UC Berkeley

Controls and Information Technology

Title
Design of a maintenance and operations recommender

Permalink
https://escholarship.org/uc/item/53p2f18d

Authors

Federspiel, C.
Villafana, L.

Publication Date
2003-06-30

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/53p2f18d
https://escholarship.org
http://www.cdlib.org/

Copyright 2003, American Society of Heating, Refrigerating and
Air-Conditioning Engineers, Inc. (www.ashrae.org).

Reprinted by permission from ASHRAE Transactions 2003,
Volume 109, Part 2.

This paper may not be copied nor distributed in either paper or digital
form without ASHRAE’s permission. Contact ASHRAE at
www.ashrae.org.

KC-03-8-4

Reprinted by permission from ASHRAE Transactions, Vol.
109, Part 2, pp. 677-683. © 2003 American Society of Heating,
Refrigerating and Air-Conditioning Engineers, Inc.

Design of a Maintenance and Operations

Recommender

Clifford C. Federspiel
Associate Member ASHRAE

ABSTRACT

We describe the design of a maintenance and operations
recommender. The recommender uses information from
computerized maintenance management systems (CMMS) and
energy management and control systems (EMCS) to recom-
mend what maintenance personnel should do in response to a
maintenance service request or other event requiring a main-
tenance or control system action. The recommender integrates
text information from a CMMS database and sensor informa-
tion from an EMCS to provide recommendations. Text is
processed using the Extended Boolean model, which is a
simple text processing method commonly used to retrieve
information from large databases. The recommender
compares text problem descriptors and sensor data descrip-
tors to estimate the similarity between previous maintenance
actions and the maintenance action that will be taken. Actions
with a high predicted similarity are more highly recommended
than those with a low predicted similarity. The recommender
uses reported maintenance actions to learn to improve its
recommendations. It compares predicted similarity indexes
with similarity indexes computed by comparing maintenance
actions. The difference between predicted and computed simi-
larity is used as an error signal to adjust weights that relate
similarity indexes of individual problem descriptors. We use a
simple example to demonstrate the steps that the recommender
uses to make recommendations and to learn.

INTRODUCTION

Modern buildings use computerized maintenance
management systems (CMMS) and computer-based energy
management and control systems (EMCS). These systems
contain large databases of information about historical build-

Luis Villafana

ing operations. Additionally EMCS systems contain real-time
information about various subsystems important to building
operations, including heating, ventilating, and air-condition-
ing (HVAC) systems, life-safety systems, lighting systems,
and power systems.

Two common uses of CMMS systems and EMCS
systems are monitoring and accounting. CMMS systems are
used to monitor the frequency of maintenance activities and
the time required to perform them. This capability is particu-
larly useful when maintenance services are provided by third
parties. EMCS systems are used to monitor energy-intensive
equipment such as HVAC equipment. They monitor key
system variables such as temperatures, flow rates, and pres-
sures and also derived performance metrics such as chiller
efficiency so that when alarms or problems are reported the
maintenance personnel can look at these variables to diagnose
the problems. There have been some efforts at integrating
CMMS operations and EMCS operations. For example, some
energy and maintenance systems will automatically initiate a
work order in a CMMS in response to an alarm in an EMCS.
Piette et al. (2002) describe GEMNet, which is an integrated
energy and maintenance information technology infrastruc-
ture. GEMNet relies on standard database protocols and the
building control system protocol called BACnet (ASHRAE
2001) for transferring information between CMMS and
EMCS systems.

In this paper we propose integrating CMMS data with
EMCS data for the purpose of recommending to building engi-
neers what they should do in response to a service request or
problem report from an occupant. Recommender systems are
commonly used to retrieve useful documents from large data-
bases and from the internet (Resnick and Varian 1997). In the

Clifford C. Feder spiel is with the Center for the Built Environment and L uis Villafana is with the School of Information Management and

Systems, both at University of California, Berkeley, Calif.

02003 ASHRAE.

677

document retrieval application, the recommender system
recommends documents that match a weighted query. The
recommender system either uses feedback from the user or
watches the user’s search patterns to determine the best set of
weights for the queries. Hayes and Pepper (1989) describe a
system that provides maintenance recommendations based on
a decision-tree approach and a knowledge of faults. The
system provides sequential recommendations of tests that the
maintenance technician should perform in order to diagnose a
problem.

There are three features of building maintenance and
operations that make the design of a maintenance and opera-
tions recommender somewhat unique. First is that the problem
involves the integration of text with sensor data. Document
retrieval recommenders deal entirely with text, while a main-
tenance recommender must be able to process values from
sensors and integrate them with text data. Another feature of
the maintenance and operations recommender is that the text
data consist of short descriptions of problems or actions taken,
whereas the text data in a document retrieval recommender
consist of large numbers of large documents. The third feature
of a maintenance and operations recommender is that feed-
back is readily available. In document retrieval recommender
systems, it is sometimes necessary to force the user to rate the
recommendations in order for the system to learn. Building
engineers routinely report actions they take in response to
reported problems. These reported actions form a feedback
loop that can be exploited for learning so that it should not be
necessary to ask the building engineers or the occupants who
reported the problems to rate the recommendations.

METHODS

The maintenance recommender works by making
comparisons, by predicting the outcome of comparisons, and
by learning from observations. This section describes methods
currently used by the recommender to perform these func-
tions. Alternative methods are described here and in the
“Discussion” section.

We assume that for every service request there is a set of
N descriptors that could be sensor data, time, location, or a text
description of a problem or action taken. The data could be
represented by Table 1. In Table 1, the current problem is
number 0. In Table 1 time runs in the opposite direction of the
problem number, so problems reported further back in time
have a larger problem number.

Text Processing

Some of the information in CMMS systems that will be
used by the recommender is text, so we need a way to process
text. Specifically, we need a way to compare text descriptions
of problems and text descriptions of actions taken to solve
problems.

We use concepts from the field of information retrieval
(IR) that have been developed for comparing the relevance of
text documents for making these text comparisons. Three

678

TABLE 1
Tabular Description of the Data
Problem
Number | Descriptor 1 | Descriptor 2 | Descriptor N| Action
0 Doa Do,2 Do Ao
1 D1 D12 D1n Ay
M Dma D2 DN Am

common IR models used for assessing the relevance of docu-
ments are: (1) probabilistic models, (2) vector-based models,
and (3) extended Boolean models. Probabilistic models and
vector models are best suited to retrieving information from
large collections of large documents. Ina CMMS database, the
“documents” consist of short text descriptions of problems or
actions taken in response to problems. Collections in the
CMMS context are the sets of problem descriptions and
actions. Even long descriptions in a CMMS database are short
by IR standards. We use the extended Boolean model because
the documents are short, often containing just one instance of
a key word. For details on IR models, see Baeza-Yates and
Ribeiro-Neto (1999) or Manning and Schutze (1999).

For the classical Boolean model, matches to keywords are
binary. Either the document matches a query or it doesn’t.
There is no way to handle partial matches or to determine the
size of a mismatch. The extended Boolean model overcomes
this partial matching limitation of the Boolean model by inter-
preting partial matches as Euclidean distances in a vector
space of index terms. This allows the extended Boolean model
to produce rankings of how closely the query matches the
documents.

To compute the rankings, terms in the document are
weighted, and the weights are combined to form a similarity
index. There are a number of ways to compute term weights.
The simplest is to choose term weights of either zero or one.
We used term weights that are the product of the normalized
term frequency and the inverse document frequency. Mathe-
matically, the term weights are:

B idf,

Wx,j = X’jm (1)
where x refers to a term in the document, j refers to a docu-
ment, f, ; is the relative frequency of term x in document j, idf,
is the inverse document frequency, and max;idf; is the maxi-
mum inverse document frequency for all of the terms in the
collection. The terms are derived from the text in the current
problem. The normalized term frequency is computed as
follows:

= L @

fx’j - maxlth
where v, ; is the number of times that term x appears in docu-
ment j, and max;v; ; is the maximum number of times that any

of the terms in document j appear in document j. The inverse

ASHRAE Transactions: Symposia

document frequency is computed as follows:
idf, = logg=0 (3)

where N is the number of documents in the collection and n,
is the number of documents in the collection that contain term
x. When the term weights are computed according to Equa-
tions 1 through 3, terms that appear often in the relevant docu-
ment but infrequently in the collection will have a large
weight.

Similarity indexes are computed as the norm of the vector
of term weights. We use a 1-norm. Using this norm, the simi-
larity index is the average of the term weights.

LM
So,j:‘,\ﬁfil Wi j 4)

In addition to being computationally simpler to compute,
the 1-norm has the feature that the similarity calculation for a
disjunctive query is the same as the calculation for a conjuc-
tive query (both are the average of the term weights). In other
words, the 1-norm implies that the partial match for an OR
query is the same as the partial match for an AND query.

Sensor Processing

Some of the data available to the recommender are from
sensors. We use the following formula to compute the simi-
larity of sensor readings:

S,k = l—min?nax?%ﬂ, 03 lg (5)
95 5
where s; is the similarity between the values Dy and D;
from a particular sensor, where j is the previous problem to
which the current problem is being compared (i.e., the row of
Table 1), and k is the descriptor index for the sensor (i.e., the
column of Table 1). The magnitude of the difference is
normalized by the 90% interquantile difference for the entire
set of values corresponding to index k. We use a large inter-
quantile difference instead of the range because the range of a
sample from any distribution with infinitely long tails will
grow with the number of samples even if there were no outli-
ers. For example, the range of samples from a normal distri-
bution will grow as more and more samples are acquired from
the normal distribution because the tails of the normal distri-
bution extend to infinity in both the positive and negative
directions. The size of the interquantile difference could be
other than 90%, but it should be as large as possible while
eliminating outliers. The min() and max() functions are used
to prevent similarities less than zero or greater than 1.
Equation 5 is used to compare the relevant system state of
two reported problems. Since problems occur in different
places and with different systems, it should be applied to
values from the same kind of sensor, not just the same sensor
itself. For example, Equation 5 would be used to compare the

ASHRAE Transactions: Symposia

space temperature values for a hot complaint from two differ-
ent spaces. This implies that sensors of the same kind exist in
order for two problem descriptions to be compared. It would
not be possible using this method to compare all of the sensors
corresponding to a hot complaint from a space heated by a
hydronic system with all of the sensors corresponding to a hot
complaint from a space heated by a forced-air system. For
example, the forced-air system might have an airflow sensor,
while the hydronic system would not.

We assume that the database or the recommender has
been configured so that the recommender knows whether or
not a descriptor is sensor data or text. We also assume that the
fields in the database corresponding to a particular kind of
sensor data do not change. This could easily be accomplished
by making a column in a table in the database always corre-
spond to a kind of sensor (e.g., duct static pressure). The
recommender does not figure out data types by itself.

Predicting Action Similarity

To make recommendations, the recommender predicts
the similarity that will eventually be computed between the
action for the current problem and past actions based on the
computed similarity indexes for each descriptor. After a prob-
lem has been reported but before the problem has been solved,
the similarity between the action taken for the current problem
and the actions of past problems can’t be used because the
current action is yet to be taken. The recommender uses a
linear combination of the descriptor similarity indexes to
predict action similarity. Mathematically, this prediction is as
follows:

§ = WS (6)
1

Fy
I Qo =

where j is the problem to which the current problem is being
compared, and k is the index of the descriptor. Using matrix
notation, Equation 6 can be expressed as follows:

>

= sw (7

where the underbar denotes a vector quantity and the bold font
denotes a matrix. For a database with just four problems
(including the current problem) and two descriptors, the quan-
tities in Equation 7 are as follows:

R %’1 S1,1 51,2 W
S= || $= 18518 W= [wl}
Sz S31 53,2 2

The linear model makes computing the predicted action
similarity easy and fast, and it also makes it easy to learn the
best set of weights.

The action corresponding to the highest predicted action
similarity is the most highly recommended action to take. The

679

concept is to display the actions to the maintenance engineer

TABLE 2
Descriptors and Actions for Four Example Problems
Problem No. Temperature Description Action
0 78 Hot in cashier’s area Lowered min SAT from 65 to 60 degrees.
1 75.5 Hot and stuffy Lowered SAT.
2 87.5 Hot in secure room Change duct dampers. Remove ceiling tiles.
3 70.0 Cold in employee’s lounge Stat located over computer & monitor. Computer & mon-
itor must be moved.

inalist that is ranked by predicted action similarity from high-
est to lowest. The underlying assumption is that similar
descriptions correspond to similar actions.

Learning

The recommender learns to improve its predictions by
adjusting the descriptor weights in Equation 6 so that the
difference between predicted and computed similarity of
actions is as small as possible. This weight adjustment can be
accomplished by solving the following constrained least
squares problem:

min|§ -5 (®)
8w =1 ©)
k=1

0EwWE1 (10)

S;is the computed similarity between the action reported
for the current problem (number 0 in Table 1) and the action
reported for problem number j. It is computed by applying the
extended Boolean model (Equations 1-4) to the Actions
(column 5 of Table 1).

If there were no constraints, then this would be a standard
least squares problem, and the optimal descriptor weights
could be computed by a number of methods including recur-
sive methods. Since the problem involves constraints, the opti-
mal descriptor weights are computed using quadratic
programming. The extra computation required to solve a
quadratic programming problem is not an issue because the
system doesn’t have to learn immediately after a problem is
solved. It would be acceptable for the quadratic programming
solution to be computed overnight using the new information
acquired from the previous day of maintenance activities.

If we used a nonlinear relationship between descriptor
similarities and action similarity (e.g., a neural network) it
would still be possible for the system to learn, but it might be
computationally more difficult.

This learning strategy assumes that the action taken was
the correct action to take most of the time, and that errors in the
actions are random. Since the name of the person performing

680

the maintenance is usually recorded in a CMMS database, it is
possible for the learning procedure to only use actions taken

TABLE 3
Similarity Indexes for the Example

Problem . .
No. |Temperature |Description| St Sopt S

1 0.857 0.069 0.463 | 0.126 | 0.2
2 0.457 0.069 0.263 | 0.097 0
3 0.543 0.0 0.271 | 0.039 0

by maintenance personnel who are known to be “experts.” The
learning strategy requires that actions be recorded. If they are
not recorded, then the recommender cannot learn.

RESULTS

In this section we show examples of how the methods of
the previous section can be applied to real data. Consider the
data for the four problems shown in Table 2. These four prob-
lems were taken from a database containing thousands of
service requests. They were chosen for illustrative purposes.
The first descriptor is space temperature, and the second
descriptor is the text description of the problem. In this exam-
ple, Problem Number 0 is the current problem. Key terms are
derived from the text in the current problem (hot, cashier, and
area for the Description column, and lowered, min, SAT,
from, and degree for the Action column) and all similarity
calculations are with respect to the current problem. Words
used in the calculations are shown in bold font in Table 2. We
did not include nondescriptive terms, such as pronouns, arti-
cles, and numbers, in the calculation (&, be, in, to, 60, 65).

For this example, the computed similarity indexes are
shown in Table 3. The similarity indexes for the first two
Descriptions (column 3 of Table 3) are low because the only
match is the word “hot” and because “hot” occurs more
frequently than other words, reducing its term weight. Column
4 (S (equal weights)) shows the predicted action similarity
computed assuming that the weights in Equation 2 are equal
(both equal to 0.5 for this example). Column 5 (S (after learn-
ing)) shows the predicted action similarity after choosing the
optimal weights by solving the constrained least squares prob-

ASHRAE Transactions: Symposia

lem described above. The computed action similarities for
Problems 2 and 3 are zero because none of the terms derived
from the Action of Problem 0 appears in the Actions of Prob-
lems 2 or 3.

The vectors and matrices corresponding to Equation 3 are
as follows:

0.857 0.069 . 0.463
s = . w. . = |05/ St = .
0.457 0.069|" St gl Sinit = |0.263|"
0.543 0.0 ' 0.271
0.126
— 10.071]. s =
Wopt = |:0 928:|’ Sopt = |0.097
' 0.039

The vector w, ;. is the descriptor weight vector used prior
to learning (i.e., prior to solving the constrained least squares
problem), and §,;; is the vector of predicted action similari-
ties corresponding to w; ;. The vector w,, is the optimal
descriptor weights vector.

Prior to learning, the recommender would give the high-
estranking to Action 1 and the lowest to Action 2 (i.e., itwould
recommend the action of Problem 1 most and the action of
Problem 2 least). After learning, the recommender would still
give the highest ranking to Action 1 but would now give the
lowest ranking to Action 3, which was the action taken in
response to a cold complaint. Less important to the act of
recommending an action is the fact that the predicted action
similarities prior to learning are too large. After learning they
are approximately the right size.

DISCUSSION

We have described the design of a system for providing
recommended actions for maintenance personnel responding
to problems reported by building occupants. The recom-
mender uses information stored in a CMMS database, inte-
grates CMMS data with sensor data from EMCS systems, and
learns to improve its performance with time.

Making recommendations is a seven-step process. The
first step is to record the information describing the problem
in a database. This information could include a text descrip-
tion provided by the occupant and other information such as
time, location, and sensor data from a control system.

The second step is to compare the description of the
current problem with the descriptions of all other problems
previously recorded in the database. This is done by making
within-field comparisons of like data types. Text descriptions
are compared using the extended Boolean model. Sensor data
are compared using the normalized absolute difference. These
comparisons result in descriptor similarity indexes.

The third step is to combine the descriptor similarity
indexes into a predicted action similarity index. The predicted
action similarity is a forecast of the computed similarity index
between the action that will be taken to solve the current prob-
lem and actions taken to solve previously recorded problems.

ASHRAE Transactions: Symposia

The fourth step is to sort the past actions by the predicted
similarity. The primary purpose of computing the predicted
action similarity is to rank past actions. Past actions with a
high predicted similarity are more likely to be the right action
for the current problem than past actions with a low predicted
similarity, so they should appear at the top of the list.

The fifth step is to solve the problem and record the action
taken in the database.

The sixth step is the first part of the learning process. After
the action for the current problem has been recorded, the simi-
larity indexes between the current action and all past actions
are computed. These are the computed action similarity
indexes. The purpose of computing these indexes is to provide
a feedback signal for the learning process.

The seventh step is to adjust the descriptor weights by
solving the constrained least squares problem described in the
“Learning” subsection. The “error signal” for this learning
process is the difference between the vector of computed simi-
larity indexes and the vector of predicted similarity indexes.

There are a number of important issues regarding a
system such as the one we have designed, including data qual-
ity, user interface design, acquisition of sensor data, automa-
tion of actions, and diagnosis versus recommendation.
Regarding data quality, we have found that data quality in
CMMS systems is low. It is common for data to be missing.
Text descriptions of problems or of actions taken often do not
contain much information. This results in few key words,
sometimes just one to three words in total. The fact that
common words are used in these descriptions (e.g., “hot™)
compounds the problem when applying IR methods to the text
in CMMS systems. Short descriptions also amplify the need
for a dictionary. If “warm” had been used instead of “hot” in
problem 1 or 2, then the Description similarity index would
have been 0 even though “hot” and “warm” are similar. The
recommender needs to be able to determine that certain words
are similar if free-text descriptions are to be used. Determining
that some words are similar to others will require the use of a
dictionary.

An alternative to using a dictionary is to eliminate or
reduce the use of free-text descriptions. If the user interface
used to enter the descriptions and actions into the CMMS
system used a catalog, then keywords could be assigned to
problem descriptions and actions by clicking on them. The
person entering the problem description or action could step
through a sequence of lists of key words designed to capture
information about various aspects of problems (HVAC vs.
lighting, recurring vs. persistent, etc.), which could be used to
document the actions taken (investigate, changed, reported).

We assume that sensor data are readily and automatically
available at the time a problem is reported. Today this is gener-
ally not the case. To get sensor data into the CMMS database
today, most systems would require the maintenance engineer
to go to the control system, manually record relevant sensor
values, then manually enter them into the CMMS system. In
the future this will be done automatically. In a companion

681

paper (Federspiel and Villafana 2003) we describe a web-
based user interface that occupants use to report problems.
They report the location of the problem using a code on the
nearest thermostat. The user interface uses this code to query
a database for the most recent space temperature sensor value
from the problem location. In that particular case, the temper-
ature sensor values are available in a database because the
controls are BACnet compliant. A program that can commu-
nicate with BACnet-compliant devices polls all of the space
temperature sensors (and other sensors) periodically and
stores them in a circular buffer.

Some of the actions taken by maintenance engineers
could be automated. Examples of such actions are “raised
setpoint” or “started pump.” If the recommender is suffi-
ciently accurate, then it might be possible to have the recom-
mender automatically initiate these kinds of actions when the
predicted action similarity is high. However, it is difficult to
extract actionable commands from free text. We think that it
will be necessary to use a catalog for describing actions if
some of the actions are to eventually be taken automatically.

The recommender system uses feedback from recorded
actions to learn. This does not require that the actions taken
always be correct, but the recommender will learn faster if
they are correct, and the reliability of its recommendations
will be better if the actions are correct. One way to ensure that
the recommender gets high-quality actions is to only make
recommendations and learn from actions taken by experts. It
is common for the name of the person performing mainte-
nance to be recorded in a CMMS database. Ad hoc criteria
such as years of experience, years working at this particular
site, or a quality rating from a manager could be used to deter-
mine whether or not the recommender uses the actions taken
by a particular maintenance engineer. Another mechanism for
ensuring the quality of recorded actions would be to survey the
person who reported the problem to see whether or not the
problem was solved and how well it was solved. The results of
the survey could be used to filter out incorrect actions and to
place more weight on actions that result in high occupant satis-
faction. However, care would have to be taken to ensure that
factors that could result in low satisfaction, such as a slow
response, do not reduce the occupants’ assessments of
whether or not the actions solved the problem.

We have designed a system that provides recommenda-
tions, not diagnoses. There are two good reasons for this. The
first is that most of the information available in CMMS
systems describes actions. It is much less common for main-
tenance engineers to describe the cause of problems. The
second reason is that it may be possible to solve a problem
without knowing the cause. It is certainly more important to
solve problems than to know why problems occurred. In some
cases the path to the root cause may be so long that deciding
exactly what caused the problemis an arbitrary act of stopping
somewhere along this path. However, if causes were routinely
reported in a CMMS database, then the same procedure we
have described for recommending actions could be used for
ranking likely causes.

The recommender currently uses a linear model to relate
the descriptor similarity indexes to the predicted similarity of

682

actions. We could use a nonlinear model such as a neural
network to relate these variables. Doing so would probably
become beneficial as the number of descriptors, particularly
the number of sensors readings, increases. For some problem
types, the values from some sensors will be highly relevant,
while the values from others will be irrelevant. We could
design a neural network to operate on individual key words so
that it learns which sensors are important for certain problem
descriptions.

CONCLUSIONS

We have shown how CMMS data and EMCS data can be
integrated to recommended actions to maintenance and oper-
ations personnel in response to a problem reported by occu-
pants. The recommender has the following features:

e Integrates text information from a CMMS with sensor
data from an EMCS.

e Learns to improve its recommendations without requir-
ing anyone to rate past recommendations.

The first feature allows the recommender to use informa-
tion from building occupants in a systematic way, effectively
utilizing occupants as virtual sensors. The second feature
allows the recommender to adapt to the building operations
without the undesirable need to rely on explicit ratings of its
performance.

ACKNOWLEDGMENTS

This work was supported by the California Energy
Commission’s Public Interest Energy Research program and
the Assistant Secretary for Energy Efficiency and Renewable
Energy of the U.S. Department of Energy under contract to
Lawrence Berkeley National Laboratory. This material is
based upon work supported by the National Science Founda-
tion under Grant No. 0122599.

REFERENCES

ASHRAE. 2001. ANSI/ASHRAE Standard 135-2001, A Data
Communication Protocol for Building Automation and
Control Networks. Atlanta: American Society of Heat-
ing, Refrigerating and Air-Conditioning Engineers, Inc.

Baeza-Yates, R., and B. Ribeiro-Neto. 1999. Modern Infor-
mation Retrieval. Reading, Mass.: Addison-Wesley.

Federspiel, C.C., and L. Villafana. 2003. Design of an
energy and maintenance system user interface for build-
ing occupants. ASHRAE Transactions 109(2).

Hayes, P., and J. Pepper. 1989. Towards an integrated main-
tenance advisor. Hypertext 89 Proceedings, 119-127.

Manning, C.D., and H. Schutze. 1999. Foundations of Statis-
tical Natural Language Processing. Cambridge, Mass.:
MIT Press.

Piette, M.A., M. Levi, D. McBride, S. May, and S. Kinney.
2002. GEMNet status and accomplishments: gsa’s
energy and maintenance network. Proceedings of the
2002 ACEEE Summer Study on Energy Efficiency in
Buildings.

ASHRAE Transactions: Symposia

Resnick, P., and H.R. Varian. 1997. Recommender systems. suggested response to a complaint. How would you do that?

Communications of the ACM 40(3), 56-58. Clifford Federspiel: The recommender could tell the main-
tenance engineer that it has determined that taking no action is
DISCUSSION likely to be the best action, and then provide reasons why no

Jim Coogan: The data say “no action” is the most common action occurs. The list of possible reasons could include
action taken. I’'m trying to imagine how the software might HVAC system running at full capacity and conditions now
present that advice to the maintenance department as a acceptable to the occupant.

ASHRAE Transactions: Symposia 683

