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Abstract

Stone soup: digesting the epigenome through the window of chromatin accessibility

by

Alyssa K Morrow

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Nir Yosef, Co-chair

Professor Anthony D. Joseph, Co-chair

In this thesis, we leverage epigenetic datasets that provide a limited view of the epigenome to
understand changes in transcriptional activity across a diverse set of cellular contexts. It is
often the case that we would like to learn about an epigenome that is partially characterized
by different types of experiments. In our case, the epigenome is often partially characterized
using assays that measure chromatin accessibility. In the European fable of Stone Soup, a
hungry traveler convinces a village to give them ingredients to make soup; however, all the
traveler has available to them are stones. Thus, the stones provide a basis for the soup, as
it brings in other crucial ingredients to design a hearty meal. In this thesis, we leverage
chromatin accessibility as our stone: the primary ingredient that we leverage to gather a
more complete view of the epigenome.

In the first part of this work, we explore methods designed to increase our understanding of
the epigenome, primarily through the identification of genomic locations that are crucial to
regulatory activity, including binding sites of transcription factors and modification of histone
tails. In particular, we introduce two methods designed to predict such epigenetic events.
While the first of these methods is designed to predict epigenetic events from DNA sequence
alone, the second method improves upon existing methodology to predict epigenetic events
in novel cellular contexts using chromatin accessibility as the primary indicator of context
specificity.

In the second part of this work, we leverage chromatin accessibility, as well as additional
transcriptomic epigenetic information, to characterize changes between cellular contexts for
various applications. In the first application, we leverage chromatin accessibility and tran-
scriptomics to understand how CD8(+) T cells change after reprogramming cells to a pluripo-
tent state, and how maintenance of the T cell phenotype can ultimately effect outcomes for
cancer immunotherapy. Finally, we explore the role of the transcription factor, MORC3, in
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modulation of the accessible genome in the innate immune system. Together, these applica-
tions demonstrate how chromatin accessibility can be leveraged to characterize changes in
regulatory activity and gain a more complete understanding of the epigenome.
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CpG hypomethylation at Nanog and Oct4 promoter regions in T-iPSC clones. e)
Chromosome spread demonstrating that T-iPSC clones possess a normal kary-
otype. f) Teratoma formation assay shows T-iPSC clones formed all three germ
layers Ec (ectoderm), M (mesoderm) and En (endoderm) labeled in the images.
g) T-cell receptor rearrangement analysis demonstrating the presence of unique,
clonal TCR rearrangements in the T-iPSC clones. . . . . . . . . . . . . . . . . 74
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4.2 TN and TSM cells were reprogrammed from 3 donors each to TN-iPSC and TSM-
iPSC and characterized for pluripotency. a) (Left) Counts of genes that were sig-
nificantly differentially expressed (significance defined as abs(log2foldchange) >
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genes between each of the four conditions. b) (Left) Counts of regions that were
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stem memory T cell subset related genes. e) Mean counts of ATAC-seq cut sites
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cell subset related genes. Counts from multiple ATAC-seq peaks nearest to a gene
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cells (x-axis) and TSM-iPSC cell lines and the original TSM cells (y-axis). CD8 T
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4.5 Reprogrammed fibroblasts and T cell retain epigenetic and transcriptomic mem-
ory after reprogramming. a) (Left) Counts of genes that were significantly dif-
ferentially expressed (significance defined as abs (log2foldchange) > 0.5 and ad-
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change and -log10 adjusted p-values of differential expression for genes compared
in fibroblasts and FB-iPSCs. d) Joint analysis of log2 fold change of ATAC-seq
and RNA-seq between fibroblasts (FB) and FB-iPSCs. x-axis shows ATAC-seq
log2 fold change between fibroblasts and FB-iPSCs. y-axis shows RNA-seq log2
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counts in T-iPSCs and FB-iPSCs at genes CD3E and CD3D, associated with the
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Chapter 1

Introduction

1.1 The epigenome explained

Many of us are quite familiar with the central dogma of biology: DNA makes RNA makes
proteins. However, one critical question that is not addressed in this simplistic but catchy
dogma is how this process can differ across cellular contexts. We all know that brain cells
are different from skin cells, which are different from liver cells. Although these cells have
similar DNA that is inherited from the germ line, the selection and strength of genes that
are transcribed to RNA varies greatly from cellular context to context. One primary driver
of changes in expression of genes is due to changes in the epigenome.

In the name ”epigenome”, the prefix ”epi” is Greek, and can be translated to ”above” [228].
Thus, the epigenome can almost literally be translated to ”above the genome”, and includes
all modifications that control the regulation of gene expression, but do not modify DNA
sequence. We define the epigenome as all events, marks, and conformational changes that
affect the expression of genes.

With the advent of next generation sequencing, measuring different aspects that charac-
terize the epigenome has never been easier. Through the utilization of different antibodies
and enzymes, one can treat a sample using various protocols to obtain measurements for
many epigenetic events. In this section, we will explain three types of epigenetic events,
including changes in chromatin accessibility, transcription factor activity, and the modifica-
tion of histone tails. These events are visualized in Figure 1.1. Although these three types
of epigenetic events are not exhaustive, we focus on them because they are utilized for the
development of methods and explanation of applications in this body of work.

1.1.1 Transcription factors: the main regulators of gene
expression

Transcription factors (TF) are proteins that regulate the transcription of genes. For this
reason, TFs have been referred to as the ”main regulators of transcription” [217]. TFs
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can either activate or repress the transcription of a gene, and thus regulate the amount of
messenger RNA (mRNA) that is transcribed from a regulated gene [216]. TFs often bind
directly to DNA sequences in promoter regions, located upstream of a gene. Here, these TFs
can recruit co-activators that modify the chromatin environment and facilitate assembly
of the pre-initialization complex (PIC), composed of general TFs [3] and RNA polymerase
II [79]. TFs can also bind to regions distal to the affected gene. This general group of distal
regions is referred to as gene regulatory regions. Within this group, a subclass of regions,
called enhancers, positively regulate a gene of interest [132]. TFs can even regulate their
own expression, through binding of enhancers or promoters that ultimately affect its own
transcription [132].

While some TFs are general, as they are expressed and active in many of the cells in
an organism, others are specific to certain types of cells, stages of development, or tissue
location [216]. Examples of widely expressed transcription factors, regardless of cell type, in-
cludes the general TFs, which are required for formation of the PIC in promoter regions [41].
Examples of general TFs include TFIIA, TFIIB, and TFIID in eukaryotes [115]. Although
these TFs can be found in a majority of cellular contexts, other TFs are specific to contexts.
One such example of this can be shown through the modulation of TFs in the differentiation
of CD8(+) T cells. While CD8(+) T cells more differentiated than the näıve phenotype show
decreasing activity of TFs such as TCF7, LEF1, and KLF7, other TFs, such as TBX21 and
PRDM1 show increasing levels of expression [60].

There are many factors that determine where different TFs bind across the genome.
The binding affinity of many TFs depends on DNA sequence, where changes in sequence
specificity reflect the biochemical properties of the TF in question. For example, families
of TFs have different binding domains, which ultimately effect which sequences these TFs
bind [225]. TFs bind to short DNA sequence patterns that range in length from 4 to 12 base
pairs (bp) [91]. These short patterns can be represented probabilistically, where each base
pair in a pattern has a probability of being observed. This probabilistic representation of
DNA sequence patterns is referred to as DNA sequence motifs, or motifs for short.

Because these motifs are small in size, they can often occur randomly in the genome. For
many of these motif instances, interactions between TFs and the respective DNA region it is
specific to can be weak [132]. To strengthen interactions, TFs often recruit corepressors and
co-activators to stabilize complexes in regulatory regions of the genome [219]. However, not
all TFs have sequence specificity. In the recruitment of corepressors and co-activators, some
of the recruited TFs bind in a context dependent manner, where TFs bind to the recruiter
or a composite motif [105].

Apart from DNA sequence, histone placement and accessibility of chromatin can affect
TF binding. As discussed in Section 1.1.2, the modification and placement of histones can
affect the ability of TF binding [132]. TF binding can indirectly affect gene expression
through the displacement of histones, or the recruitment of co-activators and corepressors
that modulate the modification of histones [107, 229, 172]. TF binding is also affected by
general accessibility of chromatin at regulatory regions. Thurman et al. have shown that
98.2% of all TF occupied sites mapped in the ENCODE consortium [34] overlap accessible
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regions of the genome. However, some TFs occupy nucleosomal sites [212], which are gen-
erally inaccessible. These TFs make up heterochromatin-bound repressive complexes [35,
189].

In general, TF binding sites can be identified genome-wide through assays such as Chro-
matin Immunoprecipitation followed by DNA sequencing (ChIP-seq) [167] or Cleavage Under
Targets and Release Using Nuclease (CUT&RUN)[193]. Although large epigenetic data con-
sortiums today generally use ChIP-seq as the standard method for measuring TF binding
sites genome wide [34, 109], assays such as CUT&RUN support in-situ identification of bind-
ing sites, while generating less background noise and requiring approximately one tenth the
sequencing depth of ChIP-seq [193]. Although these assays can in principle be used to iden-
tify and characterize the activity of regulatory regions in a cellular context of interest [167],
running separate ChIP-seq experiments for each of a large number of relevant TFs is time
and cost-intensive and, in some instances, unfeasible due to low input size [144]. As a result,
the task of predicting the location of such epigenetic events in silico in lieu of experimental
evaluation received great deal of attention [220]. These methods will be discussed in greater
depth in Chapter 2.

1.1.2 Histone modifications

For the sake of simplicity, DNA is often drawn in its primary structure, namely a sequence of
A’s, T’s, G’s, and C’s, where each letter represents a DNA base. However, in reality, DNA
takes a complex conformation which involves molecules, primarily proteins, that control
which regions of DNA are actively transcribed into genes, and which regions are repressed.
One of the ways that DNA maintains this complex structure within the nucleus is by wrap-
ping around structural units called nucleosomes. Nucleosomes are sections of DNA that are
wrapped around a core of proteins, or histones. Together, DNA, histone proteins, and other
molecular components make up chromatin, which is the structure in which DNA is present
in a cell [107]. Each of these histones has unstructured histone ”tails” which protrude from
the nucleosome [39]. Although these tails are unstructured, they are able to interact with
DNA to help determine the formation of higher-order chromatin [86]. Each of these his-
tone tails can be post-translationally modified, where each modification can uniquely change
conformation and affect transcription, DNA repair, condensation, and DNA replication [107].

Histone tails can be modified through post-translational modifications (PTM), and in-
clude acetylation and methylation of various amino acids along the histone tail [10]. Note
that these two modifications do not encapsulate all types of PTMs, but we will focus on
them in particular, as they are studied in Chapter 5. These various types of PTMs can in-
hibit or promote transcription. One example of PTMs which activates transcription of genes
is H3K4me3. While H3K4me3 activates transcription when located near promoter regions,
other PTMs, such as H3K27me3, are associated with repression of transcription [123]. The
effect of other PTMs are not so straightforward: various types of histone modifications can
both inhibit and promote transcription, depending on their proximity to DNA regulatory
regions. For example, methylation at H3K36 has a positive effect on transcription when
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located near a coding region, and a negative affect when located at the promoter [107].
Similar to TFs, histone modifications can be experimentally measured using assays such as
ChIP-seq [167] and CUT&RUN [193].

Regardless of the type of PTM, histone modifications affect transcription through two
main mechanisms. This includes (1) unraveling chromatin through disruption of contact with
nucleosomes, or (2) recruiting non histone proteins to modify chromatin state [107]. One
example in which a PTM recruits non histone proteins to change chromatin state is through
the recruitment of a TF, MORC3, via H3K4me3 [67]. While the MORC family of TFs is
known to play roles in gene silencing, H3K4me3 is a marker of active regions [118]. Here, it
has been shown that MORC3 can aid in the silencing of genes in mouse embryonic stem (ES)
cells through recruitment of MORC3 by H3K4me3 to active promoter regions [118]. We dis-
cuss this example in particular, as Chapter 5 discusses the role of MORC3 in transcriptional
silencing, albeit in human cells.

1.1.3 Chromatin accessibility: the stone of the epigenome

To date, one of the most prevalent types of genomic-scale epigenetic information is chromatin
accessibility. Chromatin accessibility refers to the physical compaction of chromatin, where
nucleosomal compacted regions are less accessible, while nucleosomal depleted regions are
more accessible. Because nucleosomes are not evenly spaced throughout the genome, regions
of accessibility can be varied, and are found in different locations depending on the cellular
context considered [139].

Respective assays such as DNase I hypersensitive sites sequencing (DNase-seq) [20] and
Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) [24] identify ac-
cessible chromatin regions genome-wide through enzymatic cleavage of exposed DNA. DNase-
seq and ATAC-seq protocols use cleavage enzymes (DNase-I and Tn5, respectively) to cleave
DNA of open chromatin [119]. These cleaved segments of DNA are fragmented, then se-
quenced and aligned to quantify levels of accessibility genome wide [232]. Although the
sensitivity and specificity of ATAC-seq is similar to DNase-seq, it requires only a fraction
of the cells of DNase-seq, making it a more feasible measure of chromatin accessibility for
samples with low yields [24].

One of the reasons that chromatin accessibility is well characterized is because of its
wide availability. ENCODE alone contains 300 biosamples with measurements of DNase-seq.
Additionally, in the advent of ATAC-seq, ENCODE has collected ATAC-seq from 48 primary
tissues for human alone [141]. Unlike measurements for TFs and histone modifications,
measuring chromatin accessibility requires a single experiment. However, individual TFs
and PTMs must be collected as separate experiments for each target of interest. Although
we could, in principle, fully characterize the activity of regulatory regions in a cellular context
of interest [167], running separate experiments for each of a large number of relevant DNA
binding proteins and histone modifications is unfeasible.

Besides wide availability, chromatin accessibility is valuable because of its ability to
indicate regulatory regions and enhance our understanding of transcriptional regulation,
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outside of accessibility alone. Generally, regions of accessibility can indicate regulatory el-
ements [139]. However, beyond accessibility, these regulatory regions are often associated
with other epigenetic events such as binding of transcription factors (TFs) and other DNA
binding proteins, or chemical modifications of histone tails [212]. Often, chromatin acces-
sibility is used to observe variation in accessibility at the protein-DNA physical interface,
creating unique patterns, called footprints. These footprints not only indicate regions of
accessibility, but can also be used to identify footprints for TFs and chromatin modifiers
that bind in accessible regions [220, 136]. Because of this, many methods exist that leverage
chromatin accessibility to predict TF binding [144, 166, 96, 186, 170, 100]. Together, this
means that chromatin accessibility can be used to identify regulatory regions of the genome,
as well as estimate regions of TF binding and histone modifications in a cellular context of
interest.

In this thesis, we refer to chromatin accessibility as the ”stone” of all epigenetic measure-
ments, as it provides the basis for which we build on to understand changes in the epigenome
across cellular contexts. We refer to chromatin accessibility as the stone of our soup, not
because it provides us with the most information, but because it is readily available, es-
pecially in our applications. These applications of how we leverage chromatin accessibility
in particular to understand changes in the innate and adaptive immune system are dis-
cussed in Chapters 4 and 5. Besides availability, we refer to chromatin accessibility as the
“stone” because of its ability to indicate regulatory regions and enhance our understanding
of transcriptional regulation, outside of accessibility alone.

Despite the wide usage of chromatin accessibility for identification of regulatory regions,
chromatin accessibility alone cannot identify all regulatory regions in isolation. One such
example of this is in the identification of active enhancers, for which measurements of PTMs
can be more informative for their identification [83]. Because of this, we note that chromatin
accessibility alone is not perfectly indicative of all regulatory regions.

1.2 Dissertation Overview

In this work, I first present methods and tools that we have conceptualized and developed
for processing and learning from epigenetic datasets in new cellular contexts. In the cases we
consider, the epigenome in a cellular context of interest is partially characterized by gathering
experimental information that measures chromatin accessibility, histone modifications, TF
binding patterns, or a combination of these. Therefore, these methods and tools are designed
to extrapolate knowledge from partially characterized cellular contexts to make the most of
the data that we have. In Chapter 2, we discuss two methods we have developed to predict
TF binding sites genome wide. While the first method leverages DNA sequence to learn
motif preferences of various TFs [143], the second method leverages chromatin accessibility,
as well as histone modifications, when available, to predict binding sites of TFs and chromatin
modifiers in a cellular context aware manner [144].

In Chapter 3, we discuss three tools, or extensions of existing tools, designed to simplify
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processing and understanding of epigenetic datasets. The first two methods build on pre-
vious work [97] to support processing of TF binding sites and histone modifications from
CUT&RUN [193] in an integrated pipeline for processing epigenetic datasets. We particu-
larly use these pipelines in Chapter 5 to process CUT&RUN for a TF called MORC3, as well
as various histone modifications, in monocytes. Our second extension allows for the quan-
tification of endogenous retroviruses from RNA sequencing datasets. This implementation is
discussed in Section 3.1, and its application is discussed in Chapter 5. Finally, we introduce
a set of tools that supports visualization of genomic sequencing datasets in a python envi-
ronment. These tools allow us to visualize genomic datasets in the same environment used
for method development and data analysis, supporting for quick and ad-hoc visualization of
data that is not necessarily stored in traditional bioinformatics file formats [145].

Finally, we discuss two applications that leverage chromatin accessibility, among other
epigenetic and transcriptomic datasets, to characterize cellular contexts of interest. The
first application discussed in Chapter 4 leverages chromatin accessibility and transcriptomic
information to characterize phenotypic differences between näıve and stem memory CD8(+)
T cells, and how reprogramming these cells changes the epigenome. The second application,
discussed in Chapter 5, leverages chromatin accessibility to identify regulatory regions crucial
to the function of a TF called MORC3 in human monocytes.

In Chapter 4, we aim to measure the extent to which näıve and stem memory CD8(+) T
cells retain epigenetic and transcriptomic memory after reprogramming to induced pluripo-
tent stem cells (iPSCs). We consider this application in particular due to its role in protocol
for the generation of modified T cells for adoptive T cell therapy [94, 153]. To assess the ex-
tent to which CD8(+) T cells retain memory after reprogramming, we leverage measurements
of chromatin accessibility to evaluate regulatory regions that maintain and lose accessibility
after reprogramming, and whether retained regions are important to their respective parent
phenotype. We additionally collect measurements of the transcriptome to determine which
genes maintain and lose expression after reprogramming, and whether changes in accessi-
bility nearby genes correlates to changes in gene expression for key CD8(+) associated and
pluripotent associated genes.

In Chapter 5, we evaluate the role of MORC3, a TF, in the negative regulation of in-
terferon response in the innate immune system. To evaluate the role of MORC3, we gather
measurements of chromatin accessibility to isolate potential regions in which MORC3 inter-
acts with to repress interferon response. We additionally collect measurements of the tran-
scriptome to identify which genes MORC3 regulates. Together, these applications exemplify
cases where chromatin accessibility can be leveraged to gain a more complete understanding
of a cellular context of interest.
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Figure 1.1: Overview of epigenetic events that affect gene expression. a) Chromatin accessi-
bility refers to the physical compaction of chromatin, where nucleosomal compacted regions
are less accessible, while nucleosomal depleted regions are more accessible. Figure is modi-
fied from Bailey et al. [9]. b) Transcription factors bind to DNA or interact with co-factors
in a context dependent manner to regulate the transcription of genes. c) Nucleosomes are
sections of DNA wrapped around histone proteins. Histones have unstructured histone tails
which can be modified through post-translational modifications. These modifications in-
clude acetylation, methylation, and phosphorylation, for example. Figure is modified from
Monteys et al. [4].
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Methodology for processing and
learning from epigenetic datasets
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Chapter 2

Models for prediction of epigenetic
events

2.1 Introduction

As discussed in Section 1.1.1, TFs are known as the main regulators of gene expression, and
are often indicative of the function of their respective region [34]. Although TF binding
sites (TFBS) could be evaluated genome-wide through assays such as Chromatin Immuno-
precipitation followed by DNA sequencing (ChIP-seq) [167] or Cleavage Under Targets and
Release Using Nuclease (CUT&RUN) [193], running separate ChIP-seq experiments for each
of a large number of relevant DNA binding proteins and histone modifications is time and
cost-intensive and, in some instances, unfeasible due to low input size.

As a result, the task of predicting the location of such epigenetic events in silico in lieu
of experimental evaluation has received great deal of attention [220]. Methods developed
to predict such events can be broadly categorized based on the genomic properties they
use as features for drawing predictions. The first broadly utilized category of classification
methods is restricted to using only DNA sequences as features [5, 240, 235, 190]. Although
these methods cannot predict epigenetic events that are specific to cellular contexts not seen
during training, they can be used to explain the effect of changes in DNA sequence on the
strength of the signal of DNA binding proteins and histone modifications. In this body of
work, we refer to this group of methods that use DNA sequence to predict epigenetic events
as non-generalizable, due to the fact that they are not able to predict epigenetic events
specific to a cellular context that was not observed during model training. In Section 2.2.1,
we introduce a novel, non-generalizable method that uses convolutional kitchen sinks [169]
to predict TFBS from DNA sequence, using fewer computational resources than traditional
approaches [143].

Although non-generalizable methods inform us of the importance of DNA sequence on
the locations of epigenetic events, these methods cannot generalize to new cellular contexts.
This is due to the fact that non-generalizable methods do not use information collected from
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cellular contexts, and thus have no way of modifying predictions based on the context un-
der consideration. In order to consider cellular contexts when predicting epigenetic events,
a second group of classification methods utilize available measurements of chromatin state
from a cellular context of interest to predict epigenetic events which were not measured
experimentally [166, 100, 96, 170]. We refer to these methods as generalizable because
they are able to learn from epigenetic features from a set of contexts and be applied to
predict epigenetic events in new contexts not seen during training. Many of these meth-
ods use chromatin accessibility in particular as an indication of context specificity due to
its prevalence and ability to capture nuanced variation in accessibility at the protein-DNA
physical interface [220, 136]. In Section 2.3.1, we introduce a novel method, Epitome, that
incorporates chromatin state to predict the probability of occurrence of various epigenetic
events genome wide, including TFBS and histone modifications [144]. We further demon-
strate how Epitome can be extended to consider all epigenetic information available from
a cellular context of interest to improve predictive accuracy of epigenetic events. Finally,
in Section 2.3.2, we extend Epitome to predict epigenetic events at single cell resolution by
leveraging single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) as
the primary indicator of cellular context specificity.

2.2 Non-generalizable models for prediction of

epigenetic events

There have been various discriminative and generative methods designed to classify short
(<1kbp) DNA sequences. Here, we specifically refer to methods that classify DNA sequences
based on the epigenetic events they may be associated with: namely, sequences that bind
TFs. In this section, we outline numerous state-of-the-art discriminative approaches for
classifying DNA sequences based on the epigenetic events they are associated with. This
section is based on Morrow et al. [143], which focuses on a novel non-generalizable model for
classification of DNA sequences based on the epigenetic events they are associated with.

The first group of methods we explore that have been designed to classify DNA sequence
are string kernel methods. String kernel methods are well understood and have been exten-
sively used for sequence classification [87, 50, 116]. Specifically, Fletez-Brant et al. and Lee
et al. [54, 114] have applied string kernel methods to the problem of predicting TFBS. Fletez
et al. [54] use the Spectrum Kernel formulated by Leslie et. al. [116] to learn the location
of TFBS from DNA motifs of length n (Equation 1). We let alphabet A = {A, T, C,G}
represent the set of DNA bases.

Definition 1 (Spectrum Kernel). Let Sn(A) be the set of all length n contiguous substrings
in A, and #(x, s) count the occurrences of s ∈ x [116].

Kspec(x, y) =
∑

s∈Sn(A)

#(x, s)#(y, s) (2.1)
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The Spectrum Kernel captures similarities between sequences when motif length l is small.
However, as l increases, it becomes intractable to compare sequences due to the increased
sparsity of motif presence. Specifically, for TFBS, this poses a problem when motifs range
in length from 6 to 30 base pairs. The Gapped Kmer Kernel by Lee et al. [114] resolves the
issue of sparsity with large l by allowing for gaps when comparing two motifs (Definition 2).

Definition 2 (GKM-Kernel). Let Sl,k(A) be the set of all length l contiguous substrings with
k informative characters in A, and #(x, sk) count the occurrences of sk ∈ x with exactly k
mismatches [114].

KGKM(x, y) =
∑

sk∈Sn(A)

#(x, sk)#(y, sk) (2.2)

However, kernel methods require pairwise comparison between all n training sequences
and thus incur an expensive O(n2) computational and memory complexity, making them
computationally intractable for large data sets. To bypass O(n2) memory complexity, LS-
GKM SVM [113] implements the GKM Kernel using LIBSVM [27], which uses decomposition
methods to iteratively solve for the SVM problem, bypassing loading the O(n2) kernel matrix
into memory.

As it has been repeatedly observed that the presence of a TF binding site may depend on
a wider context around the site [65, 29], many approaches use convolutional neural networks
(CNN) to consider wide genomic contexts around a region of interest to predict epigenetic
signal [240, 5]. CNNs generalize well by encoding spatial invariance during training. Fast
convolutions on a Graphical Processing Unit (GPU) allow CNNs to train on large datasets.
One of the first CNNs designed to predict TFBS was DeepBind [5]. DeepBind is a convolu-
tional neural network that trains and parameterizes a separate predictive model for each TF,
based on the locations of DNA motifs for the TF of interest [5]. Model hyper parameters
vary for each transcription factor, ranging from 0 to 1 hidden layers, and varying in motif
length from 16 to 32.

The second, and more widely utilized neural network which predicts TF binding sites is
DeepSEA. DeepSEA trains one model to predict binding for hundreds of diverse regulatory
elements from DNA sequence. These regulatory elements include TFBS, regions of accessible
chromatin, and the presence of histone modifications [240]. The primary difference between
DeepSEA and DeepBind is that, unlike DeepBind, DeepSEA uses signal identified from
ChIP-seq to indicate response variables for epigenetic events, instead of DNA motifs. This
allows DeepSEA to predict epigenetic events specific to cellular contexts that it observes
during training. However, because only DNA sequence is used as features, it cannot predict
events in cellular contexts not seen during training. Hence, we include this method in the
group of non-generalizable methods.
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2.2.1 Convolutional Kitchen Sinks for Prediction of transcription
factor binding sites

In this section, we present a simple and efficient non-generalizable method leveraging convo-
lutional kitchen sinks (CKS) for predicting TFBS from DNA sequence. This text is modified
from that described in Morrow et al. [143]. Unlike kernel methods, CKS bypasses the need
for O(n2) memory and time complexity. However, unlike CNN’s, CKS train in a fraction of
the time with a fraction of the parameters. Our method computes a random approximation
of a convolutional kernel feature map from DNA sequence and then learns a linear model
from the approximated feature map. Our method outperforms state-of-the-art DeepBind on
9 out of 10 datasets from the ENCODE consortium, while training in less than one eighth
the time.

In this work, we present a convolutional kernel approximation algorithm that maintains
the spatial invariance and computational efficiency of CNNs. Dubbed Convolutional Kitchen
Sinks (CKS), our algorithm learns a model from the output of a 1 layer random convolutional
neural network [169]. All the parameters of the network are independent and identically
distributed (IID) random samples from a gaussian distribution with a specified variance.
We then train a linear model on the output of this network.

The task of TFBS prediction from DNA sequence reduces to binary sequence classifica-
tion. We present a randomized algorithm for finding an embedding of sequence data apt
for linear classification (Algorithm 1). Our algorithm is closely related to the work of con-
volutional kernel networks, which approximates a convolutional kernel feature map via a
nonconvex optimization objective [130]. However, unlike Mairal et al. [130], we approximate
the convolutional kernel feature map via random projections in the style of Rahimi et al.
[169, 168].

We will first define the convolutional n-gram kernel, and then analyze why it has desired
properties for the task of string classification. Note that we use the term n-gram to refer
to a contiguous sequence of n characters, whereas computational biology literature refers to
the same concept as a k-mer.

Definition 3 (Convolutional n-gram kernel). Let x, y be strings of length d from an under-
lying alphabet A, and let H(x, y) denote the Hamming distance between the two strings. Let
xi:j denote the substring of x from index i to j − 1. Let n be an integer less than d and
let γ be a real valued positive number denoting the width of the kernel. The kernel function
Kn,γ(x, y) is defined as:

Kn,γ(x, y) =
d−n∑
i=0

d−n∑
j=0

exp(−γH2(xi:i+n, yj:j+n)) (2.3)

To gain intuition for the behavior of this kernel, take γ to be a large value. It follows
that exp(−γH2(xi:i+n, yj:j+n)) ≈ 1[xi:i+n = yj:j+n].

This combinatorial reformulation results in the following well studied Spectrum Kernel
(Definition 1).
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Algorithm 1 Convolutional Kitchen Sink for sequences

Input xi . . . xN ∈ Rd (input sequences), γ (width of kernel), n (convolution size), M
(the approximation dimension, number of kitchen sinks)

Output φ(xi) . . . φ(xN)

1: for j ∈ {0 . . .M} do
2: wj ∼ N (0, γIn) . Sample kitchen sink from gaussian
3: bj ∼ U(0, 2π) . Sample phase from uniform disk
4:

5: for i ∈ {0 . . . N} do
6: zij = wj ∗ xi . Convolve filter with input sequence
7:

8: cij = cos(zij + bj) . Add phase and compute element-wise cosine
9: . Note zij and cij are vectors in Rd−n+1

10:

11: φ(xi)j =
√

2
M

d−n∑
k=0

cijk . Average to get jth output feature value for sequence xi

12:

13: end for
14: end for

Other string kernel methods such as the mismatch [50] and gapped n-gram kernel [63]
allow for partial mismatches between n-grams. We note that decreasing γ in Equation 2.3 re-
laxes the penalty of n-gram mismatches between disappoints, thereby capturing the behavior
of the mismatch and gapped n-gram kernels [50, 63]. Note that Equation 2.3 is computation-
ally prohibitive, as it takes Ω(nd2) to compute each of the N2 entries in the kernel matrix.
Furthermore, the feature map induced by the kernel in Equation 2.3 is infinite dimensional,
so the kernel matrix is necessary.

Instead, we turn to a random approximation of Equation 2.3 (see Algorithm 1). Since
our kernel is a sum of nonlinear functions it suffices to define a feature map φ̂ on sequences
x and y that approximates each term in the sum from Equation 2.3:

exp(−γH(xi:i+n, yj:j+n)) ≈ φ̂(xi:i+n)T φ̂(yj:j+n) (2.4)

Claim 1 from Rahimi et al. [168] states that for j ∈ {0 . . .M − 1}, if we choose

φ̂(xi:i+n)j =
√

2
M

cos(wTj xi:i+n + bj), where wj ∼ N (0, γ), bj ∼ U(0, 2π), then φ̂(xi:i+n)

satisfies Equation 2.4. Note that to use Claim 1, we represent Hamming distance in Equa-
tion 2.3 as an L2 distance. We refer to each wj as a “random kitchen sink”. The result

in in Rahimi et al. [168] (Claim 1) gives strong guarantees that φ̂(x)T φ̂(y) concentrates
exponentially fast to Equation 2.3, which means we can set M , the number of kitchen sinks,
to be small.

Algorithm 1 details the kernel approximation. Note that in Algorithm 1, line 6 we reuse
wj across all xi:i+n in Equation 2.3 by a convolution. Algorithm 1 is a finite dimensional ap-
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proximation of the feature map induced by the kernel in Equation 2.3 directly, circumventing
the need for a kernel matrix. The computational complexity of Algorithm 1 is O(NMdn).

For the task of TF binding site prediction we set n = 8, similar to common parameter
configuration for DNA sequence [54, 5, 63].

2.2.1.1 CKS’s outperform standard CNNs designed to predict transcription
factor binding sites

We compare our CKS to DeepBind, a state-of-the-art CNN approach for predicting tran-
scription factor (TF) binding sites. We compare to DeepBind over other CNN methods
[240, 101] due to its primary attention to DNA sequence specificity and ability to identify
fine grained (101 bp) locations of binding affinity.

We train and evaluate on datasets preprocessed from the ENCODE consortium. Because
binding affinity is TF specific, we use separate train and evaluation sets for each TF.

We use the same training sets as DeepBind’s publicly available models. We then evaluate
on DeepBind’s test sets as well as a larger dataset processed directly from ENCODE.

DeepBind’s test sets consist of 1000 regions for each cell type over six TFs. Each set
consists of 500 positive sequences extracted from regions of high ChIP-seq signal and 500
synthetic negative sequences generated from dinucleotide shuffle of positive sequences [5].

The second test dataset consists of 100,000 regions extracted from ChIP-seq datasets
for TFs ATF2 and EGR1 across multiple cell types. Positive sequences are extracted from
regions of high ChIP-seq signal. Negative sequences are extracted from regions of low ChIP-
seq signal with exposed chromatin.

We compare DeepBind against CKS using area under the curve (AUC) of Receiver Op-
erating Characteristic (ROC). We choose AUC as a metric for binary classification due to
its ability to measure both TF binding site detection and false positive rates.

We detail our experimental results and compare to DeepBind’s pretrained models in
Table 2.1. We also show ROCs for ATF2 and EGR1 on both datasets in Figure 2.1.

Our AUC is competitive (within 0.01) or superior to that of DeepBind except for ATF2
on MCF7 cell type. Furthermore on five out of six large ENCODE test sets, our AUC is
strictly greater than DeepBind.

We measure DeepBind’s training time on TF EGR1, trained on K562 with 72, 996 train
sequences. DeepBind’s training procedure takes 6497 seconds to learn 2123 parameters. For
comparison, training time for CKS takes 712 seconds (Table 2.1) to learn 16,384 parameters,
which is approximately eight times faster than DeepBind’s runtime.

2.3 Generalizable models for prediction of epigenetic

events

So far, all methods that have been discussed are not able to predict epigenetic events in
a held out cellular context. This means that if we have available chromatin accessibility,
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or some other measurement, collected from a cellular context of interest, there is no way of
incorporating this information into the model to augment predictions based on the context in
question. In this section, we discuss a class of methods that can generalize to new cell contexts
by incorporating either chromatin accessibility, transcriptomics, histone modifications, or a
combination thereof to inform the model of context. We refer to these types of methods as
generalizable because they are able to train on a set of cellular contexts, then apply learned
rules to predict epigenetic events in cellular contexts not seen during training. In this section,
we introduce three groups of generalizable methods for predicting epigenetic signal. We then
introduce a novel hybrid method, Epitome, that outperforms state-of-the-art generalizable
methods for predicting TFBS and histone modifications.

The first group of generalizable methods is referred to as ’footprinters’. Footprinter meth-
ods are designed to predict epigenetic signal by utilizing available measurements of chromatin
accessibility from a cellular context of interest to predict epigenetic events which were not
measured experimentally [166, 96, 170, 19, 70, 31]. These methods use chromatin accessi-
bility in particular as an indication of context specificity due to its prevalence and ability to
capture nuanced variation in accessibility at the protein-DNA physical interface [220, 136].
This variation in accessibility at the protein-DNA interface forms patterns unique to TFs,
and are referred to as footprints. Footprints can be distinct for different TFs in considera-
tion, and can thus be used as features to predict TFBS [75]. These methods are considered
to be generalizable because they can train using chromatin accessibility from one cellular
context, and then can be applied to gather predictions in a held out context. Two subgroups
of footprinters exist, and are referred to as either de novo [19, 70, 31] or motif-centric [166,
170]. De novo footprinters learn general footprints common to all TFs from a chromatin
accessibility sample, then use motif databases to scan regions overlapping discovered foot-

Table 2.1: Comparison of ROC Area under Curve values (AUC) between DeepBind and
CKS tested on 500 bound regions from ENCODE and 500 synthetic unbound regions.

TF
Train
Cell Type

Test
Cell Type

Train
Size (MB)

Train
Time

DeepBind
AUC

CKS
AUC

ATF2 H1-hESC GM12878 10998 154s 0.72 0.77
ATF3 H1-hESC HepG2 8616 139s 0.94 0.95
ATF3 H1-hESC K562 8616 139s 0.83 0.84
CEBPB HeLa-S3 A549 121010 1620s 0.99 0.99
CEBPB HeLa-S3 K562 121010 1620s 0.99 0.98
EGR1 K562 GM12878 72996 772s 0.94 0.96
EGR1 K562 H1-hESC 72996 772s 0.87 0.92
EP300 HepG2 SK-N-SH 54828 519s 0.67 0.70
EP300 HepG2 K562 54828 519s 0.66 0.81
STAT5A GM12878 K562 13846 199s 0.65 0.79
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prints to identify which TFs bind. Motif-centric methods take a different approach by first
identifying a set of candidate motif regions for each TF in question, and then learn which
candidate sites overlap footprints [166]. One such example of this subgroup is DefCoM,
which is a footprinter that learns patterns of Tn5 cut sites overlapping known motifs. Re-
gardless of the subgroup, these footprinters are constrained to only identify potential TFBS
in regions overlapping motifs. However, it has been shown that TFs can bind in regions
not overlapping canonical motifs associated with the TF of interest [44]. We additionally
demonstrate this in Figure 2.2, which shows that the ratio of ChIP-seq peaks that do not
overlap any motif for a TF in question can range from 0.45 to 1.0 for 77 TFs and chromatin
modifiers evaluated from ENCODE [35].

Because limiting the prediction regime to sites that overlap motifs can eliminate many
TFBS, other methods have been designed to predict epigenetic events genome wide to elim-
inate this constraint. These methods augment the feature space to additionally incorpo-
rate DNA sequence information, RNA-sequencing information, or other epigenetic informa-
tion specific to the cellular context of interest [100, 77]. One example of such methods is
Catchitt [100], a co-winner of the ENCODE-DREAM TFBS prediction challenge [108], which
uses a combination of features including DNA sequence content, motif hits, expression levels
of transcription factors (from RNA-seq), and chromatin accessibility (DNase-seq) to predict
TFBS. Similar to DeFCoM, Catchitt considers accessibility data in a quantitative form, al-
beit at a default binned resolution of 50bp. It also uses a wider genomic context, taking up
to 2,000 bp around the candidate site of interest. Catchitt then models the joint distribution
of these various different features by a simple product of independent densities or discrete
distributions. Another method, called Anchor, a co-winner of the ENCODE-DREAM TFBS
prediction challenge, also uses a combination of DNA sequence, chromatin accessibility, and
motif information as features.

One common property of the methods designed to predict epigenetic signal in a new
cellular context discussed so far is that they learn a single model that is applied similarly to
all positions in the genome. In this position-agnostic approach, models are applied separately
for each candidate locus, using its local properties as features (such as the occurrence of DNA
binding motifs or the enzymatic cleavage patterns of chromatin accessibility). To ensure
accuracy and generalizability, these models are trained to identify local properties that are
commonly predictive in many different loci. The natural caveat in this approach is that
different loci may largely differ in terms of which specific features (or combination thereof)
are in fact predictive. For instance, a single TF can bind the genome while interacting with
different factors (i.e. by co- binding or tethered binding [152]), thus leading to different
footprints and, possibly, different DNA binding motifs [44, 152].

In order to solve this caveat of position-agnostic learning, a third group of methods,
referred to as imputation methods, directly uses epigenetic signal from known cellular con-
texts to predict in a new cellular context, instead of constructing complex features [186, 48,
45]. Novel imputation methods, such as Avocado [186] and PREDICTD [45], specifically
use tensor factorization, assuming a low rank representation of the feature space, and jointly
learn a model for all missing epigenetic signals [186, 45]. However, a caveat of joint learning
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of epigenetic signal in a single model is that objectives for each epigenetic signal can contra-
dict each other, and update model parameters at different rates [200]. These limitations of
joint learning can produce sub optimal predictions for epigenetic signal, compared to models
optimized for a particular epigenetic signal of interest.

2.3.1 Epitome: Predicting epigenetic events in novel cell types
with multi-cell deep ensemble learning

Considering the caveats of existing methods for predicting epigenetic signal, as discussed in
Section 2.3, we present Epitome [144]. This section is modified from Morrow et al. [144].
Epitome is a conceptually simple alternative for predicting epigenetic events, such as TF
binding and histone modifications. Similar to imputation methods, Epitome uses known
epigenetic signal from multiple known cell types to predict epigenetic signal in a held out
cellular context, bypassing the need to learn complex rules based on chromatin footprinting
and DNA sequence. However, Epitome differs from imputation methods in three ways.
First, Epitome approaches the problem of predicting epigenetic events as a classification
task, treating each epigenetic signal as a binary event. As we explain in Section 2.3.1.1,
this approach helps mitigate noise that arises from variation across different experiments,
antibodies, and protocols that may affect quantitative results. Secondly, imputation methods
such as Avocado [186] and PREDICTD [45] use a tensor factorization scheme, which assumes
that epigenetic signals can be largely explained through a low dimensional representation,
and looks for a single decomposition scheme for the entire tensor that couples all prediction
tasks. Epitome has the flexibility of treating each prediction task completely independently
from each other. As we show in Figure 2.3, Epitome performs better when considering
each epigenetic signal independently. Lastly, Epitome explicitly computes local similarities
between the reference cell types and the query cellular context, and uses these as features in
the model. This attribute helps the model explicitly learn the importance of experimental
data from reference cell types when predicting in the query cell type.

As input, Epitome requires chromatin accessibility in a query cellular context and a
set of reference cell types in which the epigenetic event of interest was assayed. Epitome
particularly requires chromatin accessibility as its primary indicator of cell type specificity
because it is normally easy to generate [24, 20] and is informative of epigenetic events [220]. It
then ”copies over” epigenetic events from the reference cell types to the query cellular context
in positions where their chromatin accessibility is similar. In this case, we define similarity
by comparing chromatin accessibility profiles in regions of different resolution surrounding
the genomic locus in question. This similarity, along with the manner by which evidence
across multiple reference cell types is aggregated, are learned using a neural network.

At the heart of our approach is the reliance on large amounts of publicly available data.
While it is the case that practically any given cellular context will have a uniquely character-
istic epigenome, there is a great deal of overlap between contexts. Consequently, epigenetic
events that are uniquely observed in one cellular context become less prevalent as the number
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of other cellular contexts that have measured epigenetic events become available. This phe-
nomenon is demonstrated in Figure 2.5, showing that for a given epigenetic event (binding
of a certain TF, or a certain histone modification) the prevalence of genomic sites that are
uniquely observed in only one cellular context in the ChIP-Atlas database [158] decreases
substantially with the number of cellular contexts in which this event has been assayed with
ChIP-seq. Particularly, we observe a mean level of coverage, or sensitivity, of over 90%
for widely-assayed TFs and histone modifications (measured in 26 or more cellular contexts
available in ChIP-Atlas). Looking ahead, we expect a continued increase in the size and
quality of data sets in the public domain, leading to further increase in coverage.

An important caveat of Epitome is that it will miss all sites that were not observed in any
other cellular context. In the following, we show that in practical application this is a rea-
sonable compromise. We compare Epitome to various methods that are designed to predict
histone modifications and protein binding sites in novel cellular contexts. These methods
include TF footprinting methods [166] and methods that use a combination of features con-
structed from chromatin accessibility, epigenetic signal, and DNA sequence [100, 108, 186].
Regardless of the choice of features used, Epitome achieves state-of-the-art accuracy when
predicting TF binding sites in held out cellular contexts and chromosomes. We additionally
demonstrate the deleterious effect of joint learning for multiple epigenetic signals and suggest
that Epitome, along with current imputation methods, may achieve optimal performance by
using a loss function dedicated to one epigenetic signal of interest. We additionally show how
Epitome can extend its definition of cell type similarity to incorporate commonly assayed
histone modifications, in additional to chromatin accessibility. We show that this extension
of similarity between reference cell types and the query cellular context can further improve
predictive performance.

2.3.1.1 Overview of Epitome

Epitome predicts the genomic locations of epigenetic events that can be measured through
ChIP-seq, including protein-DNA binding sites, histone modifications, chromatin modifier
binding sites, and locations of histone variants. Epitome can predict unmeasured epigenetic
events in any cellular context of interest, as long as genome-wide measurements of chromatin
accessibility in that context is available. This is shown in Figure 2.6, where chromatin
accessibility from a query cell type c′ is compared to chromatin accessibility from reference
cell types in order to predict epigenetic signal in c′. As input, Epitome requires peak called
DNase-seq or ATAC-seq in the form of bed or narrow peak file formats from the query
cellular context of interest, as well as a similar formatted file containing all genomic regions
to be queried. For training, Epitome additionally requires a set of cell types that have both
measured epigenetic signal for the epigenetic event of interest and chromatin accessibility.
We refer to these cell types with known epigenetic signal and available chromatin accessibility
as reference cell types. Because of the abundance of DNase-seq available in ENCODE [220],
Epitome uses DNase-seq as the primary measure of chromatin accessibility for model training.
However, Epitome can make predictions in a query cellular context using other assays that
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measure chromatin accessibility, such as ATAC-seq (see Figure 2.7). We leverage chromatin
accessibility from all reference cell types to compute an explicit metric of similarity between
reference cell types and the query cellular context. This metric is referred to as the chromatin
accessibility similarity vector (CASV), and compares the similarity between reference cell
types and a query by comparing the similarity of chromatin accessibility at multiple windows
of resolution surrounding a genomic locus of interest (See Methods 2.3.1.2). The CASV,
along with binary epigenetic events from reference cell types, are used as features in a neural
network, which uses the CASV to weigh the importance of each reference cell type for
predicting epigenetic events in the query. Final predictions are the probabilities of observing
each epigenetic event in question.

The set of candidate positions on which Epitome is applied consists of all loci in which
the epigenetic event of interest has been observed in at least one of the reference cell types.
This set of candidates is determined by unifying all the observed peaks from reference cell
types. One important observation is that Epitome simplifies the input epigenetic data as
binary, and the features it uses represent the presence or absence of ”peaks” (or a signal).
While this can lead to loss of information, it helps mitigate bias and noise arising from
variations in sequencing depth, quality of antibodies and other technical factors that may
affect the data quantitatively [185]. This strategy also facilitates the use of multiple types
of epigenetic events as features (in addition to the mandatory accessibility data) without
the need for calibration of their dynamic range or other quantitative attributes. Specifically,
if a query cellular context has available measurements of certain histone modifications in
addition to chromatin accessibility, these can be used to better evaluate similarity to the
reference cell types and thus guide the prediction process (by extending the definition of
CASV; see Figures 2.8(d) and 2.8(e)).

Underlying Epitome is a feed forward neural network (NN). Epitome’s underlying NN
can be written as P (y|x,w). For the problem of predicting the presence of ChIP-seq peaks,
y ∈ [0, 1] is a set of classes, where each class is a ChIP-seq target predicted by Epitome. The
values of y indicate the presence (1) or absence (0) of a ChIP-seq peak in a given 200bp region
in the genome. w are a set of parameters learned by the Epitome model. x represents a set
of features used to train an Epitome model. Features x contain ChIP-seq peaks from well
characterized ENCODE cell types, as well as a measure of chromatin accessibility similarity
between ENCODE cell types and query cellular context q. These features x are explained in
greater detail in Sections 2.3.1.3 and 2.3.1.2. Figure 2.6 represents a schematic of Epitome.
This figure visualizes how Epitome computes the similarity of chromatin accessibility between
ENCODE cell types and q and uses this similarity as input into the model, along with
binarized ChIP-seq peaks from ENCODE cell types, to predict peak probabilities for ChIP-
seq targets in q. Model output are the probabilities of observing a peak for each ChIP-seq
target being predicted in q at a 200bp genomic region i. Epitome can predict individual
or multiple ChIP-seq targets in a single model, depending on which ChIP-seq targets and
cell types are selected to train the model. We model the loss as the sigmoid cross entropy
between the model’s prediction of ChIP-seq targets ŷ and the ground truth labels y. Cross
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entropy loss is defined in defined in Equation 2.5.

loss = max(ŷ, 0)− ŷ ∗ y + log(1 + e−|ŷ|) (2.5)

We parameterize the model, P (y|x,w), by constructing cell type specific channels for each
reference cell type used in training. Cell type specific channels are visualized in Figure 2.6
and explained in Section 2.3.1.3.

2.3.1.2 Measuring cell type similarity with the Chromatin Accessibility
Similarity Vector (CASV)

As previously mentioned, Epitome uses a metric of cell type similarity to weigh the impor-
tance of reference cell types when predicting epigenetic signal in a query cellular context.
This metric is referred to as the chromatin accessibility similarity vector (CASV). Figure 2.6
visualizes how the CASV is calculated between a query cellular context q and a reference
cell type k at a 200bp genomic region i. The CASV compares the agreement of binarized
accessibility peaks between q and k at varying genomic windows up to 12kbp surrounding
i. Epitome uses the CASV to determine how similar q is to all reference cell types. This
similarity is leveraged to determine the relative importance of each reference cell types in
predicting ChIP-seq peaks for q. Without the CASV, Epitome is not able to provide cell
type specific predictions for q, as shown in Figure 2.8(a).

We formally define the CASV in Equation 2.9. ak and aq indicate binarized chromatin
accessibility peaks for cell types k and q binned in 200bp bins across the genome, where aki ∈
[0, 1] represents the presence (1) or absence (0) of a peak in bin i. The CASV calculates the
fraction that ak and aq have shared chromatin accessibility peaks in region i. It also calculates
the fraction that ak and aq have shared chromatin accessibility peaks in larger genomic
windows surrounding region i. We consider exclusive 200bp genomic windows surrounding
i in windows R = {rz; 0 ≤ z ≤ 3}. We set |r0| = 1, |r1| = 5, |r2| = 19, and |r3| = 59,
representing the number of 200bp bins considered in each window surrounding i. We first
compute CASVn, a vector of fractions of how many bins ak and aq agree for each window
rz ∈ R surrounding region i, relative to the size of each window. Here, agreement criteria
is met if both q and k have a peak or do not have a peak. Each window r is computed
exclusively from smaller windows to avoid redundancy:

CASVn(i, aq, ak) =
[
1[aki = aqi ]

r0
,

∑
g∈r1,g /∈r0 1[akg = aqg]

|r1| − |r0|
, (2.6)∑

g∈r2,g /∈r1 1[akg = aqg]

|r2| − |r1|
,

∑
g∈r3,g /∈r2 1[akg = aqg]

|r3| − |r2|

]
(2.7)

Because chromatin accessibility peaks are sparse across the genome for most cell types,
regions where both q and k have a chromatin accessibility peak are rare. Therefore, high
values of CASVn mostly represent regions of the genome where aq and ak do not have peaks.
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However, to gain a complete understanding of cell type similarity, we must also know where
aq and ak are both accessible. We encapsulate shared accessibility in CASVp. This metric
indicates shared regulatory regions between cell types [29].

CASVp(i, a
q, ak) =

[aki · aqi
|r0|

,

∑
g∈r1,g /∈r0 a

k
g · aqg

|r1| − |r0|
,

∑
g∈r2,g /∈r1 a

k
g · aqg

|r1| − |r1|
,

∑
g∈r3,g /∈r2 a

k
g · aqg

|r3| − |r2|

]
(2.8)

The final CASV for a region i is a concatenation of the agreement and positive CASV
vectors:

CASV (i, aq, ak) = [CASVp(i, a
q, ak)||CASVn(i, aq, ak)] (2.9)

CASV (i, aq, ak) are used as features in the Epitome model, described in Equation 2.10.
The final CASV comparing similarity between two cell types is a vector of length 8. Using
the CASV, Epitome is thus able to learn different weights corresponding to elements in the
CASV, and can thus determine the relative importance of chromatin accessibility similarity
at varying distances from the genomic region of interest for each reference cell type.

In practice, Epitome uses binarized peaks called from DNase-seq to calculate the CASV
during model training. However, ATAC-seq can also be used to compute the CASV. In the
case of model training, the CASV measures similarity of binarized DNase-seq peaks between
a held out cell type k′ and each training cell type k ∈ C, k 6= k′, where C is the set of
reference cell types in which the epigenetic event of interest has been measured. In the case
of evaluating a query cellular context q, the CASV measures either binarized DNase-seq or
ATAC-seq peak similarity between q and each reference cell type k ∈ C.

2.3.1.3 Constructing features from ENCODE cell types

Epitome trains on multiple reference cell types in a single model. These reference cell types
are primarily taken from ENCODE. This allows Epitome to jointly learn from multiple cell
types, without biasing models to overfit to a single training cell type. Therefore, features
x for training a model contain cell type specific features for each cell type k ∈ C that is
selected for training. Here, we notate the number of cell types used to train a model as n,
which is equivalent to |C|. Epitome can train on 2 to 93 ENCODE cell types in a single
model. Because each reference cell type is uniquely characterized with different ChIP-seq
targets, not all cell types can be utilized by Epitome to predict binding for a ChIP-seq target
of interest. Therefore, the cell types chosen to train a model is determined by the number
of cell types that have available ChIP-seq experiments for the ChIP-seq targets of interest.
Figure 2.6 demonstrates an example schematic of an Epitome model in which three reference
cell types are used for training a model that predicts an epigenetic event for a single ChIP-seq
target.

The set of cell type specific features xk for a cell type k selected for training is written in
Equation 2.10. In Equation 2.10, F k

i represents binarized ChIP-seq peaks in a 200bp region
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i for the set of all ChIP-seq experiments that are available from cell type k. CASV (i, aq, ak)
is the chromatin accessibility similarity vector (CASV, see Section 2.3.1.2), and measures
the similarity between chromatin accessibility in the query cell type, aq, and the chromatin
accessibility in the training cell type, ak, at region i. || represents concatenation.

xki = [F k
i ||CASV (i, aq, ak)] (2.10)

Finally, xki is input into a cell type specific channel with two densely-connected layers.
The input dimension for each cell type channel is the number of ChIP-seq targets included
in the model and available in k, plus the dimension of the CASV(See Equation 2.9). This
dimension can range from 9 (1 ChIP-seq target + 8 dimensional CASV) to 258 (the maximum
number of ChIP-seq targets in a dataset + 8 dimensional CASV). The dimension of the first
layer is the input dimension divided by 2. The dimension of the second layer is the input
dimension divided by 4. Each layer uses a hyperbolic tangent activation function. The
output of the last layer from each cell type channel is combined into a final output layer that
applies a sigmoid non-linearity to gather final predictions ŷ.

2.3.1.4 Training an Epitome model

Epitome trains a model on n ENCODE cell types by using n − 1 cell types for features x
(defined in Equation 2.10) and a held out cell type as labels y. Epitome can train using
up to 93 cell types in a single model, depending on the data availability of cell types for
the ChIP-seq target being evaluated. Training on multiple cell types allows Epitome to
generalize well to new cell types, and allows Epitome to perform comparably to methods
that see the cell type being evaluated during training. To make full use of publicly available
ChIP-seq experiments and effectively generalize to new cell types, Epitome uses a cell type
rotation mechanism for training. This mechanism rotates through which cell type is used
for y, and uses the remaining cell types to construct x. This rotation mechanism is repeated
for all regions of the genome, excluding validation and testing regions, until the method
converges. Algorithm 2 demonstrates how Epitome iterates through all training regions and
all ENCODE cell types to update model parameters, using a different training cell type
for y in each iteration. We determine convergence of Epitome by defining an early stopping
criterion described in Morrow et al. [144] that determines when to stop training. This criteria
halts training of models when validation loss no longer sees improvement.

Note that when a given cell type is used for labels y during training, its cell type specific
features are still included in x through its respective cell type specific channel. Although
this allows the model to see the labels during training, it also allows the model to learn the
importance of cell type similarity in predicting ChIP-seq peaks. In this case, the model will
compute identity cell type similarity between the cell type used for y and its features in x.
This high similarity ultimately teaches the model to up-weight features from cell types that
are similar to the cell type being predicted.
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Algorithm 2 Epitome Rotation through cell types for model training

Require: C (set of training cell types)
Require: R (genomic regions selected for training)

1: for i in R do
2: for k in C do
3: xi ← xji∀j ∈ C, j . xji are cell type specific features as defined in Equation 2.10
4: yki ← ChIP-seq peaks for cell type k in region i
5: loss = calculateLoss(xi, y

k
i )

6: updateGradients(loss)

7: if model has converged then
8: exit
9: end if
10: end for
11: end for

2.3.1.5 Sampling underrepresented ChIP-seq targets

When training a model for multi-label classification, imbalance across labels in the training
data can result in a model that is biased towards learning over-represented labels. This
problem is known as imbalanced learning. Imbalanced learning is present in models that
predict peaks for multiple ChIP-seq targets because the quantity of peaks across the genome
for different ChIP-seq targets is highly variable. As a solution to the problem of imbalanced
learning when predicting ChIP-seq peaks, we over-sample underrepresented ChIP-seq targets
to create a dataset with similar distributions of peaks for each ChIP-seq target in a multi-
label model. This allows the model to see similar counts of positive instances for each
ChIP-seq target during training.

To effectively over-sample underrepresented ChIP-seq targets, we borrow key insights
from existing literature [28] which calculates an imbalance ratio, IRLbl, for each label to
determine which labels need to be over-sampled. IRLbl measures how imbalanced a given
label in a dataset is, relative to the other labels. Higher values of IRLbl indicate that a
given label is more imbalanced, and thus needs to be over-sampled. IRLbl is defined in
Equation 2.11. In this equation, D = (xi, yi) represents the multi-label dataset, L represents
the set of labels (or ChIP-seq targets), and yi represents labels for the ith instance of dataset
D.

IRLbl(l) =
argmax

L|L|
l′=L1

(∑|D|
i=1 h(l′, yi)

)
∑|D|

i=1 h(l, yi)
, h(l, yi) =

{
1 l ∈ yi
0 l /∈ yi

(2.11)

For each label l, IRLbl(l) can then be compared to the mean imbalance ratio, meanIR,
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for all labels l ∈ L. For each label l, if IRLbl(l) is greater than the meanIR, we re-sample
kl regions in the genome that have a ChIP-seq peak for l. Here, we set kl to be:

kl = 10
IRLbl(l)

meanIR
∗
|D|∑
i=1

h(l, yi) (2.12)

The final set of training instances includes all original instances in D, as well as instances
oversampled for all labels l ∈ L with IRLbl(l) > meanIR.

In the case where Epitome is only trained on one ChIP-seq target, multi-label sampling is
not required. In this case, we undersample non-peak instances for the single ChIP-seq target
so that there are 10 times more non-peak instances, compared to the number of positive
peak instances.

2.3.1.6 Epitome achieves state-of-the-art accuracy for prediction of TFBS

To evaluate Epitome, we compared to four state-of-the-art methods that predict transcrip-
tion factor binding sites, where each method is a best-in-class representative of methods
designed to predict TFBS. For each TF and each method, we evaluated the ability to pre-
dict the binding landscape in a held-out cellular context given information from other cellular
contexts that were used for training. The first benchmark method, DeFCoM [166] represents
the class of footprinting methods, which use enzymatic cleavage patterns of DNase 1 or Tn5
transposase as features to predict TFBS. Because DeFCoM and other footprinting methods
are motif centric, they are only designed to predict binding in regions centered around mo-
tifs. We therefore compared Epitome and DeFCoM by evaluating the ability of each method
to predict TFBS overlapping motifs for 77 TFs and chromatin modifiers across 40 cell lines,
primary cells, and tissues. Figure 2.9(b) shows scatter plots of performance for both Epit-
ome and DeFCoM in regions overlapping motifs, where we compare the area under the
precision recall curve (auPRC) and partial area under the receiver operating characteristic
curve (pAUC) (5% FPR). We note that while the former measure accounts for all candidate
binding sites, the latter measure is meant to highlight the accuracy of top predictions [128].
On average, both methods perform comparably under both metrics, even though Epitome is
not isolated to training in motif regions. Additionally, out of the 280 comparisons, Epitome
ranks number one for 202 and 199 experiments for auPRC and pAUC, respectively, while
DeFCoM ranks number one for only 78 and 76 experiments for auPRC and pAUC, respec-
tively (there were 5 ties for pAUC between methods). These results suggest that Epitome
can perform better than motif centric footprinting methods that use explicit knowledge of
both motif location and cleavage patterns to predict TFBS.

Although many footprinting methods are constrained to only predict in regions overlap-
ping motifs, TFs can bind in regions not overlapping canonical motifs associated with the TF
of interest [44]. This is demonstrated in Figure 2.2, which shows that the ratio of ChIP-seq
peaks that do not overlap any motif for a TF in question can range from 0.45 to 1.0 for the
77 TFs and chromatin modifiers we evaluated. Because limiting the prediction regime to
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sites that overlap motifs can eliminate many TFBS, Epitome and other methods have been
designed to predict epigenetic events genome wide to eliminate this constraint. One example
of such methods is Catchitt [100], a co-winner of the ENCODE-DREAM TFBS prediction
challenge [108], which uses a combination of features including DNA sequence content, motif
hits, expression levels of transcription factors (from RNA-seq), and chromatin accessibil-
ity (DNase-seq) to predict TFBS. Similar to DeFCoM, Catchitt considers accessibility data
in a quantitative form, albeit at a default binned resolution of 50bp. It also uses a wider
genomic context, taking up to 2,000 bp around the candidate site of interest. Addition-
ally, Avocado [186] represents a class of imputation methods, designed to impute missing
signal for cell types and assays that have not been measured experimentally. To compare
to these methods, we first evaluated chromosome wide predictions of Epitome, Avocado,
and Catchitt, on all 77 TFs and chromatin modifiers across 40 cell lines, primary cells, and
tissues on held out chromosomes 8 and 9 in Figure 2.9(a), for a total of 264 comparisons.
Here, we consider two versions of Epitome: single, which trains an individual model for
each TF, and joint, which trains a single model to predict all TFs. These models are sep-
arately considered because Catchitt uses a single prediction approach, while Avocado uses
a joint approach. Figure 2.9(a) shows that of the four methods, Epitome models trained
individually for each TF perform the best for a majority of the 264 experiments. While joint
Epitome models perform similarly in terms of pAUC and better for many instances in terms
of auPRC compared to single Catchitt models (Figure 2.3(a)), Avocado performs poorest on
these metrics (Figure 2.9(a)). Figure 2.3(b) additionally shows that for many cases, single
Epitome models perform better than jointly trained Epitome models. It is unsurprising to
note that single models often perform better than joint models. In these cases, learning
objectives for different TFs can have complex or competing dynamics [200]. As shown in
Figure 2.4, different ChIP-seq targets trained in a joint model converge at different iterations
during training. This difference in convergence across targets can result in variance in the
level of fit for each ChIP-seq target. Regardless, we find that overall performance of both
joint and single Epitome models is higher than the other two methods in the majority of the
264 experiments, based on both auPRC and pAUC metrics (Figure 2.9(a)).

We also consider a different group of methods that use NN architectures to predict TFBS
from DNA sequence, but are not able predict on new cell types. This includes DeepSEA [240],
which uses a convolutional neural network to learn the mapping from DNA sequence to
TFBS. Surprisingly, we find that the accuracy of Epitome compares similarly or better to
these types of models, which use all the data during training (i.e., not leaving out one
of the cell line as query). This class of methods use DNA sequence alone as features to
predict binding of transcription factors. While the goal of DeepSEA is to predict the effect
of sequence mutations on the epigenetic events it is trained with (rather than predicting
events in unobserved cellular contexts), the fact that it sees all data during training provides
a conceptual upper bound for accuracy. To compare to DNA sequence based methods, we
compared the performance of a set of 17 TFs which were assayed by the ENCODE consortium
in four cell lines that were available in DeepSEA models, resulting in 68 comparisons. All
data used is from ENCODE, and was aligned to the hg19 genome. Figure 2.10 shows that
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even though DeepSEA trains using a given test cell line and Epitome does not, Epitome
performs comparably to DeepSEA in both pAUC and auPRC. These results demonstrate
that Epitome can effectively generalize to unseen cellular contexts.

2.3.1.7 Epitome places an upper bound on maximum achievable sensitivity

Because Epitome constructs features using binarized epigenetic events in reference cell types,
models are a-priori limited to predict epigenetic events in regions in which the epigenetic
event in question has been observed in a previous experiment. Although this limitation
could be alleviated by using genome-wide continuous signal, which is available in all genomic
regions, we explain in Section 2.3.1.1 our explicit choice to use binary epigenetic signal to
reduce noise. In Figure 2.5, we calculated the fraction of unique peaks observed a held out cell
type for all ChIP-seq targets available in ChIP-Atlas [158] to determine an upper bound for
the sensitivity that could be achieved using Epitome, given this limitation. When more than
26 cell types are available for a given ChIP-seq target, we observe that sensitivity exceeds
90%, on average. Furthermore, we observe that the upper bound on sensitivity increases
quickly as the number of available reference cell types increases. While this approach places
a strict upper bound on the achievable sensitivity, in Figure 2.9 we demonstrate that this
strategy leads to a better overall balance between sensitivity and specificity, compared to
existing methods.

2.3.1.8 Models trained on multiple cell types similar to the query cell type
provide improved accuracy

Of the methods compared to in Section 2.3.1.6 that provide predictions of TFBS specific to
a cellular context of interest, none are designed to jointly train on multiple reference data
sets. This limitation bypasses the opportunity to jointly learn from multiple cell types and
can generate misguided predictions when the query context greatly differs from the cell types
selected for training. As previously mentioned, Figure 2.5 shows that as the number of cell
types available for a given epigenetic event measured with ChIP-seq increases, the fraction of
unique TF binding sites or histone modifications observed in a new cell type decreases. From
this trend, we conclude that as more cell types for a given event are used to train a model,
it is more likely that the model will have seen that event in the genomic location we are
trying to predict. We therefore sought to understand the effect of the quantity and choice of
reference cell types used for training Epitome on accuracy when predicting epigenetic signal
in a new cellular context.

To assess the effect of the number of cell types used during training on model performance,
we trained models for 82 different ChIP-seq targets, which included TFs, histones, and
histone modifications. For each ChIP-seq target, we considered a range of models trained
on different numbers of ENCODE cell types as references (ranging from 2 to n− 1 reference
cell types, where n is the number of cell types available for the respective ChIP-seq target).
Cell types used include cell lines, in-vitro differentiated cells, primary cells, and tissues from
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ENCODE [141]. For each ChIP-seq target and choice of cell type count used for training, we
trained four models with different combinations of training and validation cell types. Each
of these models were evaluated by predicting peaks across validation chromosome 7, which
was held out from training. This procedure resulted in training 4∗ (n−2) models for each of
the 82 ChIP-seq targets, where each model trained on a different number and combination
of reference cell types.

Figures 2.11(a) and 2.11(b) demonstrate the change in performance (auPRC) in predict-
ing TFBS with increasing numbers of reference data sets. Across the 59 TFs included in
this analysis, we observe an overall consistent increase in performance as one considers larger
numbers of reference cell types in which the TF in question was measured. While for most
TFs, the number of cell types for which information was available is limited (under thirteen),
the ENCODE collection includes over forty contexts for the CCCTC-Binding Factor CTCF.
Considering the performance of Epitome in predicting the binding positions of CTCF, we
observe that the value of adding more reference data sets starts to diminish at approximately
ten data sets, and that beyond this point the performance tends to saturate. Since a similar
level of saturation is not reached in the other TFs, these results may serve to provide intu-
ition for the number of cell types which may be required to achieve high accuracy in future
applications of Epitome.

Interestingly, when Epitome is applied to predict the positions of histones or histone
modifications, we observe a similar trend of improvement in performance, but only up to a
certain level. Similar to the TFBS prediction task, the performance of Epitome starts to
saturate when more than ten data sets are used as a reference. However, we also observe a
marked decrease in performance when the number of cell types that are used as reference
goes beyond twenty. Taken together, these results suggest an optimal regime for the number
of data sets to be used by Epitome as a reference. We note that this actual number can be
evaluated by cross-validation, a utility which will become crucial as the number and diversity
of ChIP-seq data sets increases.

2.3.1.9 Considering wide genomic contexts and multiple epigenetic signals to
compute cell type similarity improves the performance of Epitome

Epitome uses the chromatin accessibility similarity vector (CASV) to estimate the extent
to which a query cellular context is similar to the reference cell types at each candidate
locus. The CASV accounts for similarities at several scales, from a small window of 200bp
around the locus in question, up to a window of size 12kbp. We next explored whether
accounting for multiple levels of resolution aids in learning better decision rules. To this
end, we evaluated the performance of Epitome in predicting each of the 82 epigenetic events,
shown in Figure 2.11, while varying the size of the genomic context used for the CASV. We
considered five possible sizes of genomic context to be considered by the CASV, including 0bp
(the identity CASV), 200bp, 1,200bp, 4,000bp, and 12kbp. For each of the models trained in
Figure 2.11, we trained 4 additional models, each using a different genomic context ranging
from 0-12kbp. These models were similarly trained using different numbers of reference data
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sets ranging from 2 to 30 in size, based on the availability of data sets for a given ChIP-seq
target.

Figure 2.8(b) and 2.8(c) depict the overall change in pAUC and auPRC, respectively, as
larger genomic contexts are considered. The most basic models, which simply tally up the
number of observed peaks (i.e., do not account for accessibility data; ”identity CASV”) as a
decision rule perform the poorest, thus supporting the merit of using chromatin accessibility
data. Consistently, we observe slight increases in performance as the genomic context con-
sidered by the CASV increases. This observation is most easily observed in change in AUC
as wider genomic contexts are considered, shown in Figure 2.8(a). We find that while per-
formance increases with the presence of a wide genomic context for models that are trained
with less than 10 cell types, histone modifications in particular suffer from considering wide
genomic context when models are trained on more than 10 cell types. Figures 2.12(b) and
2.12(a) show that when histone modifications are trained on more than 10 cell types, perfor-
mance decreases as wider genomic contexts are considered. These observations agree with
trends seen in Figure 2.11(c), showing that performance of histone modifications does not
saturate, but degrades, with increasing information in models trained with more than 10 cell
types.

In all results shown thus far, Epitome only incorporates chromatin accessibility in the
CASV to compute similarity between a query cellular context and reference cell types used
for training. However, additional assays, such as ChIP-seq for histone modifications, are
often available in addition to chromatin accessibility, and could be used to compute a more
robust measure of similarity of a local chromatin environment. Histone modifications in par-
ticular provide valuable information to compute chromatin similarity, as it has been observed
that DNase-seq hypersensitivity sites that are common to many cell types are only weakly
correlated with certain histone marks [192]. In these cases, weakly correlated histone marks
can provide somewhat independent and potentially more specific information of similarity
in regions that already have similar chromatin accessibility. This is also a common use case
that a query cellular context has been partially characterized with multiple experiments,
including chromatin accessibility and various histone modifications (Figure 2.13).

To make use of all assays that may partially characterize a cellular context, we explored
whether extending the CASV to include histone modifications in addition to chromatin
accessibility could improve predictive accuracy of Epitome. To test this, we evaluated the
effect of incorporating various histone modifications in the CASV, and how this alteration
changed the auPRC performance for thirteen TFs, listed in Figure 2.8(d). These thirteen
TFs were selected in particular because they were available in the four reference cell lines that
had measurements for seven histone modifications, allowing us to extend the CASV to use
histone modifications from reference cell types. The seven histone modifications incorporated
into the CASV included H3K9ac, H3K4me3, H3K4me2, H3K4me1, H3K36me3, H3K27me3,
and H3K27ac.

Incorporating these seven histone modifications, as well as DNase-seq, in the CASV re-
sulted in 256 configurations of Epitome that used all possible combinations of the seven his-
tone modification and DNase-seq to compute the CASV. For each configuration, we trained
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four separate models using three reference cell lines each, and then evaluated each model on
a fourth held out cell line. Final auPRC performance for each configuration was calculated
across predictions for all four evaluated models.

Figure 2.8(d) shows the difference between auPRC performance of Epitome using a single
histone modification as well as DNase-seq in the CASV and auPRC performance using only
DNase-seq in the CASV. A majority of these thirteen TFs see minor improvement in auPRC
performance when including a histone modification, with the exception of YY1, TCF12, and
TBP. All histone modifications evaluated have some positive improvement in auPRC, with
the exception of H3K9me3. This observation is consistent with the association of H3K9me3
with the formation of transcriptionally silent heterochromatin.

We next sought to understand the relative contributions of DNase-seq and the seven
histone modifications in the CASV towards model performance for the 13 TFs evaluated in
Figure 2.8(d). We computed the Shapley value for each combination of experiments used
in the CASV for each of the 13 TFs. The Shapley value indicates the marginal contribu-
tion computed from all possible subsets [73]. These values ultimately can highlight which
experiments provide the maximal information for predicting TFBS, and which experiments
should be prioritized when partially characterizing a cellular context of interest. Shapley
values are shown in Figure 2.8(e) for each histone modification and DNase-seq, and their
effect on each of the 13 TFs evaluated. On average, repressive mark H3K9me3 gives the
least information when incorporated into the CASV, and in most cases, provides negative
contribution to auPRC performance. We hypothesized that H3K9me3 gave the least amount
of information because its correlation with TFs was low, providing the model with little to
no consensus information. To test this hypothesis, we computed the Jaccard index between
TFBS in each 200bp window for each TF in each training cell line and each peak indicating
a histone modification used in the CASV. Indeed, H3K9me3 had the smallest mean Jaccard
score across training cell lines (0.0008), compared to other histone modifications and DNase-
seq (0.04 mean). These results suggest that including histone modifications in the CASV
can improve predictive performance when it correlates with the epigenetic signal of interest.

2.3.1.10 Epitome recapitulates changes in H3K27ac over neural induction of
human pluripotent stem cells

We next evaluated Epitome’s ability to leverage changes in ATAC-seq to detect changes in
the acetylation of H3K27 (H3K27ac) over neural induction of human pluripotent stem cells
(hPSCs). This analysis can demonstrate how well Epitome is able to leverage changes in
chromatin accessibility from the same starting population to detect gradually accumulat-
ing H3K27ac marks. Temporal analysis of neural induction from hPSCs has shown that
changes in chromatin accessibility precede H3K27ac, a histone mark indicative of transcrip-
tionally active regions [83]. We therefore sought to use Epitome to predict H3K27ac in seven
timepoints of neural induction by using chromatin accessibility to compare timepoints to
reference cell types used to train a model.
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In previous analyses of neural induction, Inoue et al. collected H3K27ac and ATAC-seq
across seven time points of neural induction starting from hPSCs. Genomic regions that
were enriched for H3K27ac over timepoints were grouped into six clusters, each associated
with a different temporal pattern. These clusters identified H3K27ac peaks present in early
induction (clusters 1-3), mid induction (cluster 4), and late induction (clusters 5-6). To
determine whether Epitome could leverage ATAC-seq to identify changes in H3K27ac over
neural induction, we used ATAC-seq from each time point as input into the CASV to predict
H3K27ac peaks. Although the Epitome model primarily uses DNase-seq to compute the
CASV and train its models, we show in Figure 2.7 that Epitome can accurately predict
histone modifications and TFBS when using ATAC-seq during evaluation in the CASV when
Epitome has been trained using DNase-seq. For this reason, we hypothesized that Epitome
could provide sensitive predictions of H3K27ac by using the CASV to compare similarity
between DNase-seq in reference cell types and ATAC-seq from neural differentiation time
points. We trained an Epitome model to predict H3K27ac peaks using all ENCODE reference
cell types that had both H3K27ac and DNase-seq, resulting in 15 reference cell types.

Here, we compare Epitome to an additional benchmark method specifically designed to
predict histone modifications, called DeepHistone [233]. DeepHistone is a deep learning
method for predicting seven histone modifications, including H3K27ac, and uses DNA se-
quence and chromatin accessibility as features to provide predictions specific to a cellular
context. For further insight we also added a simple baseline predictor, which uses enrich-
ment signal from ATAC-seq peaks to directly indicate the signal of H3K27ac (i.e., predict
an H3K27ac peak whenever there is an ATAC-seq peak). We chose this baseline because
increased acetylation of H3K27 is often observed in accessible regions, and in neural induc-
tion it was often observed to be preceded by opening of the chromatin [83]. Figure 2.14(a)
shows the ROC and PR curves for H3K27ac peaks across seven time points in 39,000 regions
for the three comparative methods. All autosomal regions that had an H3K27ac peak in at
least one of the seven timepoints were considered. For all time points, Epitome performs
significantly better than the baseline predictor as well as DeepHistone, with a gain of mean
auPRC of 0.09 and 0.21, over the baseline ATAC-seq predictor and DeepHistone, respec-
tively. This boost in performance seen by Epitome suggests that using known H3K27ac
peaks from ENCODE cell types, along with the CASV to inform the model of similarity
between ENCODE cell types and differentiated hPSCs, improves predictive performance of
H3K27ac predictions over baseline predictors that do not use signal from the epigenetic event
of interest as features.

Although Epitome can predict H3K27ac peaks better than baseline predictors and ex-
isting models, ROC and PR curves could not illuminate whether Epitome could identify
H3K27ac peaks that were unique to each time points. We therefore sought to show that
Epitome can leverage changes in chromatin accessibility over time to detect time point spe-
cific H3K27ac peaks. Figure 2.14(b) demonstrates the mean predictions of Epitome (top)
and the normalized H3K27ac read counts (bottom) in six H3K27ac clusters indicating key
H3K27ac peaks of early, mid, and late induction across 2,400 genomic regions. These six
clusters were defined by Inoue et al. [83]. Epitome predictions show that at 48hr and 72hr,
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there is an increase in H3K27ac in clusters 5 and 6. Additionally, clusters 2, 3, and 4 have
increased H3K27ac between time points 3hr to 24hr, and decrease at 72hr. These broad
trends of increased H3K27ac in late induction clusters 5 and 6 and in early to mid induction
clusters 2-4 agree with H3K27ac normalized read counts shown in the bottom heatmap.

In this analysis, Epitome leverages ATAC-seq to predict time point specific H3K27ac.
This means that for a given region of the genome, Epitome will predict the same probabilities
for H3K27ac for all samples, unless ATAC-seq signal varies across samples in or around a
given region of interest. Because of this, we would expect Epitome to provide sensitive
results when predicting H3K27ac in regions with differential ATAC-seq between time points.
To assess this hypothesis, we evaluated Epitome H3K27ac predictions at 0hr and 72hr,
and separated predicted regions into three groups: regions accessible in all time points,
regions only accessible in either 0hr or 72hr, and regions not accessible in either 0hr or 72hr.
Figure 2.14(c) shows the CDFs of Epitome H3K27ac predictions at 0hr and 72hr across
these three groups. At both the 0hr and 72hr time points, Epitome predictions are higher
in accessible regions, compared to inaccessible regions. These results suggest that Epitome
is effectively leveraging accessibility to predict H3K27ac. We note that for both the 0hr and
72hr predictions, Epitome is able to easily detect H3K27ac in shared accessible regions of
the genome, compared to regions of the genome that have differential accessibility in either
the 0hr or 72hr time points. In regions of differential accessibility, Epitome predictions are
lower than those found in regions of shared chromatin accessibility. This is most likely an
artifact of decreased availability of evidence for H3K27ac in the training cell types in regions
that have differential accessibility. In regions of shared accessibility, training cell types have
H3K27ac marks in a median of 8 out of 13 cell types, compared to peak regions unique
to either 0hr or 72hr time points, which have H3K27ac marks in a median of 2 out of 13
cell types. Thus, commonly accessible regions have greater evidence of H3K27ac marks in
training cell types, and are predicted with greater confidence.

Although Epitome can predict H3K27ac marks better than existing methods, Epitome
still incorrectly identifies a subset of peaks as false negatives, and a subset of non-peak
regions as false positives. Figure 2.14(d) and Figure 2.15(a) show Epitome predictions for
H3K27ac at 72hr in peak and non-peak regions respectively. Figure 2.14(d) demonstrates
that while a majority of H3K27ac marks are correctly identified, there is a small subset of
peaks that are incorrectly identified as false negatives. Additionally, many of the non-peak
regions are identified as peaks. Because of this trend, we sought to identify the source of the
false positives and negatives within the context of the reference cell types used for training.
Figure 2.14(d) shows reference data sets used as input in the Epitome model for predicting
H3K27ac marks in peak regions at 72hr. Epitome’s true positives are shown towards the
bottom of the heatmap, while false negatives are displayed at the top. This plot shows
that true positives have ATAC-seq accessibility at the 72hr time point, as well as supporting
H3K27ac peaks from the reference cell types used for training. False negatives generally have
less ATAC-seq accessibility at 72hr, and less H3K27ac peaks from the reference cell types.
These results demonstrate that false negatives were generated from regions that had little to
no accessibility at the 72hr timepoint, as well as little support for H3K27ac in reference cell
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types. This trend is similarly shown in the predictions of non-peak regions at 72hr, shown in
Figure 2.15(b), where false positives, shown towards the bottom of the heatmap, have more
accessibility at 72hr and representation of H3K27ac peaks in the reference cell types than
peaks correctly identified as true negatives. These results show that false positives and false
negatives result from unexpected patterns in chromatin accessibility and H3K27ac in both
the query cellular context and reference data sets.

2.3.2 scEpitome: Predicting epigenetic events, one cell at a time

As discussed in Section 2.3.1, Epitome is a method that can leverage chromatin accessibility
from DNase-seq or ATAC-seq to predict epigenetic events in novel cellular contexts. How-
ever, DNase-seq and ATAC-seq only provide us with an ”average” of chromatin accessibility,
as each sample is prepared and sequenced from hundreds of thousands of cells. Recent ad-
vances, such as single-cell assay for transposase-accessible chromatin (scATAC-seq), are able
to capture variation in chromatin accessibility at single cell resolution. Similar to ATAC-seq,
scATAC-seq uses Tn5 transposase to tag regulatory regions of the genome. However, unlike
ATAC-seq, scATAC-seq uses cell-identifying barcoded primers to track and identify variabil-
ity of accessibility between single cells [26, 38]. scATAC-seq allows us to answer many ques-
tions that were previously impossible using bulk measurements of chromatin accessibility,
including the ability to characterize heterogeneity of chromatin accessibility in tumor sam-
ples [111], identify markers of sub populations of cell types within larger samples [179], and
determine the effect of knocking out components crucial to biological pathways on variabil-
ity of accessibility within a sample [47]. In this section, we discuss an extension of Epitome
(Section 2.3.1), called scEpitome, that predicts TFBS at single cell resolution by leverag-
ing scATAC-seq. We compare scEpitome to state-of-the-art methods that predict changes
in regulatory activity at single cell resolution, and demonstrate that Epitome achieves bet-
ter sensitivity and precision when using bulk ChIP-seq data as ground truth. This section
consists of unpublished work.

In the advent of scATAC-seq, numerous methods have been developed to interpret the
regulatory effect of changes in chromatin accessibility at single cell resolution. One such
example is chromVAR, which was primarily designed to estimate deviations in the acces-
sibility of TF motifs between single cells. chromVAR estimates changes in accessibility of
peak regions called from scATAC-seq that overlap motifs of interest [181]. chromVAR cor-
rects for GC content and mean accessibility within a dataset by correcting for background
motif overlap to provide bias corrected deviation scores for each motif and cell of interest.
However, chromVAR primarily uses motif information to approximate the activity of TFBS
at single cell resolution. As discussed in Section 2.3.1 and demonstrated in Figure 2.2, TFs
can bind in regions not overlapping canonical motifs [44]. This implies that methods using
motifs as an indicator of TFBS may be overlooking binding sites with non-canonical motifs.

To improve on existing approaches and eliminate drawbacks of motif-centric approaches
that annotate changes in chromatin accessibility from scATAC-seq datasets, we propose a
modification of Epitome [144] that supports prediction of TFBS by leveraging scATAC-seq
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datasets. As input, scEpitome takes in adjusted read counts overlapping each called peak
region for each single cell. Ideally, these read counts would be taken directly from aligned
reads from the scATAC-seq dataset of interest. However, various factors, such as low sensi-
tivity, batch effects, and variation in sequencing coverage, make direct counting of reads from
scATAC-seq in downstream analysis pipelines challenging. Therefore, we leverage PeakVI [8],
which estimates the probability of each peak being accessible in each cell, and takes into ac-
count technical factors that would affect the probability of accessibility. Probabilities from
PeakVI for each peak and cell are used as input into scEpitome. Ideally, we would compare
single cell accessibility to a reference set of single cells and incorporate this information into
the CASV 2.3.1.2 to gather measures of similarity between cells in our dataset and cells in
the reference. However, there is currently no reference scATAC-seq datasets with matching
experimental information of TF binding at single cell resolution. Therefore, similar to Epit-
ome, we compare PeakVI probabilities of accessibility for each peak and cell in question to
bulk DNase-seq data from well annotated reference cell types. This similarity is incorpo-
rated into the CASV (See 2.3.1.2) to determine the level of similarity between each single
cell and each bulk reference cell type. Similar to Epitome, scEpitome uses the CASV to
compute cell type similarity between accessibility of single cells and available reference cell
types. However, unlike Epitome, which was designed for consumption of bulk ATAC-seq
and DNase-seq, scEpitome uses probabilities of peak accessibility, instead of binary peak
values. Therefore, we modify the CASV to work for continuous values of accessibility, rather
than binary peaks. To do so, we modify Equation 2.9 by eliminating CASVN (Equation 2.7)
from the CASV, as it assumes exact similarity between binary peaks. Thus, when leveraging
scEpitome to predict TFBS from scATAC-seq, we only compare the probability of peaks in
single cells to the presence of peaks in reference cell types (Equation 2.8).

To evaluate the ability of scEpitome to predict TFBS at single cell resolution, we evaluate
a scATAC-seq dataset consisting of 63,882 peripheral blood mononuclear cells (PBMC) and
bone marrow single cells published from Satpathy et. al. [179]. Figure 2.16(a) visualizes
latent representations, produced from PeakVI, of all single cells. Cells are colored by pop-
ulation, as identified by magnetic-activated cell sorting (MACS) or FACS [179]. Posteriors
for each peak and cell, generated from the latent representation in Figure 2.16(a), were used
as input into Epitome as an indicator of accessibility at single-cell resolution.

Although single-cell chromatin immunoprecipitation followed by sequencing (scChIP-seq)
has been previously measured [68], there are currently no matched scChIP-seq and scATAC-
seq datasets available. Thus, we are unable to leverage scChIP-seq as ground-truth to
evaluate prediction of TFBS in scATAC-seq datasets. We therefore used bulk ChIP-seq data
from ChIP-Atlas [158] to verify predictions of TFBS in sorted populations. We predicted
binding sites for 17 TFs that had available bulk ChIP-seq data in ChIP-Atlas in a subset
of cell types identified by FACS. This included analysis of the following TFs: YY1, STAT3,
SPI1, REST, RELA, NR3C1, NFKB1, NFE2, MEF2B, JUNB, FOXP1, FOSL1, FOS, ETS1,
EGR1, CTCF, and CEBPB. For these TFs, ChIP-Atlas had bulk ChIP-seq data for six cell
types identified through FACS, including: monocytes, dendritic cells, hematopoietic stem
cells (HSC), B cells, PBMCs, CD34 progenitors, and näıve CD4(+) T cells. To gather
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predictions of TFBS across these six cell types, we averaged posteriors of accessibility across
all single cells annotated within the cell type in question. These averages gave us the expected
accessibility for each peak in a given cell type. These expected values were used as input
into Epitome to gather predictions of TFBS.

To evaluate scEpitome’s ability to predict TFBS in single cells, we compared to two
alternative approaches for prediction of TFBS. chromVAR directly computes motif scores
for each single cell by computing a deviation score for each motif and cell of interest, instead
of providing region-specific predictions for each motif. Therefore, we were unable to directly
use chromVAR to predict TFBS at peak resolution. Instead, we leveraged chromVAR’s
method of correcting fragment counts with a background. Here, chromVAR calculates a
background for each peak, based on GC content and average accessibility in a dataset.
chromVAR calculates this background by sampling background peaks similar in GC content
and average accessibility to each peak in the dataset, sampling from a normal distribution
∼ N (0, 0.1). We use this sampling strategy to select background peaks for each peak in
our dataset. We gather corrected fragment counts by subtracting fragments in each sampled
background region from each peak in the dataset. To gather predictions of TFBS, for each
population, we calculate the expected fragment counts for each peak in each of the six
validation cell types. We then mask each region by the presence or absence of a motif for the
TF of interest, giving us peak signal in all regions overlapping a motif. Motifs were taken
from the JASPAR database [55].

We also compare to a baseline method that directly uses PeakVI posteriors to gather
predictions of TFBS, instead of background corrected fragment counts, as used in chrom-
VAR. To gather predictions of TFBS using this baseline method, we calculate the expected
accessibility for all peaks in each of the six validation cell types, identical to the input of
scEpitome. We then mask each region by the presence or absence of a motif for the TF of
interest, giving us peak signal in all regions overlapping a motif.

We first compared our baseline method using PeakVI posteriors to chromVAR back-
ground corrected reads towards the prediction of TFBS in pseudo-bulk populations from
scATAC-seq. Surprisingly, Figures 2.16(b) and 2.16(c) show that, when using bulk ChIP-seq
as ground truth, our baseline method provides a better basis for analysis of motif overlaps
than chromVAR background corrected fragments. Because of this, we next used the base-
line method and compared it to scEpitome predictions. Figures 2.16(d) and 2.16(e) shows
that scEpitome performs better than the baseline method, in terms of auPRC and pAUC,
for a majority of the TFs and FACS-isolated populations evaluated. These results suggest
that leveraging available ChIP-seq and chromatin accessibility similarity between bulk and
single cell populations can be used to gather more accurate predictions of TFBS in small
populations isolated in scATAC-seq datasets.

Although this PBMC and bone marrow dataset provides us with FACS-isolated popula-
tions, this information is most often not available for many scATAC-seq datasets of interest.
Therefore, we wanted to use a computational method to identify clusters in large scATAC-
seq datasets, and then leverage scEpitome to predict TF binding sites on smaller clusters.
To identify smaller clusters, or microclusters, we used VISION [40], which merges single cells
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with similar profiles into representative pools. We used VISION to identify microclusters
with about 500 cells per cluster, resulting in 128 microclusters. Figure 2.17(a) shows UMAP
representations from Figure 2.16(a) for all cells for each of the 128 microclusters identified
by VISION.

We next predicted TF binding in each microcluster for the 17 TFs available in ChIP-Atlas
and bone marrow derived populations. We calculated the expected accessibility from PeakVI
posteriors for each peak and microcluster. Although no ground truth labels of TF binding
was available for microclusters, we hypothesized that clusters that had larger fractions of
cells that were labeled as B cells, dendritic cells, or one of the six cell types listed in Fig-
ure 2.16(b), would have more similarity of binding patterns to bulk corresponding ChIP-seq
than microclusters that were less similar to the bulk cell type in question. Figure 2.17(b)
shows the slope of the curve calculated between similarity of chromatin accessibility between
each microcluster and bulk DNase-seq experiment to the similarity between bulk ChIP-seq
and scEpitome predicted binding sites. We would expect this slope to be positive, as popula-
tions with similar chromatin accessibility should predict similar TF binding patterns. While
TFs such as SPI1, STAT3, and FOXP1 have strong association between chromatin acces-
sibility and binding similarity, others have weakly or slightly negatively associated slopes.
These results suggest that while some TFs have variable TF binding predictions between
microclusters, others have little change in similarity of predictions (Figure 2.17(c)).

In conclusion, we have shown that scEpitome can predict TFBS in microclusters calcu-
lated from scATAC-seq datasets, and that these predictions can suggest finer grained changes
in patterns of TF binding across clusters than when leveraging bulk measurements of chro-
matin accessibility. We have shown that scEpitome can predict binding patterns of TFs more
confidently than baseline methods that directly use scATAC-seq as a predictor for binding,
as well as methods designed to learn general TF binding patterns across single cells, when
using bulk ChIP-seq datasets as ground truth. These initial results suggest that scEpitome
can be leveraged to identify regulators with differential activity between sub-populations
within cell types that cannot be identified using bulk measurements of chromatin accessibil-
ity. Future work first requires scaling scEpitome to predict binding at single cell resolution,
rather than at the level of sub-populations. Currently, scEpitome computes predictions of
TFBS for each single cell sequentially. Ongoing work involves scaling scEpitome to predict
TFBS at single cell resolution in parallel. This extension will support discovery of regulators
that have differential binding patterns across single cells within sub-populations.
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Figure 2.1: Receiver operating characteristic curve (ROC) of DeepBind and CKS for tran-
scription factors EGR1 and ATF2 for GM12878. (a) ROC for ATF2 on DeepBind’s test set.
(b) ROC for ATF2 on ENCODE peaks. (c) ROC for EGR1 on DeepBind’s test set. (d)
ROC for EGR1 on ENCODE peaks.
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Figure 2.2: Ratios of ChIP-seq peaks from ENCODE (hg38) that do not overlap any motif. 77
TFs and chromatin modifiers were considered across 40 cell types. Each data point represents
the ratio of motif misses for a ChIP-seq experiment from a TF/chromatin modifier and cell
type combination.
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Figure 2.3: Performance of Epitome joint models, single models, and Catchitt for predicting
ChIP-seq peaks for 77 transcription factors on chromosomes 8 and 9 in 40 held out primary
cells, tissues, and cell lines. (a) auPRC and pAUC (5% FPR) scores for Epitome joint models
and Catchitt. (b) auPRC and pAUC (5% FPR) scores for Epitome models trained jointly
and Epitome models trained individually (single) for each TF.
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Figure 2.4: Average training and validation loss for 16 ChIP-seq targets, including tran-
scription factors, chromatin modifiers and histone modifications. All ChIP-seq targets were
trained jointly. Average train loss was calculated from 10,000 sampled points from the train-
ing dataset. Valid loss was calculated from all points on chromosome 7 meeting the sampling
criteria as described in Section 2.3.1.5. Average loss is calculated as the sigmoid cross en-
tropy, averaged across all evaluated data points (See Equation 2.5). The model was trained
for 2000 iterations, without early stopping.
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Figure 2.5: Weighted means and standard deviation of percent of unique peaks observed
in a cell type as the number of available cell types for a given ChIP-seq target increases.
Means and standard deviations are weighted inversely proportional to the number of data
points for a given ChIP-seq target. ChIP-seq targets include transcription factors, histone
modifications, chromatin accessibility, chromatin modifiers, and histones from called peaks
in the ChIP-Atlas database [158].
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Figure 2.6: Schematic of Epitome for a single ChIP-seq target. Features for each cell type
include ChIP-seq peaks at a genomic locus and the chromatin accessibility similarity vector
(CASV), which compares the chromatin accessibility of each reference cell type to the query
cellular context. The model outputs ChIP-seq peak probabilities for the query cellular
context.
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Figure 2.7: Epitome performs comparably when training models using DNase-seq and eval-
uating on a new cell line using ATAC-seq. (a) Comparative pAUC (5% FPR) and auPRC
performance of 33 TFs when predicting genome wide binding in the A549 cell line using an
Epitome model trained using DNase-seq. x axis shows pAUC (left) and auPRC (right) using
ENCODE A549 DNase-seq during evaluation, and y axis shows pAUC (left) and auPRC
(right) using ENCODE ATAC-seq during evaluation. Blue indicates TFs that perform bet-
ter when predicted using ATAC-seq data during evaluation. Red indicates TFs that perform
better when predicted using DNase-seq data during evaluation. (b) Comparative pAUC (5%
FPR) and auPRC performance of 128 TFs when predicting genome wide binding in the
K562 cell line using an Epitome model trained using DNase-seq. x axis shows pAUC (left)
and auPRC (right) using ENCODE K562 DNase-seq during evaluation, and y axis shows
pAUC (left) and auPRC (right) using ENCODE ATAC-seq during evaluation.
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Figure 2.8: Considering wide genomic contexts and multiple epigenetic signals to compute
cell type similarity improves model performance. (a) Cumulative distribution functions
(CDFs) of Epitome performance in terms of area under the receiver operating characteristic
curve (AUC) for TFs and histone modifications in Epitome models trained on 2 to 10 cell
types. CDFs of Epitome performance in terms of pAUC (b) and auPRC (c) as various DNase-
seq window sizes are considered for computing the chromatin accessibility vector (CASV).
Only DNase-seq is used to compute cell type similarity in the CASV. DNase-seq window sizes
considered include the identity CASV, 200bp, 1,200bp, 4,000bp, and 12,000bp around a peak
of interest. Only models training on less than 10 cell types were considered. Identity CASV
implies that no CASV is used in Epitome. (d) Difference in auPRC for 13 TFs when Epitome
uses a single histone modification and DNase-seq in the CASV, compared to performance
when only DNase-seq is used in the CASV. All 200bp regions on chromosome 7 that have at
least one ENCODE epigenetic event were evaluated, where positive include 200bp regions
that overlap a ChIP-seq peak for the ChIP-seq target evaluated, and negative regions are
all 200bp regions not overlapping a ChIP-seq peak. (e) Shapley values of seven histone
modifications and DNase-seq demonstrating their contribution of auPRC performance of 13
TFs when incorporated into the CASV.
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Figure 2.9: Comparison of methods for predicting transcription factor binding sites (TFBS)
for 77 TFs and chromatin modifiers in 40 primary cells, cell lines, and tissues from ENCODE.
TFBS were predicted on all 200bp regions on chromosomes 8 and 9 that overlap at least
one binding site in at least on of the 40 cell types considered. (a) Frequency at which each
method obtains a rank for predicting TFBS across 77 transcription factors and chromatin
modifiers in 40 held out cell lines, tissues, and primary cells, totaling 264 comparisons.
Evaluated methods include Avocado [186], Catchitt [100], a joint Epitome model, and single
Epitome models, where each TF is trained separately. (Left) Mean pAUC (5% FPR) and
auPRC ranking for each method. (Right) Frequency at which each method obtains a rank
based on pAUC and auPRC. (b) Scatter plots comparing auPRC between Epitome and
DeFCoM single models. Only regions overlapping motifs specific to the TF being evaluated
were considered. (c) Scatter plots comparing auPRC between Epitome and Catchitt single
models. (d) Scatter plots comparing auPRC between Epitome and Avocado joint models.
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Figure 2.10: Performance metrics of Epitome and DeepSEA for predicting ChIP-seq peaks
for 17 transcription factors on chromosomes 8 and 9 in four held out cell lines, resulting in 68
comparisons. Four held out cell lines include K562, GM12878, HepG2, and H1. Transcription
factors compared include: CEBPB, CHD2, CTCF, EP300, GABPA, JUND, MAFK, MAX,
MYC, NRF1, RAD21, REST, RFX5, SRF, TAF1, TBP, and USF2. (a) auPRC and (b)
pAUC (5% FPR) scores for Epitome and DeepSEA.
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Figure 2.11: The number of cell types selected to train an Epitome model changes predictive
performance of transcription factors, histones, and histone modifications. (a) Normalized
mean auPRC of 59 transcription factors in heldout chromosome 7 as more cell types are
incorporated into Epitome for training. For each set of reference cell types considered for
a given TF, mean auPRC was calculated across four models with different combinations of
training and validation cell types. The number of training cell types considered ranges from
2 to 48 cell types. This range is dependent on the availability of reference cell types for
a given transcription factor in ENCODE. (b) Cumulative distribution function (CDF) of
auPRC performance of 59 transcription factors in heldout chromosome 7. (c) Normalized
mean auPRC of 23 histone modifications and histones in heldout chromosome 7 as more
cell types are incorporated into Epitome for training. Mean auPRC was calculated across
four models with different combinations of training and validation cell types. The number
of training cell types considered ranges from 2 to 84 cell types. This range is dependent on
the availability of experiments for a given histone modification or histone in ENCODE. (d)
Cumulative distribution function (CDF) of auPRC of 23 histone modifications and histones
in heldout chromosome 7.
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Figure 2.12: Considering genomic contexts of various sizes to compute cell type similarity
in the CASV affects performance of transcription factors (TFs) and histone modifications.
Various DNase-seq window sizes are considered for computing the chromatin accessibility
vector (CASV). Only DNase-seq is used to compute cell type similarity in the CASV. DNase-
seq window sizes considered include no DNase-seq, 200bp, 1,200bp, 4,000bp, and 12,000bp
around a peak of interest. (a),(b) CDFs of Epitome performance for histone modifications
in Epitome models trained on more than 10 cell types. Performance was measured in (a)
partial area under the receiver operating characteristic curve (pAUC) (5% FPR) and (b)
area under the precision recall curve (auPRC).
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Figure 2.13: Frequency at which a given ChIP-seq target is present in a study included in
ChIP-Atlas [158] that contains at least two ChIP-seq experiments. Only includes studies
aligned and processed under the hg38 genome.
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Figure 2.14: Epitome detects differential H3K27ac across seven time points in neural differ-
entiation. (a) ROC and PR curves for predictions of H3K27ac peaks using three methods
at seven time points of neural differentiation. (b) (Top) Mean Epitome scores of H3K27ac
peaks across seven time points in six clusters from 2,400 temporal peaks [83]. (Bottom)
Mean normalized H3K27ac read counts across seven time points in six clusters. Rows are
standardized. (c) CDFs of Epitome scores for H3K27ac peaks at 0hr and 72hr in regions that
are uniquely accessible to a timepoint (black), are inaccessible for a timepoint (yellow) and
have shared accessibility across all timepoints (red). respectively. (d) Heatmap of features
used by the Epitome model for 25,762 genomic regions containing H3K27ac peaks at 72hr.
ATAC-seq column, labeled in grey, indicates presence of absence of ATAC-seq peaks in the
72hr time point. Color bar on left represents Epitome scores, where blue represents instances
of false negatives and red represents instances of true positives.
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Figure 2.15: (a) Epitome predictions of H3K27ac peaks at 72hr after neural induction for
peak and nonpeak regions. (b) Heatmap of features used by Epitome for 13,248 regions that
do not contain H3K27ac peaks at 72hr. Color bar on left represents Epitome scores, where
blue represents true negatives and red represents false positives.
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Figure 2.16: (b) Area under the precision recall (auPRC) and (c)partial area under the ROC
(5% FPR, pAUC) for prediction of 17 TFs from ChIP-Atlas on pseudo-bulk populations
identified from scATAC-seq [179]. Comparison of two methods: motif overlaps using PeakVI
posteriors and chromVAR background corrected scATAC-seq fragments. (d) auPRC and
(e) pAUC for prediction of 17 transcription factors (TFs) from ChIP-Atlas on pseudo-bulk
populations identified from scATAC-seq [179]. Comparison of two methods: motif overlaps
using PeakVI posteriors and TFBS predictions from scEpitome.
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Figure 2.17: scEpitome predicts transcription factor binding sites in microclusters computed
from PBMC and bone marrow scATAC-seq [179]. (a) Projection of UMAP, computed from
PeakVI latent space, colored by 128 microclusters computed with VISION [40]. (b) Slope of
the curve for chromatin accessibility similarity (comparing bulk DNase-seq to mean scATAC-
seq across microclusters) vs similarity in TF binding. TF binding similarity is calculated
as the dot product between binary bulk ChIP-seq peaks and scEpitome predictions. Slope
is calculated from linear least-squares regression. (c) Example scatter plots of chromatin
accessibility similarity and TF binding similarity between microclusters and bulk datasets.
CTCF and SPI1 from B-lymphocytes. Similarity is calculated as dot product between bulk
binary peaks and PEAKVI or scEpitome probabilities. Microclusters are colored by number
of cells in each cluster that are labeled by MACS as B-lymphocytes. R represents correlation
coefficient.
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Figure 2.18: Example ROC and precision-recall plots for predicting TFBS from scATAC-
seq in peripheral blood mononuclear cells (PBMCs). Methods compared include Epitome,
a motif overlap analysis using bias corrected fragments, as used by ChromVAR [181], and
motif overlap using PeakVI posteriors. Bulk ChIP-seq was used as ground truth in 5 PBMC
cell types, including, monocytes, dendritic cells, HSCs, B cells, and näıve CD4(+) T cells.
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Chapter 3

Computational tools for analysis of
genomic sequencing data

If you have ever worked on a machine learning or data science project, you may have heard of
the saying ”garbage in, garbage out”. This saying means that the quality of your analysis, or
the quality of your output from a predictive model, is limited by the quality of the data you
put in to it. It has been observed that the accuracy of machine learning models is correlated
with the cleanliness and clarity of data used as input [206]. Therefore, it is commonly known
in the data science community that when learning from a data set of interest, data cleaning
and processing are the most time consuming components of the pipeline [223]. Indeed, an
Epitome model, discussed in Section 2.3.1, used for predicting TFBS can train in 14 to
50 minutes. However, downloading, normalization, and consolidation of training data from
ENCODE takes up to 23 hours!

Because of this fact, much of the time and energy that went into this work involved
cleaning and processing various genomic data sets. In this chapter, we discuss three tools,
or extensions of tools, that we have built to enhance data processing and analysis. We have
specifically focused on making these tools reusable and reproducible so they can be utilized
by other members in the lab, or by the community in general.

3.1 Computational pipelines for quantification of

endogenous retroviruses

Endogenous Retroviruses (ERV), otherwise known as long terminal repeat (LTR) retrotrans-
posons, are a group of retroviruses that make up 8% of the human genome [36]. Although
many ERVs are defective for infection, these repetitive regions contain regulatory regions,
such as TFBS, that are required for proviral transcription 1 [211]. Because of this, several

1proviruses are viral genomes that are integrated into the DNA of a host cell
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pathways have evolved to suppress ERVs, such as DNA methylation and the establishment
of H3K9me3 [66].

In a recent study, Groh et.al. showed that a TF called MORC3 binds ERV sequences in
mouse embryonic stem (ES) cells, silencing ERVs [67]. As discussed in Chapter 5, we also
investigate the repressive characteristics of MORC3, albeit in human monocytes. Thus, we
wanted to check whether MORC3 was repressing ERVs in human monocytes, as it was in
mouse ES cells. To determine this, we collected RNA-seq data from wild type (WT) and
MORC3 knock out (KO) monocytes, as described in Chapter 5. We then could compare
the expression levels of ERVs between both conditions to determine whether ERVs had
significantly increased expression in the KO.

In order to build a pipeline to quantify ERVs from RNA-seq data, we extended a project
called SeqTools, which was originally introduced in the work of James Kaminski [97]. Se-
qTools is an object-oriented system designed for end-to-end processing of high-throughput
data, including ATAC-seq, ChIP-seq, and RNA-seq. Through SeqTools, and the help of Hec-
tor Roux de Bézieux in Sandrine Dudoit’s lab at UC Berkeley, we implemented a pipeline
to quantify ERVs from RNA-seq samples. This pipeline requires three steps:

1. Alignment of reads to the transcriptome

2. Quantification of family-level expression levels for ERVs

3. Detection of differential expression of ERV families

We used the STAR aligner to align reads to the transcriptome [42]. Repeats containing
the location of ERVs were downloaded from the UCSC table browser [98]. Because ERVs are
repetitive, it is difficult to determine the exact origin of sequences that align to ERVs. Be-
cause of this, we quantify expression levels for ERV families, instead of individual ERVs. We
used featureCounts to count reads in the transcriptome that overlapped ERV families [120].
Finally, counts of reads overlapping ERV families were compared across samples to determine
differential expression of ERVs between conditions using DeSeq2 [126].

3.2 Computational pipelines for processing

CUT&RUN

As discussed in Section 1.1.1, ChIP-seq is a commonly used method to profile TFBS and
histone modifications. In this method, cells are first treated with formaldehyde for protein-
DNA crosslinking. Chromatin is then fragmented, and antibodies specific to the protein
of interest is added. Finally, antibody bound sequences are extracted and sequenced [196].
However, numerous problems with ChIP-seq have driven the search for more efficient profiling
techniques. These issues include low extraction efficiency of protein-DNA complexes, and
”hyper-ChIPable” regions of the genome that have artificially high levels of enrichment [208].
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With these problems in mind, Skene and Henikoff developed Cleavage Under Targets and
Release Using Nuclease (CUT&RUN) that improve over ChIP in several ways. First of all,
DNA in starting cells do not need to be fragmented prior to extraction, and thus mimic
natural protein-DNA interactions better than that of ChIP. Second, CUT&RUN requires
only a fraction of the sequencing depth of ChIP, allowing for smaller starting cell numbers.
Finally, CUT&RUN as been shown to more accurately identify TFBS than ChIP-seq [193].

Due to these benefits, we and collaborators collected CUT&RUN data for various histone
modifications and the TF MORC3, discussed in Section 5. Here, we briefly describe our
extension of SeqTools to process CUT&RUN.

To process CUT&RUN data, we modify the ChIP-seq pipeline implemented in SeqTools
as a basis for processing, with two crucial changes. The original ChIP-seq processing pipeline
includes three stages, including (1) alignment of reads to a reference, (2) identification of
peaks, and (3) combining peaks across all samples to define a peak universe. The first
regards alignment. Similar to the ChIP-seq pipeline, we use bowtie2 [112] to align reads
to the reference genome. However, we enable dovetail alignment for CUT&RUN to accept
paired-end reads when there is overlap between mate pairs, which is infrequently encountered
in CUT&RUN experiments [241]. The second change made to the pipeline is the choice of
peak caller used to identify peaks in a given sample. While MACS2 [239] is used to identify
peaks in ChIP-seq samples, this method uses a Poisson model determine enrichment of
regions over a background. However, because CUT&RUN has lower background signal, such
methods can have reduced precision when used on CUT&RUN [135]. Due to this issue, we
utilize SEACR in SeqTools, a peak caller specifically designed for CUT&RUN data that is
model free and data-driven [135].

3.3 Visualization of large-scale genomic sequencing

datasets

As computational biologists, visualization is one of the primary ways which we are able to
cope with the overwhelming data complexity we deal with on a day-to-day basis [162]. The
transition from Sanger to high-throughput DNA sequencing has led to a dramatic expansion
of genomic sequencing datasets [191], driving diverse and integrative studies such as TCGA,
TOPMed, and ENCODE, which contain more than 300 TB of sequencing data [209, 133,
35, 1, 131]. Consequently, these massive datasets are being mined to develop and validate
hypotheses for understanding changes in activity of regulatory regions across cellular con-
texts, target treatment interventions, and drive discoveries in precision health [184]. One
such example of this is provided in Chapter 2, where we introduced two prediction methods
that leverage data from the ENCODE consortium to learn about changes in TF binding
and histone modifications across cellular contexts [143, 144]. However, this pileup of data
does not stop at public consortiums. As demonstrated in Chapters 4 and 5, personal stud-
ies are collecting multi-omics sequencing datasets with ever-more replicates and biological
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conditions. In Morrow et. al. [145], we introduce a tool called Mango, which consists of a
Jupyter notebook and genome browser component that supports visualization of large ge-
nomic datasets in a genome browser-like format. Mango removes scalability and interactivity
constraints of existing interactive tools by leveraging multi-node compute clusters to allow
interactive analysis over terabytes of sequencing data. This section discusses Mango and its
extensions, and is modified from Morrow et al. [145].

Existing tools for evaluating genomic sequencing datasets either support abstractions for
processing multi-terabyte datasets or interactive analysis, but do not provide both. Tools
like bioconductor [80] support interactive analysis on sequencing data by providing a flexi-
ble programmatic environment for quality assessment, ad hoc visualization, event detection
and summarization of data. Other tools, such as IGV, Savant, and IOBIO support static
visualizations of sequencing samples at single sample resolution [174, 53, 137, 194, 56]. The
scaling restrictions of existing genomics tools has led to the development of new tools for
preprocessing genomic datasets by leveraging distributed platforms such as Apache Hadoop
and Apache Spark [180, 157, 156], allowing users to elastically scale compute resources as
demanded by dataset size. Although these tools scale to terabyte-sized datasets, they are
primarily designed for preprocessing multiple samples using specific algorithms for alignment
and variant calling, and do not provide primitives for interactively evaluating and iterating
on post-processed results. In industry, proprietary platforms have been developed for inter-
actively visualizing large-scale genomic datasets [171]. As large-scale sequencing provides
a lens into the complex genomic biology that drives disease, tools that make it possible to
interact with large cohorts are necessary to enable scientists to understand complex patterns
in their data.

Mango is an open source genomics visualization platform consisting of a browser and
notebook form factor. Both the Mango browser and notebook support visualization of
remotely staged genomic datasets consisting of alignments, variants, and features, and are
built on Apache Spark [236] and ADAM [156] to scale to terabyte sized genomic datasets.
Mango supports ad-hoc exploration of terabyte sized datasets on private clusters and in cloud
storage, removing the requirements of costly dataset transfers from centralized repositories
like dbGaP [238]. Mango supports human-in-the-loop analysis found in single-node tools by
providing a flexible programmable interface in the form of the notebook, and a traditional
genome track browser for exploring individual samples. The Mango notebook allows users to
programmatically manipulate and visualize datasets in a Jupyter notebook environment by
providing access to genome track Jupyter widgets and summary visualizations. Meanwhile,
the Mango browser provides traditional track views for variants, features, and variants, while
allowing users to remotely access datasets. Architecture for the Mango notebook and browser
are shown in Figure 3.3.

The Mango notebook supports querying, exploring, and summarizing alignment and
variant datasets in a Jupyter notebook environment [106], matching the interactivity of ge-
nomics analytics tools such as Bioconductor while removing the static constraints of genome
browsers. The Mango notebook also supports traditional scrollable genome track visualiza-
tions through Jupyter widgets built on pileup.js [218] for interactive visualization of pileups,
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variants and features. These widgets can be run on local standard genome file formats such
as bigBed, BAM and VCF file formats, but can also be combined with Apache Spark to
visualize remotely-staged files in parquet formats. Figure 3.2a demonstrates sample visu-
alizations for analysis of genome coverage, run on 10 TB of 100 genomes from the Simons
Genome Diversity dataset [131]. Visualization results from functions provided through the
Mango notebook are returned as Matplotlib objects [81], allowing users to modify and update
plots without recomputing on the entire dataset. Programmatic querying and filtering of
datasets can be performed through Apache Spark SQL queries and manipulations on Apache
Spark resilient distributed datasets (RDDs). Figure 3.2b shows how pythonic filters can be
combined with visualization of data from the 1000 Genomes Project [1]. Finally, we support
visualization of deeply sequences samples. Figure 3.2c shows track visualization of 780 GB
of alignment data from a seven sample subset from the Simons Genome Diversity dataset
using the widgets.

While the Mango notebook provides a programmable interface for exploring genomic
sequencing datasets, the Mango browser provides a graphical user interface (GUI) for visu-
alizing subsets of cohorts. The Mango browser supports analysis and exploration of genomic
reads, variants, and features at user-defined loci, supporting functionality for quality anal-
ysis and local correspondence between samples. The Mango browser supports functionality
implemented in commonly used browsers such as IGV, IGB, JBrowse and Savant [174, 56,
53, 194], while additionally allowing users to access remotely staged genomic sequencing
samples from dataset repositories. The Mango browser stores data in efficient interval-based
structures, or Interval RDDs [142] to allow fast and consistent response times of overlapping
genomic range queries on cached datasets, compared to Apache Spark’s default RDD. Fig-
ure 3.2d shows example visualizations of the home screen and browser view of a remotely
staged alignment file in the Mango browser.

3.4 From large to small: visualization in a flexible

Jupyter environment

Since the publication of Morrow et.al. [145], we have found through our own epigenetic
workflows that dataset size is not always the main constraint when it comes to visualization.
Often, we process large datasets through a ”black box” pipeline, where we are not concerned
with visualizing the intermediary results. However, we are more interested in visualizing
datasets after processing, whose size is small enough to fit on a single machine. Therefore,
tools built on top of Apache Spark [145] result in unnecessary memory and management
overhead when we are only interested in visualizing a small, post-processed dataset. Because
of this, we have introduced the Mango widgets, a set of stand-alone embeddable widgets that
allow visualization of features, variants, and reads in a Jupyter notebook [106]. The Mango
widgets are built on Jupyter widgets [95] and pileup.js [218] to provide an embeddable
JavaScript-based genome browser.
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A key contribution of the Mango widgets is the ability to seamlessly visualize genomic
data in the same Jupyter notebook that you are currently analyzing your data in, without
requiring loading results into a separate visualization tool. To achieve this, we implemented
track configuration options which allow users to customize tracks by color and programmati-
cally zoom in and out of tracks. We additionally implemented an svg saving option, allowing
users to programmatically save genomic viewer screenshots within a notebook. These fea-
tures allow users to integrate genome browsers into existing python pipelines, supporting the
ability to programmatically save images of key genomic regions in a single workflow.

Although existing visualization tools such as igv.js [82] support genome visualization in a
Jupyter notebook, lack of intermediate data handling limits users to only visualize genomic
data stored in genomic file formats that are located within the Jupyter kernel. However, it
is often the case that users would like to view genomic data stored in other formats. One
example of this is supporting the ability to visualize genomic data stored in dataframes,
or numeric feature data stored in numpy matrices [72]. The Mango widgets implement
an intermediate data handling layer that allows users to load in both genomic file formats
and dataframes. The Mango widgets are able to visualize genomic data stored in both
pandas [221] and Modin [140] dataframes, allowing users to seamlessly filter and manipulate
data before visualization.

Because genomic datasets can still exceed the limits of pandas dataframes, we provide
the option of working with dataframes using Modin [140], a scalable dataframe system that
exposes the pandas Application Programming Interface (API) and allows faster manipulation
of dataframes in memory. Modin has support for reading in multiple different file types,
including compressed and uncompressed files. Internally, Modin has mechanisms for using
multiple CPU cores to read in a file, even if the file itself is not split or distributed. In contrast,
the standard pandas implementation does not enable any parallelism, as it is only able to
read using one processor at a time. Here, we implement parallel readers for genomic file
formats to utilize Modin’s parallel processing to load in genomic data in a Modin dataframe.
Content stored in these dataframes can then be quickly visualized using the Mango widgets.

Example visualizations of genomic features and genotypes supported through the Mango
widgets are shown in Figure 3.3. The Mango widgets can be used in both Jupyter notebook
and JupyterLab [106].
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Figure 3.1: Mango architecture, divided into client, server, and cluster components. The
Mango browser and notebook are built on ADAM and Apache Spark for fast in-memory data
processing. The Mango browser utilizes lazy materialization and Interval RDDs to index
and access genomic regions in subsecond latencies [145, 142]. Lazy materialization supports
efficient caching on large files, while Interval RDDs support low latency overlapping region
queries on genomic data. Both the Mango browser and notebook utilize GA4GH schemas to
transfer genomic data serialized in JSON format from the server to the client. The Mango
notebook components are accessible through a Jupyter notebook environment [106]. Genome
track visualizations for genomic data are rendered using pileup.js [218].
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Figure 3.2: Example visualizations from the Mango notebook and the Mango browser. a)
Example distributions of genomic sequencing samples in Mango notebook. Coverage distri-
bution of 100 high coverage samples from the Simons Genome Diversity Project. Insertion
and mapping quality distributions of a single outlier sample. b) Variant visualizations from
chromosome 1 of the 1000 Genomes dataset, including track visualizations of variants in a
1000 bp segment on chromosome 1 and distribution of variants per sample. c) Visualization
of the Mango pileup widgets: 780 GB of a seven sample subset from the Simon’s Genome
Diversity dataset, queried in a Jupyter notebook. d) Home screen and track visualization of
sequencing data in the Mango browser.
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(a)

(b)

Figure 3.3: The Mango widgets: example screenshots of (a) features and (b) genotypes
loaded in a Jupyter notebook.
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Part II

Applications
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Chapter 4

Transcriptomic and epigenetic
memory retention of reprogrammed
CD8(+) T cells

In these next two chapters, we explore two applications in which the background, method-
ology, and pipelines discussed in Chapters 1-3 are applied to characterize the epigenome in
multiple cellular contexts. In this chapter, we gather measurements of the transcriptome
and chromatin accessibility to characterize CD8(+) T cells, which provide the stone of our
analysis. In particular, we explore the extent to which regulatory elements in CD8(+) T
cells are maintained after reprogramming to induced pluripotent stem cells (iPSCs), and its
application in adoptive T cell therapy. This work is a joint collaboration with the Blazar
Laboratory at the University of Minnesota. While experimental work was performed by the
Blazar Laboratory, this chapter focuses on the computational analysis we performed for this
project.

4.1 Background

T cells play a central role in acquired immunity with the capability of recognizing and
responding to foreign antigens, pathogens and damaged cells [89]. Understanding and har-
nessing key properties of T cell biology has led to the revolutionary clinical application of
T cells to treat life-threatening conditions such as cancer [43, 49, 76, 176, 23]. The forced
expression of anti-tumor reactive T cell receptors and chimeric antigen receptors (CAR) for
the adoptive T cell transfer has improved response rates, especially for those with hemato-
logical malignancies [22, 151, 154, 161, 177]. However, more work is needed to improve the
durability of these evolving T cellular therapies.

A robust early T cell response to a foreign antigen or pathogen results in a burst of
short-lived T effector cells (TEFF) that is followed by a contraction phase. The remaining T
cells enter a short- or long-term memory phase. Long-term immunologic memory is essential
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for productive immune surveillance. In both mice and humans, CD4(+) and CD8(+) T cells
can become long-lasting memory cells when T näıve cells (TN) encounter antigens specific
to their T cell receptor (TCR) then express survival factors that permit their persistence.
With the help of additional signaling and expression of anti-apoptotic factors, differentiation
into several different memory phenotypes can occur, representing a spectrum of proliferation,
differentiation and memory potential [93]. The most differentiated memory cells, T effector
memory (TEM) have the highest effector function, but lowest memory potential. In contrast,
the least differentiated memory cells, T stem memory (TSM), have the highest capability
for self-renewal, multipotent differentiation and long-term proliferation. TSM pathways are
shared with hematopoietic stem cells that promote self-renewal and multipotency, in addition
to T cell differentiation [61, 230].

There is increasing evidence that persistence of TSM populations among T cellular therapy
products is associated with superior cancer therapeutic outcomes [62]. As such, considerable
efforts have been expended in the isolation, ex vivo expansion, and post-infusional monitor-
ing for TSM cells. While TSM cells can be considered a desirable target T cell population
for therapeutics, most reside in the lymphoid tissues with only 0.2-0.3% entering the pe-
ripheral bloodstream, which makes them impractical to isolate from a single donor as a
stand-alone therapeutic product [60]. Whereas ex vivo conditions have been developed to
facilitate expansion and retention of differentiated T cell populations, purified peripheral
blood TSM cells placed in cell culture are prone to rapidly lose their stem memory-like phe-
notype [237, 64]. To minimize differentiation, ex vivo protocols now incorporate cytokines
(IL-15; IL-21) [93, 6], Akt inhibition, antioxidants and metabolic programming to oxidative
phosphorylation [147, 175]. Yet the longer TSM cells are in culture, the less they exhibit
stem memory-like properties, hindering large-scale expansion. As a result of these challenges
to acquiring enough TSM cells and maintaining the TSM phenotype, alternative methods for
generating larger quantities of these cells are being sought.

Umbilical cord blood (UCB) contains immature fetal hematopoietic cells (HSC). Even
more undifferentiated HSC sources, embryonic stem (ES) cells, and induced pluripotent stem
cells (iPSCs), are capable of producing T progenitor cells, which can be further developed
into mature T cells. Reprogramming of somatic cells into iPSCs, as discovered by Yamanaka
and colleagues, allows the de-differentiation of any cell type; once formed, iPSCs have the
capacity for indefinite redifferentiation into a specified cell type, rendering this platform a
robust method for overcoming limited T cell subset numbers [84, 154, 210].

Because the duration of anti-tumor responses has most closely correlated with TSM and
not TN for reprogramming followed by iPSC expansion and redifferentiation, we hypothesized
that the stem cell-like properties of TSM would provide a superior starting population for
redifferentiation into TSM than TN cells (collectively known as T-iPSCs) due to developmental
plasticity and retention of the epigenetic landscape and of iPSCs reprogrammed from TSM

cells. Further, we hypothesized that iPSCs reprogrammed from fibroblasts (FB-iPSCs) would
be even more distinct from TN- and TSM-iPSCs, and thus would provide an even more inferior
starting population for redifferentiation into TSM cells.

To evaluate the potential efficiency of these three different starting populations for gen-
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eration of redifferentiated TSM cells, we first assessed the extent to which the epigenetic and
transcriptomic memory was retained after reprogramming in each population. We hypothe-
sized iPSCs with epigenetic and transcriptomic patterns similar to TSM cells may provide us
with a superior starting population for redifferentiation into TSM cells. Following reprogram-
ming, RNA-seq and ATAC-seq was used to perform a thorough transcriptomic and epigenetic
comparison between 1) the cells of origin, 2) the T-iPSC populations (as a whole and as iso-
lated subsets), and 3) the T-iPSCs and FB-iPSCs. Despite extensive cellular reprogramming,
we found that T-iPSCs and FB-iPSC retain specific transcriptomic and epigenetic memory
from their parent populations, yet distinctive epigenetic and transcriptomic identifiers for
CD8(+) T cells subsets are lost in reprogramming for TN-iPSC and TSM-iPSCs. This main-
tenance of general transcriptomic and epigenetic memory in T-iPSCs suggest that leveraging
these phenotypes as starting populations for redifferentiation could provide a limitless source
of long-lasting TN or TSM cells for adoptive therapy in chemotherapy treated patients with
low TSM frequencies.

4.2 Reprogramming diminishes näıve and stem

memory signatures in TN-iPSC and TSM-iPSC

cell lines, relative to original populations

A stringent flow panel first described by the Restifo lab was used to separate TN and TSM

cells from the peripheral blood mononuclear cells (PBMCs) of six healthy donors by flow
cytometry sorting (Figure 4.1a) [60]. Following isolation of these individual T cell subsets,
we transiently stimulated the cells to render them receptive to Sendai virus for Yamanaka
factors reprogramming [203] (Figure 4.1a). Once T-iPSC cell lines were generated, validated
(Figure 4.1b-g) and shown to be Sendai virus free, RNA-seq was performed on the original
cell populations and iPSCs to assess the transcriptional differences and similarities to their
original starting cell populations. DNA was also obtained for assay for transposase-accessible
chromatin with high throughput sequencing (ATAC-seq) [25] that can identify conserved
areas of accessible chromatin after reprogramming.

We first compared the quantity and effect sizes of differentially expressed genes between
the original T cell populations (TN vs TSM), reprogrammed populations (TN-iPSC vs TSM-
iPSC), as well as original and reprogrammed populations (TN vs TN-iPSC and TSM vs
TSM-iPSC) (Figure 4.2a). Reprogramming had a dramatic change over the transcriptome
in both TN and TSM cells, with significant differential expression in >50% of the genes
captured by RNA-seq (Figure 4.2a). Consistently, we found that transcriptomic differences
between the original T cell subsets were more pronounced than the differences between the
reprogrammed populations (comparing the number of significantly differentially expressed
genes over a range of fold change cutoffs; Figure 4.2a). While original T cell subsets had more
than 3,000 differentially expressed genes (FDR < 0.05), reprogrammed subsets had less than
200. These results suggest that while original T cell subsets have distinct transcriptomic



CHAPTER 4. TRANSCRIPTOMIC AND EPIGENETIC MEMORY RETENTION OF
REPROGRAMMED CD8(+) T CELLS 65

differences, these differences are largely diminished after reprogramming.
Next, we performed an analysis of differential expression of gene sets from MSigDB to

determine whether the TN and TSM cells maintained their näıve or stem memory signatures
after reprogramming. While this analysis identified annotations synonymous with CD8(+)
TN phenotype among the original TN cells as compared to the TSM cells, no annotations
associated with TN phenotype was found when comparing the TN-iPSC and TSM-iPSC cell
lines. Similarly, as compared to TN cells, TSM had increased expression of genes associated
with CD8(+) T cell phenotypes more differentiated than TN cells, consistent with the place-
ment of TN cells as more immature than TSM cells. In contrast, an analysis of differentially
expressed genes between TSM-iPSC and TN-iPSC cell lines had no significant annotations
related to CD8(+) nav̈e or stem memory phenotypes. These results suggest that of the
few genes that maintained differential expression between TSM-iPSC and TN-iPSC cell lines,
these genes did not constitute annotations corresponding to CD8(+) TN or TSM phenotypes.

We next identified regions of differential chromatin accessibility between the original TN

and TSM cells and between the TN-iPSC and TSM-iPSC cells lines after reprogramming.
Reprogramming had a similar dramatic change over the accessible genome in both TN and
TSM cells (Figure 4.2b). Although the original TN and TSM populations had marked epi-
genetic differences, these differences were almost entirely diminished in the reprogrammed
populations (using a range of cutoff values; Figure 4.2b), consistent with the transcriptome
analysis. Together, the lack of differences between the TN and TSM cells in the transcriptome
and accessible regions after reprogramming suggests that induced pluripotency eliminates
many of the original developmentally acquired differences observed between the TN and TSM

cells.

4.3 Reprogrammed CD8(+) T cells gain pluripotent

signatures while losing T cell signatures

To better understand the phenotypic differences between the original and reprogrammed
T cells, we evaluated transcriptional and epigenetic changes that were maintained in the
TN-iPSCs and TSM-iPSC cell lines, relative to their starting T cell populations. First, we
observed that overall changes in gene expression after reprogramming were highly consistent
between the two T cell populations and did not correlate with their original populations
(Figure 4.2d, Figure 4.2c). To better understand these changes, we next analyzed genes that
were significantly differentially expressed between the TN-iPSCs and TSM-iPSCs and their
original T cell populations. While the TN-iPSCs and TSM-iPSCs both showed preferential
expression of pluripotent and embryonic stem cell associated genes (SOX2/9/11, NANOG,
LIN28A/B), genes related to T cell activation, including KLRK1 (NKG2D), CD62L/SELL,
and all 4 peptides that form CD3 (CD3 g,d,e) and CD8αβ, were more highly expressed in the
original TN and TSM cell populations (Figure 4.2f) [226]. While transcriptional differences
between the original TN and TSM cells were observed in genes associated with näıve and
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stem memory phenotype, the TN-iPSCs and TSM-iPSC cell lines did not maintain such
transcriptional differences after reprogramming (Figure 4.2d) [60, 146, 153, 188]. These
results show that while pluripotent signatures are acquired after reprogramming, nav̈e and
stem memory phenotype is lost in TN-iPSCs and TSM-iPSC cell lines, respectively.

We next sought to determine whether regions near to T cell associated genes retained
accessibility after reprogramming. We evaluated changes in accessibility between original
and reprogrammed cells in regions proximal to genes related to pluripotency and näıve
and stem memory T cell phenotypes. While accessibility around pluripotent associated
genes was increased in all T-iPSC cell lines, genes related to näıve and stem memory T
cell phenotypes lost accessibility after reprogramming (Figure 4.2e). Figure 4.2g shows
ATAC-seq normalized read counts across the four populations surrounding CD62L/SELL
and CD48, which have increased accessibility at promoters in both the TN and TSM cell
types. Figure 4.2h shows ATAC-seq normalized read counts surrounding pluripotent genes
SOX9 and SOX2, which showed increased accessibility in the T-iPSCs at promoters [90].
Together, changes in accessibility and expression after reprogramming are consistent with
our conclusion that key näıve and stem memory T cell signatures were lost and pluripotent
signatures were gained.

4.4 Transcriptomic and epigenetic memory specific to

näıve or stem memory T cell phenotypes are

retained after reprogramming of TN and TSM

isolated T cell subsets

We next evaluated whether any transcriptomic and epigenetic differences between the TN

and TSM cells were maintained after reprogramming. Figure 4.2c shows that genes that were
significantly differentially expressed between TN-iPSC and TSM-iPSC cell lines did not show
similar patterns of fold change expression between TN and TSM cells, respectively. To evalu-
ate maintenance of the transcriptome, we selected all genes that were differentially expressed
between the original TN and TSM cells both before and after reprogramming (Figure 4.3a).
As noted above, reprogramming largely diminished the näıve and stem memory T cell spe-
cific signatures. However, 41 genes retained differential expression between TN and TSM cells
after reprogramming. Of these, only 23 were differentially expressed between the TN-iPSC
and TSM-iPSC cell lines in the same direction of their parent populations. Among these
23 genes was ZBTB7B, which is involved in CD8αβ T cell differentiation [224] as well as
other immune related genes including APOBEC3B [201], BCL3 [32], and FAS/CD95. While
FAS/CD95 was not expressed in TN cells, it plays an increasingly important role through
and up to the development of effector memory CD8 T cells [60].

By selecting all regions that maintained differential accessibility between the TN and TSM

cells both before and after reprogramming, we identified only 6 genomic regions that retained
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accessibility (Figure 4.3b). A notable example is the region near ORM1, an acute-phase
reactant involved in sphingolipid metabolism, crucial to T cell signaling (Figure 4.3b) [21,
122]. These results suggest that, although rare, memory of the original näıve and stem
memory T cell phenotypes remain after reprogramming.

4.5 Reprogrammed fibroblasts lose fibroblast specific

annotations identified in parent populations

Because the TN-iPSCs and TSM-iPSCs lose a majority of the näıve and stem memory pheno-
type seen in original populations, we next sought to compare the T-iPSCs to reprogrammed
cells derived from a starting population vastly different from T cells, FB-iPSCs. We hy-
pothesized that although the TN and TSM cells lost a majority of näıve and stem memory
phenotype after reprogramming, more dissimilar cell types, such as T cells and fibroblasts,
may maintain epigenetic and transcriptomic memory when compared to each other. Fi-
broblasts from three healthy donors were reprogrammed into FB-iPSCs (Figure 4.4a). After
validating iPSCs as performed for T-iPSCs (Figure 4.4b-e), RNA was obtained for ATAC-seq
and RNA-seq and processed as specified in Section 4.10.5. We next identified differentially
expressed genes and differentially accessible regions between FB-iPSCs and fully differenti-
ated fibroblasts. Because the original fibroblasts all had been reprogrammed in FB-iPSCs,
we leveraged ATAC-seq from HSV-1 infected primary human fibroblasts at 0hr time points (2
replicates, GEO accession GSE100611) [74] and PolyA RNA-seq from skin fibroblasts (EN-
CODE, accession ENCSR510QZW) [34, 35] that are considered comparable to the original
fibroblast starting populations. Upon initial transcriptome comparison between FB-iPSCs
and fibroblasts, over half of the genes captured by RNA-seq were differential between fibrob-
lasts and FB-iPSCs (Figure 4.5a, FB vs FB-iPSC). Similarly, accessible regions between the
FB-iPSCs and fibroblasts were overridden (Figure 4.5b, FB vs FB-iPSC). Thus, both tran-
scriptome and epigenome analyses demonstrated drastic changes in FB-iPSCs compared to
fibroblasts, and of similar magnitude to that observed after reprogramming in T cells.

We next sought to understand which genes were differentially expressed between fibrob-
lasts before and after reprogramming. Figure 4.5c shows log2 fold change between FB-
iPSCs and fibroblasts and corresponding adjusted p-values for all genes. Pluripotent associ-
ated genes such as NANOG, LIN28A/B, and SOX2 had increased expression in FB-iPSCs,
whereas collagen associated genes and fibroblast growth factors, components of the extracel-
lular matrix and known to be synthesized by fibroblasts, were had increased expression in the
original starting population [150]. Figure 4.5d shows corresponding changes in accessibility
proximal to key pluripotent related and fibroblast related genes. From MSigDB annotated,
genes associated with stemness and pluripotency are shown in blue, and those associated
with collagen, fibroblast growth, and fibroblast proliferation are yellow. Many pluripotent
associated genes had increased expression and corresponding chromatin accessibility after
reprogramming, in contrast to decreased fibroblast related genes expression and chromatin
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accessibility in FB-iPSCs. Changes in chromatin accessibility are depicted in Figure 4.5e
that shows increased NANOG promoter and decreased collagen associated gene COL3A1
accessibility in FB-iPSCs, paralleling the loss of accessibility near T cell associated genes
after TN and TSM cell reprogramming.

4.6 Reprogrammed fibroblasts and T cells retain

epigenetic and transcriptomic memory of original

starting populations

We next compared changes in the transcriptome and epigenome between reprogrammed T
cells and fibroblasts to determine whether memory was maintained between original starting
populations. Because the TN-iPSCs and TSM-iPSCs had similar transcriptomes and patterns
of accessibility, we grouped both the TN-iPSCs and TSM-iPSCs as T-iPSCs in our comparison
to the FB-iPSCs. We first identified differentially expressed genes and differentially accessible
regions between the T-iPSCs and FB-iPSCs and found that differences between the TN-iPSCs
and TSM-iPSCs were largely diminished after reprogramming (Figures 4.2a and 4.2b). In
contrast, the FB-iPSCs and T-iPSCs maintained significant differences, as evidenced by 4,755
significantly differentially expressed genes and 28,546 differentially accessible regions between
reprogrammed populations (Figures 4.5a and 4.5b). We next evaluated the overlap between
genes that were significantly differentially expressed between T cells and fibroblasts in both
original and reprogrammed populations to evaluate whether genes associated with fibroblast
or T cell phenotypes were retained after reprogramming. We found significant overlap in the
genes and accessible regions that were maintained after reprogramming (Figure 4.5f). These
results suggest that both accessibility and transcriptomic memory is retained in T-iPSC and
FB-iPSC cell lines.

We next performed an analysis to measure the extent to which gene sets, available in
MSigDB, associated with fibroblast and CD8(+) T cell phenotypes retained differential ex-
pression between FB-iPSCs and T-iPSCs. Through this analysis, we identified gene sets
associated with the extracellular matrix and collagen formation that had significantly in-
creased expression in FB-iPSCs. However, using this approach, no gene sets associated with
CD8(+) T cell phenotypes had significantly increased expression in the T-iPSCs.

Although gene sets associated with CD8(+) T cell phenotype did not maintain increased
expression in T-iPSCs as a whole, we next determined whether individual genes associated
with CD8(+) T cell phenotype maintained increased expression after reprogramming. To
determine whether genes associated with CD8(+) T cell phenotype maintained increased
expression in the T-iPSCs, we first computed a set of “T cell expressed genes” and “fi-
broblast expressed genes” from original starting populations and assessed whether these
genes maintained differential expression after reprogramming. Figure 4.5g shows row nor-
malized expression counts for a subset of genes that maintained differential expression after
reprogramming. Figure 4.5g additionally compares the transcriptome of T-iPSCs and FB-
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iPSCs to that of embryonic stem cells (ES) (GEO accession GSE115046) [83] to determine
the extent to which these populations were reprogrammed. Although CD62L lost relative
promoter accessibility and expression after reprogramming (Figures 4.2g and 4.2d), select
T-iPSC clones maintained increased expression of CD62L, compared to the FB-iPSCs (Fig-
ure 4.5h). Increased expression of CD3E, a member of T-cell receptor-CD3 complex, was
maintained in some T-iPSC clones [14]. CD8 associated genes maintained variable levels of
expression in the T-iPSCs across clones, in contrast to FB-iPSCs and embryonic stem (ES)
cells that maintained consistently lower levels of expression (Figure 4.5g).

Through analysis of differentially expressed genes between the FB-iPSCs and T-iPSCs
using QIAGEN Ingenuity Pathway Analysis IPA (IPA) (QIAGEN Inc.), we found genes
associated with WNT (Gordon and Nusse, 2006) and TEC Kinase [197] signaling to have
increased expression in the T-iPSCs (Figure 4.5g). TEC kinase signaling is important to the
development and activation of B cells and T cells. WNT signaling is of particular interest
due to its known role in regulating stem cell pluripotency, consistent with the up-regulation
of pluripotent associated genes SOX21/11, and NANOG in T-iPSCs. Additionally, in a
principal component analysis (PCA) of normalized gene expression counts for the FB-iPSCs,
T-iPSCs, and ES cells, the T-iPSCs are more similar to ES than FB-iPSCs, driven by the 2nd
principal component (PC) (Figure 4.6a). PCA of ATAC-seq shows similar results, where the
T-iPSCs were more similar to ES through the 2nd PC, although with a much smaller effect
size (Figure 4.6b). Together, these data suggest the existence of a gradient of reprogramming,
where FB-iPSCs have retained more transcriptomic and epigenetic memory from their initial
starting population than T-iPSCs.

We next leveraged ATAC-seq to evaluate changes in chromatin accessibility between
the T-iPSCs and FB-iPSCs nearby genes that were differentially expressed between the T-
iPSCs and FB-iPSCs. Figure 4.4h shows aggregated log2 fold change in both ATAC-seq
and RNA-seq in the FB-iPSCs and T-iPSCs. Here, the T-iPSCs show increased expression
and accessibility near T cell expressed genes, while the FB-iPSCs maintain expression and
accessibility near fibroblast related and collagen/ECM genes. We next used GREAT [134] to
annotate differentially accessible regions between T-iPSCs and FB-iPSCs, and found that the
T-iPSCs had increased accessibilitfy near genes associated with the alpha-beta T cell receptor
complex (GO term 0042105). Figure 4.4i shows changes in accessibility surrounding CD3E
and CD3D, two genes encoding components of the T-cell receptor/CD3 complex. These
results suggest that although fine grained memory dictating differences between näıve and
stem memory populations were lost after reprogramming, differences in gene expression and
accessibility that dictate differences between CD8(+) T cells and fibroblasts were still be
observed after reprogramming.
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4.7 T-iPSC and FB-iPSC are differentiated into

hematopoietic CD34+ cells at a similar efficiency

iPSCs were subjected to embryoid body (EB) based differentiation to obtain CD34(+) cells
also present on human HSCs that can be differentiated into all blood cell lineages [13]. To
generate CD34(+) cells, we guided iPSC cell differentiation into mesoderm using growth fac-
tors BMP4 and bFGF during the first two days of EB differentiation (Figure 4.7a) followed
by modulating Wnt and TGF beta signaling pathways using CHIR99021 and SB431542
small molecules, respectively, prompting development towards definitive hematopoietic cells.
After 9 days in a serum free, stroma free EB differentiation method, TN/TSM -iPSCs and FB-
iPSCs were differentiated into CD34(+)CD43(-) hemangioendothelial cells capable of further
differentiation into definitive hematopoietic cells. Despite retention of epigenetic and tran-
scriptional differences between T-iPSCs and FB-iPSCs the frequencies of CD34(+)CD43(-)
cells were similar (Figure 4.5b, Figure 4.7c).

4.8 Hematopoietic CD34(+) cell differentiation into

T progenitor cells

On EB day 9, CD34(+) cells were co-cultured on a mouse stromal cell line (OP9) expressing
Notch ligand DLL4 (OP9-DLL4) that is essential for robust T cell development. Cells were
passaged every 3-4 days and their phenotype were analyzed using flow cytometry for T
progenitor cell surface markers at indicated time points (Figure 4.7d). Figure 4.7e shows
acquisition of CD3 and TCRαβ as well as CD8 and CD4 double positive expression in T-
iPSC derived T progenitors compared to FB-iPSC derived T progenitors over the course
of 3 weeks in T specification conditions. While T progenitor cultures derived from T-iPSC
lines were able to be carried out to 4 weeks in T specification culture and continued to
show further T cell development, all FB-iPSC derived cultures contracted and failed to
produce T progenitors of sufficient number or phenotype for further study. Additionally,
Together, these preliminary results suggest that the T-iPSCs can successfully differentiate
to CD34(+) hematopoietic lineage cells that upon four weeks of differentiation will acquire
key T progenitor cell surface markers that will form mature T cells in a culture system
designed for T cell maturation.

4.9 Discussion

Overall, this analysis of T-iPSCs and FB-iPSCs demonstrates epigenetic and transcriptomic
maintenance of memory after reprogramming, although distinct TN and TSM phenotypes
were lost. Despite this maintenance of memory, preliminary results show that similar fre-
quencies of hematopoietic CD34(+) cells were obtained from the T-iPSCs and FB-iPSCs
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after 9 days of differentiation. These results highlight the potential importance of consid-
ering starting populations for reprogramming and redifferentiation to T cells, and the need
for improved differentiation systems to evaluate the effect of epigenetic maintenance on re-
differentiated populations.

Although most somatic cell types have been shown to successfully reprogram to iPSCs [71,
159, 203], considering the starting population of iPSCs is crucial to the efficacy of producing
T lymphocytes. Different tissues demonstrate variable amenability to reprogramming into
iPSCs [7, 129]. Studies show that iPSCs can maintain memory of their tissues of origin [46,
104, 155]. Kim et al. reported that DNA methylation patterns of blood derived and fibroblast
derived iPSCs maintained residual methylation patterns to their tissue of origin [104]. Efrat
et al. showed significant differences in patterns of chromatin accessibility between human
pancreatic islet β cells and FB- iPSCs that are maintained from their tissues of origin [46].
Here, we similarly found that T cells derived from TN-iPSCs and TSM-iPSCs did not retain
epigenetic memory unique to their starting population. Additionally, we found that the
transcriptomics and chromatin accessibility of the T-iPSCs are more similar to ES cells
than FB-iPSCs, consistent with previous studies that show more prominent differences in
epigenetics between FB-iPSCs and ES cells, as compared to blood derived iPSCs [104].

While the reprogramming efficacy of fibroblasts has been estimated to be 10-50 times
higher than T cells, it remains unclear if reprogrammed T-iPSC clones have an advan-
tage over FB-iPSC clones during differentiation to T cells as a result of retained T cell
specific priming [199]. Vizcardo et al. demonstrated that CD8(+) T cells derived iPSCs
yield the highest proportion of TCRβ(+)CD3(+) cells, when compared to iPSCs derived
from CD34(+) cord blood cells and CD3(+) T cells [222]. Our preliminary redifferentiation
results show that despite retention of epigenetic and transcriptional differences between T-
iPSCs and FB-iPSCs, similar frequencies of hematopoietic CD34(+)CD43(-) cells that give
rise to Tprogenitor cells was observed from TN-, TSM-, and FB-iPSCs. Nonetheless, re-
differentiating iPSCs to CD8(+)CD4(-)T cells remains challenging. Currently, protocols for
differentiation of T cells from iPSCs suffer from poor reproducibility especially for different
clones and provide inconsistent cell yields of CD8(+)CD4(+) T cells, which limits scaled pro-
duction for clinical translation [149]. Further, most differentiation protocols, including the
one employed by our group, utilizes stromal feeder cells and serum, which can add culture-
to-culture variation and are generally viewed as impractical for clinical trials [154]. A recent
study published by Iriguchi et al. detailed their method for T-iPSC differentiation, which
demonstrated reproducible and scalable generation of functional CD8ab(+) T cells without
using stromal feeder cells in any stage of the differentiation process [84]. To accomplish this,
SDF1a and a p38 inhibitor were added to the culture to more closely mimic thymopoiesis,
increasing yields of CD8(+)CD4(+)T cells that remained highly amenable to maturation
and expansion [84]. For this purpose, serum was required that could be problematic for
clinical translation. As a large fraction of the end product T cells switched CD45 isotype
from CD45RA (näıve) to CD45RO (memory) during the maturation and expansion process,
consistent with more differentiated cells that may have a shorter longevity upon in vivo
adoptive transfer. Further protocol refinements are ongoing. A collaboration between Dr.



CHAPTER 4. TRANSCRIPTOMIC AND EPIGENETIC MEMORY RETENTION OF
REPROGRAMMED CD8(+) T CELLS 72

Sadelin and Fate Therapeutics to produce anti-cancer T cells from iPSCs is imminent for
translation into the clinic and results from such a trial will be early awaited.
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Figure 4.1: TN and TSM cells were reprogrammed from 3 donors each to TN-iPSC and TSM-
iPSC and characterized for pluripotency. a) PBMCs were extracted from six healthy donors,
flow sorted based on strict criteria for differentiating TN and TSM cells (3 donors each), and
then incubated with Sendai virus to generate T cell derived induced pluripotent stem cells
(T-iPSCs). RNA-seq was collected for TN (3 donors, 1-2 replicates) and TSM (3 donors, 1-2
replicates), TN-iPSC (3 donors, 4 replicates), and TSM-iPSC (3 donors, 4 replicates). ATAC-
seq was collected for TN (3 donors, 1 replicate) and TSM (3 donors, 1 replicate), TN-iPSC (3
donors, 2 replicates), and TSM-iPSC (3 donors, 2 replicates). b) Immunofluorescence staining
for pluripotency markers TRA-1-60, NANOG, TRA-1-81, SSEA3, OCT-3/4, and SSEA4
in TSM and TN-iPSC colonies. c) Quantitative RT-PCR based analysis of pluripotency
gene expression in T-iPSC clones. Parental T näıve (TN) cells used as a negative control.
d) Bisulfite sequencing analysis demonstrating CpG hypomethylation at Nanog and Oct4
promoter regions in T-iPSC clones. e) Chromosome spread demonstrating that T-iPSC
clones possess a normal karyotype. f) Teratoma formation assay shows T-iPSC clones formed
all three germ layers Ec (ectoderm), M (mesoderm) and En (endoderm) labeled in the images.
g) T-cell receptor rearrangement analysis demonstrating the presence of unique, clonal TCR
rearrangements in the T-iPSC clones.
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Figure 4.2: TN and TSM cells were reprogrammed from 3 donors each to TN-iPSC and TSM-
iPSC and characterized for pluripotency. a) (Left) Counts of genes that were significantly
differentially expressed (significance defined as abs(log2foldchange) > 0.5 and adjusted p-
value < 0.05) between the following four conditions: TN vs TN-iPSC, TSM vs TSM-iPSC,
TN vs TSM, and TN-iPSC vs TSM-iPSC. (Right) Cumulative distribution functions (CDFs)
of log2 fold change of differentially expressed genes between each of the four conditions. b)
(Left) Counts of regions that were significantly differentially accessible (significance defined
as abs(log2foldchange) > 0.5 and adjusted p-value < 0.05) between the following four con-
ditions: TN vs TN-iPSC, TSM vs TSM-iPSC, TN vs TSM, and TN-iPSC vs TSM-iPSC. (Right)
Cumulative distribution functions (CDFs) of log2 fold change of differentially accessible re-
gions between each of the four conditions. c) Volcano plot of log2 fold change in expression
between TN-iPSCs and TSM-iPSCs (x-axis) and -log10 adjusted p-values (y-axis). Results
are colored by log2 fold change expression between the original CD8 TN and TSM subsets. d)
Row normalized expression of TN-iPSC, TSM-iPSC, TN and TSM cells for pluripotent, CD8
T cell, and näıve and stem memory T cell subset related genes. e) Mean counts of ATAC-seq
cut sites overlapping peaks near pluripotent, CD8 T cell, and näıve and stem memory T
cell subset related genes. Counts from multiple ATAC-seq peaks nearest to a gene were
combined by computing mean cut sites. Results are row normalized. f) Log2 fold change in
gene expression between TN-iPSC cell lines and the original TN cells (x-axis) and TSM-iPSC
cell lines and the original TSM cells (y-axis). CD8 T cell and pluripotent associated genes are
labeled. Negative numbers indicate increased expression in T-iPSC cell lines, while positive
numbers indicate increased expression in the original T cells. g) Aggregated read counts of
ATAC-seq at SELL and CD48 loci show diminished accessibility around promoter regions
of reprogrammed CD8 T cells. h) Aggregated read counts of ATAC-seq at Sox9 and Sox2
show increased accessibility around promoter regions of reprogrammed CD8 T cells.
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(a)

(b)

Figure 4.3: Shared accessible peaks and genes maintained after reprogramming TN-iPSCs
and TSM-iPSCs from starting CD8(+) T cell populations. (a) Log2 fold change expression of
significantly differentially expressed genes (FDR < 0.05) between TN and TSM (x-axis) and
TN-iPSCs and TSM-iPSCs (y-axis). Red dots indicate genes that are differentially expressed
but do not have correlated directionality between the T-iPSC and original T cell popula-
tions. Black dots indicate genes that have correlated directionality between the T-iPSC and
original T cell populations. (b) Log2 fold change in accessibility of significantly differentially
accessible regions (adjusted p-value < 0.05) between TN and TSM (x-axis) and TN-iPSCs
and TSM-iPSCs (y-axis).
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Figure 4.4: Fibroblasts were reprogrammed from three donors to FB-iPSCs and charac-
terized for pluripotency. a) Dermal fibroblasts (FB) were isolated from skin biopsies and
cultured in human FB medium. FB cells were reprogrammed using Sendai virus. FBs were
infected with four retroviral supernatants (Yamanaka factors OCT4, SOX2, KLF4, and c-
MYC) for reprogramming to FB-iPSCs. RNA-seq was collected for FB-iPSCs (3 donors, 4
replicates). RNA-seq for fibroblasts were taken from ENCODE (accession ENCSR510QZW)
(2 replicates). ATAC-seq was collected for FB-iPSCs (3 donors, 2 replicates). ATAC-seq
for fibroblasts were taken from GEO (accession GSE100611, 2 biological replicates). b) Im-
munofluorescence staining for pluripotency markers TRA-1-60, NANOG, TRA-1-81, SSEA3,
OCT-3/4, and SSEA4 in FB-iPSC clone 5. c) Quantitative RT-PCR based analysis of
pluripotency gene expression in FB-iPSC clones. Näıve FB cells used as a negative control.
d) Chromosome spread demonstrating that FB-iPSC clone 5 possess a normal karyotype.
e) Teratoma formation assay shows FB-iPSC clone 5 formed all three germ layers Ec (ecto-
derm), M (mesoderm) and En (endoderm) labeled in the images.
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Figure 4.5: Reprogrammed fibroblasts and T cell retain epigenetic and transcriptomic mem-
ory after reprogramming. a) (Left) Counts of genes that were significantly differentially
expressed (significance defined as abs (log2foldchange) > 0.5 and adjusted p-value < 0.05)
between the following four conditions: CD8(+) T cell vs T-iPSC, fibroblast (FB) vs T cell,
FB vs FB-iPSC, and FB-iPSC vs T-iPSC. T cells and T-iPSC consist of TN and TSMs.
(Right) Cumulative distribution functions (CDFs) of log2 fold change of differentially ex-
pressed genes between each of the four conditions. b) (Left) Counts of regions that were
significantly differentially accessible (significance defined as abs(log2foldchange) > 0.5 and
adjusted p-value < 0.05) between the following four conditions: T cell vs T-iPSC, fibroblast
(FB) vs T cell, FB vs FB-iPSC, and FB-iPSC vs T-iPSC. (Right) Cumulative distribution
functions (CDFs) of log2 fold change of differentially accessible regions between each of the
four conditions. c) Volcano plot of log2 fold change and -log10 adjusted p-values of dif-
ferential expression for genes compared in fibroblasts and FB-iPSCs. d) Joint analysis of
log2 fold change of ATAC-seq and RNA-seq between fibroblasts (FB) and FB-iPSCs. x-axis
shows ATAC-seq log2 fold change between fibroblasts and FB-iPSCs. y-axis shows RNA-seq
log2 fold change. For each gene on the y-axis, the closest ATAC-seq peak to a given gene
with the greatest absolute log2 fold change is shown on the x-axis. Size indicates the inverse
distance to the gene of interest. Bottom left quadrant shows genes with increased expression
and accessibility in fibroblasts Top right quadrant shows genes with increased expression
and accessibility in FB-iPSCs. e) Example ATAC-seq normalized Tn5 cut site counts in
fibroblasts and FB-iPSCs surrounding pluripotent associated gene NANOG and collagen
associated gene COL3A1. f) Venn diagrams show overlap between differentially expressed
genes (left) and differentially accessible regions (right) between original (T vs fibroblast)
and reprogrammed (FB-iPSC vs T-iPSC) populations. Differential genes and regions are
selected with FDR < 0.05 and absolute value of log2 fold change > 0.5. g) Row normal-
ized expression of selected genes in FB-iPSCs, -iPSCs, and TSMs. Selected genes include
pluripotent associated, collagen/extracellular matrix associated, and CD8 associated genes.
All genes displayed are differentially expressed between FB-iPSCs and T-iPSCs. Columns
are sorted within each cell type by donor. h) Joint analysis of log2 fold change of ATAC-seq
and RNA-seq between T-iPSC and FB-iPSC conditions. x-axis shows ATAC-seq log2 fold
change between FB-iPSC and T-iPSC. y-axis shows RNA-seq log2 fold change. For each
gene on the y-axis, the closest ATAC-seq peak to a given gene with the greatest absolute
log2 fold change is shown on the x-axis. Size indicates the inverse distance to the gene of
interest. i) Aggregated normalized ATAC-seq read counts in T-iPSCs and FB-iPSCs at genes
CD3E and CD3D, associated with the α/β T cell receptor.



CHAPTER 4. TRANSCRIPTOMIC AND EPIGENETIC MEMORY RETENTION OF
REPROGRAMMED CD8(+) T CELLS 82

−40

−20

0

20

−90 −60 −30 0 30
PC1: 32% variance

P
C

2:
 2

8%
 v

ar
ia

nc
e

CellType
ES
FB_iPSC
iPSC_Tn
iPSC_Tsm

(a)

−20

−10

0

10

20

−200 −100 0
PC1: 95% variance

P
C

2:
 2

%
 v

ar
ia

nc
e

CellType
ES
FB_iPSC
iPSC_Tn
iPSC_Tsm

(b)

Figure 4.6: Principal component analysis (PCA) of ATAC-seq and RNA-seq samples shows
variability in similarity of reprogrammed T cells and fibroblasts to embryonic stem cells. (a)
PCA of RNA-seq of 5,000 highest variable genes. (b) PCA of ATAC-seq of top 1,000 variable
peak regions.
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Figure 4.7: T-iPSCs and FB-iPSCs derived embryoid bodies generate CD34(+) hematopoi-
etic cells that acquire T cell surface markers after 4 weeks in culture. a) Schematic of culture
conditions embryoid bodies generated using T-iPSCs or FB-iPSCs. Media changes were done
on days 2, 3, and 6. Cells were harvested at day 9 of embryoid body culture. b) Flow cytom-
etry plots showing phenotype of dissociated embryoid bodies. c) Graphic depiction of day
9 output of CD34(+) CD43(-) cells for 9 replicates of TSM-iPSC, TN-iPSC, and FB-iPSC
lines. d) Schematic showing culture conditions of CD34(+) cells isolated from embryoid
bodies. Isolated CD34(+) cells are cultured on plates coated with confluent OP9-DLL4 with
the cytokine combinations as noted. Cells were passaged every 3-4 days as indicated by
arrows, then harvested at day 38. Arrows indicate passage and flow analysis. e) Plots show
acquisition of CD3 and TCRαβ (left) and CD4 and CD8 (right) in FB-iPSC vs T-iPSC (3
replicates from TN-iPSC line and 2 replicates from TSM-iPSC line) derived T progenitors
over 3 weeks in T specification culture.
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4.10 Methods and Materials

All experimental methods discussed in this Section were performed by the Blazar Laboratory
at the University of Minnesota.

4.10.1 Flow sorting of TN and TSM cells from human peripheral
blood

Record exact volume of apheresis unit from Memorial Blood Center. Add 5 ml Acid Citrate
Dextrose Solution (ACD-A) per 40 ml apheresis unit. Transfer blood to a sterile container
and add an equal volume of ammonium chloride (STEMCELL Technologies catalog# 07850)
Mix by inverting gently; incubate on ice for 10 minutes. Centrifuge sample at 500 X g at room
temperature (RT) 15-25°C for 10 minutes. Remove supernatant and wash cells with column
buffer, spin at 150 X g for 10 minutes with break off. Carefully remove supernatant. Repeat
wash step until platelets are mostly removed (1-2X). Follow the STEMCELL Technologies
EasySep kit instructions for Human näıve CD8 T cell selection (Catalog#19158). This
procedure is for processing 500 µl- 8 ml of sample (up to 4 X 108 cells). Prepare the MNC
suspension at a concentration of 5 X107 cells/ml in recommended medium (see below). Add
the EasySep Human Näıve CD8 T cell enrichment cocktail at 50 µl/ml cells. Immediately
add the EasySep Human CD45RO depletion cocktail at 50 µl/ml. Mix well and incubate
at RT for 30 minutes. Vortex the EasySep D2 magnetic particles for approximately 30
seconds. Ensure that the particles are in a uniform suspension with no visible aggregates.
Add EasySep D2 magnetic particles at 100 µl/ml cells. Mix well and incubate at RT for
10 minutes. Bring cell suspension up to 10 ml with recommended medium. Mix cells by
pipetting up and down then place tube on magnet without the cap. Set aside for 5 minutes.

Pick up magnet and in one continuous motion, invert the magnet and tube, pouring off
the desired fraction into a new 14 ml tube. The unwanted magnetically labeled cells will
remain bound in the original tube. Leave magnet and tube inverted for 2-3 seconds, then
return to upright position. Do not shake or blot off drops that may remain hanging from
the tube. Remove original tube from magnet and replace with the tube holding desired cells
and set aside for 5 more minutes for a total of 2 X 5 minute separations. Cells are ready for
counting and staining. Stain cells with viability dye (1:1000) and surface antibodies (1:200)
in PBS at RT for 20 minutes, wash the cells using sterile flow staining buffer. Sort cells using
flow cytometric analysis [61], excluding non-viable cells, CD14+ cells, and CD19+ cells; and
including cells that are positive for all other markers in the antibody panel.

4.10.2 Reprogramming of TN and TSM cells into T-iPSCs

Sorted TN or TSM cells were stimulated before reprogramming for 48 hours by culturing
300,000 cells at a 3:1 ratio with anti-CD3/CD28 beads, 50 IU/mL IL-2, 25 ng/mL IL-
7, and 25 ng/mL IL-15 in 6-well plates (2mL/well). Medium: 10% FBS/1% Pen-Strep
RPMI 1640. After 48 hours of stimulation, cells were transduced with CytoTune 2.0 Sendai
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reprogramming vectors at an MOI of 10. After 24 hours, the media was changed and
cells were plated on to mouse embryonic fibroblasts (MEFS) and observed daily for colony
formation. Individual colonies were selected and then cultured until loss of episomal Sendai
vector was confirmed.

4.10.3 Characterization and validation of pluripotency of
T-iPSCs

Genome analyses (nucleic acid isolation, quantitative polymerase chain reactions, bisulfite
sequencing, and karyotypes) were performed with standard techniques as described in [215].
For live staining, the TRA-1-60 antibody (1:400, Millipore, Billerica, MA) and secondary an-
tibody Alexa 488-conjugated anti-mouse IgM (1:400, Invitrogen) were diluted in human em-
bryonic stem cell medium and added into the culture plate. The plate was incubated at 37°C
for 1 hour before medium was changed to fresh conditioned medium. TRA-1-60+ colonies
were identified under a fluorescence microscope. For immunofluorescence evaluations, iPSCs
grown on feeder cells in chamber slides were fixed with 4% paraformaldehyde for 15 minutes.
If nuclear permeation was needed, cells were treated with 0.2% TritonX (Sigma-Aldrich, St.
Louis, MO) in phosphate buffered saline for 30 minutes. Cell preparations were blocked
in 3% bovine serum albumin in phosphate buffered saline for 2 hours, and incubated with
primary antibody overnight at 4°C. The following antibodies were used: TRA1-60 (clone
MAB4360, 1:400), TRA1-81 (clone MAB4381, 1:400), SSEA4 (clone MAB4304, 1:100) and
SSEA3 (clone MAB-4303, 1:100) from Millipore; NANOG (clone EB06860, 1:100) from
Everest Biotech, Upper Heyford, Oxfordshire, UK; OCT3/4 (clone AB27985, 1:200) from
ABCAM, Cambridge, MA; and SOX2 (clone 630802, 1:500) from Biolegend, San Diego,
CA. All secondary antibodies used were Alexa Fluor Series from Invitrogen (all 1:500) for 1
hour at room temperature. Images were taken using confocal microscope (Olympus BX61).
Direct alkaline phosphatase activity was analyzed using Alkaline Phosphatase Staining Kit
used according to the manufacturer’s recommendations (Millipore). For teratoma forma-
tion, young adult NOG mice were injected with 1 million cells re-suspended in a mixture of
DMEM/F12 Matrigel (BD Biosciences), and type IV collagen (ratio 2:1:1, 40 µL per mouse)
into the right quadriceps muscle. Tumors were harvested in 3–8 weeks and cryopreserved at
-80°C in optimal cutting temperature medium (Sakura Finetek USA).

4.10.4 Preparation, sequencing, and quantification of the
accessible genome with ATAC-seq

50,000 cells per biological replicate were sorted. Cells were washed once with 50µL of cold
PBS buffer, then lysed with 50 µl of cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl,
3 mM MgCl2 and 0.1% IGEPAL CA-630). Lysed nuclei were incubated in the transposase
reaction mix as previously described [24] at 37°C for 30 minutes. Immediately following
incubation, the sample was then purified the DNA using Qiagen MinElute Kit according to
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the manufacturer’s protocol and eluted transposed DNA in 20 µl Elution Buffer (10mM Tris
buffer, pH 8). Purified DNA was stored at -20°C. To amplify transposed DNA fragments and
barcoded the libraries, Illumina Nextera Index Kit (FC-121-1011) was used. The following
was combined in a PCR tube: 20 µl Transposed DNA, 2.5 µl Nextera PCR Primer with
barcode 1, 2.5 µl Nextera PCR Primer with barcode 2, 25 µl NEBNext High-Fidelity 2x
PCR Master Mix (New England Labs Cat. #M0541) to 50 µl total volume. PCR cycle
as follows: (1) 72°C for 5 min, (2) 98°C 30 sec, (3) 98°C 10 sec, (4) 63°C 30 sec, (5) 72°C,
1 min, (6) Repeat steps 3-5, 12x (7) Hold at 4°C. AMPure XP Beads were used to purify
the ATAC-seq libraries with a 1:1 PCR product to Beads ratio. Purified ATAC-seq libraries
were eluted in 40 µl Elution Buffer.

ATAC-seq fragments were size-selected for fragments between 115 and 600 bp. ATAC
libraries were ligated with Nextera sequencing primers using Polymerase Chain Reaction
(PCR), as described [188]. KAPA Library Quantification Kit for Illumina Platforms (KAPA
Biosystems, KK4824) was used for sequencing library quantification according to the manu-
facturer’s protocol with ABI ViiA 7 Real-Time PCR System. NextSeq 500 V2 High Output
Kit (Illumina, FC-404-2005, 75 cycles) and Illumina NextSeq 550 system were used for library
sequencing. ATAC-seq samples were run with paired-end 37bp reads.

To process ATAC-seq, we first used Trimmomatic [16] to trim primers from reads. We
aligned reads to the reference genome (hg19) using bowtie version 2.3.2 [112]. We marked
duplicate reads in aligned bam files using PICARD. We used FASTQC [51] to verify the
quality of aligned reads.

After alignment of reads, reads aligned to the positive and negative strands were shifted
+4bp and -5bp, respectively [25]. For each sample, we called peaks using MACS2 (version
2.1.0) [239], setting the FDR to 0.05. Peaks from all samples were merged by taking the
union of all overlapping peaks. Overlapping peaks were merged.

4.10.5 Preparation, sequencing, and quantification of the
transcribed genes with RNA-seq

50,000-200,000 cells were sorted per biological replicate. Cells were washed once with 500µL
of cold PBS buffer. Cell pellets were resuspended in 300µL of RLT lysis buffer and stored at
-80°C. Total RNA was extracted with QIAGEN RNeasy Plus Mini Kit (QIAGEN, 74134).
mRNA was isolated with NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB,
E7490) and the RNA-seq libraries were generated with NEBNext Ultra II Directional RNA
Library Prep Kit for Illumina (NEB, E7760) according to manufacturer’s instructions.

KAPA Library Quantification Kit for Illumina Platforms (KAPA Biosystems, KK4824)
was used for sequencing library quantification according to the manufacturer’s protocol with
ABI ViiA 7 Real-Time PCR System. NextSeq 500 V2 High Output Kit (Illumina, FC-404-
2005, 75 cycles) and Illumina NextSeq 550 system were used for library sequencing with
single end 75bp reads.

RNA-seq samples were aligned to the hg38 genome using bowtie2 version 2.3.2. RSEM
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was used to quantify gene expression for all samples [117]. PICARD was used to gather
metrics using the command CollectRnaSeqMetrics [164].

4.10.6 Reprogramming of fibroblast cells in FB-iPSCs

To isolate dermal FBs for reprogramming, skin biopsies were obtained following consent from
healthy donors. Samples were cut into 2 × 2 mm squares, the tissue was then trapped under
a sterile coverslip in a 6-well plate, and cultured in human FB medium: DMEM (Invitrogen)
supplemented with 10% FBS (HyClone, Logan, UT) and penicillin/streptomycin (Invitro-
gen). Every two days the media was changed and at 90% confluency, FB cells were passaged
using 0.05% trypsin EDTA. FB reprogramming was achieved as previously published using
Sendai virus [214, 213, 57]. The four Yamanaka factor Sendai viral supernatants, OCT4,
SOX2, KLF4, and c-MYC were produced by transfecting 293T/17 cells with Lipofectamine
2000 (Invitrogen, Carlsbad, CA) with three plasmids: one cargo plasmid (containing the
reprogramming gene), a plasmid expressing the VSV-G envelope gene, and a helper plasmid
with the retroviral Gag/Pol gene, and then harvested 48-72hours after transfection. Ap-
proximately, 100,000 FBs per well of a 6-well plate were plated and infected with a 1:1:1:1
mix of the 4 retroviral supernatants in the presence of 5µgml-1 of protamine sulfate. Five
days later, cells were re-seeded onto feeder layers of irradiated CF1 MEFs. The medium was
changed after 24 hours to human embryonic stem cell medium, consisting of DMEM/F12
(Invitrogen) supplemented with 10% KnockOut Serum Replacement (Invitrogen), 2mM Glu-
taMAX (Invitrogen), 50µM 2-mercaptoethanol (Invitrogen), 1 × nonessential amino acids
(Invitrogen), 50 Unitsml-1 penicillin, 50mgml-1 streptomycin, and 10ngml-1 basic FB growth
factor (R&D Systems, Minneapolis, MN). Cultures were maintained at 37°C, 5% CO2, with
daily medium changes. Morphologic appearance was used to pick colonies, 30-60 days after
initial infection. FB-iPSC colonies were verified using karyotype, gene expression array, and
immunofluorescence and cultured until loss of episomal Sendai vector was confirmed [160].

4.10.7 Gene set enrichment analysis (GSEA) of differentially
expressed genes

We used all MSIGDB gene set annotations (version v6.2) [121] to detect increased expression
of a set of genes (the foreground), against a background. To detect increased expression of
gene sets in a given condition (condition 1), relative to another condition (condition 2), we
set the foreground to be the top 2,000 genes identified by DeSeq2 to have significantly in-
creased expression relative to condition 2 (adjusted p-value < 0.05), where genes are ordered
by their absolute log2 fold change. We set the background set to be all genes that have
base mean expression of greater than 1 between conditions 1 and 2. We used R package
clusterProfiler [234] to collect perform GSEA and use a p-value cutoff of 0.05 to determine
whether or not a gene set is significant.
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4.10.8 Annotation of differentially accessible regions with
rGREAT

We use rGREAT [69] to annotate differentially accessible regions in FB-iPSCs and T-iPSCs.
We set the foreground to all genomic regions that are significantly differentially accessible in
fibroblasts or T cells both before and after reprogramming. We determine significance as all
regions with FDR < 0.05. We set the background to all regions with base mean accessibility
greater than 1.0, identified using DeSeq2, both before and after reprogramming.

4.10.9 Identification of fibroblast expressed genes and T cell
expressed genes

We identified sets of ‘fibroblast expressed genes’ by selecting the top 2000 genes that had
significantly increased expression in fibroblasts, relative to original T cells and ES cells (GEO
accession GSE115046) [83]. We additionally compared to ES cells to remove any genes asso-
ciated with stemness and pluripotency. We first ran a gene set enrichment analysis (GSEA)
to identify annotations that had overall increased expression in original fibroblasts, relative
to T cells. This annotations identified annotations related to collagen, the extracellular ma-
trix, and epithelial cells. These annotations are of particular interest because fibroblasts
synthesize collagen and the extracellular matrix [150], and are expected to be present in the
original fibroblasts. We used all genes in this analysis that were annotated in at least one
of these categories to define our set of ‘fibroblast expressed genes’. We additionally removed
any genes annotated in MSigDB to be associated with pluripotency or stemness.

We similarly determined a set of ‘T cell expressed genes” by selecting the top 2000 genes
that had significantly increased expression in T cells, compared to both fibroblasts and ES
cells. We next ran GSEA of these genes, and further selected genes that were annotated for
CD8(+) T cell and immune response, as specified in MSigDB. We additionally removed any
genes annotated in MSigDB to be associated with pluripotency or stemness.

4.10.10 Maintenance and differentiation of human iPSCs to
hematopoietic progenitors

Human iPSC lines were maintained on Matrigel or Geltrex coated plasticware with feeder
free, serum free culture conditions in TeSR1 medium (STEMCELL Technologies) at 37 °C
incubator with 5% CO2 and 5% O2. For differentiation, hiPSCs were cultured at around
80-90 % confluency, followed by Rock inhibitor (10 µM, TOCRIS) treatment for minimum
30 minutes. For Embryoid body (EB) generation, undifferentiated hiPSCs were washed once
with PBS followed by dissociated with Accutase (STEMCELL Technologies) treatment at
37 °C for 5-10 minutes. Large clusters of cells were resuspended in PBS and centrifuged at
270 X g for 5 minutes. After discarding supernatant, cell pellets were gently resuspended
in 90% APEL-differentiation medium + 10% TeSR1 medium (STEMCELL Technologies),
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supplemented with BMP-4 (10 ng ml-1) and bFGF (5 ng ml-1) and triturated carefully to
generate 5-10 cells size aggregates and cultured in non tissue culture plates. Following 42 h,
developing EBs were collected by gravity, and resuspended in APEL-differentiation media
containing BMP-4 (10 ng ml-1), bFGF (5 ng ml-1), and CHIR99021 (3 µM, Stemgent),
SB431542 (6 µM, Selleck Chemicals). After 24 h, EBs were again collected and resuspended
in APEL-differentiation media containing VEGF (20 ng ml-1), bFGF (5 ng ml-1), IL-3 (20
ng ml-1), Flt3L (20 ng ml-1) and SCF (100 ng ml-1) and cultured for another 5-6 days
with addition of 5 ml fresh media at mid time point. Cultures were maintained in a 5%
CO2/5% O2/90% N2 environment. At day 8/9 EBs were harvested, washed once with
PBS and dissociated using 1:1 Accutase and 0.25 % trypsin EDTA mixture until no visible
clumps were observed. To break clumps into single cell suspension, they were 2-3 times
passed through 18 followed by 23 G needle. Hematopoietic CD34+ cells were enriched using
Easy-Sep CD34+ isolation kit (STEMCELL Technologies).

For T lineage differentiation, 1 X 105 purified CD34+ cells were plated onto confluent
OP9-DLL4 cells for about 3 to 4 weeks and passaged every 4-5 days as described previ-
ously [102]. For passaging OP9-DLL4;Tprog cultures, cells were washed with PBS followed
by dissociated with accutase treatment at 37ºC for 5 minutes. Cells were detached from the
surface and triturated using P1000 pipette tips by several times up and down. Single cells
suspension were passed through 40µm filter and centrifuged at 400 X g for 5 minutes. Cell
pellets were resuspended in 2-3 ml α-MEM complete media with 20% FBS, 100 ng ml-1 SCF
(R&D Systems), 10 ng ml-1 Flt3L (Miltenyie Biotec) and 5 ng ml-1 IL-7 (Miltenyi Biotec)
for initial 5 days. From Day 6 onward, cells were cultured in 2-3 ml α-MEM complete media
with 20% FBS, 10 ng ml-1 SCF, 10 ng ml-1 Flt3L and 5 ng ml-1 IL-7. All recombinant
factors are human.

4.10.11 T specification of iPSC-derived CD34(+) Hematopoietic
Progenitors

For T lineage differentiation, 1 X 105 purified CD34(+) cells were plated onto confluent OP9-
DLL4 cells for about 3 to 4 weeks and passaged every 4-5 days as described previously [102].
For passaging T progenitor cultures, cells were washed with PBS followed by dissociated
with Accutase treatment at 37ºC for 5 minutes. Cells were detached from the surface and
triturated using P1000 pipette tips by several times up and down. Single cell suspensions
were passed through 40µm filter and centrifuged at 400 X g for 5 minutes. Cell pellets
were resuspended in 2-3 ml α-MEM complete media with 20% FBS, 100 ng ml-1 SCF (R&D
Systems), 10 ng ml-1 Flt3L (Miltenyie Biotec) and 5 ng ml-1 IL-7 (Miltenyi Biotec) for initial
5 days. From Day 6 onward, cells were cultured in 2-3 ml α-MEM complete media with 20%
FBS, 10 ng ml-1 SCF, 10 ng ml-1 Flt3L and 5 ng ml-1 IL-7. All recombinant factors are
human.
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Chapter 5

Self-guarding of MORC3 enables
virulence factor-triggered immunity

The innate immune system senses pathogens and initiates the defense of hosts [88]. In re-
sponse to the innate immune system, pathogens employ virulence factors, which are small
molecules that aid in the inhibition of immunity [52]. The guard hypothesis [12] postu-
lates that hosts counteract pathogen virulence factors by guarding critical innate immune
pathways such that their disruption by virulence factors provokes a secondary immune re-
sponse [52]. Although this hypothesis is acknowledged in plants [12, 92], the importance of
guard immunity in mammals is less clear [52]. This work describes a unique ‘self-guarded’
immune pathway in human monocytes, in which guarding and guarded function are united in
one protein. This pathway is triggered by ICP0, a virulence factor of Herpes Simplex Virus-
1 (HSV-1), which results in the induction of type I interferons (IFN). A CRISPR-screen
identified the ICP0 target MORC3 as an essential negative regulator of IFN. Mechanisti-
cally, ICP0 degrades MORC3, which leads to de-repression of a regulatory element near
the IFNB1 locus to drive anti-viral IFN response. These results suggest a model in which
the primary anti-viral function of MORC3 is ‘self-guarded’ by its secondary IFN-repressing
function. Thus, a virus that degrades MORC3 to avoid its primary anti-viral function will
trigger a secondary anti-viral IFN response.

In this chapter, we gather measurements of the transcriptome and chromatin accessibil-
ity to help characterize the role of a transcription factor, MORC3, in the innate immune
system’s response to pathogens. In particular, we leverage chromatin accessibility to identify
a MORC3 regulated element (MRE) that induces transcription of nearby genes in human
monocytes. This project is in collaboration with the Vance Lab at University of Califor-
nia, Berkeley. Primary contributions in this work involve interpretation of changes in the
transcriptome, and identification of regulatory regions. We include additional experimental
procedures performed by collaborators to provide background and motivation.



CHAPTER 5. SELF-GUARDING OF MORC3 ENABLES VIRULENCE
FACTOR-TRIGGERED IMMUNITY 92

5.1 Background

Pathogen-associated-molecular patterns (PAMP) are small, molecular motifs that are as-
sociated with a given class of pathogens. To protect host cells from viral infection, the
innate immune system employs pattern-recognition-receptors (PRR) to detect PAMPs [88].
Detection of PAMPs by PRRs triggers the activation of multiple signaling cascades in the
host immune cells, such as the stimulation of interferons (IFNs) or cytokines [165, 2]. Stim-
ulation of type I IFNs triggers the expression of interferon stimulated genes (ISG), which
up-regulates the function of immune cells to resolve pathogens [148].

To avoid these immune defenses, pathogens produce virulence factors that disrupt critical
immune pathways [52]. To combat disruption of immune pathways by virulence factors, im-
munity in plants relies on a secondary line of pathogen detection, which monitors, or guards,
the integrity of host immune defense pathways. This guarding of host defense pathways is
referred to as the guard hypothesis [12], which results in virulence factor-mediated disrup-
tion of the guarded pathway, which triggers activation of a secondary immune response [52].
Plants employ numerous guard proteins that are critical for immunity [92, 227]. Other sen-
sors also guard critical pathways against bacterial virulence factors in mammals [52, 18,
99, 231]. However, the extent to which guard-immunity in mammals extends beyond these
sensors remains unclear [52].

Herpes Simplex Virus-1 (HSV-1) is a dsDNA-virus. Its DNA genome is recognized as a
PAMP by the cyclic-GMP-AMP synthase (cGAS)–stimulator of interferon genes (STING)
PRR-pathway [127, 78]. Downstream of DNA recognition, STING activates TANK Binding
Kinase 1 (TBK1) [85] and I-kappa-B kinase ε (IKKε) [59] that phosphorylate and activate
interferon regulatory factors 3 and 7 (IRF3/7), leading to transcriptional induction of type
I interferon (IFN) cytokines [78]. IFNs bind to the IFN alpha and beta receptor (IFNAR)
to induce transcription of anti-viral interferon-stimulated genes (ISG). In this work, we
evaluate guard-immunity through the innate immune response to HSV-1 in human BLaER1
monocytes.

5.2 CRISPR screen identifies MORC3 as a negative

regulator of IFN in human monocytes

The primary function of virulence factor ICP0 is to degrade or inactivate host proteins [17].
Therefore, it was hypothesized that ICP0 targets a negative regulator of IFN for degradation
(Figure 5.1a), inadvertently triggering an IFN response. To identify negative regulators of
IFN in BLaER1 monocytes, a genome-wide CRISPR screen was conducted to identify a
substrate of ICP0 that negatively regulates IFN. The screen relied on antibody staining of
Virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible (Viperin).
Viperin is an ISG that can be used to report IFN status at single cell resolution (Figure 5.1b).

Cells with spontaneous induction of Viperin were sorted from the bulk population to en-
rich for sgRNAs whose targets are negative regulators of IFN. sgRNAs targeting the protein
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MORC3 induced Viperin expression. We decided to focus on MORC3 as it was previously
described to be degraded by ICP0 in fibroblasts [195]. We confirmed that ICP0 was required
for MORC3 degradation during HSV-1 infection in BLaER1 monocytes (Figure 5.1d). In-
dependently generated MORC3–/– BLaER1 monocytes (Figure 5.1e) displayed spontaneous
IFN induction, measured by IFNB1.

We next collected RNA-seq from MORC3–/– monocytes and WT stimulated monocytes
(mCherry) to understand how the degradation of MORC3 changes the global transcriptome.
We also collected samples for virulence factor induced monocytes (two virulence factors:
ICP0 and E4ORF3) to understand how the degradation of MORC3 changes the global
transcriptome. Global transcriptomic changes in MORC3–/– monocytes mirrored changes
induced by virulence factors, leading to co-clustering of these conditions on the first prin-
cipal component, generated from gene counts (Figure 5.1f). Furthermore, investigation of
expression of ISGs showed similar expression patterns of ISGs in MORC3–/– monocytes
and virulence factor induced monocytes (Figure 5.1g). These results identify MORC3 as a
negative regulator of IFN in human monocytes and demonstrate that genetic loss or ICP0-
mediated degradation of MORC3 leads to a potent IFN response that is independent of
PRR-signaling hubs.

5.3 MORC3 represses viral replication and IFN

transcription

To investigate how MORC3 represses IFN we next performed RNA-seq of MORC3–/– and
MORC3–/– IFNAR1–/– IFNAR2–/– monocytes. We considered MORC3–/– IFNAR1–/–
IFNAR2–/– monocytes in particular because IFNs signal through the IFNAR receptor, trig-
gering stimulation of ISGs. We found the majority of transcriptional changes incurred by
MORC3 deficiency were due to IFNAR signaling. ISGs that were induced in MORC3–/–
monocytes were not upregulated upon IFNAR co-deletion (Figure 5.2d) and MORC3–/–
IFNAR1–/– IFNAR2–/– cells clustered together with IFNAR1–/–IFNAR2–/– cells (Fig-
ure 5.2e). This indicates that MORC3 is not required to directly repress antiviral ISGs.
However, a small number of genes, including IFNB1, were still de-repressed in MORC3–/– IF-
NAR1–/– IFNAR2–/– monocytes, which suggested they may be direct targets of MORC3 re-
pression (Figure 5.2d). The most significantly de-repressed genes in MORC3–/– IFNAR1–/–
IFNAR2–/– monocytes were MLLT3, IFNB1 and FOCAD, which, remarkably, are clustered
together within a short section of chromosome 9 (chr9:20,329,000-21,086,000; Figure 5.2i).
Almost all protein-coding genes within this region were de-repressed in MORC3–/– cells,
while adjacent genes in both directions were not regulated (Figure 5.2f). Given that these
genes have different promoters and are not normally co-regulated or functionally related,
we hypothesized that MORC3 acts in a locus-specific manner to regulate gene expression.
Consistent with this, a retroviral-based randomly integrated IFNB1-promoter-luciferase re-
porter was only activated by DNA-STING activation but was not activated in the absence
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of MORC3 (Figure 5.2g). As expected, the endogenous IFNB1 gene was activated both by
STING signaling and MORC3 deficiency (Figure 5.2h). Together, these results indicate that
MORC3 acts to repress the IFNB1 locus rather than the IFNB1 promoter, whereas canonical
PRR-mediated induction of IFNB1 is promoter-dependent and locus-independent.

We next asked how the location-dependent repression mediated by MORC3 regulates
expression of anti-viral ISGs. There are 17 different type I IFN genes (IFNB1, IFNE,
IFNK, IFNW1, and thirteen IFNA genes) that cluster together on chromosome 9 but en-
code proteins that vary in cell-type expression, kinetics of induction, and receptor affinity.
The most studied type I IFN gene is IFNB1 because it is dominantly induced in IFN-
producing cells. However, ISG induction downstream of STING activation in BLaER1
monocytes did not rely solely on IFNB1, as revealed by IFNAR-dependent induction of
ISGs such as RSAD2, CXCL10 in an IFNB1-independent manner in response to foreign
DNA (Figure 5.3a). Thus, BLaER1 monocytes are competent to make IFNs other than
IFNB1. In contrast, IFNB1 is the only IFN-gene within the MORC3-repressed genomic
region on chromosome 9 (Figure 5.2d) and is thus the only IFN-gene that is de-repressed in
MORC3–/– cells (Figure 5.3b). Consequently, monocytes required IFNB1 to activate ISGs
in the absence of MORC3 (Figure 5.3c, d). MORC3–/–IFNB1–/– cells clustered together
with MORC3–/–IFNAR1–/–IFNAR2–/– on the PCA plot of RNA-seq data (Figure 5.3e).
As expected, virulence factor-mediated activation of the MORC3 pathway also resulted in
the locus-specific induction of IFNB1 and its neighboring genes (Figure 5.3f). We conclude
that MORC3 acts narrowly and selectively on the IFNB1 locus and does not regulate other
type I IFN genes. Thus, in contrast to canonical PRR-signaling, activation of the MORC3
pathway by viral virulence factors uniquely relies on IFNB1 for anti-viral ISG induction
(Figure 5.3g).

5.4 Identification of regulatory regions of IFNB1 in

BLaER1 monocytes

Because MORC3 is known to interact with H3K4me3 [118] and repress IFN, we next sought
to understand how MORC3 was repressing IFNB1. Specifically, we sought to verify if re-
pression of IFNB1 was related to changes in chromatin accessibility in the genomic region
containing IFNB1, and whether a change in accessibility was driving de-repression of IFNB1
in MORC3–/–IFNAR1–/– IFNAR2–/– monocytes. To investigate changes in chromatin ac-
cessibility in the absence of MORC3, we collected ATAC-seq from IFNAR1–/–IFNAR2–/–
and MORC3–/–IFNAR1–/–IFNAR2–/– monocytes. When evaluating genome-wide changes
in accessibility between conditions, most strongly differentially accessible regions with signif-
icant de-repression in MORC3–/–IFNAR1–/– IFNAR2–/– monocytes were contained near
IFNB1(Figure 5.4(a)). However, regions outside this region, including promoters of IGF2BP3
and ZNF239, were also significantly differential between conditions. To identify regions that
may be regulatory for de-repression of IFNB1, we filtered out promoter regions from our
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analysis (Figure 5.4(b)). After this filter, there were two outlier peaks with significant en-
richment in MORC3–/–IFNAR1–/– IFNAR2–/– monocytes located near IFNB1, contained
in the intron of the FOCAD gene (FDR of 1.54e-24 and 8.46e-20). We refer to this region a
s MORC3 regulated element, as its accessibility is induced in the absence of MORC3. Fig-
ure 5.4(c) shows ATAC-seq coverage at the MRE in the FOCAD intron, showing significant
de-repression in MORC3–/–IFNAR1–/– IFNAR2–/– monocytes.

To confirm these results, we collected RNA-seq that knocked out the MRE to deter-
mine whether IFNB1 expression was dependent on this potential enhancer in the absence of
MORC3. Indeed, IFNB1 expression was significantly reduced in MRE-/- MORC3-/- mono-
cytes (Figure 5.4(d)). These results suggest that we have identified a region that is regulatory
for expression of IFNB1, and is a component of the MORC3 pathway.

We next leveraged Epitome [144], discussed in Section 2.3.1, to predict binding sites of
previously characterized TFs to better understand regulation of this identified peak. We pre-
dicted binding for 97 TFs near IFNB1 in IFNAR1–/–IFNAR2–/– and MORC3–/–IFNAR1–/–
IFNAR2–/– monocytes, leveraging ATAC-seq from both conditions as input to Epitome as a
measurement of cell type specificity. We used a t-test to identify whether predictions of bind-
ing were significantly different between IFNAR1–/–IFNAR2–/– and MORC3–/–IFNAR1–/–
IFNAR2–/– conditions, and corrected resulting p-values for FDR. Epitome identified en-
richment of various TFs in MORC3–/–IFNAR1–/– IFNAR2–/– monocytes in regions near
IFNB1 (chr9:20,500,000-21,500,000), including IKZF1, TEAD4, and TAF1. These results
were not verified with ChIP-seq or CUT&RUN.

5.5 Characterization of MORC3 binding patterns in

BLaER1 monocytes

Although we have identified that MORC3 is a negative regulator of IFN in monocytes, the
mechanism to which MORC3 regulates IFN is unknown. In particular, we have identified a
regulatory region in the FOCAD intron (Figure 5.4(b)) that is de-repressed in the absence
of MORC3. We therefore sought to determine whether MORC3 was directly repressing this
region. We collected CUT&RUN for MORC3 in IFNAR1–/– IFNAR2–/– monocytes to
identify MORC3 binding sites. We used processing pipelines described in Section 3.2 to pro-
cess CUT&RUN samples. We generated a knock-in cell line that expresses 3xFLAG tagged
MORC3 at endogenous levels, and used FLAG M2 antibody, as previously described [67].
However, these experiments failed, with the identification of insufficient numbers of peaks in
IFNAR1–/– IFNAR2–/– monocytes, and poor enrichment within identified peaks (percent
reads in peaks ranging from 0.8%-0.7%).

We therefore ran ChIP-seq to identify binding sites of MORC3, using MORC3 antibody
in IFNAR1–/– IFNAR2–/– monocytes. Although it has been previously suggested that
MORC3 co-localizes with H3K4me3 through identification of MORC3 binding sites using
the MORC3 antibody [118], we find that the MORC3 antibody may be interacting with
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H3K4me3 (Figure 5.6(a)). This hypothesis would make it difficult to identify true MORC3
peaks when using the MORC3 antibody.

5.6 Endogenous retroviruses are not driving

de-repression of IFN in MORC3–/– IFNAR1–/–

IFNAR2–/– monocytes

Although we have shown that MORC3 represses IFN, previous literature has suggested that
MORC3 may be inhibiting endogenous retroviruses (ERVs) [67]. ERVs are discussed in de-
tail in Section 3.1. In a recent study, Groh et.al. showed that MORC3 binds ERV sequences
in mouse embryonic stem (ES) cells, silencing ERVs [67]. Thus, in the absence of MORC3,
increased expression of ERVs may be directly regulating IFN response. We therefore used
protocol discussed in Section 3.1 to quantify expression of ERVs from RNA-seq in four condi-
tions: IFNAR1–/–IFNAR2–/– mCherry, MORC3–/–, MORC3–/–IFNAR1–/–IFNAR2–/–,
and MORC3–/–IFNB1–/– monocytes. We next identified ERVs significantly enriched in
the former three conditions, relative to IFNAR1–/–IFNAR2–/– mCherry. Across these con-
ditions, three ERVs had shared enrichment in all three conditions, relative to mCherry
(Figure 5.5(a)). These ERVs included MSR1, HERVL74-int, and LTR12B.

We additionally extended our analysis to quantify ERVs using RepEnrich2 [37], designed
to quantify genome-wide levels of repetitive elements. We chose RepEnrich2 in particular be-
cause it was used by Groh et al. [67] to quantify ERVs in the absence of MORC3 in ES cells.
Figures 5.5(b) shows that no enrichment of ERVs between IFNAR1–/–IFNAR2–/– mCherry
and MORC3–/–IFNAR1–/–IFNAR2–/– monocytes was identified. However, DeSeq2 identi-
fied multiple ERVs that were significantly enriched (FDR < 0.05) in both conditions, suggest-
ing that there was no preference of ERV enrichment in MORC3–/–IFNAR1–/–IFNAR2–/–
monocytes.

5.7 Discussion

These results identify a novel innate immune sensing mechanism that detects the enzymatic
activity of virulence factors from DNA viruses. This pathway does not utilize a PAMP-
sensing receptor akin to a PRR; nor does it depend on canonical PRR signaling components
that many viruses have evolved to disrupt or inhibit. Instead, it employs the self-guarded
protein MORC3, whose bi-functionality allows detection of pathogen-encoded enzymatic
activities. The primary function of MORC3 appears to be to inhibit replication of HSV-
1 [138, 204]. To escape restriction by MORC3, DNA viruses employ virulence factors, which
may degrade MORC3. In response, we propose MORC3 evolved a secondary function: locus-
specific repression of the IFNB1 gene. This secondary function allows activation of anti-viral
IFN upon virulence factor-mediated perturbation of ND10 nuclear bodies and MORC3.
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Employing a single protein to repress both viral gene expression and the IFNB1 locus may
provide a significant barrier against viruses that seek to selectively escape the repression of
viral genes without also triggering IFNB1 expression. It is conceivable that MORC3 exerts its
two different functions by executing one unifying molecular activity, namely, transcriptional
repression. Various repressive activities have been proposed for the MORC gene family,
including DNA methylation [125], H3K9-methylation [207], H3.3 incorporation [67] and DNA
compaction [103]. In the future, it will be of interest to determine how MORC3 represses
both viral and IFNB1 gene expression and how repressive activity is targeted to specific loci.
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Figure 5.1: MORC3 is a novel negative regulator of IFN. a) Hypothesized mechanism
in which ICP0 degrades a negative regulator of IFN. b) Schematic of genome wide
CRISPR screen to identify negative regulator of IFN. c) Cas9-expressing BLaER1 cells
were transduced with individual sgRNAs targeting and Viperin expression was analyzed
by FACS. Mean+SEM of n=4. * p < 0.05; ** p < 0.01; ns = not significantly different
than scramble sgRNA, tested by one-way ANOVA and Dunnett’s post hoc test. d) IF-
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otherwise restrict4ICP0 mutant virus) were infected with HSV-1 for 3h. One representative
immunoblot of two is shown. e) Gene expression of BLaER1 monocytes is shown as mean
± SEM of n=2-3 from one representative clone or two (multiple KOs) or one clone (WT
and MORC3-/-). ** p < 0.01; ns = not significantly different than WT, tested by two-way
ANOVA and Dunnett’s post hoc test. f, g) Transcriptional changes in BLaER1 monocytes
as detected by RNA-seq in three independent experiments are depicted by PCA analysis (f)
and heatmap (g).
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Figure 5.2: a) The titer of HSV-1 stocks at 2.5×105 U2OS-FFU/ml was determined on
HCT116-Cas9 cells that were transduced with the indicated sgRNAs. Mean ± SEM of n=6.
* p < 0.05; ** p < 0.01; *** p < 0.001; ns = not significantly different, tested by paired,
two-sided t-test. b) BLaER1 monocytes were infected with HSV-1 and viral progeny were
quantified after 48h. Mean (line) and individual values of three independent experiments.
LOD = limit of detection. * p < 0.05; ns = not significantly different than the corresponding
MORC3 sufficient condition, tested by one-way ANOVA and Dunnett’s post hoc test. c)
Two proposed functions of MORC3 that allow self-guarding. d, e) Transcriptomic changes
in BLaER1 monocytes as detected by RNA-seq in three independent experiments: heatmap
of log normalized counts of the top 40 most variable genes (column normalized) (a) or PCA
of variance stabilizing transformed counts (e). f) Log transcripts per million (TPM) of
genes in BLaER1 monocytes of genes clustered near IFNB1 on chromosome 9 as detected
by RNA-seq. Depicted are means of three independent experiments. All protein coding
genes within this region are depicted. g, h) STAT1–/–STAT2–/–BLaER1-Cas9 expressing a
randomly integrated IFNB1-promoter-Luciferase reporter were transduced with the indicated
sgRNAs and stimulated with cytosolic DNA for 24h. Luciferase signal and IFNβ secretion
is depicted as mean ± SEM of n=3. p < 0.05; ns = not significantly different, tested
by paired, two-sided t-test. i) Adjusted p-values of differentially expressed genes between
MORC3–/– IFNAR1–/– IFNAR2–/– and IFNAR1–/– IFNAR2–/– mCherry expressing cells
are depicted. Data point sizes represent normalized effect size, calculated as the effect size
multiplied by the normalized mean counts of all MORC3–/– IFNAR1–/– IFNAR2–/– and
IFNAR1–/– IFNAR2–/– expressing cells.
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Figure 5.3: Positional repression of IFNB1 explains IFN de-repression in MORC3 deficient
cells a) BLaER1 monocytes of the indicated genotypes were transfected with DNA for 12h.
Gene-expression as measured by q-RT-PCR of one representative clone of two per genotype
is depicted as mean ± SEM of four independent experiments. b) Log transcripts per million
(TPM) of IFN genes in BLaER1 monocytes were detected by RNA-seq in three independent
experiments. c) Gene expression as measured by q-RT-PCR of BLaER1 monocytes of the
indicated genotypes is shown as mean ± SEM of n=3 from one representative clone of
two (multiple KOs) or one clone (WT and MORC3–/–). d-e) Transcriptomic changes in
BLaER1 monocytes as detected by RNA-seq in three independent experiments are depicted
by heatmap analysis (d) and PCA (e). f) Mean log transcripts per million (TPM) of a
gene cluster at chromosome 9 in BLaER1 monocytes . Mean TPM is calculated for each
condition across three experiments. All protein coding genes within this region are depicted.
g) Overview of virulence-factor-triggered immune signaling.
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Figure 5.4: Identification of regulatory region for IFNB1 expression. (a) Genome-wide ad-
justed p-values (FDR) for all differentially accessible regions identified from ATAC-seq be-
tween IFNAR1–/– IFNAR2–/– and MORC3–/–IFNAR1–/– IFNAR2–/– monocytes. All
regions displayed indicate enrichment in MORC3–/–IFNAR1–/– IFNAR2–/– monocytes.
(b) Genome-wide adjusted p-values (FDR) differentially accessible regions not overlap-
ping promoter regions, identified from ATAC-seq between IFNAR1–/– IFNAR2–/– and
MORC3–/– IFNAR1–/– IFNAR2–/– monocytes. All regions displayed indicate enrichment
in MORC3–/–IFNAR1–/– IFNAR2–/– monocytes. (c) Pileup of ATAC-seq reads for IF-
NAR1–/– IFNAR2–/– and MORC3–/– IFNAR1–/– IFNAR2–/– monocytes at the FOCAD
intron (chr9: 20,972,654 - 209,751,43). (d) Log2 fold change and adjusted p-values (FDR) for
all differentially expressed genes between FOCAD intron-/- MORC3-/- STAT1-/- STAT2-
/- (peak KO) and MORC3-/- STAT1-/- STAT2-/- (peak WT) monocytes. Red indicates
enrichment in peak WT, and blue indicates enrichment in peak KO.
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Figure 5.5: Quantification of expression of ERV families in IFNAR1–/–IFNAR2–/– mCherry
and MORC3-/- monocytes. (a) Overlap of shared enrichment of ERVs in MORC3–/– IF-
NAR1–/– IFNAR2–/–, MORC3–/– IFNB1–/–, and MORC3-/- monocytes when compared
to IFNAR1–/– IFNAR2–/– mCherry samples. (b) ERV family expression was quantified
with RepEnrich2 in IFNAR1–/– IFNAR2–/– mCherry (WT) vs MORC3–/– IFNAR1–/–
IFNAR2–/– monocytes. ERVs with an FDR <0.05 are highlighted in red. (left) Using
EdgeR [173] did not detect any differential regulation of ERVs upon MORC3 deficiency.
(right) DeSeq2 [126] analysis suggested minimal up- and down-regulation of ERV families.
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Figure 5.6: (a) Heatmaps of normalized read counts for 357 peaks identified in IFNAR1-/-
IFNAR2-/- monocytes. Each row is centered around a peak summit, displaying counts
2000bp around the peak summit. Reads were normalized for library size. Color scale
of IFNAR/MORC3 KO (IFNAR1-/- IFNAR2-/- MORC3-/-) is relative to to IFNAR KO
(IFNAR1-/- IFNAR2-/-). H3K4me3 is taken CD14++ CD16- monocytes from blood (ac-
cession GSM1320313).



CHAPTER 5. SELF-GUARDING OF MORC3 ENABLES VIRULENCE
FACTOR-TRIGGERED IMMUNITY 105

5.8 Methods and Materials

All experimental methods discussed in this Section were performed by the Vance Laboratory
at University of California, Berkeley.

5.8.1 Cell culture

BLaER1, U937 and THP-1 cells were cultured in RPMI Medium 1640 supplemented with
L-glutamine, sodium pyruvate, 100U/ml penicillin-streptomycin (Thermo Fisher) and 10%
(v/v) FCS (Omega Scientific). HEK293T, U2OS and HCT116 cells were cultivated in DMEM
Medium (Thermo Fisher) containing the same supplements. 1.4 million BLaER1 cells per
well of a 6-well plate were trans-differentiated into monocytes for 5-6 days in medium con-
taining 10 ng/ml of hrIL-3, 10 ng/ml hr-CSF-1 (M-CSF) (both PeproTech) and 100 nM
β-Estradiol (Sigma-Aldrich) as previously described [59, 58]. 1.4 million THP-1 and U937
cells per well of a 6-well plate were differentiated overnight with 100 ng/ml PMA (Sigma-
Aldrich). STING-deficient and corresponding control THP1 and U937 cells were a gift from
Dan Stetson (University of Washington). BLaER1 cells were a gift from Thomas Graf (CRG,
Barcelona, Spain) and Veit Hornung (LMU Munich, Germany). U2OS cells were a gift from
Robert Tjian and Xavier Darzacq (UC Berkeley). THP1 cells were from ATCC. U937 cells
were from the UC Berkeley Cell Culture Facility. HCT116 cells were a gift from David
Raulet (UC Berkeley).

5.8.2 Cell stimulation

For activation of the cGAS-STING pathway, 3.2µg of UltraPure™ Salmon Sperm DNA
(Thermo Fisher) or 3.2µg of 2’3’ cGAMP (Invivogen) was complexed with 8µl Lipofec-
tamine 2000 (Thermo Fisher) according to the manufacturer’s protocol in Opti-MEM Re-
duced Serum Media (Thermo Fisher) and added to 1.4 million cells per well of a 6-well
plate for 3h or the indicated time. PRRs were activated with 200 ng/ml LPS-EB ultra-
pure from E. coli O111:B4 (Invivogen) or 500ng/ml R848 (Invivogen). For activation of
doxycycline-inducible trans-gene expression, cells were stimulated with 1µg/ml doxycycline
hyclate (Sigma-Aldrich) for 24h.

5.8.3 HSV-1 infection

BACs of 4ICP0 HSV-1 and corresponding WT strain were a gift from Bernard Roizman
(University of Chicago). BAC DNA was prepared from a mono-clonal transformant and
transfected into U2OS cells using Lipofectamine 2000 (Thermo Fisher). Virus was prop-
agated, harvested and frozen as described [15]. Viral progeny were titered from cell-free
supernatants by TCID50 using 8 replicates per dilution. U2OS cells were used for titering
if not otherwise indicated, and FFU/ml was calculated by the Spearman & Kärber algo-
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rithm. Myeloid cells were infected by adsorbing virus of appropriate MOI in FCS free RPMI
Medium 1640 for 1h. Subsequently, medium was changed to complete RPMI Medium 1640.

5.8.4 Quantification of gene expression

Gene expression was quantified by RT-qPCR. RNA was isolated with E.Z.N.A. Total RNA
kit I (Omegabiotek) and 0.5-1µg RNA was treated with RQ1 RNase-free DNase (Promega)
in presence of RNasin plus Ribonuclease Inhibitor (Promega). RNA was reverse transcribed
with Superscript III reverse transcriptase (Invitrogen). SYBRGreen dye (Thermo Fisher
Scientific) was used for quantitative PCR assays and analyzed with a real-time PCR system
(StepOnePlus; Applied Biosystems). All gene expression values were normalized to GAPDH
and are depicted as 2−4Ct (Cttarget – CtGAPDH).

RSAD2.fwd CAACTACAAATGCGGCTTCT
RSAD2.rev ATCTTCTCCATACCAGCTTCC
CXCL10.fwd TCTGAATCCAGAATCGAAGG
CXCL10.rev CTCTGTGTGGTCCATCCTTG
GAPDH.fwd GAGTCAACGGATTTGGTCGT
GAPDH.rev GACAAGCTTCCCGTTCTCAG
IFNB1.fwd CAGCATCTGCTGGTTGAAGA
IFNB1.rev CATTACCTGAAGGCCAAGGA
MLLT3.fwd GAGCACAGTAACATACAGCA
MLLT3.rev GGCAAAATGAAACCAGCATA

5.8.5 Immunoblotting

Whole cell lysates were prepared by lysing cells in 50mM Tris pH7.4, 50mM NaCl, 2mM
MgCl2, 0.5% NP40, 25U/ml Benzonase® Nuclease (Millipore Sigma) and Complete Mini
EDTA-free Protease Inhibitor (Roche) for 20 min on ice. Laemmli buffer was added to a
final concentration of 1× and lysates were boiled at 95°C for 10 minutes. Proteins were sepa-
rated with denaturing PAGE and transferred to Immobilon-FL PVDF membranes (Millipore
Sigma). Membranes were blocked with Li-Cor Odyssey blocking buffer. Primary antibodies
were added and immunoblots incubated overnight. Primary antibodies used were anti-β-
Actin (C4) (Santa Cruz, sc-47778), anti-HSV-1 ICP4 (H943) (Santa Cruz, sc-69809), anti-
HSV-1 ICP0 (11060) (Santa Cruz, sc-53070), anti-TBK1 (D1B4) (Cell Signaling, #3504),
anti-IKKε (Cell Signaling, #2690), anti-IRF-3 (D83B9) (Cell Signaling, #4302), anti-IRF-7
(Cell Signaling, #4920), anti-MORC3 (NovusBio, NBP1-83036), anti-MORC3 (Proteintech,
24994-1-AP). Appropriate secondary IRDye®-conjugated antibodies (Li-Cor) were used and
immunoblots were imaged using the Li-Cor Odyssey platform.
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5.8.6 CRISPR/Cas9 mediated gene targeting

Monoclonal gene deficient BLaER1 cells were generated as follows. Briefly, sgRNAs specific
for the indicated genes, were designed to target an early coding exon of the respective gene
with minimal off-targets and high on-target activity using ChopChop [110]. U6-sgRNA-
CMV-mCherry-T2A-Cas9 plasmids were generated by ligation-independent-cloning as pre-
viously described [182] and BlaER1 cells were electroporated using a Biorad GenePulser
device. Automated cell sorting was used to collect mCherry positive cells that were cloned
by limiting dilution. Monoclonal cell lines were identified, rearranged and duplicated for
genotyping using deep sequencing as previously described [183]. Knockout cell clones con-
tained all-allelic frame shift mutations without any wild type reads. The MRE was deleted
using indicated sgRNAs below to induce a 3kb deletion. Two independent knockout single-
cell clones were analyzed per genotype, and one representative clone per genotype is shown.
For polyclonal gene targeting, cell lines were transduced with lentiCas9-Blast [178], a gift
from Feng Zhang (Addgene plasmid # 52962; http://n2t.net/addgene:52962; RRID: Ad-
dgene 52962). sgRNAs were designed as above and cloned into lentiGuide-Puro [178], a
gift from Feng Zhang (Addgene plasmid # 52963; http://n2t.net/addgene:52963; RRID:
Addgene 52963), using ligation-independent-cloning. Cas9-expressing cells were transduced
with indicated sgRNA-encoding lenti-viruses.

sgRNA target sites (PAM is highlighted in bold):
STING GCGGGCCGACCGCATTTGGGAGG
TBK1 ACAGTGTATAAACTCCCACATGG
IKBKE (IKKε) TGCATCGCGACATCAAGCCGGGG
CHUK (IKKα) TAGTTTAGTAGTAGAACCCATGG
IKBKB (IKKβ) GCCATGGAGTACTGCCAAGGAGG
IRF7 CCGAGCTGCACGTTCCTATACGG
IRF3 GTTACTGGGTAACATGGTGTTGG
TRIM33 GTTATGAACTTCACAAATTGGG
VMP1 GAACTGCCAGTTTGGCCCGGG
UBA3 GGCCTAAGGAGCAGCCTTTTGG
NAE1 GAATTAAATAGCGATGTCTCTGG
NF1 GCTGGTTTCCTTCACGACAGG
USP18 GGCACAGTCAACGCAAATCAAGG
NFIC GCTGCTGGGCGAGAAGCCCGAGG
EFR3A GATTGCTATGGAGGCACTGG
PTPN1 GAGCAGATCGACAAGTCCGGG
MORC3 GCTGATACTGAGATACCATATGG
TAF5L GCTGCTCAATGACATCCTTCTGG
RNF7 GGCCATGTGGAGCTGGGACGTGG
PI4KA GGGATAGCATACTTGCAAAGG
IFNAR1 GTACATTGTATAAAGACCACAGG
IFNAR2 TGAGTGGAGAAGCACACACGAGG
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STAT1 CAGGAGGTCATGAAAACGGATGG
STAT2 ATCATCTCAGCCAACTGGGTAGG
IFNB1 GATGAACTTTGACATCCCTGAGG
MRE 1 AACCCTAATGTACACTTGGTAGG
MRE 2 CACTTCTAGAACGGTCACCATGG
scramble GCTGCTCCCTAACAGGACGC

5.8.7 Cytokine quantification

Cytokine secretion was quantified by ELISA of cell-free supernatants after stimulations
(IFNβ: R&D, DY814-05; IP-10: BD, 550926).

5.8.8 Lenti-/retro-viral transduction

Lenti- and retro-virus was produced in HEK293T cells. 4.5 million cells were plated per 10cm
dish and transfected with 5µg of transfer vector, 3.75µg of packaging vector (pd8.9 for lenti-
and pGAGPOL for retro-virus) and 1.5µg pVSVG using 30.75µg PEI-MAX (Polysciences,
24765-1). 12h after transfection the medium was replaced with DMEM medium containing
30% (v/v) FCS. After 24h-36h, viral supernatants were harvested, centrifugated at 1000×g
for 10min, and filtered through a .45µm filter. Cells were culture for 48 after transduction,
prior to selection with puromycin or Blasticidine S hydrochloride (both Sigma-Aldrich).

5.8.9 Ectopic gene expression

A doxycycline-inducible lenti-virus system was used for ectopic gene expression as previously
described [59]. Codon-optimized constructs for HSV1-ICP0 and HA-Adenovirus5-E4ORF3
were synthesized by Integrated DNA Technologies and cloned into pLIP. ICP0 variants were
generated by overlap-extension PCR.

5.8.10 IFNB1-reporter

The 1kb upstream of the transcription start site of huma IFNB1 (hg38 chr9:21077923-
21078922) was synthesized by Integrated DNA Technologies and cloned in front of a luciferase
reporter from Gaussia princeps [11] into a retro-viral transfer vector in opposite direction to
the 5’LTR. BLaER1 cells were transduced and sorted for reporter integration.

5.8.11 Flow Cytometry

BLaER1 were harvested for flow cytometry, fixed and permeabilized using eBioscience™ IC
Fixation Buffer and eBioscience™ Permeabilization Buffer (both Thermo Fisher) according to
the provider’s protocol. Cells were incubated for 1h with PE-Anti-Viperin (Clone MaP.VIP;
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BD, 565196) and analyzed using a BD LSRFortessa™ Flow Cytometer. If indicated, cells
were sorted on a BD FACSAria™ Fusion Cell Sorter.

5.8.12 CRISPR-Screen

Monoclonal Cas9-expressing BLaER1 cells were re-selected with blasticidine and 9 million
cells were transduced in four biological replicates with a pooled Human CRISPR Knockout
library at an MOI of approximately 0.3. The library was a gift from Michael Bassik (Addgene
#101926, 101927, 101928, 101929, 101930, 101931, 101932, 101933, 101934). Two days after
transduction, cells were selected with puromycin for 3 days and trans-differentiated. Cells
were stained for Viperin expression. Per biological replicate, 46− 80103 cells with increased
spontaneous Viperin expression were sorted into direct lysis buffer (0.2 mg/ml proteinase K,
1 mM CaCl2, 3 mM MgCl2, 1 mM EDTA, 1% Triton X 100, 10 mM Tris pH 7.5). As control,
sgRNA positive cells were sorted irrespectively of their Viperin expression. The reactions
were incubated at 65°C for 10min and at 95°C for 15min. The integrated sgRNA cassette
was amplified using a nested PCR approach with Phusion DNA Polymerase (Thermo Fisher)
with 4 technical replicates per biological replicate.

Details of the nested PCR approach and primers for the second level PCR have been de-
scribed [183]. PCR products were sequenced on Illumina HiSeq4000 50SR. Deep sequencing
data was analyzed with PinAPL-Py [198]. The recovery of the sgRNA library was subop-
timal, probably due to low number of sorted cells. Subsequently, reads from all technical
and biological replicates were combined and enriched sgRNAs over control were identified.
Modified robust ranking aggregation (RRA) to gene level revealed candidate negative regu-
lators of IFN. Candidates with a significantly highly ranked sgRNAs (p.adjust < 0.01) were
validated in an arrayed format (Figure 5.1c).

5.8.13 RNA-Seq

RNA from 2.8 million trans-differentiated BLaER1 monocytes was isolated using TRI-
zol™ Reagent (Thermo Fisher) according to the manufacturer’s recommendation. DNA was
removed with RQ1 RNase-free DNase (Promega) in the presence of RNasin plus Ribonucle-
ase Inhibitor (Promega) and RNA isolated with Agencourt AMPure XP beads (Beckman
Coulter). mRNA-seq libraries were prepared by the QB3 Genomics Functional Genomics
Laboratory from poly-A-enriched mRNA using a KAPA mRNA HyperPrep Kit (Roche) and
sequenced on the Illumina Novaseq S4 150PE. Sequencing quality of fastq files was evalu-
ated with FASTQC [51] and paired end RNA-seq reads were aligned to the reference genome
(GRCh38.83) using Bowtie2 [112] with default settings. Transcript and gene counts were
quantified using RSEM [117] with the parameter ‘strandedness’ set to ‘reverse’ to account for
strand-specific library preparation protocol. DeSeq2 [126] was used to identify differentially
expressed genes between conditions by building a single DeSeq2 model using counts from
RSEM and performed pairwise comparisons of conditions. We consider all genes with a false
discovery rate (FDR) below 0.05 to be significantly differential. We used log normalized
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counts from DeSeq2 to perform principal component analysis (PCA) shown in Figure 5.1
and to generate heatmaps. Gene enrichment analysis was done with the R package cluster-
Profiler [234]. For each enrichment analysis, we assign the foreground to be the set of genes
with significant increased expression in the condition being evaluated. We then set the back-
ground to the set of all genes that have mean counts greater than 1 for the condition being
evaluated. Gene enrichment sets were downloaded from the Molecular Signatures Database
(MSigDB) [121].

5.8.14 ATAC-seq

ATAC-seq was performed as previously described by Buenrostro et al. [25]. 50,000 BLaER1
monocytes were washed with PBS and lysed in 50 µL of cold lysis buffer (10 mM Tris-HCl,
pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630). Nuclei were harvested by
centrifugation and resuspended in 50 µl TD Buffer (Illumina, FC-121-1030) with 2.5 µL
Tn5 Transposase (Illumina, FC-121-1030). The reaction was incubated for 30 min at 37°C
and DNA was isolated with a MinElute Kit (Qiagen). Transposed DNA fragments were
amplified to reach 30% of maximal amplification using Ad1 and Ad2 primer and sequenced
on an Illumina Nova-Seq SP 50PE.

ATAC-seq was processed as discussed in Section 4.10.4. We obtained counts representing
peak strength for all samples by counting the number of Tn5 cut sites that overlapped each
peak for each sample. We used DeSeq2 [126] to identify the differential abundance of cut
sites between IFNAR1–/– IFNAR2–/– and MORC3–/–IFNAR1–/– IFNAR2–/– monocytes,
and identified all regions with a FDR below 0.05 to be significantly differentially accessible
between conditions.

5.8.15 Statistical analysis

Data was analyzed for statistical significant differences using GraphPad Prism [99]. Gene
expression values were log2 transformed and viral titers were log10 transformed for statistical
analysis. Statistical tests are indicated in the figure legends and were RM one-way or two-
way ANOVA with Geisser-Greenhouse correction and Dunnett’s post hoc test or paired,
two-sided T-test. * p < 0.05; ** p < 0.01 *** p < 0.001.
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Part III

Conclusion
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Chapter 6

Discussion

In this work, we have introduced a set of tools and methods to aid in the processing and
interpretation of epigenetic datasets, with a focus on interpretability of chromatin accessi-
bility. We apply these tools to multiple applications related to innate and adaptive immune
systems. Within each chapter, we discuss the implications and future work for each method
and application introduced. Therefore, in this remaining chapter, we discuss a subset of
broad problems not yet addressed in this work, that should be considered as new methods
and tools are developed for interpreting epigenetic datasets.

6.1 Consideration of environmental and user impacts

on consumption of computational resources

In the machine learning and data science communities, proving computational efficiency
while maintaining or improving upon statistical performance over alternative methods is
occasionally used to help convince the broader community that they have made progress
over existing methodology [187, 205]. Although numerous methods designed to process
and analyze biological datasets have provided information regarding the improvement on
runtime over existing methods [124, 145], most of the methods referenced in this paper fail
to report metrics of runtimes, or the number of model parameters required to construct a
model [166, 170, 5]. Although often overlooked, computational efficiency is an important
factor to consider when presenting new methodology. Here, we discuss the environmental
and user impact of failing to consider such metrics.

A recent study that evaluated computational resources required to train machine learn-
ing models for natural language processing (NLP) demonstrated that state-of-the-art models
produced up to 626,000 pounds of CO2 emissions for training a single model, with minimal
improvement in accuracy over existing methods [202]. From these findings, the authors con-
cluded that proposed methods should provide metrics that allow for direct comparison to
existing state-of-the-art, including training time and information about hyperparameters.
Recent studies have proposed more concrete sets of metrics to evaluate computational ef-
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ficiency, including carbon emission, runtime, and the number of floating point operations
required to generate results [187]. Regardless, providing such information would allow users
to make educated decisions of model selection, based on their own cost and computational
constraints.

Ignorance of the consideration of resources required to train and validate models can
inhibit individual researchers that do not have available compute resources to reproduce
results. Lack of consideration of runtime and required resources during model conceptual-
ization may prove the model unusable. One such example in which model design hinders
usage is in the application of Epitome (Section 2.3.1) to scATAC-seq datasets (Section 2.3.2).
Although Epitome models train quickly on generic computer hardware [144], applying trained
models to predict binding over multiple cellular conditions is sequential, rendering the ap-
plication of Epitome models to predict TFBS in tens of thousands of cells slow (30 hours
for a scATAC-seq dataset with 10,000 cells over 130,000 genomic regions). Methods such as
chromVAR [181] forgo resolution of TFBS at individual genomic loci by directly computing
cell-level metrics of TF binding in a single computation that takes less than two hours [30].
Thus, tradeoffs such as accuracy, resolution, and runtime can be directly compared to justify
certain design decisions during model conceptualization.

6.2 Towards open source and reproducible projects

When trying to prove advancements of a computational method, much of our time is spent
learning how to configure and reproduce results of state-of-the-art methods apart from our
own. Although journals have recently made strides to require availability of code that is cen-
tral to the findings of a publication [33], missing or incomplete documentation and unspeci-
fied hardware requirements still make reproducing results difficult [163]. Both Epitome [144]
and Mango [145] follow robust protocol that aids in support for open-source reproducible
software. These software implement documentation, unit and integration tests, as well as
code checking standards. Through the Computational Biology Skills Seminar at University
of California, Berkeley, we have provided tutorials and resources to aid researchers in the
development of reproducible python packages.
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Acronyms

API Application Programming Interface.

bp base pair.

CKS convolutional kitchen sink.

CNN convolutional neural network.

ERV Endogenous retrovirus.

FDR false discovery rate.

HSC hematopoietic stem cell.

HSV-1 Herpes Simplex Virus-1.

IFN interferon.

ISG interferon-stimulated gene.

KO knock out.

MACS magnetic-activated cell sorting.

mRNA messanger ribonucleic acid.

PAMP pathogen-associated-molecular patterns.

PBMC peripheral blood mononuclear cell.

PIC pre-initialization complex.

PRR pattern-recognition-receptor.

PTM post-translational modification.
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ROC Receiver operating characteristic.

STING stimulator of interferon genes.

TF transcription factor.

TFBS transcription factor binding sites.

Viperin Virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible.

WT wild type.
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Appendix A

Get a Hobby

Getting a PhD is all about becoming an expert in one area. However, this doesn’t mean
you can’t excel in areas outside of your research during grad school. During my time at UC
Berkeley, I transformed from an amateur biker into a skilled rider. Here, I share a couple of
my favorite bike rides around Berkeley.
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Figure A.1: Grizzly peak is a great weekday ride: it is only 17 miles, and can be completed
before or after going in to lab. This ride includes a good ascent for training, but not too
much to kill you.
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Figure A.2: Biking the Richmond bridge is a great way to get out of the city and see the
water. It is relatively flat, passes pretty marinas, and leads to a great view of the bay. This
is a feel-good ride.
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Figure A.3: Pine Hearst is a great ride to do with friends on the weekend. It is nice on
hotter days, as much of it is shaded by the redwoods. Much of it is rolling hills so you never
get bored!
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Figure A.4: Three Bears is another weekend favorite. On this ride, you power through three
main ascents: the papa, mama, and baby. Keep an eye out for horses and cows.
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Figure A.5: If you are looking for an overnight bike ride, pack up your toothbrush and
swimsuit and bike to Dillon Beach. This ride passes by numerous cheese companies in
Marin, so you can stop by for a tasting.
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Figure A.6: This is yet another great overnight bike ride. You can find a place to stay in
Santa Cruz and relax by the beach after a long ride down Hwy 1.
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Figure A.7: With over 7,000 feet of ascent, Mount Diablo is a great challenge. Make sure to
do this one in the cooler months.
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