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Abstract

Perimeter control is an emerging alternative for traffic signal control, which regulates the

traffic flows on the periphery of a road network. Some model-based approaches have been

suggested earlier for the optimization of perimeter control based on macroscopic fundamen-

tal diagrams (MFDs). However, there are several limitations when considering their applica-

tion to a large-scale urban area because the model-based approaches may not be scalable

to multiple regions and inappropriate for handling various effects caused by the shape

change of MFDs. Therefore, we propose a model-free and data-driven approach that com-

bines reinforcement learning (RL) with the macroscopic traffic simulation based on the

recently developed network transmission model. First, we design four perimeter control

models with different macroscopic traffic variables and parametrizations. Then, we validate

the proposed models by evaluating their performances with the test demand scenarios at

different levels. The validation results show that the model containing travel demand infor-

mation adapts to a new demand scenario better than the model containing only density-

related factors.

Introduction

Perimeter control is proposed as an alternative approach for traffic signal control, as adaptive

traffic signal control (ATSC) [1,2] has a critical limitation that it is less effective when the traf-

fic demand is oversaturated [3]. Perimeter control is a type of traffic demand control that regu-

lates the regional traffic flows on the periphery of a road network to maintain a proper level of

service. Its key concept is suggested by Daganzo in 2007 [4] and it is established using macro-

scopic fundamental diagrams (MFDs) [5,6]. As MFDs give a macroscopic relationship

between the regional vehicle accumulation and the network outflow in an aggregated manner,

the potential action for perimeter control can be determined on its basis.

Several studies focus on the optimization of perimeter control by recognizing the significant

relationship between the macroscopic variables of MFDs. As found in the literature, the

model-based approaches are conventionally used, typically the feedback control and the model
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predictive control (MPC). Feedback control determines the optimal level of boundary capaci-

ties based on MFDs according to the current state accommodating the vehicle accumulation to

the critical density that maximizes the network outflow. On the other hand, MPC provides a

multi-stage optimal solution to the sequence of states predicted based on the state transition

model.

The conventional model-based approaches for the optimization of perimeter control have

been effectively applied to some relatively small-sized areas, such as the gating control of a sin-

gle protected network (PN) [7–9] or one-to-one transfer flow control for two regions [10,11].

However, there has been a growing interest in applying perimeter control to a widened urban

area in recent studies [12–16]. Accordingly, some challenges regarding the conventional

model-based approaches are newly found when considering the application of perimeter con-

trol to a large-scale urban area.

First of all, both feedback control and MPC may not be scalable, which makes them ineffec-

tive when optimizing multi-regional perimeter controls. For instance, although feedback con-

trol has relatively cheap computational costs, it does not provide a multi-stage optimal

solution to the multiple agents since it only maximizes the instantaneous network throughput

based on MFDs. MPC can provide multi-stage optimal solutions, on the other hand, the

computational cost would dramatically increase as the number of control agents increases

[17]. Second, the conventional approaches may be inappropriate for handling the effects

caused by the shape changes of MFDs. In most cases, the conventional approaches assume that

the shape of MFD is well-defined and steady-state. However, several studies have proven that

there are a number of factors that affect the shape changes of MFDs [18–26]. There have been

some attempts to handle the effects of shape changes using closed loop structure of MPC [27],

since the efficiency for the control action is dependent on the precise estimation of MFDs.

However, the dynamics would become more complex as the spatial range of the control area

expands, resulting in an exponential increase of the computational burden.

Therefore, we propose a model-free and data-driven approach using reinforcement learn-

ing (RL) as an effective alternative for perimeter controls on a large-scale urban area. RL is an

emerging technique applied in the field of traffic signal control with the advantages explained

as follows: it is known that the well-trained RL models can perform the multi-stage and high-

level optimization at par with MPC with lower computational costs [17]. Thus, RL would be a

scalable method for the multi-regional perimeter control. Moreover, RL can better cope with

the effects caused by the shape changes of MFDs in conjunction with data-driven methods.

Additionally, the online learning framework of RL improves the control efficiency when it is

applied in real-time.

Despite several advantages of RL, few relevant studies can be found in the literature because

there had been no proper macroscopic traffic simulation to train the perimeter control. A traf-

fic simulation is essential for training the signal control model, however the conventional sim-

ulators have a limitation in delicately describing the macroscopic behaviors of the transfer

flows between multiple networks. A few studies focus on the signal control of several number

of urban intersections in a single traffic network, but they do not consider the network flow

control between multiple networks [28–30]. Fortunately, some recent studies, such as Kim

et al. [18,19] and Knoop & Hoogendoorn [31], provide an elaborate analysis of macroscopic

behaviors of transfer flow based on MFDs, which enables us to develop an improved macro-

scopic traffic simulation. Thus, this motivates the development of RL-based perimeter controls

for a large-scale urban network.

Hence, this research aims to design an effective RL model for perimeter control using a

newly developed macroscopic traffic simulation based on the network transmission model.

The scope for the model design includes the selection of variables and the method for the
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parametrizations. We experimentally validate the proposed models under a well-controlled

environment, since there is no relevant study for constructing an RL-based perimeter control.

In this article, the literature review for perimeter control is provided. Then, we construct four

different models for perimeter control using different model designs in order to analyze the

effectiveness of each parameter. Finally, the proposed models are experimentally validated

with different types of test demand scenarios to investigate the models’ ability to adapt to a

new situation.

Literature review

Traffic signal control is considered as an effective method for resolving urban congestion

problems and it has been continuously studied since the 1950s. Adaptive traffic signal control

(ATSC), developed in the 1990s, is the latest system that is still in use for many cities interna-

tionally [1,2]. However, there remains a known major drawback of ATSC, that it is less effec-

tive when the traffic demand becomes oversaturated occurring spillback or gridlock [3]. To

overcome this limitation, perimeter control approach is newly proposed in recent years and

newly developed MFDs became a theoretical basis for perimeter control.

A well-defined MFD gives a unimodal and low-scattered relationship between the network

outflow and vehicle accumulation in an aggregated manner that enables to measure the traffic

state of a relatively wide area. Since the control action for perimeter control is highly depen-

dent on MFDs, a number of researches have been conducted to identify the causal factors

influencing the shape changes of MFDs. Several studies [20–22] point out that the shape of

MFDs can be scattered by the spatial inhomogeneity of the traffic densities and its effects have

been analyzed in [21,23,24]. In addition, a few studies [25,26] focus on the hysteresis phenom-

ena of MFDs during the network-wide traffic loading and unloading phases. Moreover, the

effect of varying hourly traffic demand patterns and the change of boundary capacity due to

the control policies have recently been examined as additional factors of shape changes

[18,19].

Several subsequent studies focus on the application of perimeter control on the traffic net-

works by recognizing the significant relationship of MFDs. In the early years, gating control

emerges as a simple type of perimeter control. It aims to regulate the regional inflow properly

towards a small unit of traffic network, so-called protected network (PN), to prevent the cen-

tral business district (CBD) from being oversaturated [7–9,32]. However, gating control has a

limitation that it does not consider the control effect on the adjacent outer network. As there is

a growing interest in developing a multi-regional boundary control, recent studies focus on

the transfer flow control between the boundaries of the multiple networks by regulating both

inflows and outflows [12–15,33,34]. Perimeter control is a generic concept that includes both

gating control and multi-regional transfer flow control.

In order to optimize the control action, feedback control and MPC are typically used in

most of the literature. Feedback control determines the optimal level of boundary capacities

based on MFDs according to the current state accommodating the vehicle accumulation to the

critical density that maximizes the network outflow. Several methods, such as a proportional-

integer (PI) [7,35,36], linear-quadratic-integer (LQI) [33], or linear-parameter-varying (LPV)

[9] are used for feedback control. On the other hand, MPC based control focuses more on the

multi-stage optimization itself by formulating the objective functions in terms of the perfor-

mance measures such as maximization of outflow [27], minimization of total time spent [14],

total delay [15], or total travel time [37].

Although these model-based approaches have been effectively applied to some relatively

small-sized areas, it is found that the spatial range for perimeter control expands in recent

PLOS ONE Design of Reinforcement Learning for Perimeter Control

PLOS ONE | https://doi.org/10.1371/journal.pone.0236655 July 30, 2020 3 / 16

https://doi.org/10.1371/journal.pone.0236655


studies. One can notice that the early studies focus on single gating controls as in [7–9] or a

small number of networks as in [10,11], whereas recent studies expand their spatial range to

multiple boundary control problems as in [12–16], using mostly feedback control as the com-

putation cost is cheaper than that of MPC. However, it requires to develop a scalable and effec-

tive model for a large-scale urban area, since feedback control may not provide a multi-stage

optimal solution for the multiple agents.

Construction of perimeter control models

In this section, four models using different designs are proposed for perimeter control. The

scope for the model design includes the selection of variables and the method of parametriza-

tions. The first one is a baseline model that defines its state variable with only density-related

factors, similar to the prevalent methods found in the literature on the RL-based traffic signal

control of individual traffic lights [28,29,38,39]. The other three models contain the travel

demand information as the explanatory variables.

1. Construction of the baseline model

The design of the baseline model follows the prevalent methods found in the literature on the

RL-based traffic signal control of individual traffic lights. First, the state variable is defined

with a pair of vehicle accumulations of the adjacent networks, which is a representative macro-

scale density-related factor. Next, the action is defined by the green split ratio as in (1),

a tð Þ ¼
gtðtÞ
c

ð1Þ

where c is the cycle time and gt(t) is the green signal time for the direction of the transfer flow.

This means that we consider ‘green time ratio’ with the fixed cycle time as the control variable

in this study. Then, the chosen action value determines the boundary capacity for the transfer

flow as in (2),

Ci!jðtÞ ¼
X

h2H

f hs i!j � aðtÞ � lh ð2Þ

where Ci−j(t) represents the boundary capacity between network i and network j at time t,
f hs i! j is the saturation flow rate,H is the set of links that connect the network i and j, and lh
is the number of lanes of the link h2H. The details can be found in [18].

The reward is defined by a linear combination of the network throughput and the total

delay time which measures the local- and system-level of performances, respectively. Then, the

reward value is rescaled to [−1,+1], as in [40]. Moreover, the termination is also used as an

identifier of the oversaturation to prevent the target networks from being in a gridlock or spill-

back. If one of the networks falls into a gridlock during the training, then the corresponding

episode is ended by this termination giving the penalty of −1 to the reward. Fig 1 shows the

training framework for RL-based perimeter control using the macroscopic traffic simulation.

2. Parametrization of demand information as explanatory variables

Since there has been no relevant reference of the effective designs for perimeter control model

in the literature, we propose three different designs by considering the information of the

travel demand pattern as the explanatory variables. These models append the parameters for

the travel demand information to the state of the baseline model which only contains the den-

sity-related factors. According to the type of variables and the method of parametrizations, the

proposed models are classified by referring as PD-, FD-, and MD-models. PD-model contains

PLOS ONE Design of Reinforcement Learning for Perimeter Control

PLOS ONE | https://doi.org/10.1371/journal.pone.0236655 July 30, 2020 4 / 16

https://doi.org/10.1371/journal.pone.0236655


the partial information of the transfer flow between two adjacent networks, while FD- and

MD-model contain the full demand information in their state. In addition, MD-model modi-

fies the parametrization method of the FD-model in order to exclude a newly generated quan-

tity of traffic demands.

Model 1: PD-model. The first model appends the partial information of the transfer flow

to the state variable of the baseline model. The underlying hypothesis is that the transferring

demand between the two networks represents the travel demand pattern of the whole network.

Therefore, the state variable is defined by a four-dimensional vector as in Eq (3),

sðtÞ ¼ ½niðtÞ; njðtÞ; fi;jðtÞ; gjðtÞ� ð3Þ

where ni(t), nj(t) are the vehicle accumulations, fi,j(t) is the transfer demand of the source net-

work, and gj(t) is the supplying ability of the sink network. Let this model be referred as a PD-

model, which stands for a Partial Demand model.

Model 2: FD-model. Let the second model be an FD-model, which stands for a Fully-sup-

ported Demand information model. This model contains every directional travel demand of

in/out flow of two adjacent networks as in (4),

sðtÞ ¼ ½niðtÞ; fd
N i
i;inðtÞg; fd

N i
i;outðtÞg; njðtÞ; fd

N i
j;inðtÞg; fd

N i
j;outðtÞg� ð4Þ

where fdN i
�;inðtÞg; fd

N i
�;outðtÞg represent a set of the directional travel demand for the in/out-flow

of the given network toward N i, and N i is a set of neighboring networks of i containing i itself.

Note that dii;in=outðtÞmeans the local in/out-flow of the network i. The underlying hypothesis is

that the partial information of demand patterns does not represent the demand pattern of the

whole network, which is contrary to that of the PD-model.

Model 3: MD-model. Let the third model be a MD-model, which stands for a Modified

FD-model. This model uses the same structure with the FD-model, however this model modi-

fies the demand value at the next time step dN i
��
ðt þ 1Þ to consider the net-quantity excluding a

Fig 1. Training framework of the RL-based perimeter control model. (Drawn by authors).

https://doi.org/10.1371/journal.pone.0236655.g001
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newly produced travel demand. The underlying hypothesis is that the travel demand factors in

the state variable should not contain any exogenous disturbances, such as a newly generated

in/out-flow at the next time step. Thus, the re-formulation is used as in (5),

~dN i
��
ðt þ 1Þ≔dN i

��
ðtÞ � TðdN i

��
ðtÞÞ ð5Þ

where Tðddir
��
ðtÞÞ represents the quantity of the transfer flow determined by the chosen action

value using the network transmission model [18]. Then, with this notation, the state variable

of MD-model is expressed as in (6).

~sðt þ 1Þ ¼ ½niðtÞ; f~d
N i
i;inðtÞg; f~d

N i
i;outðtÞg; njðtÞ; f~d

N i
j;inðtÞg; f~d

N i
j;outðtÞg� ð6Þ

In this case, the reformulated state variable in (6) may result in ~sð�Þ 6¼ sð�Þ, since the actual

explored state has the newly generated in/out-flows at the next time step. Thus, in the training

of MD-model, we assign the discount factor γ to 0 in order to avoid misestimating the Q-value

of the next time step, Q(st+1, at+1). Note that the estimation of the Q-function in the online

learning method uses the bootstrapping as in (7),

Qðst; atÞ ¼ ð1 � aÞQðst; atÞ þ afrtþ1 þ gQðstþ1; atþ1Þg ð7Þ

so that an accurately-estimated Q(st+1, �) is necessary to estimate Q(st, �). In this case, assigning

γ = 0 enables the model to be free from misestimating Q-value for the unexplored experiences.

Validation of perimeter control models

The goal of this section is to validate the proposed models by evaluating with the test scenarios

at different levels. First, the details of the experiments for the macroscopic traffic simulation,

the comparison control methods, and the performance measures are described. Next, the

training results for the proposed models are given and finally, the validation results of the pro-

posed models on the different test demand scenarios are shown.

1. Experimental setup

Setup for macroscopic traffic simulation. To simulate the macroscopic behavior of the

transfer flow, we use the agent-based network transmission model (ANTM) developed by

[18]. This model can describe the aggregated traffic flow dynamics of the large-scale urban

area using the concept of MFDs to represent the network properties. Besides, ANTM enables

to apply various perimeter control methods as it considers the effects of travel demand patterns

and boundary capacities on the shape changes of MFDs [19], which are directly induced by the

perimeter control actions. Moreover, the associated RL model can obtain the speed-up simula-

tion data as the adoption of the cell transmission model (CTM) [41] in the network modeling

simplifies the computational complexity.

Next, we set up the geometry and travel demand scenario for the macroscopic traffic simu-

lation. In this study, the area of Gangnam district in Seoul, South Korea is chosen as the target

region, because this area has the road network in an almost grid structure as shown in Fig 2.

The networks numbered 5 and 8 are the areas of interest and the rests are exogenous boundary

networks. However, we restrict the scope of perimeter control to a single agent problem in

order to focus on the validation of model behaviors. Therefore, we do not consider the effect

of coordination of multi-agents or the route choice, or the geometric inhomogeneity. The tar-

get perimeter controllers are located along the border between the network 5 and 8, which reg-

ulate the one-directional transfer flow from the network 5 to 8 (hereinafter referred to as

“5!8”). The other controllers are assumed to be fixed (non-controllable). This control method
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can be considered as the one-sided gating problem. Next, the model is trained with one train-

ing demand scenario, which is defined to have a strongly biased directional pattern of 5!8

with constant flow rate. The parameters for the geometry and the training demand scenario

are shown in Table 1. The total time length for the training demand scenario is 3 hours and

the traffic volume of 120,000veh is distributed with a certain pattern defined in Table 1.

Test demand scenarios. In the validation, the performances of the proposed models are

evaluated with three test demand scenarios at different levels to investigate how the model

adapts to a new demand scenario as in [42,43]. These test scenarios are set to have different

patterns of traveling demand from that of the training scenario to generate a “never-before-

seen” traffic state. We classify each traveling pattern with two standards: the direction of the

major traveling pattern and the traffic loading phase, since the travel demand scenario is

defined by the two factors, the O-D pairs and their generation rate (or arrival rate).

Fig 2. The target area (Gangnam district, Seoul, South Korea). (Drawn by authors using QGIS program, data source: public data portal of South Korea, the

data are free source for everyone, the authors did not have any special privileges that others would have in obtaining the data, Data source: https://www.data.

go.kr/data/15025526/fileData.do).

https://doi.org/10.1371/journal.pone.0236655.g002

Table 1. Hyper-parameters for the macroscopic traffic simulation. (Written by authors).

Geometric Parameters Demand Scenario Parameters

Parameters Value Unit Parameters Value Unit

Ci Capacity 28,800 veh Total simulation time 180 min

c Cycle length 120 sec Time step 2 min

nl # lanes 12 Total demand 120,000 veh

vf Free speed 7.2 hr−1 Distribution uniform

π Wave speed 2.88 hr−1 Major demand pattern 5! 8

ncrit Critical density [4,000, 7,000] veh % of major demand pattern Source 20% Net 5

njam Jam density 17,000 veh Sink 80% Net 8

qjam Jam flow 720 veh/hr % of local in/outflow rates Inflow 60%

ni(0) Initial density 1,000 veh Outflow 1%

https://doi.org/10.1371/journal.pone.0236655.t001
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The major traveling pattern (5!8) of the first test scenario is designed to have the same

direction with that of the training scenario. However, the first test scenario has non-constant

traffic loading/unloading phases that makes the agent explore similar traffic states to those

explored in the training session. On the other hand, the second and third test scenarios reverse

the direction of the major traveling pattern so that the majority of demand travels 8!5. The

desirable action may induce the blockage of the transferring demand of 5!8 when network 8 is

congested since the scope of perimeter control is restricted only to the single agent gating prob-

lem, which increases the vehicle accumulation in network 5. Therefore, we track the action val-

ues in the scenarios, which have a reversed direction of traveling pattern. In addition, one

should note that the model may not handle such a large amount of traffic volume in these cases

since the defined single agent model only regulates the transferring flow of 5!8. Accordingly,

the total traffic volume is lowered. Fig 3 shows the traffic volumes of the test demand scenarios.

Comparison control methods and performance measures. The model performance is

compared with that of fixed control and the greedy control. Fixed control is the simplest one

that fixes the action with the mean value of the action space A. Greedy control is a type of feed-

back control that dynamically sets the action value as its maximum or minimum according to

Fig 3. Traffic volumes of the test demand scenarios. (Drawn by authors).

https://doi.org/10.1371/journal.pone.0236655.g003
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the traffic state. The action selection rule is shown in (8),

ai!jðtÞ ¼
maxA; if njðtÞ � nj;cr
minA; if njðtÞ > nj;cr

ð8Þ

(

where nj,cr represents the critical accumulation (critical density) of the sink network j. Note

that the given rule in (8) is a modified for the single agent problem. Its complete description

can be found in [18]. On the other hand, the action value for the RL control is greedily chosen

from its Q-function as in (9),

aðtÞ ¼ argmax
a0

Qðst; a
0Þ ð9Þ

To evaluate how the given control models manage the traffic demands effectively, we use

local- and system-level performance measures. For the local-level measures, the vehicle accu-

mulation and the outflow rate of the source network are given. One can note that the outflow

rate is proportional to the vehicle accumulation in an uncongested situation, however, this

relationship breaks if the vehicle accumulation exceeds the range of critical density. Moreover,

the total travel time is considered as a system-level measure.

2. Training results

Model description. The proposed four types of perimeter control models are trained

using deep Q-network (DQN). DQN is a widely used training method applied on a discrete

action space. Accordingly, we assume that the action space A has discrete values of green time

ratios as A ¼ f0:2; 0:4; 0:6; 0:8g, which does not contain 0 or 1 to consider the minimum (or

maximum) green time. A deep neural network with parameters θ approximates the Q-func-

tion of the state-action pair (s,a), as Q(s,a;θ).
We employ a trial-and-error method [44] to determine the proper hyper-parameters that

affect the model efficiencies such as the number of hidden layers, the size of the replay buffer,

the learning rate. Fig 4 represents the training performances with respect to the candidate of

each hyper-parameter. To show the training performance, the range of the reward curve is

plotted. The candidate and proper value of each hyper-parameter are shown in Table 2. The

Fig 4. Training performances under different settings of hyper-parameters; (a) number of hidden layers; (b) size of replay buffer; (c) learning rate. (Drawn by authors

using R program).

https://doi.org/10.1371/journal.pone.0236655.g004
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training performance according to the number of hidden layers shows the best result when

h = 3, where h is the number of hidden layers. One can note that the model fails to converge

when h = 5, as it has a lower mean value and its range is widely spread as seen in Fig 4(A). The

candidate for the size of the replay buffer is determined by the group of {2n} due to the mem-

ory. Similarly, the proper value for the size of the replay buffer is chosen as B = 32, where B is

the size of the replay buffer, as the mean value for the range of rewards is larger than the others

as shown in Fig 4(B). In the same manner, the proper value for the learning rate α is chosen as

α = 0.001 as seen in Fig 4(C).

A target network Q(s,a;θ−) is also used, and this network is updated only at the end of each

episode. The loss function is defined together with this target network as in (10)

LðtÞ ¼ rðtÞ þ g max
a0
Qðstþ1; a0; y

�
Þ � Qðst; a; yÞ

� �2
ð10Þ

The initial � value, which is the probability of the exploration, is set as 1.0 to take random

actions entirely, and it gradually decays to 0.01 as the time elapses. The discount factor γ in (2)

is fixed to 1.0 as the length of each episode is finitely same.

Training results for the proposed models. To determine the completion of the training,

we observe the reward curve of each model. Fig 5 shows the episode accumulated rewards. If

the curve converges after some episodes, the corresponding model is considered to be valid.

The stopping criteria are set (by heuristic) when the rate of changes of the rewards remains

within a certain range for 80 successive episodes before reaching the end of the training. Fig 5

(A) shows the training result of the baseline model, while Fig 5(B)~5(D) show the results for

PD-, FD- and MD-models, respectively. Within the same stopping criteria, the baseline model

completes the training after 492 episodes and MD-model ends after 362 episodes. On the other

hand, PD- and FD-models fail to converge. Note that the reward curve for FD-model has

Table 2. Hyper-parameter settings for the RL model. (Written by authors).

Parameters Candidate Chosen value

Number of hidden layers {2, 3, 4, 5} 3

Size of replay buffer {8, 16, 32, 64} 32

Learning rate {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.001

https://doi.org/10.1371/journal.pone.0236655.t002

Fig 5. Training results; (a) Baseline model; (b) PD-model; (c) FD-model; (d) MD-model. (Drawn by authors using R program).

https://doi.org/10.1371/journal.pone.0236655.g005
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several protrusions in which the stopping criteria is not satisfied. Thus, we can conclude that

only the baseline model and MD-model are valid within the given training demand scenario.

3. Validation results

Test scenario 1. The validation results for the first test scenario are shown in Fig 6. The

first two graphs show the vehicle accumulation and the outflow rate of network 6, respectively,

which are local-level performances. On the other hand, the last graph shows the total travel

time of the whole networks, which is a system-level performance. Every control method except

fixed control maximizes the outflow rate of the transferring demand 5!8 as shown in Fig 6(B)

since the target controllers only regulate one-directional transfer flow 5!8 and the majority of

demands heads 5!8. Accordingly, network 5 maintains a low vehicle accumulation except for

the case of fixed control. The sudden drop of outflow rate for fixed control in Fig 6(B) results

from the oversaturation of network 5, which induces a gap in the vehicle accumulation during

the unloading phase compared to the other control methods as seen in Fig 6(A). The failure of

fixed control also leads to the increased total travel time since it makes network 5 fall into the

gridlock. On the other hand, the baseline model, MD-model, and greedy control effectively

reduce the total travel time as in Fig 6(C).

Test scenario 2, 3. The validation results for the second and third test scenarios are

shown in Fig 7. In both test scenarios, the action value for greedy control initially takes the

maximum at the early stage. However, the value suddenly drops to the minimum after network

8 reaching its critical level of vehicle accumulation as depicted in Fig 7(A) and 7(D). This

implies that greedy control dynamically changes the policy to prevent the oversaturation of the

sink network (network 8). On the other hand, the action for fixed control and the baseline

model take the constant value throughout the entire time step. This implies that the baseline

model cannot adapt to the new demand scenarios.

Meanwhile, MD-model most proactively blocks the travel demand 5!8 in both test scenar-

ios by taking the minimum action value earlier than greedy control as shown in Fig 7(A) and 7

(D). However, MD-model fails to adapt to the traffic states explored in the later stage of the

second test scenario as there are fluctuations in the action values as seen in Fig 7(A). This can

infer that MD-model cannot adapts to new situations much different from the training

Fig 6. Model validation results of first test scenario; (a) Vehicle accumulation of network 5; (b) Outflow rate of network 5; (c) Cumulative total travel times (VHT).

(Drawn by authors using R program).

https://doi.org/10.1371/journal.pone.0236655.g006
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demand scenario. However, it adapts to the third test scenario effectively since it proactively

blocks the travel demand 5!8 during the traffic loading phase and gradually releases during

the unloading phase to mitigate the congestion in network 5 as seen in Fig 7(D).

Moreover, the vehicle accumulation of network 5 grows faster in the case of MD-model

than others as observed in Fig 7(B) and 7(E), because the travel demand of 5!8 are blocked.

However, the differences in total travel time are not remarkable as in Fig 7(C) and 7(F) since

the traffic volumes are lowered. As a result, MD-model adapts relatively well to new situations

induced by the test scenarios. The explanatory variables in the design of MD-model make the

model more effective than the baseline model.

Fig 7. Model validation results of second and third test scenarios; (a) Action values for second test scenario; (b) Vehicle accumulation of network 5 for second test

scenario; (c) Cumulative total travel times (VHT) for second test scenario; (d) Action values for third test scenario; (e) Vehicle accumulation of network 5 for third test

scenario; (f) Cumulative total travel times (VHT) for third test scenario. (Drawn by authors using R program).

https://doi.org/10.1371/journal.pone.0236655.g007
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Conclusion

Perimeter control is an emerging alternative for traffic signal control, which regulates the net-

work-wide traffic demands based on the novel concept of MFDs. Although many researches

have been conducted to optimize perimeter control using model-based approaches such as

feedback control or MPC, there has been a growing interest in developing an effective model

for a large-scale urban area. However, there are several limitations when considering their

application to a large-scale urban area because the model-based approaches may not be scal-

able to multiple regions and inappropriate for handling various effects caused by the shape

changes of MFDs. Therefore, we propose a model-free and data-driven approach that com-

bines reinforcement learning (RL) with the macroscopic traffic simulation based on the

recently developed network transmission model. This research is the first to introduce RL

approach for perimeter control. We experimentally investigate the effective designs of RL

model under a well-controlled environment.

We propose four perimeter control models using different designs. The first one is the base-

line model and it only contains density-related factors. We additionally append the parameters

for the travel demand information to the state as the explanatory variables to construct the

other three models referred to PD-, FD-, and MD-models. These models have different macro-

scopic traffic variables and parametrizations. The results of the training with a fixed travel

demand scenario in the macroscopic traffic simulation show that only the baseline model and

MD-model are valid. Next, the proposed models are validated with the test demand scenarios

at different levels to investigate their ability to adapt to a new situation. Experimental results

show that MD-model adapts relatively well to a new situation even if there are some deviations

from the effective range of the model in the second test scenario. The baseline model fails to

adapt to the test scenarios having reversed travel demand patterns, while MD-model proac-

tively adapts to these scenarios than any other control method. Thus, we can conclude that the

parametrization of the travel demand information makes the model more adaptive to a new

situation.

However, there are still two remaining issues for constructing a more effective perimeter

control based on RL. First, MD-model may not perform as a competent multi-stage optimizer

due to the assignment of γ = 0 in (5) and (6). In this case, the well-trained policy from the sim-

ulated experiences does not consider the expected future rewards and it only uses the current

single-shot Q-value. Thus, a new design of traffic simulation and training demand scenario

should be considered. Second, a reduced expression for the travel demand patterns should be

studied. When the model contains the full demand information of every direction, the dimen-

sion of the state space becomes high. Then, the model may require an extreme number of

training demand scenarios to explore every dimension of its state space. Hence, there is a need

to acquire principal factors for travel demand patterns to reduce the dimension of the search-

ing space.
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