UC San Diego UC San Diego Previously Published Works

Title

SARS-CoV-2 evolution during treatment of chronic infection

Permalink

https://escholarship.org/uc/item/5367b5jw

Journal

Nature, 592(7853)

ISSN

0028-0836

Authors

Baker, Stephen Dougan, Gordon Hess, Christoph <u>et al.</u>

Publication Date

2021-04-08

DOI

10.1038/s41586-021-03291-y

Peer reviewed

Europe PMC Funders Group Author Manuscript *Nature*. Author manuscript; available in PMC 2021 April 10.

Published in final edited form as: *Nature*. 2021 April 01; 592(7853): 277–282. doi:10.1038/s41586-021-03291-y.

SARS-CoV-2 evolution during treatment of chronic infection

Steven A Kemp^{#1}, Dami A Collier^{#1,2,3}, Rawlings P Datir^{#2,3}, Isabella ATM Ferreira^{2,3}, Salma Gayed⁴, Aminu Jahun⁵, Myra Hosmillo⁵, Chloe Rees-Spear¹, Petra Mlcochova^{2,3}, Ines Ushiro Lumb⁶, David J Roberts⁶, Anita Chandra^{2,3}, Nigel Temperton⁷, The CITIID-NIHR BioResource COVID-19 Collaboration

Stephen Baker^{2,3} [Principal Investigators], Gordon Dougan^{2,3} [Principal Investigators], Christoph Hess^{2,3,26,27} [Principal Investigators], Nathalie Kingston^{20,12} [Principal Investigators], Paul J. Lehner^{2,3} [Principal Investigators], Paul A. Lyons^{2,3} [Principal Investigators], Nicholas J. Matheson^{2,3} [Principal Investigators], Willem H. Owehand²⁰ [Principal Investigators], Caroline Saunders¹⁹ [Principal Investigators], Charlotte Summers^{3,24,25,28} [Principal Investigators], James E.D. Thaventhiran^{2,3,22} [Principal Investigators], Mark Toshner^{3,24,25} [Principal Investigators], Michael P. Weekes² [Principal Investigators], Ashlea Bucke¹⁹ [CRF and Volunteer Research Nurses], Jo Calder¹⁹ [CRF and Volunteer Research Nurses], Laura Canna¹⁹ [CRF and Volunteer Research Nurses], Jason Domingo¹⁹ [CRF and Volunteer Research Nurses], Anne Elmer¹⁹ [CRF and Volunteer Research Nurses], Stewart Fuller¹⁹ [CRF and Volunteer Research Nurses], Julie Harris⁴¹ [CRF and Volunteer Research Nurses], Sarah Hewitt¹⁹ [CRF and Volunteer Research Nurses], Jane Kennet¹⁹ [CRF and Volunteer Research Nurses], Sherly Jose¹⁹ [CRF and Volunteer Research Nurses], Jenny Kourampa¹⁹ [CRF and Volunteer Research Nurses], Anne Meadows¹⁹ [CRF and Volunteer Research Nurses], Criona O'Brien⁴¹ [CRF and Volunteer Research Nurses], Jane Price¹⁹ [CRF and Volunteer Research Nurses], Cherry Publico¹⁹ [CRF and Volunteer Research Nurses], Rebecca Rastall¹⁹ [CRF and Volunteer Research Nurses], Carla Ribeiro¹⁹ [CRF and Volunteer Research Nurses], Jane Rowlands¹⁹ [CRF and Volunteer Research Nurses], Valentina Ruffolo¹⁹ [CRF and Volunteer Research Nurses], Hugo Tordesillas¹⁹ [CRF and Volunteer Research Nurses], Ben Bullman² [Sample Logistics], Benjamin J Dunmore³ [Sample Logistics], Stuart Fawke³⁰ [Sample Logistics], Stefan Gräf^{3,12,20} [Sample Logistics], Josh Hodgson³ [Sample Logistics], Christopher Huang³ [Sample Logistics], Kelvin Hunter^{2,3} [Sample Logistics], Emma Jones²⁹ [Sample

Ethics

Author contributions

Conceived study: RKG, SAK, DAC, AS, TG, EGK

Designed experiments: RKG, SAK, DAC, LEM, JAGB, EGK, AC, NT, AC, CS, RD, RG, DDP, YM

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Address for correspondence: Ravindra K. Gupta, Cambridge Institute for Therapeutic Immunology and Infectious Diseases, Jeffrey Cheah Biomedical Centre, Puddicombe Wa, Cambridge CB2 0AW, UK, Tel: +44 1223 331491, rkg20@cam.ac.uk.

Competing interests: the authors declare no competing interests

The study was approved by the East of England – Cambridge Central Research Ethics Committee (17/EE/0025). Written informed consent was obtained from both the patient and family. Additional controls with COVID-19 were enrolled to the NIHR BioResource Centre Cambridge under ethics review board (17/EE/0025).

Performed experiments: SAK, DAC, LEM, RD, CRS, AJ, IATMF, KS, TG, CJRI, BB, JS, MJvG, LGC, GBM, LK

Interpreted data: RKG, SAK, DAC, PM, LEM, JAGB, PM, SG, KS, TG, JB, KGCS, IG, CJRI, JAGB, IUL, DR, JS, BB, RAG. DDP, RD, LCG, GBM

Logistics], Ekaterina Legchenko³ [Sample Logistics], Cecilia Matara³ [Sample Logistics], Jennifer Martin³ [Sample Logistics], Federica Mescia^{2,3} [Sample Logistics], Ciara O'Donnell³ [Sample Logistics], Linda Pointon³ [Sample Logistics], Nicole Pond^{2,3} [Sample Logistics], Joy Shih³ [Sample Logistics], Rachel Sutcliffe³ [Sample Logistics], Tobias Tilly³ [Sample Logistics], Carmen Treacy³ [Sample Logistics], Zhen Tong³ [Sample Logistics], Jennifer Wood³ [Sample Logistics], Marta Wylot³⁶ [Sample Logistics], Laura Bergamaschi^{2,3} [Sample Processing and Data Acquisition], Ariana Betancourt^{2,3} [Sample Processing and Data Acquisition], Georgie Bower^{2,3} [Sample Processing and Data Acquisition], Chiara Cossetti^{2,3} [Sample Processing and Data Acquisition], Aloka De Sa³ [Sample Processing and Data Acquisition], Madeline Epping^{2,3} [Sample Processing and Data Acquisition], Stuart Fawke³² [Sample Processing and Data Acquisition], Nick Gleadall²⁰ [Sample Processing and Data Acquisition], Richard Grenfell³¹ [Sample Processing and Data Acquisition], Andrew Hinch^{2,3} [Sample Processing and Data Acquisition], Oisin Huhn³² [Sample Processing and Data Acquisition], Sarah Jackson³ [Sample Processing and Data Acquisition], Isobel Jarvis³ [Sample Processing and Data Acquisition], Daniel Lewis³ [Sample Processing and Data Acquisition], Joe Marsden³ [Sample Processing and Data Acquisition], Francesca Nice³⁹ [Sample Processing and Data Acquisition], Georgina Okecha³ [Sample Processing and Data Acquisition], Ommar Omarjee³ [Sample Processing and Data Acquisition], Marianne Perera³ [Sample Processing and Data Acquisition], Nathan Richoz³ [Sample Processing and Data Acquisition], Veronika Romashova^{2,3} [Sample Processing and Data Acquisition], Natalia Savinykh Yarkoni³ [Sample Processing and Data Acquisition], Rahul Sharma³ [Sample Processing and Data Acquisition], Luca Stefanucci²⁰ [Sample Processing and Data Acquisition], Jonathan Stephens²⁰ [Sample Processing and Data Acquisition], Mateusz Strezlecki³¹ [Sample Processing and Data Acquisition], Lori Turner^{2,3} [Sample Processing and Data Acquisition], Eckart M.D.D. De Bie³ [Clinical Data Collection], Katherine Bunclark³ [Clinical Data Collection], Masa Josipovic⁴⁰ [Clinical Data Collection], Michael Mackay³ [Clinical Data Collection], Federica Mescia^{2,3} [Clinical Data Collection], Alice Michael²⁵ [Clinical Data Collection], Sabrina Rossi³⁵ [Clinical Data Collection], Mayurun Selvan³ [Clinical Data Collection], Sarah Spencer¹⁵ [Clinical Data Collection], Cissy Yong³⁵ [Clinical Data Collection], Ali Ansaripour²⁵ [Royal Papworth Hospital ICU], Alice Michael²⁵ [Royal Papworth Hospital ICU], Lucy Mwaura²⁵ [Royal Papworth Hospital ICU], Caroline Patterson²⁵ [Royal Papworth Hospital ICU], Gary Polwarth²⁵ [Royal Papworth Hospital ICU], Petra Polgarova²⁸ [Addenbrooke's Hospital ICU], Giovanni di Stefano²⁸ [Addenbrooke's Hospital ICU], Codie Fahey³⁴ [Cambridge and Peterborough Foundation Trust], Rachel Michel³⁴ [Cambridge and Peterborough Foundation Trust], Sze-How Bong²¹ [ANPC and Centre for Molecular Medicine and Innovative Therapeutics], Jerome D. Coudert³³ [ANPC and Centre for Molecular Medicine and Innovative Therapeutics], Elaine Holmes³⁷ [ANPC and Centre for Molecular Medicine and Innovative Therapeutics], John Allison^{20,12} [NIHR BioResource], Helen Butcher^{12,38} [NIHR BioResource], Daniela Caputo^{12,38} [NIHR BioResource], Debbie Clapham-Riley^{12,38} [NIHR BioResource], Eleanor Dewhurst^{12,38} [NIHR BioResource], Anita Furlong^{12,38} [NIHR BioResource], Barbara Graves^{12,38} [NIHR BioResource], Jennifer Gray^{12,38} [NIHR BioResource], Tasmin Ivers^{12,38} [NIHR BioResource], Mary Kasanicki^{12,28} [NIHR BioResource], Emma Le Gresley^{12,38} [NIHR BioResource], Rachel Linger^{12,38} [NIHR BioResource], Sarah Meloy^{12,38} [NIHR

BioResource], Francesca Muldoon^{12,38} [NIHR BioResource], Nigel Ovington^{12,20} [NIHR BioResource], Sofia Papadia^{12,38} [NIHR BioResource], Isabel Phelan^{12,38} [NIHR BioResource], Hannah Stark^{12,38} [NIHR BioResource], Kathleen E Stirrups^{12,20} [NIHR BioResource], Paul Townsend^{12,20} [NIHR BioResource], Neil Walker^{12,20} [NIHR BioResource], Jennifer Webster^{12,38} [NIHR BioResource]

¹⁹Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK ²⁰Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ²¹Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia WA 6150, Australia ²²MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK ²³R&D Department, Hycult Biotech, 5405 PD Uden, The Netherlands ²⁴Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ²⁵Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ²⁶Department of Biomedicine, University and University Hospital Basel, 4031Basel, Switzerland ²⁷Botnar Research Centre for Child Health (BRCCH) University Basel & ETH Zurich, 4058 Basel, Switzerland ²⁸Addenbrooke's Hospital, Cambridge CB2 0QQ, UK ²⁹Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK ³⁰Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK ³¹Cancer Research UK, Cambridge Institute, University of Cambridge CB2 0RE, UK ³²Department of Obstetrics & Gynaecology, The Rosie Maternity Hospital, Robinson Way, Cambridge CB2 0SW, UK ³³Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia ³⁴Cambridge and Peterborough Foundation Trust, Fulbourn Hospital, Fulbourn, Cambridge CB21 5EF, UK ³⁵Department of Surgery, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK ³⁶Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK ³⁷Centre of Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia ³⁸Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ³⁹Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, Cambridge CB2 0AH, UK ⁴⁰Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK ⁴¹Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK

, The COVID-19 Genomics UK (COG-UK) Consortium

Samuel C Robson⁵⁴ [Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], Nicholas J Loman⁸², Thomas R Connor^{51,110} [Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools], Tanya Golubchik⁴⁶ [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], Rocio T Martinez Nunez⁸³ [Funding acquisition, Metadata curation, Samples

and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], Catherine Ludden¹²⁹ [Funding acquisition, Leadership and supervision, Metadata curation, Project administration, and Samples and logistics], Sally Corden¹¹⁰ [Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], Ian Johnston¹⁴⁰, David Bonsall⁴⁶ [Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis], Colin P Smith¹²⁸, Ali R Awan⁶⁹ [Funding acquisition, Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation], Giselda Bucca¹²⁸ [Funding acquisition, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], M. Estee Torok^{63,142} [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Kordo Saeed^{122,151} [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Visualisation], Jacqui A Prieto^{124,150} [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Visualisation], David K Jackson¹⁴⁰ [Leadership and supervision, Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools], William L Hamilton⁶³ [Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools], Luke B Snell⁵² [Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Visualisation], Catherine Moore¹¹⁰ [Funding acquisition, Leadership and supervision, Metadata curation, and Samples and logistics], Ewan M Harrison^{129,140} [Funding acquisition, Leadership and supervision, Project administration, and Samples and logistics], Sonia Goncalves¹⁴⁰ [Leadership and supervision, Metadata curation, Project administration, and Samples and logistics], Derek J Fairley^{44,113} [Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], Matthew W Loose⁵⁹ [Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], Joanne Watkins¹¹⁰ [Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], Rich Livett¹⁴⁰ [Leadership and supervision, Metadata curation, Samples and logistics, and Software and analysis tools], Samuel Moses^{66,147} [Leadership and supervision, Metadata curation, Samples and logistics, and Visualisation], Roberto Amato¹⁴⁰ [Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools], Sam Nicholls⁸² [Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools], Matthew Bull¹¹⁰ [Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools], Darren L Smith^{1,99,146} [Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis], Jeff Barrett¹⁴⁰ [Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation], David M Aanensen⁵⁵ [Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation], Martin D Curran¹⁰⁶ [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Surendra Parmar¹⁰⁶ [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Dinesh Aggarwal^{1,140,105} [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], James G Shepherd⁸⁹ [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Matthew D Parker¹³⁴

[Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools], Sharon Glaysher¹⁰² [Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation], Matthew Bashton^{78,99} [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Anthony P Underwood⁵⁵ [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Nicole Pacchiarini¹¹⁰ [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Katie F Loveson¹¹⁸ [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Alessandro M Carabelli¹²⁹ [Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation], Kate E Templeton^{94,131} [Funding acquisition, Leadership and supervision, and Metadata curation], Cordelia F Langford¹⁴⁰ [Funding acquisition, Leadership and supervision, and Project administration], John Sillitoe¹⁴⁰ [Funding acquisition, Leadership and supervision, and Project administration], Thushan I de Silva¹³⁴ [Funding acquisition, Leadership and supervision, and Project administration], Dennis Wang¹³⁴ [Funding acquisition, Leadership and supervision, and Project administration], Dominic Kwiatkowski^{140,148} [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Andrew Rambaut¹³¹ [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Justin O'Grady^{111,130} [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Simon Cottrell¹¹⁰ [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Matthew T.G. Holden¹⁰⁹ [Leadership and supervision, Metadata curation, and Sequencing and analysis], Emma C Thomson⁸⁹ [Leadership and supervision, Metadata curation, and Sequencing and analysis], Husam Osman^{77,105} [Leadership and supervision, Project administration, and Samples and logistics], Monique Andersson¹⁰⁰ [Leadership and supervision, Project administration, and Samples and logistics], Anoop J Chauhan¹⁰² [Leadership and supervision, Project administration, and Samples and logistics], Mohammed O Hassan-Ibrahim⁴⁷ [Leadership and supervision, Project administration, and Samples and logistics], Mara Lawniczak¹⁴⁰ [Leadership and supervision, Project administration, and Sequencing and analysis], Alex Alderton¹⁴⁰ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Meera Chand¹⁰⁷ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Chrystala Constantinidou¹³⁵ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Meera Unnikrishnan¹³⁵ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Alistair C Darby¹³³ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Julian A Hiscox¹³³ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Steve Paterson¹³³ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Inigo Martincorena¹⁴⁰ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], David L Robertson⁸⁹ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Erik M Volz⁸⁰ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Andrew J Page¹¹¹ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Oliver G Pybus⁶⁴ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Andrew R Bassett¹⁴⁰ [Leadership and supervision, Sequencing and analysis, and Visualisation], Cristina V Ariani¹⁴⁰ [Metadata curation,

Project administration, and Samples and logistics], Michael H Spencer Chapman^{129,140} [Metadata curation, Project administration, and Samples and logistics], Kathy K Li⁸⁹ [Metadata curation, Project administration, and Samples and logistics], Rajiv N Shah⁸⁹ [Metadata curation, Project administration, and Samples and logistics], Natasha G Jesudason⁸⁹ [Metadata curation, Project administration, and Samples and logistics], Yusri Taha⁹¹ [Metadata curation, Project administration, and Samples and logistics], Martin P McHugh⁹⁴ [Metadata curation, Project administration, and Sequencing and analysis], Rebecca Dewar⁹⁴ [Metadata curation, Project administration, and Sequencing and analysis], Aminu S Jahun⁶⁵ [Metadata curation, Samples and logistics, and Sequencing and analysis], Claire McMurray⁸² [Metadata curation, Samples and logistics, and Sequencing and analysis], Sarojini Pandey¹²⁵ [Metadata curation, Samples and logistics, and Sequencing and analysis], James P McKenna⁴⁴ [Metadata curation, Samples and logistics, and Sequencing and analysis], Andrew Nelson^{99,146} [Metadata curation, Samples and logistics, and Sequencing and analysis], Gregory R Young^{78,99} [Metadata curation, Samples and logistics, and Sequencing and analysis], Clare M McCann^{99,146} [Metadata curation, Samples and logistics, and Sequencing and analysis], Scott Elliott¹⁰² [Metadata curation, Samples and logistics, and Sequencing and analysis], Hannah Lowe⁶⁶ [Metadata curation, Samples and logistics, and Visualisation], Ben Temperton¹³² [Metadata curation, Sequencing and analysis, and Software and analysis tools], Sunando Roy¹²³ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Anna Price⁵¹ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Sara Rey¹¹⁰ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Matthew Wyles¹³⁴ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Stefan Rooke¹³¹ [Metadata curation, Sequencing and analysis, and Visualisation], Sharif Shaaban¹⁰⁹ [Metadata curation, Sequencing and analysis, and Visualisation], Mariateresa de Cesare¹³⁹ [Project administration, Samples and logistics, Sequencing and analysis], Laura Letchford¹⁴⁰ [Project administration, Samples and logistics, and Software and analysis tools], Siona Silveira¹²² [Project administration, Samples and logistics, and Visualisation], Emanuela Pelosi¹²² [Project administration. Samples and logistics, and Visualisation], Eleri Wilson-Davies¹²² [Project administration, Samples and logistics, and Visualisation], Myra Hosmillo⁶⁵ [Samples and logistics, Sequencing and analysis, and Software and analysis tools], Aine O'Toole¹³¹ [Sequencing and analysis, Software and analysis tools, and Visualisation], Andrew R Hesketh¹²⁸ [Sequencing and analysis, Software and analysis tools, and Visualisation], Richard Stark¹³⁵ [Sequencing and analysis, Software and analysis tools, and Visualisation], Louis du Plessis⁶⁴ [Sequencing and analysis, Software and analysis tools, and Visualisation], Chris Ruis¹²⁹ [Sequencing and analysis, Software and analysis tools, and Visualisation], Helen Adams⁴⁵ [Sequencing and analysis, Software and analysis tools, and Visualisation], Yann Bourgeois¹¹⁷ [Sequencing and analysis, Software and analysis tools, and Visualisation], Stephen L Michell¹³² [Funding acquisition, and Leadership and supervision], Dimitris Gramatopoulos^{125,153} [Funding acquisition, and Leadership and supervision], Jonathan Edgeworth⁵³ [Funding acquisition, and Leadership and supervision], Judith Breuer^{71,123} [Funding acquisition, and Leadership and supervision], John A Todd¹³⁹ [Funding acquisition, and Leadership and supervision], Christophe Fraser⁴⁶ [Funding acquisition, and Leadership and supervision], David Buck¹³⁹ [Funding

acquisition, and Project administration], Michaela John⁵⁰ [Funding acquisition, and Project administration], Gemma L Kay¹¹¹ [Leadership and supervision, and Metadata curation], Steve Palmer¹⁴⁰ [Leadership and supervision, and Project administration], Sharon J Peacock^{129,105} [Leadership and supervision, and Project administration], David Heyburn¹¹⁰ [Leadership and supervision, and Project administration], Danni Weldon¹⁴⁰ [Leadership and supervision, and Samples and logistics], Esther Robinson^{105,77} [Leadership and supervision, and Samples and logistics], Alan McNally^{82,127} [Leadership and supervision, and Samples and logistics], Peter Muir¹⁰⁵ [Leadership and supervision, and Samples and logistics], Ian B Vipond¹⁰⁵ [Leadership and supervision, and Samples and logistics], John BoYes⁷⁰ [Leadership and supervision, and Samples and logistics], Venkat Sivaprakasam⁸⁷ [Leadership and supervision, and Samples and logistics], Tranprit Salluja¹¹⁶ [Leadership and supervision, and Samples and logistics], Samir Dervisevic⁹⁵ [Leadership and supervision, and Samples and logistics], Emma J Meader⁹⁵ [Leadership and supervision, and Samples and logistics], Naomi R Park¹⁴⁰ [Leadership and supervision, and Sequencing and analysis], Karen Oliver¹⁴⁰ [Leadership and supervision, and Sequencing and analysis], Aaron R Jeffries¹³² [Leadership and supervision, and Sequencing and analysis], Sascha Ott¹³⁵ [Leadership and supervision, and Sequencing and analysis], Ana da Silva Filipe⁸⁹ [Leadership and supervision, and Seguencing and analysis]. David A Simpson¹¹³ [Leadership and supervision, and Sequencing and analysis], Chris Williams¹¹⁰ [Leadership and supervision, and Sequencing and analysis], Jane AH Masoli^{114,132} [Leadership and supervision, and Visualisation], Bridget A Knight^{114,132} [Metadata curation, and Samples and logistics], Christopher R Jones^{114,132} [Metadata curation, and Samples and logistics], Cherian Koshy⁴² [Metadata curation, and Samples and logistics], Amy Ash⁴² [Metadata curation, and Samples and logistics], Anna Casey¹¹² [Metadata curation, and Samples and logistics], Andrew Bosworth^{105,77} [Metadata curation, and Samples and logistics], Liz Ratcliffe¹¹² [Metadata curation, and Samples and logistics], Li Xu-McCrae⁷⁷ [Metadata curation, and Samples and logistics], Hannah M Pymont¹⁰⁵ [Metadata curation, and Samples and logistics], Stephanie Hutchings¹⁰⁵ [Metadata curation, and Samples and logistics], Lisa Berry¹²⁵ [Metadata curation, and Samples and logistics], Katie Jones¹²⁵ [Metadata curation, and Samples and logistics], Fenella Halstead⁸⁷ [Metadata curation, and Samples and logistics], Thomas Davis⁶² [Metadata curation, and Samples and logistics], Christopher Holmes⁵⁷ [Metadata curation, and Samples and logistics], Miren Iturriza-Gomara¹³³ [Metadata curation, and Samples and logistics], Anita O Lucaci¹³³ [Metadata curation, and Samples and logistics], Paul Anthony Randell^{79,145} [Metadata curation, and Samples and logistics], Alison Cox^{79,145} [Metadata curation, and Samples and logistics], Pinglawathee Madona^{79,145} [Metadata curation, and Samples and logistics], Kathryn Ann Harris⁷¹ [Metadata curation, and Samples and logistics], Julianne Rose Brown⁷¹ [Metadata curation, and Samples and logistics], Tabitha W Mahungu¹¹⁵ [Metadata curation, and Samples and logistics], Dianne Irish-Tavares¹¹⁵ [Metadata curation, and Samples and logistics], Tanzina Haque¹¹⁵ [Metadata curation, and Samples and logistics], Jennifer Hart¹¹⁵ [Metadata curation, and Samples and logistics], Eric Witele¹¹⁵ [Metadata curation, and Samples and logistics], Melisa Louise Fenton¹¹⁶ [Metadata curation, and Samples and logistics], Steven Liggett¹²⁰ [Metadata curation, and Samples and logistics], Clive Graham⁹⁷ [Metadata curation, and Samples and logistics], Emma Swindells⁹⁸ [Metadata curation, and Samples and logistics], Jennifer Collins⁹¹

[Metadata curation, and Samples and logistics], Gary Eltringham⁹¹ [Metadata curation, and Samples and logistics], Sharon Campbell⁵⁸ [Metadata curation, and Samples and logistics], Patrick C McClure¹³⁸ [Metadata curation, and Samples and logistics], Gemma Clark⁵⁶ [Metadata curation, and Samples and logistics], Tim J Sloan¹⁰¹ [Metadata curation, and Samples and logistics], Carl Jones⁵⁶ [Metadata curation, and Samples and logistics], Jessica Lynch^{43,152} [Metadata curation, and Samples and logistics], Ben Warne⁴⁹ [Metadata curation, and Sequencing and analysis], Steven Leonard¹⁴⁰ [Metadata curation, and Sequencing and analysis], Jillian Durham¹⁴⁰ [Metadata curation, and Sequencing and analysis], Thomas Williams¹³¹ [Metadata curation, and Sequencing and analysis], Sam T Haldenby¹³³ [Metadata curation, and Sequencing and analysis], Nathaniel Storey⁷¹ [Metadata curation, and Sequencing and analysis], Nabil-Fareed Alikhan¹¹¹ [Metadata curation, and Sequencing and analysis], Nadine Holmes⁵⁹ [Metadata curation, and Sequencing and analysis], Christopher Moore⁵⁹ [Metadata curation, and Sequencing and analysis], Matthew Carlile⁵⁹ [Metadata curation, and Sequencing and analysis], Malorie Perry¹¹⁰ [Metadata curation, and Sequencing and analysis], Noel Craine¹⁴⁰ [Metadata curation, and Sequencing and analysis], Ronan A Lyons¹⁴⁰ [Metadata curation, and Sequencing and analysis], Angela H Beckett⁵⁴ [Metadata curation, and Sequencing and analysis], Salman Goudarzi¹¹⁸ [Metadata curation, and Sequencing and analysis], Christopher Fearn¹¹⁸ [Metadata curation, and Sequencing and analysis], Kate Cook¹¹⁸ [Metadata curation, and Sequencing and analysis], Hannah Dent¹¹⁸ [Metadata curation, and Sequencing and analysis], Hannah Paul¹¹⁸ [Metadata curation, and Sequencing and analysis], Robert Davies¹⁴⁰ [Metadata curation, and Software and analysis tools], Beth Blane¹⁴⁰ [Project administration, and Samples and logistics], Sophia T Girgis¹⁴⁰ [Project administration, and Samples and logistics], Mathew A Beale¹⁴⁰ [Project administration, and Samples and logistics], Katherine L Bellis^{140,129} [Project administration, and Samples and logistics], Matthew J Dorman¹⁴⁰ [Project administration, and Samples and logistics], Eleanor Drury¹⁴⁰ [Project administration, and Samples and logistics], Leanne Kane¹⁴⁰ [Project administration, and Samples and logistics], Sally Kay¹⁴⁰ [Project administration, and Samples and logistics], Samantha McGuigan¹⁴⁰ [Project administration, and Samples and logistics], Rachel Nelson¹⁴⁰ [Project administration, and Samples and logistics], Liam Prestwood¹⁴⁰ [Project administration, and Samples and logistics], Shavanthi Rajatileka¹⁴⁰ [Project administration, and Samples and logistics], Rahul Batra¹⁴⁰ [Project administration, and Samples and logistics], Rachel J Williams¹²³ [Project administration, and Samples and logistics], Mark Kristiansen¹²³ [Project administration, and Samples and logistics], Angie Green¹³⁹ [Project administration, and Samples and logistics], Anita Justice¹⁴⁰ [Project administration, and Samples and logistics], Adhyana I.K Mahanama^{122,143} [Project administration, and Samples and logistics], Buddhini Samaraweera^{122,143} [Project administration, and Samples and logistics], Nazreen F Hadjirin¹²⁹ [Project administration, and Sequencing and analysis], Joshua Quick⁸² [Project administration, and Sequencing and analysis], Radoslaw Poplawski⁸² [Project administration, and Software and analysis tools], Leanne M Kermack¹²⁹ [Samples and logistics, and Sequencing and analysis], Nicola Reynolds⁴⁸ [Samples and logistics, and Sequencing and analysis], Grant Hall⁶⁵ [Samples and logistics, and Sequencing and analysis], Yasmin Chaudhry¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Malte L Pinckert⁶⁵ [Samples and logistics, and Sequencing and analysis], Iliana

Georgana¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Robin J Moll¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Alicia Thornton¹⁰⁷ [Samples and logistics, and Sequencing and analysis], Richard Myers¹⁰⁷ [Samples and logistics, and Sequencing and analysis], Joanne Stockton¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Charlotte A Williams¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Wen C Yew¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Alexander J Trotter¹¹¹ [Samples and logistics, and Sequencing and analysis], Amy Trebes¹⁴⁰ [Samples and logistics, and Sequencing and analysis], George MacIntyre-Cockett¹³⁹ [Samples and logistics, and Sequencing and analysis], Alec Birchley¹¹⁰ [Samples and logistics, and Sequencing and analysis], Alexander Adams¹¹⁰ [Samples and logistics, and Sequencing and analysis], Amy Plimmer¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Bree Gatica-Wilcox¹¹⁰ [Samples and logistics, and Sequencing and analysis], Caoimhe McKerr¹¹⁰ [Samples and logistics, and Sequencing and analysis], Ember Hilvers¹¹⁰ [Samples and logistics, and Sequencing and analysis], Hannah Jones¹¹⁰ [Samples and logistics, and Sequencing and analysis], Hibo Asad¹¹⁰ [Samples and logistics, and Sequencing and analysis], Jason Coombes¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Johnathan M Evans¹¹⁰ [Samples and logistics, and Sequencing and analysis], Laia Fina¹¹⁰ [Samples and logistics, and Sequencing and analysis], Lauren Gilbert¹¹⁰ [Samples and logistics, and Sequencing and analysis], Lee Graham¹¹⁰ [Samples and logistics, and Sequencing and analysis], Michelle Cronin¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Sara Kumziene-SummerhaYes¹¹⁰ [Samples and logistics, and Sequencing and analysis], Sarah Taylor¹¹⁰ [Samples and logistics, and Sequencing and analysis], Sophie Jones¹⁴⁰ [Samples and logistics, and Sequencing and analysis]. Danielle C Groves¹³⁴ [Samples and logistics, and Sequencing and analysis], Peijun Zhang¹³⁴ [Samples and logistics, and Sequencing and analysis], Marta Gallis¹³⁴ [Samples and logistics, and Sequencing and analysis], Stavroula F Louka¹³⁴ [Samples and logistics, and Sequencing and analysis], Igor Starinskij⁸⁹ [Samples and logistics, and Software and analysis tools], Chris Jackson⁸⁸ [Sequencing and analysis, and Software and analysis tools], Marina Gourtovaia¹⁴⁰ [Sequencing and analysis, and Software and analysis tools]. Gerry Tonkin-Hill¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Kevin Lewis¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Jaime M Tovar-Corona¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Keith James¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Laura Baxter¹³⁵ [Sequencing and analysis, and Software and analysis tools], Mohammad T Alam¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Richard J Orton⁸⁹ [Sequencing and analysis, and Software and analysis tools], Joseph Hughes⁸⁹ [Sequencing and analysis, and Software and analysis tools], Sreenu Vattipally¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Manon Ragonnet-Cronin⁸⁰ [Sequencing and analysis, and Software and analysis tools], Fabricia F Nascimento⁸⁰ [Sequencing and analysis, and Software and analysis tools], David Jorgensen⁸⁰ [Sequencing and analysis, and Software and analysis tools], Olivia Boyd⁸⁰ [Sequencing and analysis, and Software and analysis tools], Lily Geidelberg¹⁴⁰ [Sequencing and analysis, and Software and analysis tools]. Alex E Zarebski⁶⁴ [Sequencing and analysis, and Software and analysis tools], Jayna Raghwani¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Moritz UG Kraemer⁶⁴ [Sequencing and analysis, and Software and analysis tools], Joel

Southgate^{51,110} [Sequencing and analysis, and Software and analysis tools], Benjamin B Lindsey¹³⁴ [Sequencing and analysis, and Software and analysis tools], Timothy M Freeman¹³⁴ [Sequencing and analysis, and Software and analysis tools], Jon-Paul Keatley¹⁴⁰ [Software and analysis tools, and Visualisation], Joshua B Singer¹⁴⁰ [Software and analysis tools, and Visualisation], Leonardo de Oliveira Martins¹⁴⁰ [Software and analysis tools, and Visualisation], Corin A Yeats⁵⁵ [Software and analysis tools, and Visualisation], Khalil Abudahab^{140,140} [Software and analysis tools, and Visualisation], Ben EW Taylor¹⁴⁰ [Software and analysis tools, and Visualisation], Mirko Menegazzo⁵⁵ [Software and analysis tools, and Visualisation], John Danesh¹⁴⁰ [Leadership and supervision], Wendy Hogsden⁸⁷ [Leadership and supervision], Sahar Eldirdiri⁶² [Leadership and supervision], Anita Kenyon⁶² [Leadership and supervision], Jenifer Mason¹⁴⁰ [Leadership and supervision], Trevor I Robinson⁸⁴ [Leadership and supervision], Alison Holmes^{140,144} [Leadership and supervision], James Price^{140,140} [Leadership and supervision], John A Hartley¹²³ [Leadership and supervision], Tanya Curran¹⁴⁰ [Leadership and supervision], Alison E Mather¹¹¹ [Leadership and supervision], Giri Shankar¹¹⁰ [Leadership and supervision], Rachel Jones¹¹⁰ [Leadership and supervision], Robin Howe¹¹⁰ [Leadership and supervision], Sian Morgan⁵⁰ [Leadership and supervision], Elizabeth Wastenge¹⁴⁰ [Metadata curation], Michael R Chapman^{1,129,140} [Metadata curation], Siddharth Mookerjee^{79,144} [Metadata curation], Rachael Stanley⁹⁵ [Metadata curation], Wendy Smith⁵⁶ [Metadata curation], Timothy Peto¹⁰⁰ [Metadata curation], David Eyre¹⁰⁰ [Metadata curation], Derrick Crook¹⁰⁰ [Metadata curation], Gabrielle Vernet⁷⁴ [Metadata curation], Christine Kitchen⁵¹ [Metadata curation], Huw Gulliver⁵¹ [Metadata curation], Ian Merrick⁵¹ [Metadata curation], Martyn Guest⁵¹ [Metadata curation], Robert Munn¹⁴⁰ [Metadata curation], Declan T Bradley^{140,113} [Metadata curation], Tim Wyatt¹⁰⁴ [Metadata curation], Charlotte Beaver¹⁴⁰ [Project administration], Luke Foulser¹⁴⁰ [Project administration], Sophie Palmer¹⁴⁰ [Project administration], Carol M Churcher¹²⁹ [Project administration], Ellena Brooks¹⁴⁰ [Project administration], Kim S Smith¹²⁹ [Project administration], Katerina Galai¹⁴⁰ [Project administration], Georgina M McManus¹²⁹ [Project administration], Frances Bolt^{79,144} [Project administration], Francesc Coll⁶⁰ [Project administration], Lizzie Meadows¹⁴⁰ [Project administration], Stephen W Attwood⁶⁴ [Project administration], Alisha Davies¹⁴⁰ [Project administration], Elen De Lacy¹¹⁰ [Project administration], Fatima Downing¹¹⁰ [Project administration], Sue Edwards¹⁴⁰ [Project administration], Garry P Scarlett¹¹⁷ [Project administration], Sarah Jeremiah¹²⁴ [Project administration], Nikki Smith¹³⁴ [Project administration], Danielle Leek¹²⁹ [Samples and logistics], Sushmita Sridhar^{140,140} [Samples and logistics], Sally Forrest¹²⁹ [Samples and logistics], Claire Cormie¹⁴⁰ [Samples and logistics], Harmeet K Gill¹²⁹ [Samples and logistics], Joana Dias¹⁴⁰ [Samples and logistics], Ellen E Higginson¹²⁹ [Samples and logistics], Mailis Maes¹²⁹ [Samples and logistics], Jamie Young¹²⁹ [Samples and logistics], Michelle Wantoch¹⁴⁰ [Samples and logistics], Sanger Covid Team¹⁴⁰ [Samples and logistics], Dorota Jamrozy¹⁴⁰ [Samples and logistics], Stephanie Lo¹⁴⁰ [Samples and logistics], Minal Patel¹⁴⁰ [Samples and logistics], Verity Hill¹⁴⁰ [Samples and logistics], Claire M Bewshea¹³² [Samples and logistics], Sian Ellard^{114,132} [Samples and logistics], Cressida Auckland¹¹⁴ [Samples and logistics], lan Harrison¹⁰⁷ [Samples and logistics], Chloe Bishop¹⁰⁷ [Samples and logistics], Vicki Chalker¹⁰⁷ [Samples and logistics], Alex Richter¹²⁶ [Samples and logistics], Andrew

Beggs¹²⁶ [Samples and logistics], Angus Best¹²⁷ [Samples and logistics], Benita Percival¹²⁷ [Samples and logistics], Jeremy Mirza¹²⁷ [Samples and logistics], Oliver Megram¹²⁷ [Samples and logistics], Megan Mayhew¹²⁷ [Samples and logistics], Liam Crawford¹²⁷ [Samples and logistics], Fiona Ashcroft¹⁴⁰ [Samples and logistics], Emma Moles-Garcia¹²⁷ [Samples and logistics], Nicola Cumley¹²⁷ [Samples and logistics], Richard Hopes¹⁰⁵ [Samples and logistics], Patawee Asamaphan¹⁴⁰ [Samples and logistics], Marc O Niebel¹⁴⁰ [Samples and logistics], Rory N Gunson¹⁴¹ [Samples and logistics], Amanda Bradley⁹³ [Samples and logistics], Alasdair Maclean⁹³ [Samples and logistics], Guy Mollett⁹³ [Samples and logistics], Rachel Blacow⁹³ [Samples and logistics], Paul Bird⁵⁷ [Samples and logistics], Thomas Helmer⁵⁷ [Samples and logistics], Karlie Fallon⁵⁷ [Samples and logistics], Julian Tang¹⁴⁰ [Samples and logistics], Antony D Hale¹⁴⁰ [Samples and logistics], Louissa R Macfarlane-Smith¹⁴⁰ [Samples and logistics], Katherine L Harper⁹⁰ [Samples and logistics], Holli Carden¹⁴⁰ [Samples and logistics], Nicholas W Machin^{86,105} [Samples and logistics], Kathryn A Jackson¹³³ [Samples and logistics], Shazaad SY Ahmad^{86,105} [Samples and logistics], Ryan P George⁸⁶ [Samples and logistics], Lance Turtle¹⁴⁰ [Samples and logistics], Elaine O'Toole⁸⁴ [Samples and logistics], Joanne Watts⁸⁴ [Samples and logistics], Cassie Breen⁸⁴ [Samples and logistics], Angela Cowell¹⁴⁰ [Samples and logistics], Adela Alcolea-Medina^{73,137} [Samples and logistics], Themoula Charalampous^{140,83} [Samples and logistics], Amita Patel¹⁴⁰ [Samples and logistics], Lisa J Levett⁷⁶ [Samples and logistics], Judith Heaney⁷⁶ [Samples and logistics], Aileen Rowan¹⁴⁰ [Samples and logistics], Graham P Taylor⁸⁰ [Samples and logistics], Divya Shah⁷¹ [Samples and logistics], Laura Atkinson¹⁴⁰ [Samples and logistics], Jack CD Lee¹⁴⁰ [Samples and logistics], Adam P Westhorpe¹²³ [Samples and logistics], Riaz Jannoo¹⁴⁰ [Samples and logistics], Helen L Lowe¹²³ [Samples and logistics], Angeliki Karamani¹²³ [Samples and logistics], Leah Ensell¹²³ [Samples and logistics], Wendy Chatterton⁷⁶, Monika Pusok⁷⁶ [Samples and logistics], Ashok Dadrah¹¹⁶ [Samples and logistics], Amanda Symmonds¹¹⁶ [Samples and logistics], Graciela Sluga⁸⁵ [Samples and logistics], Zoltan Molnar¹¹³ [Samples and logistics], Paul Baker¹²⁰ [Samples and logistics], Stephen Bonner¹²⁰ [Samples and logistics], Sarah Essex¹²⁰ [Samples and logistics], Edward Barton⁹⁷ [Samples and logistics], Debra Padgett⁹⁷ [Samples and logistics], Garren Scott⁹⁷ [Samples and logistics], Jane Greenaway¹⁴⁰ [Samples and logistics], Brendan Al Payne¹⁴⁰ [Samples and logistics], Shirelle Burton-Fanning⁹¹ [Samples and logistics], Sheila Waugh⁹¹ [Samples and logistics], Veena Raviprakash⁵⁸ [Samples and logistics], Nicola Sheriff⁵⁸ [Samples and logistics], Victoria Blakey¹⁴⁰ [Samples and logistics], Lesley-Anne Williams⁵⁸ [Samples and logistics], Jonathan Moore⁶⁸ [Samples and logistics], Susanne Stonehouse⁶⁸ [Samples and logistics], Louise Smith¹⁴⁰ [Samples and logistics], Rose K Davidson¹³⁰ [Samples and logistics], Luke Bedford⁶⁷ [Samples and logistics], Lindsay Coupland⁹⁵ [Samples and logistics], Victoria Wright¹⁴⁰ [Samples and logistics], Joseph G Chappell¹³⁸ [Samples and logistics], Theocharis Tsoleridis¹³⁸ [Samples and logistics], Jonathan Ball¹³⁸ [Samples and logistics], Manjinder Khakh¹⁴⁰ [Samples and logistics], Vicki M Fleming¹⁴⁰ [Samples and logistics], Michelle M Lister¹⁴⁰ [Samples and logistics], Hannah C Howson-Wells⁵⁶ [Samples and logistics], Louise Berry⁵⁶ [Samples and logistics], Tim Boswell⁵⁶ [Samples and logistics], Amelia Joseph⁵⁶ [Samples and logistics], Iona Willingham⁵⁶ [Samples and logistics], Nichola Duckworth¹⁰¹ [Samples and logistics], Sarah Walsh¹⁰¹ [Samples and

logistics], Emma Wise^{140,152} [Samples and logistics], Nathan Moore^{140,152} [Samples and logistics], Matilde Mori^{140,140,152} [Samples and logistics], Nick Cortes^{140,152} [Samples and logistics], Stephen Kidd^{140,152} [Samples and logistics], Rebecca Williams⁷⁴ [Samples and logistics], Laura Gifford¹¹⁰ [Samples and logistics], Kelly Bicknell¹⁰² [Samples and logistics], Sarah Wyllie¹⁰² [Samples and logistics], Allyson Lloyd¹⁰² [Samples and logistics], Robert Impey¹⁴⁰ [Samples and logistics], Cassandra S Malone¹⁴⁰ [Samples and logistics], Benjamin J Cogger⁴⁷ [Samples and logistics], Nick Levene¹⁰³ [Samples and logistics], Lynn Monaghan¹⁴⁰ [Samples and logistics], Alexander J Keelev¹⁴⁰ [Samples and logistics], David G Partridge^{140,134} [Samples and logistics], Mohammad Raza^{119,134} [Samples and logistics], Cariad Evans^{140,134} [Samples and logistics], Kate Johnson^{119,134} [Samples and logistics], Emma Betteridge¹⁴⁰ [Sequencing and analysis], Ben W Farr¹⁴⁰ [Sequencing and analysis], Scott Goodwin¹⁴⁰ [Sequencing and analysis], Michael A Quail¹⁴⁰ [Sequencing and analysis], Carol Scott¹⁴⁰ [Sequencing and analysis], Lesley Shirley¹⁴⁰ [Sequencing and analysis], Scott AJ Thurston¹⁴⁰ [Sequencing and analysis], Diana Rajan¹⁴⁰ [Sequencing and analysis], Iraad F Bronner¹⁴⁰ [Sequencing and analysis], Louise Aigrain¹⁴⁰ [Sequencing and analysis], Nicholas M Redshaw¹⁴⁰ [Sequencing and analysis], Stefanie V Lensing¹⁴⁰ [Sequencing and analysis], Shane McCarthy¹⁴⁰ [Sequencing and analysis], Alex Makunin¹⁴⁰ [Sequencing and analysis], Carlos E Balcazar¹⁴⁰ [Sequencing and analysis], Michael D Gallagher¹⁴⁰ [Sequencing and analysis], Kathleen A Williamson¹⁴⁰ [Sequencing and analysis], Thomas D Stanton¹⁴⁰ [Sequencing and analysis], Michelle L Michelsen¹⁴⁰ [Sequencing and analysis], Joanna Warwick-Dugdale¹³² [Sequencing and analysis], Robin Manley¹³² [Sequencing and analysis], Audrey Farbos¹⁴⁰ [Sequencing and analysis], James W Harrison¹⁴⁰ [Sequencing and analysis], Christine M Sambles¹⁴⁰ [Sequencing and analysis], David J Studholme¹³² [Sequencing and analysis], Angie Lackenby¹⁰⁷ [Sequencing and analysis], Tamyo Mbisa¹⁰⁷ [Sequencing and analysis], Steven Platt¹⁰⁷ [Sequencing and analysis], Shahjahan Miah¹⁰⁷ [Sequencing and analysis], David Bibby¹⁰⁷ [Sequencing and analysis], Carmen Manso¹⁰⁷ [Sequencing and analysis], Jonathan Hubb¹⁰⁷ [Sequencing and analysis], Gavin Dabrera¹⁰⁷ [Sequencing and analysis], Mary Ramsay¹⁰⁷ [Sequencing and analysis], Daniel Bradshaw¹⁰⁷ [Sequencing and analysis], Ulf Schaefer¹⁰⁷ [Sequencing and analysis], Natalie Groves¹⁰⁷ [Sequencing and analysis], Eileen Gallagher¹⁰⁷ [Sequencing and analysis], David Lee¹⁰⁷ [Sequencing and analysis], David Williams¹⁰⁷ [Sequencing and analysis], Nicholas Ellaby¹⁰⁷ [Sequencing and analysis], Hassan Hartman¹⁰⁷ [Sequencing and analysis], Nikos Manesis¹⁰⁷ [Sequencing and analysis], Vineet Patel¹⁰⁷ [Sequencing and analysis], Juan Ledesma¹⁴⁰ [Sequencing and analysis], Katherine A Twohig¹⁰⁸ [Sequencing and analysis], Elias Allara^{140,129} [Sequencing and analysis], Clare Pearson^{140,140} [Sequencing and analysis], Jeffrey K. J. Cheng¹³⁵ [Sequencing and analysis], Hannah E Bridgewater¹³⁵ [Sequencing and analysis], Lucy R Frost¹⁴⁰ [Sequencing and analysis], Grace Taylor-Joyce¹⁴⁰ [Sequencing and analysis], Paul E Brown¹³⁵ [Sequencing and analysis], Lily Tong⁸⁹ [Sequencing and analysis], Alice Broos⁸⁹ [Sequencing and analysis], Daniel Mair⁸⁹ [Sequencing and analysis], Jenna Nichols¹⁴⁰ [Sequencing and analysis], Stephen N Carmichael¹⁴⁰ [Sequencing and analysis], Katherine L Smollett⁸¹ [Sequencing and analysis], Kyriaki Nomikou¹⁴⁰ [Sequencing and analysis], Elihu Aranday-Cortes⁸⁹ [Sequencing and analysis], Natasha Johnson⁸⁹ [Sequencing and analysis], Seema Nickbakhsh^{140,140} [Sequencing and analysis], Edith E Vamos¹³³

[Sequencing and analysis], Margaret Hughes¹³³ [Sequencing and analysis], Lucille Rainbow¹³³ [Sequencing and analysis], Richard Eccles¹³³ [Sequencing and analysis], Charlotte Nelson¹³³ [Sequencing and analysis], Mark Whitehead¹³³ [Sequencing and analysis], Richard Gregory¹³³ [Sequencing and analysis], Matthew Gemmell¹³³ [Sequencing and analysis], Claudia Wierzbicki¹⁴⁰ [Sequencing and analysis], Hermione J Webster¹⁴⁰ [Sequencing and analysis], Chloe L Fisher¹⁴⁰ [Sequencing and analysis], Adrian W Signell⁶¹ [Sequencing and analysis], Gilberto Betancor¹⁴⁰ [Sequencing and analysis], Harry D Wilson⁶¹ [Sequencing and analysis], Gaia Nebbia⁵³ [Sequencing and analysis], Flavia Flaviani¹⁴⁰ [Sequencing and analysis], Alberto C Cerda¹⁴⁰ [Sequencing and analysis], Tammy V Merrill¹⁴⁰ [Sequencing and analysis], Rebekah E Wilson¹³⁷ [Sequencing and analysis], Marius Cotic¹²³ [Sequencing and analysis], Nadua Bayzid¹²³ [Sequencing and analysis], Thomas Thompson¹¹³ [Sequencing and analysis], Erwan Acheson¹¹³ [Sequencing and analysis], Steven Rushton¹⁴⁰ [Sequencing and analysis], Sarah O'Brien¹⁴⁰ [Sequencing and analysis], David J Baker¹¹¹ [Sequencing and analysis], Steven Rudder¹¹¹ [Sequencing and analysis], Alp Aydin¹¹¹ [Sequencing and analysis], Fei Sang⁵⁹ [Sequencing and analysis], Johnny Debebe⁵⁹ [Sequencing and analysis], Sarah Francois¹⁴⁰ [Sequencing and analysis], Tetyana I Vasylyeva¹⁴⁰ [Sequencing and analysis], Marina Escalera Zamudio⁶⁴ [Sequencing and analysis], Bernardo Gutierrez⁶⁴ [Sequencing and analysis], Angela Marchbank⁵¹ [Sequencing and analysis], Joshua Maksimovic⁵⁰ [Sequencing and analysis], Karla Spellman⁵⁰ [Sequencing and analysis], Kathryn McCluggage⁵⁰ [Sequencing and analysis], Mari Morgan¹¹⁰ [Sequencing and analysis], Robert Beer⁵⁰ [Sequencing and analysis], Safiah Afifi⁵⁰ [Sequencing and analysis], Trudy Workman⁵¹ [Sequencing and analysis], William Fuller⁵¹ [Sequencing and analysis], Catherine Bresner⁵¹ [Sequencing and analysis], Adrienn Angyal¹⁴⁰ [Sequencing and analysis], Luke R Green¹⁴⁰ [Sequencing and analysis], Paul J Parsons¹⁴⁰ [Sequencing and analysis], Rachel M Tucker¹³⁴ [Sequencing and analysis], Rebecca Brown¹³⁴ [Sequencing and analysis], Max Whiteley¹³⁴ [Sequencing and analysis], James Bonfield¹⁴⁰ [Software and analysis tools], Christoph Puethe¹⁴⁰ [Software and analysis tools], Andrew Whitwham¹⁴⁰ [Software and analysis tools], Jennifier Liddle¹⁴⁰ [Software and analysis tools], Will Rowe⁸² [Software and analysis tools], Igor Siveroni¹⁴⁰ [Software and analysis tools], Thanh Le-Viet¹⁴⁰ [Software and analysis tools], Amy Gaskin¹¹⁰ [Software and analysis tools], Rob Johnson⁸⁰ [Visualisation]

⁴²Barking, Havering and Redbridge University Hospitals NHS Trust, Barking, United Kingdom ⁴³Basingstoke Hospital, Basingstoke, United Kingdom ⁴⁴Belfast Health & Social Care Trust, Belfast, United Kingdom ⁴⁵Betsi Cadwaladr University Health Board, Betsi Cadwaladr, United Kingdom ⁴⁶Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom ⁴⁷Brighton and Sussex University Hospitals NHS Trust, Brighton & Sussex, United Kingdom ⁴⁸Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom ⁴⁹Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ⁵⁰Cardiff and Vale University Health Board, Cardiff, United Kingdom ⁵¹Cardiff University, Cardiff, United Kingdom ⁵²Centre for Clinical Infection & Diagnostics Research, St. Thomas' Hospital and Kings College London, London, United Kingdom ⁵³Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom ⁵⁴Centre for Enzyme Innovation, University of Portsmouth (PORT), Portsmouth, United Kingdom ⁵⁵Centre for Genomic Pathogen Surveillance, University of Oxford, Oxford, United Kingdom ⁵⁶Clinical Microbiology Department, Queens Medical Centre, Nottingham, United Kingdom ⁵⁷Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom ⁵⁸County Durham and Darlington NHS Foundation Trust, Durham, United Kingdom ⁵⁹Deep Seg, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom ⁶⁰Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom ⁶¹Department of Infectious Diseases, King's College London, London, United Kingdom ⁶²Department of Microbiology, Kettering General Hospital, Kettering, United Kingdom ⁶³Departments of Infectious Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust; Cambridge, UK, Cambridge, United Kingdom ⁶⁴Department of Zoology, University of Oxford, Oxford, United Kingdom ⁶⁵Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom ⁶⁶East Kent Hospitals University NHS Foundation Trust, Kent, United Kingdom ⁶⁷East Suffolk and North Essex NHS Foundation Trust, Suffolk, United Kingdom ⁶⁸Gateshead Health NHS Foundation Trust, Gateshead, United Kingdom ⁶⁹Genomics Innovation Unit, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom ⁷⁰Gloucestershire Hospitals NHS Foundation Trust, Gloucester, United Kingdom ⁷¹Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom ⁷²Guy's and St. Thomas' BRC, London, United Kingdom ⁷³Guy's and St. Thomas' Hospitals, London, United Kingdom ⁷⁴Hampshire Hospitals NHS Foundation Trust, Hampshire, United Kingdom ⁷⁵Health Data Research UK Cambridge, Cambridge, United Kingdom ⁷⁶Health Services Laboratories, London, United Kingdom ⁷⁷Heartlands Hospital, Birmingham, Birmingham, United Kingdom ⁷⁸Hub for Biotechnology in the Built Environment, Northumbria University, Northumbria, United Kingdom ⁷⁹Imperial College Hospitals NHS Trust, London, United Kingdom ⁸⁰Imperial College London, London, United Kingdom ⁸¹Institute of Biodiversity, Animal Health & Comparative Medicine, Glasgow, United Kingdom ⁸²Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom ⁸³King's College London, London, United Kingdom ⁸⁴Liverpool Clinical Laboratories, Liverpool, United Kingdom ⁸⁵Maidstone and Tunbridge Wells NHS Trust, Maidstone, United Kingdom ⁸⁶Manchester University NHS Foundation Trust, Manchester, United Kingdom ⁸⁷Microbiology Department, Wye Valley NHS Trust, Hereford, United Kingdom ⁸⁸MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom ⁸⁹MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom ⁹⁰National Infection Service, PHE and Leeds Teaching Hospitals Trust, Leeds, United Kingdom ⁹¹Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom ⁹²Newcastle University, Newcastle, United Kingdom ⁹³NHS Greater Glasgow and Clyde, Glasgow, United Kingdom ⁹⁴NHS Lothian, Edinburgh, United Kingdom ⁹⁵Norfolk and Norwich University Hospital, Norfolk, United Kingdom ⁹⁶Norfolk County Council, Norfolk, United Kingdom ⁹⁷North Cumbria Integrated Care NHS Foundation Trust, Carlisle, United Kingdom ⁹⁸North Tees and Hartlepool NHS Foundation Trust, Stockton-on-Tees, United Kingdom ⁹⁹Northumbria University, Northumbria, United Kingdom ¹⁰⁰Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom ¹⁰¹PathLinks, Northern

Lincolnshire & Goole NHS Foundation Trust, Lincolnshire, United Kingdom ¹⁰²Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom ¹⁰³Princess Alexandra Hospital Microbiology Dept., Harlow, United Kingdom ¹⁰⁴Public Health Agency, London, United Kingdom ¹⁰⁵Public Health England, London, United Kingdom ¹⁰⁶Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge, United Kingdom ¹⁰⁷Public Health England, Colindale, London, United Kingdom ¹⁰⁸Public Health England, Colindale, London, United Kingdom ¹⁰⁹Public Health Scotland, Glasgow, United Kingdom ¹¹⁰Public Health Wales NHS Trust, Cardiff, United Kingdom ¹¹¹Quadram Institute Bioscience, Norwich, United Kingdom ¹¹²Queen Elizabeth Hospital, Birmingham, United Kingdom ¹¹³Queen's University Belfast, Belfast, United Kingdom ¹¹⁴Royal Devon and Exeter NHS Foundation Trust, Devon, United Kingdom ¹¹⁵Royal Free NHS Trust, London, United Kingdom ¹¹⁶Sandwell and West Birmingham NHS Trust, Sandwell, United Kingdom ¹¹⁷School of Biological Sciences, University of Portsmouth (PORT), Portsmouth, United Kingdom ¹¹⁸School of Pharmacy and Biomedical Sciences, University of Portsmouth (PORT), Portsmouth, United Kingdom ¹¹⁹Sheffield Teaching Hospitals, Sheffield, United Kingdom ¹²⁰South Tees Hospitals NHS Foundation Trust, Newcastle, United Kingdom ¹²¹Swansea University, Swansea, United Kingdom ¹²²University Hospitals Southampton NHS Foundation Trust, Southampton, United Kingdom ¹²³University College London, London, United Kingdom ¹²⁴University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom ¹²⁵University Hospitals Coventry and Warwickshire, Coventry, United Kingdom ¹²⁶University of Birmingham, Birmingham, United Kingdom ¹²⁷University of Birmingham Turnkey Laboratory, Birmingham, United Kingdom ¹²⁸University of Brighton, Brighton, United Kingdom ¹²⁹University of Cambridge, Cambridge, United Kingdom ¹³⁰University of East Anglia, East Anglia, United Kingdom ¹³¹University of Edinburgh, Edinburgh, United Kingdom ¹³²University of Exeter, Exeter, United Kingdom ¹³³University of Liverpool, Liverpool, United Kingdom ¹³⁴University of Sheffield, Sheffield, United Kingdom ¹³⁵University of Warwick, Warwick, United Kingdom ¹³⁶University of Cambridge, Cambridge, United Kingdom ¹³⁷Viapath, Guy's and St Thomas' NHS Foundation Trust, and King's College Hospital NHS Foundation Trust, London, United Kingdom ¹³⁸Virology, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom ¹³⁹Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom ¹⁴⁰Wellcome Sanger Institute, London, United Kingdom ¹⁴¹West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom ¹⁴²Department of Medicine, University of Cambridge, Cambridge, United Kingdom ¹⁴³Ministry of Health, Colombo, Sri Lanka ¹⁴⁴NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, London, United Kingdom ¹⁴⁵North West London Pathology, London, United Kingdom ¹⁴⁶NU-OMICS, Northumbria University, Northumbria, United Kingdom ¹⁴⁷University of Kent, Kent, United Kingdom ¹⁴⁸University of Oxford, Oxford, United Kingdom ¹⁴⁹University of Southampton, Southampton, United Kingdom ¹⁵⁰University of Southampton School of Health Sciences, Southampton, United Kingdom ¹⁵¹University of Southampton School of Medicine, Southampton, United Kingdom ¹⁵²University of Surrey, Guildford, United Kingdom ¹⁵³Warwick Medical School and Institute of Precision Diagnostics, Pathology, UHCW NHS Trust, Warwick, United Kingdom

, Katherine Sharrocks⁴, Elizabeth Blane³, Yorgo Modis⁸, Kendra Leigh⁸, John Briggs⁸, Marit van Gils⁹, Kenneth GC Smith^{2,3}, John R Bradley^{3,10}, Chris Smith¹¹, Rainer Doffinger¹³, Lourdes Ceron-Gutierrez¹³, Gabriela Barcenas-Morales^{13,14}, David D Pollock¹⁵, Richard A Goldstein¹, Anna Smielewska^{5,11}, Jordan P Skittrall^{4,12,16}, Theodore Gouliouris⁴, Ian G Goodfellow⁵, Effrossyni Gkrania-Klotsas⁴, Christopher JR Illingworth^{12,17}, Laura E McCoy¹, Ravindra K Gupta^{2,3,18}

¹Division of Infection and Immunity, University College London, London, UK ² Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK ³Department of Medicine, University of Cambridge, Cambridge, UK ⁴Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK ⁵Department of Pathology, University of Cambridge, Cambridge ⁶ NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, UK ⁷Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, UK ⁸Medical Research Council Laboratory of Molecular Biology, Cambridge, UK ⁹Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands ¹⁰ NIHR Cambridge Clinical Research Facility, Cambridge, UK ¹¹Department of Virology, Cambridge University NHS Hospitals Foundation Trust ¹²Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK¹³ Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital ¹⁴ FES-Cuautitlán, UNAM, Mexico ¹⁵Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA; ¹⁶Clinical Microbiology and Public Health Laboratory, Addenbrookes' Hospital, Cambridge, UK ¹⁷ MRC Biostatistics Unit, University of Cambridge, Cambridge, UK ¹⁸Africa Health Research Institute, Durban, South Africa

[#] These authors contributed equally to this work.

Summary

SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE2¹, and is a major antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising antibodies in an immune suppressed individual treated with convalescent plasma, generating whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was observed in the overall viral population structure following two courses of remdesivir over the first 57 days. However, following convalescent plasma therapy we observed large, dynamic virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and H69/

V70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype diminished in frequency, before returning during a final, unsuccessful course of convalescent plasma. *In vitro*, the Spike escape double mutant bearing H69/ V70 and D796H conferred modestly decreased sensitivity to convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be the main contributor to decreased susceptibility but incurred an infectivity defect. The H69/ V70 single mutant had two-fold higher infectivity compared to wild type, possibly compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy associated with emergence of viral variants with evidence of reduced susceptibility to neutralising antibodies.

Keywords

SARS-CoV-2; COVID-19; antibody escape, Convalescent plasma; neutralising antibodies; mutation; evasion; resistance; immune suppression

Clinical case history of SARS-CoV-2 infection in setting of immunecompromised host

A septuagenarian male was admitted to a tertiary hospital in summer of 2020 and had tested positive for SARS-CoV-2 RT-PCR 35 days previously on a nasopharyngeal swab (Day 1) at a local hospital (Extended data 1 and 2). His past medical history was significant for marginal B cell lymphoma diagnosed in 2012, with previous chemotherapy including vincristine, prednisolone, cyclophosphamide and anti-CD20 B cell depletion with rituximab. It is likely that both chemotherapy and underlying lymphoma contributed to B and T cell combined immunodeficiency (Extended data 2 and 3, Supplementary Table 1). Computed tomography (CT) of the chest showed widespread abnormalities consistent with COVID-19 pneumonia (Supplementary Figure 1). Treatment included two 10-day courses of remdesivir with a five day gap in between (Extended data 3). Following clinical deterioration, remdesivir and a unit of convalescent plasma were administered on day 5, but the individual unfortunately died on day 102 (Supplementary text).

Virus genomic comparative analysis of 23 sequential respiratory samples over 101 days

The majority of samples were respiratory samples from nose and throat or endotracheal aspirates during the period of intubation (Supplementary Table 3). Ct values ranged from 16-34 and all 23 respiratory samples were successfully sequenced by standard single molecule sequencing approach as per the ARTIC protocol implemented by COG-UK; of these 20 additionally underwent short-read deep sequencing using the Illumina platform (Supplementary table 4). There was general agreement between the two methods (Extended data 4). However due to the higher reliability of Illumina for low frequency variants, this was used for formal analysis^{2,3}. Additionally, single genome amplification and sequencing of Spike using extracted RNA from respiratory samples was used as an independent method to detect mutations observed (Extended data 4). Finally, we detected no evidence of recombination, based on two independent methods.

Maximum likelihood analysis of patient-derived whole genome consensus sequences demonstrated clustering with other local sequences from the same region (Figure 1). The infecting strain was assigned to lineage 20B bearing the D614G Spike variant. Environmental sampling showed evidence of virus on surfaces such as telephone and call bell. Sequencing of these surface viruses showed clustering with those derived from the respiratory tract (Extended data 2). All samples were consistent with having arisen from a single underlying viral population. In our phylogenetic analysis, we included sequential sequences from three other local patients identified with persistent viral RNA shedding over

a period of 4 weeks or more as well as two long term immunosuppressed SARS-CoV-2 'shedders' recently reported^{4,5}, (Extended data 2, Supplementary Table 2). While the sequences from the three local patients as well as from Avanzato et al⁵ showed little divergence with no amino acid changes in Spike over time, the case patient showed significant diversification. The Choi et al report⁴ showed similar degree of diversification as the case patient. Further investigation of the sequence data suggested the existence of an underlying structure to the viral population in our patient, with samples collected at days 93 and 95 being rooted within, but significantly divergent from the original population (Extended data 5 and 6). The relationship of the divergent samples to those at earlier time points argues against superinfection.

SARS-CoV-2 viral diversity

All samples tested positive by RT-PCR and there was no sustained change in Ct values throughout the 101 days following the first two courses of remdesivir (days 41 and 54), or the first two units of convalescent plasma with polyclonal antibodies (days 63 and 65, Extended data 3). Of note we were not able to culture virus from stored swab samples. Consensus sequences from short read deep sequence Illumina data revealed dynamic population changes after day 65, as shown by a highlighter plot (Extended data 6). In addition, we were also able to follow the dynamics of virus populations down to low frequencies during the entire period (Figure 2, Supplementary Table 4). Following remdesivir at day 41 the low frequency variant analysis allowed us to observe transient amino acid changes in populations at below 50% abundance in Orf 1b, 3a and Spike, with a T39I (C27509T) mutation in ORF7a reaching 79% on day 45 (Figure 2, pink, supplementary information). At day 66 we noted I513T in NSP2 (T2343C) and V157L (G13936T) in RdRp had emerged from undetectable at day 54 to almost 100% frequency (Figure 2, red and green dashed lines), with the polymerase being the more plausible candidate for driving this sweep. Notably, spike variant N501Y, which can increase the ACE2 receptor affinity⁶, and which is present in the new UK B1.1.7 lineage⁷, was observed on day 55 at 33% frequency, but was eliminated by the sweep of the NSP2/RdRp variant.

In contrast to the early period of infection, between days 66 and 82, following the first two administrations of convalescent sera, a shift in the virus population was observed, with a variant bearing D796H in S2 and H69/ V70 in the S1 N-terminal domain (NTD) becoming the dominant population at day 82. This was identified in a nose and throat swab sample with high viral load as indicated by Ct of 23 (Figure 3A). The deletion was detected transiently at baseline according to short read deep sequencing. H69/ V70 was due to an out of frame six nucleotide deletion resulting in the sequence of codon 68 changing from ATA to ATC.

On Days 86 and 89, viruses obtained from upper respiratory tract samples were characterised by the Spike mutations Y200H and T240I, with the deletion/mutation pair observed on day 82 having fallen to frequencies of 10% or less (Figure 2 and 3). The Spike mutations Y200H and T240I were accompanied at high frequency by two other non-synonymous variants with similar allele frequencies, coding for I513T in NSP2, V157L in RdRp and N177S in NSP15 (Figure 2A). Both of these were also previously observed at

>98% frequency in the sample on day 66 (Figure 2A, red and green lines), arguing that this new lineage emerged out of a previously existing population.

Sequencing of a nose and throat swab sample at day 93 identified viruses characterised by Spike mutations P330S at the edge of the RBD and W64G in S1 NTD at close to 100% abundance, with D796H along with H69/ V70 at <1% abundance and the variants Y200H and T240I at frequencies of <2%. Viruses with the P330S variant were detected in two independent samples from different sampling sites, arguing against the possibility of contamination. The divergence of these samples from the remainder of the population (Figure 2, 3B and Extended data 5 and 6) suggests the possibility that they represent a compartmentalised subpopulation.

Patterns in the variant frequencies suggest competition between virus populations carrying different mutations, viruses with the D796H/ H69/ V70 deletion/mutation pair rising to high frequency during CP therapy, then being outcompeted by another population in the absence of therapy. Specifically, these data are consistent with a lineage of viruses with the NSP2 I513T and RdRp V157L variant, dominant on day 66, being outcompeted during therapy by the mutation/deletion variant. With the lapse in therapy, the original strain, having acquired NSP15 N1773S and the Spike mutations Y200H and T240I, regained dominance, followed by the emergence of a separate population with the W64G and P330S mutations.

In a final attempt to reduce the viral load, a third course of remdesivir (day 93) and third dose of CP (day 95) were administered. We observed a re-emergence of the D796H + H69/

V70 viral population (Figure 2, 3). The inferred linkage of D796H and H69/ V70 was maintained as evidenced by the highly similar frequencies of the two variants, suggesting that the third unit of CP led to the re-emergence of this population under renewed positive selection. In further support of our proposed idea of competition, noted above, frequencies of these two variants appeared to mirror changes in the NSP2 I513T mutation (Figure 2), suggesting these as markers of opposing clades in the viral population. Ct values remained low throughout this period with hyperinflammation, eventually leading to multi-organ failure and death at day 102. The repeated increase in frequency of the viral population with CP therapy strongly supports the hypothesis that the deletion/mutation combination conferred selective advantage.

Spike mutants emerging post convalescent plasma impair neutralising antibody potency

Using lentiviral pseudotyping we generated wild type, H69/ V70 + D796H and single mutant Spike proteins in enveloped virions in order to measure neutralisation activity of CP against these viruses (Figure 4). This system has been shown to give generally similar results to replication competent virus^{8,9}. Spike protein from each mutant was detected in pelleted virions (Figure 4A). We also probed with an HIV-1 p24 antibody to monitor levels of lentiviral particle production (Figure 4A, Supplementary Figure 2). We then measured infectivity of the pseudoviruses, correcting for virus input using reverse transcriptase activity measurement, and found that H69/ V70 appeared to have two-fold higher infectivity over

a single round of infection compared to wild type (Figure 4B, Extended data 7). By contrast, the D796H single mutant had significantly lower infectivity as compared to wild type and double mutant had similar infectivity to wild type (Figure 4B, Extended data 7).

We found that D796H alone and the D796H + H69/V70 double mutant were less sensitive to neutralisation by convalescent plasma samples (Figure 4C-E, Extended data 7). By contrast the H69/V70 single mutant did not reduce neutralisation sensitivity. In addition, patient derived serum from days 64 and 66 (one day either side of CP2 infusion) similarly showed lower potency against the D796H + H69/V70 mutants (Figure 4F, G).

A panel of nineteen monoclonal antibodies (mAbs) isolated from three donors was previously identified to neutralize SARS-CoV-2. To establish if the mutations incurring *in vivo* (D796H and H69/ V70) resulted in a global change in neutralization sensitivity we tested neutralising mAbs targeting the seven major epitope clusters previously described (excluding non-neutralising clusters II, V and small [n =<2] neutralising clusters IV, X). The eight RBD-specific mAbs (Extended data 8) exhibited no major change in neutralisation potency and non-RBD specific COVA1-21 showing 3-5 fold reduction in potency against H69/ V70+D796H and H69/ V70, but not D796H alone⁹ (Extended data 8). We observed no differences in neutralisation between single/double mutants and wild type, suggesting that the mechanism of escape was likely outside these epitopes in the RBD. These data confirm the specificity of the findings from convalescent plasma and suggest that mutations observed are related to antibodies targeting regions outside the RBD. Interestingly, H69/ V70 containing viruses showed reduced neutralisation sensitivity to the mAb COVA1-21, targeting an as yet undefined epitope outside the RBD. ¹⁰.

To understand how the H69/ V70 and D796H might confer antibody resistance, we assessed how they might affect the Spike structure (Extended data 9). We based this analysis primarily on a structure lacking stabilising modifications (PDB 6xr8)¹¹, but also referred to stabilised structures determined at different pH values¹². H69/ V70 is located in a disordered, glycosylated loop at the distal surface of the NTD, near the binding site of polyclonal antibodies derived from COV57 plasma^{13,14} (Extended data 9). As this loop is flexible and highly accessible, H69/V70 could in principle affect antibody binding in this region. D796 is located near the base of Spike, in a surface loop that is structurally somewhat disordered in the prefusion conformation and becomes part of a large disordered region in the post fusion S2 trimer¹¹ (Extended data 9). The loop containing residue 796 is proposed to be targeted by antibodies¹⁵, despite mutations at position 796 being relatively uncommon (Extended data 9). In the RBD-down Spike structures^{11,12}, D796 forms contacts with residues in the neighbouring protomer, including the glycosylated residue N709 (Extended data 9).

Discussion

Here we have documented a repeated evolutionary response by SARS-CoV-2 in the presence of antibody therapy during the course of a persistent infection in an immunocompromised host. The observation of potential selection for specific variants coinciding with the presence of antibodies from convalescent plasma is supported by the experimental finding of two-fold

reduced susceptibility of these viruses to convalescent plasma containing polyclonal antibodies. In this case the emergence of the variant was not the primary reason for treatment failure. We have noted in our analysis signs of compartmentalised viral replication based on the sequences recovered in upper respiratory tract samples. Both population genetic and small animal studies have shown a lack of reassortment between influenza viruses within a single host during an infection, suggesting that acute respiratory viral infection may be characterised by spatially distinct viral populations^{16,17}. In the analysis of data, it is important to distinguish genetic changes which occur in the primary viral population from apparent changes that arise from the stochastic observation of spatially distinct subpopulations in the host. While the samples we observe on days 93 and 95 of infection are genetically distinct from the others, the remaining samples are consistent with arising from a consistent viral population. We note that Choi et al reported the detection in post-mortem tissue of viral RNA not only in lung tissue, but also in the spleen, liver, and heart⁴. Mixing of virus from different compartments, for example via blood, or movement of secretions from lower to upper respiratory tract, could lead to fluctuations in viral populations at particular sampling sites.

This is a single case report and therefore limited conclusions can be drawn about generalisability.

An important limitation is that the data were derived from sampling from the upper respiratory tract and not the lower tract, thus limiting the inferences that can be drawn regarding viral populations in this single case.

In addition to documenting the emergence of SARS-CoV-2 Spike H69/ V70 *in vivo*, we show that this mutation modestly increases infectivity of the Spike protein in a pseudotyping assay. The deletion was observed contemporaneously with the rare S2 mutation D796H after two separate courses of CP, with other viral populations emerging. D796H, but not H69/

V70, conferred reduction in susceptibility to polyclonal antibodies in the units of CP administered, though we cannot speculate as to their individual impacts on sera from other individuals. It is intriguing that the H69/ V70 + D796H double mutant diminished in between CP courses, suggesting that there were other selective forces at play in the intervening period, possibly driven by the inflammation observed in the individual. This includes the possibility that the haplotype with H69/ V70 + D796H may have carried mutations in other regions deleterious during that intervening period. Although H69/V70 is expanding at a high rate¹⁸, D796 mutations are also increasing. D796H has been documented in 0.02% of global sequences and D796Y appears in 0.05% of global sequences (Extended data 9).

The effects of CP on virus evolution seen here are unlikely to apply in immune competent hosts where viral diversity is likely to be lower due to better immune control. Our data highlight that infection control measures may need to be tailored to the needs of immunocompromised patients and also caution in interpretation of CDC guidelines that recommend 20 days as the upper limit of infection prevention precautions in immune compromised patients who are afebrile¹⁹. Due to the difficulty with culturing clinical isolates, use of surrogates are warranted²⁰. However, where detection of ongoing viral

evolution is possible, this serves as a clear proxy for the existence of infectious virus. In our case we detected environmental contamination whilst in a single occupancy room and the patient was moved to a negative-pressure high air-change infectious disease isolation room.

Clinical efficacy of convalescent plasma in severe COVID-19 has not been demonstrated²¹, and its use in different stages of infection and disease remains experimental; as such, we suggest that it should be reserved for use within clinical trials, with rigorous monitoring of clinical and virological parameters. The data from this single case report might warrant caution in use of convalescent plasma in patients with immune suppression of both T cell and B cell arms; in such cases, the antibodies administered have little support from cytotoxic T cells, thereby reducing chances of clearance and theoretically raising the potential for escape mutations. Whilst we await further data, where clinical trial enrolment is not possible, convalescent plasma administered for clinical need in immune suppression should ideally only be considered as part of observational studies, undertaken preferably in single occupancy rooms with enhanced infection control precautions, including SARS-CoV-2 environmental sampling and real-time sequencing. Understanding of viral dynamics and characterisation of viral evolution in response to different selection pressures in the immunocompromised host is necessary not only for improved patient management but also for public health benefit.

Methods

Clinical Sample Collection and Next generation sequencing

Serial samples were collected from the patient periodically from the lower respiratory tract (sputum or endotracheal aspirate), upper respiratory tract (throat and nasal swab), and from stool. Nucleic acid extraction was done from 500µl of sample with a dilution of MS2 bacteriophage to act as an internal control, using the easyMAG platform (Biomerieux, Marcy-l'Étoile) according to the manufacturers' instructions. All samples were tested for presence of SARS-CoV-2 with a validated one-step RT q-PCR assay developed in conjunction with the Public Health England Clinical Microbiology²². Amplification reaction were all performed on a RotorgeneTM PCR instrument. Samples which generated a CT of 36 were considered to be positive.

Sera from recovered patients in the COVIDx study²³ were used for testing of neutralisation activity by SARS-CoV-2 mutants.

SARS-CoV-2 serology by multiplex particle-based flow cytometry (Luminex)

Recombinant SARS-CoV-2 N, S and RBD were covalently coupled to distinct carboxylated bead sets (Luminex; Netherlands) to form a 3-plex and analyzed as previously described (Xiong et al. 2020). Specific binding was reported as mean fluorescence intensities (MFI).

Whole blood T cell and innate stimulation assay

Whole blood was diluted 1:5 in RPMI into 96-well F plates (Corning) and activated by single stimulation with phytohemagglutinin (PHA; 10 μ g/ml; Sigma-Aldrich), or LPS (1 μ g/ml, List Biochemicals) or by co-stimulating with anti-CD3 (MEM57, Abcam, 200 ng/ml,

1:1000) and IL-2 (Immunotools, 1430U/ml, 1:1000). Supernatants were taken after 24 hours. Levels (pg/ml) are shown for IFNg, IL17, IL2, TNFa, IL6, IL1b and IL10. Cytokines were measured by multiplexed particle based Flow cytometry on a Luminex analyzer (Bio-Plex, Bio-Rad, UK) using an R&D Systems custom kit (R&D Systems, UK).

For viral genomic sequencing, total RNA was extracted from samples as described. Samples were sequenced using MinION flow cells version 9.4.1 (Oxford Nanopore Technologies) following the ARTICnetwork V3 protocol (https://dx.doi.org/10.17504/ protocols.io.bbmuik6w) and BAM files assembled using the ARTICnetwork assembly pipeline (https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html). A representative set of 10 sequences were selected and also sequenced using the Illumina MiSeq platform. Amplicons were diluted to $2 \text{ ng/}\mu\text{l}$ and $25 \mu\text{l}$ (50 ng) were used as input for each library preparation reaction. The library preparation used KAPA Hyper Prep kit (Roche) according to manufacturer's instructions. Briefly, amplicons were end-repaired and had A-overhang added; these were then ligated with 15mM of NEXTflex DNA Barcodes (Bio Scientific, Texas, USA). Post-ligation products were cleaned using AMPure beads and eluted in 25 μ l. Then, 20 μ l were used for library amplification by 5 cycles of PCR. For the negative controls, 1ng was used for ligation-based library preparation. All libraries were assayed using TapeStation (Agilent Technologies, California, USA) to assess fragment size and quantified by QPCR. All libraries were then pooled in equimolar accordingly. Libraries were loaded at 15nM and spiked in 5% PhiX (Illumina, California, USA) and sequenced on one MiSeq 500 cycle using a Miseq Nano v2 with 2x 250 paired-end sequencing. A minimum of ten reads were required for a variant call.

Bioinformatics Processes

For long-read sequencing, genomes were assembled with reference-based assembly and a curated bioinformatics pipeline with 20x minimum coverage across the whole-genome²⁴. For short-read sequencing, FASTQs were downloaded, poor-quality reads were identified and removed, and both Illumina and PHiX adapters were removed using TrimGalore v0.6.6²⁵. Trimmed paired-end reads were mapped to the National Center for Biotechnology Information SARS-CoV-2 reference sequence MN908947.3 using MiniMap2-2.17 with arguments -ax and sr²⁶. BAM files were then sorted and indexed with samtools v1.11 and PCR optical duplicates removed using Picard (http://broadinstitute.github.io/picard). A consensus sequences of nucleic acids with a minimum whole-genome coverage of at least 20× were generated with BCFtools using a 0% majority threshold.

Variant calling

Variant frequencies were validated using custom code as part of the *AnCovMulti* package (github.com/PollockLaboratory/AnCovMulti). The main idea behind this validation was to identify and remove consistent potential amplification errors and mutability near the end of Illumina reads. Furthermore, stringent filtering was applied to remove biased amplification of early laboratory-induced mutations or very low copy variations.

Filtering consisted of requiring exact initiation at a primer within two bp of the start of a read, a minimum of 247 bp length read, fewer than four well-separated sites divergent from

the reference sequence, a maximum insertion size of three nucleotides, a maximum deletion size of 11 bp, and resolution of conflicting signal from different primers.

Single Genome Amplification and sequencing

Viral RNA extracts were reverse transcribed from each sample to sufficiently capture the diversity of the viral population without introducing resampling bias. SuperScript IV (Thermofisher Scientific) and the gene specific primers were used for reverse transcription. Template RNA was degraded with RNAse H (Thermofisher Scientific). All primers used were 'in-house' primers designed using the multiple sequence alignment of the patient's consensus NGS sequences. Partial Spike (amino acids 21-800) was amplified as 1 continuous length of DNA (Spike ~ 1.8 kb) by nested PCR. Terminally diluted cDNA was PCR-amplified using Platinum[®] Taq DNA Polymerase High Fidelity (Invitrogen, Carlsbad, CA) so that 30% of reactions were positive²⁷. By Poisson statistics, sequences were deemed 80% likely to be derived from HIV-1 single genomes. We obtained between 20–60 single genomes at each sample time point to achieve 90% confidence of detecting variants present at 8% of the viral population in vivo^{28,29}. Partial spike amplicons obtained from terminal dilution PCR amplification were Sanger sequenced to form a contiguous sequence using another set of 8 in-house primers. Sanger sequencing was provided by Genewiz UK and manual sequence editing was performed using DNA Dynamo software (Blue Tractor Software Ltd, UK).

Phylogenetic Analysis

All available full-genome SARS-CoV-2 sequences were downloaded from the GISAID database (http://gisaid.org/)³⁰ on 16th December. Duplicate and low-quality sequences (>5% N regions) were removed, leaving a dataset of 212,297 sequences with a length of >29,000bp. All sequences were sorted by name and only sequences sequenced with United Kingdom / England identifiers were retained. From this dataset, sequences were de-duplicated and where background sequences were required in figures, randomly subsampled using seqtk (https://github.com/lh3/seqtk). All sequences were aligned to the SARS-CoV-2 reference strain MN908947.3, using MAFFT v7.475 with automatic flavour selection³¹. Major SARS-CoV-2 clade memberships were assigned to all sequences using both the Nextclade server v0.9 (https://clades.nextstrain.org/) and Phylogenetic Assignment Of Named Global Outbreak Lineages (pangolin)³².

Maximum likelihood phylogenetic trees were produced using the above curated dataset using IQ-TREE v2.1.2³³. Evolutionary model selection for trees were inferred using ModelFinder³⁴ and trees were estimated using the GTR+F+I model with 1000 ultrafast bootstrap replicates³⁵. All trees were visualised with Figtree v.1.4.4 (http://tree.bio.ed.ac.uk/ software/figtree/), rooted on the SARS-CoV-2 reference sequence and nodes arranged in descending order. Nodes with bootstraps values of <50 were collapsed using an in-house script.

In-depth allele frequency variant calling

The SAMFIRE package version 1.06 ³⁶ was used to call allele frequency trajectories from BAM file data. Reads were included in this analysis if they had a median PHRED score of at

least 30, trimming the ends of reads to achieve this if necessary. Nucleotides were then filtered to have a PHRED score of at least 30; reads with fewer than 30 such reads were discarded. Distances between sequences, accounting for low-frequency variant information, was also conducted using SAMFIRE. The sequence distance metric, described in an earlier paper³⁷, combines allele frequencies across the whole genome. Where L is the length of the genome, we define q(t) as a 4 x L element vector describing the frequencies of each of the nucleotides A, C, G, and T at each locus in the viral genome sampled at time t. For any given locus i in the genome we calculate the change in allele frequencies between the times t_1 and t_2 via a generalisation of the Hamming distance

$$d(q_i(t_1), q_i(t_2)) = \frac{1}{2} \sum_{a \in \{A, C, G, T\}} |q_i^a(t_1) - q_i^a(t_2)|$$

where the vertical lines indicate the absolute value of the difference. These statistics were then combined across the genome to generate the pairwise sequence distance metric

$$D(q(t_1), q(t_2)) = \sum_i d(q_i(t_1), q_i(t_2))$$

The Mathematica software package was to conduct a regression analysis of pairwise sequence distances against time, leading to an estimate of a mean rate of within-host sequence evolution. In contrast to the phylogenetic analysis, this approach assumed the samples collected on days 93 and 95 to arise via stochastic emission from a spatially separated subpopulation within the host, leading to a lower inferred rate of viral evolution for the bulk of the viral population.

All variants were indecently validated using custom code as part of the AnCovMulti package, found at https://github.com/PollockLaboratory/AnCovMulti.

Western blot analysis

Forty-eight hours after transfection of cells with plasmid preparations, the culture supernatant was harvested and passed through a 0.45-µm-pore-size filter to remove cellular debris. The filtrate was centrifuged at 15,000 rpm for 120 min to pellet virions. The pelleted virions were lysed in Laemmli reducing buffer (1 M Tris-HCl [pH 6.8], SDS, 100% glycerol, β -mercaptoethanol, and bromophenol blue). Pelleted virions were subjected to electrophoresis on SDS–4 to 12% bis-Tris protein gels (Thermo Fisher Scientific) under reducing conditions. This was followed by electroblotting onto polyvinylidene difluoride (PVDF) membranes. The SARS-CoV-2 Spike proteins were visualized by a ChemiDoc[>] MP imaging system (Biorad) using anti-Spike S2 (Invitrogen at 1:1000 dilution) and anti-p24 Gag antibodies (NIH AIDS Reagents 1:1000 dilution).

Recombination Detection

All sequences were tested for potential recombination, as this would impact on evolutionary estimates. Potential recombination events were explored with nine algorithms (RDP, MaxChi, SisScan, GeneConv, Bootscan, PhylPro, Chimera, LARD and 3SEQ), implemented

in RDP5 with default settings³⁸. To corroborate any findings, ClonalFrameML v1.12³⁹ was also used to infer recombination breakpoints. Neither programs indicated evidence of recombination in our data.

Structural Viewing

The Pymol Molecular Graphics System v2.4.0 (https://github.com/schrodinger/pymol-opensource/releases) was used to map the location of the four spike mutations of interested onto a SARS-CoV-2 spike structure visualised by Wrobel et al (PDB: 6ZGE)⁴⁰.

Testing of convalescent plasma for antibody titres

The Anti-SARS-CoV-2 ELISA (IgG) assay used to test CP for *antibody titres* was Euroimmun Medizinische Labordiagnostika AG. This indirect ELISA based assay uses a recombinant structural spike 1 (S1) protein of SARS-CoV-2 expressed in the human cell line HEK 293 for the detection of SARS-CoV2 IgG.

Generation of Spike mutants

Amino acid substitutions were introduced into the D614G pCDNA_SARS-CoV-2_Spike plasmid as previously described⁴¹ using the QuikChange Lightening Site-Directed Mutagenesis kit, following the manufacturer's instructions (Agilent Technologies, Inc., Santa Clara, CA).

Pseudotype virus preparation

Viral vectors were prepared by transfection of 293T cells by using Fugene HD transfection reagent (Promega). 293T cells were transfected with a mixture of 11ul of Fugene HD, 1µg of pCDNAp19Spike-HA, 1ug of p8.91 HIV-1 gag-pol expression vector^{42,43}, and 1.5µg of pCSFLW (expressing the firefly luciferase reporter gene with the HIV-1 packaging signal). Viral supernatant was collected at 48 and 72h after transfection, filtered through 0.45um filter and stored at -8°C. The 50% tissue culture infectious dose (TCID50) of SARS-CoV-2 pseudovirus was determined using Steady-Glo Luciferase assay system (Promega).

Standardisation of virus input by SYBR Green-based product-enhanced PCR assay (SG-PERT)

The reverse transcriptase activity of virus preparations was determined by qPCR using a SYBR Green-based product-enhanced PCR assay (SG-PERT) as previously described⁴⁴. Briefly, 10-fold dilutions of virus supernatant were lysed in a 1:1 ratio in a 2x lysis solution (made up of 40% glycerol v/v 0.25% Trition X-100 v/v 100mM KCl, RNase inhibitor 0.8 U/ml, TrisHCL 100mM, buffered to pH7.4) for 10 minutes at room temperature.

 12μ l of each sample lysate was added to thirteen 13μ l of a SYBR Green master mix (containing 0.5µM of MS2-RNA Fwd and Rev primers, 3.5pmol/ml of MS2-RNA, and 0.125U/µl of Ribolock RNAse inhibitor and cycled in a QuantStudio. Relative amounts of reverse transcriptase activity were determined as the rate of transcription of bacteriophage MS2 RNA, with absolute RT activity calculated by comparing the relative amounts of RT to an RT standard of known activity.

Serum/plasma pseudotype neutralization assay

Spike pseudotype assays have been shown to have similar characteristics as neutralisation testing using fully infectious wild type SARS-CoV-2⁸.Virus neutralisation assays were performed on 293T cell transiently transfected with ACE2 and TMPRSS2 using SARS-CoV-2 Spike pseudotyped virus expressing luciferase⁴⁵. Pseudotyped virus was incubated with serial dilution of heat inactivated human serum samples or convalescent plasma in duplicate for 1h at 37°C. Virus and cell only controls were also included. Then, freshly trypsinized 293T ACE2/TMPRSS2 expressing cells were added to each well. Following 48h incubation in a 5% CO2 environment at 37°C, the luminescence was measured using Steady-Glo Luciferase assay system (Promega).

mAb pseudotype neutralisation assay

Virus neutralisation assays were performed on HeLa cells stably expressing ACE2 and using SARS-CoV-2 Spike pseudotyped virus expressing luciferase as previously described⁴⁶. Pseudotyped virus was incubated with serial dilution of purified mAbs⁹ in duplicate for 1h at 37°C. Then, freshly trypsinized HeLa ACE2-expressing cells were added to each well. Following 48h incubation in a 5% CO2 environment at 37°C, the luminescence was measured using Bright-Glo Luciferase assay system (Promega) and neutralization calculated relative to virus only controls. IC50 values were calculated in GraphPad Prism.

Extended Data

Extended Data Figure 1.

Clinical time line of events with longitudinal respiratory sample CT values. CT – cycle threshold.

Extended data 2.

A. Blood parameters over time in patient case: White cell count (WCC) and lymphocyte counts are expressed as x10³ Cells/mm³. CRP: C reactive protein. **B. Assessment of T cell and innate function.** Whole blood cytokines were measured in whole blood after 24 hours stimulation either after T-cell stimulation with PHA or anti CD3/IL2 or innate stimulation

with LPS. Healthy controls are shown as grey circles (N=15), Patient at d71 and d98 is shown as blue circles or red circles respectively. Cytokine levels are shown as pg/ml stimulation. Mean is shown by line and whiskers representing standard deviation.

Extended Data Figure 3.

A. Serum SARS-CoV-2 antibody levels and virus population changes in chronic SARS-CoV-2 infection. Anti SARS-CoV2 IgG antibodies in patient and pre/post convalescent plasma compared to RNA+ Covid19 patients and prepandemic healthy controls: Red,

grey and gold: IgG antibodies to SARS-CoV2 nucleocapsid protein (N), trimeric S protein (S) and the receptor binding domain (RBD) were measured by multiplexed particle based flow cytometry (Luminex) in RNA+ COVID-19 patients (N=20, red dots), Pre-pandemic healthy controls (N=20, grey dots) and in the convalescent donor plasma (orange dots); Results are shown as mean fluorescent intensity (MFI) +/- SD. Patient sera over time in **blue:** Anti SARS-CoV2 IgG to N (blue squares), S (blue circles) and RBD (blue triangles). Timing of CP units is also shown. **B. SARS-CoV-2 antibody titres in patient and in convalescent plasma.** Measurement of SARS-CoV-2 specific IgG antibody titres in three units of convalescent plasma (CP) by Euroimmun assay.

В	

	W64G	P330S	Δ H69/V70	D796H	T200I	Y240H
Day 1 (n=7)	0	0	0	0	0	0
Day 37 (n=38)	0	0	0	0	0	0
Day 98 (n=21)	1 (4.8)	1 (4.8)	17 (81.0)	13*(68.4)	3 (14.3)	3 (14.3)

Extended data 4. Comparison between short-read (Illumina) and long-read single molecule (Oxford Nanopore) sequencing methods for the six observed Spike mutations.

Concordance was generally good between the majority of timepoints, however due to large discrepancies in a number of timepoints, we suggest that due to the high base calling error rate, Nanopore is not yet suitable for calling minority variants. As such, all figures in the main paper were produced using Illumina data only. **B. Single genome sequencing (SGS) data from respiratory samples at indicated days.** Indicated are the number of single genomes obtained at each time point with the mutations of interest (identified by deep sequencing). *denominator is 19 as for 2 samples the primer reads were poor quality at amino acid 796 at day 98. Amino acid variant and corresponding nucleotide position: S:W64G = 21752, S: 69 = 21765-21770, S:Y200H = 22160, S:T240I = 22281, S:P330S = 22550, S:D795H = 23948

Extended Data Figure 5. Evidence for within-host cladal structure.

A. Pairwise distances between samples measured using the all-locus distance metric plotted against pairwise distances in time (measured in days) between samples being collected. Internal distances between samples in the proposed main clade are shown in black, distances between samples in the main clade and samples collected on days 93 and 95 are shown in red, and internal distances between samples collected on days 93 and 95 are shown in green.
B. Pairwise distances between samples in the larger clade (black) and between these samples and those collected on days 93 and 95 (red). The median values of the distributions of these values are significantly different according to a Mann Whitney test.
C. Pairwise distances between these samples and those collected on days 86, 89, 93, 95 have been removed (black) and between these samples and those collected on days 86 and 89 (red). The median values of the distributions of these values are not significantly different at the 5 level according to a Mann Whitney test.

Extended Data Figure 6.

A. Close-view maximum-likelihood phylogenetic tree indicating the diversity of the case patient and three other long-term shedders from the local area (red, blue and purple), compared to recently published sequences from Choi et al (orange) and Avanzato et al (gold). Control patients generally showed limited diversity temporally, though the Choi et al sequences were highly divergent. Environmental samples (patient's call bell, and patient's mobile phone) are indicated. Tree branched have been collapsed where bootstrap support was <60.

B. Highlighter plot indicating nucleotide changes at consensus level in sequential respiratory samples compared to the consensus sequence at first diagnosis of COVID-19. Each row indicates the timepoint the sample was collected (number of days from first positive SARS-CoV-2 RT-PCR). Black dashed lines indicate the RNA-dependent RNA polymerase (RdRp) and Spike regions of the genome. There were few nucleotide substitutions between days 1-54, despite the patient receiving two courses of remdesivir. The first major changes in the spike genome occurred on day 82, following convalescent plasma given on days 63 and 65. The amino acid deletion in S1, H69/V70 is indicated by the black lines. Sites: Endotracheal aspirate (ETA) or Nose/throat swabs (N+T).

Extended Data 7. In vitro infectivity and neutralisation sensitivity of Spike pseudotyped lentiviruses.

A. infection of target 293T cells expressing TMPRSS2 and ACE2 receptors using equal amounts of virus as determined by reverse transcriptase activity. Data points represent technical replicates (n=2), with mean shown with error bars representing standard deviation. Data are representative of n=2 independent experiments (n=2). **B.** Representative Inverse dilution plots for Spike variants against convalescent plasma units 1-3. Data points represent mean neutralisation of technical replicates and error bars represent standard error of the mean of replicates. Data are representative of two independent experiments (n=2).

Kemp et al.

Extended Data Figure 8.

A. Neutralization potency of a panel of monoclonal antibodies targeting the RBD is not impacted by Spike mutations D796H or H69/V70. Lentivirus pseudotyped with SARS-CoV-2 Spike protein: WT (D614G background), D796H, H69/V70, D796H+ H69/V70 were produced in 293T cells and used to infect target Hela cells stably expressing ACE2 in the presence of serial dilutions of indicated monoclonal antibodies. Data are means of technical replicates with error bars representing SD. Data are representative of at least two independent experiments. RBD: receptor binding domain. B. Classes of RBD binding antibodies and fold changes for Spike mutations D796H or H69/V70 are indicated based Bouwer et al. Clusters II, V contain only non-neutralising mAbs, smaller neutralising mAb clusters IV (n=2) and X (n=1) were not tested. Red indicates significant fold changes.

D

Mutation	Number of Sequences	Global Prevalence (%)
W64G	0	0.00
ΔH69/V70	12883	4.32
Y200H	7	<0.01
T240I	77	0.02
P330S	167	0.06
D796H	65	0.02
D796Y	141	0.05

Extended Data 9. Location of Spike mutations H69/Y70 and D796H.

A. The SARS-CoV-2 spike trimer (PDB ID: 6xr8) with two protomers represented as surfaces and one protomer represented as a ribbon. The NTD is coloured in light blue, the RBD in light pink, the fusion peptide in dark pink, the HR1 domain in yellow, the CH domain in pale green, and the CD domain in brown. The location of D796 and H69 are indicated by red spheres. The loop connecting D796 to the fusion peptide is coloured magenta to improve visibility. The double grey lines provide orientation relative to the membrane. **B.** A close-up of the region defined by the box around H69 in panel A. H69 is highlighted in yellow. Residues containing atoms that are within 6 Å of H69 are highlighted in cyan. **C.** A close-up of the region defined by the box around D796 in panel A. D796 is
highlighted in yellow. Residues containing atoms that are within 6 Å of D796 are highlighted in cyan. Hydrogen bonds are indicated by dashed yellow lines. Hydrophobic residues in the vicinity of D796 have been labelled. Y707 is from the neighbouring protomer. **D. Global prevalence of selected spike mutations detailed in this paper.** All high coverage sequences were downloaded from the GISAID database on 6th January and aligned using MAFFT; as of this date there were 298254 sequences available. The global prevalence of each of the six spike mutations W64G, H69/V70, Y200H, T240I, P330S and D796H were assessed by viewing the multiple sequence alignment in AliView, sorting by the column of interest, and counting the number of mutations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors

Steven A Kemp^{#1}, Dami A Collier^{#1,2,3}, Rawlings P Datir^{#2,3}, Isabella ATM Ferreira^{2,3}, Salma Gayed⁴, Aminu Jahun⁵, Myra Hosmillo⁵, Chloe Rees-Spear¹, Petra MIcochova^{2,3}, Ines Ushiro Lumb⁶, David J Roberts⁶, Anita Chandra^{2,3}, Nigel Temperton⁷, The CITIID-NIHR BioResource COVID-19 Collaboration Stephen Baker^{2,3} [Principal Investigators], Gordon Dougan^{2,3} [Principal Investigators], Christoph Hess^{2,3,26,27} [Principal Investigators], Nathalie Kingston^{20,12} [Principal Investigators], Paul J. Lehner^{2,3} [Principal Investigators], Paul A. Lyons^{2,3} [Principal Investigators], Nicholas J. Matheson^{2,3} [Principal Investigators], Willem H. Owehand²⁰ [Principal Investigators], Caroline Saunders¹⁹ [Principal Investigators], Charlotte Summers^{3,24,25,28} [Principal Investigators], James E.D. Thaventhiran^{2,3,22} [Principal Investigators], Mark Toshner^{3,24,25} [Principal Investigators], Michael P. Weekes² [Principal Investigators], Ashlea Bucke¹⁹ [CRF and Volunteer Research Nurses], Jo Calder¹⁹ [CRF and Volunteer Research Nurses], Laura Canna¹⁹ [CRF and Volunteer Research Nurses], Jason Domingo¹⁹ [CRF and Volunteer Research Nurses], Anne Elmer¹⁹ [CRF and Volunteer Research Nurses], Stewart Fuller¹⁹ [CRF and Volunteer Research Nurses], Julie Harris⁴¹ [CRF and Volunteer Research Nurses], Sarah Hewitt¹⁹ [CRF and Volunteer Research Nurses], Jane Kennet¹⁹ [CRF and Volunteer Research Nurses], Sherly Jose¹⁹ [CRF and Volunteer Research Nurses], Jenny Kourampa¹⁹ [CRF and Volunteer Research Nurses], Anne Meadows¹⁹ [CRF and Volunteer Research Nurses], Criona O'Brien⁴¹ [CRF and Volunteer Research Nurses], Jane Price¹⁹ [CRF and Volunteer Research Nurses], Cherry Publico¹⁹ [CRF and Volunteer Research Nurses], Rebecca Rastall¹⁹ [CRF and Volunteer Research Nurses], Carla Ribeiro¹⁹ [CRF and Volunteer Research Nurses], Jane Rowlands¹⁹ [CRF and Volunteer Research Nurses], Valentina Ruffolo¹⁹ [CRF and Volunteer Research Nurses], Hugo Tordesillas¹⁹ [CRF and Volunteer Research Nurses], Ben Bullman² [Sample Logistics], Benjamin J Dunmore³ [Sample Logistics], Stuart Fawke³⁰ [Sample Logistics], Stefan Gräf^{3,12,20} [Sample Logistics], Josh Hodgson³ [Sample Logistics], Christopher Huang³

[Sample Logistics], Kelvin Hunter^{2,3} [Sample Logistics], Emma Jones²⁹ [Sample Logistics], Ekaterina Legchenko³ [Sample Logistics], Cecilia Matara³ [Sample Logistics], Jennifer Martin³ [Sample Logistics], Federica Mescia^{2,3} [Sample Logistics], Ciara O'Donnell³ [Sample Logistics], Linda Pointon³ [Sample Logistics], Nicole Pond^{2,3} [Sample Logistics], Joy Shih³ [Sample Logistics], Rachel Sutcliffe³ [Sample Logistics], Tobias Tilly³ [Sample Logistics], Carmen Treacy³ [Sample Logistics], Zhen Tong³ [Sample Logistics], Jennifer Wood³ [Sample Logistics], Marta Wylot³⁶ [Sample Logistics], Laura Bergamaschi^{2,3} [Sample Processing and Data Acquisition], Ariana Betancourt^{2,3} [Sample Processing and Data Acquisition], Georgie Bower^{2,3} [Sample Processing and Data Acquisition], Chiara Cossetti^{2,3} [Sample Processing and Data Acquisition], Aloka De Sa³ [Sample Processing and Data Acquisition], Madeline Epping^{2,3} [Sample Processing and Data Acquisition], Stuart Fawke³² [Sample Processing and Data Acquisition], Nick Gleadall²⁰ [Sample Processing and Data Acquisition], Richard Grenfell³¹ [Sample Processing and Data Acquisition], Andrew Hinch^{2,3} [Sample Processing and Data Acquisition], Oisin Huhn³² [Sample Processing and Data Acquisition], Sarah Jackson³ [Sample Processing and Data Acquisition], Isobel Jarvis³ [Sample Processing and Data Acquisition], Daniel Lewis³ [Sample Processing and Data Acquisition], Joe Marsden³ [Sample Processing and Data Acquisition], Francesca Nice³⁹ [Sample Processing and Data Acquisition], Georgina Okecha³ [Sample Processing and Data Acquisition], Ommar Omarjee³ [Sample Processing and Data Acquisition], Marianne Perera³ [Sample Processing and Data Acquisition], Nathan Richoz³ [Sample Processing and Data Acquisition], Veronika Romashova^{2,3} [Sample Processing and Data Acquisition], Natalia Savinykh Yarkoni³ [Sample Processing and Data Acquisition], Rahul Sharma³ [Sample Processing and Data Acquisition], Luca Stefanucci²⁰ [Sample Processing and Data Acquisition], Jonathan Stephens²⁰ [Sample Processing and Data Acquisition]. Mateusz Strezlecki³¹ [Sample Processing and Data Acquisition], Lori Turner^{2,3} [Sample Processing and Data Acquisition], Eckart M.D.D. De Bie³ [Clinical Data Collection], Katherine Bunclark³ [Clinical Data Collection], Masa Josipovic⁴⁰ [Clinical Data Collection], Michael Mackay³ [Clinical Data Collection], Federica Mescia^{2,3} [Clinical Data Collection], Alice Michael²⁵ [Clinical Data Collection], Sabrina Rossi³⁵ [Clinical Data Collection], Mayurun Selvan³ [Clinical Data Collection], Sarah Spencer¹⁵ [Clinical Data Collection], Cissy Yong³⁵ [Clinical Data Collection], Ali Ansaripour²⁵ [Royal Papworth Hospital ICU], Alice Michael²⁵ [Royal Papworth Hospital ICU], Lucy Mwaura²⁵ [Royal Papworth Hospital ICU], Caroline Patterson²⁵ [Royal Papworth Hospital ICU], Gary Polwarth²⁵ [Royal Papworth Hospital ICU], Petra Polgarova²⁸ [Addenbrooke's Hospital ICU], Giovanni di Stefano²⁸ [Addenbrooke's Hospital ICU], Codie Fahey³⁴ [Cambridge and Peterborough Foundation Trust], Rachel Michel³⁴ [Cambridge and Peterborough Foundation Trust], Sze-How Bong²¹ [ANPC and Centre for Molecular Medicine and Innovative Therapeutics], Jerome D. Coudert³³ [ANPC and Centre for Molecular Medicine and Innovative

Therapeutics], Elaine Holmes³⁷ [ANPC and Centre for Molecular Medicine and Innovative Therapeutics], John Allison^{20,12} [NIHR BioResource], Helen Butcher^{12,38} [NIHR BioResource], Daniela Caputo^{12,38} [NIHR BioResource], Debbie Clapham-Riley^{12,38} [NIHR BioResource], Eleanor Dewhurst^{12,38} [NIHR BioResource], Anita Furlong^{12,38} [NIHR BioResource], Barbara Graves^{12,38} [NIHR BioResource], Jennifer Gray^{12,38} [NIHR BioResource], Tasmin Ivers^{12,38} [NIHR BioResource], Mary Kasanicki^{12,28} [NIHR BioResource], Emma Le Gresley^{12,38} [NIHR BioResource], Rachel Linger^{12,38} [NIHR BioResource], Sarah Meloy^{12,38} [NIHR BioResource], Francesca Muldoon^{12,38} [NIHR BioResource], Nigel Ovington^{12,20} [NIHR BioResource], Sofia Papadia^{12,38} [NIHR BioResource], Isabel Phelan^{12,38} [NIHR BioResource], Hannah Stark^{12,38} [NIHR BioResource], Kathleen E Stirrups^{12,20} [NIHR BioResource], Paul Townsend^{12,20} [NIHR BioResource], Neil Walker^{12,20} [NIHR BioResource], Jennifer Webster^{12,38} [NIHR BioResource]

¹⁹Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK ²⁰Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ²¹Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia WA 6150, Australia ²²MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK ²³R&D Department, Hycult Biotech, 5405 PD Uden, The Netherlands ²⁴Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ²⁵Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ²⁶Department of Biomedicine, University and University Hospital Basel, 4031Basel, Switzerland ²⁷Botnar Research Centre for Child Health (BRCCH) University Basel & ETH Zurich, 4058 Basel, Switzerland ²⁸Addenbrooke's Hospital, Cambridge CB2 0QQ, UK ²⁹Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK ³⁰Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK ³¹Cancer Research UK, Cambridge Institute, University of Cambridge CB2 0RE, UK ³²Department of Obstetrics & Gynaecology, The Rosie Maternity Hospital, Robinson Way, Cambridge CB2 0SW, UK ³³Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia ³⁴Cambridge and Peterborough Foundation Trust, Fulbourn Hospital, Fulbourn, Cambridge CB21 5EF, UK ³⁵Department of Surgery, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK ³⁶Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK ³⁷Centre of Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia ³⁸Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ³⁹Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, Cambridge CB2 0AH, UK ⁴⁰Metabolic

Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK ⁴¹Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK

, The COVID-19 Genomics UK (COG-UK) Consortium Samuel C Robson⁵⁴ [Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], Nicholas J Loman⁸², Thomas R Connor^{51,110} [Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools], Tanya Golubchik⁴⁶ [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], Rocio T Martinez Nunez⁸³ [Funding acquisition, Metadata curation, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], Catherine Ludden¹²⁹ [Funding acquisition, Leadership and supervision, Metadata curation, Project administration, and Samples and logistics], Sally Corden¹¹⁰ [Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], lan Johnston¹⁴⁰, David Bonsall⁴⁶ [Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis], Colin P Smith¹²⁸, Ali R Awan⁶⁹ [Funding acquisition, Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation], Giselda Bucca¹²⁸ [Funding acquisition, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], M. Estee Torok^{63,142} [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Kordo Saeed^{122,151} [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Visualisation], Jacqui A Prieto^{124,150} [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Visualisation], David K Jackson¹⁴⁰ [Leadership and supervision, Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools], William L Hamilton⁶³ [Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools], Luke B Snell⁵² [Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Visualisation], Catherine Moore¹¹⁰ [Funding acquisition, Leadership and supervision, Metadata curation, and Samples and logistics], Ewan M Harrison^{129,140} [Funding acquisition, Leadership and supervision, Project administration, and Samples and logistics], Sonia Goncalves¹⁴⁰ [Leadership and supervision, Metadata curation, Project administration, and Samples and logistics], Derek J Fairley^{44,113} [Leadership and supervision, Metadata

curation, Samples and logistics, and Sequencing and analysis], Matthew W Loose⁵⁹ [Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], Joanne Watkins¹¹⁰ [Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], Rich Livett¹⁴⁰ [Leadership and supervision, Metadata curation, Samples and logistics, and Software and analysis tools], Samuel Moses^{66,147} [Leadership and supervision, Metadata curation, Samples and logistics, and Visualisation], Roberto Amato¹⁴⁰ [Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools], Sam Nicholls⁸² [Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools], Matthew Bull¹¹⁰ [Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools], Darren L Smith^{1,99,146} [Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis], Jeff Barrett¹⁴⁰ [Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation], David M Aanensen⁵⁵ [Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation], Martin D Curran¹⁰⁶ [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Surendra Parmar¹⁰⁶ [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Dinesh Aggarwal^{1,140,105} [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], James G Shepherd⁸⁹ [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Matthew D Parker¹³⁴ [Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools], Sharon Glaysher¹⁰² [Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation], Matthew Bashton^{78,99} [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Anthony P Underwood⁵⁵ [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Nicole Pacchiarini¹¹⁰ [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Katie F Loveson¹¹⁸ [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Alessandro M Carabelli¹²⁹ [Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation], Kate E Templeton^{94,131} [Funding acquisition, Leadership and supervision, and Metadata curation], Cordelia F Langford¹⁴⁰ [Funding acquisition, Leadership and supervision, and Project administration], John Sillitoe¹⁴⁰ [Funding acquisition, Leadership and supervision, and Project administration], Thushan I de Silva¹³⁴ [Funding acquisition, Leadership and supervision, and Project administration], Dennis Wang¹³⁴ [Funding acquisition, Leadership and supervision, and Project administration], Dominic Kwiatkowski^{140,148} [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Andrew Rambaut¹³¹ [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Justin O'Grady^{111,130} [Funding acquisition, Leadership and

supervision, and Sequencing and analysis], Simon Cottrell¹¹⁰ [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Matthew T.G. Holden¹⁰⁹ [Leadership and supervision, Metadata curation, and Sequencing and analysis], Emma C Thomson⁸⁹ [Leadership and supervision, Metadata curation, and Sequencing and analysis], Husam Osman^{77,105} [Leadership and supervision, Project administration, and Samples and logistics], Monique Andersson¹⁰⁰ [Leadership and supervision, Project administration, and Samples and logistics], Anoop J Chauhan¹⁰² [Leadership and supervision, Project administration, and Samples and logistics], Mohammed O Hassan-Ibrahim⁴⁷ [Leadership and supervision, Project administration, and Samples and logistics], Mara Lawniczak¹⁴⁰ [Leadership and supervision, Project administration, and Sequencing and analysis], Alex Alderton¹⁴⁰ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Meera Chand¹⁰⁷ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Chrystala Constantinidou¹³⁵ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Meera Unnikrishnan¹³⁵ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Alistair C Darby¹³³ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Julian A Hiscox¹³³ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Steve Paterson¹³³ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Inigo Martincorena¹⁴⁰ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], David L Robertson⁸⁹ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Erik M Volz⁸⁰ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Andrew J Page¹¹¹ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Oliver G Pybus⁶⁴ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Andrew R Bassett¹⁴⁰ [Leadership and supervision, Sequencing and analysis, and Visualisation], Cristina V Ariani¹⁴⁰ [Metadata curation, Project administration, and Samples and logistics], Michael H Spencer Chapman^{129,140} [Metadata curation, Project administration, and Samples and logistics], Kathy K Li⁸⁹ [Metadata curation, Project administration, and Samples and logistics], Rajiv N Shah⁸⁹ [Metadata curation, Project administration, and Samples and logistics], Natasha G Jesudason⁸⁹ [Metadata curation, Project administration, and Samples and logistics], Yusri Taha⁹¹ [Metadata curation, Project administration, and Samples and logistics], Martin P McHugh⁹⁴ [Metadata curation, Project administration, and Sequencing and analysis], Rebecca Dewar⁹⁴ [Metadata curation, Project administration, and Sequencing and analysis], Aminu S Jahun⁶⁵ [Metadata curation, Samples and logistics, and Sequencing and analysis], Claire McMurray⁸² [Metadata curation, Samples and logistics, and Sequencing and analysis], Sarojini Pandey¹²⁵ [Metadata curation, Samples and logistics, and Sequencing and analysis], James P McKenna⁴⁴ [Metadata

curation, Samples and logistics, and Sequencing and analysis], Andrew Nelson^{99,146} [Metadata curation, Samples and logistics, and Sequencing and analysis], Gregory R Young^{78,99} [Metadata curation, Samples and logistics, and Sequencing and analysis], Clare M McCann^{99,146} [Metadata curation, Samples and logistics, and Sequencing and analysis], Scott Elliott¹⁰² [Metadata curation, Samples and logistics, and Sequencing and analysis], Hannah Lowe⁶⁶ [Metadata curation, Samples and logistics, and Visualisation], Ben Temperton¹³² [Metadata curation, Sequencing and analysis, and Software and analysis tools], Sunando Roy¹²³ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Anna Price⁵¹ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Sara Rey¹¹⁰ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Matthew Wyles¹³⁴ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Stefan Rooke¹³¹ [Metadata curation, Sequencing and analysis, and Visualisation], Sharif Shaaban¹⁰⁹ [Metadata curation, Sequencing and analysis, and Visualisation], Mariateresa de Cesare¹³⁹ [Project administration, Samples and logistics, Sequencing and analysis], Laura Letchford¹⁴⁰ [Project administration, Samples and logistics, and Software and analysis tools], Siona Silveira¹²² [Project administration, Samples and logistics, and Visualisation], Emanuela Pelosi¹²² [Project administration, Samples and logistics, and Visualisation], Eleri Wilson-Davies¹²² [Project administration, Samples and logistics, and Visualisation], Myra Hosmillo⁶⁵ [Samples and logistics, Sequencing and analysis, and Software and analysis tools], Áine O'Toole¹³¹ [Sequencing and analysis, Software and analysis tools, and Visualisation], Andrew R Hesketh¹²⁸ [Sequencing and analysis, Software and analysis tools, and Visualisation], Richard Stark¹³⁵ [Sequencing and analysis, Software and analysis tools, and Visualisation], Louis du Plessis⁶⁴ [Sequencing and analysis, Software and analysis tools, and Visualisation], Chris Ruis¹²⁹ [Sequencing and analysis, Software and analysis tools, and Visualisation], Helen Adams⁴⁵ [Sequencing and analysis, Software and analysis tools, and Visualisation], Yann Bourgeois¹¹⁷ [Sequencing and analysis, Software and analysis tools, and Visualisation], Stephen L Michell¹³² [Funding acquisition, and Leadership and supervision], Dimitris Gramatopoulos^{125,153} [Funding acquisition, and Leadership and supervision], Jonathan Edgeworth⁵³ [Funding acquisition, and Leadership and supervision], Judith Breuer^{71,123} [Funding acquisition, and Leadership and supervision], John A Todd¹³⁹ [Funding acquisition, and Leadership and supervision], Christophe Fraser⁴⁶ [Funding acquisition, and Leadership and supervision], David Buck¹³⁹ [Funding acquisition, and Project administration], Michaela John⁵⁰ [Funding acquisition, and Project administration], Gemma L Kay¹¹¹ [Leadership and supervision, and Metadata curation], Steve Palmer¹⁴⁰ [Leadership and supervision, and Project administration], Sharon J Peacock^{129,105} [Leadership and supervision, and Project administration], David Heyburn¹¹⁰ [Leadership and supervision, and Project administration], Danni Weldon¹⁴⁰ [Leadership and supervision, and

Samples and logistics], Esther Robinson^{105,77} [Leadership and supervision, and Samples and logistics], Alan McNally^{82,127} [Leadership and supervision, and Samples and logistics], Peter Muir¹⁰⁵ [Leadership and supervision, and Samples and logistics], Ian B Vipond¹⁰⁵ [Leadership and supervision, and Samples and logistics], John BoYes⁷⁰ [Leadership and supervision, and Samples and logistics], Venkat Sivaprakasam⁸⁷ [Leadership and supervision, and Samples and logistics], Tranprit Salluja¹¹⁶ [Leadership and supervision, and Samples and logistics], Samir Dervisevic⁹⁵ [Leadership and supervision, and Samples and logistics], Emma J Meader⁹⁵ [Leadership and supervision, and Samples and logistics], Naomi R Park¹⁴⁰ [Leadership and supervision, and Sequencing and analysis], Karen Oliver¹⁴⁰ [Leadership and supervision, and Sequencing and analysis], Aaron R Jeffries¹³² [Leadership and supervision, and Sequencing and analysis], Sascha Ott¹³⁵ [Leadership and supervision, and Sequencing and analysis], Ana da Silva Filipe⁸⁹ [Leadership and supervision, and Sequencing and analysis], David A Simpson¹¹³ [Leadership and supervision, and Sequencing and analysis], Chris Williams¹¹⁰ [Leadership and supervision, and Sequencing and analysis], Jane AH Masoli^{114,132} [Leadership and supervision, and Visualisation], Bridget A Knight^{114,132} [Metadata curation, and Samples and logistics], Christopher R Jones^{114,132} [Metadata curation, and Samples and logistics], Cherian Koshy⁴² [Metadata curation, and Samples and logistics], Amy Ash⁴² [Metadata curation, and Samples and logistics], Anna Casey¹¹² [Metadata curation, and Samples and logistics], Andrew Bosworth^{105,77} [Metadata curation, and Samples and logistics], Liz Ratcliffe¹¹² [Metadata curation, and Samples and logistics], Li Xu-McCrae⁷⁷ [Metadata curation, and Samples and logistics], Hannah M Pymont¹⁰⁵ [Metadata curation, and Samples and logistics], Stephanie Hutchings¹⁰⁵ [Metadata curation, and Samples and logistics], Lisa Berry¹²⁵ [Metadata curation, and Samples and logistics], Katie Jones¹²⁵ [Metadata curation, and Samples and logistics]. Fenella Halstead⁸⁷ [Metadata curation, and Samples and logistics], Thomas Davis⁶² [Metadata curation, and Samples and logistics], Christopher Holmes⁵⁷ [Metadata curation, and Samples and logistics], Miren Iturriza-Gomara¹³³ [Metadata curation, and Samples and logistics], Anita O Lucaci¹³³ [Metadata curation, and Samples and logistics], Paul Anthony Randell^{79,145} [Metadata curation, and Samples and logistics], Alison Cox^{79,145} [Metadata curation, and Samples and logistics], Pinglawathee Madona^{79,145} [Metadata curation, and Samples and logistics], Kathryn Ann Harris⁷¹ [Metadata curation, and Samples and logistics], Julianne Rose Brown⁷¹ [Metadata curation, and Samples and logistics], Tabitha W Mahungu¹¹⁵ [Metadata curation, and Samples and logistics], Dianne Irish-Tavares¹¹⁵ [Metadata curation, and Samples and logistics], Tanzina Haque¹¹⁵ [Metadata curation, and Samples and logistics], Jennifer Hart¹¹⁵ [Metadata curation, and Samples and logistics], Eric Witele¹¹⁵ [Metadata curation, and Samples and logistics], Melisa Louise Fenton¹¹⁶ [Metadata curation, and Samples and logistics], Steven Liggett¹²⁰ [Metadata curation, and Samples and logistics], Clive Graham⁹⁷ [Metadata curation, and

Samples and logistics], Emma Swindells⁹⁸ [Metadata curation, and Samples and logistics], Jennifer Collins⁹¹ [Metadata curation, and Samples and logistics], Gary Eltringham⁹¹ [Metadata curation, and Samples and logistics], Sharon Campbell⁵⁸ [Metadata curation, and Samples and logistics], Patrick C McClure¹³⁸ [Metadata curation, and Samples and logistics], Gemma Clark⁵⁶ [Metadata curation, and Samples and logistics], Tim J Sloan¹⁰¹ [Metadata curation, and Samples and logistics], Carl Jones⁵⁶ [Metadata curation, and Samples and logistics], Jessica Lynch^{43,152} [Metadata curation, and Samples and logistics], Ben Warne⁴⁹ [Metadata curation, and Sequencing and analysis], Steven Leonard¹⁴⁰ [Metadata curation, and Sequencing and analysis], Jillian Durham¹⁴⁰ [Metadata curation, and Sequencing and analysis], Thomas Williams¹³¹ [Metadata curation, and Sequencing and analysis], Sam T Haldenby¹³³ [Metadata curation, and Sequencing and analysis], Nathaniel Storey⁷¹ [Metadata curation, and Sequencing and analysis], Nabil-Fareed Alikhan¹¹¹ [Metadata curation, and Sequencing and analysis], Nadine Holmes⁵⁹ [Metadata curation, and Sequencing and analysis], Christopher Moore⁵⁹ [Metadata curation, and Sequencing and analysis], Matthew Carlile⁵⁹ [Metadata curation, and Sequencing and analysis], Malorie Perry¹¹⁰ [Metadata curation, and Sequencing and analysis], Noel Craine¹⁴⁰ [Metadata curation, and Sequencing and analysis], Ronan A Lyons¹⁴⁰ [Metadata curation, and Sequencing and analysis], Angela H Beckett⁵⁴ [Metadata curation, and Sequencing and analysis], Salman Goudarzi¹¹⁸ [Metadata curation, and Sequencing and analysis], Christopher Fearn¹¹⁸ [Metadata curation, and Sequencing and analysis], Kate Cook¹¹⁸ [Metadata curation, and Sequencing and analysis], Hannah Dent¹¹⁸ [Metadata curation, and Sequencing and analysis], Hannah Paul¹¹⁸ [Metadata curation, and Sequencing and analysis], Robert Davies¹⁴⁰ [Metadata curation, and Software and analysis tools], Beth Blane¹⁴⁰ [Project administration, and Samples and logistics], Sophia T Girgis¹⁴⁰ [Project administration, and Samples and logistics], Mathew A Beale¹⁴⁰ [Project administration, and Samples and logistics], Katherine L Bellis^{140,129} [Project administration, and Samples and logistics], Matthew J Dorman¹⁴⁰ [Project administration, and Samples and logistics], Eleanor Drury¹⁴⁰ [Project administration, and Samples and logistics], Leanne Kane¹⁴⁰ [Project administration, and Samples and logistics], Sally Kay¹⁴⁰ [Project administration, and Samples and logistics], Samantha McGuigan¹⁴⁰ [Project administration, and Samples and logistics], Rachel Nelson¹⁴⁰ [Project administration, and Samples and logistics], Liam Prestwood¹⁴⁰ [Project administration, and Samples and logistics], Shavanthi Rajatileka¹⁴⁰ [Project administration, and Samples and logistics], Rahul Batra¹⁴⁰ [Project administration, and Samples and logistics], Rachel J Williams¹²³ [Project administration, and Samples and logistics], Mark Kristiansen¹²³ [Project administration, and Samples and logistics], Angie Green¹³⁹ [Project administration, and Samples and logistics], Anita Justice¹⁴⁰ [Project administration, and Samples and logistics], Adhyana I.K Mahanama^{122,143} [Project administration, and Samples and logistics],

Buddhini Samaraweera^{122,143} [Project administration, and Samples and logistics], Nazreen F Hadjirin¹²⁹ [Project administration, and Sequencing and analysis], Joshua Quick⁸² [Project administration, and Sequencing and analysis], Radoslaw Poplawski⁸² [Project administration, and Software and analysis tools], Leanne M Kermack¹²⁹ [Samples and logistics, and Sequencing and analysis], Nicola Reynolds⁴⁸ [Samples and logistics, and Sequencing and analysis], Grant Hall⁶⁵ [Samples and logistics, and Sequencing and analysis], Yasmin Chaudhry¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Malte L Pinckert⁶⁵ [Samples and logistics, and Sequencing and analysis], Iliana Georgana¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Robin J Moll¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Alicia Thornton¹⁰⁷ [Samples and logistics, and Sequencing and analysis], Richard Myers¹⁰⁷ [Samples and logistics, and Sequencing and analysis], Joanne Stockton¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Charlotte A Williams¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Wen C Yew¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Alexander J Trotter¹¹¹ [Samples and logistics, and Sequencing and analysis], Amy Trebes¹⁴⁰ [Samples and logistics, and Sequencing and analysis], George MacIntyre-Cockett¹³⁹ [Samples and logistics, and Sequencing and analysis], Alec Birchley¹¹⁰ [Samples and logistics, and Sequencing and analysis], Alexander Adams¹¹⁰ [Samples and logistics, and Sequencing and analysis], Amy Plimmer¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Bree Gatica-Wilcox¹¹⁰ [Samples and logistics, and Sequencing and analysis], Caoimhe McKerr¹¹⁰ [Samples and logistics, and Sequencing and analysis], Ember Hilvers¹¹⁰ [Samples and logistics, and Sequencing and analysis], Hannah Jones¹¹⁰ [Samples and logistics, and Sequencing and analysis], Hibo Asad¹¹⁰ [Samples and logistics, and Sequencing and analysis], Jason Coombes¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Johnathan M Evans¹¹⁰ [Samples and logistics. and Sequencing and analysis], Laia Fina¹¹⁰ [Samples and logistics, and Sequencing and analysis], Lauren Gilbert¹¹⁰ [Samples and logistics, and Sequencing and analysis], Lee Graham¹¹⁰ [Samples and logistics, and Sequencing and analysis], Michelle Cronin¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Sara Kumziene-SummerhaYes¹¹⁰ [Samples and logistics, and Sequencing and analysis], Sarah Taylor¹¹⁰ [Samples and logistics, and Sequencing and analysis], Sophie Jones¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Danielle C Groves¹³⁴ [Samples and logistics, and Sequencing and analysis], Peijun Zhang¹³⁴ [Samples and logistics, and Sequencing and analysis], Marta Gallis¹³⁴ [Samples and logistics, and Sequencing and analysis], Stavroula F Louka¹³⁴ [Samples and logistics, and Sequencing and analysis], Igor Starinskij⁸⁹ [Samples and logistics, and Software and analysis tools], Chris Jackson⁸⁸ [Sequencing and analysis, and Software and analysis tools], Marina Gourtovaia¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Gerry Tonkin-Hill¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Kevin Lewis¹⁴⁰

[Sequencing and analysis, and Software and analysis tools], Jaime M Tovar-Corona¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Keith James¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Laura Baxter¹³⁵ [Sequencing and analysis, and Software and analysis tools], Mohammad T Alam¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Richard J Orton⁸⁹ [Sequencing and analysis, and Software and analysis tools], Joseph Hughes⁸⁹ [Sequencing and analysis, and Software and analysis tools], Sreenu Vattipally¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Manon Ragonnet-Cronin⁸⁰ [Sequencing and analysis, and Software and analysis tools], Fabricia F Nascimento⁸⁰ [Sequencing and analysis, and Software and analysis tools], David Jorgensen⁸⁰ [Sequencing and analysis, and Software and analysis tools], Olivia Boyd⁸⁰ [Sequencing and analysis, and Software and analysis tools], Lily Geidelberg¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Alex E Zarebski⁶⁴ [Sequencing and analysis, and Software and analysis tools], Jayna Raghwani¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Moritz UG Kraemer⁶⁴ [Sequencing and analysis, and Software and analysis tools], Joel Southgate^{51,110} [Sequencing and analysis, and Software and analysis tools], Benjamin B Lindsey¹³⁴ [Sequencing and analysis, and Software and analysis tools], Timothy M Freeman¹³⁴ [Sequencing and analysis, and Software and analysis tools], Jon-Paul Keatley¹⁴⁰ [Software and analysis tools, and Visualisation], Joshua B Singer¹⁴⁰ [Software and analysis tools, and Visualisation], Leonardo de Oliveira Martins¹⁴⁰ [Software and analysis tools, and Visualisation], Corin A Yeats⁵⁵ [Software and analysis tools, and Visualisation], Khalil Abudahab^{140,140} [Software and analysis tools, and Visualisation], Ben EW Taylor¹⁴⁰ [Software and analysis tools, and Visualisation], Mirko Menegazzo⁵⁵ [Software and analysis tools, and Visualisation], John Danesh¹⁴⁰ [Leadership and supervision], Wendy Hogsden⁸⁷ [Leadership and supervision], Sahar Eldirdiri⁶² [Leadership and supervision], Anita Kenyon⁶² [Leadership and supervision], Jenifer Mason¹⁴⁰ [Leadership and supervision], Trevor I Robinson⁸⁴ [Leadership and supervision], Alison Holmes^{140,144} [Leadership and supervision], James Price^{140,140} [Leadership and supervision], John A Hartley¹²³ [Leadership and supervision], Tanya Curran¹⁴⁰ [Leadership and supervision], Alison E Mather¹¹¹ [Leadership and supervision], Giri Shankar¹¹⁰ [Leadership and supervision], Rachel Jones¹¹⁰ [Leadership and supervision], Robin Howe¹¹⁰ [Leadership and supervision], Sian Morgan⁵⁰ [Leadership and supervision], Elizabeth Wastenge¹⁴⁰ [Metadata curation], Michael R Chapman^{1,129,140} [Metadata curation], Siddharth Mookerjee^{79,144} [Metadata curation], Rachael Stanley⁹⁵ [Metadata curation], Wendy Smith⁵⁶ [Metadata curation], Timothy Peto¹⁰⁰ [Metadata curation], David Eyre¹⁰⁰ [Metadata curation], Derrick Crook¹⁰⁰ [Metadata curation], Gabrielle Vernet⁷⁴ [Metadata curation], Christine Kitchen⁵¹ [Metadata curation], Huw Gulliver⁵¹ [Metadata curation], Ian Merrick⁵¹ [Metadata curation], Martyn Guest⁵¹ [Metadata curation], Robert Munn¹⁴⁰ [Metadata curation], Declan T

Bradley^{140,113} [Metadata curation], Tim Wyatt¹⁰⁴ [Metadata curation], Charlotte Beaver¹⁴⁰ [Project administration], Luke Foulser¹⁴⁰ [Project administration], Sophie Palmer¹⁴⁰ [Project administration], Carol M Churcher¹²⁹ [Project administration], Ellena Brooks¹⁴⁰ [Project administration], Kim S Smith¹²⁹ [Project administration], Katerina Galai¹⁴⁰ [Project administration], Georgina M McManus¹²⁹ [Project administration], Frances Bolt^{79,144} [Project administration], Francesc Coll⁶⁰ [Project administration], Lizzie Meadows¹⁴⁰ [Project administration], Stephen W Attwood⁶⁴ [Project administration], Alisha Davies¹⁴⁰ [Project administration], Elen De Lacy¹¹⁰ [Project administration], Fatima Downing¹¹⁰ [Project administration], Sue Edwards¹⁴⁰ [Project administration], Garry P Scarlett¹¹⁷ [Project administration], Sarah Jeremiah¹²⁴ [Project administration], Nikki Smith¹³⁴ [Project administration], Danielle Leek¹²⁹ [Samples and logistics], Sushmita Sridhar^{140,140} [Samples and logistics], Sally Forrest¹²⁹ [Samples and logistics], Claire Cormie¹⁴⁰ [Samples and logistics], Harmeet K Gill¹²⁹ [Samples and logistics], Joana Dias¹⁴⁰ [Samples and logistics], Ellen E Higginson¹²⁹ [Samples and logistics], Mailis Maes¹²⁹ [Samples and logistics], Jamie Young¹²⁹ [Samples and logistics], Michelle Wantoch¹⁴⁰ [Samples and logistics], Sanger Covid Team¹⁴⁰ [Samples and logistics], Dorota Jamrozy¹⁴⁰ [Samples and logistics], Stephanie Lo¹⁴⁰ [Samples and logistics], Minal Patel¹⁴⁰ [Samples and logistics], Verity Hill¹⁴⁰ [Samples and logistics], Claire M Bewshea¹³² [Samples and logistics], Sian Ellard^{114,132} [Samples and logistics], Cressida Auckland¹¹⁴ [Samples and logistics]. Ian Harrison¹⁰⁷ [Samples and logistics]. Chloe Bishop¹⁰⁷ [Samples and logistics], Vicki Chalker¹⁰⁷ [Samples and logistics], Alex Richter¹²⁶ [Samples and logistics], Andrew Beggs¹²⁶ [Samples and logistics], Angus Best¹²⁷ [Samples and logistics], Benita Percival¹²⁷ [Samples and logistics], Jeremy Mirza¹²⁷ [Samples and logistics], Oliver Megram¹²⁷ [Samples and logistics], Megan Mayhew¹²⁷ [Samples and logistics], Liam Crawford¹²⁷ [Samples and logistics], Fiona Ashcroft¹⁴⁰ [Samples and logistics], Emma Moles-Garcia¹²⁷ [Samples and logistics], Nicola Cumley¹²⁷ [Samples and logistics], Richard Hopes¹⁰⁵ [Samples and logistics], Patawee Asamaphan¹⁴⁰ [Samples and logistics], Marc O Niebel¹⁴⁰ [Samples and logistics], Rory N Gunson¹⁴¹ [Samples and logistics], Amanda Bradley⁹³ [Samples and logistics], Alasdair Maclean⁹³ [Samples and logistics], Guy Mollett⁹³ [Samples and logistics], Rachel Blacow⁹³ [Samples and logistics], Paul Bird⁵⁷ [Samples and logistics], Thomas Helmer⁵⁷ [Samples and logistics], Karlie Fallon⁵⁷ [Samples and logistics], Julian Tang¹⁴⁰ [Samples and logistics], Antony D Hale¹⁴⁰ [Samples and logistics], Louissa R Macfarlane-Smith¹⁴⁰ [Samples and logistics], Katherine L Harper⁹⁰ [Samples and logistics], Holli Carden¹⁴⁰ [Samples and logistics], Nicholas W Machin^{86,105} [Samples and logistics], Kathryn A Jackson¹³³ [Samples and logistics], Shazaad SY Ahmad^{86,105} [Samples and logistics], Ryan P George⁸⁶ [Samples and logistics], Lance Turtle¹⁴⁰ [Samples and logistics], Elaine O'Toole⁸⁴ [Samples and logistics], Joanne Watts⁸⁴ [Samples and logistics], Cassie Breen⁸⁴ [Samples and logistics], Angela Cowell¹⁴⁰ [Samples and

logistics], Adela Alcolea-Medina^{73,137} [Samples and logistics], Themoula Charalampous^{140,83} [Samples and logistics], Amita Patel¹⁴⁰ [Samples and logistics], Lisa J Levett⁷⁶ [Samples and logistics], Judith Heaney⁷⁶ [Samples and logistics], Aileen Rowan¹⁴⁰ [Samples and logistics], Graham P Taylor⁸⁰ [Samples and logistics], Divya Shah⁷¹ [Samples and logistics], Laura Atkinson¹⁴⁰ [Samples and logistics], Jack CD Lee¹⁴⁰ [Samples and logistics], Adam P Westhorpe¹²³ [Samples and logistics], Riaz Jannoo¹⁴⁰ [Samples and logistics], Helen L Lowe¹²³ [Samples and logistics], Angeliki Karamani¹²³ [Samples and logistics], Leah Ensell¹²³ [Samples and logistics], Wendy Chatterton⁷⁶, Monika Pusok⁷⁶ [Samples and logistics], Ashok Dadrah¹¹⁶ [Samples and logistics], Amanda Symmonds¹¹⁶ [Samples and logistics], Graciela Sluga⁸⁵ [Samples and logistics], Zoltan Molnar¹¹³ [Samples and logistics], Paul Baker¹²⁰ [Samples and logistics], Stephen Bonner¹²⁰ [Samples and logistics], Sarah Essex¹²⁰ [Samples and logistics], Edward Barton⁹⁷ [Samples and logistics], Debra Padgett⁹⁷ [Samples and logistics], Garren Scott⁹⁷ [Samples and logistics], Jane Greenaway¹⁴⁰ [Samples and logistics], Brendan AI Payne¹⁴⁰ [Samples and logistics], Shirelle Burton-Fanning⁹¹ [Samples and logistics], Sheila Waugh⁹¹ [Samples and logistics], Veena Raviprakash⁵⁸ [Samples and logistics], Nicola Sheriff⁵⁸ [Samples and logistics], Victoria Blakey¹⁴⁰ [Samples and logistics], Lesley-Anne Williams⁵⁸ [Samples and logistics], Jonathan Moore⁶⁸ [Samples and logistics], Susanne Stonehouse⁶⁸ [Samples and logistics], Louise Smith¹⁴⁰ [Samples and logistics], Rose K Davidson¹³⁰ [Samples and logistics], Luke Bedford⁶⁷ [Samples and logistics], Lindsay Coupland⁹⁵ [Samples and logistics], Victoria Wright¹⁴⁰ [Samples and logistics], Joseph G Chappell¹³⁸ [Samples and logistics], Theocharis Tsoleridis¹³⁸ [Samples and logistics], Jonathan Ball¹³⁸ [Samples and logistics], Manjinder Khakh¹⁴⁰ [Samples and logistics], Vicki M Fleming¹⁴⁰ [Samples and logistics], Michelle M Lister¹⁴⁰ [Samples and logistics], Hannah C Howson-Wells⁵⁶ [Samples and logistics], Louise Berry⁵⁶ [Samples and logistics], Tim Boswell⁵⁶ [Samples and logistics], Amelia Joseph⁵⁶ [Samples and logistics], Iona Willingham⁵⁶ [Samples and logistics], Nichola Duckworth¹⁰¹ [Samples and logistics], Sarah Walsh¹⁰¹ [Samples and logistics], Emma Wise^{140,152} [Samples and logistics], Nathan Moore^{140,152} [Samples and logistics], Matilde Mori^{140,140,152} [Samples and logistics], Nick Cortes^{140,152} [Samples and logistics], Stephen Kidd^{140,152} [Samples and logistics], Rebecca Williams⁷⁴ [Samples and logistics], Laura Gifford¹¹⁰ [Samples and logistics], Kelly Bicknell¹⁰² [Samples and logistics], Sarah Wyllie¹⁰² [Samples and logistics], Allyson Lloyd¹⁰² [Samples and logistics], Robert Impey¹⁴⁰ [Samples and logistics], Cassandra S Malone¹⁴⁰ [Samples and logistics], Benjamin J Cogger⁴⁷ [Samples and logistics], Nick Levene¹⁰³ [Samples and logistics], Lynn Monaghan¹⁴⁰ [Samples and logistics], Alexander J Keeley¹⁴⁰ [Samples and logistics], David G Partridge^{140,134} [Samples and logistics], Mohammad Raza^{119,134} [Samples and logistics], Cariad Evans^{140,134} [Samples and logistics], Kate Johnson^{119,134} [Samples and logistics], Emma Betteridge¹⁴⁰ [Sequencing and analysis], Ben W Farr¹⁴⁰

[Sequencing and analysis], Scott Goodwin¹⁴⁰ [Sequencing and analysis], Michael A Quail¹⁴⁰ [Sequencing and analysis], Carol Scott¹⁴⁰ [Sequencing and analysis], Lesley Shirley¹⁴⁰ [Sequencing and analysis], Scott AJ Thurston¹⁴⁰ [Sequencing and analysis], Diana Rajan¹⁴⁰ [Sequencing and analysis], Iraad F Bronner¹⁴⁰ [Sequencing and analysis], Louise Aigrain¹⁴⁰ [Sequencing and analysis], Nicholas M Redshaw¹⁴⁰ [Sequencing and analysis], Stefanie V Lensing¹⁴⁰ [Sequencing and analysis], Shane McCarthy¹⁴⁰ [Sequencing and analysis], Alex Makunin¹⁴⁰ [Sequencing and analysis], Carlos E Balcazar¹⁴⁰ [Sequencing and analysis], Michael D Gallagher¹⁴⁰ [Sequencing and analysis], Kathleen A Williamson¹⁴⁰ [Sequencing and analysis], Thomas D Stanton¹⁴⁰ [Sequencing and analysis], Michelle L Michelsen¹⁴⁰ [Sequencing and analysis], Joanna Warwick-Dugdale¹³² [Sequencing and analysis], Robin Manley¹³² [Sequencing and analysis], Audrey Farbos¹⁴⁰ [Sequencing and analysis], James W Harrison¹⁴⁰ [Sequencing and analysis], Christine M Sambles¹⁴⁰ [Sequencing and analysis], David J Studholme¹³² [Sequencing and analysis], Angie Lackenby¹⁰⁷ [Sequencing and analysis], Tamyo Mbisa¹⁰⁷ [Sequencing and analysis], Steven Platt¹⁰⁷ [Sequencing and analysis], Shahjahan Miah¹⁰⁷ [Sequencing and analysis], David Bibby¹⁰⁷ [Sequencing and analysis], Carmen Manso¹⁰⁷ [Sequencing and analysis], Jonathan Hubb¹⁰⁷ [Sequencing and analysis], Gavin Dabrera¹⁰⁷ [Sequencing and analysis], Mary Ramsay¹⁰⁷ [Sequencing and analysis], Daniel Bradshaw¹⁰⁷ [Sequencing and analysis], Ulf Schaefer¹⁰⁷ [Sequencing and analysis], Natalie Groves¹⁰⁷ [Sequencing and analysis], Eileen Gallagher¹⁰⁷ [Sequencing and analysis], David Lee¹⁰⁷ [Sequencing and analysis], David Williams¹⁰⁷ [Sequencing and analysis], Nicholas Ellaby¹⁰⁷ [Sequencing and analysis], Hassan Hartman¹⁰⁷ [Sequencing and analysis], Nikos Manesis¹⁰⁷ [Sequencing and analysis], Vineet Patel¹⁰⁷ [Sequencing and analysis], Juan Ledesma¹⁴⁰ [Sequencing and analysis], Katherine A Twohig¹⁰⁸ [Sequencing and analysis], Elias Allara^{140,129} [Sequencing and analysis], Clare Pearson^{140,140} [Sequencing and analysis], Jeffrey K. J. Cheng¹³⁵ [Sequencing] and analysis], Hannah E Bridgewater¹³⁵ [Sequencing and analysis], Lucy R Frost¹⁴⁰ [Sequencing and analysis], Grace Taylor-Joyce¹⁴⁰ [Sequencing and analysis], Paul E Brown¹³⁵ [Sequencing and analysis], Lily Tong⁸⁹ [Sequencing and analysis], Alice Broos⁸⁹ [Sequencing and analysis], Daniel Mair⁸⁹ [Sequencing and analysis], Jenna Nichols¹⁴⁰ [Sequencing and analysis], Stephen N Carmichael¹⁴⁰ [Sequencing and analysis], Katherine L Smollett⁸¹ [Sequencing and analysis], Kyriaki Nomikou¹⁴⁰ [Sequencing and analysis], Elihu Aranday-Cortes⁸⁹ [Sequencing and analysis], Natasha Johnson⁸⁹ [Sequencing and analysis], Seema Nickbakhsh^{140,140} [Sequencing and analysis], Edith E Vamos¹³³ [Sequencing and analysis], Margaret Hughes¹³³ [Sequencing and analysis], Lucille Rainbow¹³³ [Sequencing and analysis], Richard Eccles¹³³ [Sequencing and analysis], Charlotte Nelson¹³³ [Sequencing and analysis], Mark Whitehead¹³³ [Sequencing and analysis], Richard Gregory¹³³ [Sequencing and analysis], Matthew Gemmell¹³³ [Sequencing and analysis], Claudia Wierzbicki¹⁴⁰ [Sequencing and analysis],

Hermione J Webster¹⁴⁰ [Sequencing and analysis], Chloe L Fisher¹⁴⁰ [Sequencing and analysis], Adrian W Signell⁶¹ [Sequencing and analysis], Gilberto Betancor¹⁴⁰ [Sequencing and analysis], Harry D Wilson⁶¹ [Sequencing and analysis], Gaia Nebbia⁵³ [Sequencing and analysis], Flavia Flaviani¹⁴⁰ [Sequencing and analysis], Alberto C Cerda¹⁴⁰ [Sequencing and analysis], Tammy V Merrill¹⁴⁰ [Sequencing and analysis], Rebekah E Wilson¹³⁷ [Sequencing and analysis], Marius Cotic¹²³ [Sequencing and analysis], Nadua Bayzid¹²³ [Sequencing and analysis], Thomas Thompson¹¹³ [Sequencing and analysis], Erwan Acheson¹¹³ [Sequencing and analysis], Steven Rushton¹⁴⁰ [Sequencing and analysis], Sarah O'Brien¹⁴⁰ [Sequencing and analysis], David J Baker¹¹¹ [Sequencing and analysis], Steven Rudder¹¹¹ [Sequencing and analysis], Alp Aydin¹¹¹ [Sequencing and analysis], Fei Sang⁵⁹ [Sequencing and analysis], Johnny Debebe⁵⁹ [Sequencing and analysis], Sarah Francois¹⁴⁰ [Sequencing and analysis], Tetyana I Vasylyeva¹⁴⁰ [Sequencing and analysis], Marina Escalera Zamudio⁶⁴ [Sequencing and analysis], Bernardo Gutierrez⁶⁴ [Sequencing and analysis], Angela Marchbank⁵¹ [Sequencing and analysis], Joshua Maksimovic⁵⁰ [Sequencing and analysis], Karla Spellman⁵⁰ [Sequencing and analysis], Kathryn McCluggage⁵⁰ [Sequencing and analysis], Mari Morgan¹¹⁰ [Sequencing and analysis], Robert Beer⁵⁰ [Sequencing and analysis], Safiah Afifi⁵⁰ [Sequencing and analysis], Trudy Workman⁵¹ [Sequencing and analysis], William Fuller⁵¹ [Sequencing and analysis], Catherine Bresner⁵¹ [Sequencing and analysis], Adrienn Angyal¹⁴⁰ [Sequencing and analysis], Luke R Green¹⁴⁰ [Sequencing and analysis], Paul J Parsons¹⁴⁰ [Sequencing and analysis], Rachel M Tucker¹³⁴ [Sequencing and analysis], Rebecca Brown¹³⁴ [Sequencing and analysis], Max Whiteley¹³⁴ [Sequencing and analysis], James Bonfield¹⁴⁰ [Software and analysis tools], Christoph Puethe¹⁴⁰ [Software and analysis tools], Andrew Whitwham¹⁴⁰ [Software and analysis tools], Jennifier Liddle¹⁴⁰ [Software and analysis tools], Will Rowe⁸² [Software and analysis tools], Igor Siveroni¹⁴⁰ [Software and analysis tools], Thanh Le-Viet¹⁴⁰ [Software and analysis tools], Amy Gaskin¹¹⁰ [Software and analysis tools], Rob Johnson⁸⁰ [Visualisation]

⁴²Barking, Havering and Redbridge University Hospitals NHS Trust, Barking, United Kingdom ⁴³Basingstoke Hospital, Basingstoke, United Kingdom ⁴⁴Belfast Health & Social Care Trust, Belfast, United Kingdom ⁴⁵Betsi Cadwaladr University Health Board, Betsi Cadwaladr, United Kingdom ⁴⁶Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom ⁴⁷Brighton and Sussex University Hospitals NHS Trust, Brighton & Sussex, United Kingdom ⁴⁸Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom ⁴⁹Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ⁵⁰Cardiff and Vale University Health Board, Cardiff, United Kingdom ⁵¹Cardiff University, Cardiff, United Kingdom ⁵²Centre for Clinical Infection & Diagnostics Research, St. Thomas' Hospital and Kings College London, London, United

Kingdom ⁵³Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom ⁵⁴Centre for Enzyme Innovation, University of Portsmouth (PORT), Portsmouth, United Kingdom ⁵⁵Centre for Genomic Pathogen Surveillance, University of Oxford, Oxford, United Kingdom ⁵⁶Clinical Microbiology Department, Queens Medical Centre, Nottingham, United Kingdom ⁵⁷Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom ⁵⁸County Durham and Darlington NHS Foundation Trust, Durham, United Kingdom ⁵⁹Deep Seq, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom ⁶⁰Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom ⁶¹Department of Infectious Diseases, King's College London, London, United Kingdom ⁶²Department of Microbiology, Kettering General Hospital, Kettering, United Kingdom ⁶³Departments of Infectious Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust; Cambridge, UK, Cambridge, United Kingdom ⁶⁴Department of Zoology, University of Oxford, Oxford, United Kingdom ⁶⁵Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom ⁶⁶East Kent Hospitals University NHS Foundation Trust, Kent, United Kingdom ⁶⁷East Suffolk and North Essex NHS Foundation Trust, Suffolk, United Kingdom ⁶⁸Gateshead Health NHS Foundation Trust, Gateshead, United Kingdom ⁶⁹Genomics Innovation Unit, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom ⁷⁰Gloucestershire Hospitals NHS Foundation Trust, Gloucester, United Kingdom ⁷¹Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom ⁷²Guy's and St. Thomas' BRC, London, United Kingdom ⁷³Guy's and St. Thomas' Hospitals, London, United Kingdom ⁷⁴Hampshire Hospitals NHS Foundation Trust, Hampshire, United Kingdom ⁷⁵Health Data Research UK Cambridge, Cambridge, United Kingdom ⁷⁶Health Services Laboratories, London, United Kingdom ⁷⁷Heartlands Hospital, Birmingham, Birmingham, United Kingdom ⁷⁸Hub for Biotechnology in the Built Environment, Northumbria University, Northumbria, United Kingdom ⁷⁹Imperial College Hospitals NHS Trust, London, United Kingdom ⁸⁰Imperial College London, London, United Kingdom ⁸¹Institute of Biodiversity, Animal Health & Comparative Medicine, Glasgow, United Kingdom ⁸²Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom ⁸³King's College London, London, United Kingdom ⁸⁴Liverpool Clinical Laboratories, Liverpool, United Kingdom ⁸⁵Maidstone and Tunbridge Wells NHS Trust, Maidstone, United Kingdom ⁸⁶Manchester University NHS Foundation Trust, Manchester, United Kingdom ⁸⁷Microbiology Department, Wye Valley NHS Trust, Hereford, United Kingdom ⁸⁸MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom ⁸⁹MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom ⁹⁰National Infection Service, PHE and Leeds Teaching

Hospitals Trust, Leeds, United Kingdom ⁹¹Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom ⁹²Newcastle University, Newcastle, United Kingdom ⁹³NHS Greater Glasgow and Clyde, Glasgow, United Kingdom ⁹⁴NHS Lothian, Edinburgh, United Kingdom ⁹⁵Norfolk and Norwich University Hospital, Norfolk, United Kingdom ⁹⁶Norfolk County Council, Norfolk, United Kingdom ⁹⁷North Cumbria Integrated Care NHS Foundation Trust, Carlisle, United Kingdom ⁹⁸North Tees and Hartlepool NHS Foundation Trust, Stockton-on-Tees, United Kingdom ⁹⁹Northumbria University, Northumbria, United Kingdom ¹⁰⁰Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom ¹⁰¹PathLinks, Northern Lincolnshire & Goole NHS Foundation Trust, Lincolnshire, United Kingdom ¹⁰²Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom ¹⁰³Princess Alexandra Hospital Microbiology Dept., Harlow, United Kingdom ¹⁰⁴Public Health Agency, London, United Kingdom ¹⁰⁵Public Health England, London, United Kingdom ¹⁰⁶Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge, United Kingdom ¹⁰⁷Public Health England, Colindale, London, United Kingdom ¹⁰⁸Public Health England, Colindale, London, United Kingdom ¹⁰⁹Public Health Scotland, Glasgow, United Kingdom ¹¹⁰Public Health Wales NHS Trust, Cardiff, United Kingdom ¹¹¹Quadram Institute Bioscience, Norwich, United Kingdom ¹¹²Queen Elizabeth Hospital, Birmingham, United Kingdom ¹¹³Queen's University Belfast, Belfast, United Kingdom ¹¹⁴Royal Devon and Exeter NHS Foundation Trust, Devon, United Kingdom ¹¹⁵Royal Free NHS Trust, London, United Kingdom ¹¹⁶Sandwell and West Birmingham NHS Trust, Sandwell, United Kingdom ¹¹⁷School of Biological Sciences, University of Portsmouth (PORT), Portsmouth, United Kingdom ¹¹⁸School of Pharmacy and Biomedical Sciences, University of Portsmouth (PORT), Portsmouth, United Kingdom ¹¹⁹Sheffield Teaching Hospitals, Sheffield, United Kingdom ¹²⁰South Tees Hospitals NHS Foundation Trust, Newcastle, United Kingdom ¹²¹Swansea University, Swansea, United Kingdom ¹²²University Hospitals Southampton NHS Foundation Trust, Southampton, United Kingdom ¹²³University College London, London, United Kingdom ¹²⁴University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom ¹²⁵University Hospitals Coventry and Warwickshire, Coventry, United Kingdom ¹²⁶University of Birmingham, Birmingham, United Kingdom ¹²⁷University of Birmingham Turnkey Laboratory, Birmingham, United Kingdom ¹²⁸University of Brighton, Brighton, United Kingdom ¹²⁹University of Cambridge, Cambridge, United Kingdom ¹³⁰University of East Anglia, East Anglia, United Kingdom ¹³¹University of Edinburgh, Edinburgh, United Kingdom ¹³²University of Exeter, Exeter, United Kingdom ¹³³University of Liverpool, Liverpool, United Kingdom ¹³⁴University of Sheffield, Sheffield, United Kingdom ¹³⁵University of Warwick, Warwick, United Kingdom ¹³⁶University of Cambridge, Cambridge, United Kingdom ¹³⁷Viapath, Guy's and St Thomas' NHS Foundation Trust, and King's College Hospital NHS Foundation Trust, London, United Kingdom

¹³⁸Virology, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom ¹³⁹Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom ¹⁴⁰Wellcome Sanger Institute, London, United Kingdom ¹⁴¹West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom ¹⁴²Department of Medicine, University of Cambridge, Cambridge, United Kingdom ¹⁴³Ministry of Health, Colombo, Sri Lanka ¹⁴⁴NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, London, United Kingdom ¹⁴⁵North West London Pathology, London, United Kingdom ¹⁴⁶NU-OMICS, Northumbria University, Northumbria, United Kingdom ¹⁴⁷University of Kent, Kent, United Kingdom ¹⁴⁸University of Oxford, Oxford, United Kingdom ¹⁴⁹University of Southampton, Southampton, United Kingdom ¹⁵⁰University of Southampton School of Health Sciences, Southampton, United Kingdom ¹⁵¹University of Southampton School of Medicine, Southampton, United Kingdom ¹⁵²University of Surrey, Guildford, United Kingdom ¹⁵³Warwick Medical School and Institute of Precision Diagnostics, Pathology, UHCW NHS Trust, Warwick, United Kingdom

, Katherine Sharrocks⁴, Elizabeth Blane³, Yorgo Modis⁸, Kendra Leigh⁸, John Briggs⁸, Marit van Gils⁹, Kenneth GC Smith^{2,3}, John R Bradley^{3,10}, Chris Smith¹¹, Rainer Doffinger¹³, Lourdes Ceron-Gutierrez¹³, Gabriela Barcenas-Morales^{13,14}, David D Pollock¹⁵, Richard A Goldstein¹, Anna Smielewska^{5,11}, Jordan P Skittrall^{4,12,16}, Theodore Gouliouris⁴, Ian G Goodfellow⁵, Effrossyni Gkrania-Klotsas⁴, Christopher JR Illingworth^{12,17}, Laura E McCoy¹, Ravindra K Gupta^{2,3,18}

Stephen Baker^{2,3} [Principal Investigators], Gordon Dougan^{2,3} [Principal Investigators], Christoph Hess^{2,3,26,27} [Principal Investigators], Nathalie Kingston^{20,12} [Principal Investigators], Paul J. Lehner^{2,3} [Principal Investigators], Paul A. Lyons^{2,3} [Principal Investigators], Nicholas J. Matheson^{2,3} [Principal Investigators], Willem H. Owehand²⁰ [Principal Investigators], Caroline Saunders¹⁹ [Principal Investigators], Charlotte Summers^{3,24,25,28} [Principal Investigators], James E.D. Thaventhiran^{2,3,22} [Principal Investigators], Mark Toshner^{3,24,25} [Principal Investigators], Michael P. Weekes² [Principal Investigators], Ashlea Bucke¹⁹ [CRF and Volunteer Research Nurses], Jo Calder¹⁹ [CRF and Volunteer Research Nurses], Laura Canna¹⁹ [CRF and Volunteer Research Nurses], Jason Domingo¹⁹ [CRF and Volunteer Research Nurses], Anne Elmer¹⁹ [CRF and Volunteer Research Nurses], Stewart Fuller¹⁹ [CRF and Volunteer Research Nurses], Julie Harris⁴¹ [CRF and Volunteer Research Nurses], Sarah Hewitt¹⁹ [CRF and Volunteer Research Nurses], Jane Kennet¹⁹ [CRF and Volunteer Research Nurses], Sherly Jose¹⁹ [CRF and Volunteer Research Nurses], Jenny Kourampa¹⁹ [CRF and Volunteer Research Nurses], Anne Meadows¹⁹ [CRF and Volunteer Research Nurses], Criona O'Brien⁴¹ [CRF and Volunteer Research Nurses], Jane Price¹⁹ [CRF and Volunteer Research Nurses], Cherry Publico¹⁹ [CRF and Volunteer Research

Nurses], Rebecca Rastall¹⁹ [CRF and Volunteer Research Nurses], Carla Ribeiro¹⁹ [CRF and Volunteer Research Nurses], Jane Rowlands¹⁹ [CRF and Volunteer Research Nurses], Valentina Ruffolo¹⁹ [CRF and Volunteer Research Nurses], Hugo Tordesillas¹⁹ [CRF and Volunteer Research Nurses], Ben Bullman² [Sample Logistics], Benjamin J Dunmore³ [Sample Logistics], Stuart Fawke³⁰ [Sample Logistics], Stefan Gräf^{3,12,20} [Sample Logistics], Josh Hodgson³ [Sample Logistics], Christopher Huang³ [Sample Logistics], Kelvin Hunter^{2,3} [Sample Logistics], Emma Jones²⁹ [Sample Logistics], Ekaterina Legchenko³ [Sample Logistics], Cecilia Matara³ [Sample Logistics], Jennifer Martin³ [Sample Logistics], Federica Mescia^{2,3} [Sample Logistics], Ciara O'Donnell³ [Sample Logistics], Linda Pointon³ [Sample Logistics], Nicole Pond^{2,3} [Sample Logistics], Joy Shih³ [Sample Logistics], Rachel Sutcliffe³ [Sample Logistics], Tobias Tilly³ [Sample Logistics], Carmen Treacy³ [Sample Logistics], Zhen Tong³ [Sample Logistics], Jennifer Wood³ [Sample Logistics], Marta Wylot³⁶ [Sample Logistics], Laura Bergamaschi^{2,3} [Sample Processing] and Data Acquisition], Ariana Betancourt^{2,3} [Sample Processing and Data Acquisition], Georgie Bower^{2,3} [Sample Processing and Data Acquisition], Chiara Cossetti^{2,3} [Sample Processing and Data Acquisition], Aloka De Sa³ [Sample Processing and Data Acquisition], Madeline Epping^{2,3} [Sample Processing and Data Acquisition], Stuart Fawke³² [Sample Processing and Data Acquisition], Nick Gleadall²⁰ [Sample Processing and Data Acquisition], Richard Grenfell³¹ [Sample Processing and Data Acquisition], Andrew Hinch^{2,3} [Sample Processing and Data Acquisition], Oisin Huhn³² [Sample Processing and Data Acquisition], Sarah Jackson³ [Sample Processing and Data Acquisition], Isobel Jarvis³ [Sample Processing and Data Acquisition], Daniel Lewis³ [Sample Processing and Data Acquisition], Joe Marsden³ [Sample Processing and Data Acquisition], Francesca Nice³⁹ [Sample Processing and Data Acquisition], Georgina Okecha³ [Sample Processing and Data Acquisition], Ommar Omarjee³ [Sample Processing and Data Acquisition], Marianne Perera³ [Sample Processing and Data Acquisition], Nathan Richoz³ [Sample Processing and Data Acquisition], Veronika Romashova^{2,3} [Sample Processing and Data Acquisition], Natalia Savinykh Yarkoni³ [Sample Processing and Data Acquisition], Rahul Sharma³ [Sample Processing and Data Acquisition], Luca Stefanucci²⁰ [Sample Processing and Data Acquisition], Jonathan Stephens²⁰ [Sample Processing and Data Acquisition], Mateusz Strezlecki³¹ [Sample Processing and Data Acquisition], Lori Turner^{2,3} [Sample Processing and Data Acquisition], Eckart M.D.D. De Bie³ [Clinical Data Collection], Katherine Bunclark³ [Clinical Data Collection], Masa Josipovic⁴⁰ [Clinical Data Collection], Michael Mackay³ [Clinical Data Collection], Federica Mescia^{2,3} [Clinical Data Collection], Alice Michael²⁵ [Clinical Data Collection], Sabrina Rossi³⁵ [Clinical Data Collection], Mayurun Selvan³ [Clinical Data Collection], Sarah Spencer¹⁵ [Clinical Data Collection], Cissy Yong³⁵ [Clinical Data Collection], Ali Ansaripour²⁵ [Royal Papworth Hospital ICU], Alice Michael²⁵ [Royal Papworth Hospital ICU], Lucy Mwaura²⁵ [Royal Papworth

Hospital ICU], Caroline Patterson²⁵ [Royal Papworth Hospital ICU], Gary Polwarth²⁵ [Royal Papworth Hospital ICU], Petra Polgarova²⁸ [Addenbrooke's Hospital ICU], Giovanni di Stefano²⁸ [Addenbrooke's Hospital ICU], Codie Fahey³⁴ [Cambridge and Peterborough Foundation Trust], Rachel Michel³⁴ [Cambridge and Peterborough Foundation Trust], Sze-How Bong²¹ [ANPC and Centre for Molecular Medicine and Innovative Therapeutics], Jerome D. Coudert³³ [ANPC and Centre for Molecular Medicine and Innovative Therapeutics], Elaine Holmes³⁷ [ANPC and Centre for Molecular Medicine and Innovative Therapeutics], John Allison^{20,12} [NIHR BioResource], Helen Butcher^{12,38} [NIHR BioResource], Daniela Caputo^{12,38} [NIHR BioResource]. Debbie Clapham-Riley^{12,38} [NIHR BioResource], Eleanor Dewhurst^{12,38} [NIHR BioResource], Anita Furlong^{12,38} [NIHR BioResource], Barbara Graves^{12,38} [NIHR BioResource], Jennifer Gray^{12,38} [NIHR BioResource], Tasmin Ivers^{12,38} [NIHR BioResource], Mary Kasanicki^{12,28} [NIHR BioResource], Emma Le Gresley^{12,38} [NIHR BioResource], Rachel Linger^{12,38} [NIHR BioResource], Sarah Meloy^{12,38} [NIHR BioResource], Francesca Muldoon^{12,38} [NIHR BioResource], Nigel Ovington^{12,20} [NIHR BioResource], Sofia Papadia^{12,38} [NIHR BioResource], Isabel Phelan^{12,38} [NIHR BioResource], Hannah Stark^{12,38} [NIHR BioResource], Kathleen E Stirrups^{12,20} [NIHR BioResource], Paul Townsend^{12,20} [NIHR BioResource], Neil Walker^{12,20} [NIHR BioResource], Jennifer Webster^{12,38} [NIHR BioResource]

Samuel C Robson⁵⁴ [Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], Nicholas J Loman⁸², Thomas R Connor^{51,110} [Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools], Tanya Golubchik⁴⁶ [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], Rocio T Martinez Nunez⁸³ [Funding acquisition, Metadata curation, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], Catherine Ludden¹²⁹ [Funding acquisition, Leadership and supervision, Metadata curation, Project administration, and Samples and logistics], Sally Corden¹¹⁰ [Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], Ian Johnston¹⁴⁰, David Bonsall⁴⁶ [Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis], Colin P Smith¹²⁸, Ali R Awan⁶⁹ [Funding acquisition, Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation], Giselda Bucca¹²⁸ [Funding acquisition, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation], M. Estee Torok^{63,142} [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Kordo Saeed^{122,151} [Leadership and supervision, Metadata curation,

Project administration, Samples and logistics, and Visualisation], Jacqui A Prieto^{124,150} [Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Visualisation], David K Jackson¹⁴⁰ [Leadership and supervision, Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools], William L Hamilton⁶³ [Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools], Luke B Snell⁵² [Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Visualisation], Catherine Moore¹¹⁰ [Funding acquisition, Leadership and supervision, Metadata curation, and Samples and logistics], Ewan M Harrison^{129,140} [Funding acquisition, Leadership and supervision, Project administration, and Samples and logistics], Sonia Goncalves¹⁴⁰ [Leadership and supervision, Metadata curation, Project administration, and Samples and logistics], Derek J Fairley^{44,113} [Leadership] and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], Matthew W Loose⁵⁹ [Leadership and supervision, Metadata curation. Samples and logistics, and Sequencing and analysis], Joanne Watkins¹¹⁰ [Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis], Rich Livett¹⁴⁰ [Leadership and supervision, Metadata curation, Samples and logistics, and Software and analysis tools], Samuel Moses^{66,147} [Leadership and supervision, Metadata curation, Samples and logistics, and Visualisation], Roberto Amato¹⁴⁰ [Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools], Sam Nicholls⁸² [Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools], Matthew Bull¹¹⁰ [Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools], Darren L Smith^{1,99,146} [Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis], Jeff Barrett¹⁴⁰ [Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation], David M Aanensen⁵⁵ [Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation], Martin D Curran¹⁰⁶ [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Surendra Parmar¹⁰⁶ [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Dinesh Aggarwal^{1,140,105} [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], James G Shepherd⁸⁹ [Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis], Matthew D Parker¹³⁴ [Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools], Sharon Glaysher¹⁰² [Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation], Matthew Bashton^{78,99} [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Anthony P Underwood⁵⁵ [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Nicole Pacchiarini¹¹⁰ [Metadata

curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Katie F Loveson¹¹⁸ [Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation], Alessandro M Carabelli¹²⁹ [Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation], Kate E Templeton^{94,131} [Funding acquisition, Leadership and supervision, and Metadata curation], Cordelia F Langford¹⁴⁰ [Funding acquisition, Leadership and supervision, and Project administration], John Sillitoe¹⁴⁰ [Funding acquisition, Leadership and supervision, and Project administration], Thushan I de Silva¹³⁴ [Funding acquisition, Leadership and supervision, and Project administration], Dennis Wang¹³⁴ [Funding acquisition, Leadership and supervision, and Project administration], Dominic Kwiatkowski^{140,148} [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Andrew Rambaut¹³¹ [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Justin O'Grady^{111,130} [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Simon Cottrell¹¹⁰ [Funding acquisition, Leadership and supervision, and Sequencing and analysis], Matthew T.G. Holden¹⁰⁹ [Leadership and supervision, Metadata curation, and Sequencing and analysis], Emma C Thomson⁸⁹ [Leadership and supervision, Metadata curation, and Sequencing and analysis], Husam Osman^{77,105} [Leadership and supervision, Project administration, and Samples and logistics], Monique Andersson¹⁰⁰ [Leadership and supervision, Project administration, and Samples and logistics], Anoop J Chauhan¹⁰² [Leadership and supervision, Project administration, and Samples and logistics], Mohammed O Hassan-Ibrahim⁴⁷ [Leadership and supervision, Project administration, and Samples and logistics]. Mara Lawniczak¹⁴⁰ [Leadership and supervision. Project administration, and Sequencing and analysis], Alex Alderton¹⁴⁰ [Leadership and supervision, Samples and logistics, and Sequencing and analysis]. Meera Chand¹⁰⁷ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Chrystala Constantinidou¹³⁵ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Meera Unnikrishnan¹³⁵ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Alistair C Darby¹³³ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Julian A Hiscox¹³³ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Steve Paterson¹³³ [Leadership and supervision, Samples and logistics, and Sequencing and analysis], Inigo Martincorena¹⁴⁰ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], David L Robertson⁸⁹ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Erik M Volz⁸⁰ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Andrew J Page¹¹¹ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Oliver G Pybus⁶⁴ [Leadership and supervision, Sequencing and analysis, and Software and analysis tools], Andrew R Bassett¹⁴⁰ [Leadership and supervision, Sequencing and analysis, and Visualisation],

Cristina V Ariani¹⁴⁰ [Metadata curation, Project administration, and Samples and logistics], Michael H Spencer Chapman^{129,140} [Metadata curation, Project administration, and Samples and logistics], Kathy K Li⁸⁹ [Metadata curation, Project administration, and Samples and logistics], Rajiv N Shah⁸⁹ [Metadata curation, Project administration, and Samples and logistics], Natasha G Jesudason⁸⁹ [Metadata curation, Project administration, and Samples and logistics], Yusri Taha⁹¹ [Metadata curation, Project administration, and Samples and logistics], Martin P McHugh⁹⁴ [Metadata curation, Project administration, and Sequencing and analysis], Rebecca Dewar⁹⁴ [Metadata curation, Project administration, and Sequencing and analysis], Aminu S Jahun⁶⁵ [Metadata curation, Samples and logistics, and Sequencing and analysis], Claire McMurray⁸² [Metadata curation, Samples and logistics, and Sequencing and analysis], Sarojini Pandey¹²⁵ [Metadata curation, Samples and logistics, and Sequencing and analysis], James P McKenna⁴⁴ [Metadata curation, Samples and logistics, and Sequencing and analysis], Andrew Nelson^{99,146} [Metadata curation, Samples and logistics, and Sequencing and analysis], Gregory R Young^{78,99} [Metadata curation, Samples and logistics, and Sequencing and analysis], Clare M McCann^{99,146} [Metadata curation, Samples and logistics, and Sequencing and analysis], Scott Elliott¹⁰² [Metadata curation, Samples and logistics, and Sequencing and analysis], Hannah Lowe⁶⁶ [Metadata curation, Samples and logistics, and Visualisation], Ben Temperton¹³² [Metadata curation, Sequencing and analysis, and Software and analysis tools], Sunando Roy¹²³ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Anna Price⁵¹ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Sara Rey¹¹⁰ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Matthew Wyles¹³⁴ [Metadata curation, Sequencing and analysis, and Software and analysis tools], Stefan Rooke¹³¹ [Metadata curation, Sequencing] and analysis, and Visualisation], Sharif Shaaban¹⁰⁹ [Metadata curation, Sequencing and analysis, and Visualisation], Mariateresa de Cesare¹³⁹ [Project administration, Samples and logistics, Sequencing and analysis], Laura Letchford¹⁴⁰ [Project administration, Samples and logistics, and Software and analysis tools], Siona Silveira¹²² [Project administration, Samples and logistics, and Visualisation], Emanuela Pelosi¹²² [Project administration, Samples and logistics, and Visualisation], Eleri Wilson-Davies¹²² [Project administration, Samples and logistics, and Visualisation], Myra Hosmillo⁶⁵ [Samples and logistics, Sequencing and analysis, and Software and analysis tools], Áine O'Toole¹³¹ [Sequencing and analysis, Software and analysis tools, and Visualisation], Andrew R Hesketh¹²⁸ [Sequencing and analysis, Software and analysis tools, and Visualisation], Richard Stark¹³⁵ [Sequencing and analysis, Software and analysis tools, and Visualisation], Louis du Plessis⁶⁴ [Sequencing and analysis, Software and analysis tools, and Visualisation], Chris Ruis¹²⁹ [Sequencing and analysis, Software and analysis tools, and Visualisation], Helen Adams⁴⁵ [Sequencing and analysis, Software and

analysis tools, and Visualisation], Yann Bourgeois¹¹⁷ [Sequencing and analysis, Software and analysis tools, and Visualisation], Stephen L Michell¹³² [Funding acquisition, and Leadership and supervision], Dimitris Gramatopoulos^{125,153} [Funding acquisition, and Leadership and supervision], Jonathan Edgeworth⁵³ [Funding acquisition, and Leadership and supervision], Judith Breuer^{71,123} [Funding acquisition, and Leadership and supervision], John A Todd¹³⁹ [Funding acquisition, and Leadership and supervision], Christophe Fraser⁴⁶ [Funding acquisition, and Leadership and supervision], David Buck¹³⁹ [Funding acquisition, and Project administration], Michaela John⁵⁰ [Funding acquisition, and Project administration], Gemma L Kay¹¹¹ [Leadership and supervision, and Metadata curation], Steve Palmer¹⁴⁰ [Leadership and supervision, and Project administration], Sharon J Peacock^{129,105} [Leadership and supervision, and Project administration], David Heyburn¹¹⁰ [Leadership and supervision, and Project administration], Danni Weldon¹⁴⁰ [Leadership and supervision, and Samples and logistics], Esther Robinson^{105,77} [Leadership and supervision, and Samples and logistics], Alan McNally^{82,127} [Leadership and supervision, and Samples and logistics]. Peter Muir¹⁰⁵ [Leadership and supervision, and Samples and logistics], lan B Vipond¹⁰⁵ [Leadership and supervision, and Samples and logistics], John BoYes⁷⁰ [Leadership and supervision, and Samples and logistics], Venkat Sivaprakasam⁸⁷ [Leadership and supervision, and Samples and logistics]. Tranprit Salluja¹¹⁶ [Leadership and supervision, and Samples and logistics], Samir Dervisevic⁹⁵ [Leadership and supervision, and Samples and logistics], Emma J Meader⁹⁵ [Leadership and supervision, and Samples and logistics]. Naomi R Park¹⁴⁰ [Leadership and supervision, and Sequencing and analysis], Karen Oliver¹⁴⁰ [Leadership and supervision, and Sequencing and analysis]. Aaron R Jeffries¹³² [Leadership and supervision, and Sequencing and analysis], Sascha Ott¹³⁵ [Leadership and supervision, and Sequencing and analysis], Ana da Silva Filipe⁸⁹ [Leadership and supervision, and Sequencing and analysis], David A Simpson¹¹³ [Leadership and supervision, and Sequencing and analysis], Chris Williams¹¹⁰ [Leadership and supervision, and Sequencing and analysis], Jane AH Masoli^{114,132} [Leadership and supervision, and Visualisation]. Bridget A Knight^{114,132} [Metadata curation, and Samples and logistics], Christopher R Jones^{114,132} [Metadata curation, and Samples and logistics], Cherian Koshy⁴² [Metadata curation, and Samples and logistics], Amy Ash⁴² [Metadata curation, and Samples and logistics], Anna Casey¹¹² [Metadata curation, and Samples and logistics], Andrew Bosworth^{105,77} [Metadata curation, and Samples and logistics], Liz Ratcliffe¹¹² [Metadata curation, and Samples and logistics], Li Xu-McCrae⁷⁷ [Metadata curation, and Samples and logistics], Hannah M Pymont¹⁰⁵ [Metadata curation, and Samples and logistics], Stephanie Hutchings¹⁰⁵ [Metadata curation, and Samples and logistics], Lisa Berry¹²⁵ [Metadata curation, and Samples and logistics], Katie Jones¹²⁵ [Metadata curation, and Samples and logistics], Fenella Halstead⁸⁷ [Metadata curation, and Samples and logistics], Thomas Davis⁶² [Metadata

curation, and Samples and logistics], Christopher Holmes⁵⁷ [Metadata curation, and Samples and logistics], Miren Iturriza-Gomara¹³³ [Metadata curation, and Samples and logistics], Anita O Lucaci¹³³ [Metadata curation, and Samples and logistics], Paul Anthony Randell^{79,145} [Metadata curation, and Samples and logistics], Alison Cox^{79,145} [Metadata curation, and Samples and logistics], Pinglawathee Madona^{79,145} [Metadata curation, and Samples and logistics], Kathryn Ann Harris⁷¹ [Metadata curation, and Samples and logistics], Julianne Rose Brown⁷¹ [Metadata curation, and Samples and logistics], Tabitha W Mahungu¹¹⁵ [Metadata curation, and Samples and logistics], Dianne Irish-Tavares¹¹⁵ [Metadata curation, and Samples and logistics], Tanzina Hague¹¹⁵ [Metadata curation, and Samples and logistics], Jennifer Hart¹¹⁵ [Metadata curation, and Samples and logistics], Eric Witele¹¹⁵ [Metadata curation, and Samples and logistics], Melisa Louise Fenton¹¹⁶ [Metadata curation, and Samples and logistics], Steven Liggett¹²⁰ [Metadata curation, and Samples and logistics], Clive Graham⁹⁷ [Metadata curation, and Samples and logistics], Emma Swindells⁹⁸ [Metadata curation, and Samples and logistics], Jennifer Collins⁹¹ [Metadata curation, and Samples and logistics], Gary Eltringham⁹¹ [Metadata curation, and Samples and logistics], Sharon Campbell⁵⁸ [Metadata curation, and Samples and logistics], Patrick C McClure¹³⁸ [Metadata curation, and Samples and logistics], Gemma Clark⁵⁶ [Metadata curation, and Samples and logistics], Tim J Sloan¹⁰¹ [Metadata curation, and Samples and logistics], Carl Jones⁵⁶ [Metadata curation, and Samples and logistics], Jessica Lynch^{43,152} [Metadata curation, and Samples and logistics], Ben Warne⁴⁹ [Metadata curation, and Sequencing and analysis], Steven Leonard¹⁴⁰ [Metadata curation, and Sequencing and analysis], Jillian Durham¹⁴⁰ [Metadata curation, and Sequencing and analysis], Thomas Williams¹³¹ [Metadata curation, and Sequencing and analysis], Sam T Haldenby¹³³ [Metadata curation, and Sequencing and analysis], Nathaniel Storey⁷¹ [Metadata curation, and Sequencing and analysis], Nabil-Fareed Alikhan¹¹¹ [Metadata curation, and Sequencing and analysis], Nadine Holmes⁵⁹ [Metadata curation, and Sequencing and analysis], Christopher Moore⁵⁹ [Metadata curation, and Sequencing and analysis], Matthew Carlile⁵⁹ [Metadata curation, and Sequencing and analysis], Malorie Perry¹¹⁰ [Metadata curation, and Sequencing and analysis], Noel Craine¹⁴⁰ [Metadata curation, and Sequencing and analysis], Ronan A Lyons¹⁴⁰ [Metadata curation, and Sequencing and analysis], Angela H Beckett⁵⁴ [Metadata curation, and Sequencing and analysis], Salman Goudarzi¹¹⁸ [Metadata curation, and Sequencing and analysis], Christopher Fearn¹¹⁸ [Metadata curation, and Sequencing and analysis], Kate Cook¹¹⁸ [Metadata curation, and Sequencing and analysis], Hannah Dent¹¹⁸ [Metadata curation, and Sequencing and analysis], Hannah Paul¹¹⁸ [Metadata curation, and Sequencing and analysis], Robert Davies¹⁴⁰ [Metadata curation, and Software and analysis tools], Beth Blane¹⁴⁰ [Project administration, and Samples and logistics], Sophia T Girgis¹⁴⁰ [Project administration, and Samples and logistics], Mathew A Beale¹⁴⁰ [Project

administration, and Samples and logistics], Katherine L Bellis^{140,129} [Project administration, and Samples and logistics], Matthew J Dorman¹⁴⁰ [Project administration, and Samples and logistics]. Eleanor Drurv¹⁴⁰ [Project administration, and Samples and logistics], Leanne Kane¹⁴⁰ [Project administration, and Samples and logistics], Sally Kay¹⁴⁰ [Project administration, and Samples and logistics], Samantha McGuigan¹⁴⁰ [Project administration, and Samples and logistics], Rachel Nelson¹⁴⁰ [Project administration, and Samples and logistics], Liam Prestwood¹⁴⁰ [Project administration, and Samples and logistics], Shavanthi Rajatileka¹⁴⁰ [Project administration, and Samples and logistics]. Rahul Batra¹⁴⁰ [Project administration, and Samples and logistics], Rachel J Williams¹²³ [Project administration, and Samples and logistics], Mark Kristiansen¹²³ [Project administration, and Samples and logistics], Angie Green¹³⁹ [Project administration, and Samples and logistics], Anita Justice¹⁴⁰ [Project administration, and Samples and logistics], Adhyana I.K Mahanama^{122,143} [Project administration, and Samples and logistics], Buddhini Samaraweera^{122,143} [Project administration, and Samples and logistics], Nazreen F Hadjirin¹²⁹ [Project administration, and Sequencing and analysis], Joshua Quick⁸² [Project administration, and Sequencing and analysis]. Radoslaw Poplawski⁸² [Project administration, and Software and analysis tools], Leanne M Kermack¹²⁹ [Samples and logistics, and Sequencing and analysis], Nicola Reynolds⁴⁸ [Samples and logistics, and Sequencing and analysis], Grant Hall⁶⁵ [Samples and logistics, and Sequencing and analysis], Yasmin Chaudhry¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Malte L Pinckert⁶⁵ [Samples and logistics, and Sequencing and analysis], Iliana Georgana¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Robin J Moll¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Alicia Thornton¹⁰⁷ [Samples and logistics, and Sequencing and analysis], Richard Myers¹⁰⁷ [Samples and logistics, and Sequencing and analysis], Joanne Stockton¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Charlotte A Williams¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Wen C Yew¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Alexander J Trotter¹¹¹ [Samples and logistics, and Sequencing and analysis], Amy Trebes¹⁴⁰ [Samples and logistics, and Sequencing and analysis], George MacIntyre-Cockett¹³⁹ [Samples and logistics, and Sequencing and analysis], Alec Birchley¹¹⁰ [Samples and logistics, and Sequencing and analysis], Alexander Adams¹¹⁰ [Samples and logistics, and Sequencing and analysis], Amy Plimmer¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Bree Gatica-Wilcox¹¹⁰ [Samples and logistics, and Sequencing and analysis], Caoimhe McKerr¹¹⁰ [Samples and logistics, and Sequencing and analysis]. Ember Hilvers¹¹⁰ [Samples and logistics, and Sequencing and analysis], Hannah Jones¹¹⁰ [Samples and logistics, and Sequencing and analysis], Hibo Asad¹¹⁰ [Samples and logistics, and Sequencing and analysis], Jason Coombes¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Johnathan

M Evans¹¹⁰ [Samples and logistics, and Sequencing and analysis], Laia Fina¹¹⁰ [Samples and logistics, and Sequencing and analysis], Lauren Gilbert¹¹⁰ [Samples and logistics, and Sequencing and analysis], Lee Graham¹¹⁰ [Samples and logistics, and Sequencing and analysis], Michelle Cronin¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Sara Kumziene-SummerhaYes¹¹⁰ [Samples and logistics, and Sequencing and analysis], Sarah Taylor¹¹⁰ [Samples and logistics, and Sequencing and analysis], Sophie Jones¹⁴⁰ [Samples and logistics, and Sequencing and analysis], Danielle C Groves¹³⁴ [Samples and logistics, and Sequencing and analysis], Peijun Zhang¹³⁴ [Samples and logistics, and Sequencing and analysis], Marta Gallis¹³⁴ [Samples and logistics, and Sequencing and analysis], Stavroula F Louka¹³⁴ [Samples and logistics, and Sequencing and analysis], Igor Starinskij⁸⁹ [Samples and logistics, and Software and analysis tools], Chris Jackson⁸⁸ [Sequencing and analysis, and Software and analysis tools]. Marina Gourtovaia¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Gerry Tonkin-Hill¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Kevin Lewis¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Jaime M Tovar-Corona¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Keith James¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Laura Baxter¹³⁵ [Sequencing and analysis, and Software and analysis tools], Mohammad T Alam¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Richard J Orton⁸⁹ [Sequencing and analysis, and Software and analysis tools], Joseph Hughes⁸⁹ [Sequencing and analysis, and Software and analysis tools], Sreenu Vattipally¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Manon Ragonnet-Cronin⁸⁰ [Sequencing and analysis, and Software and analysis tools], Fabricia F Nascimento⁸⁰ [Sequencing and analysis, and Software and analysis tools], David Jorgensen⁸⁰ [Sequencing and analysis, and Software and analysis tools]. Olivia Boyd⁸⁰ [Sequencing and analysis, and Software and analysis tools], Lily Geidelberg¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Alex E Zarebski⁶⁴ [Sequencing and analysis, and Software and analysis tools]. Jayna Raghwani¹⁴⁰ [Sequencing and analysis, and Software and analysis tools], Moritz UG Kraemer⁶⁴ [Sequencing and analysis, and Software and analysis tools], Joel Southgate^{51,110} [Sequencing and analysis, and Software and analysis tools], Benjamin B Lindsey¹³⁴ [Sequencing and analysis, and Software and analysis tools], Timothy M Freeman¹³⁴ [Sequencing and analysis, and Software and analysis tools], Jon-Paul Keatley¹⁴⁰ [Software and analysis tools, and Visualisation], Joshua B Singer¹⁴⁰ [Software and analysis tools, and Visualisation], Leonardo de Oliveira Martins¹⁴⁰ [Software and analysis tools, and Visualisation], Corin A Yeats⁵⁵ [Software and analysis tools, and Visualisation], Khalil Abudahab^{140,140} [Software and analysis tools, and Visualisation], Ben EW Taylor¹⁴⁰ [Software and analysis tools, and Visualisation], Mirko Menegazzo⁵⁵ [Software and analysis tools, and Visualisation], John Danesh¹⁴⁰ [Leadership and supervision], Wendy

Hogsden⁸⁷ [Leadership and supervision], Sahar Eldirdiri⁶² [Leadership and supervision], Anita Kenyon⁶² [Leadership and supervision], Jenifer Mason¹⁴⁰ [Leadership and supervision], Trevor I Robinson⁸⁴ [Leadership and supervision], Alison Holmes^{140,144} [Leadership and supervision], James Price^{140,140} [Leadership and supervision], John A Hartley¹²³ [Leadership and supervision], Tanya Curran¹⁴⁰ [Leadership and supervision], Alison E Mather¹¹¹ [Leadership and supervision], Giri Shankar¹¹⁰ [Leadership and supervision], Rachel Jones¹¹⁰ [Leadership and supervision], Robin Howe¹¹⁰ [Leadership and supervision], Sian Morgan⁵⁰ [Leadership and supervision], Elizabeth Wastenge¹⁴⁰ [Metadata curation], Michael R Chapman^{1,129,140} [Metadata curation], Siddharth Mookerjee^{79,144} [Metadata curation], Rachael Stanley⁹⁵ [Metadata curation], Wendy Smith⁵⁶ [Metadata curation], Timothy Peto¹⁰⁰ [Metadata curation], David Eyre¹⁰⁰ [Metadata curation], Derrick Crook¹⁰⁰ [Metadata curation], Gabrielle Vernet⁷⁴ [Metadata curation], Christine Kitchen⁵¹ [Metadata curation], Huw Gulliver⁵¹ [Metadata curation], Ian Merrick⁵¹ [Metadata curation], Martyn Guest⁵¹ [Metadata curation], Robert Munn¹⁴⁰ [Metadata curation], Declan T Bradley^{140,113} [Metadata curation], Tim Wyatt¹⁰⁴ [Metadata curation], Charlotte Beaver¹⁴⁰ [Project administration], Luke Foulser¹⁴⁰ [Project administration], Sophie Palmer¹⁴⁰ [Project administration], Carol M Churcher¹²⁹ [Project administration], Ellena Brooks¹⁴⁰ [Project administration], Kim S Smith¹²⁹ [Project administration], Katerina Galai¹⁴⁰ [Project administration], Georgina M McManus¹²⁹ [Project administration], Frances Bolt^{79,144} [Project administration], Francesc Coll⁶⁰ [Project administration], Lizzie Meadows¹⁴⁰ [Project administration], Stephen W Attwood⁶⁴ [Project administration], Alisha Davies¹⁴⁰ [Project administration], Elen De Lacy¹¹⁰ [Project administration], Fatima Downing¹¹⁰ [Project administration], Sue Edwards¹⁴⁰ [Project administration], Garry P Scarlett¹¹⁷ [Project administration], Sarah Jeremiah¹²⁴ [Project administration], Nikki Smith¹³⁴ [Project administration], Danielle Leek¹²⁹ [Samples and logistics], Sushmita Sridhar^{140,140} [Samples and logistics], Sally Forrest¹²⁹ [Samples and logistics], Claire Cormie¹⁴⁰ [Samples and logistics], Harmeet K Gill¹²⁹ [Samples and logistics], Joana Dias¹⁴⁰ [Samples and logistics], Ellen E Higginson¹²⁹ [Samples and logistics], Mailis Maes¹²⁹ [Samples and logistics], Jamie Young¹²⁹ [Samples and logistics], Michelle Wantoch¹⁴⁰ [Samples and logistics], Sanger Covid Team¹⁴⁰ [Samples and logistics], Dorota Jamrozy¹⁴⁰ [Samples and logistics], Stephanie Lo¹⁴⁰ [Samples and logistics], Minal Patel¹⁴⁰ [Samples and logistics], Verity Hill¹⁴⁰ [Samples and logistics], Claire M Bewshea¹³² [Samples and logistics], Sian Ellard^{114,132} [Samples and logistics], Cressida Auckland¹¹⁴ [Samples and logistics], Ian Harrison¹⁰⁷ [Samples and logistics], Chloe Bishop¹⁰⁷ [Samples and logistics], Vicki Chalker¹⁰⁷ [Samples and logistics], Alex Richter¹²⁶ [Samples and logistics], Andrew Beggs¹²⁶ [Samples and logistics], Angus Best¹²⁷ [Samples and logistics], Benita Percival¹²⁷ [Samples and logistics], Jeremy Mirza¹²⁷ [Samples and logistics], Oliver Megram¹²⁷ [Samples and logistics], Megan Mayhew¹²⁷ [Samples and logistics], Liam Crawford¹²⁷

[Samples and logistics], Fiona Ashcroft¹⁴⁰ [Samples and logistics], Emma Moles-Garcia¹²⁷ [Samples and logistics], Nicola Cumley¹²⁷ [Samples and logistics], Richard Hopes¹⁰⁵ [Samples and logistics], Patawee Asamaphan¹⁴⁰ [Samples and logistics], Marc O Niebel¹⁴⁰ [Samples and logistics], Rory N Gunson¹⁴¹ [Samples and logistics], Amanda Bradley⁹³ [Samples and logistics], Alasdair Maclean⁹³ [Samples and logistics], Guy Mollett⁹³ [Samples and logistics], Rachel Blacow⁹³ [Samples and logistics], Paul Bird⁵⁷ [Samples and logistics], Thomas Helmer⁵⁷ [Samples and logistics], Karlie Fallon⁵⁷ [Samples and logistics], Julian Tang¹⁴⁰ [Samples and logistics], Antony D Hale¹⁴⁰ [Samples and logistics], Louissa R Macfarlane-Smith¹⁴⁰ [Samples and logistics], Katherine L Harper⁹⁰ [Samples and logistics], Holli Carden¹⁴⁰ [Samples and logistics], Nicholas W Machin^{86,105} [Samples and logistics], Kathryn A Jackson¹³³ [Samples and logistics], Shazaad SY Ahmad^{86,105} [Samples and logistics], Ryan P George⁸⁶ [Samples and logistics], Lance Turtle¹⁴⁰ [Samples and logistics], Elaine O'Toole⁸⁴ [Samples and logistics], Joanne Watts⁸⁴ [Samples and logistics], Cassie Breen⁸⁴ [Samples and logistics], Angela Cowell¹⁴⁰ [Samples and logistics], Adela Alcolea-Medina^{73,137} [Samples and logistics], Themoula Charalampous^{140,83} [Samples and logistics], Amita Patel¹⁴⁰ [Samples and logistics], Lisa J Levett⁷⁶ [Samples and logistics], Judith Heaney⁷⁶ [Samples and logistics], Aileen Rowan¹⁴⁰ [Samples and logistics], Graham P Taylor⁸⁰ [Samples and logistics], Divya Shah⁷¹ [Samples and logistics], Laura Atkinson¹⁴⁰ [Samples and logistics], Jack CD Lee¹⁴⁰ [Samples and logistics], Adam P Westhorpe¹²³ [Samples and logistics], Riaz Jannoo¹⁴⁰ [Samples and logistics], Helen L Lowe¹²³ [Samples and logistics], Angeliki Karamani¹²³ [Samples and logistics], Leah Ensell¹²³ [Samples and logistics], Wendy Chatterton⁷⁶, Monika Pusok⁷⁶ [Samples and logistics], Ashok Dadrah¹¹⁶ [Samples and logistics], Amanda Symmonds¹¹⁶ [Samples and logistics], Graciela Sluga⁸⁵ [Samples and logistics], Zoltan Molnar¹¹³ [Samples and logistics], Paul Baker¹²⁰ [Samples and logistics], Stephen Bonner¹²⁰ [Samples and logistics], Sarah Essex¹²⁰ [Samples and logistics], Edward Barton⁹⁷ [Samples and logistics], Debra Padgett⁹⁷ [Samples and logistics], Garren Scott⁹⁷ [Samples and logistics], Jane Greenaway¹⁴⁰ [Samples and logistics], Brendan Al Payne¹⁴⁰ [Samples and logistics], Shirelle Burton-Fanning⁹¹ [Samples and logistics], Sheila Waugh⁹¹ [Samples and logistics], Veena Raviprakash⁵⁸ [Samples and logistics], Nicola Sheriff⁵⁸ [Samples and logistics], Victoria Blakey¹⁴⁰ [Samples and logistics], Lesley-Anne Williams⁵⁸ [Samples and logistics], Jonathan Moore⁶⁸ [Samples and logistics], Susanne Stonehouse⁶⁸ [Samples and logistics], Louise Smith¹⁴⁰ [Samples and logistics], Rose K Davidson¹³⁰ [Samples and logistics], Luke Bedford⁶⁷ [Samples and logistics], Lindsay Coupland⁹⁵ [Samples and logistics], Victoria Wright¹⁴⁰ [Samples and logistics], Joseph G Chappell¹³⁸ [Samples and logistics], Theocharis Tsoleridis¹³⁸ [Samples and logistics], Jonathan Ball¹³⁸ [Samples and logistics], Manjinder Khakh¹⁴⁰ [Samples and logistics], Vicki M Fleming¹⁴⁰ [Samples and logistics], Michelle M Lister¹⁴⁰ [Samples and logistics], Hannah C

Howson-Wells⁵⁶ [Samples and logistics], Louise Berry⁵⁶ [Samples and logistics], Tim Boswell⁵⁶ [Samples and logistics], Amelia Joseph⁵⁶ [Samples and logistics], Iona Willingham⁵⁶ [Samples and logistics], Nichola Duckworth¹⁰¹ [Samples and logistics], Sarah Walsh¹⁰¹ [Samples and logistics], Emma Wise^{140,152} [Samples and logistics], Nathan Moore^{140,152} [Samples and logistics], Matilde Mori^{140,140,152} [Samples and logistics], Nick Cortes^{140,152} [Samples and logistics], Stephen Kidd^{140,152} [Samples and logistics], Rebecca Williams⁷⁴ [Samples and logistics], Laura Gifford¹¹⁰ [Samples and logistics], Kelly Bicknell¹⁰² [Samples and logistics], Sarah Wyllie¹⁰² [Samples and logistics], Allyson Lloyd¹⁰² [Samples and logistics], Robert Impey¹⁴⁰ [Samples and logistics], Cassandra S Malone¹⁴⁰ [Samples and logistics], Benjamin J Cogger⁴⁷ [Samples and logistics], Nick Levene¹⁰³ [Samples and logistics], Lynn Monaghan¹⁴⁰ [Samples and logistics], Alexander J Keeley¹⁴⁰ [Samples and logistics], David G Partridge^{140,134} [Samples and logistics], Mohammad Raza^{119,134} [Samples and logistics], Cariad Evans^{140,134} [Samples and logistics], Kate Johnson^{119,134} [Samples and logistics], Emma Betteridge¹⁴⁰ [Sequencing and analysis], Ben W Farr¹⁴⁰ [Sequencing and analysis], Scott Goodwin¹⁴⁰ [Sequencing and analysis], Michael A Quail¹⁴⁰ [Sequencing and analysis], Carol Scott¹⁴⁰ [Sequencing and analysis], Lesley Shirley¹⁴⁰ [Sequencing and analysis], Scott AJ Thurston¹⁴⁰ [Sequencing and analysis], Diana Rajan¹⁴⁰ [Sequencing and analysis], Iraad F Bronner¹⁴⁰ [Sequencing and analysis], Louise Aigrain¹⁴⁰ [Sequencing and analysis], Nicholas M Redshaw¹⁴⁰ [Sequencing and analysis], Stefanie V Lensing¹⁴⁰ [Sequencing and analysis], Shane McCarthy¹⁴⁰ [Sequencing and analysis], Alex Makunin¹⁴⁰ [Sequencing and analysis], Carlos E Balcazar¹⁴⁰ [Sequencing and analysis], Michael D Gallagher¹⁴⁰ [Sequencing and analysis], Kathleen A Williamson¹⁴⁰ [Sequencing and analysis], Thomas D Stanton¹⁴⁰ [Sequencing and analysis], Michelle L Michelsen¹⁴⁰ [Sequencing and analysis], Joanna Warwick-Dugdale¹³² [Sequencing and analysis], Robin Manley¹³² [Sequencing and analysis], Audrey Farbos¹⁴⁰ [Sequencing and analysis], James W Harrison¹⁴⁰ [Sequencing and analysis], Christine M Sambles¹⁴⁰ [Sequencing and analysis]. David J Studholme¹³² [Sequencing and analysis], Angie Lackenby¹⁰⁷ [Sequencing and analysis], Tamyo Mbisa¹⁰⁷ [Sequencing and analysis], Steven Platt¹⁰⁷ [Sequencing and analysis], Shahjahan Miah¹⁰⁷ [Sequencing and analysis], David Bibby¹⁰⁷ [Sequencing and analysis], Carmen Manso¹⁰⁷ [Sequencing and analysis], Jonathan Hubb¹⁰⁷ [Sequencing and analysis], Gavin Dabrera¹⁰⁷ [Sequencing and analysis], Mary Ramsay¹⁰⁷ [Sequencing and analysis], Daniel Bradshaw¹⁰⁷ [Sequencing and analysis], Ulf Schaefer¹⁰⁷ [Sequencing and analysis], Natalie Groves¹⁰⁷ [Sequencing and analysis], Eileen Gallagher¹⁰⁷ [Sequencing and analysis], David Lee¹⁰⁷ [Sequencing and analysis], David Williams¹⁰⁷ [Sequencing and analysis], Nicholas Ellaby¹⁰⁷ [Sequencing and analysis], Hassan Hartman¹⁰⁷ [Sequencing and analysis], Nikos Manesis¹⁰⁷ [Sequencing and analysis], Vineet Patel¹⁰⁷ [Sequencing and analysis], Juan Ledesma¹⁴⁰ [Sequencing and analysis], Katherine A Twohig¹⁰⁸ [Sequencing and

analysis], Elias Allara^{140,129} [Sequencing and analysis], Clare Pearson^{140,140} [Sequencing and analysis], Jeffrey K. J. Cheng¹³⁵ [Sequencing and analysis], Hannah E Bridgewater¹³⁵ [Sequencing and analysis], Lucy R Frost¹⁴⁰ [Sequencing and analysis], Grace Taylor-Joyce¹⁴⁰ [Sequencing and analysis], Paul E Brown¹³⁵ [Sequencing and analysis], Lily Tong⁸⁹ [Sequencing and analysis], Alice Broos⁸⁹ [Sequencing and analysis], Daniel Mair⁸⁹ [Sequencing and analysis], Jenna Nichols¹⁴⁰ [Sequencing and analysis], Stephen N Carmichael¹⁴⁰ [Sequencing and analysis], Katherine L Smollett⁸¹ [Sequencing and analysis], Kyriaki Nomikou¹⁴⁰ [Sequencing and analysis], Elihu Aranday-Cortes⁸⁹ [Sequencing and analysis], Natasha Johnson⁸⁹ [Sequencing and analysis], Seema Nickbakhsh^{140,140} [Sequencing and analysis], Edith E Vamos¹³³ [Sequencing and analysis], Margaret Hughes¹³³ [Sequencing and analysis], Lucille Rainbow¹³³ [Sequencing and analysis], Richard Eccles¹³³ [Sequencing and analysis], Charlotte Nelson¹³³ [Sequencing and analysis], Mark Whitehead¹³³ [Sequencing and analysis], Richard Gregory¹³³ [Sequencing] and analysis], Matthew Gemmell¹³³ [Sequencing and analysis], Claudia Wierzbicki¹⁴⁰ [Sequencing and analysis], Hermione J Webster¹⁴⁰ [Sequencing and analysis], Chloe L Fisher¹⁴⁰ [Sequencing and analysis], Adrian W Signell⁶¹ [Sequencing and analysis], Gilberto Betancor¹⁴⁰ [Sequencing and analysis], Harry D Wilson⁶¹ [Sequencing and analysis], Gaia Nebbia⁵³ [Sequencing and analysis], Flavia Flaviani¹⁴⁰ [Sequencing and analysis], Alberto C Cerda¹⁴⁰ [Sequencing and analysis], Tammy V Merrill¹⁴⁰ [Sequencing and analysis], Rebekah E Wilson¹³⁷ [Sequencing and analysis], Marius Cotic¹²³ [Sequencing and analysis], Nadua Bayzid¹²³ [Sequencing and analysis], Thomas Thompson¹¹³ [Sequencing and analysis], Erwan Acheson¹¹³ [Sequencing and analysis], Steven Rushton¹⁴⁰ [Sequencing and analysis], Sarah O'Brien¹⁴⁰ [Sequencing and analysis], David J Baker¹¹¹ [Sequencing and analysis], Steven Rudder¹¹¹ [Sequencing and analysis], Alp Aydin¹¹¹ [Sequencing and analysis], Fei Sang⁵⁹ [Sequencing and analysis], Johnny Debebe⁵⁹ [Sequencing and analysis], Sarah Francois¹⁴⁰ [Sequencing and analysis], Tetyana I Vasylyeva¹⁴⁰ [Sequencing and analysis], Marina Escalera Zamudio⁶⁴ [Sequencing and analysis], Bernardo Gutierrez⁶⁴ [Sequencing and analysis], Angela Marchbank⁵¹ [Sequencing and analysis], Joshua Maksimovic⁵⁰ [Sequencing and analysis], Karla Spellman⁵⁰ [Sequencing and analysis], Kathryn McCluggage⁵⁰ [Sequencing and analysis], Mari Morgan¹¹⁰ [Sequencing and analysis], Robert Beer⁵⁰ [Sequencing and analysis], Safiah Afifi⁵⁰ [Sequencing and analysis], Trudy Workman⁵¹ [Sequencing and analysis], William Fuller⁵¹ [Sequencing and analysis], Catherine Bresner⁵¹ [Sequencing and analysis], Adrienn Angyal¹⁴⁰ [Sequencing and analysis], Luke R Green¹⁴⁰ [Sequencing and analysis], Paul J Parsons¹⁴⁰ [Sequencing and analysis], Rachel M Tucker¹³⁴ [Sequencing and analysis], Rebecca Brown¹³⁴ [Sequencing and analysis], Max Whiteley¹³⁴ [Sequencing and analysis], James Bonfield¹⁴⁰ [Software and analysis tools], Christoph Puethe¹⁴⁰ [Software and analysis tools], Andrew Whitwham¹⁴⁰ [Software and analysis tools], Jennifier Liddle¹⁴⁰ [Software and analysis tools],

Will Rowe⁸² [Software and analysis tools], Igor Siveroni¹⁴⁰ [Software and analysis tools], Thanh Le-Viet¹⁴⁰ [Software and analysis tools], Amy Gaskin¹¹⁰ [Software and analysis tools], Rob Johnson⁸⁰ [Visualisation]

Affiliations

¹⁹Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK ²⁰Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ²¹Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia WA 6150, Australia ²²MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK ²³R&D Department, Hycult Biotech, 5405 PD Uden, The Netherlands ²⁴Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ²⁵Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ²⁶Department of Biomedicine, University and University Hospital Basel, 4031Basel, Switzerland ²⁷Botnar Research Centre for Child Health (BRCCH) University Basel & ETH Zurich, 4058 Basel, Switzerland ²⁸Addenbrooke's Hospital, Cambridge CB2 0QQ, UK ²⁹Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK ³⁰Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK ³¹Cancer Research UK, Cambridge Institute, University of Cambridge CB2 0RE, UK ³²Department of Obstetrics & Gynaecology, The Rosie Maternity Hospital, Robinson Way, Cambridge CB2 0SW, UK ³³Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia ³⁴Cambridge and Peterborough Foundation Trust, Fulbourn Hospital, Fulbourn, Cambridge CB21 5EF, UK ³⁵Department of Surgery, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK ³⁶Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK ³⁷Centre of Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia ³⁸Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ³⁹Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, Cambridge CB2 0AH, UK ⁴⁰Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK ⁴¹Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK

⁴²Barking, Havering and Redbridge University Hospitals NHS Trust, Barking, United Kingdom ⁴³Basingstoke Hospital, Basingstoke, United Kingdom ⁴⁴Belfast Health & Social Care Trust, Belfast, United Kingdom ⁴⁵Betsi Cadwaladr University Health Board, Betsi Cadwaladr, United Kingdom ⁴⁶Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom ⁴⁷Brighton and Sussex University Hospitals NHS Trust, Brighton & Sussex, United Kingdom ⁴⁸Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom

Page 68

⁴⁹Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ⁵⁰Cardiff and Vale University Health Board, Cardiff, United Kingdom ⁵¹Cardiff University, Cardiff, United Kingdom ⁵²Centre for Clinical Infection & Diagnostics Research, St. Thomas' Hospital and Kings College London, London, United Kingdom ⁵³Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom ⁵⁴Centre for Enzyme Innovation, University of Portsmouth (PORT), Portsmouth, United Kingdom ⁵⁵Centre for Genomic Pathogen Surveillance, University of Oxford, Oxford, United Kingdom ⁵⁶Clinical Microbiology Department, Queens Medical Centre, Nottingham, United Kingdom ⁵⁷Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom ⁵⁸County Durham and Darlington NHS Foundation Trust, Durham, United Kingdom ⁵⁹Deep Seq, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom ⁶⁰Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom ⁶¹Department of Infectious Diseases, King's College London, London, United Kingdom ⁶²Department of Microbiology, Kettering General Hospital, Kettering, United Kingdom ⁶³Departments of Infectious Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust; Cambridge, UK, Cambridge, United Kingdom ⁶⁴Department of Zoology, University of Oxford, Oxford, United Kingdom ⁶⁵Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom ⁶⁶East Kent Hospitals University NHS Foundation Trust, Kent, United Kingdom ⁶⁷East Suffolk and North Essex NHS Foundation Trust, Suffolk, United Kingdom ⁶⁸Gateshead Health NHS Foundation Trust, Gateshead, United Kingdom ⁶⁹Genomics Innovation Unit, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom ⁷⁰Gloucestershire Hospitals NHS Foundation Trust, Gloucester, United Kingdom ⁷¹Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom ⁷²Guy's and St. Thomas' BRC, London, United Kingdom ⁷³Guy's and St. Thomas' Hospitals, London, United Kingdom ⁷⁴Hampshire Hospitals NHS Foundation Trust, Hampshire, United Kingdom ⁷⁵Health Data Research UK Cambridge, Cambridge, United Kingdom ⁷⁶Health Services Laboratories, London, United Kingdom ⁷⁷Heartlands Hospital, Birmingham, Birmingham, United Kingdom ⁷⁸Hub for Biotechnology in the Built Environment, Northumbria University, Northumbria, United Kingdom ⁷⁹Imperial College Hospitals NHS Trust, London, United Kingdom ⁸⁰Imperial College London, London, United Kingdom ⁸¹Institute of Biodiversity, Animal Health & Comparative Medicine, Glasgow, United Kingdom ⁸²Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom ⁸³King's College London, London, United Kingdom ⁸⁴Liverpool Clinical Laboratories, Liverpool, United Kingdom ⁸⁵Maidstone and Tunbridge Wells NHS Trust, Maidstone, United Kingdom ⁸⁶Manchester University NHS Foundation Trust, Manchester, United Kingdom ⁸⁷Microbiology Department, Wye Valley NHS Trust, Hereford, United Kingdom ⁸⁸MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom ⁸⁹MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom

⁹⁰National Infection Service, PHE and Leeds Teaching Hospitals Trust, Leeds, United Kingdom ⁹¹Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom ⁹²Newcastle University, Newcastle, United Kingdom ⁹³NHS Greater Glasgow and Clyde, Glasgow, United Kingdom ⁹⁴NHS Lothian, Edinburgh, United Kingdom ⁹⁵Norfolk and Norwich University Hospital, Norfolk, United Kingdom ⁹⁶Norfolk County Council, Norfolk, United Kingdom ⁹⁷North Cumbria Integrated Care NHS Foundation Trust, Carlisle, United Kingdom ⁹⁸North Tees and Hartlepool NHS Foundation Trust, Stockton-on-Tees, United Kingdom ⁹⁹Northumbria University, Northumbria, United Kingdom ¹⁰⁰Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom ¹⁰¹PathLinks, Northern Lincolnshire & Goole NHS Foundation Trust, Lincolnshire, United Kingdom ¹⁰²Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom ¹⁰³Princess Alexandra Hospital Microbiology Dept., Harlow, United Kingdom ¹⁰⁴Public Health Agency, London, United Kingdom ¹⁰⁵Public Health England, London, United Kingdom ¹⁰⁶Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge, United Kingdom ¹⁰⁷Public Health England, Colindale, London, United Kingdom ¹⁰⁸Public Health England, Colindale, London, United Kingdom ¹⁰⁹Public Health Scotland, Glasgow, United Kingdom ¹¹⁰Public Health Wales NHS Trust, Cardiff, United Kingdom ¹¹¹Quadram Institute Bioscience, Norwich, United Kingdom ¹¹²Queen Elizabeth Hospital, Birmingham, United Kingdom ¹¹³Queen's University Belfast, Belfast, United Kingdom ¹¹⁴Royal Devon and Exeter NHS Foundation Trust, Devon, United Kingdom ¹¹⁵Royal Free NHS Trust, London, United Kingdom ¹¹⁶Sandwell and West Birmingham NHS Trust, Sandwell, United Kingdom ¹¹⁷School of Biological Sciences, University of Portsmouth (PORT), Portsmouth, United Kingdom ¹¹⁸School of Pharmacy and Biomedical Sciences, University of Portsmouth (PORT), Portsmouth, United Kingdom ¹¹⁹Sheffield Teaching Hospitals, Sheffield, United Kingdom ¹²⁰South Tees Hospitals NHS Foundation Trust, Newcastle, United Kingdom ¹²¹Swansea University, Swansea, United Kingdom ¹²²University Hospitals Southampton NHS Foundation Trust, Southampton, United Kingdom ¹²³University College London, London, United Kingdom ¹²⁴University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom ¹²⁵University Hospitals Coventry and Warwickshire, Coventry, United Kingdom ¹²⁶University of Birmingham, Birmingham, United Kingdom ¹²⁷University of Birmingham Turnkey Laboratory, Birmingham, United Kingdom ¹²⁸University of Brighton, Brighton, United Kingdom ¹²⁹University of Cambridge, Cambridge, United Kingdom ¹³⁰University of East Anglia, East Anglia, United Kingdom ¹³¹University of Edinburgh, Edinburgh, United Kingdom ¹³²University of Exeter, Exeter, United Kingdom ¹³³University of Liverpool, Liverpool, United Kingdom ¹³⁴University of Sheffield, Sheffield, United Kingdom ¹³⁵University of Warwick, Warwick, United Kingdom ¹³⁶University of Cambridge, Cambridge, United Kingdom ¹³⁷Viapath, Guy's and St Thomas' NHS Foundation Trust, and King's College Hospital NHS Foundation Trust, London, United Kingdom ¹³⁸Virology, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom ¹³⁹Wellcome Centre for Human Genetics, Nuffield Department of Medicine,

University of Oxford, Oxford, United Kingdom ¹⁴⁰Wellcome Sanger Institute, London, United Kingdom ¹⁴¹West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom ¹⁴²Department of Medicine, University of Cambridge, Cambridge, United Kingdom ¹⁴³Ministry of Health, Colombo, Sri Lanka ¹⁴⁴NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, London, United Kingdom ¹⁴⁵North West London Pathology, London, United Kingdom ¹⁴⁶NU-OMICS, Northumbria University, Northumbria, United Kingdom ¹⁴⁷University of Kent, Kent, United Kingdom ¹⁴⁸University of Oxford, Oxford, United Kingdom ¹⁴⁹University of Southampton, Southampton, United Kingdom ¹⁵⁰University of Southampton School of Health Sciences, Southampton, United Kingdom ¹⁵¹University of Southampton School of Medicine, Southampton, United Kingdom ¹⁵²University of Surrey, Guildford, United Kingdom ¹⁵³Warwick Medical School and Institute of Precision Diagnostics, Pathology, UHCW NHS Trust, Warwick, United Kingdom

¹Division of Infection and Immunity, University College London, London, UK² Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK ³Department of Medicine, University of Cambridge, Cambridge, UK ⁴Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK ⁵Department of Pathology, University of Cambridge, Cambridge ⁶ NHS Blood and Transplant, Oxford and BRC Haematology Theme, University of Oxford, UK ⁷Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, UK 8 Medical Research Council Laboratory of Molecular Biology, Cambridge, UK ⁹Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands ¹⁰ NIHR Cambridge Clinical Research Facility, Cambridge, UK ¹¹Department of Virology, Cambridge University NHS Hospitals Foundation Trust ¹²Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK¹³ Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital ¹⁴ FES-Cuautitlán, UNAM, Mexico ¹⁵Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA; ¹⁶Clinical Microbiology and Public Health Laboratory, Addenbrookes' Hospital, Cambridge, UK¹⁷ MRC Biostatistics Unit, University of Cambridge, Cambridge, UK ¹⁸Africa Health Research Institute, Durban, South Africa

Acknowledgements

We are immensely grateful to the patient and his family. We would also like to thank the staff at CUH and the NIHR Cambridge Clinical Research Facility. We would like to thank Dr Ruthiran Kugathasan and Professor Wendy Barclay for helpful discussions and Dr Martin Curran, Dr William Hamilton, and Dr. Dominic Sparkes. We would like to thank Prof Andres Floto and Prof Ferdia Gallagher. We thank Dr James Voss for the kind gift of HeLa cells stably expressing ACE2. We would like to thank James Nathan for RBD protein and Leo James for N protein. COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute. RKG is supported by a Wellcome Trust Senior Fellowship in Clinical Science (WT108082AIA). LEM is supported by a Medical Research Council Career Development Award (MR/R008698/1).

SAK is supported by the Bill and Melinda Gates Foundation via PANGEA grant: OPP1175094. DAC is supported by a Wellcome Trust Clinical PhD Research Fellowship. CJRI acknowledges MRC funding (ref: MC_UU_00002/11). This research was supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, the Cambridge Clinical Trials Unit (CCTU) and by the UCL Coronavirus Response Fund and made possible through generous donations from UCL's supporters, alumni, and friends (LEM). JAGB is supported by the Medical Research Council (MC_UP_1201/16). IG is a Wellcome Senior Fellow and supported by the Wellcome Trust (207498/Z/17/Z). DDP is supported by NIH GM083127.

Data Availability

Long-read sequencing data that support the findings of this study have been deposited in the NCBI SRA database with the accession codes SAMN16976824 - SAMN16976846 under BioProject PRJNA682013 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682013). Short reads and data used to construct figures were deposited at https://github.com/Steven-Kemp/ sequence_files. All data are also available from the corresponding author.

Code Availability

The SAMFIRE package Version 1.06 was used for filtering and calling variants from the Illumina data. It is available at https://github.com/cjri/samfire/ for review. Additional code was used to validate the variant frequencies and can be found at https://github.com/ PollockLaboratory/AnCovMulti.

References

- Hoffmann M, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181:271–280 e278. DOI: 10.1016/ j.cell.2020.02.052 [PubMed: 32142651]
- 2. Kim KW, et al. Respiratory viral co-infections among SARS-CoV-2 cases confirmed by virome capture sequencing. 2020
- Bull RA, et al. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis. Nat Commun. 2020; 11:6272.doi: 10.1038/s41467-020-20075-6 [PubMed: 33298935]
- Choi B, et al. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. The New England journal of medicine. 2020; 383:2291–2293. DOI: 10.1056/NEJMc2031364 [PubMed: 33176080]
- 5. Avanzato VA, et al. Case Study: Prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised cancer patient. Cell. 2020
- Starr TN, et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell. 2020; 182:1295–1310 e1220. DOI: 10.1016/ j.cell.2020.08.012 [PubMed: 32841599]
- Rambaut ALN, Pybus O, Barclay W, Carabelli AC, Connor T, Peacock T, Robertson DL, Volz E, COVID-19 Genomics Consortium UK (CoG-UK). Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. 2020
- Schmidt F, et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. bioRxiv. 2020; doi: 10.1101/2020.06.08.140871
- Brouwer PJM, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020; 369:643–650. DOI: 10.1126/science.abc5902 [PubMed: 32540902]
- Zussman ME, Bagby M, Benson DW, Gupta R, Hirsch R. Pulmonary vascular resistance in repaired congenital diaphragmatic hernia vs. age-matched controls. Pediatr Res. 2012; 71:697– 700. DOI: 10.1038/pr.2012.16 [PubMed: 22456633]
- Cai Y, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020; doi: 10.1126/science.abd4251
- Zhou T, et al. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host & Microbe. 2020; 28:867–879.e865. DOI: 10.1016/j.chom.2020.11.004 [PubMed: 33271067]
- Robbiani DF, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020; 584:437–442. DOI: 10.1038/s41586-020-2456-9 [PubMed: 32555388]
- Barnes CO, et al. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell. 2020; 182:828–842 e816. DOI: 10.1016/ j.cell.2020.06.025 [PubMed: 32645326]
- 15. Shrock E, et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 2020; doi: 10.1126/science.abd4250
- Sobel Leonard A, et al. The effective rate of influenza reassortment is limited during human infection. PLoS Pathog. 2017; 13:e1006203.doi: 10.1371/journal.ppat.1006203 [PubMed: 28170438]
- Richard M, Herfst S, Tao H, Jacobs NT, Lowen AC. Influenza A Virus Reassortment Is Limited by Anatomical Compartmentalization following Coinfection via Distinct Routes. J Virol. 2018; 92doi: 10.1128/JVI.02063-17
- Kemp S, et al. Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion H69/V70. bioRxiv. 2021; doi: 10.1101/2020.12.14.422555
- CDC. Discontinuation of Transmission-Based Precautions and Disposition of Patients with COVID-19 in Healthcare Settings (Interim Guidance). 2020. https://www.cdc.gov/coronavirus/2020.
- Boshier FAT, et al. Remdesivir induced viral RNA and subgenomic RNA suppression, and evolution of viral variants in SARS-CoV-2 infected patients. medRxiv. 2020; doi: 10.1101/2020.11.18.20230599
- Simonovich VA, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med. 2020; doi: 10.1056/NEJMoa2031304
- Meredith LW, et al. Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic surveillance study. The Lancet Infectious Diseases. 2020; 20:1263–1272. DOI: 10.1016/S1473-3099(20)30562-4 [PubMed: 32679081]
- Collier DA, et al. Point of Care Nucleic Acid Testing for SARS-CoV-2 in Hospitalized Patients: A Clinical Validation Trial and Implementation Study. Cell Rep Med. 2020; doi: 10.1016/ j.xcrm.2020.100062
- 24. Loman N, Rowe W, Rambaut A. 2020
- 25. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal. 2011; 17:10–12.
- 26. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics (Oxford, England). 2018; 34:3094–3100. DOI: 10.1093/bioinformatics/bty191
- Jordan MR, et al. Comparison of standard PCR/cloning to single genome sequencing for analysis of HIV-1 populations. J Virol Methods. 2010; 168:114–120. DOI: 10.1016/j.jviromet.2010.04.030 [PubMed: 20451557]
- Palmer S, et al. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. Journal of clinical microbiology. 2005; 43:406–413. DOI: 10.1128/JCM.43.1.406-413.2005 [PubMed: 15635002]
- Keele BF, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105:7552–7557. [PubMed: 18490657]
- 30. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data from vision to reality. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2017; 22:30494.doi: 10.2807/1560-7917.ES.2017.22.13.30494 [PubMed: 28382917]
- Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version-7-Improvements in Performance and Usability. Molecular Biology and Evolution. 2013; 30:772–780. DOI: 10.1093/molbev/mst010 [PubMed: 23329690]

Nature. Author manuscript; available in PMC 2021 April 10.

- 32. Rambaut A, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature Microbiology. 2020; 5:1403–1407. DOI: 10.1038/s41564-020-0770-5
- 33. Minh BQ, et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution. 2020; 37:1530–1534. DOI: 10.1093/molbev/ msaa015 [PubMed: 32011700]
- Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods. 2017; 14:587–589. DOI: 10.1038/ nmeth.4285 [PubMed: 28481363]
- Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013; 30:1188–1195. DOI: 10.1093/molbev/mst024 [PubMed: 23418397]
- Illingworth CJ. SAMFIRE: multi-locus variant calling for time-resolved sequence data. Bioinformatics. 2016; 32:2208–2209. DOI: 10.1093/bioinformatics/btw205 [PubMed: 27153641]
- 37. Lumby CK, Zhao L, Breuer J, Illingworth CJ. A large effective population size for established within-host influenza virus infection. Elife. 2020; 9doi: 10.7554/eLife.56915
- Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus evolution. 2015; 1
- Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 2015; 11:e1004041. [PubMed: 25675341]
- Wrobel AG, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nature Structural & Molecular Biology. 2020; 27:763–767. DOI: 10.1038/s41594-020-0468-7
- 41. Gregson J, et al. HIV-1 viral load is elevated in individuals with reverse transcriptase mutation M184V/I during virological failure of first line antiretroviral therapy and is associated with compensatory mutation L74I. Journal of Infectious Diseases. 2019
- 42. Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A. 1996; 93:11382–11388. DOI: 10.1073/pnas.93.21.11382 [PubMed: 8876144]
- 43. Gupta RK, et al. Full length HIV-1 gag determines protease inhibitor susceptibility within in vitro assays. AIDS. 2010; 24:1651. [PubMed: 20597164]
- 44. Vermeire J, et al. Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lenti- and retroviral vectors. PloS one. 2012; 7:e50859– e50859. DOI: 10.1371/journal.pone.0050859 [PubMed: 23227216]
- 45. Mlcochova P, et al. Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant. Cell Rep Med. 2020; doi: 10.1016/j.xcrm.2020.100099
- 46. Seow J, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020; 5:1598–1607. DOI: 10.1038/s41564-020-00813-8 [PubMed: 33106674]

Figure 1.

Analysis of 23 Patient derived whole SARS-CoV-2 genome sequences in context of local sequences and other cases of chronic SARS-CoV-2 shedding. Circularised maximum-likelihood phylogenetic tree rooted on the Wuhan-Hu-1 reference sequence, showing a subset of 250 local SARS-CoV-2 genomes from GISAID. This diagram highlights significant diversity of the case patient (green) compared to three other local patients with prolonged shedding (blue, red and purple sequences). All "United Kingdom / English" SARS-CoV-2 genomes were downloaded from the GISAID database and a random subset of 250 selected as background.

Kemp et al.

Figure 2. Whole genome variant trajectories showing amino acids and relationship to treatments. Data based on Illumina short read ultra deep sequencing at 1000x coverage. Variants shown reached a frequency of at least 10% in at least 2 samples. Treatments indicated are convalescent plasma (CP) and Remdesivir (RDV). Variants described in the text are designated by labels using the same colouring as the position in the genome. Variants labelled are represented by dashed lines. **A.** Variants detected in the patient from days 1-82. *D796H (light blue) is at the same frequency as NSP3 K902N (orange) therefore it is hidden beneath **B.** Variants detected in the patient from days 82-101.

Figure 3. Longitudinal variant frequencies and phylogenetic relationships for virus populations bearing six Spike (S) mutations

A. At baseline, all six S variants (Illumina sequencing) except for H69/V70 were absent (<1% and <20 reads). Approximately two weeks after receiving two units of convalescent plasma (CP), viral populations carrying H69/V70 and D796H mutants rose to frequencies >80% but decreased significantly four days later. This population was replaced by a population bearing Y200H and T240I, detected in two samples over a period of 6 days. These viral populations were then replaced by virus carrying W64G and P330S mutations in

Spike, which both dominated at day 93. Following a 3^{rd} course of remdesivir and an additional unit of convalescent plasma, the H69/V70 and D796H virus population reemerged to become the dominant viral strain reaching variant frequencies of >75%. Pairs of mutations arose and disappeared simultaneously indicating linkage on the same viral haplotype. CT values from respiratory samples are indicated on the right y-axis (black dashed line and triangles). Where there were duplicate readings on the same day, to remain consistent, N+T samples were plotted **B.** Maximum likelihood phylogenetic tree of the case patient with day of sampling indicated. Spike mutations defining each of the clades are shown ancestrally on the branches on which they arose. On dates where multiple samples were collect, these are indicated as endotracheal aspirate (ETA) and Nose + throat swabs (N +T).

Figure 4. Spike mutant D796H + **H69/V70** infectivity and sensitivity convalescent plasma (CP). A. western blot of virus pellets after centrifugation of supernatants from cells transfected with lentiviral pseudotyping plasmids including Spike protein. Blots are representative of two independent transfections. **B.** Single round Infectivity of luciferase expressing lentivirus pseudotyped with SARS-CoV-2 Spike protein (WT versus mutant) on 293T cells cotransfected with ACE2 and TMPRSS2 plasmids. Infectivity is corrected for reverse transcriptase activity in virus supernatant as measured by real time PCR. Data points represent technical replicates (n=3) with mean and error bars representing standard error of

mean; data are representative of two independent experiments **C-E.** convalescent plasma (CP units 1-3) neutralization potency against pseudovirus virus bearing Spike mutants D796H, H69/V70 and D796H + H69/V70 **F**, **G** patient serum neutralisation potency against pseudovirus virus bearing Spike mutants D796H, H69/V70 and D796H + H69/V70. Patient serum was taken at indicated Day (D). Indicated is serum dilution required to inhibit 50% of virus infection (ID50), expressed as fold change relative to WT. Data points represent means of technical replicates and each data point is an independent experiment (n=2-6). Mean of data points in C-G is shown by horizontal bars.