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COMMENT

Big bottlenecks in cardiovascular
tissue engineering
Ngan F. Huang 1,2,3, Vahid Serpooshan1,4,5, Viola B. Morris4,6, Nazish Sayed1,

Gaspard Pardon1,7, Oscar J. Abilez 1,10, Karina H. Nakayama1,2,3,

Beth L. Pruitt1,7,8,9, Sean M. Wu1,10,11, Young-sup Yoon4,6, Jianyi Zhang12 &

Joseph C. Wu1,10,11

Although tissue engineering using human-induced pluripotent stem cells is a
promising approach for treatment of cardiovascular diseases, some limiting
factors include the survival, electrical integration, maturity, scalability, and
immune response of three-dimensional (3D) engineered tissues. Here we dis-
cuss these important roadblocks facing the tissue engineering field and suggest
potential approaches to overcome these challenges.

Cardiovascular diseases are the leading cause of heart failure and mortality in the United States,
and heart transplant remains the most viable and effective option for treatment1. However, a
major drawback for heart transplantation is the chronic shortage of donor organs and tissues.
Furthermore, heart transplant recipients face serious challenges in long-term survival in the form
of adverse effects of immunosuppression and chronic immune rejection2. Accordingly, there is a
compelling need for alternative strategies to improve the management of heart failure. Tissue
engineering—a multi-disciplinary approach that combines life sciences and engineering to
manufacture functional tissue equivalents, such as engineered myocardial tissue—is emerging as
a promising alternative to organ replacement or mechanical support3.

Owing to the generally non-proliferative nature of contractile cardiomyocytes (CM) in the
myocardium, the efficient generation of CMs from human-induced pluripotent stem cells
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(hiPSCs)4 has been a major advancement in cardiovascular tissue
engineering5. Although some reports have demonstrated the
efficacy of hiPSC-CM-derived engineered myocardial tissue in
small and large preclinical animal models of heart failure6–10,
challenges exist that hinder the successful clinical application of
hiPSC-CM-derived engineered myocardial tissue. These include
the survival, electrical integration, and immune response of
scalable three-dimensional (3D) engineered tissues, as well as
issues concerning the maturity and function of hiPSC-CMs
(Fig. 1). Below we discuss some of the important roadblocks
facing this field, and the potential approaches to overcome these
challenges.

How can we generate clinically relevant numbers of hiPSC-
CMs for engineering myocardial tissue?
The human myocardium consists of ~109 cells, among which
CMs comprise about one-third of the total cells. The ability to
generate such a large number of hiPSC-CMs for tissue engi-
neering remains a challenge. Although highly efficient differ-
entiation protocols can now produce on the order of ~107 cells in
a single dish, scaling up to 109 cells would require nearly 100
dishes. Nevertheless, recent reports using 10-layer 1.2 L culture
flasks demonstrate the feasibility of generating a clinically rele-
vant number of 109 cells with >60% purity of hiPSC-CMs11. An
alternative approach for scaling up the number of hiPSC-CMs in
a more space-efficient and cost-effective manner is 3D suspension
differentiation platforms. One example is microcarriers, which
are materials that remain suspended in cell culture medium in a
culture vessel and support cellular attachment. Owing to their
large surface area per volume, microcarriers can facilitate the
attachment and differentiation of hiPSCs12. Another example is
the use of 3D aggregates of hiPSCs, which can be differentiated in
suspension culture, achieving ~109 hiPSC-CMs in a 1 L spinner
flask13. The next step toward generating clinically relevant
numbers of CMs would be to engineer myocardial tissues
(>10 cm × 10 cm) with a physiologically relevant cell density
(~108/cm3)14 that consist of hiPSC-CMs in co-culture with
support cells that comprise the remaining two-thirds of the
myocardium (i.e., endothelial cells, pericytes, or fibroblasts) to
promote intercellular interactions capable of sustaining the
function and phenotype of hiPSC-CMs15. Future steps will also
include the development of efficient suspension differentiation
protocols for specific subtypes of hiPSC-CMs (i.e., atrial, ven-
tricular, nodal, and Purkinje), because most differentiation pro-
tocols have been optimized to predominantly produce ventricular
hiPSC-CMs16–18. Further development may make microcarriers
more amenable to generating clinically relevant numbers of
hiPSC-CMs in co-culture with vascular support cells.

How can we maintain the viability of 3D engineered
myocardial tissues?
A major hurdle for the survival of 3D engineered tissues is poor
perfusion of nutrients19. Whereas the typical inter-capillary dis-
tance in the myocardium is ~20 μm20, the thickness of 3D
engineered myocardial tissue spans mm-to-cm thicknesses.
Without a reliable method to transport nutrients and oxygen
throughout the engineered tissue, the cells embedded in the tissue
construct do not remain viable over time. Consequently, perfu-
sion of the engineered myocardial tissue is critical for long-term
tissue survival21. Although bioreactors can maintain the viability
of engineered myocardial tissues in vitro by active perfusion22, in
the absence of a pre-existing in vitro vascular network to integrate
the engineered tissue with the host vasculature upon transplan-
tation, cell viability is not sustainable in vivo. Vascularization of
engineered myocardial tissue can be achieved by the induction of

angiogenic molecules, cell–cell interactions, or mechanical fac-
tors23. Co-culture of hiPSC-CMs with endothelial cells or endo-
thelial progenitor cells can form primitive vessel-like structures
with the potential for in vivo anastomosis10. However, for greater
control of the vessel architecture, techniques such as 3D bio-
printing24, micropatterning25, and microfluidic systems26 have
been shown to be beneficial for anastomosis and tissue integra-
tion. Among these approaches, 3D bioprinting has been parti-
cularly promising, but it is currently limited by inadequate
bioinks and multi-material bioprinting modalities needed for
creation of cell-laden, 3D vascular constructs that maintain
tissue-mimetic stiffness, cell density, and function24,27. The next
important step will be the creation of vascularized 3D engineered
myocardial constructs that are perfusable both in vitro and
in vivo, and supportive of cardiac muscle maturity and global
contractile function28. An ongoing competition from the National
Aeronautics and Space Administration (NASA) and the New
Organ Alliance seeks to overcome the vascularization challenge
by awarding a $500K prize to teams that successfully engineer
functionally vascularized tissues29.

How can we achieve functional integration between
engineered cardiovascular tissue and host myocardium?
In addition to the low engraftment rate being one of the first
major roadblocks, another important hurdle with engineered
myocardial tissue therapy is the electromechanical integration
between the transplanted engineered myocardial tissue and the
host myocardium. Because engineered myocardial tissue may
possess greater heterogeneity in cellular organization than native
tissues, reentry arrhythmia/block is a significant concern30. When
the electrical wave fronts transit from the native myocardium to
the 3D engineered myocardial tissue, passing through a fibrotic
interface or vice-versa, a block of the wave front can be poten-
tially life-threatening. Such a block may result from the hetero-
geneity of electrophysiological parameters, such as action
potential duration or excitability. To minimize the risk of
arrhythmia, recent advances in conductive scaffolds could help
improve electrical communication between the engineered
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Fig. 1 Bottlenecks in cardiovascular tissue engineering. These challenges
include the survival, electrical integration, maturity, scalability, and immune
response of three-dimensional engineered tissues
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myocardial tissue implants and the host myocardium31–34. Fur-
thermore, as epicardial patches are physically separated from the
host myocardium, which hinders electrical coupling, approaches
to recruit epicardial cells to the engineered myocardial tissue
using bioactive peptides35 is a promising approach. These stra-
tegies will help provide engineered myocardial tissue with elec-
tromechanical characteristics equivalent to that of the naive
cardiac myocardium.

How can we improve the maturity and function of engineered
myocardial tissue composed of hiPSC-CMs?
Although highly efficient protocols for hiPSC-CM generation
have greatly accelerated the pace of cardiovascular tissue engi-
neering discoveries36–38, these protocols yield largely an imma-
ture cell population with variability in functions and structures.
For instance, whereas primary adult CMs are morphologically
rectangular in shape with distinctive electrical and mechanical
properties, hiPSC-CMs generally are more amorphous in shape,
with electrical and mechanical properties more resembling those
of embryonic CMs. To engineer adult-like mature and functional
engineered myocardial tissue, the heterogeneity and immaturity
of hiPSC-CMs must be addressed. Mechanical factors have been
shown to improve the maturity and function of hiPSC-CMs. For
example, spatially patterned substrates with physiological
stiffness (6–10 kPa) that impart a 7:1 aspect ratio in cell shape
have been shown to increase hiPSC-CM contractility and enhance
calcium handling and electrophysiology, thereby producing more
mature and aligned sarcomere organization39,40. Mechanical
strain stimulation of early-stage hiPSC-CMs with increasing
intensity over time can also impact adult-like gene expression,
sarcomeric length, and ultrastructure41. These studies
underscore the importance of mechanical factors in enhancing
hiPSC-CM maturity and function. Because these findings have
been reported only in relative small engineered myocardial tis-
sues, the next step will be to translate these approaches using
larger 3D engineered myocardial tissues in large animal disease
models.

How can we overcome rejection of engineered myocardial
tissue after transplantation in vivo?
A major roadblock to the application of hiPSC-based therapies is
immune rejection by the host42. Despite controversies sur-
rounding the immunogenicity of hiPSC derivatives, almost all
studies that involve transplantation of hiPSC-CMs induce
immunosuppression in their animal models9,43. As a solution,
there is a compelling need to advance the hiPSC technology using
off-the-shelf sources of cardiovascular cells and development of
tissue sources. Although human leukocyte antigen (HLA)-mat-
ched hiPSC tissue banks could be a valuable source of tissues for
personalized therapeutics and an effective way to deliver cell
therapy to a large number of patients44, a lack of basic under-
standing in the complexities of ethnic diversity is a challenge.
Probabilistic models show that a bank of hiPSCs generated from
100 of the most prevalent HLA types would be a haplotype match
for 78% of Europeans, 63% of Asians, and 45% of African
Americans45, suggesting that the development of an allogeneic
cell bank may be potentially feasible for relatively ethnically
homogenous countries, but challenging for diverse ones. More-
over, such an endeavor would require a concerted effort by
international groups to create a sufficient tissue repository45.
Finally, even HLA-matched tissues are theoretically capable of
triggering an immune rejection that would still require immu-
nosuppression. Consequently, recent efforts aim to genetically
engineer so-called master hiPSC lines that give rise to immune-
tolerant hiPSC derivatives46. These universal off-the-shelf hiPSC

derivatives can be generated by introducing multiple modalities
that include immune evasion (by deleting HLA) and immune
suppression (by overexpressing immunosuppressive proteins).
Importantly, these HLA-null master hiPSCs could eventually be
used to engineer a hypo-immunogenic cardiac patch as an off-
the-shelf product that can be used universally for cardiac repair.
Alternatively, engineering approaches may one day create allo-
geneic hiPSC derivatives that escape immune rejection. Allogenic
hiPSCs could have far-reaching applications such as generating
ready-to-use engineered myocardial tissue for therapeutic
transplantation.

Future outlook
To date, the engineering of myocardial tissue for regenerative
medicine has been greatly advanced by the use of hiPSCs, bio-
compatible materials, and the control of mechanical properties.
However, besides these five bottlenecks, other important chal-
lenges that need to be addressed include cryopreservation of 3D
engineered myocardium, attainment of functional cardiovascular
tissue in vitro, the recapitulation of native cell–cell interactions
between hiPSC-CMs and support cells within the engineered
tissues, and development of cost-effective manufacturing pro-
cesses for scaling up.

In the future, we anticipate increased use of microphysiological
systems for high-throughput optimization of cellular composi-
tion, geometry, and paracrine factors to maximize the survival
and function of engineered myocardial tissue. The aim of this
microscale approach is to minimize the number of cells and
reagents needed to determine optimal properties in engineered
myocardial tissues. To accelerate clinical translation, engineered
myocardial tissues derived from HLA-null lines will be further
developed to be amenable to cryopreservation, enabling a true
off-the-shelf product. With the goal of reducing the costs and
time associated with regulatory approval, countries like Japan
have recently adopted policies that conditionally approve hiPSC-
based experimental therapies in humans based on limited clinical
safety data, and allowing to up to 7 years for researchers to
provide further evidence of safety and efficacy. Such policies
enable clinical testing to be performed more expeditiously with-
out the need for comprehensive data analysis before clinical
testing47. As the generation of hiPSCs becomes routine using safe
reprogramming approaches that prevent unintended genomic
integration, hiPSC derivatives will gain further traction for clin-
ical translation.

We envision a future in which patients who are diagnosed with
heart failure will simply be prescribed a cryopreserved, immune-
tolerant engineered myocardium composed of hiPSC-CMs and
other support cells that comprise the myocardium. With the
rapid progress in new technologies and continuing refinement of
protocols being worked on by a large international community of
active researchers in this field, this future is well within our reach
and will benefit millions of heart disease patients.
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