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Abstract

Complicated nano- and atomic-scale processes with sub-Angstrom spatial reso-
lution and millisecond time resolution visualized by in situ transmission electron
microscopy (TEM) are often highly dynamical and time-consuming to analyze
and interpret. Here, we report how variational autoencoders (VAEs) can provide
an artificial intelligence’s interpretation of high-resolution in situ TEM data by
condensing and deconvoluting complicated atomic-scale dynamics into a latent
space with reduced dimensionality. We designed a VAEs model with high latent
dimensions capable of deconvoluting information from complex high-resolution
TEM data. We demonstrate how this model with high latent dimensions trained
on atomically resolved TEM images of lead sulfide (PbS) nanocrystals is able
to capture movements and perturbations of periodic lattices in both simulated
and real in situ TEM data. The VAEs model shows capability of detecting and
deconvoluting dynamical nanoscale physical processes, such as the rotation of
crystal lattices and intraparticle ripening during the annealing of semiconductor
nanocrystals.
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1. Introduction

Transmission electron microscopy (TEM) has been a standard method for
the characterization of nanomaterials, allowing researchers to directly visualize
nanoscale structures and processes.1,2 TEM imaging is powerful, yet conclu-
sions drawn from it must be carefully drawn due to issues relating to small
samples sizes, selection bias, and in some cases difficulty quantifying complex
features.2–5 Introduction of automated TEM data acquisition has drastically
improved the amount of data that can be collected for a sample in a reason-
able amount of time.2–10 Further, advancement in techniques such as in situ
imaging5,11–13 and aberration correction14,15 allows for the acquisition of TEM
data with high spatial and/or temporal resolution with relative ease. Enabled
by such enhancements, it may be possible to achieve an autonmous electron mi-
croscopy workflow to analyze, or even fabricate, the structure of nanomaterials
with atomic precision on a statistical scale8,16.

However, a significant challenge is the development of data analysis proto-
cols to elucidate the desired information from sufficiently large sample set in a
time-efficient manner. High-resolution TEM images contain a high density of
multiplexed information which typically requires meticulous effort from a human
expert, either through manual analysis or development of custom written anal-
ysis software, to elucidate statically significant results, as exemplified by many
previous works.17–21 Such a workflow for data analysis can be time consuming
to implement, especially when the dataset is large and the desired information
is convoluted. In a recent work by Sainju et al.17, it took three researchers 20
weeks to manually analyze and label 1200 time-correlated TEM images, while
these data could be collected in as short as 12 seconds using a 103 frame per
second in situ detector.

A valuable solution to this challenge would be an artificial intelligence algo-
rithm that can extract information from TEM data with minimum human super-
vision. Many works have been focused on the application of artificial intelligence
and machine learning for the analysis of large and/or complex data.5,16,22–31 In
particular, several recent works have been focused on identifying and segment-
ing crystal lattices from high-resolution transmission or scanning transmission
electron microscopy data.23,29,31 However, the algorithms presented in many of
the previous works require either a human labeled training data set, or human-
made assumptions about the information contained in the data.5,16,24–26,29–31

Such requirements on the input of human knowledge and assumptions limit
the applicability of these algorithms to datasets collected by automated TEM
data acquisitions workflows, which not only are large in size, but also could
contain unexpected information. Maskov et al. demonstrated the use of vari-
ational autoencoders (VAEs) to differentiate between different types of defects
in two-dimensional WS2 from high-angle annular dark-field scanning transmis-
sion electron microscopic (HAADF-STEM) images without the need of human
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assumptions.23 VAEs are a type of deep neural network designed to find the hid-
den (latent) variables governing the distribution of a dataset.32 A VAEs model
encodes input data into a correlated latent space with much lower dimension-
ality, and subsequently reconstructs the input data from the latent space.23,32

After the network is trained, the latent space becomes a dimensionally reduced
representation of the input data, and previous studies have found that the la-
tent variables in the latent space can often be correlated to real physical de-
scriptors underlying the input data.23,33 As such, the latent space provided
by VAEs can be seen as an artificial intelligence’s interpretation of the input
data. Since the output of the network is reconstruction of the input data, the
training of VAEs does not require a human labeled training dataset, making it
an instance of self-supervised machine learning. VAEs have shown great per-
formance on HAADF-STEM datasets. However application of VAEs to phase
contrast HRTEM datasets, which are more complicated due to coherent elastic
scattering giving raise to the image, has not been demonstrated. Phase contrast
HRTEM is more amenable to quick collected of large, atomic-resolution datasets
due to the parallel image formation process, and is more widely accessible sug-
gesting an unmet need in unsupervised machine learning algorithms.

Here, we demonstrate the use of VAEs to analyze and interpret an in situ
HRTEM dataset of lead sulfide (PbS) semiconductor nanocrystals (NCs) while
being annealed by the electron beam. Annealing of semiconductor NCs has
been studied extensively due to their implications for the achievement of defect-
free ”artificial solids”.18,20,34–39 Because of the highly dynamic nature of these
processes, this in situ TEM data is often challenging to interpret, and often
requires extensive time and efforts from a human expert to fully analyze.18,34

In this work, we will show that VAEs trained on high-resolution TEM images of
PbS NCs can produce a latent space consisting of latent variables encoding the
lattice structures of these NCs. By tracking the changes of these latent variables
as a function of time over the course of the annealing of a pair of NCs, one can
deconvolute nanoscale dynamics with physical interpretability from the compli-
cated annealing process. In this way, the VAEs provide an artificial intelligence
approach to analyze and interpret the highly complex nanoscale annealing pro-
cesses. We have found the VAEs are capable of accurately pinpointing locations
where lattice structures are shifting during the annealing processes, as well as
recognizing dynamics that are more complex and convoluted. As such, we be-
lieve that the VAEs show potential to serve as an artificial intelligence tool for
the automated analysis of TEM datasets.

2. Results and discussion

2.1. Training of the VAEs

VAEs are a type of deep neural network that typically consists of two sets of
2-dimensional convolutional neural networks. The first one, called an encoder,
passes the input data through a series of 2-dimensional convolutional layers
with reducing dimensionality, until the input data is compressed into a vector
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consisted of an arbitrary number of latent variables zn, hence constructing a
latent space, a low-dimensional representation of the original data. The second
network, called a decoder, takes samples from the latent space as input, and
passes them through a series of convolutional layers that mirrors the layers of
the encoder, to reconstruct the input data. In this work, we trained our VAEs
model using 64-by-64 pixels segments (Figure 1a) of high-resolution TEM im-
ages of PbS NCs. The 4096-by-4096 pixel HRTEM images were taken at a
pixel scale of 0.014 nm/pixel, and hence each image represents a field of view
of about 59-by-59 nm. A total of 20,400 segments containing lattice fringes of
PbS obtained from 27 HRTEM images were used to train the VAEs, and this
dataset is henceforth referred to as the training dataset. The 27 HRTEM im-
ages used for training the model were collected manually in about 1 h on a FEI
Tecnai T20 TEM. It is estimated that about 200 recognizable PbS nanoparti-
cles were present in the 27 HRTEM images. Importantly, the in situ HRTEM
data analyzed by the VAEs model presented in this manuscript, including those
presented in the Supplementary Data, were not included in the training dataset.
This is to prevent the overtraining of the model on the in situ data. For a de-
tailed discussion regarding how the training dataset was generated, the reader
is referred to the Supplementary Information.

Detailed discussions regarding the training of the VAEs, including the tun-
ing of hyperparameters, are presented in the Supplementary Information (Fig-
ure S2, S3). Figure 1b shows the changes in the training losses during the
training of the VAEs model. Over the course of the training, the reconstruc-
tion loss steadily decreased as the Kullback–Leibler divergence increased. The
decrease in reconstruction loss indicates that the network was learning to recon-
struct the input images, while the increase in the KL divergence is expected as
the distribution of the latent variables is expected to be more complicated than
the assumed normal distribution built into the model. Of note, the increase in
KL divergence is also expected, because the distributions of the latent variables
representing the information in the training dataset are expected to be different
from the normal distributions used to modulate the latent space. The recon-
struction loss converged after the model has been trained for 20 training steps
(epochs), at which point the training was stopped. Inspections of the recon-
struction performance of the trained VAEs confirm that the model is capable of
a reasonable reconstruction of training images, verifying that training has been
sufficient (Figure 1a).

Figure 1c shows the variances of the latent variables encoding the training
dataset. The latent variables were indexed based on the magnitude of their
variances. Out of the 64 latent variables in the latent space, about 34 of them
have significantly higher variances than the rest. This indicates that 34 latent
dimensions are sufficient to encode all the information in the training dataset.
However, this does not indicate that the 30 latent variables that do not have
significant variances are unnecessary. In fact, the performance of the VAEs
model worsens both qualitatively and quantitatively as latent dimension de-
creases (Figure S1). While it remains uncertain whether an optimum number
of latent variables exists, it is clear that the latent variables contribute to the
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overall performance of the model even if they do not have non-trivial variances.
Of note, previous studies using VAEs to analyze STEM data used much lower
latent dimensions.23,40 We believe that moving to a higher latent dimension is
crucial for adapting the VAEs model to the much more complex HRTEM data.

It is important to note that, during the training of the VAEs model, each
latent variable was treated equally by the model, with no pre-assigned meaning
or role. To distinguish the latent variables from each other, we assigned an index
to each latent variable based on its variance on the training dataset (Figure 1c),
such that z63 is the latent variable with the highest variance and z0 is the one
with the lowest. Although the latent variables were degenerate before the model
was trained, the fact that they had vastly different variances after the training
shows that they likely encoded different information. In the following section,
we will explore how information was encoded in the latent space, and whether
physical interpretation can be associated to the latent variables.

2.2. Interpretation of the latent space

To confirm that the latent space has encoded information with physical in-
terpretability, we constructed simulated HRTEM data. PbS lattice fringes were
simulated with Gaussian-distributed dark contrast on a bright background with
the same periodicity as PbS lattices under HRTEM. Simple geometric permu-
tations, including translations and rotations, were introduced to the simulated
lattices to observe how the latent variables change in response to these permu-
tations.

As shown in Figure 2, when the simulated lattices were going through differ-
ent permutations, the latent variables changed accordingly. indicating that the
latent space is indeed correlated to the physical positions and orientations of
the simulated PbS lattices. During the training of the VAEs model, a regular-
ization factor (β) was applied to the KL loss to enforce orthorgonality onto the
latent space. In an ideal orthorgonal latent space, each latent variable should be
uniquely correlated to one physical factor or process underlying the dataset. By
inspecting the variances of the latent variables in Figure 2, it can be seen that,
for each of the three permutations, a few latent variables showed significantly
higher variances than the rest, and, importantly, the sets of latent variables that
show higher variances for different permutations have minimum overlaps. This
shows that while imperfect, orthorgonality is present in the latent space. This
is further confirmed by the fact that by permuting a single latent variable, one
can introduce a specific type of permutation to the lattice in the reconstructed
image (Figure 3). Of note, while z43 showed high variances in both translation
along the x-axis (Figure 2b) and rotation (Figure 2c), this can be explained by
the fact that during the rotation of the simulated lattice, the center of rotation
did not align perfectly with the center of the lattice, and hence the lattice after
rotation was offset from the original lattice by a fraction of one lattice vector,
resembling the effect of a translation.

The orthogonality of the latent variables has important implications for the
generalizability of the VAEs model, as it suggests that the latent variables could
serve as an ”orthogonal basis set”. Assuming it allows comparisons to be drawn
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between different datasets. In the Supporting Information, we demonstrate an
example of such a comparison between the dataset shown here, and a dataset
of PbS NCs imaged by aberration-corrected transmission electron microscopy
(Figure S10,S11,S12).

Finally, to confirm that the changes in the latent variables are indeed cor-
related to the permutations in the simulated lattices, we examined the latent
variables that showed the highest variances in each type of permutation in detail
(Figure S4). Taking translation in the y-axis as an example (Figure 2a, Fig-
ure S4a), we can see that as the simulated lattice was translated by one period,
the change in latent variable (z40), the latent variable with the highest variance
during the permutation, was also periodic. Such periodicity can also be observed
in the other two permutations (Figure 2b,c, Figure S4b,c). This further proves
that the latent space is encoding information with real interpretable physical
meaning.

It is of note that the latent variables that did not show high variances in the
geometric permutations could also carry important information. For example,
z63 did not show significant variances in Figure 2, but varying its value caused
significant changes in the contrast of the simulated lattice (Figure 3d). The
effects of changing the value of z63 on the reconstructed lattices (Figure 3d), and
the distribution of high positive values of z63 along the edges of the nanocrystals
(Figure S14), indicate that z63 is correlated with the position of the edges of
lattices. When analyzing real in situ TEM data using the VAEs model, it is
important to take into account the information carried by these latent variables,
as will be demonstrated in the following section.

2.3. Analysis of in situ HRTEM data

After confirming that the VAEs model is capable of encoding physical in-
formation in simulated lattices into the latent space, we applied the model
to analyze real high resolution in situ TEM data observing the dynamics of
PbS NCs while being annealed by the electron beam. The annealing of heavy
metal chalcogenide NCs has been studied extensively to understand mechanisms
through which crystal defects can be removed from these materials.18,20,34–39

It is well-known that when two NCs attach to each other, a variety of crystal
defects can arise if the orientations of the two nanocrystals are not epitaxial,
or if step edges exist on the surface of one or both of the NCs. These de-
fects represent kinetic products and if given enough thermal energy to activate
atom rearrangement, the defects can move to the surface of the nanocrystal
dimer and be eliminated.18,20,34–39 Such annealing processes can be observed
under in situ TEM, with the electron beam of the TEM providing excitation
which mimics thermal annealing.18,34,41 Studies on these processes have pro-
vided significant insights into the fundamental mechanisms into the formation
of defect-less lattices and bear important implications for the design of artificial
solids.18,34,42 Compared to the materials used in previous in situ TEM studies
(PbTe18, PbSe20,37,38, CdSe34), PbS NCs used in this study offers the unique
advantage of high air stability, allowing them to be handled in much larger quan-
tities with less stringent requirements on inert environments, hence leading to
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a much faster rate of TEM data generation. While the rock salt lattice of PbS
is relatively easy to visualize under HRTEM, due to the smaller atomic weight
of sulfur, compared to selenium and tellurium, the lattices of PbS NCs show
lower contrast under HRTEM compared to other lead chalcogenides, making
them more challenging to be analyzed using traditional methods. However, as
demonstrated in Figure 1, the VAEs model is able to accurately recognize and
reconstruct these lattices, showing that AI models such as the VAEs model have
the potentials to reduce the requirements on the quality of the data from which
information can be extracted.

In this work, we collected in situ HRTEM data of PbS based on the meth-
ods reported by Ondry et al.18 The NCs, about 5 nm in size, were imaged at
close to Scherzer focus under in situ HRTEM to visualize the reorganization
of the lattices. The datasets which showed clear annealing processes were se-
lected manually to be encoded by the VAEs model. It is important to note that,
unlike STEM, the periodic contrast in HRTEM data (eg. Figure 4a) does not
correspond to the physical locations of atomic columns in NCs, and should not
be interpreted as such.43,44 However, the contrast does reflect the lattice peri-
odicity of the NCs, and therefore movement of periodic contrast seen under in
situ HRTEM can be interpreted as a representation of the lattice reorganization
happening in the annealing NCs.18,43,44

To analyze the in situ HRTEM data of annealing NCs with the VAEs model,
we performed a sliding frame analysis (Figure 4b). A sliding frame 64-by-64
pixels in size was applied to the in situ HRTEM data with a step size of 8
pixels. Then, each time frame in each sliding frame was encoded into the latent
space by the VAEs model, and the variance of each latent variable over time
were calculated for each sliding frame (Figure 1d). To rule out the influences
of random background fluctuations in the HRTEM data on the latent variables,
Spearman’s ρ correlation score was computed for each latent variable in each
sliding frame as a function of time. The computed Spearman’s ρ was multiplied
to the variance, and the product was squared to make the final result a positive
number. This squared product is henceforth referred to as the time correlated
variance. Through such a sequence of analysis, each in situ HRTEM video was
transformed to a 2D array of time correlated variance (Figure 1d).

Here, we will focus our analysis on the in situ HRTEM video in Figure 4a.
Figure S6 shows the same analysis performed on another in situ video, demon-
strating that the analysis method is generalizable. Figure 4a shows the oriented
attachment of two PbS NCs along the {100} direction. Initially, the two NCs
were offset by 13.7°, preventing them from achieving a strain-free attachment
geometry. When exposed to the electron beam in TEM, the NCs received en-
ergy from electron beam irradiation, leading to an annealing process in which
strain was reduced as the lattices reorganized and dislocations moved in the
lattice. Over the course of 38 s, the angle between the two NCs was reduced by
4.4°, which can be measured both directly from the HRTEM images, and from
the 2D Fourier transform of the images. While it is easy for a human expert
to recognize the beginning and end point of the annealing, delineating the ex-
act pathways of the annealing process on an atomic level by manual analysis
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is challenging. However, we will demonstrate that insights on the annealing
pathways can be gained by an analysis of the time correlated variances of the
latent variables.

Figure 4b shows the time correlated variance maps of three latent variables:
z29, z31 and z63. A quality inspection of the three maps shows that while z29
shows very little variance within the boundaries of the annealing nanocrystals,
z31 has a spatial distribution of variances that roughly correlates to the distri-
bution of lattices inside the nanocrystals, and z63 shows variances mainly on
the boundaries of the nanocrystals. This observation further demonstrates that
the VAEs model is capable of deconvoluting distinct information into different
latent variables. This can be seen further by inspecting the time correlated vari-
ance maps of all latent variables (Figure S8). While z29 does not seem to have
encoded significant information in this example, in the following discussions, we
will attempt to understand the information encoded in latent variables z31 and
z63, and correlate them to interpretable physical information.

A visual inspection of the time correlated variance map of z31 showed that
the distribution of high time correlated variances corresponds with the distri-
bution of lattice periodicity of the NCs. Taking into account the observed
annealing process of the two NCs (Figure 4a) and the behaviors of z31 in simu-
lated lattices (Figure 2c), one can hypothesize that the observed changes in z31
is correlated to the rotation of the lattices during the annealing of the NCs. To
confirm the hypothesis, we constructed two simulated lattices that are offset by
a similar degree, measured as the angle between the two sets of lattice planes,
as the in situ HRTEM data, and gradually rotated them to reduce the offset
angle in a similar time frame (Figure 5c). We then selected a 64-by-64 pixels
region of the in situ HRTEM data where the reorganization of the lattices is
clearly visible (Figure 5a), and found a similar region in the simulated data,
and compared how z31 changes in the two regions (Figure 5b,c). While z31 of
the in situ HRTEM data showed fluctuations, after taking the mean of every 10
time steps, it can be seen that the trends of z31 in in situ HRTEM data closely
agree with each other (Figure 5b). As such, it is likely that the changes in latent
variable z31 indeed correspond to rotational lattice movement captured in the
in situ HRTEM data.

Latent variable z63, on the other hand, showed high time correlated vari-
ances mainly on the edges and corners of the NCs (Figure 4c). To understand
what physical processes z63 may be capturing, we performed a Fourier transform
analysis on the in situ HRTEM data. The lattice frequencies of the two NCs
were separated and rotated such that the {100} axis is in the upright position,
allowing us to obtain the traces of the lattices of the two NCs as a function of
time (Figure 6c,d). By overlaying the traces of the lattices, it can be observed
that the regions where z63 showed high time correlated variances (Figure 6a,b)
correspond to the regions in which lattices were shrinking or growing over the
course of the annealing process (Figure 6c,d, Figure S15). This can be further
seen by comparing the changes in the values of z63 to the changes of the areas
occupied by the lattice in the same region, computed by performing an image
thresholding after Fourier filtering (Figure 6e). Since z63 is correlated to the po-
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sitions of the edges of lattices (Figure 3d, S14), it seems likely that the changes
in z63 correspond to the movement of atoms on the surfaces of the NCs over
the course of annealing, a process known as intra-particle ripening36,42. Since
no temporal correlation was including in the training dataset, and no a priori
physical knowledge was built into the model, the VAEs model had no oppor-
tunity to ”learn” about intra-particle annealing during its training. As such,
in a sense, the VAEs model ”discovered” intra-particle annealing without any
human intervention or preconceived human knowledge.

The ability of the model to ”interpret” without the need of interpretation
makes it a promising candidate as a component of an autonomous TEM data
acquisition and analysis pipeline. The minimum requirement on human input
and intervention enables the model to efficiently extract physically meaningful
information from large volumes of data, while also allowing it to ”notice” infor-
mation that a human analyzer may miss. Such capabilities allow the model to
potentially play the essential role of an on-the-fly experimental decision maker in
an autonomous electron microscopy setup9,10. For example, Figure S9 demon-
strates how variances of latent variables can inform a human operator, or an
autonomous image acquisition algorithm, on where nanoscale dynamics might
be happening, and hence worthy of further data collection, based on a relatively
short (18 s) in situ HRTEM video data. Hence, in the future, an automated
TEM could screen over a relatively large field of view to take short in situ
HRTEM videos at various locations. The VAEs model can then analyze the in
situ data on the fly, and inform the automated TEM the most likely locations
at which nanoscale dynamics could be happening, and are hence most worthy
of further data collection. As such, a fully autonomous TEM data acquisition
workflow can be achieved. Additionally, the relatively small volume of data re-
quired to train the VAEs model potentially allows it to be re-trained for different
electron microscopes or material systems with relative ease, making the model
suitable for a generalizable workflow for automated electron microscopy. As ex-
amples, in the Supporting Information, we demonstrated the performance of the
model on two different datasets (Figure S11, S12, S13), one of which involves
a material different from PbS (Figure S13). We envision that in the near fu-
ture, the VAEs model will become an integral part of an autonomous laboratory
focused on automated data acquisition and analysis by electron microscopy.

3. Conclusions

In this work, we demonstrated that the VAEs model can be trained to faith-
fully reconstruct atomically-resolved TEM images, and construct a latent space
that encodes physically interpretable information contained in the TEM data.
We showed that the latent space can capture permutations and reorganizations
of lattices in both simulated and real HRTEM data. Based on the insights
provided by the latent variables, we proposed a mechanism for the annealing
of PbS NCs, which can be seen as an artificial intelligence’s interpretation of
the HRTEM data. The model shows great potential to serve as part of an
autonomous workflow for automated electron microscopy.
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4. Methods

4.1. Resource availability

4.1.1. Lead contact

Further information and requests for resources and reagents should be di-
rected to and will be fulfilled by the lead contact, A. Paul Alivisatos (paul.alivisatos@uchicago.edu).

4.1.2. Materials availability

This study did not generate new unique reagents.

4.1.3. Data and codes availability

Unprocessed HRTEM data and in situ TEM data, and processed data for
training the VAEs model are available on Dryad (https://datadryad.org/
stash/share/kLvdk-AartSZf1GOw1slklZ0mLmPCAkQeYorCbeBMdI). Trained
VAEs models, and sample codes for training and applying them, are available
on Github (https://github.com/realxingzhiwang/VAEs-for-HRTEM).

4.2. Materials

Lead chloride (PbCl2), lead nitrate (Pb(NO3)2) elemental sulfur, oleic acid
(OA), oleylamine (OLA), hexanes, toluene, acetone were purchased from Sigma-
Aldrich and used without further purification. Aqueous ammonium sulfide
((NH4)2S, 40 wt%) was purchased from Sigma-Aldrich and titrated with Pb(NO3)2
to determine the actual sulfide concentration based on methods reported by
Zhang et al.45 Molecular sieves (3 Å) were purchased from Sigma-Aldrich and
activated at 300 °C for at least 12 hours before being used.

4.3. Synthesis of PbS NCs

Cubic PbS NCs about 6 nm in diameter were synthesized based on a two
step approach. First, pseudo-spherical PbS NCs were prepared based on the
methods reported by Weidman et al.46 Briefly, 2.5 g PbCl2 was mixed with 7.5
mL OLA. The mixture was degassed at room temperature for 10 min, then at
110 °C for 5 min. After degassing, the mixture was heated to 120 °C to form
a milky white suspension. The sulfur source was prepared by adding 7.5 mL
OLA to 40 mg of S. The mixture was degassed for 20 minutes at 120 °C, and
then cooled to close to 30 °C to form a dark orange solution. To form the NCs,
2.25 mL of the S solution was swiftly injected into the Pb solution. When a
dark color was observed in the mixture, the reaction was allowed to continue for
10 min at 120 °C. Then, the reaction mixture was removed from heat source,
and 20 mL of hexanes was injected into the mixture to quench the reaction.
PbS NCs were collected by adding 10 mL IPA and 5 mL MeOH to the reaction
mixture, and centrifuge at 4000 rpm for 3 min. Solid products collected were
resuspended in 10 mL hexanes. Then, 20 mL OA was added to the resuspended
products. The mixture was sonicated for 5 min, and centrifuged at 4000 rpm
for 3 min to collect solid products. Collected products were washed with OA
two more times, or until the supernatant is clear, and then one more time with
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10 mL IPA and 5 mL MeOH. The resultant suspension of PbS NCs in hexanes
was then centrifuged at 4000 rpm for 3 min once more to remove remaining
solid PbCl2. The suspension was then stored in an air-free environment for at
least 24 h, after which the suspension was once again centrifuged at 4000 rpm
for 3 min to remove any remaining PbCl2. UV-Vis spectroscopy and and TEM
characterization showed that the collected NCs were 6 nm spheroidal NCs with
an absorption peak at 0.79 eV with a narrow size distribution (Figure S5a,b),
agreeing with previous reports by Weidman et al.46

To modify the spheroidal NCs to form cubic NCs, we adopted a method
reported by Zhang et al.45 Under an air-free environment, 3 mg spheroidal
PbS NCs were suspended in 4 mL hexanes with 0.2 mL OA. A (NH4)2S/OLA
solution was prepared by adding 0.3 mmol (NH4)2S to 10 mL OLA. The solution
was then dried by ∼2 g of 3 Å molecular sieves under an inert environment for
30 min. The solution was kept at 30-40 °C to prevent solidification. Then in an
inert environment, 4 mL of the (NH4)2S/OLA solution was injected into the PbS
suspension. The mixture was allowed to react for 30 min. Then 20 mL acetone
was added and the mixture was centrifuged at 4000 rpm for 3 min to collect
cubic PbS NCs (Figure S5c). The NCs were suspended in 5 mL hexanes and
washed with 5 mL acetone two more times, after which they were resuspended
in 5 mL toluene and used to prepare TEM samples immediately.

4.4. Preparation of TEM samples

The suspension of cubic PbS NCs was diluted with toluene until the suspen-
sion was light yellow. Then, 2 µL of the diluted suspension was dropcasted onto
a plasma cleaned Ted Pella 400 mesh ultrathin carbon support Au TEM grid.
The grid was let to dry under air-free condition for at least 2 hours. Then, the
grid was dipped into a 0.45 M solution of (NH4)2S in methanol for 30 s, and
then in pure methanol for another 30 s. The grid was then dried in vacuum for
at least 2 hours before imaging.

4.5. In situ TEM imaging

In situ TEM data of the annealing of PbS NCs were acquired using a FEI
Tecnai T20 transmission electron microscope equipped with a Gatan RIO16IS
camera and a LaB6 filament. All data were acquired under 200 kV accelerating
voltage. Atomically resolved in situ videos were recorded close to Scherzer focus.
The dose rates of electrons the samples were exposed to during imaging were
estimated after the in situ data were collected. A conversion value of 124 was
used to convert CCD counts to electrons.

4.6. Training of the VAEs model

The VAEs model was constructed in Python 3 using the Keras package. The
encoder network was consisted of four 2D convolutional layers with a kernel size
of 4, followed by a reshape layer and another convolutional layer that projects
the output of the previous layer onto the 64-dimensional latent space. The
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decoder network has the same set of layers with the reverse sequence, and with
the convolutional layers replaced by inverse convolutional layers.

The model was trained by minimizing the reconstruction loss measured by
binary cross entropy (BCE) and the original data. To modulate the distribution
of the latent variables, Kullback–Leibler (KL) divergence between the distribu-
tion of the latent variables and a normal distribution is added to BCE during
the training process as a constraint.23,32 A factor of 2 was multiplied to the KL
divergence as a regularization factor (β) to enforce orthogonality in the latent
space. The model was trained on the training dataset for 20 epochs, and the
resulting latent space was analyzed for physical insights.
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Figure 1: a) Schematic of a 2D VAEs trained on high-resolution TEM images of PbS nanocrys-
tals. b) Training curves of the VAEs showing both the binary cross entropy reconstruction
loss and the Kullback–Leibler divergence as functions of epochs trained. c) Variances of the
latent variables on the training set. Latent variables indexed based on magnitude of their
variances. d) Schematic of sliding frame latent space variance analysis used to annalyze in
situ TEM data.

9. Figures
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Figure 2: Distributions and variances of latent variables in simulating in situ TEM data
showing a) translation by one lattice period in the y-axis, b) translation by one lattice period
in the x-axis, c) rotation by 90deg clockwise. Snapshots of the simulated in situ TEM data
at different time points are shown at the top of each subfigure. Red texts and boxes in each
subfigure denotes the latent variables with the highest variance in each permutation. Other
latent variables with notably high variances are denoted by pink texts.
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Figure 3: Effects of permuting one latent variable while keeping all the others constant on
the reconstruction of a simulated lattice. The red dotted lines were drawn at the same pixel
locations in each panel, serving as a visual aid for comparing the positions of the lattices.
The latent variables permuted were the ones that showed highest variances during the a)
translation in the y-axis, b) translation in the x-axis, c) rotation clockwise permutations
of the simulated lattices. d) A latent variable that did not show large variances in simple
geometric permutations of the simulated lattices, but capable of ”erasing” the lattice on the
edge. The same analysis on all latent variables is shown in Figure S7.
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Figure 4: a) Snap shots of in situ TEM data showing the annealing of two PbS nanocrystals,
with the corresponding power spectra obtained from 2D Fourier transforms. The in situ was
taken under an electron dose rate of ∼ 1250 e−/Å2 · s. b) Maps of time correlated variances
of latent variables z29, z31 and z63 in each sliding frame, demonstrating how the two latent
variables are capturing different dynamics in the in situ TEM data.
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Figure 5: a) A 64-by-64 pixels subregion (blue box) of the in situ TEM data of PbS nanocrys-
tals annealing in which the reorganization of the two lattices can be seen. Scale bar represents
3 nm. b) (Left axis) The values of latent variable z31 in the subregion (real data) as a function
of time, compared to those of simulated data showing the same annealing behaviors of two
lattices. (Right axis) Angles between the two nanocrystals measured from the Fourier trans-
form of the TEM data, and the angles between the two simulated lattices in simulated data,
as functions of time. c) Comparisons between the real and simulated data at selected time
points (denoted by red dots in b). Red dotted lines represents sets of lattice vectors forming
a close circuit, shown as a visual aid.
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Figure 6: a, b) The two annealing nanoparticles. The particles are rotated such that the
{100} facets are facing upward. Red regions denotes regions where latent variable z63 shows
high variances. c-d) Traces of lattices of the two annealing nanoparticles in the first and last
frame of the in situ data. Regions where lattice where present in the first frame, but not
the last frame (red) were considered regions of lattice shrinkage. Regions where lattice where
present in the last frame, but not the first frame (blue) were considered regions of lattice
growth. If lattices were present in both frames, the regions were considered regions of lattice
unchanged (cyan). Note that the lattice frequencies in the two frames were not exactly the
same, likely due to a fluctuation in the stigmatism of electron lenses during data collection.
e) Comparisons between the values of z63 and the relative areas occupied by the lattice as
functions of time at two selected subregions of the in situ data.
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