups are shown here; the complete clustering is shown in Figure S3D.

(C) Horizontal stacked bar plots represent percentage contribution of signature groups (x 

axis) for somatic driver mutations (y axis) found in canine and human gliomas. Each of 

seven signature groups represents a combination of one of more known human signatures. 

S16_S25 and S18_Neuroblastoma: signatures were previously described by Gröbner et al. 

(2018).

(D) Molecular timing of somatic drivers across canine and human gliomas: Stacked density 

plots, one per each of three cohorts, shows probability (x axis) of a driver event (y axis) 

being a late event in tumor evolution and value of <0.5 being an earlier event. Density plots 

for each driver event were calculated based on pairwise winning probability (where win is 

defined as an early event) as used in sports statistics (Bradley-Terry model). Winning 

probabilities were subtracted from 1 to display early events on the left side of the plot.

See also Figure S3 and Table S5.
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Figure 4. Classification of Canine Gliomas Using Human Brain Tumor Methylation Classifier
Heatmap displaying results of L2-regularized, logistic regression classification of canine 

methylation profiles (n = 45). Each column of the heatmap represents a sample, and each 

row in the top panel is the probability that that sample falls under a given subtype 

classification. The classification with the highest probability in a given sample has a symbol 

with symbol color, size, and shape denoting sample histology, tumor grade, and anatomical 

location, respectively. Panels below the probability heatmap show the tumor purity, somatic 

mutation rate, and age for the samples. The horizontal line on the age subpanel denotes the 

age of maturity for canines (2 years). See also Figure S4.
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Figure 5. Immunohistochemistry of Canine and Human Gliomas
(A) Representative hematoxylin & eosin and immunohistochemistry staining of human adult 

(n = 11), canine (n = 11), and human pediatric gliomas (n = 5) using antibodies against T 

cells (CD3), macrophage/microglia (IBA1), M2 polarized innate immune cells (CD163), 

monocytes (CD14), and B cells (CD79A). Scale bars, 50 μm.

(B) Violin plots represent the density of percentage positivity by field (y axis) for each of 

five antibodies described in (A). The points are the mean value of percentage positivity per 

patient within each of three cohorts, i.e., human adult (n = 11), canine (n = 11), and human 

pediatric gliomas (n = 5). Patients were grouped into high- versus low-grade gliomas in the 

absence of available molecular subtype data.

See also Figure S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Canine Glioma Patient Samples This paper Detailed under Table S1

Critical Commercial Assays

AllPrep DNA/RNA Mini Kit Qiagen N/A

AllPrep DNA/RNA FFPE Kit Qiagen N/A

KAPA Hyper Prep Kit (Illumina) KAPA Biosystems/
Roche

N/A

SeqCap EZ Canine Exome Custom 
Design

Roche Nimblegen canine 140702_canFam3_exomeplus_BB_EZ_HX1 probe set

Nimblegen SepCap EZ Kit Roche Nimblegen N/A

KAPA Stranded mRNA-Seq kit KAPA Biosystems/
Roche

N/A

Premium RRBS Kit Diagenode N/A

Deposited Data

DNA sequencing data - WGS and Exome This paper NCBI SRA Accession ID: PRJNA579792

RNA sequencing data This paper NCBI SRA Accession ID: PRJNA579792

RRBS sequencing data This paper NCBI SRA Accession ID: PRJNA579792

Software and Algorithms

bwa v0.7.15-r1140 http://bio-bwa.sourceforge.net/

Genome Analysis ToolKit (GATK) v4.0.8.1 https://software.broadinstitute.org/gatk/

Qualimap v2.2.1 http://qualimap.bioinfo.cipf.es/

fastp v0.19.5 https://github.com/OpenGene/fastp

kallisto v0.45.0 https://pachterlab.github.io/kallisto

sleuth v0.30.0 https://pachterlab.github.io/sleuth

FastQC v0.11.7 https://www.bioinformatics.babraham.ac.uk/projects/fastqc

TrimGalore v0.5.0 https://github.com/FelixKrueger/TrimGalore

Bismark Bisulfite Mapper v0.19.1 https://github.com/FelixKrueger/Bismark

Bowtie2 v2.2.3 N/A

NGSCheckMate v1.0.0 https://github.com/parklab/NGSCheckMate

Mutect2 - GATK4 v4.0.8.1 https://software.broadinstitute.org/gatk/

VarScan2 v2.4.2 https://github.com/dkoboldt/varscan

LoFreq v2.1.3.1 https://github.com/CSB5/lofreq

SomaticSeq v3.1.0 https://github.com/bioinform/somaticseq

Variant Effect Predictor (VEP) v91 https://github.com/Ensembl/ensembl-vep

dNdScv 0.0.1.0 https://github.com/im3sanger/dndscv

MuSiC2 v0.2 https://github.com/ding-lab/MuSiC2

GISTIC2 v2.0.22 ftp://ftp.broadinstitute.org/pub/GISTIC2.0/
GISTICDocumentation_standalone.htm

HMMCopy v1.22.0 http://bioconductor.org/packages/release/bioc/html/HMMcopy.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

TitanCNA v1.19.1 https://github.com/gavinha/TitanCNA

Snakemake v5.2.1 https://snakemake.readthedocs.io/en/stable/

flowr v0.9.10 https://github.com/sahilseth/flowr

NMF R package v0.21.0 https://cran.r-project.org/web/packages/NMF

Entropy R package v1.2.1 https://cran.r-project.org/web/packages/entropy

outliers R package v0.14 https://cran.r-project.org/web/packages/outliers/

MutationalPattern R package v1.6.2 https://bioconductor.org/packages/release/bioc/html/
MutationalPatterns.html

Palimpsest R package v1.0.0 https://github.com/FunGeST/Palimpsest

BradleyTerryScalable R package 0.1.0.9000 https://cran.r-project.org/web/packages/BradleyTerryScalable/vignettes/
BradleyTerryScalable.html

DNANexus app for St Jude Cloud data 
analysis

v1.1.6 (This paper) https://dxapp.verhaaklab.com/dnanexus_ngsapp

CIBERSORT webserver https://cibersort.stanford.edu
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