UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Face-preferring regions in FFA, STS, and MPFC have different functions.

Permalink

https://escholarship.org/uc/item/510302t4

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors

Kosakowski, Heather L Kanwisher, Nancy Saxe, Rebecca

Publication Date

2022

Peer reviewed

Face-preferring regions in FFA, STS, and MPFC have different functions.

Heather Kosakowski

MIT, Cambridge, Massachusetts, United States

Nancy Kanwisher

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Rebecca Saxe

MIT, Cambridge, Massachusetts, United States

Abstract

Faces are an important source of perceptual and social information. Multiple cortical regions including the fusiform faces area (FFA), the superior temporal sulcus (STS), and medial prefrontal cortex (MPFC) respond more to dynamic faces than videos of toy objects, human bodies, and pastoral scenes. Do face-preferring regions in FFA, STS, and MPFC have different functions? To address this question, we re-analyzed functional magnetic resonance imaging (fMRI) data from seven different experiments that included a dynamic faces versus objects localizer. Each of the seven experiments tested different perceptual and social features using dynamic videos, point light displays, narratives, and animated cartoons. Using a functional region of interest approach, we observed a significant condition by region interaction in four of the seven experiments. Thus, although FFA, STS, and MPFC respond more to dynamic faces than objects, bodies, and scenes, these three regions differ from each other functionally.