Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Mitochondrial genome sequences and comparative genomics of Phytophthora ramorum and P.
sojae

Permalink

https://escholarship.org/uc/item/4zj238gc

Authors

Martin, Frank N.
Douda, Bensasson
Tyler, Brett M.
et al.

Publication Date

2007
Peer reviewed

Mitochondrial genome sequences and comparative genomics of Phytophthora ramorum and P. sojae

```
M artin, F.N. . , M organ, J. ', Putnam, N. .', Tyler, B. ', B oore, J.L. .,3
    1}\mathrm{ USDA -A RS, Salinas, CA, '}\mp@subsup{}{}{2}\mathrm{ DOE J oint Genome Institute and L awrence B erkeley
    N ational L aboratory, W alnut Creek, CA, '3 University of California, Berkeley, CA,
    4V irginia B ioinformatics Institute, Blacksburg, V A
    Corresponding author: Frank M artin
    USDA-ARS
    Salinas, CA 93905
    fmartin@ pw.rs.usda.gov
```


Abstract

The complete sequences of the mitochondrial genomes of the oomycetes of Phytophthora ramorum and P. sojae were determined during the course of their complete nuclear genome sequencing (Tyler et al. 2006). B oth are circular, with sizes of $39,314 \mathrm{bp}$ for P. ramorum and 42,975 bp for P. sojae. Each contains a total of 37 identifiable proteinencoding genes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively) specifying 19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12 for P. sojae) which are potentially additional functional genes. Non-coding regions comprise approximately 11.5% and 18.4% of the genomes of P. ramorum and P. sojae, respectively. Relative to P. sojae, there is an inverted repeat of $1,150 \mathrm{bp}$ in P. ramorum that includes an unassigned unique ORF, a tR NA gene, and adjacent non-coding sequences, but otherwise the gene order in both species is identical. Comparisons of these genomes with published sequences of the P. infestans mitochondrial genome reveals a number of similarities, but the gene order in P. infestans differs in two adjacent locations due to inversions. Sequence alignments of the three genomes indicated sequence conservation ranging from 75 to 85% and that specific regions were more variable than others.

K eywords: inverted repeat, Phytophthora infestans

INTRODUCTION

The genus Phytophthora has a wide geographic distribution throughout the world and contains more than 70 species, many of which cause important plant diseases (Erwin and Ribiero 1996). While members of the genus, along with other oomycetes, share morphological similarities with eumycotian fungi, these features have arisen independently, because oomycetes are more closely related phylogenetically to chromophyte algae within the larger group Stramenopiles (Förster et al. 1990a; K noll 1992; Baldauf and Palmer 1993; W ainright et al. 1993; B hattacharya and Stickel 1994; W eerakoon et al. 1998; Dick 2001). M embers of this genus differ from eumycotan fungi in features such as being diploid throughout their life cycle and formation of motile, biflagellate spores called zoospores that are capable of swimming in water.

The mitochondrial genomes in the genus have been reported to be circular and to range in size from approximately 37.0 to 45.3 kb (Paquin et al. 1997, A vila-A dame et al. 2005; M cNabb and K Iassen 1988, Förster et al. 1987, Shumard-Hudspeth and Hudspeth 1990). These have been commonly used in RFLP studies for identification of isolates and to help clarify the taxonomic placement of particular species (reviewed in Erwin and Ribeiro 1996). M itochondrial gene sequences al so have been used to infer phylogenetic relationships among species of the genus as well (M artin and Tooley 2003, 2004; K roon et al. 2004). The only species of Phytophthora for which we have a complete mitochondrial genome sequence is P. infestans, the causal agent of potato late blight. This has been determined for four separate haplotypes, which range in size from 37,957 bp for the I a haplotype (Paquin et al. 1997) and from 37,992 to 39,870 bp for the Ia, IIa,
and IIb haplotypes (A vila-A dame et al. 2005). A total of 67 shared coding regions were identified in these genomes encoding for mitochondrial respiratory chain proteins, subunits of the mitoribosome, ribosomal RNAs, tRNAs, and unassigned ORFs. This same set of coding regions were al so found in the related Peronosporomycete Saprolegnia ferax (Grayburn et al. 2004). Comparisons among the different P. infestans haplotypes indicate that intraspecific variation is due to changes in nucleotide sequences dispersed throughout the genome as well as length mutations caused by insertions/deletions that occurred primarily in two locations. It is unclear how this intraspecific variation relates to interspecific variability and genome divergence among species.

Interest in the genus Phytophthora has increased Iately due to the serious impact several species are having as plant pathogens. Phytophthora ramorum is a recently described species that initially was found to be responsible for diseases of nursery crops in Germany and the Netherlands (W erres et al. 2001). It has subsequently spread to other European countries and more recently has become a problem in field ecosystems (Brasier et al. 2005). While this species also is a problem in some nursery production crops in N orth A merica, a far bigger impact has been its role as the cause of sudden oak death, a disease that has killed large numbers of trees and shrubs in natural ecosystems in central coastal California (Rizzo et al. 2002, Davidson et al. 2003). This is a highly regulated pathogen with stringent quarantine restrictions in place in North A merica and Europe in an effort to halt its spread. Phytophthora sojae is widely spread in soybean (Glycine max) production areas of North A merica and A ustralia and causes serious crop
production losses due to root and stem rot (Erwin and Ribiero 1996). There is a continuing effort in soybean breeding programs to develop resistant germplasm as a means for controlling the disease.

Complete draft sequences for the nuclear genomes of P. ramorum and P. sojae have been recently determined (Tyler et al. 2006). As part of this sequencing project, the complete mitochondrial genomes were also assembled. The objective of this submission is to annotate and describe these mitochondrial genomes and compare them to the mitochondrial genomes of P. infestans and other Peronosporomycetes.

MATERIALS AND METHODS

Strains sequenced - M itochondrial sequences were obtained from P. ramorum strain Pr102 (isolated form California) and P. sojae strain P6497 (isolated from M ississippi). Sequences for the la haplotype mitochondrial genome of P. infestans (Paquin et al. 1997) were obtained form GenBank (NC002387), as were those recently available for haplogypes Ib, IIa, and IIb (A Y 894835, A Y 898627, A Y 898628; A vila-A dame et al. 2005) and the peronosporomycete S. ferax (A Y 534144; Grayburn et al. 2004)

Sequencing and contig assembly- For each of these two species, total DNA

 preparations were randomly sheared using a Hydroshear device (Gene M achines, location needed), in separate aliquots, to fragments averaging either about 3 kb or about 8 kb . These were gel purified and enzymatically repaired to blunt ends, then cloned into plasmids to generate two genomic libraries. An additional library was created in afosmid vector. End sequences were determined for a large number of randomly selected clones from each of these libraries, then assembled using JA ZZ (REF) to form a complete draft whole genome shotgun assembly (REF) of these nuclear genomes. Detailed protocols are available at <WEBSITE> and this process and the results will be further described in a manuscript reporting the complete nuclear genome sequences. Although no effort was expended to target the mitochondrial genomes, even a small contamination by mtDNA in these preparations, coupled with the high molarity of these sequences compared to any portion of the nuclear genomes, guarantees that any wholegenome shotgun sequencing projects will include many sequencing reads from clones of mtDNA. ADD STATISTICS SPECIFIC FOR THE MTDNAS ON THE NUMBER OF READS FROM EACH LIBRARY, THE DEPTH OF COVERAGE, AND THE OVERALL QUALITY OF THE ASSEMBLY AND OF THE CONSENSUS SEQUENCE.

Annotation and comparative genomics - A nnotation of coding regions was done using DS Gene v1.5 (A ccelrys, San Diego, CA). Identification of protein- and rRNA -encoding genes was done by comparison with sequences reported for P. infestans (Paquin et al. 1997; NC002387) and BLAST analysis to other sequences in GenB ank. Genes for tRNA s were found using tR NA scan SE v1.1 (Lowe and Eddy 1997; http://www.genetics.wustl.edu/eddy/tR NA scan-SE/). Comparisons among genomes was done using mVISTA (M ayor et al. 2000, Frazer et al. 2004; http://genome.|lbl.gov/vista/servers.shtml). Sequence alignments within mVISTA were done using LA GAN (B rudno et al. 2003).

RESULTS AND DISCUSSION

Genome size and organization

The mitochondrial genomes for both species are circular and range in size from 39,314 bp for P. ramorum (Fig. 1; GenBank XXX) to 42,975 bp for P. sojae (Fig. 2; GenB ank XXX) with a \%GC content of 22.0% and 21.7%, respectively. This compares to 37,957 bp for the Ia haplotype (Paquin et al 1997) and 37,992, 39,870 and 39,840 bp for the Ia, IIa, and IIb haplotypes of P. infestans, respectively (A vila-A dame et al. 2005). The 37 protein-and rRNA -encoding genes found in P. infestans mtDNA (Paquin et al. 1997) are al so present in each of these two other species and similar to P. infestans, none contain introns. This set comprises 18 respiratory chain proteins, 16 ribosomal proteins, the rRNA s for the large and small ribosomal subunits, and an import protein (secY) (Fig. 3). ATG was the start codon for all genes and with the exception of nadll (TGA), the termination codon for all assigned genes is TAA. This gene had the same termination codon in P. infestans (Paquin et al. 1997), but in S. ferax it was TA A (Grayburn et al. 2005).

There are a total of 19 amino acids encoded with the same 25 tR NA s as reported for P. infestans (Paquin et al. 1997) including multiple tRNA s for $\operatorname{trn} G$ (GCC, UCC), trnL (UAA, UAG), $\operatorname{trn} R(\mathrm{UCU}, \mathrm{GCG}), \operatorname{trnS}(\mathrm{GCU}, \mathrm{UGA})$ and three copies of $\operatorname{trnM}(\mathrm{CAU})$ identified by tRNA Scan. But one of these $t r n M_{C A U}$ is identical to what was classified as $\operatorname{trnI}_{C A U}$ in P. infestans and S. ferax (Paquin et al. 1997, Grayburn et al. 2004). For both these species it was determined that in view of the conclusions of G ray et al. (1998) that

1 this tRNA is actually a $\operatorname{trnI}_{C A U}$ due to post transcriptional modification to lysidine to 2 allow translation of the AUA codon for isoleucine. The other two copies of trnM $M_{C A U}$ 3 function in initiator and elongator roles. TrnT is not encoded in these genomes.

4 Phytophthora ramorum has an additional copy of trnR $R_{U C U}$ adjacent to cob relative to P. sojae due to this tR NA being encoded in the inverted repeat (
10.8 to 25% at an amino acid level. This compares to a sequence divergence for the cox 2 mitochondrially encoded gene of 5.9 to 6.0% at a nucleotide level and 1.6 to 3.5% at an amino acid level. It is questionable if orf79 represents a functional gene since it has limited sequence conservation among P. infestans, P. ramorum and P. sojae at either a nucleotide or amino acid level (Table 2). There were six and one additional putative ORFs greater than 100 bp in P. sojae and P. ramorum, respectively, ranging in size from 294 to 621 bp that were not present in the other species. The six additional ORFs in P. sojae are present in two locations; orf206 is between $\operatorname{trn} Y_{G U A}$ and the $r r n S$ while the remaining five (orf115, orf97, orf111 1_{a} orf1 11_{b}, and orf100 ${ }_{b}$) are clustered together between nad6 and nad4L (Fig. 2). The 3' end of orf 115 overlaps the 5^{\prime} end of orf97 by 20 bp and the 3^{\prime} end of orf97 overlaps orff11 1_{a} by 17 bp . There is only one unique ORF (orf175) longer that 100 bp in P. ramorum mtDNA, and this is part of the inverted repeat and is present in two copies in opposite orientation (Fig. 1 and discussed below). The termination codon for all of these unassigned ORFs is TAA with the exception of orf97 and orf111 (TAG) and orf $111_{a}(\mathrm{TGA})$. Both these termination codons are used in different ORFs in haplotype IIa and IIb of P. infestans (A vila-A dame et al. 2005). BLAST analysis of sequences in GenB ank did not identify any sequence homology among these ORFs or potential homologs for these putative coding regions.

The coding regions are closely packed in the genome with 70% of the spacer regions less than 30 bp long (Table 3). Overall the spacer regions represent a relatively small percentage of the genome compared to coding regions (11.5% and 18.4% for P. ramorum and P. sojae, respectively). Genes are divided between the two strands and in general are

1 clustered into five non-overlapping groups alternating between strands (Fig. 1 and 2).
2 Starting at base 1 the first group is rrnL through coxl followed by trnR through nad 2,
3 nad7 through nad6, nad4L through trnL, and rpl2 to orf100. There are some exceptions
4 to these groupings, most notably transcription of orf206 in P. sojae and $\sec Y$ through rps13 for
cq $0.24000 .24 d$

Inverted repeat

One unique feature of the P. ramorum genome is that it contains an inverted repeat (IR) of $1,150 \mathrm{bp}$ located in one case between coxl and cob (bases 9,540 to 10,689) and again in opposite orientation betw een nad6 and nad4L (bases 26,173 to 27,322). This inverted repeat contains orf175, which is unique to this species, as well as $\operatorname{trn} R_{U C U}$. The first copy of the IR starts eight bp after the termination codon of coxl and the opposite end includes 13 bp of the 3^{\prime} end of cob. The second copy starts with 74 bp of the 3^{\prime} end of the nad6 gene and has 38 bp of the 3 ' end of nad4L. This copy of the IR is in the same position of the genome as the clustered five unique ORFs of P. sojae. Comparisons of sequences between coxl and cob and nad6 and nad4L for P. ramorum and P. sojae (the region where the IR is found in P. ramorum) revealed limited sequence similarity between these two species. Likewise, there was limited sequence similarity in comparison of region between nad6 and nad4L from both these species and P. infestans. Without further analysis of a greater number of mitochondrial genomes in the genus it is unclear if the IR arose from duplication of a specific region of the genome or if its presence in a reduced state reflects a deletion of the large IR found in other genera in the Peronosporomycetes (discussed more below). However, given that the single copy of $\operatorname{trn}_{\text {UCU }}$ in P. infestans and P. sojae is present adjacent to the nad6 gene, and one of the copies of this tRNA gene is in the same position for P. ramorum, it is possible that this location would reflect the ancestral position and the other arm of the IR between coxl and cob being the secondarily duplicated copy.

The only other example of a completely sequenced mitochondrial genome containing an IR is S. ferax, which has an IR of $8,618 \mathrm{bp}$, representing 37% of the genome size and encoding four proteins, five tRNA genes, and both rRNAs (Grayburn et al. 2004). These coding regions are transcribed from both strands of the mitochondrial genome, which is different from the two coding regions in the IR of P. ramorum transcribed in the same direction. One similarity between these genomes is that in S. ferax, one arm of both copies of the IR terminates with a partial sequence of a coding region (the 3' end of nad5), whereas in P. ramorum, three of the four termini end in a coding region. One end of the IR encodes the terminal 13 bp of the 3^{\prime} end of $c o b$ and the same end of the second copy has 74 bp of the 3^{\prime} end of nad6. The opposite end either terminates within the spacer region before the coxl gene in one copy or has 38 bp of the 3^{\prime} end of nad4L in the other.

The presence of an IR in P. ramorum is unusual for the genus Phytophthora. The only other example where this has been observed is in P. megasperma (Schumrd-Hudspeth and Hudspeth 1990). B ased on restriction mapping and Southern analysis a short inverted repeat of 0.5 to 0.9 kb in size was identified with one copy adjacent to cox2 and the other adjacent to the cob/atp9 genes (this later position is similar to what was observed for one arm of the IR in P. ramorum). Inverted repeats in the mitochondrial genome are common in the closely related genus Pythium (M cN abb et al. 1987, M cN abb and K Iassen 1988, M artin 1991, M artin 2000) and have also been found in other oomycetes such as Achyla spp. (Hudspeth et al. 1983, B oyd et al. 1984, Schumard et al. 1986), Aplanopsis terrestris, Leptolegnia caudate and Sapromyces elongates (M cN abb
and Klassen 1988) and Saprolegnia ferax (Grayburn et al 2004). An IR also has been reported in the chytrid Hypochytrium catenoides (M cNabb et al. 1988). In cases where an IR has been described this region represents reflect a larger proportion of the genome size (greater than 37% overall, but more than 71% for Pythium spp.) and contains the large and small ribosomal RNA coding regions, which was not the case for the IR observed with P. ramorum.

Genome comparisons

With the exception of the IR in P. ramorum the gene order in P. sojae was the same, however, with P. infestans there are two inversions relative to P. ramorum and P. sojae that have reversed the gene order in adjacent regions (Fig. 3). One inversion includes cob, nad9 and atp9 while the other is immediately adjacent and includes a total of 18 coding regions spanning from nad3 to atp1 (Fig. 3). The gene order in several regions also were found to be conserved with S. ferax (Fig. 3), including the linkage of $r p s 8, r p l 6, r p s 2$, and $r p s 4$ that Grayburn et al. (2004) noted was also conserved in the stramenopile Chrysodidymus synuroides (Chesnick et al. 2000). A lthough the gene order of more Phytophthora species needs to be examined to confirm this, the conservation of gene order in P. ramorum and P. sojae relative to P. infestans may be reflective of the evolutionary relationship among these species. In phylogenetic analysis using cox2 and rDNA ITS data, P. ramorum and P. sojae were more closely grouped, with P. infestans being less so (M artin and Tooley 2004). A similar relationship was observed for analyses done with sequence data from the ITS region (Cooke et al. 2000) and data from B-tubulin, elongation factor 1- α, coxl, and nadh1 (K roon et al. 2004).

Whole genome sequence alignments between P. ramorum and P. sojae revealed a sequence conservation of 83% and 76% identity, respectively (Table 4) with the lower value for P. sojae due to the larger genome size. Sequence alignments were also done with the type 1b mitochondrial haplotype of P. infestans, which is smaller than the other genomes at 37,957 bp (Paquin et al. 1997). The Ia haplotype of P. infestans has 85% sequence identity with the other two species whereas P. ramorum and P. sojae have 82% and 75.4% identity with P. infestans, respectively.

Genome comparisons using mVISTA provides a graphic representation of the variation among genomes. Using P. ramorum as the base sequence, comparison with P. sojae reveal s a low level of sequence variation throughout the genome, but specific regions were more variable than others (Fig. 4). The most extensive variation was found in the spacer regions and in general, the larger the spacer region, the greater the sequence variability between species. For example, the spacer region between orf79 and cox2 was 446 bp long for P. ramorum (327 bp for P. sojae) and exhibited a low level of sequence conservation with P. sojae (Table 3, Fig. 4). Likewise, the regions between $\operatorname{trn} Y$ and $r r n S$, nad9 to $\operatorname{atp} 9$, atp 9 to nad3, and atp1 to nad5 have similar low levels of sequence conservation between species, as did the regions represented by the IR in P. ramorum. However, this association between spacer length and sequence variation was not al ways observed. The spacer region between nad7 and orf142 is 42 bp for P. ramorum (303 bp for P. sojae) and has minimal sequence conservation while the spacer between $\operatorname{trn} L$ and nadl1 is 144 bp for P. ramorum (149 bp for P. sojae) and has a sequence conservation of

79\%. Likewise, the spacer between nad2 and nad7 is 116 bp for P. ramorum (113 bp for P. sojae) and has a sequence conservation of 84.4%. Vista comparisons including the mitochondrial genome of P. infestans (with specific regions reverse complemented to account for the inversions) gave results that did not differ appreciably from those observed in Fig. 4 (data not shown). In intraspecific comparisons of the four mitochondrial haplotypes of P. infestans, the majority of the variation was observed between $\operatorname{trn} Y$ and $r r n S$ as well as downstream of orf79 (the regions where insertions/deletions were observed; A vila-A dame et al. 2005), however, there is also a region of 25 bp in the spacer between nad 3 and nad5 where there is only 32% sequence conservation between the IIb haplotype and the others (data not shown).

Some of the regions where high levels of sequence variability were observed in comparisons between P. ramorum and P. sojae corresponded to the location of differences in genomic organization among species. For example, the terminal regions of the genomic inversions observed with P. infestans corresponded to regions of low sequence similarity between P. ramorum and P. sojae (Fig. 4, between cox1 - cob, atp9 nad3, and atp 1 - nad5). One of these regions, the area between coxl and cob, is where one arm of the inverted repeat is located in P. ramorum. The other arm is located between nad6 and nad4L, which also was where the five unique ORFs in P. sojae are located. Furthermore, orf206 in P. sojae is located between $\operatorname{trn} Y$ and $r r n S$, which was the same location in the genome of P. infestans where length mutations associated with the major intraspecific differences in genomic sequences were observed (A vila-A dame et al. 2005). A nother region of the P. infestans mitochondrial genome where smaller length
mutations were observed is downstream of orf79 (34 and 36 bp in length), which is also a region of sequence variation in comparisons between P. ramorum and P. sojae. Interestingly, the spacer region in P. infestans between nad3 and nad5, which is one juncture of the inversion relative to P. ramorum and P. sojae, is also variable in haplotype IIb relative to the other three haplotypes. From comparing the gene maps for these three species it is interesting to note that two of the regions variable in interspecific comparisons (between coxl and cob and nad6 and nad4L) correspond to the head-to-head juncture of two clusters of genes transcribed from opposite directions.

The results thus far suggest a high degree on gene order conservation in the genus Phytophthora with the differences observed explained by two inversions. One reason for this may be the large percentage of the genome represented by coding regions and the small sizes of the intervening spacer regions conferring some level of genome stability. When interspecific variation is observed (rearrangements, unique ORFs, IR) these tend to be found in specific locations in the genome where there are low levels of interspecific sequence conservation in the spacer regions. However, before firm conclusions about genome stability can be drawn additional comparisons among more species is needed to clarify this. This would al so clarify the relationship between changes in genome organization and phylogeny in the genus.

ACKNOWLEDGEMENTS

This work was support by National Science Foundation Grant M CB-0242131 and U.S. Department of A griculture Grant XXXXXXXXXXXXX and was performed partly under

1 the auspices of the U. S. Department of Energy's Office of Science, B iological and
2 Environmental Research Program, and by the University of California, L awrence
3 Livermore National Laboratory under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory under Contract N

LITERATURE CITED

A vila-A dame C, Gomez-A Ipizar L, Zismann V , Jones K M , B uell CR , B eagle Ristaino J (2006) M itochondrial genome sequences and molecular evolution of the Irish potato famine pahtogen, Phytophthora infestans. Curr Genet 49:39-46.

B aldauf SL, Palmer JD (1993) A nimals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl A cad Sci U S A 90:11558-11562.

B hattacharya D, Stickel SK (1994) Sequence analysis of duplicated actin genes in Lagenidium giganteum and Pythium irregulare (Oomycota). J M olec Evol 39:56-61.

B oyd DA, Hobman TC, Gruenke SA, K Iassen GR (1984) Evolutionary stability of mitochondrial DNA organization in Achlya. Can J Biochem Cell Biol 62:571-576.

B rasier CM , Denman S, Brown A, W ebber J (2005) Sudden oak death (Phytophthora ramorum) discovered in trees in Europe. M ycol Res 108:1108-1110.

Brudno M, Do CB , Cooper GM, Kim M F, Davydov E, Green ED, Sidow A, B atzoglou S (2003) NISC Comparative Sequencing Program. LA GAN and M ulti-LA GAN: Efficient Tools for L arge-Scale M ultiple A lignment of Genomic DNA. Genome Res 13:721-731.

Cooke DEL , Drenth A, Duncan JM , Wagels G, B rasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17-32. Davidson JM , W erres S, Garbelotto M , Hanson E, Rizzo DM (2003) Sudden Oak Death and associated diseases caused by Phytophthora ramorum. Plant Health Progress doi:10.1094/PHP-2003-0707-01-DG.

1 Dick M W (2001) Straminipilous Fungi. K luwer A cademic Publishers.

2 Erwin DC, Ribeiro OK (1996) Phytophthora Diseases W orldwide. A merican
3 Phytopathological Society Press St. Paul, M N. 562 pp.

4 Förster H, Coffey M D, Elwood H, Sogin ML (1990) Sequence analysis of the small subunit ribosomal RNA s of three zoosporic fungi and implications for fungal evolution. M ycologia 82:306-312.

Förster H, Kinscherf, TG, Leong, S, and M axwell, DP (1987) M olecular analysis of the mitochondrial genome of Phytophthora. Curr Genet 12:215-218.

Frazer K A , Pachter L, Poliakov A, Rubin EM , Dubchak I (2004) VISTA : computational tools for comparative genomics. Nuc A cids Res July 1:32:W 273- $\Omega 279$.

Grayburn W S, Hudspeth DSS, Gane M K, Hudspeth M ES (2004) The mitochondrial genome of Saprolegnia ferax: organization, gene content, and nucleotide sequence. M ycologia 96:980-987.

Hudspeth M ES, Shumard DS, Bradford JR, Grossman LI (1983) Organization of Achlya mtD NA: A population with two orientation and a large inverted repeat containing the rRNA genes. Proc Natl A cad Sci U S A 80:142-146.

K noll HA (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622-627.

1 K roon LPNM, Bakker FT, van den Bosch GB, B onnants PJ, Flier WG (2004)
2 Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA 3 sequences. Fungal Genet Biol 41:766-782.

4 M artin FN (1991) Linear mitochondrial molecules and intraspecific mitochondrial 5 genome stability in a species of Pythium. Genome 34:156-162.

Martin FN (2000) Phylogenetic re (oge) Tj50 007 Tj 50074590 Tm (hondr) Tj50 07501130 onsTm (I) T

McNabb SA, K lassen GR (1988) Uniformity of mitochondrial DNA complexity in Oomycetes and the evolution of the inverted repeat. Exp M ycol 12:233-242.

McNabb SA, Eros RW , K lassen GR (1988) Presence and absence of large inverted repeats in the mitochondrial DNA of Hyphochytriomycetes. CanJ Bot 66:2377-2379.

Paquin B, Laforest M -J, Forget L, Roewer I, W ang Z, Longcore J, Lang BF (1997) The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr Genet 31:380-395.

Rizzo DM, Garbelotto M , Davidson JM , Slaughter GW, K oike ST (2002) Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis 86:205-214.

Shumard-Hudspeth DS, Hudspeth M ES (1990) Genetic rearrangements in Phytophthora mitochondrial DNA. Curr Genet 17:413-415.

Shumard DS, Grossman LI, Hudspeth M ES (1986) Achlya mitochondrial DNA : gene localization and analysis of inverted repeats. M ol Gen Genet 202:16-23.

Tyler BM , Tripathy S, Zhang X, Dehal P, Jiang R, A erts A, Damasceno CM B, D ou D, Dubchak I, Gijzen M, Gordon S, Govers F, Grunwald N, Huang W, Ivors K, K amoun S, K rampis K, Lamour K, M cD onald WH, M edina M , M eijer H, Nordberg E, OspinaGiraldo M D, M orris P, Putnam N, Rash S, Rose JKC, Sakihama Y, Salamov A, Savidor A, Smith B, Smith J, Sobral BWS, Terry A, Torto-A Ialibo T, Win J, Zhang H, Grigoriev I, Rokhsar D, and BooreJ (2006) Genome Sequences of two Phytophthora species

9 Themann K, Ilieva E, Baayen RP (2001) Phytophthora ramorum sp. nov., a new
responsible for Sudden Oak Death and Soybean Root Rot provide novel insights into their evolutionary origins and mechanisms of pathogenesis. Science: In review Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) M onophyletic origins of the metazoa: an evolutionary link with fungi. Science 260:340-342.

Weerakoon ND, Roberts JK, Lehnen LP, H ardham AR (1998) Isolation and characterization of the single β-tublin gene in Phytophthora cinnamomi. M ycologia 90:85-95.

Werres S, M arwitz R, M an InT V eld W A, Cock AW A M, Bonants PJM, Weerdt M d, pathogen on Rhododendron and Viburnum. M ycol Res 105:1155-1165.

1 Table 1. Differences in size (in bp) of specific genes among Phytophthora infestans, P. 2 ramorum, and P. sojae.

Gene	P. infestans a	P. ramorum	P. sojae
cob	1,152	1,161	1,161
rpl5	534	528	534
rps3	804	816	831
rps7	474	432	432
rps11	417	420	417
rps13	414	417	414
rps19	234	237	237
$\sec \mathrm{Y}$	747	744	744

5
$6 \quad{ }^{\text {a }}$ D ata from Paquin et al. 1997

1 Table 2. Sizes and \% sequence divergence of open reading frames (ORF) shared among 2 Phytophthora infestans, P. ramorum, P. sojae, and Saprolegnia ferax.

${ }^{\text {a }}$ D ata from Grayburn et al. 2004
${ }^{\text {b }}$ D ata from Paquin et al. 1997

1 Table 3. The sizes of spacer regions (bp) between coding regions and the percent 2 sequence conservation in comparisons between Phytophthora ramorum and P. sojae. 3
$\left.\begin{array}{lccl} & \text { Spacer length } & & \text { Spacer length } \\ \text { Spacer region } & \text { P. ramorum } & \text { Spacer region } & \text { P. sojae }\end{array}\right) \%$ Identity

$t r n C_{G C A}$ to $\operatorname{trn} S_{U G A}$	4	5	80\%
$t r n S_{U G A}$ to rpsll	10	10	100\%
$r p s 11$ to rps13	12	12	91.7
$r p s 13$ to rpl2	28	28	100\%
$r p l 2$ to rps19	2	3	66.6\%
rps 19 to rps3	3	3	66.6\%
rps 3 to rpll 6	2	,	100\%
rpll6 to trnM $M_{C A U}$	3	7	42.9\%
trnM $M_{C A U}$ to orf2 17	17	31	45.2\%
orf217 to atp8	65	61	82.0\%
atp 8 to $\operatorname{trn} K_{U U U}$	25	28	82.1\%
$\operatorname{trn} K_{U U C}$ to $\operatorname{trn} A_{U G C}$	2	2	100\%
$t r n A_{U G C}$ to rps 14	29	18	44.8\%
$r p s 14$ to rps8	7	7	100\%
rps8 to rpl6	5	8	50.0\%
rpl6 to rps 2	6	8	75.0\%
$r p s 2$ to rps4	8		87.5\%
rps4 to orf100	2	7	28.6\%
orf100 to rrnl	280	27	9.5\%
${ }^{\text {a }}$ In P. sojae there is a unique ORF (orf206) that splits this spacer region in two but it can still be aligned with the spacer region in P. ramorum. There is virtually no sequence homology between this spacer region in P. ramorum and orf206 in P. sojae.			
${ }^{\mathrm{b}}$ This region in P. ramorum spans the inverted repeat and includes orf175 and one copy of $\operatorname{trnR(ucu)}$ but is all spacer in P. sojae.			
${ }^{c}$ In P. ramorum this region includes the second copy of the inverted repeat encoding orf175 while in P. sojae it includes 5 ORFs (orf115, orf97, orf111 , orf111 b, and orf 100_{b}).			

Table 4. Sequence conservation in whole mitochondrial genome comparisons with $P h y t o p h t h o r a ~ i n f e s t a n s, ~ P$. ramorum and P. sojae.

Genome comparisons ${ }^{\text {a }}$	CNS ${ }^{\text {b }}$	Sequence identity
P. ramorum vs P. sojae	89.0\%	83.0\% (P. ramorum)
		76.0\% (P. sojae)
P. ramorum vs P. infestans	88.3\%	82.0\% (P. ramorum)
		84.4\% P. infestans)
P. sojae vs P. infestans	91.6\%	75.4\% (P. sojae)
		85.0\% (P. infestans)
${ }^{\text {a }}$ M itochondrial genome sizes for P. ramorum, P. sojae, and P. infestans were 39,314 bp, 42,975 bp and 37,957 bp (NC002387, Paquin et al. 1997), respectively.		
${ }^{\text {b }}$ CNS $=$ sequence conservation	on abov	over a 45 bp window in mVISTA

1 Figure legends

Figure 1. Mitochondrial gene map for Phytophthora ramorum. A rrows indicate transcriptional orientation, clockwise for the outer row and counter clockwise for the inner row with green representing coding regions and red putative ORFs. The position of the inverted repeat is indicated on the inner ring.

Figure 2. M itochondrial gene map for Phytophthora sojae. A rrows indicate transcriptional orientation, clockwise for the outer row and counter clockwise for the inner row with green representing coding regions and red putative ORFs.

Figure 3. Conserved gene order in the mitochondrial genomes of Phytophthora ramorum and P. sojae. Comparisons with P. infestans and Saprolegnia ferax were based on Paquin et al. (1997) and Grayburn et al. (2004), respectively. The dashed line under orf217 is to indicate that in S. ferax this region is represented by orf273 (which has limited sequence conservation with orf217); otherwise the gene orde

1 regions that were inverted in the P. infestans mitochondrial genome relative to P. ramorum and P. sojae.

1

rrnS, orf79, cox2, orf 32, cox1, cob, nad9, atp9, nad3, trnD ${ }_{\text {guc, }}$ atp6, cox3, rps7,

nad4, atp1, nad5, nad6, $\operatorname{trnR}_{\text {ucu, }}$ nad4L, nad1, nad111, $\operatorname{trnL}_{\text {uag, }}, \operatorname{trnL}_{\text {uaa, }}$ secY,
orf64, trnC gca, $, \operatorname{trnS}_{u g a}, ~ r p s 11, r p s 13, r p \mid 2, ~ r p s 19, ~ r p s 3, ~ r p s \mathbb{1} 6, ~ t r n M M_{c a u}, ~ o r f 217, ~$
$\operatorname{atp} 8, \operatorname{trn} K_{u u u}, \operatorname{trn} A_{u g c}, r p s 14, r p s 8, r p 16, r p s 2, r p s 4, \operatorname{rf1} 100$

DRAFT 4/17/06

