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ABSTRACT

Large commercial buildings generally do not operate at economically achievable levels of energy

efficiency. Performance monitoring projects have shown whole-building energy savings of 20% or

more through improved operation and maintenance practices. The opportunity for O&M savings is

related to systemic problems associated with the lack of feedback available from current Energy

Management and Control Systems (EMCS). Today’s EMCS are designed for control, with limited

capabilities in sensing, archiving, data analysis, diagnostics, and data visualization. This paper

discusses a multi-year, multi-institutional project to develop and demonstrate an Information

Monitoring and Diagnostics System (IMDS). The system is designed to address common O&M

problems and the needs of office building owners and property managers to address these problems.

The IMDS includes about 50 points of whole-building and cooling plant data, plus a set of standard

diagnostics plots to evaluate key performance metrics and curves. Five unique features of the project

are (1) sophisticated building operators and engineers as users, (2) permanent installation, (3) high-

quality sensing, (4) high-frequency data archives, and (5) top-down design (i.e., whole building,

system, and component data). The system does not provide control fimctions. We review the

installation and early results from the use of the IMDS. An office builcling demonstration site was

selected because of the technical reputation and interest of the chief engineer and on-site operator. We

also discuss the technology adoption process and decisions involved in such innovations.

Introduction

Buildings generally do not perform as well in practice as anticipated during the design stage.

There are many reasons for this, including improper equipment selection and installation errors, the

lack of rigorous commissioning and proper maintenance, and poor feedback on ongoing performance,

including energy performance. These problems are prevalent in most building systems, and frequently

found in dynamic systems such as heating, ventilation, cooling, and lighting controls.

This paper summarizes results from the development and early field testing of an Information

Monitoring and Diagnostic System (IMDS, see also Sebald & Piette 1997). The project was conceived
to develop and introduce state-of-the-art information technology in buildings in order to substantially

enhance building energy performance by continuously improving operations and maintenance (O&M).

The project is being conducted by an interdisciplinary team to assess the current state of technology,

develop a performance monitoring and diagnosis capability, and test it in real buildings. The system is

Development and Testing of an Information Monitoring and Diagnostic System -8.263



being designed to improve operations in large Class A commercial office buildings. Class A buildings

are the most prestigious buildings in a particular market, with above--average rents, high-quality

finishes, state-of-the-art systems, exceptional accessibility, and a definite market presence. Large

property management companies usually manage these buildings. There are potential “innovators and

early adopters” among these companies, who have been identified for demonstration of the IMDS.
The project is in its second phase. Phase 1 included a detailed scoping study, market

assessment, and technology evaluation, while the current phase focuses on the installation and initial

testing of the IMDS. The Phase 1 market assessment activities included in-depth interviews with six

technical managers who had been identified as among the most sophisticated in California. These

interviews included a review of their perceptions of operations and maintenance problems with all

major building systems, including controls. We found it difficult to identify a single system or

component that was most problematic. Rather, there are systemic problems associated with the lack

of feedback available from current Energy Management and Control Systems (EMCS). Today’s

EMCSS are designed for control, with extremely limited capabilities in sensing, archiving, data

analysis, diagnostics, and data visualization. The purpose of the current demonstration is to deploy

and evaluate the IMDS. The specific objectives are: (1;I To save 15°/0 clf the energy used in a large

commercial building by applying sophisticated monitoring and data visualization techniques with

generalized rules to identify and correct problems in various building system, and (2) To develop

diagnostic tools and data sets which create a specification for a diagnostics system.
The IMDS differs from previously developed systems in several important ways. First, it is

specifically targeted toward sophisticated building operators and engineers. Most related research

efforts or techniques are targeted toward a remote expert user (Liu et d. 1997; Honeywell 1998).

Second, the proposed system is designed to be installed permanently. Some related approaches that

are known for ease of use are built around short-term rather than continuous monitoring systems

(Waterbury et al. 1994). Third, the monitoring system is based on high-quality sensors that are more

accurate and reliable than sensors found in most commercial building systems. Fourth, the proposed

system continuously archives data each minute. Most mu-rent systems do so every 15 minutes or

longer, lacking the ability to catch problems such as equipment short cycling (Liu et al. 1997;

Waterbury et al. 1994). Fifth, the diagnostic system has a top-down design that logically flows from

the general whole-building analysis to system and component diagnostics. This is in contrast to

bottom-up approaches that attempt to detect performance failures associated with specific individual

devices (Hyvarinen & Karki 1996).
The remainder of this paper is organized as follows. First, we cliscuss the O&M problems

discussed in building case study literature and results from our detailed surveys on problems. Second,

we discuss the technology innovation and adoption elements of the project. We then present details
of the IMDS design, followed by a description of the pilot demonstration site. Prior to the summary

and conclusions is a brief discussion of the system costs and benefits.

Operations and Maintenance Information Problems

One of the important activities in Phase 1 was to identify major O&M problems in commercial

buildings. We focused on O&M issues that cause an increase in energy use relative to the expected

performance of a building system. For example, a cooling tower that operates when the chillers are off
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causes unnecessary energy use. The expected performance is for the tower schedule to be coordinated

with the chiller schedule. Such problems are common in commercial buildings. Fixing O&M problems

can also produce non-energy benefits, such as extending cquiprnent life or improving comfort. These

benefits will be tracked in the project as well.

Literature on related building case studies suggest that virtually all buildings have some sort of

O&M problems, and the vast majority of buildings are not carefully cc~mmissioned (Claridge et al.

1994; Piette et al. 1994; Piette et al. 1996). Similar case studies indicate that careful review of hourly

end-use and whole-building energy performance data can result in savings equivalent to about 15
percent of annual operating costs (Herzog & Lavine 1992; Claridge et al. 1994). These savings are

much greater (up to 50 percent) in some cases (Liu et al. 1997).
The Phase 1 effort included detailed interviews and direct feedback from building owners and

operators. These interviews were based on an extensive, 50-page questionnaire designed to tabulate

O&M problems and characterize building owners’ and operators’ experiences with diagnostic and

control technologies. The idea was to identify their most important O’&M problems. Instead of

generating these kinds of seemingly straightforward results, the underlying problem turned out to be

more complex. The difficulty with identifying common O&M problems is that reports of these

problems tend to be anecdotal rather than statistically based. Instead of identifying a detailed set of

problems, we found a more critical and diverse set of problems that need to be addressed by a

successful diagnostic system.
The key problem we identified is that building operators lack good information on major

building systems. Information tools currently in use in these buildings severely limit a building

managers’ ability to assess their own O&M practices in ii comprehensive manner. The questionnaire

given to operators included asking about continuous information systems, such as Energy

Management Control Systems (EMCS), as well as one-time and short-term diagnostics such as

vibration analysis and thermography. EMCS limited capabilities to diagnose problems, or help

evaluate the economic benefit of modifying O&M practices or changing existing equipment with more

efficient equipment.

Technology Innovation and Collaboration with Expert End-Users

An important element of the project is the analysis and application of technology innovation

and adoption theory (Figure 1). We selected Class A building operators because of their role in the

commercial building market as “innovators and early adopters” of advanced technologies. These

operators typically work for third-party property management companies whose businesses are

growing under the current trend toward outsourcing. We purposefully worked with the Building

Owners and Managers Association to identify the most sophisticated and innovative building

engineers and operators in California. The analysis is based on the classic work by Rogers (1983) who
suggested that technology adoption can be described by five categories: innovators, early adopters,

early majority, late majority, and laggards. As an example of how the categories differ, “innovators”

pursue technology and sometimes make a purchase simply for the pleasure of exploring a new idea or

device, while “early adopters” are interested in new technology for its own sake and are quick to

understand and appreciate the benefits of new products.

Development and Testing of an Information Monitoring and Diagnostic System -8.265



Respectable

\

~ \
Ventures~l~nmntor5 Deliberate Skeptical

~

Traditional

‘+ Early Elrly l.rm?
Adopter% I&ijaiity Majority

~,~i-+: 13.5% 34% llfs I*&Act.l!!16%

:f - ~ff Y – id .1
~!’+ ~~

Adoplr?r categmizmimlonwebasis of frlmlviwlwfress

Figure 1. Technology Adoption Categoriziitions

The people selected for the O&M surveys had the characteristics

important. First, they had some organizational “slack” to pursue new ideas

that Rogers deemed

and had developed a

method to analyze innovations utilizing this slack time. This influences the way they budget for their

test of the innovation. Second, they specify someone in their organization responsible for the

technology strategy. Although they do not have formal R&D departments, they have identified a

technology evaluator. Finally, they had demonstrated by past performance that they could think

creatively and would act on new information in previous innovations we evaluated.

After identi~ing the innovative operators we sought to identify the process used to adopt

related technology innovations. These “scouting” studies resulted in an understanding of the business

and technical constraints and incentives for innovations. Specifically, we found that the technical

managers responsible for innovation frequently conducted pilot studies with their own operating

budgets. Furthermore, we found that the technical managers responsible for innovations were limited

to evaluating simple components and were unable to undertake large-scale studies of potential

“system-wide” technologies because they could not justify the cost and time for such studies.
Figure 2 shows the five stages in the innovation-decision process (Rogers 1983). The current

demonstration site’s chief engineer (who is responsible for operations in more than 100 buildings)

evaluated a variety of information we presented about the IMDS prior to making a decision to

implement the system. This information included a detailed engineering specification that outlined the

sensor suite, software systems, and standard plots.

Figure 2. Stages in the Technology Inriovation-Decision Process.

The collaboration with a leading chief engineer allows us to assess his informational needs,

computing environment, and willingness to learn new systems. Our ability to automate diagnostics is

linked to evaluating the ease of use necessary for the operating environment. We will work with the

property managers to collect and review results presented in the form of standard graphics. The chief

engineer is looking for technology that gives him a competitive advantage in managing the building.
The system will allow evaluation of how the building performs in real time, with reliable and

understandable monitoring technology.
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During the pilot project selection process, we completed interviews of five third-party

property management companies whose technology manager was selected as innovative. We are

preparing a written analysis of the interviews for these five companies, who will be brought in to

comment on the IMDS at the pilot site. We are studying the five steps (Figure 2) in the decision

process for the pilot site demonstration, and are currently looking at the implementation and

confirmation stage. The implementation stage has been complicated by a take-over in the property

management business. There is a trend toward mergers and consolidation of property management

firms, which have influenced most of the property managers we’ve been tracking. This turmoil is a

barrier to research such as ours that benefits from stable ownership and management. Significant

turnover in operational staff also hampers the development of long-term knowledge about an
individual building’s energy performance.

Diagnostic Technology and IMDS Design

Phase 1 included an investigation and evaluation of diagnostic methods, tools, and techniques

for inclusion in the current project. Our analysis considered issues such as sensor and communications

technology, bottom-up versus top-down diagnostics architecture, and the design of temporary versus

permanent systems. We also examined the status of techniques from the field of intelligent systems

(e.g., artificial intelligence, fuzzy logic, neural networks) and diagnostics used in process control

industries.
A diagnostic system comprises the components depicted in Figure 3. We have installed the

system in the building, with the set of sensors, data processing, and standard graphics already

specified. We are currently training the building operator to use the system and will be closely

monitoring their actions taken as a result of the system, which we expect to result in energy savings.

There are difficult tradeoffs between advancing the automation of the diagnostic systems versus

designing the system for optimal human-based diagnostics. The current emphasis in this project is to

provide reliable and easily interpreted standard performance graphs that the operator can use for

“human-based” diagnostics. The project also includes research on automated diagnostics, which

include methods to detect faults and identifi fault sources. Automated diagnostic systems generally

include model-based (e.g., simple functions, physical, cm black-box) fault detection and classifiers

(knowledge or association based). The development of automated diagnostics can be justified by the

recognition that building systems are becoming more complex over time and are difficult for the average

operator to understand (Hyvarinen & Karki 1996). One study found that i~fter a few months of strong

enthusiasm, building operators lost interest in standard energy use plots provided by a utility research

project that provided detailed energy data to building operators (Behrens & Belfer 1996). Thus, some

automation of diagnostics are needed to set alarms that can tell an operator when the diagnostic system

has identified a performance problem or deviation from normal operaticm. When such an alarm is

sounded, the operator can than query the standard plots tcl look at the nature of the problem. We have

chosen to work with the most sophisticated operators we can find, and will explore how to automate

some of their “expert diagnosis” so that the system could be developed for a broader set of users.
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Figure 3. Components of a Diagnostic System

The basic architecture for the automated diagnostics has been defined and the approach for

constructing the appropriate fuzzy-logic maps has been specified. We have begun to build a

prototype of the basic routines needed to implement the system, which will use some of the project’s

basic plots (listed below) as test beds. The ideal automated diagnostic system should have the
following capabilities:

● Easily automate the diagnoses incorporated in the project’s nine basic (or other related) plots.

This means automating the test regarding whether data in each plot is in the range

corresponding to appropriate performance.
● Test for specific faults found by the research team or building operators.
● Learn new diagnostic patterns fi-om experience and take hints or new information from

humans (team or operator).

● Permit the human operators to understand the system’s reasoning, and answer questions like

“Why did the problem occur?”

The automated diagnostics analysis will include an assessment of how applicable the techniques tested

at the demonstration site are to other buildings.

Figure 4 compared an IMDS and an EMCS. EMCS typically focus on scheduling and

controlling building HVAC systems including air temperatures and flows and monitoring zone

conditions. By contrast, the IMDS measures energy, weather and water-side variables (temperatures,

pressures and flows). As mentioned, sensors commonly used in buildings are typically not adequate

due to durability (frequent failures or falling out of calibra~tion) and accuracy problems (e.g. measuring

flows accurately is crucial, but typical systems either do not measure flcIw or do so with inadequate

accuracy). Less accuracy is needed for day-to-day control than for dii~gnostics and evaluation of

equipment performance because EMCS tend to use relative as opposed to absolute measurements.

The installed system consists of about 50 points and several dozen calculated, or virtual fields

(such as load or efficiency) which are based on sensors such as high-grade thermistors, power meters,

magnetic flow meters, and aspirated psychrometer. The monitoring equipment is listed in Table 1.
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Table 1. Svstems and Sensors in the IMDS
System to be Evaluated

Whole Building
Chillers

Pumps

Cooling Tower

Local Micro-Climate

Measurement

f

Accuracy
(@ full scale or ‘F)

Power +/- 1.50%
Differential Pressure (water) +/- 0.25’%
Water Temperatures +/- 0.01 “F
Flows (water) +/- 0.5096
Power (to chillers) +/- 0.50 ‘%
Differential Pressure (water) +/- 0.25?6
Power +/- 0.20%
Dry Bulb Temperature +/- 0.01 “F
Wit Bulb Tem-perature I +/- 0.01 “F
Water Temperatures ! +/- 0.01 “F
Power

‘+

+/- 0.50%
Flow +/- 0.50’%0
Dry Bulb Temperature +/- 0.01 “F
Wet Bulb Temperature +/- 0.01 “F

The rationale for the selection of the systems is as follows. First, the selection of whole-

building diagnostics is the starting point of the proposed diagnostic system. Whole-building data

contain the basic yardsticks by which a building operator can get an overall set of metrics to evaluate

building performance. The rationale for the selection of the cooling system is related to the benefits of

working with it relative to the difficulties related to other candidates for the diagnostics, such as

lighting or ventilation systems. Great improvements in cooling plant efficiency measurements can be

gained with magnetic flow meters and high-quality therrmstors. Chillers are the largest single energy-

using component in large office buildings, and are thus a logical item to examine. Evaluating the entire

cooling plant will allow us to understand the overall system performance, which is more important
than examining a component in isolation from the system.
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For comparison, the measurement issues associated with ventilation and lighting are more

distributed -- literally distributed throughout a building. Measuring air flows is particularly
problematic. A similar confounding issue with ventilation systems is that ventilation requirements in

individual zones vary because of duct configurations and thermal variations. These were determined

not to be good candidates for the initial demonstration, but are suitable for fiture research. The
IMDS, by contrast, is restricted to monitoring cooling plant equipment that is located either in the

central plant or on the rooftop.

The components selected for the analysis are tihillers and cooling towers. Both of these

components were targets of complaints from building managers about poor sizing. Chillers are often

oversized, thus they require more power per ton than optimal because they are less efficient at low
partial load. Cooling towers are often undersized. Larger towers allow the chiller to operate at cooler

condensing temperatures. The diagnostic system will explore major failure modes for these

components.

The IMDS is designed to be a permanently installed and continuously active system. This is

necessary because buildings continuously change. For example, some problems reoccur, such as those

from modifications to schedules to handle special events. These modificat~ons often lead to equipment

being left on when not needed. The diagnostic system is designed to clperate in parallel with any

existing EMCS, rather than expanding or modi~ing the EMCS. The IMDS is therefore not

constrained by EMCS data collection capabilities, which can be problematic with 50 points of one-

minute data. This technology may, however, be incorporated in future EMCS.

Failure Modes

The research has included an analysis of petiormance metrics and benchmark data to

characterize the fundamental principles of the selected building, system, and components. We

developed a series of standard graphics that will allow the metrics to be displayed in a manner that

assists in the diagnosis. These graphs were analyzed to determine benchmark signatures for good

performance, such as where measured values should fall on a given analysis plot, or what the curve

shape should look like if the system or component is performing properly. We developed a series of

measurements and sensing requirements to evaluate the systems and components. We also listed

common modes of failure that one can diagnose with the given metrics and graphics based on case

study data and related literature. The discussion of failure modes is not an entirely exhaustive list of

failures, but covers common and critical modes of failure. The proposed knowledge base is designed to

be modular, with a set of standard graphs and standard information. These graphs also serve as a

tutorial that is designed to orient the building operator on how best to understand the system or

component’s energy performance. A list of the nine plots and associated diagnostics are listed in

Table 2. The whole-building data are fairly straightforward but we provide some additional details on

the cooling system and component data.

Cooling System Diagnostics. The entire cooling system efficiency can be evaluated using the

efficiency versus load analysis (kW/ton vs. cooling tons) The total cooling system performance in

kW/ton is affected by the kW/ton for each component. The shape of the efficiency versus percent

load curve is dominated by the chiller, so the entire cooling system kW/ton curve tends to look like the
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chiller curve. Chillers should ideally operate near their rated efficiency (purchase point). Various

problems (oversizing, improper scheduling, control problems, etc.) exhibit signatures on these plots.

Chiller and Cooling Tower Diagnostics. The chiller monitoring will capture key parameters in the

chiller operation such as water flows and temperatures, pressure drop, and power. These data will

allow determination of chiller efficiency (Figure 5) and loads. We will also measure the pressure drop

across the chiller heat exchangers to determine the extent of fouling. The cooling tower monitoring will

also include water temperatures and flows, plus local cutdoor weather data and cooling tower fan

power. A temperature measurement station including an aspirated psychrometer will be installed on

the top of the building as far away from the cooling towers as possible. Data from this psychrometer

will be used to evaluate “nano-climate” effects at the building scale, which and are smaller than well-

known city-wide micro-climates. Cooling tower intake conditions will be compared with outdoor air

conditions to evaluate re-circulation of cooling tower exhaust.

Tnhl~ 7 QtandarA Plntc and Failllr- ?vfnrl~c
.q”.w -. “------ u . .“.. w..=. . W., W.W . ..” UW.

Building Standard Diagnostic Plots Example Failure Modes, Problems

Component & Opportunities
Whole 1. 2D - Outside Temperature/ Power (24 plots for . Sudden (changes in consumption

building each hourof theday)
●

2. 2D - Power/ Outside Temperature
Weather impacts on consumption

3. 3D - Day/Time/Power
● Higher consumption than similar buildings
● Opportunities for alternative electricity rates

- load shapes,

● Load management strategies,

● Unusual nighttime loads or start-up p eaks

Cooling 1. 2D - Cooling System Load (tons) -kW/ton . Comparison to other similar systems

System 2. 3D - Day/Time/Cooling System kW
● Changes in consumption or efficiency of

cooling system due to such things as
improper pump operation, tube fouling,
component malfunction, or tower set points.

● Scheduling problems such as excessive time
on or short cycling

Chiller 1. 2D - Chiller Load (tons) -kW/ton ● Degradation in efficiency of the chillers away
from manufacturer’s specs.

● Efficiency improvements from changes in
operational parameters, i.e. part-loading, and
condenser and chilled water temperatures

● Efficiency degradation due to refrigerant
charge, tube fouling, etc.

● Full load or part load performance and chiller
oversizing or undersizing

Cooling 1. 3D - Day/TimelCooling Tower kW(excluding ● Degradation of tower efficiency due to

Towers condenser pumps) fouling, excess flow, too few cells running, or
2, 2D - Approach (CWS-WB)/Cooling Tower

Tons*
recirculation of saturated air leaving tower

●

3. 2D - Corrected Cooling Tower Tons/Condenser
Cooling system excess energy use due to

Flow
tower undersizing

● Scheduling problems due to tower not
modulating or not interlocked to condenser
pumps, temperature control problems

. . --. — ..
*CWS - condenserwater supply and Wkl- wet bulb
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The classic example of chiller diagnostics is depicted in Figure 5. Here, efficiency (kW/ton) is plotted

versus load (tons). Chillers should ideally operate near their rated efficiency (purchase point).

Various problems (oversizing, improper scheduling, control problems etc.) exhibit signatures on this

type of plot.

Figure 5. Chiller Efficiency versus Load and Sample Problems Diagnosed

IMDS Structure and Data Access

The data collection and distributed analysis environment are shown in Figure 6. A simple flat-file

database has been developed to archive the monitored data. We are testing the first PC version of the

graphics software, which was previously only available for use with high-end graphics workstations.

Data from each sensor are archived in the PC server at the demonstration building. The data

acquisition and graphical analysis software are located on the PC, allowing the on-site operator and

chief engineer direct access to the data. The IMDS generates nine standard plots available for viewing,

plus it offers a series of more sophisticated browsing and statistical analysis tools. These more

sophisticated tools will likely be of greater use to the remote researchers. Researchers in several

locations will have access to the data, plus the identical analysis software, allowing them to analyze

the building performance and test the automated diagnostic systems. The PC server will offer a subset

of the real-time analysis graphics from the demonstration site to the public over the World Wide Web.

The purpose of these graphs are to demonstrate the technology to interested organizations and

potential future service providers such as Energy Service Companies, utilities, and control companies.
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Figure 6. Remote Data Access for the IMDS

Pilot Demonstration

The building selected for the demonstration is a 100,000 sqft office building at 160 Sansome

Street in San Francisco, also known as the Hong Kong Bank Building. The building is about 30 years

old, with two 200-ton chillers that are also 30 years old. Figure 7 shows that the site annual energy

use intensity (EUI) is typical compared with related benchmarks. The building used 90 kBtu/sqft- yr

in 1996, which consisted of 64 kBtu/sqft-yr for electricity and 24 kBtu/sqft-yr for purchased steam.

The first of the comparison data sets is the EUI for a 100,000 sqft large office building from a

Northern California simulation prototype developed from energy analysis of 74 similar buildings

(labeled CEC No.Cal, Akbari et al. 1993). The second EUI is the west-coast large office building

average from the US Department of Energy’s Commercial Building Energy Consumption Survey

(labeled CBECS-West, CBECS, EIA 1995). The third, and most similar, is the average EUI for San

Francisco office buildings from BOMA (labeled BOMA-SF, Energy User News 1995).
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Figure 7. Annual Site Energy Use (kBtu/sqft-yr) of Demonstration Site and Comparison

Buildings
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Figure 8 shows the hourly electric load profiles for about three months (June 19 through

September 30, 1997). The load profiles show that the building is extremely regular in its usage

pattern. Nighttime energy use is extremely low. All HVAC systems and most equipment tend to be

off at night, with HVAC coming on at about 6 AM. Although we do not yet have end-use data, there

appear to be four distinctive day-types that can be easily identified. First,, weekends and holidays are

days with low power similar to nighttime power. (There are few nighttime and weekend occupants;

after-hour HVAC services are available at a relatively high price.) Next, there appear to be typical

workdays that are those when the chillers are not needed. The next higher load shape represents days

when one chiller was used. Finally, the highest power days are those when both chillers are used.

These days correspond to the periods with the warmest weather.
The highly regular and well-controlled building systems suggest that basic equipment

scheduling will not be where we will find energy savings. Rather, we expect that the IMDS can be

used to improve chiller and cooling tower control. We will only explore these changes after we jh-st

give the on-site stafl time to use the system without our intervention! Tlhe current outdated EMCS,

unlike most for this type of building, does not provide any information about the chilled water supply

temperature or condensing water temperature. We also expect that the overall cooling plant has poor

efficiency (kW/ton). We provide some examples here of the opportunities for improving the cooling

tower performance. The cooling towers are blow-through towers with centrifugal fans, which are
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inherently inefficient. We will consider the savings possible with a variable frequency drive for the

tower fans. We will examine the general conditions of the cooling tower, such as the fill water

treatment and air flow rate (by working backwards from water side enthalpy). We will consider

alternatives to the current cooling tower operation, such as changing the fill or water treatment, or

perhaps increasing the louver area. Another possibility might be to increase the condenser flow by

removing obstructions (such as the strainer, globe and balancing valve, and orifice plates, etc.) and

possibly running two pumps to one chiller.

Since high-quality sensors are a critical element of the diagnostic system design, the

demonstration will include an evaluation of the costs and benefits of data accuracy and relative value of

each data point. This task will also include evaluating the life-cycle costs (first costs and maintenance

costs) of high-quality, high-end sensors versus alternative, more common sensor and comparisons of

the EMCS data with the IMDS data.

Costs and Benefits

The property managers that we have approached have all expressed a strong interest in

participating in this research. The pilot collaboration is structured as follows. The research project’s

budget covers the cost of the hardware and software at the building site. The property management

company covered the cost of the system installation. This arrangement worked fairly well in practice,

but required some assistance from the research team in the installation process in order to keep to the

tight project schedule. We have spent approximately $65,000 for the hardware and software

(including ISDN services) with a similar level of in-kind support from the property managers.
The non-energy benefits of the IMDS are major drivers for the high level of interest in this

technology. The “innovators” we are working with recognize the general value of having high quality

information about building performance. Perhaps the primary non-energy benefit the IMDS offers is

vast improvements in data about the general operating conditions of majclr building equipment. Field

studies have found that equipment is often on when not needed, plus we commonly see equipment

cycling too frequently (Piette 1996). Both of these examples bring abcut premature end of life or

equipment failures. The IMDS data may also lead to better comfort conditions and tenant satisfaction

given the improved ability to evaluate the performance of the cooling pliint. These benefits will be

difficult to quantify, but will be tracked in our evaluation. Our target of 15% energy savings translates

into about $0.30 /sqft-year for a 100,000 sqft building consuming about $2/sqft, or $60,000/year for

the pilot building. This would offer a simple payback time of about two years when considering the

current system with today’s costs. Our expectation is that the first costs will decrease significantly as

the technology matures.

Summary and Conclusions

The primary objective of this project is to introduce state-of-the-art building monitoring and

diagnostic information systems into Class A buildings for use by sophisticated building operators.

This objective is based on our background research, which suggests that the proposed system meets

the needs of operators and that they support the system we’ve designed. The concept is to deploy a
permanent system to assist in continuous improvements in O&M to reduce energy use and operating
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costs. Our overall goal is to work with building owners and property managers in demonstrating the

cost effectiveness of the proposed diagnostic system, thereby creating a market demand for such
technology. We hope to demonstrate that the system could be cost effective when commercialized by

the private sector.

The IMDS demonstration is oriented toward deploying the basic infrastructure for an advanced

information system, including field tests of initial applications. This demonstration will allow the

controls industry to examine the value of such systems that greatly exceed today’s current EMCS
technology. Such a system is the starting point for more advanced, automated diagnostics, such as

those based on fuzzy logic or neural networks.

The diagnostic system will meter various building systems and components to provide

feedback on building performance. The users of the system will be building operators and property

managers. The project involves working with innovative experts a) tc) assist in developing new

technology and b) to use them and their peer groups to develop a technology pull strategy as they

provide feedback on the technology. The suppliers could be electric utilities, other third-party experts

such as ESCOS, or control companies. The service would ideally be paid through savings in the

operating budget. This technology gives the owners and managers a quantum leap in improving

management in their buildings. It could reduce operating costs and make their spaces potentially more

comfortable. It also gives them the choice of local or remote building cliagnosis. The IMDS is an

example of an entire wave of information based technology, giving customers a direct entree into this

entire new field. We hope to extend the IMDS demonstrations to additional buildings, and will be

exploring modifications to the current monitoring suite. See http: //eetd.lbl.gov/EA/IIT/diag/ for more

information.
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