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Article

DGCR8 is essential for tumor progression following
PTEN loss in the prostate
Cassandra D Belair1,2,3,*, Alireza Paikari1,2, Felix Moltzahn1,3, Archana Shenoy1,3, Christina Yau4,5,

Marc Dall’Era3, Jeff Simko3,6, Christopher Benz4,5 & Robert Blelloch1,2,3,6

Abstract

In human prostate cancer, the microRNA biogenesis machinery
increases with prostate cancer progression. Here, we show that
deletion of the Dgcr8 gene, a critical component of this complex,
inhibits tumor progression in a Pten-knockout mouse model of
prostate cancer. Early stages of tumor development were unaf-
fected, but progression to advanced prostatic intraepithelial
neoplasia was severely inhibited. Dgcr8 loss blocked Pten null-
induced expansion of the basal-like, but not luminal, cellular
compartment. Furthermore, while late-stage Pten knockout
tumors exhibit decreased senescence-associated beta-galactosi-
dase activity and increased proliferation, the simultaneous
deletion of Dgcr8 blocked these changes resulting in levels similar
to wild type. Sequencing of small RNAs in isolated epithelial cells
uncovered numerous miRNA changes associated with PTEN loss.
Consistent with a Pten–Dgcr8 association, analysis of a large cohort
of human prostate tumors shows a strong correlation between Akt
activation and increased Dgcr8 mRNA levels. Together, these
findings uncover a critical role for microRNAs in enhancing prolif-
eration and enabling the expansion of the basal cell compartment
associated with tumor progression following Pten loss.
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Introduction

Canonical microRNAs (miRNAs) are transcribed as long RNAs

called primary miRNAs (pri-miRNA) that undergo two critical

processing steps. First, in the nucleus, the pri-miRNA is processed

to a precursor-miRNA (pre-miRNA) by the Microprocessor complex

consisting of two proteins, DGCR8 and DROSHA. Next, in the

cytoplasm, the pre-miRNA is processed to the mature microRNA

duplex by DICER. The levels of the processing machinery are tightly

regulated by homeostatic feedback mechanisms in normal tissues

[1–4]. However, in cancers, these levels can be dramatically altered

(reviewed in [5]). In lung and ovarian cancers, the down-regulation

of the biogenesis machinery correlates with poor prognosis, suggest-

ing that miRNAs are suppressing progression of these tumors [6–9].

Indeed, knockdown of the biogenesis machinery can enhance

tumorigenicity in an in vivo model of lung cancer [9–11]. In contrast,

in esophageal and prostate cancer increases in the biogenesis

machinery correlate with tumor progression, suggesting a positive

effect of enhanced miRNA biogenesis in this tumor type [12–17].

Profiling experiments have shown that miRNAs are mis-regulated

in prostate cancer [16,18–23]. However, overlap between data sets

has been poor, likely due to the cellular heterogeneity of this tumor

type, differences in sample acquisition, and differences in profiling

platforms [24,25]. Functional studies for miRNAs in prostate cancer

have been mostly performed in cell lines [26,27]. Two studies have

tested the roles of miRNA clusters on the prostate in vivo. Specifi-

cally, inhibition of the miR-15/16 cluster or overexpression of the

miR-106/25 cluster promotes cell proliferation in an otherwise

normal prostate [28,29].

The prostate-specific Pten (phosphatase and tensin homolog

deleted on chromosome 10) knockout mouse model (PtenD/D)

shows a stereotypical pattern of tumor progression [30–32]. This is

characterized by early hyperplasia, followed by dysplasia and archi-

tectural disorganization of prostate tubules, and rare microinvasion

into surrounding tissue. The model is highly relevant to human

prostate cancer as 30% of localized disease and 60% of metastatic

disease are associated with Pten loss [33]. Pten loss results in

enhanced senescence in early anterior prostate lesions [34].

Suppression of senescence by combining Pten loss with P53 or P27

loss accelerates prostate tumor progression [34,35].

Considering that the miRNA biogenesis machinery is increased

with prostate cancer progression in humans, we wanted to test

the global role of miRNAs in the PtenD/D model. Ptenloxp/loxp [31]

and Dgcr8loxp/loxp [36,37] conditional mice were combined with a
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prostate-specific cre (Probasin-Cre) [38]. Analysis of resulting mice

showed that deletion of Dgcr8 did not influence early epithelial

hyperplasia, but severely disrupted further progression to dysplasia.

Associated with this inhibition of progression was a block in the

expansion of cells expressing basal cell markers and a failure to

suppress senescence. Therefore, miRNA biogenesis plays essential

roles in progression following Pten loss. Profiling of the mouse

epithelium uncovered numerous miRNAs whose expression was

altered with Pten loss. The Dgcr8 knockout model should provide a

powerful means to dissect the role of these and other miRNAs along

with their downstream targets. Relevance of this model to human

tumors is supported by a statistically significant correlation between

AKT activation downstream of PTEN and increased levels of DGCR8

across a large cohort of prostate cancer samples.

Results

Dgcr8 loss reduces Pten-knockout tumor formation

To test the role of DGCR8 and hence canonical miRNAs in prostate

cancer progression, we turned to the Pten and Dgcr8 conditional

knockout mouse models. Specifically, probasin-cre [38] (Pb-Cre),

which is expressed throughout the prostate epithelium beginning

1 week following birth, was crossed to Ptenloxp/loxp [31] and

Dgcr8loxp/loxp [36,37] conditional knockout alleles, referred from here

on as PtenD/D and Dgcr8D/D, respectively. Immunostaining confirmed

loss of nuclear DGCR8 protein in the epithelium of Dgcr8D/D and

PtenD/D Dgcr8D/D prostates at both 12 and 32 weeks of age using two

independent antibodies and methods (Fig 1A). To confirm down-

regulation of miRNAs associated with Dgcr8 loss, RNA was isolated

from prostates of PtenD/D and PtenD/D Dgcr8D/D mice. Dgcr8 mRNA

levels were significantly down in the PtenD/D Dgcr8D/D relative to

PtenD/D (Fig 1B). To test miRNA levels, a multiplex qRT–PCR reac-

tion was performed for 80 miRNAs. Fifty-five of these miRNAs were

expressed in at least two of the three PtenD/D samples. Of the 55

miRNAs, 41 were consistently down in the knockouts (Fig 1C). The

remaining 14 likely reflect miRNAs highly expressed among the non-

epithelial cell contaminants; for example, miR-22 is expressed in

fibroblasts [39,40]. These data are consistent with an expected loss

of miRNA biogenesis following Pb-cre-driven deletion of Dgcr8 in the

prostatic epithelium. Furthermore, phosphorylated-AKT (pAKT) was

upregulated in both PtenD/D and PtenD/D Dgcr8D/D prostates relative to

their Ptenwild-type counterparts showing that Dgcr8 loss did not alter

the effect of Pten deletion on the AKT pathway (Figs 1D and EV1).

Next, we asked whether Dgcr8 loss altered tumor development in

the Pten null prostate epithelium. We collected prostates from mice

aged from 10 to 52 weeks, which were separated into two cohorts—

a young cohort (10–14 weeks of age) and an old cohort

(32–44 weeks of age). In the young cohort, sixteen of the seventeen

PtenD/D mice had developed visible prostate tumors, while only four

of the fourteen PtenD/D Dgcr8D/D had done so (Fig 2A and B). Mice

were allowed to age to discern whether there was a delay versus a

block in tumorigenesis in the absence of Dgcr8. In the older cohort,

all PtenD/D mice had large tumors, while eight of twelve PtenD/D

Dgcr8D/D mice had developed discernable tumors, a statistically

significant decrease (Fig 2A and C). Of note, the PtenD/D Dgcr8D/D

mice tended to be slightly older than the PtenD/D mice in the old

cohort, but still had fewer tumors (Fig EV2A). Furthermore, the

PtenD/D Dgcr8D/D tumors, when present, were generally smaller

(Fig 2A). Dgcr8 loss alone produced normal appearing prostates at

all ages examined (Figs 2 and EV2A). Together, these data show

that Dgcr8 is not essential for postnatal growth of the prostate, but

does suppress tumor development following Pten loss.

Dgcr8 loss inhibits histological progression

Loss of Pten results in a stereotypical histological progression over

time, initially showing hyperplasia but then progressing to severe

dysplasia consistent with high-grade PIN (prostatic intraepithelial

neoplasia) [30–32]. To test the effect of Dgcr8 loss on histological

progression, prostates from the different genetic backgrounds were

sectioned, stained with hematoxylin and eosin, and evaluated by

two independent pathologists blinded to genotype [41]. Tissues

were scored based on structural and cellular changes in the glandu-

lar and stromal compartments and parsed into three groups: normal,

benign hyperplasia, and advanced dysplasia (Fig 3A). Hyperplasia

was defined as tubules showing epithelial cell expansion often

bridging across the lumen, whereby cells appeared relatively normal

with little increase in mitoses or necrosis (Fig 3A, middle panels).

Dysplasia was defined as expansion of abnormal appearing cells

with common mitoses, solid sheets of tumor cell growth, nuclear

atypia, and necrosis, all consistent with a higher-grade tumor

(Fig 3A, right panels).

▸Figure 1. Pb-cre-driven deletion of Dgcr8 and Pten.

A Staining for DGCR8 protein in prostates. Upper images: immunohistochemical staining using the Aviva Systems Biology antibody (scale bar, 100 lm). Wild-type and
PtenD/D prostates have DGCR8-positive nuclei in both the basal and luminal cells as well as surrounding stromal cells. Dgcr8D/D and PtenD/D Dgcr8D/D prostates show
diminished DGCR8 nuclear staining in both basal and luminal cells, but not stromal cells. Cytoplasmic signal is non-specific. Representative images of at least two
mice of each genotype from the old cohort were analyzed. Lower images: immunofluorescent staining for DGCR8 expression using the Proteintech Group antibody
(scale bar, 100 lm). DAPI and DGCR8 channels from the same field of view are shown. DAPI staining shows the position of nuclei. The inset shows representative cells
3× zoomed. Arrows indicate cells with positive nuclear stain, and arrowheads indicate cells lacking nuclear stain. Representative images of at least two mice of each
genotype from the young cohort were analyzed.

B Relative levels of Dgcr8 transcript in PtenD/D Dgcr8D/D versus PtenD/D alone. qRT–PCR for Dgcr8 exon 3 expression was performed on RNA prepared from frozen
sections of 3 mice of each genotype.

C Relative expression levels of 55 miRNAs in PtenD/D Dgcr8D/D versus PtenD/D alone. Multiplex qRT–PCR data for three individuals of each genotype as in (B). Ct values
were normalized to Sno202 levels. Error bars represent standard deviation.

D Representative confocal images of pAKT staining. Immunofluorescent staining of pAKT expression reveals strong expression in PtenD/D and PtenD/D Dgcr8D/D prostates
compared to wild type and Dgcr8D/D. AKT phosphorylation is directly downstream of PTEN and is activated upon PTEN loss. Shown are representative images taken
from at least two mice per genotype in the old cohort using the Olympus confocal microscope as described in Materials and Methods (scale bar, 100 lm). See
Fig EV1 for representative low-magnification images from young and old cohorts.
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In the young cohort, eight of nine PtenD/D prostates examined and

five of eight PtenD/D Dgcr8D/D showed diffuse hyperplasia (Fig 3B).

None of these prostates had evidence of dysplasia. In the old cohort,

eight out of eleven PtenD/D mice showed severe dysplasia consistent

with high-grade PIN (Fig 3C). Furthermore, a single PtenD/D mouse

showed areas suspicious for invasion, although frank invasive carci-

noma was never observed (Appendix Fig S1). In contrast, only one

of twelve PtenD/D Dgcr8D/D prostates showed evidence of dysplasia.

Instead, ten of twelve showed hyperplasia and one of the twelve

showed normal histology. The single dysplastic and single normal

PtenD/D Dgcr8D/D prostate were each from mice aged 44 weeks

(Fig EV2B). Double knockout mice aged 1 year still failed to progress

to dysplasia (Appendix Fig S2, Fig EV2), suggesting that progression

was blocked rather than simply delayed. Importantly, Dgcr8 loss

alone had no discernable histological phenotype. Therefore, these

findings show that while Dgcr8 is not required for stability of

the normal adult prostatic epithelium or for the development of

hyperplasia in PtenD/D, it is important for cytologic progression from

hyperplasia to dysplasia in the context of Pten loss.

Basal cell expansion associated with Pten loss is reversed by
concomitant loss of Dgcr8

Similar to the human prostate, the normal murine prostate epithe-

lium consists of a basal and a luminal cell layer with rare neuroen-

docrine cells. The basal cells are in direct contact with the basal

lamina forming a discontinuous layer around the periphery of the

gland and express the cytokeratin CK5. The luminal cells are larger

with distinct apical polarity, form a continuous layer of cells over-

lying the basal cells, and express the cytokeratin CK8. This architec-

tural organization is lost in PtenD/D prostates [32]. In particular, the

luminal cells become multilayered and the CK5-positive basal cells

expand out of their normal peripheral niche into the more luminal

regions.

A

B C

Figure 2. Loss of Dgcr8 reduces tumor incidence in PtenD/D model of prostate cancer.

A Representative images of prostates from each genotype. Upper panels: young cohort; lower panels: old cohort. Note large bilateral tumors in old PtenD/D prostates
and smaller bilateral tumors in the young PtenD/D animals. Other genotypes show examples of normal appearing prostates (scale bar, 100 lm). See Fig EV2A for
breakdown of individual mice by age and genotype.

B, C Quantification of tumor incidence (green) represented as percentage of total in the young (B) and old (C) cohorts. The number of mice with each phenotype is
shown within bars. Statistical differences were calculated by the Fisher’s exact test. n.s. P > 0.05, *P < 0.05, **P < 0.005, ***P < 0.0005.
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To identify a potential role for miRNAs in this phenotype, we

stained for CK5 and CK8 in the different genetic backgrounds

(Fig 4A, Appendix Fig S3). As previously described, Pten loss

resulted in the migration of basal-like cells from the basal lamina

into the more luminal regions (Figs 4A and EV3). The number of

cells positive for the basal and luminal markers was up in the

PtenD/D relative to wild-type prostates (Fig 4B). Loss of Dgcr8 alone

did not influence the architecture or the number of CK5 and CK8

staining cells within the tubules (Fig 4A and B). However, in the

PtenD/D background the loss of Dgcr8 dramatically altered the

phenotype. Indeed, the CK5-positive basal cell compartment of the

double knockouts looked strikingly similar to that of the wild-type

and Dgcr8 alone knockouts (Figs 4A and EV3F). In contrast, the

expansion in the number of CK8-positive luminal cells was similar

between PtenD/D and PtenD/D Dgcr8D/D prostates (Fig 4B). Therefore,

while Dgcr8 loss alone does not alter the size or architecture of basal

and luminal cell compartments, it does block the expansion and

mis-localization of the CK5-positive cells normally seen in the Pten

null background.

DGCR8 is essential for promoting proliferation and inhibiting
senescence in late-stage tumors

PTEN loss has been reported to promote senescence in the anterior

prostate, which then diminishes with tumor progression [34,42]. To

evaluate the effect of miRNA loss on this phenotype, we stained for
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Figure 3. Loss of Dgcr8 inhibits histological progression to dysplasia in the PtenD/D background.

A Categorization of histological phenotypes. Shown are representative images of different histological phenotypes at low and high magnification (scale bar, 100 lm).
All sections were stained with hematoxylin/eosin. See text for description of histological features used to define normal, hyperplasia, and dysplasia categories.

B, C Characterization and quantification of histology on representative young mice from Fig 2B and old mice in Fig 2C. All slides were evaluated and scored by two
pathologists blinded to genetic background. Statistical differences were calculated by a modified Freeman-Halton extension of the Fisher’s exact test. n.s. P > 0.05,
*P < 0.05, **P < 0.005, ***P < 0.0005. See Fig EV2B for breakdown of individual mice by age and genotype.

ª 2015 The Authors EMBO reports Vol 16 | No 9 | 2015

Cassandra D Belair et al microRNAs and prostate cancer progression EMBO reports

1223



the senescence marker beta-galactosidase (SA-b-gal) in sections of

the dorsal and lateral prostate lobes (Fig 5A). In the young cohort,

SA-b-gal staining was consistently detected in all genotypes. This is

in contrast to the previous reports that described minimal activity in

wild-type prostates. This difference may reflect regional differences

in the degree of senescence. However, similar to the previous

reports, there was a reduction in SA-b-gal in the PtenD/D prostates as

the mice aged (Fig 5B). Furthermore, the older PtenD/D mice showed

significantly lower numbers of SA-b-gal cells relative to their wild-

type, Dgcr8D/D, and PtenD/D Dgcr8D/D counterparts (20 versus typi-

cally greater than 40 percent of the cells). Consistent with SA-b-gal,
the number of cells staining for the proliferation marker Ki67 was

greatly reduced in the wild-type, Dgcr8 knockout, and the Pten:

Dgcr8 double knockout mice relative to Pten knockout alone

(Figs 5C and EV4). In particular, PtenD/D mice showed a large

number of proliferative cells in the luminal region, which were

rarely seen in the other genetic backgrounds. The percentage of

Ki67-positive nuclei was quantified in samples from the old cohort

showing a significant difference between PtenD/D and PtenD/D

Dgcr8D/D samples (Fig 5D). Therefore, Dgcr8 is essential for the

decrease in senescence and increase in proliferation seen at late

stages of tumor progression in the Pten-knockout mice. Cleaved

caspase-3 staining showed only very rare apoptotic cells in all geno-

types and thus is unlikely to play a major role (Appendix Fig S4).

Together, these data suggest that DGCR8 is required to enable

progression in the Pten null background.

microRNA changes in Pten null tumors

To identify miRNAs that are altered with Pten loss, we crossed the

R26lox-stop-lox-YFP reporter allele into the wild-type and PtenD/D lines

allowing for isolation of the corresponding prostate epithelial cells

(Fig 6A). The specific isolation of the epithelial cells is critical since

profiling of whole tumor tissue can lead to erroneous interpretations

[43]. RNA libraries were prepared from YFP-positive cells from 3

wild-type and 3 PtenD/D prostates and submitted for Illumina

sequencing. We found 21 microRNAs whose expression was signifi-

cantly different (Fig 6B). Seventeen of these miRNAs were

expressed at substantial levels in at least one of the two groups [i.e.

average of > 100 cpm, all of which showed highly significant

changes in expression (Fig 6C)]. Five of these microRNAs (miR-139,

183, 210, 31, and 93) were upregulated with Pten loss and thus are

strong candidates for playing a positive role in promoting progres-

sion in these prostates.
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Figure 4. Dgcr8 is required for PtenD/D-mediated basal cell expansion.

A Representative confocal images of basal (CK5; green) and luminal (CK8; red) cell populations in indicated genotypes from the old cohort. Nuclei are stained with the
DNA dye ToPro3 (blue) (scale bar, 100 lm).

B Quantification of basal and luminal cell compartments. The extent of basal and luminal expansion was measured by counting the number of cells staining positive
for either CK5 (basal cells) or CK8 (luminal cells) in 63× images taken at the junction of the dorsal–lateral and anterior prostate lobes. Four images from four
individual mice were evaluated per genotype for a total of at least 16 microscopic fields of view per genotype. Mean � standard deviation is shown. The statistical
significance was calculated using Student’s t-test. n.s. P > 0.05, *P < 0.05, **P < 0.005, ***P < 0.0005.
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Figure 5. Increased senescence and decreased proliferation in PtenD/D Dgcr8D/D relative to PtenD/D prostates.

A Senescence: Staining for SA-b-gal (blue). Counter-stained with Nuclear Fast Red. Representative images at 10× magnification are shown.
B Quantification of SA-b-gal-positive cells. Two slides of all old mice shown in Fig 2C were counted. The percentages of SA-b-Gal-positive cells were calculated

as the ratio of b-Gal-positive out of 500 cells total counted per animal. A total of 250 cells were counted on both the right and the left proximal anterior
prostate and adjacent dorsal–lateral prostate in the section. Four mice of each genotype were counted. Mean � SD is shown. Student’s t-test was used to
calculate statistical significance. Wild type, PtenD/D Dgcr8D/D, and Dgcr8D/D were not statistically different from each other. n.s. P > 0.05, *P < 0.05,
**P < 0.005, ***P < 0.0005.

C Representative confocal images of proliferation marker Ki67 green with DAPI-stained nuclei overlay (scale bar, 100 lm).
D Quantification of Ki67 staining. The percentage of Ki67 was calculated by determining the ratio of Ki67-positive to all ToPro3-labeled nuclei in the prostate glands. At

least four images from four individuals of each genotype were counted. Images were taken in approximately the same location in each prostate at the junction of the
dorsal–lateral and anterior prostate lobes. Mean � SD is shown. Student’s t-test was used to calculate statistical significance. Wild type, PtenD/D Dgcr8D/D, and
Dgcr8D/D were not statistically different from each other. n.s. P > 0.05, *P < 0.05, **P < 0.005, ***P < 0.0005.
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Akt activity and Dgcr8 levels are correlated in human
prostate cancers

Previously, it had been shown that the microRNA biogenesis

machinery, including Dgcr8, is increased in human prostate cancers

relative to normal prostate tissue [5,15,16]. To confirm these find-

ings, we performed IHC for DGCR8 on human prostate cancer

samples. Interestingly, staining showed DGCR8 levels in tumor cells

to be similar to levels found in normal basal cells, but increased

relative to normal luminal cells (Fig EV5). To expand on these find-

ings, we asked whether there is a direct correlation between DGCR8

levels and activation of AKT pathway among human prostate

cancers. To infer AKT activity, the PARADIGM algorithm was

applied to RNA profiling data on 334 prostate adenocarcinoma

(PRAD) samples from the Cancer Genome Atlas Program to

determine integrated pathway levels (IPLs) [44,45]. A significant

positive correlation was uncovered between DGCR8 expression and

PARADIGM-inferred AKT2 IPLs whether evaluated as a continuous

measurement (Spearman’s rank correlation (Rho) q = 0.25,

P = 4.77E-6) or binned into distinct activity levels (Kruskal–Wallis

test P = 5.69E05) (Fig 7A and B). Two hundred of these TCGA

PRAD cases had reverse-phase protein array (RPPA) data allowing

for independent measurement of AKT activity based on pAKT

(pT308 and pS473) levels. While DGCR8 expression showed no

correlation with total AKT protein level (q = 0.00, P = 0.99), it had

a significant positive correlation with pAKT (pT308) levels

(q = 0.13, and P = 0.04) as well as a strong trend for correlation

with pAKT (S473) (q = 0.12, P = 0.06), further supporting an

association between AKT activation and DGCR8 (Fig 7C). Together,

these findings support the relevance of the mouse model to human

prostate cancer.

Discussion

Our findings show that Dgcr8 is not required for the post-natal main-

tenance of the mouse prostate. However, when combined with a

Pten knockout model, the loss of Dgcr8 inhibits tumor progression.

This block is associated with inhibition of basal cell compartment

expansion and increased senescence-associated beta-galactosidase

activity. In contrast, early hyperplasia associated with Pten loss is

unaffected by Dgcr8 loss. microRNAs are down in the double knock-

out relative to Pten knockout alone, consistent with DGCR8’s known

requirement in canonical miRNA biogenesis [37,46]. It has been

proposed that Dgcr8 has broad roles in RNA processing beyond

microRNAs, based on HITS-CLIP data showing interaction of Dgcr8

with a large fraction of the coding and non-coding transcriptome

[47]. However, more recent work evaluating not only binding but

also cleavage of targets in vivo shows that cleavage of non-miRNA

targets is rare and of unclear significance [48]. Indeed, Dgcr8 levels

track very closely with overall pri-miRNA levels diminishing risk of

off-target cleavage [4]. Therefore, the defect in tumor progression in

the PtenD/D Dgcr8D/D mice is most easily explained by depletion in

tumor-promoting miRNAs.

Interestingly, a number of microRNA families including the miR-

106/25, the miR-17-92, and miR-23b clusters promote early hyper-

plasia in prostate by targeting Pten itself [28,49]. These findings,

together with those reported here, suggest two important roles for

miRNA control in prostate tumor development (Appendix Fig S5).

In the presence of Pten, miRNAs can promote early hyperplasia by

suppressing Pten post-transcriptionally. If Pten is genetically lost,

this first stage of tumorigenesis occurs in a miRNA-independent

fashion. However, with Pten loss, further tumor progression is initi-

ally delayed by the induction of senescence, a protective adaptation

to otherwise uncontrolled growth, in older animals [34]. Eventually,

senescence is overcome and tumor progression occurs in a miRNA-

dependent fashion. A role for miRNAs and the miRNA biogenesis

machinery in both enhancing and overcoming senescence has been

described in other settings [50–52]. The miRNAs responsible for

overcoming the senescence block in the current model remain to be

determined. However, profiling of the Pten null epithelial cells

uncovered a number of miRNAs that were upregulated following

PTEN loss including miR-139, 183, 210, 31, and 93. Future

studies functionally testing each of these miRNAs in the context of

PTEN loss will be important in the determination of their roles in

progression.

The importance of miRNAs in promoting prostate cancer

progression is supported by the increase in the biogenesis

machinery, at the level of both pri- to pre-miRNA (DGCR8/

DROSHA) and pre- to mature miRNA (DICER) processing [15–17].

Similar increases are seen in esophageal cancer [12,13]. However,

the opposite is seen in other tumors including lung and ovarian

[6–9]. The differences between these tumors may reflect the domi-

nant population of miRNAs found within the tumor cells of origin.

If tumor-suppressive miRNAs predominate (as would be found in a

more differentiated cells), it would be beneficial for the cells to

decrease miRNA biogenesis. In contrast, if tumor-promoting

miRNAs were the major population, then increased miRNA biogene-

sis would provide a selective advantage. Indeed, the major role of

decreased Dicer levels in Ras-induced lung cancer model appears to

be the suppression of let-7 processing, a well-known tumor-suppres-

sive miRNA found in most differentiated tissues [53]. Interestingly,

we find a correlation between AKT activity and DGCR8 levels across

a large cohort of human prostate cancers. Thus, an alternative to

◀ Figure 6. microRNA changes associated with Pten-mediated tumorigenesis.

A Scheme to isolate Pten-deficient epithelial cells from mouse prostate. Prostates were isolated from 12-week-old transgenic mice expressing Probasin-Cre and the
Rosa26lox-stop-lox-YFP reporter allele plus and minus the Ptenflox/flox allele. YFP-positive cells were isolated using fluorescence-activated cell sorting technology. RNA was
isolated and small RNA libraries were submitted for deep sequencing analysis.

B Volcano scatter plot of log2-fold difference between wild type and PtenD/D versus log10 P-values. microRNAs with differences > 2-fold and q-value < 0.05 are
highlighted and labeled. Q-values were determined using Benjamini–Hochberg procedure.

C Scatterplot of log2 counts per million (cpm) expression values of subset of miRNAs with q-values < 0.05 and average counts in at least one group of > 100 cpm. The
black bar represents the mean of the three values for each genotype.

Source data are available online for this figure.
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tumor type is that the decrease or increase in the biogenesis

machinery is associated with the underlying genetic changes. That

is, while increased Ras activity may require decreased miRNA

production for progression, Akt activity may require increased

miRNA biogenesis. Going forward, it will be important to evaluate

such relationships.

Pb-cre-driven Dgcr8 deletion alone did not produce a discern-

able phenotype in terms of histology, basal or luminal cell

number, proliferation or senescence. These findings contrast with

a publication evaluating the effect of Pb-cre-driven deletion of Dicer

[54]. Dicer deletion resulted in apoptosis of luminal cells and

concomitant increase in proliferation of the basal cells, neither of

which were seen in the Dgcr8 knockout prostates. While Dgcr8

and Dicer are both essential for the processing of canonical

miRNAs, Dicer has additional roles [55]. In particular, Dicer is

essential for the processing of endo-siRNAs and non-canonical

miRNAs including mirtrons and shRNAs [56]. Therefore, the differ-

ence in phenotype between Dgcr8 and Dicer loss may be explained

by roles for these other subclasses of small RNAs in the prostate.

The inhibitory effect of Dicer loss on luminal cells was not over-

come by Pten loss in this model again consistent with additional

roles for Dicer [57]. It will be interesting to search for DGCR8-

independent small RNAs in the prostate and determine whether

their roles can explain the differences in phenotype following

Dgcr8 and Dicer loss.

What and how microRNAs are regulating prostate cancer

remains unclear. The findings reported here suggest two potential

roles in post-initiation stages of tumor progression, one in basal

cell expansion and the other in controlling senescence. The correla-

tion of the loss of basal cell expansion and decreased tumor

progression suggests a central role of the basal cells providing a

supportive role in progression, possibly acting as a reservoir for

secondary hits. Indeed, many findings have suggested that basal

cells can provide the cell of origin for prostate cancer [58–61].

Other findings would suggest that rare luminal stem-like cells can

also be efficiently transformed following specific deletion of Pten

[62,63]. In our double knockout model, we find that the luminal

cells expand in the absence of miRNAs, but many become senescent.

However, the most dramatic phenotype is in the basal cell layer,

where the additional loss of Dgcr8 reverses the basal cell expansion

and migration seen with Pten alone. Once again, knowing the

miRNAs required for progression and cells in which they function

should help resolve this issue of the source of the cancer-initiating

cells.

The Dgcr8 knockout model provides an opportunity to uncover

the miRNAs that are regulating these processes by using an add-

back approach [64–66]. That is, individual miRNAs can be reintro-

duced one at a time in the otherwise knockout background and

tested for rescue of different phenotypes such as basal cell

expansion or decreased senescence. This approach has the

advantage that it removes the complicating issues of redundancy

and cross-reactivity between miRNAs enabling one to focus on one

miRNA at a time.

Materials and Methods

Mice were bred and maintained in accordance with UCSF guide-

lines. Prostates were collected, frozen in OCT, sectioned on a cryo-

stat, and stained using standard protocols. OCT blocks were

manually dissected for RNA preparation. miRNA levels were

measured by multiplex qRT–PCR.

Mice

Generation of the Dgcr8loxp/loxp mice in our laboratory has been

described previously, and mice are available from Jackson Labs

(MMRRC:32051 http://jaxmice.jax.org/query) [36,37]. Ptenloxp/loxp

[31] and PBCre4 [38] were crossed with Dgcr8loxp/loxp to obtain the

appropriate alleles. The reporter allele R26lox-stop-lox-YFP was crossed

in to appropriate lines for the small RNA sequencing experiments

[67]. Mice were maintained in B6 background. All mice were geno-

typed from tail DNA by PCR at weaning and at tissue collection

using published primers. Mice were housed in the AALAC-accredited

(#001084) UCSF Laboratory Animal Research Center. PHS Assurance

#A3400-01.
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Figure 7. Association between DGCR8 expression and PARADIGM-inferred AKT2 integrated pathway level (IPL) in human prostate adenocarcinoma.

A Scatterplot of DGCR8 mRNA expression versus PARADIGM-inferred AKT2 IPL in 334 TCGA PRAD cases.
B Boxplot showing DGCR8 mRNA expression within AKT2 IPLs defined subgroups.
C Scatterplot of DGCR8 mRNA expression versus pAKT-pT308 protein levels.
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Necropsy and histopathology

Tissue was collected from mice of various genotypes as described

previously [41]. Dissected prostates were immediately photographed

and then fresh-frozen in OCT (Thermo Scientific). Briefly, the block of

tissue was dissected, wiped dry, photographed, and then submerged

in OCT in a manner to allow for taking histological sections through

the dorsal and lateral prostate lobes. The entire OCT block was

submerged in methylbutane (Fisher) that was pre-cooled on dry ice.

After 5 min, the block was stored at �20 or �80°C prior to sectioning.

A total of 7 lm sections were stored at �80°C until processed for

histology or immunostaining. Standard hematoxylin (Sigma) and

eosin-Y (Richard-Allen Scientific) staining was performed. At least

two independent sections from each tumor were provided to a

urologic pathologist for evaluation and characterization. This and all

subsequent cellular analysis was performed on sections confirmed to

contain dorsal and lateral lobes of the prostate. For all of these

samples, the pathologist was blinded as to genotype and tissues were

evaluated and classified according to the Bar Harbor Classification

scheme [41]. Prostate organ images at 12 weeks old were acquired on

an Olympus MVX10 using a 0.63X objective with a DP71 camera and

at 32 weeks old on a Leica MZ16 using a 0.63X reducer and 0.71X

objective with a DFC320 camera. Histological images were acquired

on a Leica DM1000 10× or 40× objective with a DFC290 camera.

Dgcr8 transcript and miRNA expression analysis

Prostate tissue was collected by manual dissection of OCT blocks.

RNA was prepared using Trizol reagent (Invitrogen). RNA was

quantified on NanoDrop spectrophotometer. Quality of RNA samples

was evaluated on an Agilent Bioanalyzer using a Nano kit (Agilent).

Dgcr8 qPCR was performed following RT (Invitrogen) on an ABI

7900 real-time PCR machine using SYBR Green mix as previously

published; primers were as follows: qDGCR8-F AGGTCTCTGTGCTC

CCAAGAAG, qDGCR8-R TGGTCATCATTGGCTGTACACTT [2,37].

Multiplex qRT–PCR for miRNA quantitation was performed exactly

according to the published protocol, on the Fluidigm Biomark

microfluidics platform [68]. RT and qPCR was performed as previ-

ously described using custom-made primers [37].

Senescence activity

Senescence-associated beta-galactosidase (SA-b-gal) was measured

as previously described on sections containing the dorsal and lateral

lobes [69]. Briefly, slides were fixed 10 min in 4% PFA, rinsed with

PBS, and then stained with X-gal solution at pH 6.0 overnight at

37°C. Slides were rinsed with PBS, counter-stained lightly with

hematoxylin and eosin, dehydrated, and mounted in Cytoseal-60

(Richard-Allen Scientific). Senescence staining was also performed

with similar results using the Cellular Senescence Assay Kit (Milli-

pore), counterstained with Nuclear Fast Red (Vector Laboratories),

and mounted in glycerol. Images were acquired on a Leica DM1000

10× objective with a DFC290 camera.

Immunostaining

Mouse samples were stained for DGCR8 using two techniques.

Samples from the old cohort were prepared using the Vectastain

elite rabbit ABC kit following the manufacturer’s instructions after

blocking endogenous peroxidase activity with hydrogen peroxide

and incubation with the rabbit anti-human-DGCR8 primary antibody

(Aviva Systems Biology, ARP40984) overnight at 4°C. All slides

were incubated in the substrate for the same amount of time. Color

images were acquired on a Leica DM1000 40× objective with a

DFC290 camera. Samples from both the cohorts were prepared for

immunofluorescent staining by first performing antigen retrieval in

3 mM sodium citrate buffer in a steaming rice cooker for 20 min.

After the samples cooled to room temperature, they were rinsed

with PBS, blocked with PBS/0.1% Tween-20/10% goat serum, and

then incubated in the primary rabbit anti-mouse DGCR8 antibody

(Proteintech Group 10996-1-AP) overnight at 4°C. The slides were

then rinsed with PBS twice for 5 min and briefly with PBS/0.1%

Tween-20 and then incubated 2 h in the appropriate Alexa Fluor-

labeled secondary antibody (Invitrogen) at 1:500 dilution in the

same blocking buffer. Nuclei were stained with DAPI. Images were

captured using Metamorph (Molecular Dynamics) running a Leica

DMI4000B 63× objective and DFC350FX camera.

Immunofluorescent staining was done essentially as for DGCR8

using the following primary antibodies: cleaved caspase-3, rabbit anti-

human (Cell Signaling Technology 9664 1:200); cytokeratin 5, rabbit

anti-mouse CK5 (Covance, clone AF138, 1:200); cytokeratin 8, mouse

anti-human CK8 (Covance, clone HK-8, 1:50); Ki67, rabbit anti-mouse

Ki67 (Thermo, clone SP6, 1:200); and pAKT (Ser473) (Cell Signaling

technology D9E, 1:50). ToPro3 (Invitrogen) or DAPI (Invitrogen) was

used as a DNA/nuclear counterstain in all fluorescent experiments.

Samples for confocal analysis were stained for 10 min with ToPro3

(1:10,000), dipped in water, and then mounted in fluoromount-G

(Southern Biotech), and images were captured on a Zeiss LSM 5

Pascal confocal microscope using the 63× objective. Samples for

epi-fluorescent analysis were stained with DAPI, dipped in water, and

then mounted in ProLong Gold (Invitrogen). Images were captured

using Metamorph (Molecular Dynamics) running a Leica DMI4000B

and DFC350FX camera.

Quantification of molecular markers

Quantification of CK5, CK8, and Ki67 was done on slides prepared

from old cohort samples using fluorescent images collected on a

Zeiss LSM 5 Pascal confocal microscope (63× objective). Four 63×

confocal images per mouse and at least three mice per genotype

were analyzed. The images were taken from the dorsal–lateral

region proximal to the anterior prostate. The percentage of CK5-,

CK8-, or Ki67-positive cells was calculated by counting the number

of positive cells out of total ToPro3-labeled nuclei. Counting was

constrained to the prostate ducts; stromal cells were not included in

the analysis.

SA-b-gal staining was quantified by counting the number of posi-

tive cells out of 250 cells from both the right and the left dorsal–

lateral prostate for 500 cells total. Four mice for each genotype were

quantified. For this analysis, samples were from the old cohort and

all stained in the same batch using the published technique [69].

Differential miRNA expression

Prostates were collected from four wild-type and five Ptenloxp/loxp

mice also expressing PBCre4 and R26lox-stop-lox-YFP. Prostates were
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dissected from the seminal vesicles and urinary tract organs and

then prepared for FACS analysis [70]. RNA was prepared using the

Qiagen micro miRNeasy kit. Small RNA libraries were prepared as

previously described [71] with additional modifications to optimize

ligations [72]. The detailed protocol will be posted at www.Blel-

lochLab.ucsf.edu. Pooled small RNA libraries were sequenced on a

Illumina HiSeq 2500 machine. Resulting reads were trimmed using

CutAdapt (DOI: 10.14806/ej.17.1.200) (parameters: -u 2 –max-n 0 -m

17 -M 36) and mapped as previously described [73].

Statistical analysis

The Freeman-Halton extension of the Fisher’s exact test was used to

test whether the differences in tumor formation and histological

grouping per genotype were statistically significant. Student’s t-test

was used to test whether the differences in immunostaining

between genotypes were statistically significant.

Mapped small RNA reads were normalized as counts per million

reads mapping to pre-miRNA hairpins. Exploratory analysis using

PCA, hierarchical clustering, and comparison of median and vari-

ance between samples was used to remove outlier samples. P-values

were determined using rowttests on those rows with log2 counts > 0

and then corrected for multiple hypothesis testing using qvalue

package in R.

Integration of copy number, mRNA expression, and pathway

interaction data was performed on 334 prostate adenocarcinoma

(PRAD) samples from The Cancer Genome Atlas (TCGA) program

using the PARADIGM algorithm [44,45]. Level 3 RSEM normalized

expression and Level 4 GISTIC thresholded copy number data were

obtained from Firehose, and pathway interaction data included

pathways from the NCI-PID, BioCarta, and Reactome databases.

From these data, the PARADIGM algorithm infers an integrated

pathway level (IPL) for each pathway feature that reflects its activity

in a tumor sample relative to the median activity across all tumors.

Correlation between log2-scaled mRNA expression levels of

DGCR8 and the PARADIGM-inferred AKT1, AKT2, and AKT3 IPL

was assessed using Spearman’s rank correlation. In addition, we

subdivided the data set based on the AKT2 IPL into three groups

(median: IPL = 0, low: IPL < 0, high: IPL > 0) and compared the

DGCR8 mRNA expression between these three groups using the

Kruskal–Wallis test.

Expanded View for this article is available online:

http://embor.embopress.org
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