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Abstract. For a positive integer n, the full transformation semigroup Tn consists of all self
maps of the set {1, . . . , n} under composition. Any finite semigroup S embeds in some Tn,
and the least such n is called the (minimum transformation) degree of S and denoted µ(S).
We find degrees for various classes of finite semigroups, including rectangular bands, rect-
angular groups and null semigroups. The formulae we give involve natural parameters as-
sociated to integer compositions. Our results on rectangular bands answer a question of
Easdown from 1992, and our approach utilises some results of independent interest con-
cerning partitions/colourings of hypergraphs.

As an application, we prove some results on the degree of a variant T a
n . (The vari-

ant Sa = (S, ⋆) of a semigroup S, with respect to a fixed element a ∈ S, has underlying
set S and operation x ⋆ y = xay.) It has been previously shown that n ⩽ µ(T a

n ) ⩽ 2n− r
if the sandwich element a has rank r, and the upper bound of 2n− r is known to be sharp
if r ⩾ n − 1. Here we show that µ(T a

n ) = 2n − r for r ⩾ n − 6. In stark contrast
to this, when r = 1, and the above inequality says n ⩽ µ(T a

n ) ⩽ 2n − 1, we show
that µ(T a

n )/n → 1 and µ(T a
n )− n → ∞ as n → ∞.
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Among other results, we also classify the 3-nilpotent subsemigroups of Tn, and calculate
the maximum size of such a subsemigroup.
Keywords. Transformation semigroup, transformation representation, semigroup variant,
rectangular band, nilpotent semigroup, hypergraph
Mathematics Subject Classifications. 20M20, 20M15, 20M30, 05E16, 05C65

1. Introduction

Denote by TX the full transformation semigroup over the set X , which consists of all self-maps
of X under composition. When X = {1, . . . , n} for some integer n we denote TX by Tn.
Cayley’s Theorem states that every semigroup S embeds in some TX with |X| ⩽ |S| + 1;
see [How95, Theorem 1.1.2]. The (minimum transformation) degree of a semigroup S is defined
to be the cardinal

µ(S) = min
{
|X| : X ̸= ∅, S embeds in TX

}
.

(The requirement thatX ̸= ∅ is exclusively to establish the convention that a semigroup of size 1
has degree 1.) Several authors have calculated µ(S) for various classes of finite (semi)groups;
for semigroups see especially the works of Easdown [Eas87,Eas88,Eas92] and Schein [Sch88,
Sch92], but note that in some papers degrees are defined in terms of representations by par-
tial transformations. (Writing µ′(S) for the degree with respect to partial transformations, the
reader might like to verify that µ(S)− 1 ⩽ µ′(S) ⩽ µ(S).) See also [BT91, EENM17, Hol10]
for computational studies, [Hoe63,Slo65,Tul61] for connections to radical theory, and [BGP93,
EH16,ESTB10,HW02,Joh71,KP00,Sau10,Sau14,Wri75] for degrees of finite groups. The topic
is also closely related to enumeration of (classes of) semigroups by size [DK14, DK09, DM12,
For55,Mal19]. We also mention the very recent study of Margolis and Steinberg [MS23], which
was written after the current article but published before it, and concerns the class of Rhodes
semisimple semigroups. Apart from trivially small exceptions, none of the semigroups we study
here belong to this class, so our techniques are necessarily different from theirs.

The initial source of motivation for the current paper came from semigroup variants. Re-
call that the variant of a semigroup S with respect to a fixed element a ∈ S is the semi-
group Sa = (S, ⋆), where the sandwich operation ⋆ is defined by x⋆y = xay for x, y ∈ S. Vari-
ants were introduced by Hickey [Hic83,Hic86], building on earlier ideas of Lyapin [Lya60] and
Brown [Bro55], and have been studied by many others since. The papers [AM18,DE15,Eas20,
MT08, Tsy04, Tsy05] study variants of full transformation semigroups; see also [DÐE+18a,
DÐE+18b] for a categorical approach. Sandwich operations also play an important role in com-
putational semigroup theory [EENMP19].

Despite the simple definition, the structure of a variant T a
n is vastly more complicated than

that of Tn itself. See for example Figure 1.1, which gives egg-box diagrams for T4 and a vari-
ant T a

4 , both produced with GAP [Gro, M+]. (Egg-box diagrams display the structure of a
semigroup as determined by Green’s relations [Gre51], which are themselves defined below;
see [CP61, How95] for more details.) Nevertheless, it was shown in [Eas20] that variants T a

n

can be embedded in (ordinary) transformation semigroups of relatively small degree. For the
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next statement, which is [Eas20, Theorem 1.4], the rank of a transformation is the size of its
image.

Theorem 1.1. If a ∈ Tn and r = rank(a), then T a
n embeds in T2n−r.

In fact, it was shown in [Eas20] that T a
n is isomorphic to a local subsemigroup of T2n−r of

the form bT2n−rb, where b ∈ T2n−r satisfies rank(b) = n and rank(b2) = r. Theorem 1.1 (and
the fact that |T a

n | = |Tn|) leads to bounds on the degree of a variant:

n ⩽ µ(T a
n ) ⩽ 2n− r for a ∈ Tn with r = rank(a). (1.2)

It was shown in [Eas20] that (for very simple reasons) µ(T a
n ) in fact attains the upper bound

of 2n − r for r ⩾ n − 1. One of our main results, Theorem 5.15 below, improves this by
showing that µ(T a

n ) = 2n− r for r ⩾ n− 6.
The situation is very different, however, when the sandwich element a ∈ Tn has minimum

possible rank 1, where (1.2) becomes n ⩽ µ(T a
n ) ⩽ 2n− 1. For rank(a) = 1, we show that:

• µ(T a
n ) achieves the upper bound of 2n− 1 if and only if n ⩽ 15 (Proposition 5.23),

• the ratio µ(T a
n )/n tends to 1 as n→ ∞ (Theorem 5.27),

• the difference µ(T a
n )− n tends to ∞ as n→ ∞ (Theorem 5.28).

En route to proving the above results on variants, we conduct an analysis of various other
classes of semigroups.

Section 3 concerns rectangular bands. The main result of this section is Theorem 3.9, which
gives the degree for such a band, extending previously-known results on left and right zero semi-
groups [GM08, Eas92]. Table 3.1 gives several calculated values. The proof of Theorem 3.9
utilises new results on hypergraphs, which we believe are of independent interest; see especially
Theorem 3.6. As a further application we also treat rectangular groups in Theorem 3.12.

Section 4 concerns null semigroups, and semigroups we call right null semigroups (these
include null semigroups and right zero semigroups as special cases). Among other things, we
classify all null subsemigroups of full transformation semigroups and calculate the maximum
size of such subsemigroups; see Theorems 4.4 and 4.7. Curiously, it transpires that null and
left zero semigroups of the same size have the same degree. We also consider (3-)nilpotent
semigroups in Section 4, and Theorem 4.15 gives the maximum size of a 3-nilpotent subsemi-
group of Tn; Table 4.2 gives some calculated values. This result naturally complements the
article [DM12], which enumerates abstract 3-nilpotent semigroups by size. The degree of a uni-
form right null semigroup is given in Theorem 4.27; calculated values are given in Table 4.4. We
also apply the results of Section 4 to give an example of a semigroup S such that µ(Sa) < µ(S)
for all a ∈ S, answering a question from [Eas20].

The above-mentioned results on variants of Tn are then given in Section 5.

2. Preliminaries

We begin with some preliminary material on integers and compositions, and (transformation)
semigroups.
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Figure 1.1: Egg-box diagrams of the full transformation semigroup T4 (left) and a variant T a
4

(right), where a = ( 1 2 3 4
1 2 3 3 ) in standard two-line notation.

2.1. Basic numerical facts

We writeN={1, 2, 3, . . .} for the set of natural numbers, and for n ∈ Nwe write n={1, . . . , n}.
We adopt the convention that 00 = 1.

Lemma 2.1. For integers n ⩾ k ⩾ 0, we have (n+ 1)k−1 ⩽ nk.

Proof. This is clear for k = 0, and for k ⩾ 1 we use the Binomial Theorem:

(n+ 1)k−1 =
k−1∑
j=0

(
k−1
j

)
nk−1−j ⩽

k−1∑
j=0

(k − 1)jnk−1−j ⩽
k−1∑
j=0

njnk−1−j = k · nk−1 ⩽ nk.

Corollary 2.2. For integers n ⩾ k ⩾ 0 and t ⩾ 0, we have (n+ t)k−t ⩽ nk.

Proof. This is clear for t = 0 and for t > k. For 1 ⩽ t ⩽ k, we repeatedly apply Lemma 2.1:

nk ⩾ (n+ 1)k−1 ⩾ (n+ 2)k−2 ⩾ · · · ⩾ (n+ t)k−t.

Two closely-related functions ξ, α : N → N will play an important role throughout, as well
as an associated real function L : R+ → R+. Here R+ is the set of positive reals. For n ∈ N,
we define (with the n notation introduced at the start of the subsection):

ξ(n) = max{tn−t : t ∈ n} and α(n) = max{t ∈ n : ξ(n) = tn−t}. (2.3)

The numbers ξ(n) and α(n) appear as Sequences A003320 and A056155 on the OEIS [OEI].
Some calculated values are given in Table 2.1. The ξ and α functions played a role in [GM08] in
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relation to left zero subsemigroups of Tn; they will appear in several other contexts in the current
paper.

To define L : R+ → R+, first consider f : R+ → R defined by f(x) = x+ x lnx.
Since f ′(x)=2+lnx, we see that f(x) is strictly increasing for x⩾e−2. Since f(e−1)=0, it fol-
lows that f restricts to a bijection {x ∈ R : x > e−1} → R+. We then define L to be the inverse
of this bijection. Thus, for every t ∈ R+,L(t) is the unique real x > e−1 satisfying t = x+x lnx.
Note that L is also an increasing function, and that t ⩾ L(t) ⇔ t ⩾ 1 ⇔ L(t) ⩾ 1.

Lemma 2.4. (i) We have 1 = ξ(1) = ξ(2) < ξ(3) < ξ(4) < · · · .

(ii) For any m,n ∈ N, we have ξ(m)ξ(n) ⩽ ξ(m+ n− 1).

(iii) For any n ∈ N, α(n) is one of ⌊x⌋ or ⌈x⌉, where x = L(n), and

ξ(n) = max
(
⌊x⌋n−⌊x⌋, ⌈x⌉n−⌈x⌉) .

Proof. (i). It is clear that ξ(1) = ξ(2) = 1. Now suppose 2 ⩽ m < n, and write s = α(m).
Since m ⩾ 2, we have s ⩾ 2. Since also s ∈ m ⊆ n, we have

ξ(m) = sm−s < sn−s ⩽ max{tn−t : t ∈ n} = ξ(n).

(ii). Write s = α(m) and t = α(n). Then since 1 ⩽ s+ t− 1 ⩽ m+ n− 1 we have

ξ(m+ n− 1) ⩾ (s+ t− 1)(m+n−1)−(s+t−1)

= (s+ t− 1)m−s(s+ t− 1)n−t ⩾ sm−stn−t = ξ(m)ξ(n).

(iii). As in [GM08], define the real function g : R+ → R+ by g(x) = xn−x. Then differentiating,
we obtain g′(x) = xn−x−1(n−x−x lnx), so g′(x) = 0when x+x lnx = n, i.e. when x = L(n).
Moreover, if we write u = L(n), then g(x) is increasing for 1 ⩽ x < u and decreasing for x > u.
The result follows.

Remark 2.5. It follows that the ‘max’ in the definition of α(n) in (2.3) is only needed
for n = 2. Indeed, for n ⩾ 3, and writing u1 = ⌊u⌋ and u2 = ⌈u⌉, where u + u lnu = n, we
have 1 < u < n − 1, so that 1 ⩽ u1 < u2 ⩽ n − 1; it follows that one of un−u1

1 and un−u2
2 is

even and the other is odd.

The functions ξ and αwill also come up in another, somewhat indirect, way. We explore this
in the next subsection.

2.2. Compositions

Recall that a composition of a natural number n is a tuple σ = (s1, . . . , sr) of positive integers
satisfying s1 + · · · + sr = n, in which case we write σ ⊨ n and |σ| = r; we call r the length
of σ. If also s1 ⩾ · · · ⩾ sr, then σ is a partition of n, and we write σ ⊢ n. Certain parameters
associated to compositions will play an important role in all that follows, as well as certain
numerical functions/sequences defined in terms of them.
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n α(n) ξ(n)
1 1 1
2 2 1
3 2 2
4 2 4
5 3 9
6 3 27
7 3 81
8 4 256
9 4 1024

10 4 4096
11 4 16384
12 5 78125
13 5 390625
14 5 1953125
15 6 10077696
16 6 60466176
17 6 362797056
18 6 2176782336
19 7 13841287201
20 7 96889010407

n α(n) ξ(n)
21 7 678223072849
22 7 4747561509943
23 8 35184372088832
24 8 281474976710656
25 8 2251799813685248
26 8 18014398509481984
27 9 150094635296999121
28 9 1350851717672992089
29 9 12157665459056928801
30 9 109418989131512359209
31 10 1000000000000000000000
32 10 10000000000000000000000
33 10 100000000000000000000000
34 10 1000000000000000000000000
35 10 10000000000000000000000000
36 11 108347059433883722041830251
37 11 1191817653772720942460132761
38 11 13109994191499930367061460371
39 11 144209936106499234037676064081
40 12 1648446623609512543951043690496

Table 2.1: Values of the functions ξ, α : N → N defined in (2.3).

Perhaps the simplest parameter associated to a composition σ = (s1, . . . , sr) is its product:∏
σ = s1 · · · sr.

For integers 1 ⩽ r ⩽ n, we define

π(n) = max
{∏

σ : σ ⊨ n
}

and πr(n) = max
{∏

σ : σ ⊨ n, |σ| = r
}
. (2.6)

Clearly π(n) = maxr πr(n). The numbers π(n) and πr(n) are well understood, and a proof
of the following can be found for example in [GM08]. The first part follows from the fact
that the maximum value of

∏
σ, for σ ⊨ n with |σ| = r, occurs when the entries of σ are

‘almost equal’, in the sense that they are all within 1 of each other (as s > t + 1 implies
that (s− 1)(t+ 1) = st+ s− (t+ 1) > st). The second part then involves showing that the
product of almost-equal numbers with a given sum occurs when almost all of the numbers are 3.

Lemma 2.7. (i) If 1 ⩽ r ⩽ n, then πr(n) = ⌈n
r
⌉t · ⌊n

r
⌋r−t, where 0 ⩽ t ⩽ r − 1 is such

that n ≡ t (mod r).

(ii) For any n ⩾ 2 we have

π(n) =


3n/3 if n ≡ 0 (mod 3)

4 · 3(n−4)/3 if n ≡ 1 (mod 3)

2 · 3(n−2)/3 if n ≡ 2 (mod 3).
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The next family of parameters concerns certain pairs of compositions. Given composi-
tions σ = (s1, . . . , sr) and τ = (t1, . . . , tr) of the same length (but possibly with different
sums), we write τ ⪯ σ if ti ⩽ si for all i; for such compositions τ ⪯ σ, we define

η(σ, τ) =
r∏

i=1

tsi−ti
i .

Furthermore, for any composition σ we define

ξ(σ) = max{η(σ, τ) : τ ⪯ σ}.

Note that if σ = (s1, . . . , sr), then ξ(σ) = ξ(s1) · · · ξ(sr), which explains our re-use of the ξ
symbol. For 1 ⩽ r ⩽ n, we define

Ξ(n) = max{ξ(σ) : σ ⊨ n} and Ξr(n) = max{ξ(σ) : σ ⊨ n, |σ| = r},

so again Ξ(n) = maxr Ξr(n).

Lemma 2.8. For any 1 ⩽ r ⩽ n we have

(i) Ξ(n) = ξ(n),

(ii) Ξr(n) = ξ(n− r + 1),

(iii) Ξ1(n) > Ξ2(n) > · · · > Ξn−1(n) = Ξn(n) = 1.

Proof. Beginning with (ii), consider a composition σ = (s1, . . . , sr) ⊨ n. If r ⩾ 2, then from
Lemma 2.4(ii) and ξ(1) = 1, we obtain

ξ(σ) = ξ(s1) · · · ξ(sr−2)ξ(sr−1)ξ(sr) ⩽ ξ(s1) · · · ξ(sr−2)ξ(sr−1 + sr − 1)ξ(1) = ξ(σ′),

where σ′ = (s1, . . . , sr−2, sr−1 + sr − 1, 1). Continuing, we obtain ξ(σ) ⩽ ξ(τ), for the com-
position τ = (n − r + 1, 1, . . . , 1). Since this is true for all σ ⊨ n with |σ| = r, it follows
that

Ξr(n) = ξ(τ) = ξ(n− r + 1)ξ(1) · · · ξ(1) = ξ(n− r + 1).

Now that we have proved (ii), note that (iii) then follows from Lemma 2.4(i). Item (i) quickly
follows.

2.3. Semigroups

For more background on semigroups, see [CP61,How95].
For a semigroup S, we denote by S1 the monoid obtained by adjoining an identity element

to S if necessary; so S = S1 if S is a monoid. Green’s L , R and J relations are defined
for x, y ∈ S by

x L y ⇔ S1x = S1y, x R y ⇔ xS1 = yS1, x J y ⇔ S1xS1 = S1yS1.
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Green’s H and D relations are defined by H = L ∩ R and D = L ∨ R, where the latter
is the join in the lattice of equivalence relations on S. We have D = L ◦ R = R ◦ L , and
moreover D = J if S is finite.

An element x of a semigroup S is regular if x = xyx for some y ∈ S (equivalently,
if x = xyx and y = yxy for some y ∈ S), while x is an idempotent if x = x2. We
write Reg(S) and E(S) for the sets of all regular elements and all idempotents of S, respec-
tively, neither of which is a subsemigroup in general; both are non-empty when S is finite.
Obviously E(S) ⊆ Reg(S).

An element x of a semigroup S is a left zero of S if xa = x for all a ∈ S. A left zero
semigroup is a semigroup in which every element is a left zero: i.e., S satisfies the law xy = x.
Every left zero semigroup is L -simple, meaning that all elements are L -related. By a left
zero subsemigroup of a semigroup S we mean a subsemigroup that happens to be a left zero
semigroup (but note that its elements might not be left zeros of S itself).

Right zeros and right zero (sub)semigroups are defined analogously, and they have analogous
properties.

If a semigroup S has a left zero and a right zero, then it has a unique left zero and a unique
right zero, which are equal, and hence the unique (two-sided) zero of S. A null semigroup is a
semigroup S for which S2 = {xy : x, y ∈ S} = {z} for some z ∈ S, which is then necessarily
the zero of S.

A rectangular band is (isomorphic to) a semigroup of the form P ×Q, where P is a left zero
semigroup andQ a right zero semigroup; multiplication obeys the rule (p1, q1)(p2, q2) = (p1, q2).
If |P | = p and |Q| = q we say the rectangular band is p× q. Green’s relations on a rectangular
band P ×Q are particularly easy to describe:

(p1, q1) L (p2, q2) ⇔ q1 = q2 and (p1, q1) R (p2, q2) ⇔ p1 = p2.

Further, H is the equality relation, and D = J is the universal relation. As extreme cases, a
left zero semigroup of size p is a p× 1 rectangular band, with a similar statement for right zero
semigroups.

2.4. Full transformation semigroups

The full transformation semigroup TX consists of all self-maps of the setX , under composition.
When X is the set n = {1, . . . , n} for a positive integer n, we write TX = Tn. For more on
transformation semigroups, see [CP61,GM09,How95].

For f ∈ TX we write im(f) = {xf : x ∈ X} for the image of f , rank(f) = |im(f)| for the
rank of f , and ker(f) =

{
(x, y) ∈ X ×X : xf = yf

}
for the kernel of f . Green’s relations

on TX are given by

f L g ⇔ im(f) = im(g),

f R g ⇔ ker(f) = ker(g),

f D g ⇔ f J f ⇔ rank(f) = rank(g).
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Fix some subset Ω of TX . For any non-empty subset A ⊆ X , any equivalence relation ε on X
(denoted ε ⪯ X), and any cardinal 1 ⩽ r ⩽ |X|, we write

LA(Ω) = {f ∈ Ω : im(f) = A},
Rε(Ω) = {f ∈ Ω : ker(f) = ε},
Dr(Ω) = {f ∈ Ω : rank(f) = r}.

When there is no chance of confusion, we generally write LA = LA(TX), and so on. So the
sets LA (∅ ̸= A ⊆ X), Rε (ε ⪯ X) and Dr (1 ⩽ r ⩽ |X|) are the L -, R- and J = D-
classes of TX , respectively. For an equivalence ε ⪯ X , we write ∥ε∥ = |X/ε| for the number of
ε-classes.

At times it will be convenient to work with the kernel partition of a transformation f ∈ TX ,
defined by Ker(f) = X/ker(f). This is a set partition of X , and

|Ker(f)| = ∥ker(f)∥ = rank(f).

A transformation f ∈ TX will be represented in tabular form as f =
(
Ai

ai

)
i∈I

to indicate
that im(f) = {ai : i ∈ I} and aif−1 = Ai for all i ∈ I; we additionally assume that the
indexing set I is faithful in the sense that ai ̸= aj whenever i ̸= j, so that rank(f) = |I|. Note
that Ker(f) = {Ai : i ∈ I}. When rank(f) is finite, we write f = ( A1 ··· Ar

a1 ··· ar ). It is well known
and easy to see that f =

(
Ai

ai

)
i∈I

is idempotent if and only if ai ∈ Ai for all i.
It will also be convenient to describe here an operation⊕. Suppose we have a set of pairwise-

disjoint non-empty sets Xi (i ∈ I), and a collection of transformations fi ∈ TXi
(i ∈ I). Writ-

ing X =
⋃

i∈I Xi, we define
⊕

i∈I fi to be the unique transformation of X whose restriction
to each Xi is fi. For non-empty subsets Ωi ⊆ TXi

(i ∈ I), we write
⊕

i∈I Ωi for the set of
all

⊕
i∈I fi with each fi ∈ Ωi. In particular,

⊕
i∈I TXi

is a subsemigroup of TX , and is isomor-
phic to the (external) direct product

∏
i∈I TXi

.
For a fixed non-empty subset A of the set X , we have a subsemigroup

TX(A) = {f ∈ TX : im(f) ⊆ A}.

These subsemigroups have been studied extensively in the literature [Eas21, FS14, MGS11,
San11, SS08, SS13, Sun13], and will play an important role in the current work. Note that for
any a ∈ TX with im(a) = A, the subsemigroup TX(A) is precisely the principal left ideal

TX(A) = TXa = {fa : f ∈ TX}.

When X = n and A = k for integers 1 ⩽ k ⩽ n, we write TX(A) = Tn(k).
While the semigroup TX is regular, the same is not true of TX(A) in general. It was shown in

[SS08] that an element f of TX(A) is regular (in the semigroup TX(A)) if and only ifXf = Af ;
an equivalent formulation [Eas21] is that A saturates ker(f), meaning that every ker(f)-class
contains an element of A.
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2.5. Left and right zero transformation semigroups

For a subset Ω of a finite semigroup S, we write λ(Ω) and ρ(Ω) for the maximum size of a left
or right zero subsemigroup of S contained in Ω. In particular, λ(S) and ρ(S) are the maximum
sizes of a left or right zero subsemigroup of S.

Now consider a finite semigroup S, and a left zero subsemigroup T of S. Since the elements
of T are all L -related in T , it follows that T is contained in a single L -class of S, and hence in
a single (regular) D-class; let these classes be L and D, respectively. Noting that all left zeros
are idempotents, we have T ⊆ E(L). It is easy to see that E(L) is a left zero semigroup for
any regular L -class L. It follows from all this, and the analogous considerations of right zero
subsemigroups, that

λ(S) = max{λ(D) : D ∈ S/D} and ρ(S) = max{ρ(D) : D ∈ S/D},

and that for any D-class D of S,

λ(D) = max
{
|E(L)| : L ∈ D/L

}
and ρ(D) = max

{
|E(R)| : R ∈ D/R

}
.

The paper [GM08] classified the left and right zero subsemigroups of a finite full transforma-
tion semigroup Tn, and calculated the maximum size of such subsemigroups; see also [Eas92].
It will be convenient to interpret these results in our current set-up, using the ξ and π parameters
from Subsections 2.1 and 2.2. For 1 ⩽ r ⩽ n, we will write

λ(n) = λ(Tn), ρ(n) = ρ(Tn), λr(n) = λ(Dr(Tn)), ρr(n) = ρ(Dr(Tn)).

As discussed in Subsection 2.4, the L - and R-classes contained in the D-class Dr(Tn) are,
respectively, the sets of the form

LA = LA(Tn) = {f ∈ Tn : im(f) = A} for A ⊆ n with |A| = r

Rε = Rε(Tn) = {f ∈ Tn : ker(f) = ε} for ε ⪯ n with ∥ε∥ = r.

The size of E(LA) is rn−r, as any idempotent from LA maps A identically, and maps n \ A
arbitrarily into A. The size of E(Rε) is equal to the product of the sizes of the ε-classes, as any
idempotent from Rε maps each ε-class onto a single element of that class. By maximising these
values, one obtains the following, which is [GM08, Propositions 3.1 and 3.2].

Theorem 2.9. For 1 ⩽ r ⩽ n, the maximum size of a left or right zero semigroup contained
in Dr(Tn) is equal to

λr(n) = rn−r and ρr(n) = πr(n).

Remark 2.10. It is easy to check that for fixed r, the sequences λr(n) and ρr(n) are non-
decreasing in n ⩾ r.

Remark 2.11. Keeping in mind the formula for ρr(n) = πr(n) from Lemma 2.7(i), we of course
have ρn(n) = 1 for all n. Less trivially, we have ρr(n) = 2n−r for n

2
⩽ r ⩽ n.
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The values of λ(n) and ρ(n) are found by maximising λr(n) and ρr(n) over all 1 ⩽ r ⩽ n.
The following is [GM08, Theorems 3.3 and 3.4].

Theorem 2.12. For n ⩾ 1, the maximum size of a left or right zero subsemigroup of Tn is equal
to

λ(n) = ξ(n) and ρ(n) = π(n).

We will also need to extend Theorem 2.9 to the semigroups Tn(k) = {f ∈ Tn : im(f) ⊆ k}.
For integers 1 ⩽ r ⩽ k ⩽ n, we write

λr(n, k) = λ(Dr(Tn(k))) and ρr(n, k) = ρ(Dr(Tn(k)))

for the largest size of a left or right zero semigroup contained in Dr(Tn(k)), respectively. Note
thatDr(Tn(k)) is generally not a D-class of Tn(k); however, it contains a single regular D-class,
as follows from results of [Eas21, Section 5].

Lemma 2.13. For any 1 ⩽ r ⩽ k ⩽ n, we have λr(n, k) = λr(n) and ρr(n, k) = ρr(k).

Proof. For any A ⊆ k of size r, it is clear that LA(Tn) ⊆ Dr(Tn(k)). Since the L -classes con-
tained inDr(Tn) have a common number of idempotents, it quickly follows thatλr(n, k)=λr(n).

For the statement concerning ρr(n, k), consider a regular R-classR contained inDr(Tn(k)).
Let ε be the common kernel of the elements of R, and let the ε-classes be A1, . . . , Ar. Since R
is regular, k saturates ε, so it follows that Bi = Ai ∩ k is non-empty for each i ∈ r; let η ⪯ k
be the equivalence with classes B1, . . . , Br. Every idempotent from R is uniquely determined
by (and uniquely determines) its restriction to B1 ∪ · · · ∪ Br = k, which is an idempotent
from Rη(Tk); thus, |E(R)| = |E(Rη(Tk))|. Moreover, the above correspondence is reversible;
given any η ⪯ kwith ∥η∥ = rwe can find a suitable ε ⪯ n by arbitrarily assigning the remaining
elements of n \ k to η-classes. The result now follows.

One could then obtain results concerning the largest left and right zero subsemigroups
of Tn(k) by maximising the values of λr(n, k) = λr(n) and ρr(n, k) = ρr(k) over r ∈ k. Note
that the latter maximum will be ρ(k) = π(k), as in Theorem 2.12, but the former
is max{λr(n) : 1 ⩽ r ⩽ k}, and is not necessarily equal to λ(n) = ξ(n).

3. Rectangular bands and hypergraphs

In this section we calculate the (minimum transformation) degree µ(B) of an arbitrary finite
rectangular band B, thereby answering a question of Easdown [Eas92]. Since all p × q rectan-
gular bands are isomorphic, the degree of such a band depends only on the parameters p and q.
Accordingly, for p, q ∈ N we define

β(p, q) = min{n : Tn contains a p× q rectangular band}.

Since rectangular bands are D-simple, any such band contained in Tn is in fact contained in a
single D-class Dr(Tn). Accordingly, for p, q, r ∈ N we define

βr(p, q) = min{n : Dr(Tn) contains a p× q rectangular band},
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and of course we have β(p, q) = minr βr(p, q). In the above definition of βr(p, q),
we interpret min∅ = ∞. In particular, we have β1(p, q) = ∞ for p ⩾ 2, since D1(Tn) is an
n-element right zero semigroup (i.e., a 1 × n rectangular band) for any n. It follows
that β(p, q) = minr⩾2 βr(p, q) when p ⩾ 2.

As we noted in Subsection 2.3, the special cases of q = 1 and p = 1 correspond to left
and right zero semigroups, respectively. In these cases, values of β(p, q) and βr(p, q) can be
quickly deduced from the results of [Eas92,GM08] stated in Theorems 2.9 and 2.12 above. The
following statement uses the ξ and π parameters from Subsections 2.1 and 2.2.

Theorem 3.1. (i) For any p ⩾ 1 and any r ⩾ 2, we have

βr(p, 1) = min{n : rn−r ⩾ p} = ⌈logr p⌉+ r and β(p, 1) = min{n : ξ(n) ⩾ p}.

(ii) For any q, r ⩾ 1, we have

βr(1, q) = min{n : πr(n) ⩾ q} and β(1, q) = min{n : π(n) ⩾ q}.

When p, q ⩾ 2, we cannot calculate the numbers β(p, q) and βr(p, q) by finding the largest
rectangular bands contained in Tn and Dr(Tn). The reason for this is that even if Tn contained a
rectangular band of size pq, it may not contain one with the correct dimentions, p× q. In fact, it
follows from results of [GM08, Section 4] that the largest rectangular band contained in Tn (or
in Dr(Tn)) is always a left or right zero semigroup, so such an approach is bound to fail. Also,
since a rectangular band is the direct product of a left and right zero semigroup of appropriate
sizes, and since µ(S×T ) ⩽ µ(S)+µ(T ) for any semigroups S and T , we have an upper bound
of β(p, q) ⩽ β(p, 1) + β(1, q). This upper bound turns out to be an over-estimate, however, as
can be seen by inspecting Table 3.1.

Our approach for p, q ⩾ 2 will be via hypergraphs. After proving some results on hyper-
graphs in Subsection 3.1, which we believe are of independent interest (see especially Theo-
rem 3.6), we return to rectangular bands in Subsection 3.2 (see Theorem 3.9). We give further
applications of our results to rectangular groups in Subsection 3.3 (see Theorem 3.12).

3.1. Hypergraphs

A hypergraph is a pair H = (V,E), where V is a set of vertices, and E is a set of non-empty
subsets of V called (hyper)edges. If each edge has size r, we say that H is r-uniform and call it
an r-hypergraph; obviously we must have r ⩽ |V | ifH is non-empty (i.e., has at least one edge).
By an r-partition of an r-hypergraph H we mean a partition V = {V1, . . . , Vr} of the vertex set
such that each edge is a transversal of V (i.e., contains a unique point from each block Vi of V).
We call H r-partite if such an r-partition exists.

Given a partition V = {V1, . . . , Vr} of a set V , the complete r-partite r-hypergraph HV has
vertex set V , and its edges are all the transversals of V. The number of edges of HV is equal
to |V1| · · · |Vr|, which is the product

∏
σV of the composition σV = (|V1|, . . . , |Vr|). Any r-

hypergraph overV for whichV is an r-partition is a subgraph ofHV, and hence has at most
∏
σV

edges.
From the above discussion we have the following well-known result, expressed in terms of

the π parameters from Subsection 2.2.
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Lemma 3.2. Let n, r ⩾ 1 be integers. Then there exists a non-empty r-partite r-hypergraph
with n vertices if and only if r ⩽ n, in which case the maximum number of edges in such a
hypergraph is πr(n).

Our main goal in this subsection is to prove Theorem 3.6 below, which gives the correspond-
ing result for hypergraphs with some specified number of partitions. The key technical step in
the proof is Proposition 3.5, which shows that r-hypergraphs with many r-partitions give rise
to r-partite r-hypergraphs on smaller vertex sets. The proof of the proposition is inductive, and
relies on the next two lemmas.

Lemma 3.3. Suppose H is an r-hypergraph with at least one edge, and at least rt + 1 distinct
r-partitions for some integer t ⩾ 1. Then there exists a pair of vertices that belong to the same
block in at least t+ 1 of the partitions, but not in all of them.

Proof. Let A = {v1, . . . , vr} be an edge of H , and suppose V1, . . . ,Vrt+1 are distinct r-
partitions of H . For each 1 ⩽ i ⩽ rt + 1, let Vi = {Vi;1, . . . , Vi;r}, where vj ∈ Vi;j for
each j ∈ r. Since V1 = {V1;1, . . . , V1;r} and V2 = {V2;1, . . . , V2;r} are distinct, there ex-
ists k ∈ r such that V1;k ̸⊆ V2;k; fix some w ∈ V1;k \ V2;k. For each i ∈ {1, . . . , rt + 1}
let ji ∈ r be such that w ∈ Vi;ji . For each j ∈ r let Ij = {i ∈ {1, . . . , rt+ 1} : ji = j}.
Since {1, . . . , rt + 1} = I1 ∪ · · · ∪ Ir, we have |Im| ⩾ t + 1 for some m ∈ r. Then w and vm
belong to the same block in at least t+ 1 of the partitions (all the Vi for i ∈ Im).

Aiming for a contradiction, suppose w and vm belong to the same block in all of the parti-
tions. Since w ∈ V1;k and vm ∈ V1;m, it follows that k = m. But then w, vm ∈ V2;m = V2;k,
contradicting the definition of w ∈ V1;k \ V2;k.

Consider a hypergraph H with vertex set V , and let u, v ∈ V be distinct vertices.
Write H/{u, v} for the hypergraph obtained by identifying u and v. Formally, the vertex set
of H/{u, v} is obtained from V by removing the two vertices u, v and replacing them by a sin-
gle vertex denoted uv; all edges of H involving neither of u, v are still edges of H/{u, v}; all
other edges ofH/{u, v} are of the form {uv, w1, . . . , wk} where at least one of {u,w1, . . . , wk},
{v, w1, . . . , wk} or {u, v, w1, . . . , wk} is an edge of H . If H is r-uniform, then H/{u, v} might
not be. Also note that H/{u, v} could have fewer edges than H , but it cannot have more.

Lemma 3.4. Suppose H is an r-hypergraph with n vertices and q edges, with at least t + 1
distinct r-partitions, for some integer t ⩾ 1. Suppose vertices u and v belong to the same block
in t of the r-partitions, but not in all of them. Then H/{u, v} is an r-hypergraph with n − 1
vertices and q edges, and has at least t distinct r-partitions.

Proof. For simplicity, we write H ′ = H/{u, v} throughout the proof. Let the vertex set of H
be W ∪ {u, v}, so the vertex set of H ′ is W ∪ {uv}. (This of course has size n− 1.)

For each edgeA ofH , letA′ be the corresponding edge ofH/{u, v}, obtained by replacing u
and/or v by uv if necessary, as explained before the lemma. To show that H ′ has q edges, we
need to show that the map A 7→ A′ is injective. So suppose A′ = B′ for edges A,B of H .
If A′ = B′ ⊆ W , then A = A′ = B′ = B. Otherwise, A′ = B′ = {uv} ∪ C for some C ⊆ W .
ThenA andB must be one of {u}∪C, {v}∪C or {u, v}∪C. But {u, v}∪C cannot be an edge
of H , since u, v belong to the same block in some r-partition of H . On the other hand, {u} ∪C
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and {v} ∪C cannot both be edges of H , since u, v belong to distinct blocks in some r-partition
of H . This all shows that A = B.

The previous paragraph also shows that |A′| = |A| = r for every edge A of H , so H ′ is
r-uniform.

Finally, suppose V1, . . . ,Vt are distinct r-partitions of H in each of which u, v belong to
the same block. For each 1 ⩽ i ⩽ t let Vi = {Vi;1, . . . , Vi;r}, where u, v ∈ Vi;1. For each
such i, let V′

i = {V ′
i;1, Vi;2, . . . , Vi;r}, where V ′

i;1 is obtained from Vi;1 by replacing the pair of
vertices u, v (from H) by the single vertex uv (from H ′). Then by the above characterisation of
the edges ofH , it is clear that each V′

i is an r-partition ofH ′, and that these are still distinct.

Proposition 3.5. If H is an r-hypergraph with n vertices and q ⩾ 1 edges, and with at
least rl−1 + 1 distinct r-partitions for some integer l ⩾ 1, then there is an r-partite r-hypergraph
with n− l vertices and q edges.

Proof. The proof is by induction on l. Suppose first that l = 1. So H has at least two distinct r-
partitions, sayV1 andV2. Since these are distinct, there exist vertices u, v belonging to the same
block in V1 but not in V2. By Lemma 3.4 (with t = 1), H/{u, v} is an r-partite r-hypergraph
with n− 1 = n− l vertices and q edges.

Now suppose l ⩾ 2. Since rl−1+1 = r ·rl−2+1, it follows from Lemma 3.3 (with t = rl−2)
that there are vertices u, v ofH that belong to the same block in at least rl−2+1 of the partitions,
but not in all of them. By Lemma 3.4 (with t = rl−2+1),H/{u, v} is an r-hypergraph with n−1
vertices and q edges, and with at least rl−2+1 = r(l−1)−1+1 distinct r-partitions. By induction
there exists an r-partite r-hypergraph with (n− 1)− (l − 1) = n− l vertices and q edges.

Here is the main result of this subsection.

Theorem 3.6. Let n, p ⩾ 1 and r ⩾ 2 be integers, and let l = ⌈logr p⌉. Then there exists a non-
empty r-hypergraph with n vertices and at least p distinct r-partitions if and only if r + l ⩽ n,
in which case the maximum number of edges in such a hypergraph is πr(n− l).

Proof. If p = 1 then l = 0, and the result reduces to Lemma 3.2. For the rest of the proof we
assume that p ⩾ 2. It follows from the definition of l that l ⩾ 1, and rl−1 + 1 ⩽ p ⩽ rl.

Suppose there exists a non-empty r-hypergraph with n vertices and q(⩾ 1) edges, and
with p distinct r-partitions. Since p ⩾ rl−1 + 1, Proposition 3.5 applies, and it tells us there
is an r-partite r-hypergraph with n − l vertices and q edges. It then follows from Lemma 3.2
that r ⩽ n− l (i.e., r + l ⩽ n) and that q ⩽ πr(n− l).

It remains to show that if r+ l ⩽ n there exists an r-hypergraph with n vertices and πr(n− l)
edges, with (at least) p distinct r-partitions. To do so, suppose r + l ⩽ n. By Lemma 3.2 we
may fix an r-hypergraph H on n− l vertices with πr(n− l) edges. Let V = {V1, . . . , Vr} be an
r-partition ofH . Now letH ′ be the r-hypergraph obtained fromH by adding l isolated vertices.
ThenH ′ has n vertices and πr(n− l) edges, and (at least) rl distinct r-partitions (each of the new
vertices, independently, can go in any of the blocks V1, . . . , Vr). Since rl ⩾ p, we are done.
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3.2. Rectangular bands

We now use the results of the previous subsection to calculate the degree of an arbitrary finite
rectangular band, answering a question of Easdown [Eas92]. The first result shows how to con-
struct certain ‘large’ such bands. Its proof shares some ideas with that of Theorem 3.6.

Proposition 3.7. If 1 ⩽ r ⩽ n, and if 0 ⩽ l ⩽ n − r, then Dr(Tn) contains an rl × πr(n − l)
rectangular band.

Proof. Fix a partition V = {V1, . . . , Vr} of n\ l = {l+1, . . . , n} with |V1| · · · |Vr| = πr(n− l).
For each function f : l → r, and each transversal A = {v1, . . . , vr} of V, with each vi ∈ Vi, we
define a transformation

e(f, A) =
(
V1∪1f−1 ··· Vr∪rf−1

v1 ··· vr

)
∈ Dr(Tn).

It is easy to check that these compose according to the rule e(f, A) · e(g,B) = e(f,B). It
follows that the set of all such e(f, A) is a rectangular band contained in Dr(Tn). Since there
are rl functions l → r, and πr(n− l) transversals of V, the band has the stated dimensions.

Lemma 3.8. IfDr(Tn) contains a p×q rectangular band, where p, q ⩾ 2, then with l = ⌈logr p⌉
we have πr(n− l) ⩾ q.

Proof. SupposeB is a p× q rectangular band contained inDr(Tn). SinceD1(Tn) is a right zero
semigroup, and since p ⩾ 2, we have r ⩾ 2. Let

I = {im(f) : f ∈ B} and K = {Ker(f) : f ∈ B}

be the sets of all images and kernel partitions of the elements of B.
Since each element ofB has rank r, each member of I is a subset of n of size r, which means

that H = (n, I) is an r-hypergraph. Moreover, given A ∈ I and K ∈ K we have A = im(f)
and K = Ker(g) for some f, g ∈ B, and then since fg ∈ B ⊆ Dr it follows that A is a
transversal of K. This means that each member of K is an r-partition of H .

SinceB has pR-classes and qL -classes, it follows that |I| = q and |K| = p. This all means
that H is an r-hypergraph with n vertices and q edges, and with p distinct r-partitions. It then
follows from Theorem 3.6 that πr(n− l) ⩾ q.

We can now give an expression for β(p, q), which we recall denotes the degree of a p × q
rectangular band. The cases where one or both of p, q is 1 were treated in Theorem 3.1.

Theorem 3.9. If p, q ⩾ 2, then the degree of a p× q rectangular band is equal to

β(p, q) = min
r⩾2

βr(p, q), where βr(p, q) = min
{
n : πr(n− ⌈logr p⌉) ⩾ q

}
for r ⩾ 2.

Proof. At the beginning of Section 3 we explained that β(p, q) = minr⩾2 βr(p, q), where

βr(p, q) = min{n : Dr(Tn) contains a p× q rectangular band}.
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It therefore remains to show that for n, r ⩾ 2, Dr(Tn) contains a p × q rectangular band if and
only if πr(n− l) ⩾ q, where l = ⌈logr p⌉. The forwards implication is Lemma 3.8.

For the converse, suppose πr(n−l) ⩾ q. Then of course we have n−l ⩾ r, and so l ⩽ n−r.
Proposition 3.7 then tells us that Dr(Tn) contains an rl × πr(n− l) rectangular band, and hence
also a p× q rectangular band, since p ⩽ rl and q ⩽ πr(n− l).

Remark 3.10. In principle, the expression for β(p, q) in Theorem 3.9 involves finding the min-
imum of an infinite sequence of numbers: i.e., the βr(p, q) for all r ⩾ 2. In practice however,
only a finite subsequence needs to be considered. For example, to find β(p, q), one could first
find (say) m = β2(p, q). We then know that β(p, q) ⩽ m, and since βr(p, q) ⩾ r for all r it
quickly follows that β(p, q) = min2⩽r⩽m βr(p, q).

Table 3.1 gives several values of β(p, q), calculated in this way. The table also gives the
ranks r such that β(p, q) = βr(p, q). For some values of p, q there are multiple such r, in which
case the table gives the minimum r.

Remark 3.11. A band is a semigroup consisting entirely of idempotents. It is well known that
every band is a semilattice of rectangular bands; see [How95, Section 4.4] for a proof of this fact,
and an explanation of the terminology. We leave it as an open problem to determine whether this
structure (and Theorem 3.9) leads to a formula for the degree of an arbitrary finite band in terms
of its underlying semilattice and constituant rectangular bands. The degree of a semilattice of
groups was determined by Easdown in [Eas88].

3.3. Rectangular groups

Recall that a rectangular group is (isomorphic to) a direct product S = B × G, where B is a
rectangular band and G is a group. If the band B is p× q, we say that S is a p× q rectangular
group over G. An alternative characterisation of rectangular groups can be found in [How95,
Exercise 10, page 139]: they are precisely the D-simple regular semigroups whose idempotents
form a subsemigroup.

The results of previous subsections can be applied to calculate the degree of an arbitrary
finite rectangular group:

Theorem 3.12. If S is a finite p× q rectangular group over G, then

µ(S) = min
r⩾µ(G)

βr(p, q).

The numbers βr(p, q) are given in Theorems 3.1 and 3.9.

Proof. Consider a finite p× q rectangular group S = B ×G, and for simplicity write

n = µ(S) and N = min
r⩾µ(G)

βr(p, q).

We must show that n = N .
By definition of n, there exists an embedding ϕ : S → Tn. Since S is D-simple, im(S) is

contained in a single D-class of Tn, say Dr(Tn). Since G embeds in S, it also embeds into a
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p \ q 1 2 3 4 5 6 7 8 9 10
1 1, 1 2, 1 3, 1 4, 1 5, 1 5, 2 6, 2 6, 2 6, 2 7, 2
2 3, 2 4, 2 5, 2 5, 2 6, 2 6, 2 7, 2 7, 2 7, 2 8, 2
3 4, 2 5, 2 6, 2 6, 2 7, 2 7, 2 7, 3 7, 3 8, 2 8, 3
4 4, 2 5, 2 6, 2 6, 2 7, 2 7, 2 8, 2 8, 2 8, 2 9, 2
5 5, 2 6, 2 7, 2 7, 2 8, 2 8, 2 8, 3 8, 3 9, 2 9, 3
6 5, 2 6, 2 7, 2 7, 2 8, 2 8, 2 8, 3 8, 3 9, 2 9, 3
7 5, 2 6, 2 7, 2 7, 2 8, 2 8, 2 8, 3 8, 3 9, 2 9, 3
8 5, 2 6, 2 7, 2 7, 2 8, 2 8, 2 8, 3 8, 3 9, 2 9, 3
9 5, 3 6, 3 7, 3 7, 3 8, 3 8, 3 8, 3 8, 3 9, 3 9, 3
10 6, 2 7, 2 8, 2 8, 2 9, 2 9, 2 9, 3 9, 3 10, 2 10, 3

p \ q 10 20 30 40 50 60 70 80 90 100
10 10, 3 11, 4 12, 4 13, 4 13, 4 14, 4 14, 4 14, 4 15, 4 15, 4
20 10, 3 12, 3 12, 5 13, 5 14, 4 14, 5 14, 5 15, 4 15, 5 15, 5
30 11, 3 12, 4 13, 4 14, 4 14, 4 14, 6 15, 4 15, 4 15, 6 16, 4
40 11, 3 12, 4 13, 4 14, 4 14, 4 15, 4 15, 4 15, 4 16, 4 16, 4
50 11, 3 12, 4 13, 4 14, 4 14, 4 15, 4 15, 4 15, 4 16, 4 16, 4
60 11, 3 12, 4 13, 4 14, 4 14, 4 15, 4 15, 4 15, 4 16, 4 16, 4
70 11, 3 13, 3 13, 5 14, 5 15, 4 15, 5 15, 5 16, 4 16, 5 16, 5
80 11, 3 13, 3 13, 5 14, 5 15, 4 15, 5 15, 5 16, 4 16, 5 16, 5
90 12, 3 13, 4 13, 5 14, 5 15, 4 15, 5 15, 5 16, 4 16, 5 16, 5
100 12, 3 13, 4 13, 5 14, 5 15, 4 15, 5 15, 5 16, 4 16, 5 16, 5

p \ q 100 101 102 103 104 105 106 107 108 109

100 1, 1 7, 2 13, 4 20, 5 26, 8 32, 10 38, 13 45, 14 51, 16 57, 19
101 6, 2 10, 3 15, 4 21, 10 27, 10 33, 10 39, 13 46, 14 52, 16 58, 19
102 8, 3 12, 3 16, 5 22, 10 28, 10 34, 10 40, 13 47, 14 53, 16 59, 19
103 9, 4 13, 4 18, 4 23, 10 29, 10 35, 10 41, 13 48, 14 54, 16 60, 19
104 11, 4 15, 4 19, 5 24, 10 30, 10 36, 10 42, 13 49, 14 55, 16 61, 19
105 13, 4 17, 4 20, 7 25, 10 31, 10 37, 10 43, 13 49, 18 55, 18 61, 19
106 14, 4 18, 4 22, 5 26, 10 32, 10 38, 10 44, 13 50, 16 56, 16 62, 19
107 15, 6 19, 6 23, 6 27, 10 33, 10 39, 10 45, 13 51, 15 57, 16 63, 19
108 17, 5 21, 5 24, 7 28, 10 34, 10 40, 10 46, 13 52, 14 58, 16 64, 19
109 18, 5 22, 5 25, 7 29, 10 35, 10 41, 10 47, 13 53, 14 59, 16 64, 20

Table 3.1: Calculated values of β(p, q). If the (p, q) entry is n, r, then n = β(p, q) = βr(p, q),
with r minimal. This means that n is minimal with the property that Tn contains a p× q rectan-
gular band, and 1 ⩽ r ⩽ n is minimal with the property that Dr(Tn) contains such a band.
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group H -class in Dr(Tn); since such an H -class is isomorphic to the symmetric group Sr, it
follows that r ⩾ µ(G). Similarly,Dr(Tn) contains an isomorphic copy ofB, and so n ⩾ βr(p, q)
by definition. This all shows that n ⩾ N .

To show that n ⩽ N , we must show that S embeds in TN . To do so, suppose r ⩾ µ(G)
is such that N = βr(p, q). By definition, Dr(TN) contains a p × q rectangular band C.
Let T =

⋃
c∈C Hc be the union of all the H -classes of TN containing idempotents from C,

so that T is a p × q rectangular group over Sr (this follows quickly from the above-mentioned
characterisation of rectangular groups from [How95]). Since G embeds in Sr (as r ⩾ µ(G)), it
follows that S = B ×G embeds in B × Sr

∼= T , and hence in TN .

Remark 3.13. As in Remark 3.10, the expression for µ(S) in Theorem 3.12 involves finding the
minimum of an infinite sequence of numbers, but we again have µ(S) = minµ(G)⩽r⩽m βr(p, q)
for any a priori known upper bound m of µ(S). For example, we can take m = β(p, q) +µ(G),
since S is the direct product of a p× q rectangular band with G.

4. (Right) null and nilpotent semigroups

In this section we study null subsemigroups (Subsections 4.1 and 4.2) of a full transformation
semigroup TX , as well as some related kinds of subsemigroups: nilpotent subsemigroups (Sub-
sections 4.3 and 4.4), and so-called right null subsemigroups (Subsection 4.5). As an application
of our results on null semigroups, we give an example of a semigroup with a larger degree than
one of its variants (Subsection 4.6). Our results on right null semigroups will be used in Sec-
tion 5.

4.1. Null semigroups

Let X be an arbitrary set, possibly infinite. Obviously the zero of a null subsemigroup of TX

is an idempotent. So we fix an idempotent ζ ∈ E(TX), with the goal of classifying the null
subsemigroups containing ζ . We write ζ =

(
Zi

zi

)
i∈I

, noting that zi ∈ Zi for all i, as ζ is an
idempotent.

Definition 4.1. Given an idempotent ζ =
(
Zi

zi

)
i∈I

of TX , a ζ-system is a collection W of sets

W = {Wi : i ∈ I} such that zi ∈ Wi ⊆ Zi for all i ∈ I .

For such a ζ-system W, we define

N(W, ζ) = {f ∈ TX : Zif ⊆ Wi and Wif = {zi} for all i ∈ I}.

Lemma 4.2. Given an idempotent ζ of TX , a subset S of TX is a null semigroup with zero ζ if
and only if ζ ∈ S ⊆ N(W, ζ) for some ζ-system W.

Proof. (⇒). Suppose S is a null semigroup with zero ζ . Obviously ζ ∈ S. If f ∈ S, then
from ζ = fζ we obtain Zif ⊆ Zi for all i. Since also {zi} = Ziζ for all i, it quickly follows
that W = {Wi : i ∈ I} is a ζ-system, where

Wi =
⋃
f∈S

Zif for all i ∈ I.
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To see that S ⊆ N(W, ζ), let f ∈ S and i ∈ I be arbitrary. We have Zif ⊆ Wi by definition.
Moreover, for any g ∈ S we have {zi} = Ziζ = (Zig)f , from which it follows thatWif = {zi}.
(⇐). Now suppose ζ ∈ S ⊆ N(W, ζ) for some ζ-system W = {Wi : i ∈ I}. Let f, g ∈ S be
arbitrary. For any i ∈ I , and using f, g ∈ N(W, ζ), we have Zi(fg) = (Zif)g ⊆ Wig = {zi};
thus, Zi(fg) = {zi}, and so fg = ζ .

Now that we have characterised the null subsemigroups of TX , we wish to find the maximum
size of such a subsemigroup. We begin by calculating the size of the semigroups N(W, ζ).
It follows from the next lemma that this size depends only on the partitions Z = {Zi : i ∈ I}
and W = {Wi : i ∈ I}, indeed only on the cardinalities |Wi| and |Zi \Wi| for each i ∈ I .
Lemma 4.3. If W = {Wi : i ∈ I} is a ζ-system, then

|N(W, ζ)| =
∏
i∈I

|Wi||Zi\Wi|.

Proof. An element f of N(W, ζ) is determined by the restrictions f |Zi\Wi
(i ∈ I), which are

arbitrary functions Zi \Wi → Wi.

If X is infinite, then TX contains a null subsemigroup of the maximum conceivable
size 2|X| = |TX |. Indeed, it follows from Lemma 4.3 that we have |N(W, ζ)| = 2|X| if for
example |Wi| = |Zi \Wi| = |X| for some i.

We now consider the finite case. For a positive integer n, we write ν(n) for the maximum size
of a null subsemigroup of Tn. We also write νr(n) for the maximum size of a null subsemigroup
of Tn whose zero element has rank r.

Consider an idempotent ζ = ( Z1 ··· Zr
z1 ··· zr ) from Tn, and a ζ-system {W1, . . . ,Wr} with

each zi ∈ Wi. We then have two compositions σ = (s1, . . . , sr) and τ = (t1, . . . , tr),
where si = |Zi| and ti = |Wi| for each i, and we note that σ ⊨ n and τ ⪯ σ, in the nota-
tion of Subsection 2.2. Furthermore, Lemma 4.3 tells us that |N(W, ζ)| = η(σ, τ). It follows
from the definitions, and using Lemma 2.8, that

ν(n) = max{η(σ, τ) : σ ⊨ n, τ ⪯ σ} and νr(n) = max{η(σ, τ) : σ ⊨ n, |σ| = r, τ ⪯ σ}
= max{ξ(σ) : σ ⊨ n} = max{ξ(σ) : σ ⊨ n, |σ| = r}
= Ξ(n) = ξ(n) = Ξr(n) = ξ(n− r + 1).

Combining this with Lemma 2.8(iii), we have proved the following.
Theorem 4.4. Let n be a positive integer.
(i) For any 1 ⩽ r ⩽ n, the maximum size of a null subsemigroup of Tn whose zero element has

rank r is equal to νr(n) = ξ(n− r + 1).

(ii) We have ν1(n) > ν2(n) > · · · > νn−1(n) = νn(n) = 1.

(iii) The maximum size of a null subsemigroup of Tn is equal to ν(n) = ν1(n) = ξ(n). Moreover,
writing t = α(n), the set

Nn =
{
f ∈ Tn : im(f) ⊆ t and tf = {1}

}
is a null subsemigroup of Tn of size ν(n).
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Remark 4.5. Although the numbers νr(n) are defined in terms of the two parameters n and r,
there really is only one independent parameter, namely the difference n − r. (Thus, for exam-
ple, ν5(10) = ν105(110) = ξ(6) = 27.) This can be understood in the following way. Recall
from the proof of Lemma 2.8 that the maximum value of ξ(σ), for σ ⊨ n with |σ| = r, occurs
when σ = (n−r+1, 1, . . . , 1). This means that the biggest null subsemigroup whose zero ζ has
rank r occurs when there is a single ker(ζ)-class of sizen−r+1, say ζ=

({1,...,n−r+1} n−r+2 ··· n
1 n−r+2 ··· n

)
.

A null subsemigroupN of Tn with zero ζ , and of maximum size |N | = νr(n) = ξ(n− r+1), is
then given byNn−r+1⊕T{n−r+2}⊕· · ·⊕T{n}, where the subsemigroupsNk ⊆ Tk are as defined
in Theorem 4.4(iii). And of course N is then isomorphic to Nn−r+1.

Remark 4.6. Null semigroups played an important role in the investigation of subsemigroup
chains in Tn undertaken in [CGMP17]. The null subsemigroups in [CGMP17] were contained
in principal factors of D-classes, so in a sense all their elements had the same rank (apart from
the adjoined zero element). By contrast, the elements of the null subsemigroups of Tn considered
here can have a range of ranks.

Turning Theorem 4.4(iii) around, we obtain the degree of a null semigroup:

Theorem 4.7. If S is a null semigroup of size p, then µ(S) = min{n : ξ(n) ⩾ p}.

Remark 4.8. Comparing Theorems 4.7 and 3.1(i), we see that null and left zero semigroups of
the same size have the same degree.

4.2. Maximal null subsemigroups of Tn

It is also possible to calculate the number of maximal null subsemigroups of Tn. (By a maximal
null subsemigroup we mean a null subsemigroup that is not properly contained in another null
subsemigroup.) To this end, we write F (n) for this number.

By Lemma 4.2, any maximal null subsemigroup of Tn is of the form N(W, ζ) for some
idempotent ζ , and some ζ-system W. So a first attempt to calculate F (n) would be to count
the number of pairs (ζ,W) where ζ is an idempotent and W a ζ-system. However, due to a
technicality explained below, this results in some over-counting. To get around this, it will be
convenient to also write F1(n) for the number of maximal null subsemigroups of Tn whose zero
has rank 1.

Consider an idempotent ζ = ( Z1 ··· Zr
z1 ··· zr ) ∈ Tn, and a ζ-system W = {W1, . . . ,Wr}, with

each zi ∈ Wi ⊆ Zi. For each i, let ζi =
(
Zi
zi

)
∈ TZi

be the constant map with image zi. Then
each Wi = {Wi} is trivially a ζi-system, and it is clear that

N(W, ζ) =
⊕
i∈r

N(Wi, ζi),

with each factor N(Wi, ζi) a null subsemigroup of TZi
whose zero has rank 1. Thus, we can

uniquely specify a maximal null subsemigroup S of Tn as follows:

(i) Choose an integer partition σ = (s1, . . . , sr) ⊢ n (which, recall, means that σ is a composi-
tion of n and s1 ⩾ · · · ⩾ sr).
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(ii) Choose a set partition {Z1, . . . , Zr} of n with |Zi| = si for each i.

(iii) Choose maximal null subsemigroups Si of TZi
, i ∈ r, each of which has a zero of rank 1.

The semigroup so-determined is then S = S1 ⊕ · · · ⊕ Sr.
Given a partition σ as in (i), write f(σ) for the number of ways to choose the set partition

in (ii), and g(σ) for the number of ways to choose the semigroups Si in (iii). Note that the number
of choices available in (iii) does not depend on the particular choice made in (ii). It is therefore
clear that

F (n) =
∑
σ⊢n

f(σ)g(σ), (4.9)

and also that
g(σ) = F1(s1) · · ·F1(sr) for σ = (s1, . . . , sr) ⊢ n. (4.10)

A formula for f(σ) is also well known, and easily calculated. For each i ∈ n, let σi be the
number of entries of σ equal to i. Then

f(σ) =
n!∏

i∈n σi!(i!)
σi
. (4.11)

Thus, given (4.9)–(4.11), to compute F (n) it remains to understand the numbers F1(n), and we
now show that

F1(n) =


1 if n = 1

2 if n = 2

n(2n−1 − 2) if n ⩾ 3.
(4.12)

The n ⩽ 2 cases are easily dealt with, so we now assume that n ⩾ 3. Clearly F1(n) is equal to n
times the number of maximal null subsemigroups of Tn whose zero is ζ = ( n

1 ), the constant map
with image {1}, so it is enough to show that there are 2n−1 − 2 such subsemigroups. As above,
such a subsemigroup has the formN(W, ζ), where W = {W} for some subset {1} ⊆ W ⊆ n.
For simplicity we denote this subsemigroup by

N(W ) =
{
f ∈ Tn : nf ⊆ W, Wf = {1}

}
.

As extreme cases, we observe that N(n) = N({1}) = {ζ} is not maximal, as it is obviously
contained in every other N(W ); recall that we are assuming n ⩾ 3. On the other hand, given
distinct subsets {1} ⊂ W1,W2 ⊂ n, the subsemigroups N(W1) and N(W2) are incomparable
in the inclusion order. Indeed, if x ∈ W1 \W2, then for any y ∈ n \W1 and z ∈ W2 \ {1} we
have (

y n\{y}
x 1

)
∈ N(W1) \N(W2) and

(
x n\{x}
z 1

)
∈ N(W2) \N(W1). (4.13)

It follows from all of this that the maximal null subsemigroups of Tn with zero ζ = ( n
1 ) are

precisely those of the form N(W ) with {1} ⊂ W ⊂ n. Since there are of course 2n−1 − 2 of
these, this completes the proof of (4.12).

Calculating the numbers F (n) using (4.9)–(4.12) requires the enumeration of all integer
partitions of n, which is computationally challenging. However, F (n) may be computed more
efficiently using a simple recurrence, as we now explain. Observe that we can also specify a
maximal null subsemigroup S of Tn in the following way:
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• Choose the kernel-class containing 1 of the zero of S. Denote this class by Z1.

• Choose a maximal null subsemigroup S1 of TZ1 whose zero has rank 1.

• Choose a maximal null subsemigroup S2 of Tn\Z1 (with zero of any rank).

The semigroup so-determined is then S = S1 ⊕ S2. If |Z1| = k, then we can perform the above
steps in

(
n−1
k−1

)
, F1(k) and F (n− k) ways, respectively. This then leads to the recurrence:

F (0) = 1 and F (n) =
n∑

k=1

(
n− 1

k − 1

)
F1(k)F (n− k) for n ⩾ 1, (4.14)

with the numbers F1(k) given in (4.12). Table 4.1 gives some values of F (n) and F1(n), com-
puted using (4.12) and (4.14). The numbers F (n) grow rapidly; for example, F (1000) has 2287
digits. At the time of writing, the numbers F (n) did not appear on the OEIS [OEI]. The num-
bers F1(n) are [OEI, Sequence A052749].

n 0 1 2 3 4 5 6 7 8 9 10
F (n) 1 1 3 13 73 451 3211 26097 236433 2335123 24943171
F1(n) 1 2 6 24 70 180 434 1008 2286 5100

Table 4.1: Values of F (n) and F1(n): F (n) is the number of maximal null subsemigroups of Tn,
while F1(n) is the number of such subsemigroups whose zero has rank 1.

4.3. Nilpotent semigroups

The construction of the null semigroups N(W, ζ) in Subsection 4.1 can be generalised to
nilpotent semigroups. Recall that a semigroup S is nilpotent if for some integer k ⩾ 1 we
have Sk = {z} for some fixed element z ∈ S, which is necessarily a zero element of S; if k is
minimal with respect to this property, we say that S is k-nilpotent. So 2-nilpotent semigroups are
null. Here we give the details for 3-nilpotent subsemigroups of TX ; the construction for k ⩾ 4
is easily adapted, though the enumeration becomes more complicated.

To describe 3-nilpotent subsemigroups of TX with zero ζ =
(
Zi

zi

)
i∈I

, we require two sys-
tems V = {Vi : i ∈ I} and W = {Wi : i ∈ I} such that zi ∈ Vi ⊆ Wi ⊆ Zi for all i. For such
a pair of systems, it is easy to show that

N(V,W, ζ) =
{
f ∈ TX : Zif ⊆ Wi, Wif ⊆ Vi, Vif = {zi} for all i ∈ I

}
is a 3-nilpotent subsemigroup of TX with zero ζ . Strictly speaking, to ensure that N(V,W, ζ)
is indeed 3-nilpotent, and not degenerately 2-nilpotent (i.e., null), we must have strict inclu-
sions {zi} ⊂ Vi ⊂ Wi ⊂ Zi for at least one i ∈ I . In particular, this forces |X| ⩾ 4. Conversely,
any 3-nilpotent subsemigroup S with zero ζ is contained in some such N(V,W, ζ). Indeed,
given S we define

Wi =
⋃
f∈S

Zif and Vi =
⋃
f∈S

Wif for each i ∈ I .
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The size of N(V,W, ζ), as defined above, is given by

|N(V,W, ζ)| =
∏
i∈I

|Wi||Zi\Wi||Vi||Wi\Vi|.

In the finite case, say |X| = n, writing ζ = ( Z1 ··· Zr
z1 ··· zr ), |Zi| = si, |Wi| = ti and |Vi| = ui,

we have three compositions υ = (u1, . . . , ur), τ = (t1, . . . , tr) and σ = (s1, . . . , sr), satis-
fying υ ⪯ τ ⪯ σ ⊨ n. We then calculate

|N(V,W, ζ)| = ts1−t1
1 · · · tsr−tr

r · ut1−u1
1 · · ·utr−ur

r = η(σ, τ) · η(τ, υ).

Now write u = u1 + · · · + ur and t = t1 + · · · + tr, and note that n = s1 + · · · + sr. For
integers 1 ⩽ i ⩽ p and 1 ⩽ j ⩽ q we have ip−ijq−j ⩽ (i+ j)p−i(i+ j)q−j = (i+ j)(p+q)−(i+j).
It quickly follows that

|N(V,W, ζ)| ⩽ tn−t · ut−u.

Note that when r = 1 we have size tn−t · ut−u, so the maximum is achieved at rank 1: i.e., a
3-nilpotent subsemigroup of Tn of maximum size has a zero of rank 1. Thus, if we write κ(n)
for the maximum size of a 3-nilpotent subsemigroup of Tn, then we have

κ(n) = max{tn−t · ut−u : 1 ⩽ u ⩽ t ⩽ n}.

For fixed 1 ⩽ t ⩽ n, note that tn−t · ut−u is maximised (for 1 ⩽ u ⩽ t) when u = α(t), and
then ut−u = ξ(t); the functions α and ξ were defined in (2.3). We have therefore proved the
following:

Theorem 4.15. For an integer n ⩾ 4, the maximum size of a 3-nilpotent subsemigroup of Tn is
equal to

κ(n) = max{tn−t · ξ(t) : t ∈ n}.

Table 4.2 gives calculated values of κ(n), along with the values of u and t for which we
have κ(n) = tn−t · ut−u. These numbers do not appear on the OEIS [OEI]. Figure 4.1 shows
the egg-box diagram of a 3-nilpotent subsemigroup of T5 of size κ(5) = 18, again produced
with GAP [Gro,M+].

Figure 4.1: Egg-box diagram of a 3-nilpotent subsemigroup of T5 of maximum possible
size κ(5) = 18.
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n u t κ(n)
1
2
3
4 2 3 6
5 2 3 18
6 2 4 64
7 2 4 256
8 3 5 1125
9 3 6 5832
10 3 6 34992
11 3 6 209952
12 3 7 1361367
13 3 7 9529569
14 4 8 67108864
15 4 9 544195584
16 4 9 4897760256
17 4 9 44079842304
18 4 10 409600000000
19 4 10 4096000000000
20 4 10 40960000000000

n u t κ(n)
21 4 11 424958764662784
22 5 12 4837294080000000
23 5 12 58047528960000000
24 5 13 700062653920703125
25 5 13 9100814500969140625
26 5 13 118310588512598828125
27 5 14 1550224166512000000000
28 5 14 21703138331168000000000
29 5 14 303843936636352000000000
30 6 15 4412961507515625000000000
31 6 16 69712754611742420055883776
32 6 16 1115404073787878720894140416
33 6 16 17846465180606059534306246656
34 6 17 300120331617031984667981862912
35 6 17 5102045637489543739355691669504
36 6 17 86734775837322243569046758381568
37 6 18 1541674189500358697210578156388352
38 6 18 27750135411006456549790406814990336
39 7 19 520293618503860588010973963362962801
40 7 20 10159549097653043200000000000000000000

Table 4.2: Values of κ(n), which is the maximum size of a 3-nilpotent subsemigroup of Tn. Also
shown are the values of u and t for which κ(n) = tn−t · ut−u.

4.4. Maximal 3-nilpotent subsemigroups of Tn

As with null semigroups in Subsection 4.2, it is possible to calculate the number of maximal
3-nilpotent subsemigroups of Tn, though the calculation is a little more delicate. Here, by a
maximal 3-nilpotent subsemigroup we mean a 3-nilpotent subsemigroup that is not properly
contained in another 3-nilpotent subsemigroup. To this end, we write

• G(n) for the number of maximal 3-nilpotent subsemigroups of Tn, and

• G1(n) for the number of such subsemigroups whose zero has rank 1.

For reasons that will become clear shortly, we also need to define some further sequences.
Specifically, we also write

• H(n) for the number of null subsemigroups of Tn that are not properly contained in any
null or 3-nilpotent subsemigroup, and

• H1(n) for the number of such subsemigroups whose zero has rank 1.

Now consider some maximal 3-nilpotent subsemigroup S of Tn. So this must have the
form S = N(V,W, ζ), as described in the previous subsection, and we write

ζ = ( Z1 ··· Zr
z1 ··· zr ) , W = {W1, . . . ,Wr} and V = {V1, . . . , Vr},
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where
{zi} ⊆ Vi ⊆ Wi ⊆ Zi for each i. (4.16)

Again, the inclusions in (4.16) do not all have to be strict, but to ensure that S is 3-nilpotent
(and not null) there must be at least one i such that {zi} ⊂ Vi ⊂ Wi ⊂ Zi. For each i ∈ r,
let ζi =

(
Zi
zi

)
∈ TZi

, Wi = {Wi} and Vi = {Vi}, so that

S =
⊕
i∈r

Si where each Si = N(Vi,Wi, ζi).

Moreover, since S is maximal 3-nilpotent, each Si = N(Vi,Wi, ζi) is either:

• a maximal 3-nilpotent subsemigroup of TZi
, or else

• a null subsemigroup of TZi
that is not properly contained in any null or 3-nilpotent sub-

semigroup,

depending on the strictness of the inclusions in (4.16) for that particular i ∈ r. In either case,
the zero ζi of each factor Si has rank 1. One can then follow either of the two methods in
Subsection 4.2 to calculate the number G(n) of maximal 3-nilpotent subsemigroups of Tn.

We just give the details for the second approach, and obtain a recurrence forG(n). The basis
of the recursion is the observation that a maximal 3-nilpotent subsemigroup S can be specified
in the following way:

(i) Choose the kernel-class containing 1 of the zero of S. Denote this class by Z1.

(ii) Choose a subsemigroup S1 of TZ1 whose zero has rank 1, and is either

• maximal 3-nilpotent, or else
• null, but not properly contained in any null or 3-nilpotent subsemigroup of TZ1 .

(iii) Choose a subsemigroup S2 of Tn\Z1 (with zero of any rank) that is either

• maximal 3-nilpotent, or else
• null, but not properly contained in any null or 3-nilpotent subsemigroup of Tn\Z1 ,

ensuring that S1 and S2 are not both null.

The semigroup so-determined is then S = S1 ⊕ S2. If |Z1| = k, then we can perform step (i)
in
(
n−1
k−1

)
ways. If S1 is null, then there areH1(k) andG(n−k)ways to perform steps (ii) and (iii),

respectively. Otherwise, S1 is 3-nilpotent, and there are G1(k) and G(n− k) +H(n− k) ways.
This then leads to the recurrence:

G(0) = 0, (4.17)

G(n) =
n∑

k=1

(
n− 1

k − 1

)(
H1(k)G(n− k) +G1(k)

(
G(n− k) +H(n− k)

))
for n ⩾ 1.

(4.18)
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In order to implement this, it remains to understand the numbers G1(n), H1(n) and H(n). For-
mulae/recursions for these are given below in (4.19)–(4.21).

We begin with the H-numbers, and we first claim that

H1(n) =

{
n! if 1 ⩽ n ⩽ 3

0 if n ⩾ 4.
(4.19)

Indeed, for n ⩽ 3 we haveH1(n) = F1(n), as there are no (properly) 3-nilpotent subsemigroups
of Tn for n ⩽ 3. We now assume that n ⩾ 4. Aiming for a contradiction, suppose S is a null
subsemigroup of Tn, with zero of rank 1, that is not properly contained in any null or 3-nilpotent
subsemigroup. By the former, S is a maximal null subsemigroup. By symmetry, we may assume
the zero of S is ζ = ( n

1 ), so that S = N(W, ζ), where W = {W} for some {1} ⊂ W ⊂ n.
Since n ⩾ 4, we either have |W | ⩾ 3 or else |W | ⩽ n− 2. But in these cases, respectively, we
have:

• S = N(W, ζ) ⊂ N(W′,W, ζ), where W′ =
{
W \ {x}

}
for any x ∈ W \ {1}.

• S = N(W, ζ) ⊂ N(W,W′′, ζ), where W′′ =
{
W ∪ {y}

}
for any y ∈ n \W .

Since N(W′,W, ζ) and N(W,W′′, ζ) are both 3-nilpotent, we have reached the desired con-
tradiction, and this completes the proof of (4.19).

As in Subsection 4.2, it is then easy to see that

H(0) = 1 and H(n) =
n∑

k=1

(
n− 1

k − 1

)
H1(k)H(n− k) for n ⩾ 1. (4.20)

Keeping (4.19) in mind, we note that only the k ⩽ 3 terms in the above sum are non-zero.
As for the G-numbers, we claim that

G1(n) =

{
0 if 1 ⩽ n ⩽ 3

3n(1 + 3n−2 − 2n−1) if n ⩾ 4.
(4.21)

As usual, this is clear for n ⩽ 3, so we assume that n ⩾ 4. And again, G1(n) is equal to n times
the number of maximal 3-nilpotent subsemigroups of Tn whose zero is ζ = ( n

1 ). So consider
some such subsemigroup S, which has the form

S =
{
f ∈ Tn : nf ⊆ W, Wf ⊆ V, V f = {1}

}
for some {1} ⊂ V ⊂ W ⊂ n. (4.22)

Here, S = N(V,W, ζ), forW = {W} andV = {V }, and we abbreviate this to S = N(V,W ).
This time, S1 = N(V1,W1) and S2 = N(V2,W2) are incomparable if (V1,W1) ̸= (V2,W2).
(If V1 ̸= V2 or W1 ̸= W2, then as in (4.13), it is easy to construct transformations belonging
to S1 \ S2 and S2 \ S1.) Thus, G1(n)/n is equal to the number of pairs (V,W ), as in (4.22).
Specifying such a pair is equivalent to specifying the ordered partition

(
V \ {1},W \V,n \W )

of n \ {1}. It follows that G1(n)/n = 3! · S(n − 1, 3), where S(k, l) is a Stirling number of
the second kind. It is well known (and easy to verify using the standard Stirling recurrence)
that S(k, 3) = (1 + 3k−1 − 2k)/2 for k ⩾ 3, so (4.21) quickly follows.
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Table 4.3 gives some values of G(n) and G1(n), computed using (4.17)–(4.21). The num-
bers G1(n) appear as Sequence A052761 on the OEIS [OEI], while G(n) was not on the OEIS
at the time of writing. Although F (n) > G(n) for n ⩽ 6, the sequence G(n) quickly starts to
out-grow F (n). For example, G(1000) has 2405 digits, and we mentioned earlier than F (1000)
has 2287.

n 0 1 2 3 4 5 6 7 8 9 10
G(n) 0 0 0 0 24 300 3060 32340 353808 4199580 54149820
G1(n) 0 0 0 24 180 900 3780 14448 52164 181500

Table 4.3: Values of G(n) and G1(n): G(n) is the number of maximal 3-nilpotent subsemi-
groups of Tn, while G1(n) is the number of such subsemigroups whose zero has rank 1.

4.5. Right null semigroups

When studying variants in Section 5, an important role will be played by certain special kinds
of semigroups we call right null semigroups.

Recall that a band is a semigroup consisting entirely of idempotents. Following
Clifford [Cli54], a semigroup S is a band of semigroups if we have S =

⋃
b∈B Sb, for some

bandB, where the Sb are pairwise-disjoint subsemigroups of S, and SbSc ⊆ Sbc for all b, c ∈ B.
Of particular interest for us is the case in which:

• B is a right zero semigroup (bc = c for all b, c ∈ B),

• each Sb is a null semigroup, say with zero zb ∈ Sb, and

• SbSc = {zc} for all b, c ∈ B.

We will call such a semigroup S =
⋃

b∈B Sb a right null semigroup. When |B| = 1, S is a
null semigroup; when each |Sb| = 1, S is a right zero semigroup; so right null semigroups
simultaneously generalise both classes.

For a right null semigroup S as above, the idempotents E(S) = {zb : b ∈ B} form a right
zero subsemigroup of S isomorphic to B; so we will typically identify E(S) with B. We call S
uniform if the Sb have a common size. If |B| = p and |Sb| = q for all b ∈ B, we call S a p× q
(uniform) right null semigroup, and then of course |S| = pq. In fact, it is easy to show that
a p× q right null semigroup is simply a direct product of a p-element right zero semigroup and
a q-element null semigroup.

In order to understand the right null subsemigroups of a full transformation semigroup TX ,
we make use of the following natural extension of the ζ-systems, and associated null semigroups,
from Definition 4.1.

Definition 4.23. Given a right zero subsemigroupB of TX , aB-system is a collection W of sets
such that W is simultaneously a ζ-system for all ζ ∈ B. For such a B-system W, we define

N(W, B) =
⋃
ζ∈B

N(W, ζ).
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Lemma 4.24. Given a right zero subsemigroup B of TX , a subset S of TX is a right null semi-
group with E(S) = B if and only if B ⊆ S ⊆ N(W, B) for some B-system W.

Proof. The proof is easily adapted from that of Lemma 4.2. For the forwards implication we
still define Wi =

⋃
f∈S Zif .

Of course we have |N(W, B)| = |B| · |N(W, ζ)| for any ζ ∈ B. Moreover, given a right
zero subsemigroupB ⊆ TX , one could find the maximum size of a right null subsemigroup with
idempotents B, by choosing W so that each N(W, ζ), ζ ∈ B, is as large as possible.

On the other hand, given a partition Z = {Zi : i ∈ I} ofX , and a system W = {Wi : i ∈ I}
with ∅ ̸= Wi ⊆ Zi for all i ∈ I , we can construct a maximum bandB = B(Z,W) such that W
is a B-system. Specifically, we take B to consist of all idempotents of the form ζ =

(
Zi

wi

)
i∈I

for
all choices of wi ∈ Wi (i ∈ I). This B has size

∏
i∈I |Wi|.

WhenX is infinite, it is easy to describe 2|X|×2|X| uniform right null subsemigroups of TX .
The next result gives necessary and sufficient conditions for a full transformation semi-

group Tm to contain a right null semigroup of specified dimensions. The statement uses com-
positions and their associated parameters, as defined in Subsection 2.2.

Lemma 4.25. Form, p, q ∈ N, Tm contains a p× q uniform right null subsemigroup if and only
if there exist compositions σ and τ such that

τ ⪯ σ ⊨ m,
∏
τ ⩾ p, η(σ, τ) ⩾ q. (4.26)

Proof. By Lemma 4.24, Tm contains such a subsemigroup if and only it contains a subsemigroup
of the form N(W, B) for

• some right zero subsemigroup B ⊆ Tm with |B| ⩾ p, and

• some B-system W, such that |N(W, ζ)| ⩾ q for all ζ ∈ B.

Consider some such B and W. Suppose the common kernel-classes of the elements of B
are Z1, . . . , Zr, and write W = {W1, . . . ,Wr}, whereWi ⊆ Zi for each i. Also, write si = |Zi|
and ti = |Wi| for all i. Clearly the compositions σ = (s1, . . . , sr) and τ = (t1, . . . , tr) sat-
isfy τ ⪯ σ ⊨ m. Moreover, since every ζ ∈ B has the form ζ = ( Z1 ··· Zr

w1 ··· wr
) for some wi ∈ Wi,

we have

p ⩽ |B| ⩽ t1 · · · tr =
∏
τ and q ⩽ |N(W, ζ)| = ts1−t1

1 · · · tsr−tr
r = η(σ, τ).

Conversely, suppose the compositions σ = (s1, . . . , sr) and τ = (t1, . . . , tr) satisfy con-
ditions (4.26). We construct a (uniform)

∏
τ × η(σ, τ) right null subsemigroup S of Tm as

follows, and then S then of course contains a p × q right null subsemigroup. Choose a parti-
tion Z = {Z1, . . . , Zr} of m, and a system W = {W1, . . . ,Wr} such that Wi ⊆ Zi, |Zi| = si
and |Wi| = ti for each i. We define S = N(W, B), as in Definition 4.23, for the
band B = B(Z,W) described after the proof of Lemma 4.24.

It will transpire in Section 5 that we need to know the degree of a certain special kind of
right null semigroup. Since all p× q right null semigroups are isomorphic, we will write ϱ(p, q)
for the degree of any such semigroup.
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Theorem 4.27. (i) For integers p, q ⩾ 1 we have

ϱ(p, 1) = min{n : π(n) ⩾ p} and ϱ(1, q) = min{n : ξ(n) ⩾ q}.

(ii) For integers p, q ⩾ 2 we have

ϱ(p, q) = min{2A+ 3B + C +D : 0 ⩽ A ⩽ 2, B,D ⩾ 0, C ⩾ 2, 2A3BC ⩾ p, CD ⩾ q}
= min

{
2A+ 3⌈log3(p/2AC)⌉+ C + ⌈logC q⌉ : 0 ⩽ A ⩽ 2 ⩽ C ⩽ ϱ(p, 1) + ϱ(1, q)

}
,

where the parameters A,B,C,D in the above sets are all integers.

Proof. (i). This follows from Theorems 3.1(ii) and 4.7, given that p × 1 and 1 × q right null
semigroups are right zero or null semigroups, respectively.

(ii). We now assume that p, q ⩾ 2. By Lemma 4.25, the number ϱ(p, q) is the solution to the
following optimisation problem:

Problem 1. Minimise s1 + · · ·+ sr, for all r, s1, . . . , sr, t1, . . . , tr ∈ N, subject to:

ti ⩽ si for all i, t1 · · · tr ⩾ p, ts1−t1
1 · · · tsr−tr

r ⩾ q.

In the remainder of the proof, we reformulate Problem 1 until we arrive at the desired result.
Writing di = si − ti in the above, Problem 1 is equivalent to the following:

Problem 2. Minimise (t1 + · · · + tr) + (d1 + · · · + dr), for all r, t1, . . . , tr ∈ N and
all d1, . . . , dr ∈ N ∪ {0}, subject to:

t1 · · · tr ⩾ p and td11 · · · tdrr ⩾ q.

In the above, some of the di can be 0, but not all (as q ⩾ 2). For a given sum d1+· · ·+dr = D,
we have td11 · · · tdrr ⩽ max(t1, . . . , tr)

D, so Problem 2 is equivalent to:

Problem 3. Minimise t1 + · · ·+ tr +D, for all r, t1, . . . , tr, D ∈ N, subject to:

t1 · · · tr ⩾ p and max(t1, . . . , tr)
D ⩾ q.

Adding an ordering constraint t1 ⩽ · · · ⩽ tr of course does not change the solution to
Problem 3. Additionally writing C = tr = max(t1, . . . , tr), we can simplify the statement a
little:

Problem 4. Minimise t1 + · · ·+ tr−1 + C +D, for all r, t1, . . . , tr−1, C,D ∈ N, subject to:

t1 ⩽ · · · ⩽ tr−1 ⩽ C, t1 · · · tr−1C ⩾ p, CD ⩾ q.

Any solution to Problem 4 has t1, . . . , tr−1, C ⩾ 2. Indeed,C ⩾ 2 follows fromCD ⩾ q ⩾ 2,
while if r ⩾ 2 and t1 = 1, then t1 could be removed from the sum t1 + · · · + tr−1 + C + D
without decreasing the product t1 · · · tr−1C.

Also, for a given sum t1 + · · ·+ tr−1, the maximum value of t1 · · · tr−1 occurs when at most
two of the ti are 2, and the rest are 3. Problem 4 is then equivalent to:
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Problem 5. Minimise 2A+ 3B + C +D, for integers

0 ⩽ A ⩽ 2, B,D ⩾ 0, C ⩾ 2,

subject to 2A3BC ⩾ p and CD ⩾ q.

This gives the first claimed expression for ϱ(p, q), and we now work towards
establishing the second. To do so, suppose we have some solution (A,B,C,D) to Problem 5, so
that 2A+ 3B + C +D = µ(S), where S is some p × q right null semigroup. Since CD ⩾ q
we must have D ⩾ logC q, and so minimality forces D = ⌈logC q⌉. We similarly deduce
from 2A3BC ⩾ p that B = ⌈log3(p/2AC)⌉.

It remains to show that C is bounded above by ϱ(p, 1) + ϱ(1, q). To see this, note first
thatC ⩽ 2A+3B+C+D = µ(S). But S ∼= R×N for some p-element right zero semigroupR
and some q-element null semigroup N , so C ⩽ µ(S) ⩽ µ(R) + µ(N) = ϱ(p, 1) + ϱ(1, q), as
required.

Remark 4.28. When p, q ⩾ 2, the second expression in Theorem 4.27(ii) reduces the calculation
of ϱ(p, q) to three separate (finite) one-variable minimisations, one for each value ofA = 0, 1, 2.
It is then easy to compute the numbers ϱ(p, q); some values are given in Table 4.4. We also
observe (from the proof) that the upper bound on C of ϱ(p, 1)+ϱ(1, q) could be replaced by any
other a priori known upper bound on ϱ(p, q).

It is interesting to compare Table 4.4 with Table 3.1, which gives the degree β(p, q) of a p×q
rectangular band. Indeed, consider a p×q rectangular bandB and a q×p right null semigroup S
(note the swapping of the parameters for S). Then we have

B ∼= L×R and S ∼= R×N

for some left zero semigroup L, some right zero semigroup R and some null semigroup N ,
with |L| = |N | = p and |R| = q. In fact, not only do we have |L| = |N |, but we have already
observed in Remark 4.8 that µ(L) = µ(N). However, we do not necessarily have µ(B) = µ(S);
for example, β(2, 2) = 4 while ϱ(2, 2) = 3. Thus, we have a natural example where

µ(T × U) ̸= µ(T × V ) despite having µ(U) = µ(V ).

Other examples of this phenomenon are not hard to find, and some can be constructed using
other results from this paper. For example, let B be 2 × 2 rectangular band, and let L be a left
zero semigroup and G a group with |L| = |G| = 2. Clearly µ(L) = µ(G) = 2. Consulting
Table 3.1, we have µ(B) = 4 = β2(2, 2). It then follows from Theorem 3.12 that µ(B×G) = 4
as well. On the other hand, B × L is a 4× 2 rectangular band, and so µ(B × L) = 5, again by
Table 3.1.

Remark 4.29. The above results also lead to a formula for the degree of an arbitrary finite right
null semigroup. Specifically, if S =

⋃
b∈B Sb is some such semigroup, then

µ(S) = ϱ(p, q) where p = |B| and q = max
{
|Sb| : b ∈ B

}
.

Indeed, it follows from Lemma 4.24 that if S embeds in Tn then S is contained in some uniform
right null subsemigroup of Tn, which of course contains a p× q right null semigroup.
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Remark 4.30. Of course one could also consider left null semigroups. These are defined as
expected, and the uniform ones are of course direct products of left zero and null semigroups. A
description of left null transformation semigroups is more complicated than for right null semi-
groups, and is omitted since it is not important for our central purposes (cf. Subsection 5.3). As
an example of the difference in behaviour between left and right null transformation semigroups,
the following can all be easily verified using GAP [Gro,M+]:

• The transformations ( 1 2 3 4 5
1 1 x 5 5 ), x = 1, 2, 4, 5, form a 2 × 2 (uniform) left null subsemi-

group of T5.

• The semigroup T4 contains no 2× 2 left null subsemigroup.

• The transformations ( 1 2 3 4
1 1 x 4 ), x = 1, 2, 4, form a left null subsemigroup of T4 with two

idempotents.

The first two points show that the degree of a 2× 2 left null semigroup is 5. Combined with the
third point, it follows that the degree of an arbitrary left null semigroup can not be reduced to
the uniform case, contrasting with the right null situation (cf. Remark 4.29).

4.6. Decreasing the degree by forming a variant

Before we move on, we pause to address another question asked in [Eas20].
Consider a finite semigroup S, and an arbitrary element a ∈ S. It is natural to won-

der how the degrees of S and the variant Sa are related. Theorem 1.1 leads to the upper
bound µ(Sa) < 2µ(S). Indeed, if n = µ(S), then any embedding ϕ : S → Tn yields an embed-
ding Sa → T aϕ

n , which we can follow with an embedding T aϕ
n → T2n−r, where r = rank(aϕ).

Question 4.4 of [Eas20] asks if there exists a finite semigroup S such that µ(Sa) < µ(S) for
some a ∈ S. This can be quickly answered in the affirmative, and we do so with two examples.
The first involves cyclic groups, so we begin with the following basic result. It is most likely
well known, but proofs are provided for convenience.

Lemma 4.31. Let G be a finite group, and let ϕ : G→ Tn be an embedding, where n = µ(G).

(i) The image im(ϕ) is contained in the symmetric group Sn.

(ii) For every i ∈ n there exists g ∈ G such that i(gϕ) ̸= i.

(iii) If S = G ∪ {0} is the semigroup obtained by adjoining a zero element to G, then we
have µ(S) = µ(G) + 1.

Proof. (i). Clearly im(ϕ) is contained in some group H -class H of Tn, and H is contained in
some D-class Dr with 1 ⩽ r ⩽ n. But H ∼= Sr, so G embeds in Sr, and hence in Tr. Thus, by
minimality of n = µ(G) we have n ⩽ r, and so r = n. Thus, H = Sn.

(ii). If not, then we may assume by symmetry that n(gϕ) = n for all g ∈ G. Since im(ϕ) ⊆ Sn

by (i), it follows that G embeds in Sn−1, contradicting n = µ(G).
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p \ q 1 2 3 4 5 6 7 8 9 10
1 1 3 4 4 5 5 5 5 5 6
2 2 3 4 4 5 5 5 5 5 6
3 3 4 4 5 5 5 5 5 5 6
4 4 5 5 5 6 6 6 6 6 6
5 5 6 6 6 6 7 7 7 7 7
6 5 6 6 7 7 7 7 7 7 8
7 6 7 7 7 8 8 8 8 8 8
8 6 7 7 7 8 8 8 8 8 8
9 6 7 7 8 8 8 8 8 8 9
10 7 8 8 8 8 9 9 9 9 9

p \ q 10 20 30 40 50 60 70 80 90 100
10 9 9 10 10 10 10 10 10 10 10
20 11 11 12 12 12 12 12 12 12 12
30 12 12 13 13 13 13 13 13 13 13
40 13 13 14 14 14 14 14 14 14 14
50 14 14 14 15 15 15 15 15 15 15
60 14 14 15 15 15 15 15 15 15 15
70 14 15 15 15 15 15 16 16 16 16
80 15 15 16 16 16 16 16 16 16 16
90 15 15 16 16 16 16 16 16 16 16
100 15 16 16 16 16 16 17 17 17 17

p \ q 100 101 102 103 104 105 106 107 108 109

100 1 6 8 9 11 13 14 15 17 18
101 7 9 10 12 13 15 16 17 18 19
102 13 15 17 18 20 21 22 23 25 26
103 20 22 23 25 26 27 29 30 31 32
104 26 28 29 31 32 33 35 36 37 38
105 32 34 36 37 39 40 41 42 43 44
106 38 41 42 43 45 46 47 48 50 51
107 45 47 48 50 51 52 54 55 56 57
108 51 53 55 56 57 58 60 61 62 63
109 57 59 61 62 64 65 66 67 68 69

Table 4.4: Calculated values of ϱ(p, q), which is the degree of a p× q right null semigroup.
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(iii). Let ζ ∈ Tn+1 be the constant map with image {n + 1}. Then ψ : S → Tn+1, defined
by 0ψ = ζ and gψ = gϕ⊕ id{n+1} for g ∈ G, is an embedding, so that µ(S) ⩽ n+ 1.

To show that µ(S) ⩾ n+ 1, suppose to the contrary that there is an embedding θ : S → Tn.
Let ζ = 0θ, and let i ∈ im(ζ) be arbitrary, so i = iζ . By (ii) there exists g ∈ G such
that i(gθ) ̸= i, so it follows that i = iζ = i(0θ) = i(0θ)(gθ) = i(gθ) ̸= i, a contradiction.

Example 4.32. LetG be a cyclic group of prime order p, and let S = G∪{0} be the semigroup
obtained by adjoining a zero element toG. It is well known [Joh71] that µ(G) = p, so it follows
from Lemma 4.31 thatµ(S) = p+1. On the other hand, the variantS0 (with sandwich element 0)
is a null semigroup of size p + 1. Thus, for p ⩾ 5 we have µ(S0) < p + 1 = µ(S), as follows
quickly from Theorem 4.7; cf. Table 2.1.

In fact, the rapid growth of the ξ function means that the ratio µ(S)/µ(S0) can be made
arbitrarily large by choosing p large enough. For example, again consulting Table 2.1, if p has 20
digits, then so too does µ(S) = p+1, while µ(S0) = 30. By contrast, we have µ(Sa)/µ(S) < 2
for any semigroup S and any a ∈ S, as noted earlier.

We can also use null and nilpotent semigroups to provide an example of a semigroup whose
degree is strictly greater than the degrees of all its variants.

Example 4.33. Consider the 3-nilpotent semigroup S = {x, y, z, 0} for which the only non-zero
product is x2 = y:

· 0 x y z
0 0 0 0 0
x 0 y 0 0
y 0 0 0 0
z 0 0 0 0

We claim that:

(i) µ(S) = 5, but

(ii) µ(Sa) = 4 for all a ∈ S.

We first note that (ii) is clear, given the fact that any variant of a 3-nilpotent semigroup is null,
and that ξ(3) = 2 and ξ(4) = 4; cf. Theorem 4.7 and Table 2.1.

For (i), we have µ(S) ⩽ 5 because we have an embedding S → T5 given by

x 7→ ( 1 2 3 4 5
1 1 1 2 4 ) , y 7→ ( 1 2 3 4 5

1 1 1 1 2 ) , z 7→ ( 1 2 3 4 5
1 1 2 1 1 ) , 0 7→ ( 1 2 3 4 5

1 1 1 1 1 ) .

(If we denote these transformations by x′, y′, z′ and 0′, respectively, then the only product not
equal to 0′ is x′ ◦ x′ = y′.)

To show that µ(S) ⩾ 5, we must show that T4 contains no subsemigroup isomorphic to S.
To do so, and aiming for a contradiction, suppose T4 does contain such a subsemigroup T ∼= S.
Since {y, z, 0} is a null subsemigroup of S, it follows that T contains a null subsemigroup
of size 3. For 2 ⩽ r ⩽ 4, the biggest null subsemigroup of T4 with a zero of rank r has
size νr(4) ⩽ ν2(4) = ξ(3) = 2; cf. Theorem 4.4. It follows that the zero ζ of T has rank 1. By
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symmetry, we may assume that ζ = ( 4
1 ). As in Subsection 4.4, it follows that T is contained in

the subsemigroup

N = N(V,W ) =
{
f ∈ T4 : 4f ⊆ W, Wf ⊆ V, V f = {1}

}
for some {1} ⊂ V ⊂ W ⊂ 4.

Again, by symmetry we can assume that V = 2 and W = 3. Denoting the elements of N by

ζ = ( 1 2 3 4
1 1 1 1 ) , a = ( 1 2 3 4

1 1 1 2 ) , b = ( 1 2 3 4
1 1 1 3 ) , c = ( 1 2 3 4

1 1 2 1 ) , d = ( 1 2 3 4
1 1 2 2 ) , e = ( 1 2 3 4

1 1 2 3 ) ,

the multiplication table for N is as follows:

· ζ a b c d e
ζ ζ ζ ζ ζ ζ ζ
a ζ ζ ζ ζ ζ ζ
b ζ ζ ζ a a a
c ζ ζ ζ ζ ζ ζ
d ζ ζ ζ ζ ζ ζ
e ζ ζ ζ a a a

Since S contains an element with non-zero square, it follows that e ∈ T . Since all other products
in T must equal ζ , it follows from the last row of the table that T = {ζ, a, b, e}. But this T has
precisely two non-zero products, b ◦ e = e ◦ e = a ̸= ζ . This is the desired contradiction.

5. The degree of T a
n

We now turn to variants of finite full transformation semigroups. Recall that for a fixed transfor-
mation a ∈ Tn, the variant T a

n is the semigroup with underlying set Tn and operation ⋆ defined
by g ⋆ h = gah for all g, h ∈ Tn. Recall from (1.2) that when rank(a) = r, we have

n ⩽ µ(T a
n ) ⩽ 2n− r.

The main guiding theme of the current section is Question 4.2 of [Eas20], which asks whether
the upper bound of 2n− r is in fact the exact value of µ(T a

n ).
We begin in Subsection 5.1 with some general results showing that any embedding of T a

n

in T2n−r−1 (which would ‘break’ the upper bound of 2n − r) is rather restricted. We then
apply these results in Subsection 5.2 to show that indeed µ(T a

n ) = 2n − r when r is suitably
large (r ⩾ n− 6); see Theorem 5.15.

Subsection 5.3 then considers the other extreme case of r = 1, where a is a constant map.
Since µ(T a

n ) does not depend on the actual choice of the constant map a, we denote it by µ(n),
and the above bounds become n ⩽ µ(n) ⩽ 2n − 1. By realising T a

n as an n × nn−1 right null
semigroup (for rank(a) = 1), we apply Theorem 4.27 to give a formula for µ(n) in Proposi-
tion 5.19. We then show in Proposition 5.23 that it is indeed possible to break the upper bound
of 2n−1, and in Theorem 5.24 that the sequence µ(n) is strictly increasing in n. Theorems 5.27
and 5.28, concern the asymptotic behaviour of µ(n), showing in particular that the ratio µ(n)/n
tends to 1 as n→ ∞, while the difference µ(n)− n grows without bound. We state some open
problems in Subsection 5.4.
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5.1. General results

For the duration of this subsection, we fix an integer n ⩾ 2, and a transformation a ∈ Tn

with rank(a) = r. Since we wish to study the variant T a
n , and since T a

n
∼= T gah

n for any permu-
tations g, h ∈ Sn (see [GM09, Proposition 13.1.3]), we may assume without loss of generality
that a is an idempotent with im(a) = r.

As noted above, we have µ(T a
n ) ⩽ 2n − r, and here we are interested in the question of

whether we could in fact have strict inequality: µ(T a
n ) < 2n − r. If we do, then T a

n can be
embedded in T2n−r−1. For the duration of this subsection, we writem = 2n−r−1 for simplicity,
and we hypothesise the existence of an embedding

ϕ : T a
n → Tm.

Since ϕ obviously cannot exist for r = n (since then m = n − 1), we assume that r < n in all
that follows. We will write f ′ = fϕ for all f ∈ Tn, noting that (f ⋆ g)′ = f ′g′ for all f, g ∈ Tn.
If S ⊆ Tn, we write S ′ = Sϕ = {f ′ : f ∈ S}.

We will occasionally need to refer to Green’s relations on the semigroups T a
n and Tm; those

on the former will be denoted L a, Ra, and so on, to distinguish them from those on the latter,
which will be denoted in the usual way.

Consider the set

S = {f ∈ Tn : f |r = idr} = {f ∈ Tn : af = a},

which is easily seen to be a subsemigroup of T a
n of size nn−r. Consequently, S ′ = Sϕ is a

subsemigroup of Tm of the same size. Also define

F =
⋃
f∈Tn

im(f ′) and G =
⋃
f∈S

im(f ′),

noting that G ⊆ F ⊆ m. The following is true by definition:

Lemma 5.1. The image im(ϕ) is contained in the subsemigroup

Tm(F ) = {f ∈ Tm : im(f) ⊆ F}.

Lemma 5.2. For all f ∈ S and all x ∈ F we have xf ′ = xa′. Consequently, nn−r ⩽ |G|m−|F |.

Proof. Fix some f ∈ S and x ∈ F . By definition, we have x = yg′ for some y ∈ m and g ∈ Tn.
Since f ∈ S we have a = af , so g ⋆ f = gaf = ga = gaa = g ⋆ a, which gives g′f ′ = g′a′

in Tm. But then xf ′ = yg′f ′ = yg′a′ = xa′.
Now that we have proved the first assertion, it follows that the elements of S ′ are only dis-

tinguished by their restriction to m \ F . Every such restriction is a map m \ F → G, of which
there are |G|m−|F |. Since |S ′| = nn−r, the second assertion follows.

Lemma 5.3. We have |F | ⩽ n− 2.
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Proof. Suppose to the contrary that |F | = n − 1 + k where k ⩾ 0. Then by Lemma 5.2 and
Corollary 2.2, and since G ⊆ F , we have

nn−r ⩽ |G|m−|F | ⩽ |F |m−|F | = (n−1+k)(2n−r−1)−(n−1+k) = (n−1+k)n−r−k ⩽ (n−1)n−r,

a contradiction (as n− r ⩾ 1).

In what follows, a crucial role will be played by the constant maps from Tn, and their images
in Tm under ϕ. For i ∈ n, write ei =

(
n
i

)
∈ Tn for the constant map with image {i}. We will

frequently make use of the fact that eif = eif for all i ∈ n and f ∈ Tn.
Since the ei are all Ra-related in T a

n , the e′i = eiϕ are all R-related in Tm, so they have a
common kernel, the classes of which we will denote by B1, . . . , Bq. Thus, we may write

e′i =
(

B1 ··· Bq
xi1 ··· xiq

)
for i ∈ n.

Since each e′i is an idempotent, we have xij ∈ Bj for all i ∈ n and j ∈ q.

Lemma 5.4. We have q ⩾ 2.

Proof. If we had q = 1 then e′1, . . . , e
′
n would be distinct transformations of rank 1, and

so |F | ⩾ | im(e′1) ∪ · · · ∪ im(e′n)| = n, contradicting Lemma 5.3.

The next statement uses the ⊕ operation defined in Subsection 2.4.

Lemma 5.5. For any f ∈ Tn and any i ∈ q, we have Bif
′ ⊆ Bi. Consequently, im(ϕ) is

contained in TB1 ⊕ · · · ⊕ TBq .

Proof. In T a
n we have f ⋆ e1 = e1, so it follows that f ′e′1 = e′1. The claim follows.

For each i ∈ q let Fi = F ∩ Bi. The next result follows immediately from Lemmas 5.1
and 5.5.

Corollary 5.6. The image im(ϕ) is contained in TB1(F1)⊕ · · · ⊕ TBq(Fq).

Next we wish to find a lower bound on the rank of a′. For this, we require the following result
concerning Green’s ⩽J -preorder, defined on a semigroup S by x ⩽J y ⇔ x ∈ S1yS1. In a
full transformation semigroup TX , we have f ⩽J g ⇔ rank(f) ⩽ rank(g). The proof uses
the natural partial order on the idempotents E(S) defined by e ⩽ f ⇔ e = ef = fe.

Lemma 5.7. Suppose we have an embedding ψ : S → T , where S and T are finite regular semi-
groups, and where all elements of S are comparable in the ⩽J -preorder. Then for all x, y ∈ S,
we have x ⩽J y in S if and only if xψ ⩽J yψ in T .

Proof. Clearly x ⩽J y ⇒ xψ ⩽J yψ. For the converse, suppose xψ ⩽J yψ. By assump-
tion we have either x ⩽J y or x ⩾J y. In the former case we are done, so suppose instead
that x ⩾J y. This implies that xψ ⩾J yψ, so in fact xψ J yψ. Since x ⩾J y in the regular
semigroup S, it follows from [Hal70, Theorem 1] that there exist idempotents e, f ∈ E(S) such
that x J e ⩾ f J y. This implies that the idempotents eψ, fψ ∈ E(T ) satisfy eψ ⩾ fψ,
and also eψ J xψ J yψ J fψ. As T is finite, the natural order is trivial on J -classes
(see for example [Hal73, Result 6]), so that eψ = fψ, and thus e = f as ψ is injective. We thus
have x J e = f J y. In particular, x ⩽J y, as required.
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Lemma 5.8. We have rank(a′) ⩾ q + r − 1.

Proof. Consider the set R = Reg(T a
n ) of all regular elements of T a

n . As shown in [DE15], R is
a subsemigroup of T a

n , and is a chain of J a = Da-classes: Da
1 < · · · < Da

r . Fix some fi ∈ Da
i

for each i ∈ r, and assume that f1 = e1 and fr = a. Then using Lemma 5.7 and the above-
mentioned characterisation of the ⩽J -ordering in Tm,

f1 <J · · · <J fr ⇒ f ′
1 <J · · · <J f ′

r

⇒ q = rank(f ′
1) < rank(f ′

2) < · · · < rank(f ′
r) = rank(a′).

The result is then immediate.

In the case that r = 1, a is a constant map, so that rank(a′) attains the lower bound
of q + r − 1 = q just established. We show below that the lower bound is never attained
when r ⩾ 2; see Lemma 5.12.

First, however, we take a closer look at the transformation a′ = aϕ. For each i ∈ q, denote
the restriction a′|Bi

by a′i, and write ri = rank(a′i). By Lemma 5.5 we have a′ = a′1 ⊕ · · · ⊕ a′q,
with each a′i ∈ TBi

(Fi).

Lemma 5.9. We have ri ⩾ r for some i ∈ q.

Proof. Recall that ϕ is an embedding of T a
n into TB1 ⊕ · · · ⊕ TBq . For i ∈ q, let ϕi : T a

n → TBi

be the result of composing ϕ with the projection onto the ith coordinate. As in [DÐE+18b, Sec-
tion 4.3], the set T = aTna = a ⋆ Tn ⋆ a is a subsemigroup of T a

n isomorphic to Tr. Con-
sider the restrictions ψ = ϕ|T and ψi = ϕi|T for each i ∈ q, noting that ψ is injective. If
all the ψi were non-injective, then each ker(ψi) would contain the minimum non-trivial con-
gruence on T (the congruences on T ∼= Tr form a chain [Mal52]), but then so too would
ker(ψ) = ker(ψ1) ∩ · · · ∩ ker(ψq), meaning that ψ is non-injective, a contradiction. It follows
that some ψi : T → TBi

is injective. If we write p for the minimum rank of an element in im(ψi),
then as in the proof of Lemma 5.8, we have ri = rank(a′i) = rank(aiψ) ⩾ p+ r − 1 ⩾ r.

Thus, without loss of generality we may assume that r1 ⩾ r. It follows as well that |F1| ⩾ r
(as a′1 ∈ TB1(F1) and rank(a′1) ⩾ r).

Lemma 5.10. If r ⩾ 2, then ri ⩾ 2 for some 2 ⩽ i ⩽ q.

Proof. Seeking a contradiction, suppose instead that r2 = · · · = rq = 1. Then B2, . . . , Bq are
all ker(a′)-classes. Let the ker(a′1)-classes be A1, . . . , Ar1 . Thus, we may write

a′ =
(

A1 ··· Ar1 B2 ··· Bq
y1 ··· yr1 z2 ··· zq

)
,

where each yi ∈ Ai (1 ⩽ i ⩽ r1) and zj ∈ Bj (2 ⩽ j ⩽ q), as a′ is an idempotent. Linking back
to the e′i (1 ⩽ i ⩽ n), we claim that

xij = zj for all 1 ⩽ i ⩽ n and 2 ⩽ j ⩽ q. (5.11)

To prove this, fix some 1 ⩽ i ⩽ n and 2 ⩽ j ⩽ q.
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Suppose first that 1 ⩽ i ⩽ r. Since a is an idempotent with image r we have i = ia, and
so ei = eia = eiaa = ei ⋆ a. Thus, e′i = e′ia

′, and so xij ∈ im(e′i) = im(e′ia
′) ⊆ im(a′).

But xij ∈ Bj , and since im(a′) ∩Bj = {zj} it follows that xij = zj .
Now suppose r < i ⩽ n. Put k = ia, and let l ∈ r \ {k} be arbitrary (recall that r ⩾ 2).

Choose any f ∈ Tn such that kf = i and lf = l. Since k, l ∈ im(a), and since a is an idempo-
tent, we have k = ka and l = la. It follows that ek ⋆ f = ei and el ⋆ f = el,
so that e′kf ′ = e′i and e′lf

′ = e′l. It follows from these, respectively, that xkjf ′ = xij
and xljf ′ = xlj . But k, l ⩽ r, so by the previous paragraph we have xkj = zj = xlj , and it
follows that xij = xkjf

′ = xljf
′ = xlj = zj . This completes the proof of (5.11).

It now follows that
e′i =

(
B1 B2 ··· Bq
xi1 z2 ··· zq

)
for all i ∈ n.

Since the e′i are pairwise distinct, it follows that the set {x11, . . . , xn1} has size n. But this set is
contained in F , and this contradicts Lemma 5.3.

Lemma 5.12. If r ⩾ 2, then rank(a′) ⩾ q + r.

Proof. We have rank(a′) ⩾ q+ r− 1 by Lemma 5.8. If in fact rank(a′) = q+ r− 1, then from

q + r − 1 = rank(a′) = r1 + r2 + · · ·+ rq ⩾ r + r2 + · · ·+ rq,

it follows that r2 + · · ·+ rq ⩽ q− 1, so that r2 = · · · = rq = 1, contradicting Lemma 5.10.

The following is a simple consequence of Lemmas 5.4 and 5.12:

Corollary 5.13. If r ⩾ 2, then rank(a′) ⩾ r + 2.

Now that we have gathered all the general results we need, we proceed to consider separate
cases for ‘large’ and ‘small’ r in the next two subsections.

5.2. The case r ⩾ n − 6

We now consider the case in which the rank r of the sandwich element a is suitably large, mean-
ing specifically that r ⩾ n − 6. We will shortly prove that for such large r, the degree µ(T a

n )
reaches its upper bound of 2n− r. For this we need the following simple lemma.

Lemma 5.14. For any composition σ = (s1, . . . , sr) ⊨ n we have
∏
σ ⩾ n− r + 1.

Proof. First note that for any s ⩾ t ⩾ 2 we have st ⩾ 2s > 2s− 1 ⩾ s+ t− 1 = (s+ t− 1) · 1.
It quickly follows that

∏
σ ⩾

∏
σ′ for the composition σ′ = (n− r + 1, 1, . . . , 1).

Theorem 5.15. If a ∈ Tn with r = rank(a) ⩾ n− 6, then µ(T a
n ) = 2n− r.

Proof. Again we write m = 2n− r − 1, and aiming for a contradiction, we assume there is an
embedding ϕ : T a

n → Tm. As usual, we may assume that a is an idempotent, and we keep the
notation of Subsection 5.1, writing f ′ = fϕ, and so on. Keeping Lemmas 5.1 and 5.3 in mind,
we may assume by symmetry that ϕ maps T a

n into Tm(n− 2).
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Let t = rank(a′), so that r + 2 ⩽ t ⩽ n − 2, by Corollary 5.13. We immediately obtain
a contradiction if r + 2 > n − 2: i.e., if r ⩾ n − 3. So for the rest of the proof we assume
that n− 6 ⩽ r ⩽ n− 4. Incidentally, this implies n ⩾ 5.

Let D be the Da-class of a in T a
n . Since all elements of D′ = Dϕ are D-related (in Tm)

to a′, and since rank(a′) = t, it follows that

D′ ⊆ Dt(Tm(n− 2)) = {f ∈ Tm(n− 2) : rank(f) = t}.

(Note thatDt(Tm(n−2)) is not itself a D-class of Tm(n−2).) By [DE15, Theorem 5.7(v)],D is
an rn−r ×Λ rectangular group over Sr, where Λ is the product of the sizes of the ker(a)-classes.
By Lemma 5.14 we have Λ ⩾ n − r + 1, so it follows that D contains an rn−r × (n − r + 1)
rectangular band. So too therefore does D′, and hence also Dt(Tm(n − 2)). It follows, using
the λ and ρ parameters from Subsection 2.5, that

λt(m,n− 2) ⩾ rn−r and ρt(m,n− 2) ⩾ n− r + 1.

Using Lemma 2.13, this is equivalent to

λt(m) ⩾ rn−r and ρt(n− 2) ⩾ n− r + 1.

For the rest of the proof we write r = n− k, noting that k ∈ {4, 5, 6}. The previous inequalities
become

λt(n+ k − 1) ⩾ (n− k)k and ρt(n− 2) ⩾ k + 1.

We will obtain the desired contradiction by showing that

ρt(n− 2) < k + 1 for all n− k + 2 = r + 2 ⩽ t ⩽ n− 2. (5.16)

To do so, we consider the allowable values of k separately. In the following we make use of
Remark 2.11, which tells us that ρn−2−l(n− 2) = 2l if 0 ⩽ l ⩽ n−2

2
. We only wish to apply this

for l ∈ {0, 1, 2}, so since n ⩾ 5, this could only be invalid when n = 5 and l = 2; however, in
this case we have ρn−2−l(n− 2) = ρ1(3) = 3 < 4 = 2l, which is sufficient for our purposes.

• When k = 4, we only have t = n − 2 to consider, and (5.16) holds since we
have ρn−2(n− 2) = 1 < 5.

• When k = 5, we only have t = n− 3 and n− 2 to consider, and (5.16) holds since

ρn−3(n− 2) = 2 < 6 and ρn−2(n− 2) = 1 < 6.

• When k = 6, (5.16) holds since

ρn−4(n− 2) ⩽ 4 < 7, ρn−3(n− 2) = 2 < 7, ρn−2(n− 2) = 1 < 7.

(The⩽ sign in the first of these is because of the (n, l) = (5, 2) case mentioned above.)

Remark 5.17. The argument in the above proof breaks down when r = n − 7. Here k = 7,
and (5.16) does not hold for the minimum value of t = n−5, as we have ρn−5(n−2) = 8 = k+1.
We do not currently know if Theorem 5.15 holds for r = n− 7, or more generally.
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5.3. The case r = 1

The previous subsection considered the case in which r ⩾ n − 6 was suitably large. We now
consider the other extreme case in which r = 1, meaning that the sandwich element a is a
constant map. Since the value of µ(T a

n ) does not depend on the particular choice of the constant
map a, we denote it by µ(n) = µ(T a

n ). Here (1.2) gives the bounds n ⩽ µ(n) ⩽ 2n− 1.
The variant T a

n has a rather simple structure when rank(a) = 1. To describe it, we may
assume by symmetry that a = e1 =

(
n
1

)
. For each i ∈ n, define

Si = {f ∈ Tn : 1f = i}.
Then Tn = S1 ∪ · · · ∪ Sn, with |Si| = nn−1, and we note that only S1 is a subsemigroup of Tn.
However, we have

Si ⋆ Sj = {ej} for all i, j ∈ n, (5.18)
and this determines the entire multiplication table of T a

n . In particular, each Si is a null subsemi-
group of T a

n with zero ei. Moreover, (5.18) exhibits T a
n as an n×nn−1 (uniform) right null semi-

group, in the language of Subsection 4.5. It therefore follows that µ(n) = µ(T a
n ) = ϱ(n, nn−1),

so we have the following:
Proposition 5.19. For n ⩾ 2 we have

µ(n) = min{2A+ 3B + C +D : 0 ⩽ A ⩽ 2, B,D ⩾ 0, C ⩾ 2, 2A3BC ⩾ n, CD ⩾ nn−1}
(5.20)

= min
{
2A+ 3⌈log3(n/2AC)⌉+ C + ⌈logC nn−1⌉ : 0 ⩽ A ⩽ 2 ⩽ C ⩽ 2n− 1

}
,

(5.21)
where the parameters A,B,C,D in the above sets are all integers.
Proof. This follows immediately from Theorem 4.27(ii) and Remark 4.28. The latter explains
that the upper bound on C in (5.21) can be any known upper bound on ϱ(n, nn−1) = µ(n), and
we know from Theorem 1.1 that µ(n) ⩽ 2n− 1.

Table 5.1 gives some values of µ(n), computed using (5.21).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
µ(n) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30 32 34 36 37

n 100 200 300 400 500 600 700 800 900 1000
µ(n) 167 321 473 623 772 919 1066 1213 1359 1504

n 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
µ(n) 1649 1794 1938 2082 2226 2369 2513 2656 2798 2941

n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
µ(n) 1504 2941 4359 5766 7165 8557 9945 11329 12709 14086

Table 5.1: Values of µ(n), which is the degree of a variant T a
n for any a ∈ Tn of rank 1.
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In what follows, we will sometimes establish an upper bound µ(n) ⩽ m by showing
that m = 2A + 3B + C + D for some tuple (A,B,C,D) satisfying the restrictions listed
in (5.20). We will say that such a tuple witnesses the inequality µ(n) ⩽ m.

Remark 5.22. We can improve (5.21) to:

µ(n) = min
{
2A+ 3⌈log3(n/2AC)⌉+ C + ⌈logC nn−1⌉ : 0 ⩽ A ⩽ 2 ⩽ C ⩽ n

}
,

where the boundC⩽2n−1 is replaced byC⩽n. Indeed, suppose there is a witness (A,B,C,D)
to µ(n) = m with C > n. By minimality, and since 2030C > n, we must have A = B = 0.
Write t = C − n > 0 and let k = D + t ⩾ 0. Then

2n− 1 ⩾ µ(n) = C +D = n+ t+D = n+ k,

so we obtain k ⩽ n− 1 < n. Corollary 2.2 then gives

CD = (n+ t)k−t ⩽ nk,

and since also n+ k = C +D = µ(n), it follows that (0, 0, n, k) also witnesses µ(n) = m.

We are now in a position to show that the upper bound µ(T a
n ) ⩽ 2n − r coming from

Theorem 1.1 is not necessarily the exact value.

Proposition 5.23. (i) If n ⩽ 15, then µ(n) = 2n− 1.

(ii) If n ⩾ 16, then µ(n) ⩽ 2n− 2.

Proof. (i). This follows by inspecting Table 5.1.

(ii). By Table 5.1, it suffices to prove this for n ⩾ 19. To do this, let k = ⌈n
2
⌉. We will show

that the tuple (A,B,C,D) = (1, 0, k, 2n − 4 − k) witnesses the inequality µ(n) ⩽ 2n − 2.
Since 2A + 3B + C +D = 2n − 2, it remains to show that A,B,C,D satisfy the restrictions
listed in (5.20). These are all completely routine, apart from CD ⩾ nn−1, for which we have

CD = k2n−4−k ⩾
(n
2

)2n−4−n+1
2 as n

2
⩽ k ⩽ n+1

2

= nn−1 · n
(n−7)/2

2(3n−9)/2

⩾ nn−1 · 22n−14

2(3n−9)/2
as n ⩾ 16 = 24

= nn−1 · 2(n−19)/2

⩾ nn−1 as n ⩾ 19.

The upper bound of 2n − 2 in Proposition 5.23(ii) is still not sharp in general, as clearly
indicated in Table 5.1. In fact, given any integer k, we have µ(n) ⩽ 2n− k for suitably large n;
indeed, in Theorem 5.27 below, we prove an even stronger statement. First, however, we demon-
strate another interesting property of the numbers µ(n), namely that they are strictly increasing:
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Theorem 5.24. We have µ(1) < µ(2) < µ(3) < · · · .

Proof. Let n ⩾ 2, and write m = µ(n). We must show that µ(n − 1) ⩽ m − 1. Consult-
ing Table 5.1, it suffices to assume that n ⩾ 16, which we do for the rest of the proof. By
Proposition 5.23 we have m ⩽ 2n− 2.

Suppose µ(n) = m is witnessed by the tuple (A,B,C,D); as in Remark 5.22, we can
assume that C ⩽ n. We aim to show that the inequality µ(n − 1) ⩽ m − 1 is witnessed
by (A,B,C,D − 1). Again, verification of the required conditions is mostly routine; the only
exceptions this time are D − 1 ⩾ 0 and CD−1 ⩾ (n− 1)n−2.

Keeping C ⩽ n in mind, we have nn−1 ⩽ CD ⩽ nD. It follows that D ⩾ n − 1, so
certainly D − 1 ⩾ 0. We also have

n · nn−2 ⩽ CD = C · CD−1 ⩽ n · CD−1,

which implies CD−1 ⩾ nn−2 ⩾ (n− 1)n−2. As noted above, this completes the proof.

The next two theorems concern the asymptotic behaviour of the sequence µ(n). For their
proofs, it will be convenient to use the following special case of Lemma 4.25.

Lemma 5.25. For m,n ∈ N we have µ(n) ⩽ m if and only if there exist compositions σ and τ
such that

τ ⪯ σ ⊨ m,
∏
τ ⩾ n, η(σ, τ) ⩾ nn−1. (5.26)

Theorem 5.27. For any real 1 < x < 2, there existsN ∈ N such that µ(n) ⩽ xn for all n > N .
Thus, asympotically we have

µ(n) ∼ n as n→ ∞.

Proof. By Lemma 5.25, it suffices to show that there existsN ∈ N such that for all n > N there
exist compositions

τn ⪯ σn ⊨ ⌊xn⌋ such that
∏
τn ⩾ n and η(σn, τn) ⩾ nn−1.

Let 0 < y < x − 1 be arbitrary, and set z = x − y, noting that z > 1. Also let k ∈ N be
such that ky ⩾ 1. Note that y, z and k depend only on x.

For any n > k + 2, define

σn = (⌊xn⌋ − k, k) and τn = (⌈yn⌉, k).

Clearly
∏
τn ⩾ (ky)n ⩾ n. Since

⌊xn⌋ − k > (xn− 1)− k = n+ (x− 1)n− 1− k > (k + 2) + yn− 1− k = yn+ 1 > ⌈yn⌉,

it follows that σn is a composition of ⌊xn⌋, and that τn ⪯ σn. Next, recalling that z = x−y > 1,
we have

η(σn, τn) = ⌈yn⌉⌊xn⌋−k−⌈yn⌉ ⩾ (yn)(xn−1)−k−(yn+1) = (yn)zn−k−2.

Since k, y > 0 and z > 1 are constants (not depending on n), the function (yn)zn−k−2 dom-
inates nn−1, so there exists N ′ ∈ N such that (yn)zn−k−2 > nn−1 for all n > N ′. We then
take N = max(k + 2, N ′).
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Theorem 5.27 tells us that the ratio µ(n)/n tends to 1 as n increases. In contrast to this, the
difference µ(n)− n grows without bound:

Theorem 5.28. For any integer k ⩾ 2 we have µ(n) ⩾ n+ k for all n ⩾ ⌈k ln k⌉+ 1.

For the proof we require the following lemma, concerning the L function defined in Subsec-
tion 2.1:

Lemma 5.29. If µ(n) ⩽ m where n ⩾ 2, then nn−1 < ⌈L(m)⌉m−⌊L(m)⌋.

Proof. Fix compositions σ and τ satisfying (5.26). Then using the definitions and Lemma 2.8(i),
we have

nn−1 ⩽ η(σ, τ) ⩽ ξ(σ) ⩽ Ξ(m) = ξ(m).

Now write x = L(m), so that ξ(m) = max
(
⌊x⌋m−⌊x⌋, ⌈x⌉m−⌈x⌉) by Lemma 2.4(iii). Since m

is an integer, x is not an integer, so it follows that ⌊x⌋ < ⌈x⌉. Since m ⩾ µ(n) > n ⩾ 2, we
also have m ⩾ x, so that m ⩾ ⌈x⌉ > ⌊x⌋. All of this implies that ⌊x⌋m−⌊x⌋ and ⌈x⌉m−⌈x⌉ are
both strictly less than ⌈x⌉m−⌊x⌋.

Proof of Theorem 5.28. Fix some n ⩾ ⌈k ln k⌉ + 1 where k ⩾ 2, and let x = L(n + k − 1),
so that n+ k − 1 = x(1 + lnx) by definition. Note that n ⩾ k + 1 since k ⩾ 2.

We first claim that ⌈x⌉ ⩽ n. Indeed, this is clear if x < e since then n ⩾ k + 1 ⩾ 3 = ⌈e⌉.
Now suppose x ⩾ e, so that 1 + lnx ⩾ 2. Then 2x ⩽ x(1 + lnx) = n + k − 1 ⩽ 2n − 1,
as n ⩾ k, and so x < n. The claim follows as n is an integer.

Next we claim that ⌊x⌋ ⩾ k. For this we have

x(1 + ln x) = n+ k − 1 ⩾ (⌈k ln k⌉+ 1) + k − 1 ⩾ k(ln k + 1).

Since x, k ⩾ e−1, it follows that x ⩾ k, and again the claim follows as k is an integer.
Returning now to the main proof, suppose to the contrary that µ(n) ⩽ n+ k − 1. Then the

above two claims and Lemma 5.29 (with m = n+ k − 1) give

nn−1 < ⌈x⌉n+k−1−⌊x⌋ ⩽ n(n+k−1)−k = nn−1,

a contradiction.

5.4. Open problems

We conclude with a number of open problems. The most obvious is the following:

Problem 5.30. Give a formula for µ(T a
n ) for arbitrary a ∈ Tn.

• Does µ(T a
n ) depend only on n and rank(a)?

• Does µ(T a
n ) = 2n− r whenever r = rank(a) ⩾ 2?

• Classify the pairs (n, r) for which µ(T a
n ) = 2n− r for all a ∈ Tn with r = rank(a).

In the absence of a formula for µ(T a
n ), it would also be interesting to answer the following:



44 Peter J. Cameron et al.

Problem 5.31. Given a, b ∈ Tn with r = rank(a) and s = rank(b), which (if any) of the
following implications hold?

• r < s ⇒ µ(T a
n ) < µ(T b

n ),

• r < s ⇒ µ(T a
n ) ⩽ µ(T b

n ),

• r ⩽ s ⇒ µ(T a
n ) ⩽ µ(T b

n ),

• r = s ⇒ µ(T a
n ) = µ(T b

n ).

Problem 5.32. For which numbers r ∈ N (if any) do we have µ(T a
n ) = 2n − r for all n ∈ N

and all a ∈ Dr(Tn)? For example, r = 1 does not satisfy this property (Proposition 5.23).

Problem 5.33. For which numbers k ∈ N ∪ {0} do we have µ(T a
n ) = n + k for all n ∈ N and

all a ∈ Dn−k(Tn)? For example, k = 0, 1, . . . , 6 all satisfy this property (Theorem 5.15).
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