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ABSTRACT 

 

Linking global carbon export processes from the ocean’s surface into the deep 

by 

Kelsey Marie Bisson 

 

The ocean contains reservoirs of carbon that influence atmospheric CO2, impact climate, fuel 

deep-sea metabolism, and sustain fisheries worldwide (Volk and Hoffert, 1985; Doney et al., 

2011). Despite the ocean’s substantial role in the global carbon cycle, much remains to be 

known about the fundamental influences for carbon transport over climatically relevant 

scales. These details remain elusive because 1) available data is sparse, 2) the collection of 

new data is expensive, time consuming, and logistically difficult, and 3) the system itself is 

complex and highly variable. Overall, this dissertation confronts sources of uncertainty for 

data and models associated with differences in technology, incongruous spatiotemporal 

sampling schemes, and model complexity in order to extract as much as possible given what 

is currently available to use.  

 

The chapter specific objectives are as follows:  

 

(1) Examine how intrinsic and extrinsic sources of variability affect model calibration 

through a compilation of data sets spanning method, space and time  



 

 ix

(2) Assess mechanisms of the biological pump given available data products, and 

diagnose mechanistic parameter sensitivities as they relate to 

experimental/observational work  

(3) Test and recalibrate parameters to predict the flux of carbon from a rapidly growing 

technology (Underwater Vision Profiler data) from the surface to depth.  

 

In chapter 1 carbon export predictions from a mechanistic model are compared with 

observations of POC fluxes from several datasets compiled from the literature spanning 

different space, time, and depth scales as well as using different observational 

methodologies.  Model parameters are optimized to provide the best match between model-

predicted and observed POC fluxes, explicitly accounting for sources of error associated 

with each dataset. Model-predicted globally integrated values of POC flux at the base of the 

euphotic layer range from 3.8 to 5.5 Pg C yr-1, depending on the dataset used to optimize the 

model. Results from chapter 2 reveal that modeled carbon export pathways also vary 

depending on the dataset used to optimize the model, and depending on the processes 

explicitly represented within a quite of nested models. Chapter 3 tests the relationship 

between the particle size distribution and flux in the global ocean using abundant 

observations of particle size spectra in tandem with high-resolution model outputs. Results 

motivate the need for improved parameterizations that link particle size to flux based on 

depth and/or surface ecosystem characteristics. Altogether these findings highlight the 

importance of collecting field data that average over the substantial natural temporal and 

spatial variability in carbon export fluxes, and of advancing satellite algorithms for ocean 

NPP, in order to improve predictions of biological carbon export. 
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An edited version of this paper was published by AGU. Copyright 2018 American 

Geophysical Union. The citation is below:  

 

Bisson, K. M., Siegel, D. A., DeVries, T., Cael, B. B., & Buesseler, K. O. (2018). How Data 

Set Characteristics Influence Ocean Carbon Export Models. Global Biogeochemical 

Cycles, 32(9), 1312-1328. 
 

I. How data set characteristics influence ocean carbon export models 

1 Introduction 

Earth’s oceans contain diverse planktic ecosystems that influence the global carbon cycle, 

and ultimately global climate, through processes that transport organic carbon to the deep ocean 

after it is fixed through photosynthesis in the surface (Volk and Hoffert, 1985), commonly called the 

‘biological pump.’ The exported carbon feeds mesopelagic communities and is sequestered from the 

atmosphere on timescales ranging from months to centuries (DeVries et al., 2012).  Of the many 

pathways for carbon export, the sinking flux of particulate organic carbon (POC) is especially 

complex and highly variable. Locally, interannual monthly variations in sinking particle export 

fluxes can be as large as the long-term monthly mean (Fig S1). The same is true for multiple, near-

simultaneous flux measurements over large regions (>100 kilometers wide, Buesseler et al., 2007; 

Estapa et al., 2015; Black et al., 2018), highlighting large spatial variability in POC export fluxes. 

The high degree of variability in POC export fluxes stands as a significant barrier to constraining 

data-driven global-scale models of particulate carbon export (which are typically formulated as 

time-averaged models), and may contribute to the wide range of estimates of globally-integrated 

POC export which vary from roughly 5 to 12 Pg C yr-1 (Dunne et al., 2005; Boyd and Trull 2007; 

Henson et al., 2011; Siegel et al., 2014).  

The aforementioned variability of POC fluxes is driven by both intrinsic and extrinsic 

factors. We define intrinsic factors as those driven by ecosystem process, while extrinsic factors as 

those that are introduced through sampling and data processing. Intrinsic variability of export will be 
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driven by variability in nutrient supply, phytoplankton growth, predator behavior and aggregate 

formation that creates spatial heterogeneity and temporal intermittency in the POC flux (e.g., 

Abraham, 1998; Karl et al. 2003; Zehr et al. 2017). POC export is also influenced by particle size, 

density, morphology, lability, ecological interactions, and physical factors, all of which exhibit 

substantial spatial and temporal heterogeneity (Alldredge and Silver, 1988; Burd and Jackson, 2009; 

Armstrong et al., 2001; Steinberg et al., 2000; Mahadevan et al., 2012; Cram et al., 2018). The time 

lag between production of POC in the surface ocean and its subsequent export to depth (e.g. Karl et 

al. 2003; Estapa et al. 2015) introduces an additional source of variability to POC fluxes. 

POC fluxes are also observed in ways that introduce extrinsic variability. Shallow (<200m) 

sediment traps, the only direct measurement of POC flux, have known collection biases attributed to 

the hydrodynamics of flows within the trap itself (Gardner 1985), motions of the trap relative to its 

surrounding waters (Valdes and Price, 2000), vibrations of surface moorings (Gust et al., 1994), 

zooplankton ‘swimmers’ that enter the trap (Knauer et al., 1979; Michaels et al., 1990), and the 

solubilization of material once collected in the trap (Gardner et al., 1983; Antia, 2005). These 

factors can result in both under- and over-sampling biases, depending on the specific trap design and 

the environment in which it is deployed (see Buesseler et al. 2007a, and refs therein). The 

interpretation of sediment trap data is further confounded by advection, because material collected 

in the trap may have been transported laterally several 10’s to 100’s of kilometers before being 

deposited in the trap (Siegel et al. 2008). Several of these trap issues can be overcome by using 

untethered, or neutrally buoyant sediment traps (NBSTs) instead of surface-tethered drifting tethered 

traps or bottom-moored traps (e.g., Marsay et al., 2015; Buesseler et al., 2007), but NBSTs have not 

yet been deployed across a global scale. Finally, the depth at which sediment traps are deployed 

often introduces another source of variability, since POC flux measurements must be normalized to 

a common reference depth for comparison and the calibration of carbon export models. 

Normalization to a reference depth introduces significant errors since attenuation of the POC flux is 



 

 

 

 3

most rapid just below the base of the euphotic layer,  (Buesseler and Boyd, 2009). Here we 

choose  as a reference depth 

because we are interested in assessing the role that surface ecosystem structure and function has on 

POC export fluxes; we discuss the influence of reference depth on our results in section 4.3.  

In addition to direct measurement of POC fluxes using sediment traps, POC fluxes can be 

estimated by measuring the depletion of particle-reactive 234Th from its long-lived parent, 238U in the 

water column. POC fluxes are calculated by multiplying the measured 234Th flux by the measured 

POC: 234Th ratio of sinking particles. This calculation has sources of uncertainty related to the 

conversion of 234Th flux to C flux via the particulate 234Th:C ratio, and other model assumptions 

used to compute 234Th flux (e.g., the neglect of physical transport and the assumption of steady-state 

in the Th isotope system; Buesseler et al., 2008). However, one advantage of this method is that 

samples can be collected at high vertical resolution, from which estimates of POC flux at or very 

near  can be obtained, eliminating the need to normalize observations to a common reference 

depth. 

These intrinsic and extrinsic factors that drive variability in observed POC fluxes pose a 

problem for model validation. We hypothesize that a single POC flux measurement is at best a 

snapshot of an instance of the ecosystem and will not capture the mean state needed to calibrate 

global-scale models. Thus an individual POC flux measurement can be thought of as a random draw 

from a highly variable distribution (Fig. 1, left inset). However, large-scale satellite and numerical 

models aim to predict the mean of this distribution. When assemblages of random samples are 

averaged over a sufficient number of observations, these averages approach the appropriate mean for 

the ecosystem, and can be meaningfully compared to the output of climatological models (Fig. 1, 

right inset). This simple illustration emphasizes the importance of assembling model calibration data 

in such a way so as to capture the scales of the system that are represented by models. Of course, the 
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sampling choices made by the oceanographic community are not random draws at different places 

and times around the world, but rather are motivated by special interest and/or convenience. This 

introduces systematic spatiotemporal biases that also contribute to mismatches between models and 

data (the spatial bias is illustrated in Figure 2).  

Despite the scale mismatches between POC flux observations and models, numerous studies 

have used POC flux observations to constrain models that represent mean states. Global satellite-

based carbon export models have been developed from empirical relationships with environmental 

variables, or by tuning mechanistic models to fit POC flux data (e.g., Laws et al, 2000; Henson et 

al., 2011, 2012; Dunne et al., 2005; Siegel et al., 2014; Li and Cassar, 2016). One way to reduce the 

spatiotemporal discrepancy between flux observations and models is to account for known lag times 

between production and export (as in Henson et al., 2015; Giering et al., 2017); however this 

requires net primary production (NPP) products of sufficient resolution and additional assumptions 

about the timescale of particle settling. Though the formulae for the aforementioned models vary, all 

of them are constructed using satellite estimates of NPP. For this study we choose a model that 

builds on previous work by routing NPP through a two-size class food web model to determine POC 

flux (Siegel et al., 2014; illustrated in Fig. 3).  

Although model fidelity is generally determined by how well the models predict the 

observations, the degree to which these observations represent a scale appropriate for comparison to 

climatological models has been little addressed. Here we address this issue by comparing modeled 

POC export fluxes using a suite of POC export data compilations with varying degrees of intrinsic 

and extrinsic variability. We use this model-data comparison to investigate the following questions:  

• How do inconsistencies between the scale of POC flux observations and POC export models 

affect our ability to optimize these models using field observations?  

• How do uncertainties in satellite NPP affect model-predicted POC export fluxes? 

The paper is organized as follows: Section 2 describes the carbon export model, the satellite 
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data inputs needed to drive the model, the datasets that are used to optimize the model, and our 

optimization procedure. Section 3 presents the optimized parameter values, the model outcomes, and 

the summary statistics from the model optimizations with each dataset. Section 4 discusses how 

different satellite NPP products influence the results, as well as implications for global carbon 

export, the importance of the depth horizon used to calculate flux, and the ideal sampling strategy 

needed for model development. 

 

2 Data and Methods  

2.1 Satellite-driven food web model 

 

We use the Siegel et al. (2014) carbon export model (hereafter denoted as S14), which 

routes net primary production (NPP, mg C m-2 d-1) through a simple two-size-class food web model 

to calculate particulate organic carbon (POC) flux at  (Fig. 3). The model includes two pathways 

for sinking particle export ( ) from the euphotic layer: the sinking of phytoplankton algal 

aggregates ( ) and the export of zooplankton fecal pellets ( ): 

  

                                                      (1) 

 

All terms in equation (1) are in mg C m-2 d-1.  

Estimates of  are modeled as a fraction ( ) of the microplankton size class of 

phytoplankton NPP ( , following energy transfer efficiencies in Michaels and Silver, 1988; 

Boyd and Stevens, 2002): 
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                                                                (2)  

 

The baseline (S14) value for  is 0.1.  

Fecal fluxes ( ) are calculated by multiplying the phytoplankton herbivory rates by 

fixed egestion efficiency parameters based on size (  and , where the size classes are small 

(S = pico + nano, 0.2 -20 μm) and large (M = micro, 20 -50 μm) phytoplankton), and the S14 

parameter values for  and  are 0.3 and 0.1, respectively, following work by Michaels and 

Silver (1988) and Boyd and Stevens (2002). The higher efficiency of export production for 

herbivory on large phytoplankton compared with herbivory on small phytoplankton accounts for the 

fewer trophic steps: 

 

                                       (3) 

 

Herbivory rates Gi for both phytoplankton size classes ( ; where  refers to the two size 

classes) are calculated by mass balance that attributes the change in phytoplankton biomass ( , 

as calculated from satellite-derived particulate backscatter using the algorithms of Kostadinov et al., 

2009 and Graff et al., 2015)) to gains from net primary production ( ) and losses to herbivory 

( ), non-grazing biological mortality (given a specific rate  which is assumed by S14 to be 0.1 
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d-1), and reduction of biomass as the  mixed layer ( ) deepens (i.e., when  . 

 

                                              (4) 

 

 = 1 if x > 0 and 0 otherwise and  = 1 when  = M and 0 otherwise so that when  

shoals or is unchanged, there is no loss of biomass. 

Summarily, the model routes satellite-derived NPP through a food web model with four 

ecologically-relevant parameters ( , ) to calculate the total POC flux exiting the 

euphotic layer. We note three model assumptions: 

1) Satellite estimates of biomass and NPP are uniform over the mixed layer, and the algal 

flux impacts on large phytoplankton are uniform over the mixed layer. 

2) Phytoplankton biomass below the mixed layer is negligible.  

3) The amount of large and small NPP is equivalent to their fractional contributions to 

planktic biovolumes.  

The limitations and implications of these, and of other implicit assumptions (i.e., the satellite 

data products are of suitable quality), are reviewed in the Discussion.  

 

 

 

2.2 Model input datasets 

 

The model is driven by satellite data products from the Sea-viewing Wide-Field-of-view 

Sensor (SeaWiFS) mission (1997-2010) following data processing and calculation details described 
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in S14. The specific satellite-derived data products used are net primary production (NPP), the slope 

of an assumed power law particle size distribution, surface chlorophyll concentrations, and 

particulate backscatter at 443nm. The relationship between particulate backscatter at 443 nm and 

total phytoplankton carbon is updated from Siegel et al. (2014) using the relationship from Graff et 

al. (2015). The euphotic depth (  is defined here as the depth of the 1% of the surface 

photosynthetically available radiation (PAR) isolume, and is modeled as a function of surface 

chlorophyll concentration (Morel et al., 2007). We assume that the uncertainty about (  is 

smaller than the others. The input data climatologies span the period 1997-2008 at monthly temporal 

resolution on a one-degree spatial grid. 

We test three different NPP inputs (Carbon-based Productivity Model, CbPMv2, Westberry 

et al., 2008; Vertically Generalized Productivity Model, VGPM, Behrenfeld and Falkowski, 1997; 

and the Carbon, Absorption, and Fluorescence Euphotic-resolving model, CAFE, Silsbe et al., 2016) 

in the export model to test how the optimal model parameters vary with the NPP product used.  We 

select the CbPM for its mechanistic construction, the VGPM for its simple structure and wide use in 

the field, and the CAFE for its improved validation compared to previous models. Spatial maps of 

annually averaged NPP estimates for the three satellite data products and their differences are 

included in the supplement (Fig. S2). Though all three NPP models have similar globally integrated 

mean values (CbPM: 52 Pg C yr-1, VGPM: 51 Pg C yr-1; CAFE: 52 Pg C yr-1), their NPP predictions 

vary widely on regional and seasonal scales. The CAFE model predicts higher NPP in tropical and 

subtropical environments relative to the VGPM and CbPM, while exhibiting especially different 

seasonality in the South Pacific Gyre (see Silsbe et al., 2016 for additional information). Compared 

to the VGPM, the CbPM predicts increased NPP in oligotrophic environments and reduced NPP at 

high latitudes. In many instances this difference exceeds a factor of three (Figure S2). Implications 

of the choice of NPP product are discussed in Section 4.1.  
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2.3 Synthesis of export flux observations  

 

The model is fit to 5 different POC flux datasets representing various sampling 

methodologies and various spatiotemporal scales to assess how the type and scale of observations 

affects model calibration. First we compile from the literature a global dataset of export flux 

observations from sediment traps and the 234Th method (‘All Data’). This dataset is then subsampled 

to create the four other datasets: an extension of the data presented in Buesseler and Boyd (2009) of 

well-sampled (multi-station averages) 234Th -estimated fluxes at  (‘Climatological Data’), a 

dataset consisting of 234Th profiles at from transect cruises (‘234Th Profiles’), and datasets from 

sediment traps at the HOT and BATS time-series sites (‘HOT’ and ‘BATS’). Because much of the 

field data were not sampled within the time period when satellite data are available, monthly 

climatologies are used.  

 

2.3.1 Global Flux dataset, ‘All Data’ 

 

Existing databases, papers, and data from personal communication are assembled into a 

global dataset of shallow (<200m) POC flux from sediment traps and from the 234Th technique, 

totaling 1719 observations (available in the supplementary section).  

 

To make the data comparable to the model output, we apply the following analysis steps: 

1) eliminate all data observations poleward of 65o latitude, where satellite NPP observations 

(which are used to drive the carbon export model) are confounded by cloud cover and 
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limited daylight;  

2) choose only observations that are in sufficiently deep water (> 500m) as to not be affected 

by terrestrial input; 

3) bin all data into 1-degree latitude-longitude bins, the spatial resolution of the S14 model; 

4) normalize the POC flux measurements to the base of the climatologically-averaged monthly 

 for each site by applying a power law for the POC attenuation with depth below  

(following Martin et al., 1987; Primeau 2006 where ‘b’ = 0.7; Marsay et al., 2015); and 

5) eliminate outliers by excluding data that lie 1.5 interquartile ranges (IQRs) above the 75th 

percentile or 1.5 IQRs below the 25th percentile of the log-transformed POC flux. This 

excludes a few rare high flux events (> 600 mg C m-2 d-1). 

Steps 1, 2, and 5 above reduce the total number of data points from 1721 to 1343 (Fig. 2). Step 3 

further organizes the 1343 data points into 591 unique bins (Fig. 2). This dataset has the largest 

global coverage but also the most uncertainty associated with it (see Table 1).  

The ‘All Data’ dataset has greater spatial coverage than those presented in Mouw et al. 

(2016) and Henson et al. (2011).  ‘All Data’ is smaller in total number of observations compared to 

the dataset presented in Mouw et al. (2016) because it does not include deep traps or those at high 

latitudes, but it has greater spatial coverage because it includes recently published GEOTRACES 

234Th observations. The ‘All Data’ dataset also differs from that used in Henson et al. (2011) 

because the Henson et al. (2011) dataset exclusively comprises 234Th-estimated POC fluxes 

normalized to a nominal depth (100m) and only includes data up to the year 2009. 

 

2.3.2 ‘Climatological Data’  

 

The ‘Climatological Data’ set was curated to be consistent with model assumptions. 

‘Climatological Data’ consists of 234Th-derived POC flux averages from multiple sites consistently 
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analyzed for POC flux at the base of the euphotic layer (see supplementary material for 

compilation). We require at least 4 observations per lat/lon/month bin at the euphotic layer depth. 

This dataset eliminates (or substantially reduces) sources of natural (intrinsic) variability in the POC 

flux measurements, thereby matching the scales of the climatological model (Table 1). This dataset 

expands on the dataset presented in Table 1 of Buesseler and Boyd 2009 (BB09) to include 165 total 

observations from 14 sites (Fig. S3). We eliminated the two Ocean Station Papa observations from 

the original BB09 dataset because each of those were single observations, as well as the Southern 

Ocean observations because there is not sufficient satellite data to evaluate the model at those 

latitudes. Observations from Estapa et al. (2015), which consists of multiple (>8) flux measurements 

along ~30 km transects, were added because they were thought to be sufficient to reduce the natural, 

intrinsic sources of variability.  

 

2.3.3 ‘234Th Profiles’ 

 

 We also compile a dataset consisting of 234Th profiles with sufficient vertical sampling  

resolution in the upper 200m in order to recalculate fluxes at specific depths.   This ‘234Th Profiles’ 

subset uses 234Th-derived POC flux profiles that were collected along transects as part of the US and 

Dutch GEOTRACES programs (Owens et al., 2015; Black et al., 2018) in addition to a regional 

study (Estapa et al., 2015), which estimated export flux values at  (Fig. S3, supplementary 

material). These studies have additional data points above and below  with which to calculate 

fluxes at varying depths, and we do so to assess the errors related to normalizing the POC fluxes to a 

specific depth horizon, and to evaluate how model performance varies across data with a dynamic 

range from one measurement technique. However, all other sources of uncertainty, including the 

intrinsic uncertainties associated with natural variability, affect this dataset (Table 1). There are 91 



 

 

 

 12

unique lat/lon/month bins totaling 217 measurements. The mean number of observations per bin is 

2, but the majority of bins consist of a single observation of flux (‘234Th profiles’ is available in the 

supplementary material).  

 

 

 

2.3.4 ‘HOT’ & ‘BATS’ 

 

The Hawaii Ocean Time Series (HOT) and Bermuda Atlantic Time Series (BATS) are two 

locations that provide sufficient long-term observations of upper ocean POC flux from which a 

monthly climatology of POC export can be constructed. This makes these locations ideal for 

comparing with the climatological export model, and thus we create a third and fourth subdataset 

from ‘All Data’ for the climatological POC export at HOT and BATS. The HOT dataset is from 

January 1998 to October 2010, totaling 115 measurements (Fig. S1), and the BATS dataset is from 

October 1997 to November 2010, totaling 135 measurements (Fig. S1). All traps are cylindrical 

particle interceptor traps deployed at 150m for 3 days (Steinberg et al., 2001; Karl and Lukas, 1996). 

These data are normalized to the depth of the euphotic layer, as is done in the global dataset, and 

monthly climatologies of POC export are calculated spanning the time periods above. ‘HOT’ and 

‘BATS’ are climatologically averaged fluxes of localities at 150m, rather than regional averages of 

flux at , which makes them inappropriate for inclusion in the ‘Climatological Data’ set.    

 

2.3.5 Uncertainty estimates for data and model 

 

Each dataset has associated uncertainties due to a combination of intrinsic variability from a 

varying ecosystem and extrinsic uncertainty due to instrument and sampling biases, and the 
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normalization of data products to . Additionally, the carbon export model has a substantial 

uncertainty due to uncertainty in the satellite-based NPP product used to drive the model. Table 1 

quantifies these uncertainties, where uncertainty values were calculated as follows: 

1. The temporal uncertainty estimate of 43% is the average ratio of standard deviation ( ) to mean 

monthly flux value (  at HOT and BATS, where  is the number of observations and  is the 

month, or . The conservative estimate is reported (BATS had 

43% uncertainty, HOTS had 30% uncertainty) (Fig. S1). This approach is an imperfect way of 

addressing temporal error because it generalizes the variability at BATS and HOT to other 

locations; however, it is nonetheless provides a reasonable error for the ‘low frequency’ (~1 

month-1) flux data worldwide. 

2.  The spatial error estimate of 63% was calculated from the Estapa et al. (2015) dataset, which is 

composed of ~10 samples per 1° grid. Similar to the temporal estimate, the standard deviation 

was divided by the flux for each grid and the overall average is reported.  We report these 

spatiotemporal estimates for uncertainty as 40% and 60% (table 1), because both of them carry 

error from spatiotemporal bias that cannot be quantified given the currently available data 

products. 

3.  The normalization to  uncertainty is calculated for each data point in the global dataset as 

well as in the time series datasets because the data were not collected at the base of . For 

each data point, 1000 random sample ‘b’ values were drawn from a normal distribution with 

mean 0.7 and standard deviation 0.35 (to represent a range of Martin ‘b’ values, Martin et al., 

1987). Then 1000 flux values were calculated for each data point to represent the range of flux 

attenuation with depth scenarios. The ratio of standard deviation relative to the mean is the 

reported error ( . For observations close to , the error is minimal, but for 

observations sampled well beneath , the error is larger (up to 60%, see Fig. S4). Our reported 
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uncertainty is a lower bound on the normalization uncertainty because there is additional 

certainty introduced with the formula choice for flux attenuation (e.g., exponential, rational, 

ballast). We choose the simplest and most commonly used parameterization for consistency with 

previous work. 

4.  There are many other sources of uncertainty that fall under instrumental/sampling bias, 

including the assumed C/234Th values used in the 234Th method, and differences in trap designs 

for sediment trap observations. These errors are at least 30% (Buesseler et al., 2007), and can be 

much larger depending on when and where a sample is collected. As stated in the introduction, 

reported flux values vary depending on the sampling and analysis methods used, even within a 

single sampling type (e.g. tethered traps vs. neutrally buoyant traps). These errors could not be 

directly quantified among the different methods and environmental conditions. 

 

2.4 Model optimization procedure 

 

The model was optimized with each dataset using a Bayesian approach that maximizes a 

log-likelihood function (Neal, 2003), 

 

  .                                                       (5) 

In Equation (5) is the index of each lat/lon/month bin, Nbin is the number of bins, and  is the 

weight for each bin, calculated as the inverse of the variance,  

      .    (6) 

The negative coefficient in Equation 5 means that the log likelihood reaches a maximum when 

the model-data misfit is minimized. For each parameter, log-prior values were assigned that penalize 
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large parameter deviations from what is expected. The log prior uses the four (indexed by j) baseline 

parameters ( , ) from S14 as the prior information. 

                                     (7) 

The log prior values (quantifying the departure from the expected value of the parameter) and 

the log likelihood PDF were summed together, collectively forming the log posterior probability 

function, 

 

     .                  (8) 

 

The uncertainty associated with each observation is explicitly accounted for in each dataset. 

The quantifiable source of error, as described in Section 2.3.5, for each dataset (  was calculated 

by: 

 

 .                                   (9)      

    

where  is the error associated with the Martin curve correction for each bin, with larger 

errors associated with greater deviations between the sampling depth and . The intrinsic 

variability (first term in Equation 9) was normalized to the number of observations within a given 

bin so that if multiple measurements were taken within the same lat/lon/month bin, the effective 

error from natural variability was reduced.  From this the standard deviation (sigma) was calculated 

as  
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.                                 (10) 

 

In this way, the quantifiable uncertainty associated with the observations is explicit within the 

standard deviation formulation. This affects the weight for each bin within the log-likelihood 

function (Equation. 7) so that the values of the optimized parameters are influenced by the 

magnitude of the observational uncertainty.  

We used a slice-sampling scheme (Neal, 2003) that generates a set of samples from the 

posterior probability density function (PDF). First, four initial parameter values (to represent 

, ) were sampled from a uniform distribution within [0,1]. The model was run 

with these parameters and the value of the likelihood function (Equations 5, 6) was calculated. This 

process was repeated iteratively to generate a “chain” of of 2000 samples of each parameter from 

the posterior PDF. We ran 50 chains independently and terminated sampling when the chains had 

converged to a solution, quantified by a ‘Potential Scale Reduction Factor’ near 1 (Brooks and 

Gelman, 1998). This factor confirms that the chains, and thus the final parameter values, are 

independent of the randomly drawn initial values.  The first 50% of samples from each chain were 

discarded as part of the ‘burn-in’ phase when the simulated chains were exploring the posterior 

function for solutions. Finally the remaining parameter values were saved, and their means and 

standard deviations are reported. 

This procedure was repeated using 5 different datasets for the optimization, and using 3 

different satellite NPP products (CbPM, VGPM, and CAFE) to drive the carbon export model. This 

yielded a total of 15 possible combinations of NPP product and optimization dataset.  

 

3.0 Results 
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The optimized parameters and their associated uncertainties using the different datasets are 

presented in Fig. 4 a - d, alongside the correlation coefficients and log likelihoods for each 

optimization run (e,f), model mean export fluxes (g), and the average ez-ratio (h, export flux at base 

of the euphotic layer divided by NPP) for the corresponding locations and times in each dataset. The 

mean values discussed below are for outputs generated using the lat/lon/month bins specific to each 

dataset. The figure shows model performance using all three NPP satellite data products but the 

discussion below is only for the results using the CbPM, as is done in S14. The role of NPP 

algorithm choice on model outcomes is discussed in Section 4.1. 

 

3.1 Data-model comparisons with the ‘All Data’ data synthesis 

 

Both the S14 baseline model and the ‘All Data’ optimized model under-predict the mean C 

export flux (model mean of 68 mg C m-2 d-1 compared to the data mean of 113 mg C m-2 d-1). This 

result is visually confirmed by the model-data comparisons (Fig. 5a) that show how the model is 

unable to reproduce both high flux and low flux observations (those that exceed 300 mg C m-2 d-1 or 

fall below 10 mg C m-2 d-1), which is due to the fact that individual observations are subject to 

intrinsic variability not captured by the climatological model. 

The optimized model parameter values for the fraction of NPPM in algal sinking ( , the 

non-grazing mortality parameter ( ), the fecal fraction for big zooplankton ( , and the fecal 

fraction for small zooplankton (  are 0.21  0.11, 0.05 0.02 d-1, 0.13 0.08, and 0.09 0.02, 

respectively (Fig. 4a-d) . This contrasts with the baseline case with parameter values  = 0.1, 
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0.1 d-1, 0.3, and 0.1. Notably, the optimized algal fraction is double the 

baseline case, and the non-grazing mortality parameter is half the baseline case. Further, the relative 

contribution of small and large phytoplankton to the fecal flux is roughly equal in the ‘All Data’ 

optimized models, whereas in the baseline case large phytoplankton herbivory contributes 3 times 

more to fecal flux than herbivory on small phytoplankton.  

The mean departure of the model from the data is roughly equivalent to the model mean (77 

mg C m-2 d-1 compared to 68 mg C m-2 d-1), and the correlation coefficient is weak (r = 0.22), 

suggesting poor model performance against the ‘All Data’ global dataset.  

 

 

 

 

 

 

3.2 Data-model comparisons with the ‘Climatological Data’ synthesis 

   

Using ‘Climatological Data’ the optimized parameters more closely coincide with the 

baseline case compared to those optimized using ‘All Data’, with values  = 0.24 0.17,  = 

0.07 0.02 d-1,  = 0.21 0.13, and 0.08 0.03, and the parameter uncertainties are about 

the same as in ‘All Data.’ The departures from S14 are also similar to those observed in ‘All Data’ 

with the exception of the ingestion parameter for large phytoplankton. The fecal fraction for big 

zooplankton (0.21) is higher than in ‘All Data’ but is still reduced compared to the S14 value (0.3), 

again indicating that the contribution of large phytoplankton to the fecal flux pathway is smaller 

than previously prescribed. The ‘Climatological Data’ algal flux fraction is again roughly double the 
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S14 value, and the value for non-grazing mortality is slightly reduced. 

The optimized model mean (62 mg C m-2 d-1) is very close to the data mean (67 mg C m-2 d-

1) which, taken together with a good correlation coefficient (r = 0.79), suggests that the model 

predicts the observed climatological variations well. This result is visually confirmed by comparing 

Fig. 5a and 5b, which is analogous to the conceptual diagram presented earlier (inset panel in Fig. 

1). A dataset with high noise results in a poor correspondence with the model, but a dataset of 

averaged observations has an improved agreement with the model, which is aimed to represent the 

mean of the system.  The log likelihood is -4.8, compared to -25.2 with ‘All Data,’ which indicates a 

substantial improvement in model fit to the observations.  

 

 

3.3 Data-model comparisons with ‘234Th Profiles’ 

 

The optimized parameters using the ‘234Th Profiles’ dataset are roughly equal (Fig. 4), with 

values  = 0.07 0.04,  = 0.06 0.02 d-1,  0.07 0.05, and 0.08 0.02. This 

result implies an equal contribution of small and large phytoplankton to the fecal flux pathway, and 

also a diminished role of aggregation compared to the baseline case and to the other datasets. The 

optimized model represents improvement over the baseline case, which predicts a mean of 47 mg C 

m-2 d-1 compared to 69 mg C m-2 d-1 when confronted with a data mean of 53 mg C m-2 d-1. Despite 

this result, the correlation is very weak (r = 0.08; Fig. 5c). For low flux environments, the ‘234Th 

Profiles’ optimized model over-predicts export flux.  

 

3.4 Data-model comparisons with the ‘HOT’ and ‘BATS’ time series observations 

 

The results from the model optimization with HOT and BATS are shown in Fig. 4 and 5d,e. 



 

 

 

 20

Optimizations with the climatological model and data, rather than the individual observations, are 

performed to ensure that the spatiotemporal scale of the model and data are similar.  For the ‘HOT’ 

time series, the optimized parameters are  = 0.11 0.07,  = 0.11 0.06 d-1,  = 0.10 0.06, 

and  = 0.11  0.05. The optimized parameter values are nearly equivalent to S14 except for the 

egestion efficiency parameter for big zooplankton, which is much lower than the S14 baseline. At 

BATS, the optimized parameters using the CbPM are  = 0.12 0.11,  = 0.10 0.07 d-1,  

= 0.13 0.12, and 0.11 0.16, which has substantially more uncertainty with each parameter 

compared to those estimated from the HOT dataset.  

The optimized model using CbPM as an input does not predict the flux variation observed at 

HOT or BATS well (r values are 0.20 and -0.44 at HOT and BATS, respectively), though we note 

that the model was not designed to predict intrasite variations. We do so here because HOT and 

BATS provide climatological POC flux products. At BATS, the S14 POC export is 18 mg C m-2 d-1 

while the optimized POC export is 30 mg C m-2 d-1, which is closer to the observed mean of 47 mg C 

m-2 d-1. Even so, the overall model performance for these sites is poor, which is unsurprising when 

comparing the poor correspondence of the seasonal signals in the CbPM model to the observed 

seasonality in the trap record for both sites (Fig. S1). Model performance is significantly improved 

when CAFE is used at HOT and BATS (r = 0.90 and r = 0.82, respectively), demonstrating the 

importance of the NPP algorithm.  

 

4.0 Discussion  

 

We compared the Siegel et al. (2014) POC export model with available field observations, 

and determined optimal parameter values and model predictions using five different export flux 
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datasets that represent different spatial and temporal scales. While the model can be optimized to fit 

POC observations from a specific place and time, no one set of model parameters can describe the 

totality of observed variability from local to global scales. These findings emphasize the need for 

both accurate satellite data products (especially NPP) for driving the POC export model, as well as 

well-sampled flux observations for optimizing model parameters. Here, we discuss how the 

magnitude and mechanisms of global biologically-driven carbon export in the model are influenced 

by the NPP product and POC flux datasets used to optimize the model.  

 

4.1 Importance of the satellite NPP data products  

 

The results of the model are sensitive to the choice of NPP, and some NPP products allow 

the model to better predict POC export in some locations better than others. NPP models are known 

to differ dramatically in their regional patterns of NPP, and their performance compared with 

observations needs improvement (Kahru, 2017; Lee et al., 2015; Doney et al., 2009), especially in 

high-nutrient low-chlorophyll conditions, and at extreme temperatures or chlorophyll concentrations 

(Carr et al., 2006 and refs therein). Thus far, the model-data results have been examined with the 

CbPM model. However, adjusting the choice of NPP product has large impacts on the magnitude of 

the optimized parameters (Fig. 4a-d). For example, with ‘All Data’, optimized parameters can vary 

by 100%, especially when comparing the VGPM generated parameters to those from CbPM and 

CAFE (Fig. 4). At HOT, the fraction of ingested small phytoplankton that drives export varies from 

9% to 18% (Fig. 4d) depending on NPP product used. Lower NPP values from VGPM (Fig. S1) 

result in higher optimized fractions of small phytoplankton that enter fecal export, in order to 

produce final POC export values that are comparable in magnitude to the observations.   

The choice of NPP product not only affects the optimized parameter values, but also affects 

model performance. Figure 4 shows how model performance is linked to NPP product. The most 
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pronounced case is at BATS, where using CbPM leads to a correlation coefficient of -0.44, but using 

VGPM leads to a correlation coefficient of 0.83. NPP estimates can vary by more than a factor of 3 

at local to regional scales, which explains why the choice of NPP product leads to large variations in 

model outcome (Fig. S1).  The various NPP products also differ in their predictions of the variability 

of NPP over a seasonal cycle at HOT and BATS (Fig. S2). 

Other satellite data inputs, such as the slope of the particle size distribution and the 

backscattering coefficient as a proxy for phytoplankton carbon content, are only approximations of 

their intended representations, and they are also subject to large uncertainties. However compared to 

the other data inputs, it is the magnitude of NPP that largely sets the magnitude of the export flux; 

thus, the location at which the modeled and observed POC export fluxes are being compared greatly 

influences which NPP product will be most successful in producing the observed magnitude and 

variation of flux. No one NPP product succeeds in producing modeled POC export fluxes that match 

well with the data everywhere. This underscores the need for improving satellite NPP models if they 

are to be used in models of POC export (e.g. Siegel et al., 2014; DeVries and Weber, 2017).  

 

 

4.2 Implications for the magnitude and mechanisms of POC export  

 

The optimized parameters found using the three global datasets with observations from 

multiple locations (‘All Data’, ‘Climatological Data’, ‘234Th Profiles’) can potentially provide 

meaningful information about ecological interactions on global scales.  Of all the datasets used, 

‘Climatological Data’ has the minimum amount of uncertainty associated with the observations, 

across depth, time, space, and method (Table 1). It is also the dataset that agrees best with the model 

predictions, as shown by the highest correlation coefficients and log likelihoods, independent of 

NPP product used. Despite the differences in the sources of error for ‘All Data’, ‘Climatological 
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Data’, and ‘234Th Profiles’, the general patterns in global flux are consistent. Maps of flux and the 

ez-ratio show that the highest ez-ratios occur in areas of upwelling and along coastal margins (Fig. 

6). In those places, pulses of nutrients can create ‘leaky’ food webs where a greater fraction of 

production is exported to depth (Buesseler, 1998).  The algal ratio (algal flux / total flux) is also 

highest in those high EZ-regions, where there is a high concentration of large phytoplankton. In the 

more dilute oligotrophic regions that are dominated by small phytoplankton, the role of direct algal 

sinking relative to total flux is reduced. We note that this result largely comes from the model 

construction, which explicitly parameterizes algal flux as a function of NPP.  

The magnitude of the globally-integrated POC export predicted by the model is also 

sensitive to the dataset used to optimize the model. Using the CbPM, the annually-integrated global 

POC export is 5.5, 5.4, and 3.8 Pg C yr-1 when optimizing the model with ‘All Data,’ 

‘Climatological Data’ and ‘234Th Profiles,’ respectively (Fig. 6; hereafter all global summary 

statistics are with the CbPM and optimized parameters). The model-predicted annually-averaged 

global ez-ratios (the fraction of NPP that becomes POC export) are 0.10, 0.10, and 0.07, 

respectively. Global POC export from the models optimized to fit  ‘All Data’ and ‘Climatological 

Data’ is similar to that predicted by the baseline model (~6 PgC yr-1; Siegel et al., 2014). However, 

the model that is optimized to match the ‘234Th Profiles’ dataset predicts a substantially smaller 

globally integrated flux value of 3.8 Pg C yr-1. This number is similar to that derived by Henson et 

al. (2011), who used 234Th-estimated POC fluxes to calibrate a temperature-dependent empirical 

model of POC export. One major distinction between the ‘234Th Profiles’ dataset and the others is 

that much of the data comes from oligotrophic regions (e.g., South Pacific and the Sargasso Sea), 

and is therefore skewed toward low-export environments (the mean flux of the ‘234Th Profiles’ 

dataset is 48 mg C m-2 d-1 compared to 67 mg C m-2 d-1 with ‘Climatological Data’ and 113 mg C m-2 

d-1 with ‘All Data’). The model’s optimized parameters for ‘234Th Profiles’ are also similar to those 
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at BATS and HOT, two oligotrophic regions. This indicates that the global POC export is probably 

too low when the model is optimized using the ‘234Th Profiles’ dataset. 

The pathways of POC export are also sensitive to the dataset used for optimization, and 

differ from the baseline S14 values. The most pronounced departure of parameter values from the 

S14 baseline model is in the values of the direct algal settling term. The contribution of sinking 

aggregates to global particulate carbon flux is highest in the ‘All Data’ and  ‘Climatological Data’ 

cases, with algal ratios (the proportion of NPP that is exported as aggregates) of 25% and 29%, 

respectively, compared to the baseline case of 10%. There is a reduced fraction of large 

phytoplankton grazing losses routed to the fecal flux pool (13% and 21% for ‘All Data’ and 

‘Climatological Data’, respectively, compared to 30% in the baseline), implying a smaller role of 

large phytoplankton to fecal flux than in the S14 model. The results with the ‘All Data’ and 

‘Climatological Data’ differ from those of the ‘234Th Profiles’, which produces a reduced algal ratio 

of 7%. Again, because the observations in the ‘234Th Profiles’ dataset are predominantly from 

oligotrophic regions that are dominated by small particles in a diffuse environment, it follows that 

there would need to be a smaller proportion of sinking aggregates relative to total NPP than in high-

NPP regions. Figure 6 shows higher algal ratios along coastal margins and areas of upwelling, which 

is because there is a greater fraction of large plankton in those areas. 

One consistent departure from the S14 baseline model across all datasets is the smaller 

value of non-grazed mortality parameter, which is similar for all datasets (0.05, 0.07, 0.06 d-1 for 

‘All Data’, ‘Climatological Data’, and ‘234Th Profiles’, respectively), compared with the baseline 

case of 0.1 d-1. These values approach the range of values typically used in global ecosystem models 

(e.g. Aumont and Bopp, 2006 where phytoplankton mortality = 0.01 d-1; Aumont et al., 2003 where 

mortality ranges from 0.008 d-1 up to a maximum of 0.2 d-1 depending on the type of phytoplankton; 

Le Quéré et al., 2005, where maximum mortality is 0.05 d-1; Fasham et al., 1990 where mortality 
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varies from 0.045 to 0.06 d-1). These optimized non-grazed mortality rates suggest that death by 

viruses and programmed cell death is less than 10% per day at the global scale.  

The optimized results reveal that, while the magnitude of the globally integrated export flux 

is nearly unchanged from the S14 model to the optimized model using ‘Climatological Data’, the 

optimized model parameters suggest fundamentally different things about the magnitude of the 

processes contributing to flux. Compared to S14, the optimal model predicts a higher fraction of 

NPP that goes into algal flux, a reduced rate of non-grazing mortality, and a larger role of small 

plankton to total fecal flux. Of the total POC flux, the average direct algal sinking contribution is 

29%, with the remainder coming from large fecal flux (13%) and small fecal flux (58%), using the 

parameters from ‘Climatological Data’ and CbPM. In all, the optimal model highlights the elevated 

importance of direct algal settling globally compared to what was expected based on previous food 

web models (Michaels and Silver, 1988; Boyd and Stevens, 2002). 

 

4.3 Importance of the depth horizon used for export flux 

 

Carbon export flux attenuates strongly with depth due to both biological and physical 

factors, making the choice of depth at which POC flux is considered ‘export flux’ critically 

important for interpreting both the overall magnitude of POC export and the ez-ratio. Different 

studies have used various definitions of the export depth, ranging from the mean mixed layer depth, 

the base of euphotic zone, the fixed depths of traps, arbitrary reference depths such as 100m, and the 

depth of winter mixing (e.g. Antia et al., 2001; Buesseler and Boyd, 2009; Henson et al., 2011; Li 

and Cassar, 2017). Here we use the ‘234Th Profiles’ dataset to recalculate model fluxes at several 

different reference depth: the Primary Production Zone (PPZ) (the depth where fluorescence reaches 

10% of its maximum; Owens et al, 2015), the monthly mean mixed layer depth (MLD), and 100m 

(see supplementary material for methodology). The choice of these in any given study will have 
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different rationales (mechanistic or nominal) depending upon their usage (Palevsky and Doney, 

2018). 

Depending on the depth normalization used, the optimized global flux varies by ~40%, from 

2.8 to 4.0 Pg C yr-1 (Table S2).  These export fluxes are small compared to other global estimates 

because the dataset used is ‘234Th Profiles.’ The largest calculated flux corresponds to the shallower 

1% PAR calculations, whereas the minimum integrated flux corresponds to the deeper PAR values 

(given by the PPZ, which is roughly equivalent to 0.1% PAR). Using the monthly mixed layer depth 

as the export depth yields a total POC export in between these extremes at 3.2 Pg C yr-1 (Table S2). 

The magnitude of these differences in POC export demonstrates how model comparisons can be 

confounded by the choice of export depth. 

Adjusting the export depth also results in small changes in the model-predicted mechanisms 

responsible for POC export (Table S2). The biggest change is for the non-grazing mortality rate, 

which decreases with increasing depth (Figure S5). This is likely because the assumptions of the 

model (i.e. phytoplankton carbon biomass is negligible below the mixed layer) imply that a deeper 

production layer is more dilute. In general, larger flux observations associated with shallower 

reference depths generate higher optimized values for the algal flux fraction and the ingestion 

fraction of big phytoplankton.  

 

4.4 What is needed to robustly compare POC export models with observations? 

Calibrating POC export models with observations can help quantify the global and regional 

magnitudes of POC export, and improve our mechanistic understanding of biologically mediated 

carbon export. However, one should be careful to ensure that the observations to which the model is 

being compared are suitably-averaged in order to match the scale of the model. For global POC 

export models, these scales are typically climatological.  It is not appropriate to calibrate 

climatological models with data that does not represent climatological conditions, as most export 
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data do not. 

The datasets described herein span a spectrum of sampling methods, duration, locations, 

times, and depths; the ability of our POC export model to represent climatological POC export 

fluxes is confirmed with the ‘Climatological Data’ compilation because these data are averaged to 

minimize naturally occurring variability within the bounds of the space and time scales captured by 

the model.  The global dataset compiled here reveals that spatial variability within a one-degree grid 

box is roughly equivalent to temporal variability within a given locality (63% and 43% uncertainty, 

respectively). Ideally, data would be sampled multiple times at several locations within each model 

grid box, in order to reduce uncertainty in flux estimates to a point where they can be meaningfully 

compared with the model output. It is not possible to assess the biases between sediment traps and 

the 234Th technique here because there are insufficient observations from traps at .  

An ideal sampling scheme to calibrate food-web models for carbon export is one that 

quantifies activity in the surface ecosystem that produces POC flux, and the processes that regulate 

its transport to depth. The upcoming EXPORTS field campaign will accomplish this sampling on a 

limited scale (Siegel et al., 2016), which aims to identify shifts in ecosystem ‘states’ that regulate 

export. However if we want to calibrate global POC export models with POC flux data from 

sediment traps or 234Th techniques, we will need long-term observations at many locations 

throughout the ocean. Ideally we would have a global array of long-term flux measurement sites that 

have minimal sampling errors, and that can carry out observations for 3-7 days per month 

throughout the year. Alternatively, in the absence of sediment traps or 234Th techniques, optical 

proxies for flux that are available at comparable spatiotemporal scales should be investigated for 

potential incorporation into global models (i.e., Dall’Olmo and Mork, 2014; Estapa et al., 2017). 

 Until we have suitable long-term POC flux measurements of the kind needed to calibrate 

global climatological models, it will be necessary to compile datasets that average over long 

temporal and large spatial scales (e.g. ‘Climatological Data’) in order to minimize intrinsic and 
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extrinsic variability in the system so that model-data comparisons can be used to extract meaningful 

insights about carbon export. It will also be useful to calibrate POC export models with data that is 

not subject to the same intrinsic and extrinsic sources of variability that affect carbon flux 

estimations, such as ocean tracer data (e.g. DeVries and Weber, 2017). 

 This study has also shown that uncertainty in satellite NPP data products is a major 

weakness in carbon cycle models that rely on satellite NPP products. Models will benefit 

significantly from improvements in algorithms for estimating NPP from satellite observations, 

particularly if those algorithms are themselves constrained by climatological oceanographic 

observations such as long-term mean POC export fluxes and ocean tracer data. 

Acknowledgments 

The authors gratefully acknowledge support from the NASA Ocean Biology and 

Biogeochemistry Program. DAS, KMB, and KOB are supported by #NNX16AR49G. KOB is also 

supported by OBB16_2-0031. BBC is supported by #NNX16AR47G and TD is supported by 

#NNXA122G. KMB and BBC also acknowledge support from the National Science Foundation 

Graduate Research Fellowship program. All satellite data is freely available via 

<https://oceancolor.gsfc.nasa.gov/cgi/l3> and 

<https://www.science.oregonstate.edu/ocean.productivity/>, and the flux data products are available 

in the supplement. We thank Erin Black, Stephanie Owens, and Meg Estapa for assistance 

evaluating thorium profiles, and we thank Toby Westberry for generating the CAFE NPP product 

during the SeaWiFS era. We especially acknowledge two anonymous reviewers for their thoughtful 

contributions to this manuscript.  

 



 

 

 

 29

 

Figure 1 caption: Theoretical distributions of biological carbon flux arising from complexities 

within lat-lon-month model bins are plotted. The inset shows how model – data comparisons look 

when data is either randomly sampled (left) or sufficiently averaged (right). The distributions are 

randomly sampled three times each and their values are plotted in the left inset. The overall 

sampling average of the distribution is plotted against the distribution’s true mean in the right inset.  
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Figure 2 caption: Map showing the sediment trap (blue) and POC flux from 234Th (red) locations of 

the bins (n=591). The bins are unique lat/lon/months in the complete dataset arising from the data 

treatment described in the methods section. The bottom panels show histograms of these data 

products after they are normalized to the euphotic zone (Zeu), and of their sampling depth relative to 

the climatological Zeu, which is the depth of 1% PAR . Note the scale difference on the y-axis for 

each product.  
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Figure 3 caption: Diagram showing the conceptual elements of the model. NPP is routed into two 

phytoplankton size classes (pico and nano phytoplankton (small), micro phytoplankton (large)) 

which are ingested at a rate given by micro and meso zooplankton herbivory (Gs and Gm, 

respectively). In the baseline model case, a lower ingestion efficiency is attributed to the smaller 

phytoplankton size class to implicitly account for higher trophic transfers. This is illustrated here by 
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the flux line between micro and meso –zooplankton. Fecal flux from both zooplankton sizes classes 

is added together with an aggregation flux from bigger phytoplankton, totaling the reported 

particulate organic flux (POC) at the euphotic layer, Zeu. Image credit: Gad Girling.  

 

Figure 4 caption: Left panel: Bar graphs for optimized parameter values for the various NPP input 

 products and the model development data sets are shown. NPP product comparisons are shown in 

color (red is CbPM, blue is VGPM, and tan is CAFE). The a priori values for each parameter are 

shown in cream on the far left. The x-axis shows the dataset used. Error bars indicate the 
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magnitude of the standard deviation for each product. Note the y-scale differences among parameter 

type. Right panel: The top panel shows the Pearson correlation coefficient, r, which compares the 

specified dataset against the optimized model. The 2nd panel shows values for the log likelihood, 

where a lower (more negative) log-likelihood equates to a higher cost, and consequently a higher 

model-data mismatch. The 3rd panel shows the values for the mean model flux (mg C m-2 d-1), 

and the final panel shows values for the ez-ratio, the fraction of production that is exported.  

 

Figure 5 caption: Model vs data scattergraphs are compared among the different dataset types 

using the CbPM model as the NPP input. The navy line is the best fit line for ‘All Data’ case, which 
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is shown in the other graphs to illustrate how the model would look if the ‘All Data’ parameters 

were used in those different scenarios. The red line is the 1:1 line, and the black line is the best fit 

line for b) through d).  

 

 

 

Figure 6 caption: Global summary maps and statistics are shown for the 3 datasets that span several 

ocean basins (‘All Data’, ‘Climatological Data’, ‘234Th Profiles’). The annually integrated POC 
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flux values are shown in white on the top panel, in Petagrams. The EZ-ratio (the proportion of 

production that is exported beneath the euphotic layer) is shown in the 2nd row, with global 

 averages in white. The algal ratio (the fraction of flux from aggregates) is shown in the 3rd row 

with global averages in white. All of the reported statistics and maps are done with CbPM as an 

input production product.  

 

 

 

Table 1 caption: Table showing sources of error and uncertainty for each dataset used. The starred 

columns (temporal, spatial, and Zeu normalization) are used in the cost function to account for 

dataset-specific sources of error. Checked columns indicate that error is present within that dataset, 

which arises from insufficient sampling to overcome temporal, spatial, and/or depth biases. 

Temporal variability is not considered a problem for ‘Climatological Data’ because the timescale of 

interest is 1 month. A description of how the error values are calculated is in the methods section. 
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Supporting Information 

Introduction  

This supplement contains text that expands on the methods for section ‘4.3 Importance of the 

depth horizon used for export flux’ as well as figures to support the main text, which follow.  

The depth used to calculate flux has a substantial impact on the globally integrated flux. The 

euphotic layer (here defined as the 1% light level) is used as the depth where export flux to the deep 

initiates, but not all phytoplankton exist within the full depth of the euphotic layer (which can be 

much greater than the 1% light level) when there is a strong density gradient keeping them in the 

surface. The mixed layer depth constricts the position of plankton within a column of water and can 

be thought of as the production layer (Li and Cassar, 2017) during those instances when light is 

replete. On the other hand, it is reasonable to consider the primary production zone (PPZ) as the 

base of fluorescence (or where fluorescence reaches 10% of its maximum, as used by Black et al, 

2018)), which is closer to the 0.1% light level.  Because it’s not possible to calculate this number 

from satellite data directly, we choose the 1% light level and add 100m to it, which is close to the 

PPZ depths reported in Black et al., (2018).Here we describe the methods we employ to test the 

importance of the export flux depth horizon.  

Holding the model structure constant allows for the results to be evaluated in the context of 

a variable integration depth. The depths considered are the Mixed Layer Depth, 100m, and The 

Primary Production Zone (PPZ) as defined by Black et al, 2018. The ‘234Th Transects’ profiles were 

used to recalculate the fluxes at the depths specified above.  MLD at the time of sampling was not 

readily available in all cases, so in those instances (i.e. stations within the Dutch Geotraces 
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Transect) it was calculated from CTD profiles using the Geotraces Data Extractor 

(<https://webodv.awi.de/geotraces_extractor_ctd>). 

For each station, mixed layer depth was calculated as the depth where density is less than a 

density threshold (compared to the density at 10m where the threshold is defined as the density 

where temperature is < 0.2C from the temperature at 10m). This threshold is calculated as  

 

 

 

where alpha is the coefficient of thermal expansion for a given salinity, temperature, and 

pressure. For the stations with available data across the depths of interest, the U-Th difference (in 

dpm/L) was multiplied by the decay rate for 234Th to get the 234Th at various depths above and below 

the MLD, 100m, and PPZ. From there we linearly interpolated across depth to get 234Th flux at the 

specified depth, and multiplied that flux by the C/Th relationship specified in Owens et al, 2015 to 

get POC flux. This yielded 3 datasets of POC flux at the MLD, 100m, and PPZ.  We do not 

recalculate the data according to the model value of Zeu because those studies consider PPZ to be Zeu. 

Therefor, for the model depths of 1% light and PPZ, we use the same flux data but change the depth 

of the production zone within the model.  

Then the model was adjusted so that all NPP occurs within the boundaries of the depth of 

interest, where previously all NPP is assumed to be within the boundaries of the 1% light level. This 

approach is imperfect because it relies on several assumptions: production is limited to the specified 

depth (but not below), and the general food web framework is appropriate in all cases. Despite these 

assumptions it is useful to put bounds on global flux as a function of normalization depth. With in 

the model framework, equations 3 and 4 are adjusted to remove the entrainment term, and to account 

for the depth used (Z, where Z = {PPZ, 100m, MLD}), yielding 
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  .  

  

                  

From this the model parameters were optimized in the same way as described in the main text.  
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gure S1. Graphs of BATS and HOT climatological trap data are compared to climatological satellite 
NPP product on the top row. The three NPP products are the Carbon Based Productivity Model 
(CbPM), the Vertically Generalized Production Model (VGPM) and the Carbon, Absorbing, and 
Fluorescence Euphotic-Resolving model (CAFE).  Error bars on the trap data functionally represent 
standard deviations from the mean, and conceptually illustrate the variations in sampling once 
monthly. The bottom row shows interannual trap data plotted with available satellite matches 
(monthly average for 0.25 x 0.25 degree grid nearest to each site) for each month during the 
SeaWiFS era.  

1/4 1/3 1/2 1 2 > 3 1/4 1/3 1/2 1 2 > 3 1/4 1/3 1/2 1 2 > 3

 

Figure S2. Ratios of in annually averaged climatologies for satellite NPP product (mg C m-2 d-1) are 

compared across latitude for the 3 algorithms considered.  The white shading is bounded by the 

contours (0.89, 1.2), meaning that the two products are roughly equivalent. 
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Figure S3. Map showing the locations for the ‘Climatological Data’ locations (red) and those for 
the ‘234Th Profiles’ data (blue). 

 

 

 

 

Figure S4. A histogram of the percent uncertainty arising from the martin b power law assumption 
for depth normalization is shown. The bins (N=591) for the ‘All Data’ dataset are used for baseline 
flux data. First we produce a normal curve with ‘b’ values of mean 0.7 and standard deviation 0.35 
and sample it 1000 times. Then fluxes were calculated with these ‘b’ values, totaling 1000 fluxes for 
each bin. Their resulting standard deviations divided by the mean are here reported as % 
uncertainty. The average percent uncertainty after 10,000 simulations is 21.4%. 
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Figure S5. Departures from the baseline model (y-axis) are shown for the four model parameters (x-
axis) across three depths (MLD in black, 100m in navy, PPZ in light blue). A value of 1 indicates 
that there is no change between the optimized value and the baseline case. 
 
 
 

 
 
 

Table S1: Table of optimized parameters and performance metrics for each dataset and NPP product 
considered in the primary analyses. Sigma represents standard deviation. The integrated global POC 
flux value is in peta-grams. We include estimates from HOT and BATS for sake of comparison 
rather than to imply results from HOT and BATS should be extended to the global scale.
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Table S2: Table of optimized parameters and performance metrics for each depth considered 

 

Information on supplementary data set 

We compiled POC flux (mg C m-2 d-1) by first reviewing the compilation from Lutz et 

al., 2007. We added fluxes from more recent work (including studies also compiled by 

Henson et al., 2011 and Mouw et al., 2016) as well as historical studies not presented in Lutz 

et al., 2007. When direct data was not available for download (as in references 22 and 23) 

we digitized fluxes from visuals in publications, using the ‘Web Plot Digitizer,’ freely 

available online at https://automeris.io/WebPlotDigitizer/. 
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II. Assessing mechanisms of the biological pump by integrating data 

from satellites, experiments and in situ observations  

 

Introduction  

 

Food web processes in the surface ocean undeniably control the flux of carbon into 

the deep sea through activities that convert suspended phytoplankton carbon into sinking 

particulate organic carbon (POC) flux (Alldredge and Silver, 1988), in what is commonly 

referred to as ‘the biological pump’ (Ducklow et al., 2001; Falkowski et al, 2000; Volk and 

Hoffert, 1985). Yet, the food web processes affecting POC flux are complex and difficult to 

model globally. Consequently, many studies focus on examining a particular process (e.g., 

Hansen et al., 1997; Burd et al., 2000; Suttle et al., 1990), and/or on the dynamics of a 

particular place (e.g., Mahadevan et al., 2012; Lancelot et al., 2000; Schlitzer, 2002; 

Richardson and Jackson, 2007) to better quantify the pathways of the biological pump. 

Recently, Siegel et al., (2014) embedded global satellite observations in a two-size class 

food web model (hereafter S14) to evaluate the processes controlling POC flux worldwide. 

This model has been widely used for a variety of applications, and its simplistic 

parameterizations have not been reassessed since its first use. 

Here we introduce an adaptable food web modeling framework that is data driven, 

informed by experimental results, and calibrated with POC flux observations recently shown 

to be the most suitable for model development (Bisson et al., 2018) to demonstrate 

differences in the mechanisms that control POC flux in the surface. We adapt the Siegel et 

al. (2014) food-web model (hereafter S14) to include more realistic parameterizations that 
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represent processes not resolved in the original model (aggregation of small and large 

particles, differential phytoplankton mortality based on either size or temperature). The idea 

is that the addition and removal of parameterized processes alters model assumptions, and by 

evaluating model behavior, the importance of these processes can be quantified on regional 

to global scales.  

It is not a new idea to use food webs to represent and interpret biological pump 

function (Pomeroy, 1974; Azam et al., 1983; Michaels and Silver, 1988; Legendre and Le 

Fèvre, 1995; Boyd and Newton, 1995; Franks, 2002 and refs therein). The mechanics of the 

biological pump involve biological activities that are well represented through an ecological 

perspective: zooplankton consume phytoplankton and excrete organic matter throughout the 

water column, bacteria metabolize dissolved organic matter and in some cases form 

endosymbiotic relationships with phytoplankton, phytoplankton form aggregates and sink, 

and phytoplankton die from viral infection, releasing dissolved organic matter into the water 

column. These processes can be examined through in situ observations, experimental work, 

theoretical perspectives, and modeling frameworks that can be used to test ecological 

hypotheses, but it is uncommon to do so. Our understanding of the ecological processes 

affecting POC flux is therefore limited to method specific perspectives. 

In this study we optimize and examine five models  (‘No Size,’ ‘S14,’ ‘Aggregation,’ 

‘Aggregation + Size Dependent Mortality,’ ‘Aggregation + Temperature Dependent 

Mortality’) that require a different combination of processes, in order to compare what their 

differences imply about the functioning of the biological pump. We evaluate performance 

using POC flux observations and zooplankton grazing experimental results for all models. 

Our aim is that the model results will be useful for future model development and sampling 
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strategies, particularly to learn which processes are most influential and uncertain in the 

biological pump. 

 

2. Modeling methods, optimizations, and sensitivities 

2.1 Model Overview   

 

The overall modeling goal is to build on S14 to optimize and examine four new plausible 

mechanistic models that predict POC export from satellite observations. We choose a nested 

modeling framework because it allows for parameters to be added and removed, so that their 

influence on the overall model product can be examined simply. The baseline model (S14) 

routes net primary production ( ) through a two-size food-web model informed from 

satellite observations (full details are available in Siegel et al., 2014). The final model output 

is POC flux ( mg C m-2 d-1), which is determined at the base of the euphotic zone 

( through the sum of modeled fecal export (  and sinking algal export ( ). 

Fecal fluxes are calculated from unknown herbivory rates for each size class, and are 

determined through mass balance using satellite observations of phytoplankton biomass 

( , modeled net primary production ( , mg C m-2 d-1) modeled mortality which 

includes death by viruses, cell lysis, and non-grazing death (collectively , modeled 

particle aggregation ( , and detrainment below the mixed layer 

( equations 3,4). 
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                    (3) 

 

                       (4) 

 

As in S14, the last terms in equations 3 and 4 represent the reduction in phytoplankton 

carbon due to mixed layer deepening where  is the mixed layer and H(x) = 1 if x > 0 and 

0 otherwise. 

 

The POC fecal flux ( is calculated by multiplying herbivory rate for each size 

class (s = small, 0.2 – 20μm; l = large, 20-50 μm) by size-specific fecal flux fractions that 

quantify the fraction of ingested carbon that becomes fecal flux.  

 

              (5) 

 

In this study we consider 3 new processes (aggregation, and differential mortality based 

on either size or temperature,) that add 6 new possible parameters 

(  listed and described in table 1.  Differential mortality 

is modeled based on size (  and temperature ( . An expected mortality rate 
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of 0.1 d-1 is held constant across all models, consistent with previous work (Doney et al., 

2009) in order to investigate how the different mechanistic models represent mortality 

processes. In the case of differential mortality based on size, we expect  will be higher 

than  because the high concentration of small phytoplankton makes them more 

vulnerable to infection through increased probability of viral contact, relative to large 

phytoplankton. An alternative hypothesis is that viral rates will be higher for large 

phytoplankton, because viruses act on blooms and/or areas of upwelling, where large cells 

dominate (Furhman, 1999) and are also susceptible to infection.  

 

Temperature dependent mortality is modeled using a  of 2, which is the factor 

whereby a rate doubles with an increase of 10 degrees Celsius, relative to a reference 

temperature , (10 degrees here) and a free parameter to be optimized, , following 

work in Chan et al., 2004, Chen and Liu, 2010, and Coles and Jones, 2000.  

 

 .                                                                           (5)                    

 

This increases mortality rates for warmer waters (e.g., the subtropics) compared to cooler 

waters in the high latitudes or along areas of upwelling.  
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In the original model direct algal sinking flux (  is formulated as a fraction of net 

primary production performed from the micro sized phytoplankton, but it is adapted here to 

explicitly designate aggregation between large and small particles. The aggregation flux of 

small phytoplankton on other small phytoplankton is modeled as the square of the 

phytoplankton carbon contained in the small fraction.  

 

        (6) 

The explicit formulation for aggregation of small cells onto other small cells tests the 

importance of smaller sinking material within the biological pump (Richardson and Jackson, 

2007; Giering et al., 2017; Durkin et al., 2015). The aggregation flux of large particles is 

modeled as the sum of a sinking fraction of large phytoplankton plus an additional term to 

account for aggregation of large phytoplankton with small phytoplankton  

 

.     (7) 

where  is the sinking speed for large cells (Smayda et al., 1979) and assumed to be 

1 m d-1. The two aggregation coefficients (  account for the probability that a large 

particle forms an aggregate with either a large or small particle, or that a small particle 

aggregates with another small particle, respectively. Both  and  represent, but do 

not explicitly formulate, mechanisms for aggregation, so a specific expected value is not 

assigned to them (table 1). However we expect  to exceed  because aggregation is 
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thought to primarily influence large particle settling, although small particles do form 

aggregates (Richardson and Jackson, 2007).  

 

The total aggregation term is the sum of the large and small aggregates: 

 

.          (8) 

 

Finally, fecal flux ( ) is calculated by applying size-specific fecal fractions to 

grazing rates, as in S14. In S14,  is assumed to be 10% and  is 30% to account for 

less trophic steps involved in the transfer of larger phytoplankton to zooplankton, increasing 

the efficiency with which that food is processed. However, when prey is large compared to 

the predator, more biomass is thought to be lost through sloppy feeding (Lampert, 1978, 

Møller and Nielson, 2001), which would convert POC to DOC, and thus reduce the POC 

available for export. Therefore, we take as a null hypothesis that the fecal flux fractions are 

equivalent (20%) for both size classes, and so that we can consistently compare the 

parameter outcomes with a model that does not resolve size, and which assumes an expected 

value of 20% for all phytoplankton.  

 

2.2 Specific model descriptions  

 

1. The ‘No Size’ model uses three parameters: , , and  is modeled 

as the square of total phytoplankton carbon concentration and an aggregation 
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parameter: . The herbivory calculation uses one equation for ingestion of all 

phytoplankton sizes, that is:  

 

                  (9) 

 

2. The ‘S14’ model is the original satellite informed food-web model, which uses four 

parameters: , and . The algal parameter, , is the fraction of 

NPP performed by large phytoplankton that becomes sinking POC.  

3. The ‘Aggregation’ model uses all the  free parameters but not the differential 

mortality terms, totaling five parameters. In the herbivory equations,  

4. The ‘Aggregation + Temperature Dependent Mortality’ uses all the  free 

parameters plus one to adjust the temperature dependent mortality term, , 

totaling five parameters. 

5. The ‘Aggregation + Differential Mortality’ model uses six parameters in total: all the 

 free parameters plus two separate parameters for the mortality rates on small 

and large phytoplankton, that is  

 

2.3 Model optimizations 

 

We optimize the free parameters ( , and  in all 

models (‘No Size,’ ‘S14,’ ’Aggregation,’ ‘Aggregation + Temperature Dependent 

Mortality,’ ‘Aggregation + Differential Mortality,’ listed in order of increasing degrees of 
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freedom) in order to identify parameter values that reduce the model/data misfit, while 

retaining reasonable fidelity to their expected values. The fitting metric is the log posterior 

function, which combines the model-data misfit for POC flux (given by the log likelihood, 

equation 10) with penalties for parameter deviations from what is expected (given by the log 

prior, equation 11).  

 

The model-data mismatch is minimized when the log likelihood is maximized: 

 

.                      (10) 

 

The model values and observations are log transformed because POC flux follows a 

lognormal distribution, and to give equal weight to differences from small and large fluxes. 

 

The log prior is added to the log likelihood, which quantifies the departure of an 

optimized parameter from its expected value (see Table 1). There is no prior value on the 

size specific aggregation terms, because the expected value for or  is not known 

from ecological or particle aggregation theory.  

 

             (11) 

 The log prior is normalized by the total number of parameters in a model ( ) so that 

there is no penalty for additional parameters. The parameters are log transformed to increase 
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their magnitudes within the bounds of the expected parameter values ([0, 0.5]), so that the 

retrieved parameter samples retain reasonable fidelity to their expected value. Then, the log 

posterior is calculated:  

 

.     (12) 

  

All models are optimized with the “Climatological Data” dataset from Bisson et al. 

(2018), which was demonstrated to be the most appropriate dataset of shallow POC flux 

observations for calibrating global models. A slice sampling technique is used to generate 

parameter values, which is a Markov chain sampling method (Neal, 2003). For each model 

we draw initial parameter values ( ) equal to the number of parameters (k) in each 

experiment (Table 1) from a uniform distribution within [0,1].  These values define the 

vertical ‘slices’ through the log probability density function, which is the log posterior. At 

the value of  a log posterior value is uniformly sampled within this vertical slice. New 

parameters are drawn from where the sampled value of the log posterior bisects the log 

posterior curve. Samples are drawn in this way until 2000 new parameter values are 

generated. Four instances of slice sampling are run to get four ‘chains,’ and sampling is 

stopped if the chains converge to the same pdf (given by a ‘Potential Scale Reduction 

Factor’ near 1 (Brooks and Gelman, 1998)).  The first 50% of the samples are discarded as 

part of the ‘burn-in’ phase and the remaining parameter values are saved. The reported 

uncertainties represent the interquartile range of the sampled parameters.  

The models are scored using the Pearson correlation coefficient (r) and the Root Mean 
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Square Difference (RMSD). The correlation coefficient is used to quantify the extent to 

which the model explains the variance in the data, and the RMSD is used to measure the 

average difference between model output and observations.  

 

 

 

2.4 Model parameter sensitivities 

 

We also run global POC flux sensitivities to each parameter in every model to quantify 

the influence of a parameter value on integrated global POC fluxes. First, for a given 

parameter in a certain model, we randomly draw 1000 values from the optimized parameter 

results, without replacement.  Then, to calculate how global POC fluxes changes e.g., as a 

function of the aggs term for the ‘Aggregation’ model, we hold 

constant to their mean value and we run the global ‘Aggregation’ 

model 1000 times with the variable aggs values, and record the integrated POC fluxes. This 

does not account for the co-variance between the model parameters, although it does 

quantify how changes in one parameter value will lead to changes in integrated POC flux.  

 

3.1 Input data 

 

The models are driven by monthly mean observations from the Sea-Viewing Wide-Field-

of-View Sensor (SeaWiFS) satellite ocean color mission from September 1997- December 

2008, as is done in S14 (Figure 1). We use the CAFE  satellite data product (Silsbe et 
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al., 2016) because it showed the best performance across all of the datasets analyzed in 

Bisson et al. (2018), and because it showed best performance with in situ NPP 

measurements compared to other NPP models (Silsbe et al., 2016). The choice of NPP 

product will affect parameter values to an extent, although we note the variations in 

parameter values introduced from NPP product choice are small compared to the standard 

deviations in parameter values for the model development dataset chosen here (i.e., 

‘Climatological data’ see supplementary table 1 from Bisson et al., 2018).  

 

We apply the slope of a power law particle size spectrum to estimate fractional 

biovolumes of particles (Kostadinov et al, 2010) between 0.2 -20μm, and from 20- 50 μm, 

which is available at <http://wiki.icess.ucsb.edu/measures/index.php/PSD>. In particular we 

use  (mg C m-2 d-1), fraction of mirco- and sum of pico- and nano-phytoplankton size 

particle biovolumes,  (m), and phytoplankton carbon ( , mg C m-3).  We use SeaWiFS 

surface chlorophyll concentrations (< 

http://oceancolor.gsfc.nasa.gov/cgi/l3?sen=S&amp;per=MO&amp;prod=CHL_chlor_a>) to 

estimate the euphotic layer depth,  from formulations in Morel et al, 2007. We use 

particulate backscatter ( ) from the Garver-Siegel-Maritorena product at 443nm to 

estimate phytoplankton carbon from the relationship described in Graff et al., (2015) (  

fields are available at http://wiki.eri.ucsb.edu/measures/index.php/GSM ). We also use 

mixed layer depths from the MLD_DT02 climatology (de Boyer Montégut et al., 2004), 
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available at <http://www.ifremer.fr/cerweb/deboyer/mld/Surface_Mixed_Layer_Depth.php> 

to use in combination with the satellite products. 

 

We organize the data as follows: all data inputs are gridded onto a 1-degree 

latitude/longitude grid and averaged for each climatological month (Figure 1). As in S14, we 

require a minimum of 8 months a year of observations, which effectively excludes the high 

latitudes from analysis.  The global mean euphotic layer depth is 63 (±19) m, the mean 

mixed layer depth is 65 (± 29) m, the mean NPP is 490 (± 142) mg C m-2 d-1, and the mean 

 is 0.018 (± 0.018) m-1, which corresponds to a mean phytoplankton carbon concentration 

of 23 (± 22) mg C m-2 using the relationship presented in Graff et al., (2015).  

 

3.2 Model development dataset 

 

We use a carbon export field data compilation shown to minimize the variability arising 

from sampling (Bisson et al. 2018), and at the same depth as the model output, . This 

dataset, called ‘Climatological Data’ in Bisson et al., (2018) includes 166 total observations 

of POC flux from the 234Th technique at 15 different sites, with an average flux of 69 mg C 

m2 d-1. This dataset is spatially biased towards the Northern Hemisphere (Supplementary 

Figure 1), but the multiple observations are averaged within a given grid cell as to best 

represent the 1-degree, monthly resolution outputs of the model. This yields 15 lat/lon/month 

bins for direct comparison with model outputs. 

 

4. Results  
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4.1 Retrieved parameter values across all models   

 

Parameter values for the suite of five models are shown in figure 2. Prior to performing 

the optimizations we hypothesized that some parameter values will vary as new parameters 

are added, because when additional degrees of freedom are added, it might affect how 

parameterized processes operate together.  This can be examined by comparing the S14 

model to the models that build on it because they are identically formulated apart from their 

aggregation or mortality calculations. We find that the optimized values of the S14 model 

are nearly invariant when explicit aggregation is added, but are greatly changed when size is 

removed (compare the first through third bars for ). When differential 

mortality based on size is added to the aggregation model, the mortality rate for large 

phytoplankton increases by nearly 100%. Otherwise, the optimal parameter values do not 

vary much across the different models considered here.  

 

There are departures in the parameter values from their expected value. In particular, the 

 terms for all of the models are less than their expected value of 0.2. Every model 

except for the ‘No Size’ model predicts a reduced rate of small phytoplankton mortality from 

what is expected, as well as enhanced, if only slightly so, values for . While there were 

no expected values for the two aggregation terms, there are variations in both the magnitude 

and the range of  and , and  is always less than . This indicates that for a 

given magnitude of phytoplankton particles, more large cells will sink as aggregates 
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compared to small ones.   The implications of these, and of model sensitivities to change in 

parameter value, are reviewed in the discussion. 

 

4.2 Model skill, sensitivities, and global statistics 

 

Results from the model optimizations are shown in table 2, and figures 3 and 4. Model 

skill is evaluated on the basis of the log posterior, the correlation coefficient, and the root 

mean square difference. The fitting metric for model-data fit, the log posterior, increases 

with increasing degrees of freedom as expected, but this increase in performance does not 

imply improvement for other metrics of fit. The correlation coefficient is reduced in the case 

of the ‘Aggregation + Size Dependent Mortality’ compared to the ‘Aggregation’ model,’ and 

the RMSDs are higher for ‘Aggregation + Size Dependent Mortality’ and ‘Aggregation + 

Temperature Mortality.’  Overall there is not a significant change in performance across the 

models, as measured by the model-data misfit for POC flux. 

 

The global average statistics across the five models are different as well (Figure 3). The 

model that produces the highest average flux is the ‘Aggregation’ model, followed by the  

‘Aggregation + Size Dependent Mortality’ model and then the other three. The model results 

for the average model fluxes are also reflected in the EZ-Ratio, which is the fraction of NPP 

that becomes POC flux at the based of the euphotic zone. The algal ratio varies widely 

across all the models, constituting between ~20 to 55% of the total POC flux. The 

implications of this, and for interpreting the plausibility of different mechanistic models, are 

reviewed in the discussion.  
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The global model mean values for integrated POC flux are roughly similar for all the 

models (Table 2), with a range from 6.1 to nearly 8 Pg C yr-1 (from ‘No Size’ to ‘S14,’ 

respectively). They also exhibit consistent patterns in their global sensitivities to particular 

parameters (Figure 4, Supplementary Figures 4-6). The global model sensitivities are 

consistent with what is expected: the models are especially sensitive to , and 

along coasts and areas of upwelling, where there is a higher fraction of large 

phytoplankton. The reverse is true for the  term, where adjustments to  yield 

heightened POC fluxes in the gyres compared to coasts and high latitudes. Increasing , 

and  yields higher total POC flux, and increasing  and  yields 

lower total POC flux. In all models apart from ‘No Size,’ the fecal flux perturbations yield 

the largest spread for annually integrated POC flux values. In ‘No Size,’ the fecal flux and 

mortality parameter perturbations result in similarly large ranges for global integrated POC 

(~10 Pg C yr-1). In all models, adjusting the algal and fecal flux terms leads to net positive 

POC flux changes, whereas adjusting the mortality terms yields net negative POC flux 

changes. 

 

4.3 Space/time patterns in export flux  

 

Results from the nested model experiments can be used to assess where and when 

particular mechanisms especially contribute to overall POC flux (Figure 5, Figures S2-4). 

Regions with similar magnitudes of total POC flux (i.e., oligotrophic or high latitude 
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regions) do not exhibit the same magnitudes of flux pathways (Figure 5) throughout the 

annual cycle. For example, although Station ALOHA and the South Pacific Gyre are thought 

to have similar capacity for POC flux, and indeed their annually average flux contributions 

are very similar, the timing of mechanisms contributing to POC flux varies between them. 

Station ALOHA is considerably less seasonably variable in each of the three pathways 

(compare shape of time series in Figure 5), and exhibits nearly equivalent fractional 

contributions from large fecal flux and aggregation year round. The South Pacific Gyre has a 

reduced fraction of small phytoplankton in the late summer, which corresponds to higher 

fractions of large fecal flux and algal flux. The peaks of aggregation and large fecal flux are 

slightly decoupled in the South Pacific Gyre, which contrasts to a tight coupling at Station 

Aloha for of aggregation and large fecal flux. 

Similarly, the North Pacific and North Atlantic sites have roughly similar annually 

averaged contributions for each of the four pathways, but these sites vary widely in the flux 

pathways over time. For example, in the boreal summer the North Pacific has decreased 

algal sinking contribution (a change to 20% of total flux from May to August) whereas the 

North Atlantic has enhanced contributions of algal sinking (from 40% to 50%) from May to 

August. Throughout the entirety of the annual cycle in the North Atlantic, large fecal flux 

exceeds that of small fecal flux, but in the North Pacific, large and small fecal fluxes are 

negatively correlated (R= -0.74).  

 

The magnitude of changes throughout the seasonal cycle at a regional basis is influenced 

by model construction (compare Figure 5 with Figures S2-S4).  While the relationships 

between the processes remain unchanged (i.e., the general shapes of the seasonal cycles are 

preserved), the magnitude of particular fractions is especially enhanced for the North Pacific 



 

 70

and the North Atlantic. Depending on the model used, the contribution of aggregation can 

vary by a factor of 2.  

 

Within any one model the global fractional combinations of mechanisms to total POC 

flux are little influenced by the time varying magnitude of POC flux (Figure 5; 

Supplementary Figures 2-4). However, the contribution of mechanisms across models varies, 

even for similar POC flux magnitudes (Figure 5, Figures S2-S4). It therefore is the model 

type and construction, not the POC magnitude that sets the combination of mechanisms 

contributing to overall POC flux for the global seasonal cycle. The pathways most affected 

by model construction is the algal flux fraction, which is enhanced in the ‘Aggregation + 

Temperature Morality’ and ‘Aggregation + Size Dependent Mortality’ models (37% and 

38%, respectively) compared to S14 (25%). Summarily, then, though all models are 

optimized with the same set of POC products, they predict different magnitudes of the 

processes contributing to POC flux.  

 

5.0 Discussion  

 

In this study we embellish S14 to include parameterized processes known to influence 

POC flux. Below, we discuss which model components influence the model’s prognostic 

skill, what is learned from adding and removing processes to our baseline food-web model, 

and what type of data are required for improving ocean carbon cycling models.  

 

In this study, the modeled POC fluxes are relatively invariant across all nested models 

because the models are all optimized with the same dataset. This means that, first and 



 

 71

foremost, the addition of any mechanism (e.g., aggregation, differential mortality based on 

size or temperature) will not change the absolute magnitude of the POC export to a large 

degree, but rather the fractional contribution of the other mechanisms contributing to POC 

export. Because we are interested in understanding how well the modeled ecological 

mechanisms represent reality, it is futile to evaluate these models solely on the basis of their 

predictions for POC flux. The models must also be evaluated based on how realistic their 

mechanistic predictions are. Below, we consider how the different models vary 1) in the 

timing of their seasonal predictions for flux across sites, 2) in the their assumptions, and 3) 

in the distribution of their predicted grazing rates. 

 

5.1 Model differences in the predicted seasonal cycles of mechanisms contributing to 

flux 

 

It is well documented that increases in absolute POC flux are often a result of a shift in 

the mechanisms contributing to enhanced POC transit, as in Guidi et al, (2016) (where a 

significant fraction of the variability in carbon export can be predicted from viral genes in 

the oligotrophic ocean), and Busseler and Boyd (2009), where there is increased export of 

large particles following bloom periods. Given these findings, the most realistic models 

should produce algal flux fractions that are not constant throughout the year. In this study we 

refined the S14 parameterization that assumed a constant fraction of direct algal sinking 

relative to the primary production rate of large phytoplankton. When explicit aggregation for 

small and large particles is added (as in the ‘Aggregation’ suite of models) as a function of 

phytoplankton concentration, the timing and peaks of the aggregation flux change 

dramatically for the North Pacific and North Atlantic sites (compare Figure S2 with Figures 
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S3 and S4), compared to the S14 case. For all sites, enhanced POC flux coincides with an 

increase in larger cells, as evidenced by positive slopes for both the large fecal flux and 

aggregation fluxes. This means that when POC flux increases it is because large fecal flux 

and aggregation is also increasing. It is more plausible that these high latitude regions will 

experience changes in the fraction of aggregation throughout the seasonal cycle compared to 

a constant fraction of sinking cells year round, which is expected (and predicted by all 

models) at Station Aloha. These changes imply that the ‘Aggregation,’ ‘Aggregation + Size 

Dependent Mortality,’ and ‘Aggregation + Temperature Dependent Mortality’ models are 

most realistic. 

 

5. 2 Consequence of removed model complexity 

 

We tested a model (‘No Size’) that assumes all phytoplankton are the same size, and it is 

well known that plankton size varies. It is therefore unsurprising that the model produces 

values that vary considerably from the other models.  The predicted global fraction of algal 

sinking to total flux is 60% for ‘No Size’ compared to 20%-40% for the other models. ‘No 

Size’ is highly sensitive to parameter changes relative to the other models, with a range of 

annually averaged POC export values from ~0 to 12 Pg C yr-1 depending on which 

parameter value is used (Supplementary Figure 4). These findings, together with the poor 

model metrics for ‘No Size,’ underscore the importance of distinguishing plankton types on 

the basis of size for improved model fidelity and performance.  

 

5.3 Comparing modeled grazing rates with previous work 
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Another way to assess model performance is to compare the intermediate data products 

that the model produce to syntheses of field data.  For example, all models evaluated predict 

herbivory rates on phytoplankton. Figure 6 shows model-predicted herbivory rates on small 

and large phytoplankton, which is analogous to grazing by microzooplankton and 

mesozooplankton, assuming the two-size food web model presented here. Previous work 

identified global mean values for the fraction of production consumed by microzooplankton 

to be 62% (Schmocker et al., 2013) and 67% (Calbet and Landry, 2004). The mean fraction 

of herbivory on small phytoplankton relative to total NPP is 70% for ‘S14,’ 88% for 

‘Aggregation,’ 65% for ‘Temp Mortality,’ and 61% for ‘Differential Mortality.’ The 

fractional values are relatively large in the ‘Aggregation’ model because its  parameter 

is the smaller than  for all other models, so nearly all of the small phytoplankton NPP is 

available to be consumed because it has not become sinking aggregates. 

 

Model predictions of grazing rates on large phytoplankton can be explored using the data 

synthesis of experimental mesozooplankton grazing data from Calbet 2001 that quantify the 

fraction of production grazed by mesozooplankton in order to compare the data with the 

models herein (Figure 6, second panel). The grazing rates were determined by gut pigment 

content and clearance rates from incubations. Because no direct matchups are available, we 

evaluate them on the basis of their frequency distribution functions. For consistency with the 

models we eliminate the few instances in the data set that exceed 1, because those are a 

likely consequence of uncertainties and bias within the grazing measurements for the two 

different techniques. The idea is that, although these grazing experiments were not 
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performed explicitly for model development, the distribution of their values can be exploited 

to compare global variability in estimates of grazing. 

 

The experiments show a higher fraction of production grazed by mesozooplankton 

compared to any of the models: the mean for the Calbet (2001) data is 12%, compared to the 

mean for the ‘S14’ model (8%), the ‘Aggregation + Temperature Dependent Mortality’ 

model (9%), and the ‘Aggregation + Size Dependent Mortality’ model (5%). The higher 

values suggest food limitation for mesozooplankton (Calbet (2001), but may also imply that 

mesozooplankton (pelagic tunicates and cladocerans) are feeding on picophytoplankton (this 

idea is supported by Gorsky and Fenaux, 1998; Fortier et al., 1994). The mesozooplankton in 

the experiments exclusively fed on phytoplankton, whereas in the ocean they supplement 

their diet with smaller zooplankton; this could also account for the higher values reported in 

Calbet (2001). The models assume mesozooplankton only feed on large phytoplankton, and 

thus will underestimate the fraction of production consumed by mesozooplankton. With 

these considerations, it is likely the apparent discrepancy between the models and data is 

much less.  

 

5.2 Biological implications for departures in parameter values from what is expected  

 

The relative importance of mechanisms contributing to the biological pump is 

implied by the magnitude of change in a parameter’s value from its expected value. 

Compared to the original S14 model, the algal fraction term ( ) quantifying the fraction of 

NPP going into direct algal sinking is nearly triple from what is formulated in the original 
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model, implying that direct algal sinking has a substantially more dominant role than was 

hypothesized.  For all models, the  term is similar to what is formulated in the original 

S14 model (10%) compared to the expected value of 20%. The  term is slightly 

enhanced from what is expected, with every two-size class model predicted  fractions 

between 20% and 35%. This supports the idea that carbon flux is more efficient in areas 

where there are less trophic steps between producer and predator(s).  

 

The parameter optimizations are also used to test hypotheses arising from observations 

and ecological theory, and to address model plausibility. ‘Aggregation + Differential 

Mortality,’ and ‘Aggregation + Temperature Mortality,’ are considered to be equally 

plausible in their construction, so they must be evaluated based on other metrics. The 

‘Aggregation + Size Dependent Mortality’ model tests the assumption that the most 

abundant organisms will be most susceptible to viral activity, and  ‘Aggregation + 

Temperature Mortality’ assumes that temperature is the dominant control on non-grazing 

phytoplankton death. Globally, these different mortality paradigms account for a change of 

0.5 Pg C yr-1 in TotEZ between the two models. The two mortality models produce similar 

performance metrics and global average statistics (Figure 3), but they vary in their predicted 

fractions for algal flux and large fecal flux (Figures 6, S3 and S4).  

 

5.3 Data requirements for building improved models 
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Model performance can be diagnosed in order to identify requirements for advancing 

our mechanistic understanding of the biological pump from models driven by satellite 

observations. One strength of mechanistic modeling is that performance metrics are not 

limited to the model-data misfit for POC flux; other model components can be evaluated 

with data products (e.g., grazing rates) to assess the models across a range of situations.  

We compare model outputs for the proportion of NPP that is grazed by small and 

large zooplankton with experimental work (Figure 6).   This is a simple demonstration for 

how to overcome model-data scale issues when additional data is available but there are no 

direct space/time matchups. Grazing data is often reported as the number of prey consumed 

per day, which is not a possible model output. However, when the grazing rate data is 

normalized by the primary production in the experiments, the data product becomes directly 

comparable to a model prediction: the fraction of NPP that is grazed. In this case, the model 

and data distributions can be compared as long as the resolution of the data represents the 

resolution of the model. Future data products from the EXPORTS field campaign (Siegel et 

al., 2016) will provide improved matchups between zooplankton activity and NPP that may 

be useful for model calibration as described here. Additionally, future estimates of aggregate 

flux using optical techniques (e.g., the Underwater Video Profiler, Picheral et al., 2010), 

potentially deployed on autonomously profiling floats, may be useful to constrain , as 

well as the proportion of aggregate flux from different size classes. 

 

POC flux alone cannot explicitly quantify the magnitude of covarying surface ocean 

processes that produce it. Still needed are observations coupled to models in the surface 

ocean that link ecosystem structure (both the standing stocks of organisms from bacteria to 
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zooplankton, as well as their associated rates of production, herbivory, and mortality) to 

POC flux at depth across a range of environmental gradients, especially at dynamic sites 

with strong seasonal transitions, and in the Southern Hemisphere where there is especially 

sparse data. Improvements in the parameterizations of processes as well as quantitative 

descriptions how these parameterizations may shift across oceanographic state will 

especially be helpful to inform flexible model development. The analyses herein assume that 

the two-size class food-web model is appropriate to apply at every location and time around 

the world, but realistically a more flexible food-web structure that adapts to the 

environmental conditions across places and times will be a better representation of carbon 

cycling in the ocean. The ongoing EXPORTS field campaign (Siegel et al., 2016) will 

collect abundant observations within one region that can be used to develop a 

comprehensive understanding of the processes controlling the fate of photosynthetically 

fixed carbon, though on a limited scale. Until we have data that sufficiently characterizes the 

mechanistic links of surface ocean characteristics to POC flux at depth, we must rely on 

applying more primitive, yet still useful, models to the highest quality datasets available 

(e.g., the work presented herein), or by using model frameworks that capitalize on low 

uncertainty, high abundance environmental data (e.g., DeVries and Weber, 2017) that 

implicitly solve for the unknown values of biological pump components. 

 

6. Summary 

 

In this study we compared several plausible models built from S14 to evaluate ecological 

processes and carbon flux.  
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In particular, 

• Our model outcomes underscore the complexity of the biological pump: depending 

on the time and place there can either be a strong direct, inverse, or no relationship 

between the balance of physical aggregation, small and large fecal flux. 

• POC flux is not a strong constraint on the models; ecosystem measurements, such as 

the fraction of NPP grazed by zooplankton, are stronger constraints. Future studies 

will benefit from including other surface ecosystem measurements (including rates of 

zooplankton grazing and aggregation) in model evaluations.  

 

 

 

 

 

Parameter Description 

Abbreviation Description Units 
Expected 

value

Wsink sinking speed of large cells m d-1 1 

aggs term for aggregation by small particles on small particles  m4 mg-1 d-1 none 

aggl term for aggregation by any particle on large particles  m4 mg-1 d-1 none 

mph mortality rate for small (mph_s) and large (mph_l) phytoplankton  d-1 0.1 

mphT mortality rate for phytoplankton based on temperature  d-1 0.1 

fec fraction of grazed energy that becomes fecal flux for small (fec_s) and large (fec_l) prey none 0.2  

Table 1. This identifies the parameter names, symbols, and prior values for easy reference    

throughout the manuscript.  
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Figure 1. Annual climatologies for selected satellite data inputs into the model are shown. 

Phytoplankton carbon is in mg m-3 and approximated using particulate backscatter at 443nm. 

 

 



 

 80

f
alg

f
alg

 

Figure 2. Parameter values and their interquartile ranges for the five models are shown. 

Expected values for parameters are shown with a dashed line when appropriate. Note the 

different y-axis limits for the fecal flux terms. The falg term is from the S14 model, and is a 

different parameterization than aggs or aggl. 
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Figure 3. Basic statistics for the five models are shown, in order of increasing number of 

parameters (from 3 in the case of ‘No Size,’ to 6 in the case of ‘Aggregation + Size 

Dependent Mortality’). Model mean fluxes are in mg C m-2 d-1, and the EZ-ratio is the flux 

at the base of the euphotic zone divided by NPP. The algal ratio is the fraction of flux 

contributed by direct algal sinking and aggregation. 

model r l Global POC aggs aggl mphs mph l fecs fecl

No Size 0.68 -7.0 6.1 ± 1.3 0.05 ± .03 0.05 ± .03 0.13 ± 0.10 0.13 ± 0.10 0.11 ± 0.05 0.11 ± 0.05

S14 0.77 -6.6 7.9 ± 0.7 0.29 ± 0.18 0.29 ± 0.18 0.04 ± 0.02 0.04 ± 0.02 0.10 ± 0.02 0.33 ± 0.19

Aggregation 0.89 -5.6 7.3 ± 0.5 0.01 ± .01 0.13 ± 0.09 0.06 ± .02 0.06 ± .02 0.10 ± .03 0.28± 0.17

Aggregation + Temp Mortality 0.73 -5.6 6.8 ± 0.6 0.03 ± 0.025 0.11 ± 0.08 0.024 ± .01 0.024 ± .01 0.08 ± .03 0.25 ± 0.15

Aggregation + Size Mortality 0.76 -5.4 6.3 ± 0.4 0.02 ± 0.05 0.16 ± 0.13 0.07 +0 .03 0.12 ± 0.05 0.09 ± 0.02 0.21 ± 0.12  

 

Table 2. The model performance metrics and parameter mean values plus/minus half of the 

interquartile range are shown. In the case of ‘Aggregation + Temp Mortality,’ the mph 

values reported are for the coefficient in equation 5.   
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Figure 4. a) Histograms of annually averaged POC flux (Pg C yr-1) for each of the parameter 

sensitivity tests are shown.  b) Global maps showing model sensitivity in POC flux 

(‘Aggregation’ model) to changes in parameter value (dp) from the optimize parameter 

values (p) are shown. The values are given by a centered difference, or .5*(POCp+dp- POCp) 

+ .5*(POCp- POCp-dp). 
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Figure 5. Monthly outputs from the ‘Aggregation’ model are shown for the global average 

as well as various locations (North Pacific, 50N, 145W, North Atlantic, 47N, 20W, South 

Pacific Gyre, 80W, 20S, and Station Aloha, 22N, 158W). The annual fractional contribution 

of three flux pathways (aggregation, small fecal flux, large fecal flux) to total POC flux is 

shown in the pie charts, and the monthly fractional contribution of these pathways is shown 

alongside them for each location. 
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Figure 6. a) Annually averaged outputs for the grazed energy on small phytoplankton (Grzs) 

divided by total NPP are shown for the four models that use size in their construction. 

Vertical lines indicate global averages from previous studies for comparison. b) Annually 

averaged outputs for the grazed energy on large phytoplankton (Grzl) divided by total NPP 

are shown for the four models that use size in their construction for comparison with 

digitized data from Calbet, 2001, Figure 1A. 
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Supplementary Figure 1. The distribution of the data values is shown along with the data 

locations. 
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Supplementary Figure 6. a) Histograms of annually averaged POC flux (Pg C yr-1) for each 

of the parameter sensitivity tests are shown.  b) Global maps showing model sensitivity in 

POC flux (‘Size Dependent Mortality’ model) to changes in parameter value (dp) from the 

optimize parameter values (p) are shown. The values are given by a centered difference, or 

.5*(POCp+dp- POCp) + .5*(POCp- POCp-dp). 
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Supplementary Figure 7. a) Histograms of annually averaged POC flux (Pg C yr-1) for each 

of the parameter sensitivity tests are shown.  b) Global maps showing model sensitivity in 

POC flux (‘S14’ model) to changes in parameter value (dp) from the optimize parameter 

values (p) are shown. The values are given by a centered difference, or .5*(POCp+dp- POCp) 

+ .5*(POCp- POCp-dp). 
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Supplementary Figure 8. a) Histograms of annually averaged POC flux (Pg C yr-1) for each 

of the parameter sensitivity tests are shown.  b) Global maps showing model sensitivity in 

POC flux (‘Temperature Dependent Mortality’ model) to changes in parameter value (dp) 

from the optimize parameter values (p) are shown. The values are given by a centered 

difference, or .5*(POCp+dp- POCp) + .5*(POCp- POCp-dp). 
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III. Testing relationships between the particle size distribution and 

flux in the global ocean 

  

Introduction  

 

The transit of particulate organic carbon (POC) from the surface ocean to ocean 

depths fuels deep-sea metabolism and exerts a control over atmospheric CO2 levels (Archer 

et al., 2000; Kwon et al., 2009), making POC flux observations central to many theoretical, 

experimental, and modeling studies from cellular to global scales (e.g., Karl et al., 1988; 

Steinberg et al., 2008; Burd and Jackson, 2009; Mari et al, 2017; Siegel et al., 2016). Ideally, 

observations of POC flux are numerous and well calibrated, so that they can be attributed to 

variables of interest throughout appropriate places, depths, and time. However, the only 

direct method for determining POC flux is sediment traps, which are riddled with 

uncertainties (Michaels et al., 1990; Buesseler et al., 2007) and have a sparse worldwide 

distribution (Bisson et al., 2018), making it difficult to compare fluxes from traps to other 

measurements of interest. Thus, new methods are needed to address the need for higher 

resolution POC flux estimates.  

One such method uses theory to link the standing stocks of the aggregate size 

distribution to the flux of POC throughout the water column. POC flux can be calculated if 
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the particle size distribution is known (given by n, where n is the number concentration of 

particles within a given size range (in theory, from 0 to infinity; in practice, from 250um to 

1.5mm), according to  

     (1) 

where m is the mass of an individual particle (mg C), D is the diameter of the particle 

(mm) and w is its sinking velocity (m d-1), as first introduced in Guidi et al. ( 2008). The 

mass of a particle is given by  where ρ is average density. Both the mass (m) 

and the sinking speed ( ) of a particle (in the Guidi et al., 2008 study, Stoke’s law is used) 

can be modeled as a power law, so their product can also be represented as a power law, as 

in Guidi et al, (2008, 2009, 2015), with unknown parameters A and b.  

      (2) 

POC flux is the product of the number of particles in each size (diameter) class, the 

mass, and the sinking speed across all diameters (D).  The exponent b gives information 

about a particle’s fractal dimension, which quantifies particle shape and can be used to 

calculate particle sinking speeds, as in Guidi et al., (2008). The fractal dimensions of marine 

aggregates are commonly between 1.125 and 1.3 (Alldredge, 1998) but can be as high as 

3.75 (Jackson et al., 1997).  Particle shape changes with particle type, size, and from both 

abiotic and biotic interactions throughout the water column (Naselli-Flores et al., 2007; 

Stanca et al., 2013; Alldredge et al., 1993; Murray and Jackson, 1992). The prefactor on the 
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power relationship (  does not mechanistically indicate anything; rather, changes in the 

magnitude of  will adjust the magnitude of POC flux for a given number size distribution.    

This method has been applied to observations from the Underwater Vision Profiler 

(UVP), which is mounted on a CTD rosette and collects data throughout the water column. 

The UVP has an order of magnitude greater amount of observations compared to traps, and 

unprecedented resolution within the water column for a range of particle sizes (90μm- 2cm), 

showing great promise to contribute estimates of POC flux for diverse applications (Picheral 

et al., 2010; Guidi et al., 2008, 2016; Biard et al., 2016; Jouandet et al., 2014, and others). Is 

it also easy to deploy, generates data rapidly, enumerates and sizes particles without 

destroying them or altering their relevant characteristics, and is constantly being improved 

upon (Gorsky et al., 1992; 2000). Yet, the required parameters to calculate POC flux from 

UVP particle size distribution data have been assumed to be constant since their first use 

(Guidi et al., 2008), although it is probable they will vary around the world’s oceans and 

with depth (Jouandet et al., 2011). 

In the original study of Guidi et al., (2008), 118 UVP profiles from the Eastern 

Atlantic and South Pacific were optimized to retrieve a single magnitude for A (12.5±3.4) 

and b (3.81± 0.7) that best fit fluxes from sediment traps deployed from 100m to 1000m. In 

this study we use 3246 UVP profiles from the global ocean with estimates of POC flux 

across depth to ask: how might A and b vary for different depths and/or different 

oceanographic conditions?  

 

Given that (1) POC flux can be calculated from the particle size distribution and the two 

parameters A and b, and (2) b quantifies the aggregate fractal dimension and particle sinking 
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speeds throughout the water column, we expect that A and b will differ as a function of 

environmental characteristics and depth. To test this, we optimize the largest amount of UVP 

profiles available using observed and modeled POC flux in order to identify controls on A 

and b. The results will be useful for future modeling studies requiring abundant flux 

measurements worldwide under a variety of conditions. 

 

 

2.0 Data and Methods 

 

The overall goal of this study is to leverage existing, flux estimates with sufficient spatial 

resolution to enable POC flux estimates from UVPs. POC fluxes from sediment traps or the 

234Th technique will not work here because there aren’t enough matchups over the relevant 

depth (below surface to depth) to rigorously assess the parameters needed for POC flux. 

Instead we use POC fluxes obtained using a tracer inversion approach from DeVries and 

Weber (2017) because they are highly depth resolved and are available across the entire 

globe; thus, virtually every UVP measurement will have a matchup product in space. Given 

the matchups in space, there are abundant UVP profiles representing instantaneous snapshots 

in time that can be averaged over the course of a year to match the annual average outputs of 

the DeVries and Weber (2017) model. The DeVries and Weber (2017) model produces 

annually averaged POC fluxes derived within an ocean circulation model to more 

realistically retrieve what POC flux has to be given observed oxygen, DOC, and sediment-

trap POC flux data. More details are in section 2.1. 

 

2.1 Tracer based calculations of POC flux  



 

 104

 

DeVries and Weber (2017) present methods to implicitly solve for POC flux at 24 

discrete depths (from 50 to 5500 meters) throughout the ocean (2 degree grid, 24 vertical 

levels) using satellite data and in situ observations across depth. The model uses information 

on the upper ocean processes contributing to flux (i.e., from satellite observations) as well as 

the interior processes promoting flux decay (i.e., from concentrations of dissolved organic 

carbon and dissolved O2, and POC flux from Lutz et al., (2007)). The advantage of this 

approach is that it resolves changes in flux with depth (hereafter referred to as ‘DW17’ 

products) within the water column, so it can be compared with fluxes derived from UVP 

data.  DW17 fluxes are annually averaged and gridded to 2-degree resolution, which 

necessarily requires that the comparison with UVP products should be also annually 

averaged and binned to 2-degrees. We only use depths below the euphotic zone, defined as 

the 1% light level and determined using surface chlorophyll measurements from satellite 

data as described in Morel et al., (2007). The depths of interest are centered bins at 137 m, 

190 m, 250 m, 500 m, and 2500 m.  We choose these depths because the model is not 

seasonal, so we want to avoid comparisons where there are especially seasonal changes (i.e., 

in the surface ocean) in UVP data. Of course, there are seasonal changes with depth as well, 

and we account for this by suitably averaging over a sufficient number of profiles to 

minimize impacts from seasonal variations (details in 2.2). Finally, the globally integrated 

annual average for DW17 fluxes is 9.1 ± 0.2 Pg C yr-1, which has considerably low 

uncertainty compared to other models for POC flux. Implications for using this modeled 

POC product, rather than direct POC flux observations, are reviewed in the discussion. 

 

2.2 UVP Data acquisition and data treatment  
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The UVP was designed to quantify large (>100 μm) aggregates and zooplankton 

throughout the water column at data acquisition rates comparable to  CTD profilers (more 

details in Picheral et al., 2010). There are 5 UVP versions currently, all of which can capture 

images similar to those acquired from remotely operated vehicles or manned submersibles, 

but with considerably less effort and expense. Different versions of UVPs will capture 

varying sizes of particles. The lower size class threshold is fixed by optical resolution 

whereas the sampling volume determines the upper size limit.  The newer UVP generations 

(3,4,5) can image particles as small as 90μm and as large as 2cm to 1000m depth (the UVP5 

is rated to 3000m) whereas the older UVPs (1,2) are limited to a range of 250 μm to 1.5mm 

to 1000m depth.  

For this study, 5234 UVP profiles were downloaded from ECO-TAXA 

(<http://ecotaxa.obs-vlfr.fr>, accessed 20 July 2018) particle module for use in this study 

(Picheral and Irisson, 2017). The particle profiles are binned to 5m depth intervals, and all 

particle sizes between 250μm and 1.5 mm are considered in order to use the sizes coherent 

across all UVP versions.  

 

We organize the data to match the space/time/depth model outputs as closely as possible. 

In particular, we:  

 

1) Remove data in shallow waters (<500 m) because the satellite products used to drive 

the SIMPLE-TRIM model are influenced by terrestrial input. This reduces 5234 

profiles down to 3885.  
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2) Use data equatorward of 65 degrees latitude because the high latitudes have known 

issues related to cloud cover and poor coverage. This reduces the profiles to 3553. 

3) Grid UVP profiles to the 2-degree resolution of the modeled POC fluxes. This bins 

the profiles into 475 unique bins based on location.  

4) Remove bins with less than 6 profiles in a given bin, which reduces the total bins to 

259 (Figure 1) with 3246 profiles. This step is done so that the highly variable 

particle size distribution is sufficiently averaged.   

For each bin, the average size spectrum is calculated according to  where C 

is the change in particle biovolume with increasing size class and  is the given size range 

for a particular bin, in millimeters.  The particle size spectra with two UVP bins closest to a 

chosen depth are averaged for comparisons with model output. 

 

2.3 Honjo deep trap data set 

 

We also compare UVP flux estimates to deep sediment trap data from the Honjo et al., 

(2008) compilation. We bin UVP and trap locations at one-degree resolution, which reduces 

the matches for the 2-degree bins from 456 to 61. We keep matches that have depth 

differences with the UVP profiles of less than 50 m and with at least 3 observations, which 

reduces the matchups to 18 sites. Importantly, the Honjo dataset does not provide vertically 

resolved fluxes. However, it does provide direct measurements of deep flux (500-3000m), 

which can still be used to test parameter values. 
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2.4 Flux model optimizations 

 

We optimize the two parameters (A, b) in the flux model (equation 1) using a 

minimization procedure that reduces the misfit between the UVP model and the POC flux 

products. This is quantified by a cost function (equation 3) which also takes into account 

how the optimized parameters deviate from the original Guidi et al., (2008) parameters 

(A=12.5 ± 3.4; b= 3.81 ± 0.7).  

.                                 (3)           

      

The deviations from the original parameter values are normalized by their standard 

deviation reported in Guidi et al., (2008).   

 

Surface ocean characteristics influence particle type and particle magnitude so we also 

optimize the parameters for grid cells based on surface ocean ecosystem characteristics. We 

subsample the bins based on ‘high’ and ‘low’ values for net primary production (NPP) and 

sea surface temperature (SST). We use the CAFE satellite data product (Silsbe et al., 2016) 

because it showed the best performance across all of the datasets analyzed in Bisson et al. 

(2018), and because it showed best performance with in situ NPP measurements compared 

to other NPP models (Silsbe et al., 2016). CAFE climatologies of NPP are available from 

1997-2008.  We use NOAA SST products (Reynolds et al., 2007) binned to 1-degree and 

averaged over 1997-2008 for consistency with the NPP product.  The idea is that changes in 

NPP covary with changes in particle composition and ecosystem behavior, which determines 
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the quantity and shape of particles available for export. Sea surface temperature also 

differentially affects phytoplankton growth and heterotrophic metabolism (Huntley and 

Lopez, 1992). At higher temperatures, heterotrophic metabolism slightly exceeds the rate of 

phytoplankton growth; this effect has been hypothesized to affect the amount of NPP 

available for export (Cael et al., 2017).   For each NPP and SST optimization, we define 

‘high’ as bins with data values that exceed the 75% quantile, and ‘low’ as bins with data 

values less than the 25% quantile.  

 

Model optimizations are compared on the basis of their cost function value, the Pearson 

correlation coefficient (R), and Root Mean Squared Differences (RMSD).  

 

 

 

 

3. Results 

 

Results from the model optimizations are shown in figures 2-8, and model performance 

metrics are shown in table 1. Figure 2 shows particle size spectra, the POC flux transfer 

function, and POC flux for a range of depths. Figure 3 and 4 show how these attributes vary 

depending on the surface ocean environmental conditions. Figures 5-8 and table 1 show 

model performances for the various optimization experiments conducted in this study.  

 

The particle number size spectra (Figures 2-4, top panels) show a higher abundance of 

smaller size particles compared to large particles, as expected across the world’s oceans.  
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POC fluxes are obtained from the particle number size spectra and transfer function ( , 

2nd panel). Higher fluxes are predicted for smaller sized particles (Figures 2-4 bottom 

panels) across all depths. Given a particular particle size, the optimized fluxes are lower at 

depth and higher toward the surface.  The transfer function that converts the particle size 

spectra to flux systematically varies with size and depth. Implicit in the power law 

relationship is the assumption that larger diameters require a higher conversion factor for 

POC flux.  If and  were the same with every optimization experiment conducted there 

would be no visible difference in the relationships shown in the second panel for Figure 2-4. 

There are deviations in this transfer function across the five depths considered with 

increasing particle size.   

  

Depending on the surface ocean NPP, the predicted shape and magnitude of resulting 

fluxes and of the transfer function varies (Figures 3,4). For the two depths shown (centered 

at 137 m and 500 m) across two conditions of NPP there are differences in the transfer 

functions comparable in magnitude to the differences observed across all depths in Figure 2. 

For depths of 500 m, the predicted fluxes are the same independent of surface NPP value 

(Figure 3, lower panel). The largest changes in predicted POC fluxes are for different depths 

rather than difference surface NPP values. For high NPP bins, there is slightly larger flux 

across all size classes, although this is likely not statistically significant.  

 

Surface temperature differences also influence the parameter optimizations (Figure 4). In 

contrast to the NPP case, the particle number spectra do show separation for high and low 

temperature areas. The greatest concentration of particles occurs in low temperature surface 
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waters, and the lowest concentration of particles is in deep waters with high sea surface 

temperatures. The transfer function is highest for the high temperature case at 137 m, and is 

apparently dissimilar to the other situations. The resulting fluxes are bounded by end 

members for low temperature bins at 137 m (high flux), and by high temperature bins at 500 

m (low flux).  

 

The retrieved parameters and model performances reveal systematic differences with 

depth and systematic departures from the original Guidi et al., (2008) parameters. The value 

of A decreases with increasing depth (Table 1), which coincides with decreasing POC fluxes 

and decreasing RMSDs (which range from 3-135 mg C m-2 d-1). The changes in POC flux 

are due to the changes in A moreso than the changes in b, which are minimal. Correlation 

coefficients range from -0.2 to 0.8 (for low temperature surface water optimizations and 

2500m optimizations, respectively). The model performance is equivalent on the basis of the 

cost function (with values from ~ 0.3-0.5) for all optimizations except shallow low 

temperature waters and deep sediment traps (with values of 1.8 and 2.8, respectively).  

 

The original parameters overestimate flux at depth compared to fluxes generated from 

both the DV17 products and the Honjo dataset (Figure 5, 6). This is a consequence of higher 

A values from the original parameters compared to lower A values predicted from this study.  

The optimized values of b are generally within 8% of the constant value of 3.8 used by Guidi 

et al. (2008) resulting in the parallel lines apparent in Figure 5.  The flux differences are 

constrained between 0 and 100 mg C m-2 d-1, and the highest discrepancy is observed at the 

500m depth optimization (Figure 7). Future work will need to assess error and uncertainties 

for the entire analysis presented herein in order to statistically discriminate differences 
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between the transfer functions and parameter values retrieved for depth or surface 

environmental conditions. The implications of this are reviewed in the discussion. 

 

4. 0 Discussion 

 

In this study we have examined how the required parameters  and  to produce POC 

flux from particle size spectra vary across depth and surface ocean environment. This study 

is a first step proof of concept approach to identity differences in  and . Error estimates on 

the parameter retrievals are not examined and discussed here; future work will need to 

rigorously account for the differences between the transfer functions. Below, we discuss 

implications for parameter variation as well as ideas for future work to improve the analysis 

herein.  

 

4.1 Sources of parameter variation 

 

Why do parameters vary? The original study of Guidi et al., (2008) used ‘b’ values to 

estimate fractal dimension of particles, and showed that differences in the value of ‘b’ meant 

that the particle shapes and sinking speeds were changing. We identified parameter values 

that are optimum for flux that are different depending on the depth used. The source of the 

variation in flux and the shape of the transfer function is driven by changes in A and not b. 

The magnitude of the parameter values is determined by the formula for the cost function, 

and more work is needed to address parameter uncertainties and sources of error. A constant 

b implies that particle shape is not changing with depth, which is unlikely.  If only the 
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number of particles were changing with depth, a similar transfer function might be expected 

because the particle size spectra itself would be attenuating. The different transfer functions 

imply the particle fluxes are differentially changing as depth increases with respect to size. A 

particle could change shape from both biotic (remineralization) and abiotic (physical shear 

and disaggregation) processes. We find that A decreases with depth using the DW17 

products. When using the available deep sediment trap observations we also find diminished 

values of A and b from the original Guidi et al (2008) case, which supports the idea that A 

and b will vary with depth. 

 

The formula for POC flux presented herein is itself problematic because it imposes a 

monotonic relationship between diameter and flux for a specific size range (i.e.,  

increases with increasing rate as particle diameter increases).  The shape of the resulting flux 

profile therefore requires accurate counts of the particle number spectra for a wide range of 

particle sizes so that N*  yields reasonable estimates of POC flux. In this study, the POC 

fluxes decrease for larger diameters because there are few particles of large size. However, 

because there are no observations of particles less than 250 μm, the apparent maximum in 

particle flux is bounded by this end member. In the real ocean there are abundant particles 

less then 250 μm in size and greater than 1.5mm. This effectively truncates the theoretical 

curve of POC flux as a function of size, which should have minimums at both the low and 

high particle sizes. In this study, only a subset of that curve is sampled (from 250μm to 

1.5mm), so we observe a nearly constant negative slope with increasing particle size, rather 

than a curve with a clearly defined maximum value.  The results herein imply no particle 

flux minimum for smaller particles sizes, which is unrealistic given that, at some threshold, 
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small particles will be buoyant and not constitute sinking flux. Future generations of UVPs 

will resolve lower size classes, which will give a greater fidelity of the POC flux –particle 

size relationship, and will undoubtedly change the optimized values of A and b.  

 

4.2 Choice and consequence of POC flux product  

 

There are limited POC flux products available to use for assessing the particle size – 

POC flux relationship. In this study we chose a calibrated model output to optimize a model 

for POC flux. When should one model be used to optimize a different model? The required 

assumption is that a model product faithfully represents the average particle flux 

environment. This is the same assumption required of any given observation used to develop 

a steady state model, and it has been shown that not all observations represent the average 

conditions of the ocean (Bisson et al., 2018). Ideally there would be sufficient number of 

sediment trap observations to use as direct matchups in the work presented herein, with 

minimum uncertainties associated from spatial temporal variability of the system (Bisson et 

al., 2018) or from collection (Buesseler et al., 2007). As currently available sediment trap 

observations for POC flux are not abundant enough to use as direct matchups in the work 

presented herein, we chose a model development product that is consistent with the 

paradigms for POC flux in the ocean (higher POC flux in the surface, lower POC flux at 

depth) and built from abundant, low uncertainty observations. We do so to investigate the 

hypothesis that A and b will vary, rather than to produce a statistical relationship that is 

globally applicable now. This approach invites future analyses to combine abundant 

matchups across different methods for flux (including the UVP) so that the systematic 

relationships between A and b identified herein can be evaluated more completely. The 
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ongoing EXPORTS field campaign (Siegel et al., 2016) will produce these flux products, 

which may enable improved estimates of A and b as well as their covariations with 

environmental parameters.  

 

4.3 External sources of validation  

 

Although direct matchups with existing POC fluxes are limited, we can compare the flux 

distribution of the work presented herein with the distribution of an existing POC profile 

dataset (Cael and Bisson, 2018). In particular, we consider how the profiles of the fluxes 

vary using the optimized and original parameters in order to assess differences in the POC 

flux attenuation rates. POC flux attenuations rates are commonly assessed by fitting a power 

law relationship ) to the POC flux profile, in order to determine the 

parameter value quantifying the loss rate (Martin et al., 1987). We use a profile data set 

(Cael and Bisson, 2018) that consists of 722 POC flux profiles from either sediment traps or 

the 234Th technique at depths up to 4600 meters collected over the last four decades. The 

profiles have between 3 and 14 observations and were deployed between 1 and 425 days. We 

fit a power law ( to each profile (following Martin et al., 1987) if there 

are at least 3 observations with depth. We then compare how the power law parameter varies 

across for the optimized and un-optimized case compared to the POC flux observations 

(Figure 8). We find that the original parameters from Guidi et al., (2008) predict a lower 

attenuation rate for POC flux than the optimized case, which is due to the overestimation of 

POC fluxes with depth using the original Guidi et al., (2008) parameters. The distribution of 

the optimized case most closely represents the POC flux observations, which provides an 
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external source of validation to the work presented herein. Moreover it demonstrates that 

accounting for depth-variable A and b parameters improves the fidelity of the UVP flux 

model.   

 

Future work will benefit from including more rigorous estimates for parameter uncertainties 

and optimization routines that take into account the particle size spectra variation within 

each bin. The results herein imply differences in the shapes of settling particles and on the 

activities that might especially influence them, but cannot say how and why the particles are 

changing shape. Improvements in optical signatures of flux with depth will allow this 

analysis to move beyond the assumption homogeneous POC flux.  
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Figure 1. Data locations for the UVP profiles (green) and deep sediment traps (red) used 

in this study.  
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Figure 2. Particle size spectra (top panel), POC transfer functions, and POC fluxes are 

shown for different depths and equivalent spherical diameters.   
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Figure 3. Particle size spectra (top panel), POC transfer functions, and POC fluxes are 

shown for different surface NPP values and equivalent spherical diameters.  Note that the 

purple and yellow lines in the bottom panel are equivalent.  
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Figure 4. Particle size spectra (top panel), POC transfer functions, and POC fluxes are 

shown for different depths and equivalent spherical diameters.   
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Depth (m) a b Cost RMSD R UVP µ UVP σ DW17 µ DW17 σ

137 11.5 3.8 0.5 35 0.5 68 56 60 38

190 10.9 3.8 0.5 30 0.4 56 53 48 32

250 9.9 3.9 0.5 22 0.3 42 30 38 25

400 7.2 4.1 0.5 15 0.3 28 20 26 19

500 6.2 3.9 0.5 14 0.2 24 19 22 16

1000 3.6 3.9 0.5 5 0.0 10 5 9 6

2500 2.9 3.9 0.3 3 0.8 6 3 3 1

depth =137; npp=high 12.5 3.8 0.4 35 0.7 70 69 65 56

depth =137; npp=low 11.0 3.7 0.3 28 0.3 59 41 49 21

depth = 500; npp=high 7.0 3.9 0.6 15 0.2 24 10 27 23

depth = 500; npp=low 5.0 3.9 0.4 9 0.3 18 11 16 11

depth =137; temp=high 11.7 3.8 0.4 32 0.6 65 57 56 37

depth = 137; temp = low 6.7 3.7 1.8 123 -0.2 148 180 87 46

depth =500; temp=high 6.3 3.9 0.5 11 0.3 21 12 20 15

depth =500; temp =low 6.3 3.7 0.9 32 -0.4 45 38 35 15

Honjo Traps 1.76 4.7 2.8 5 0.17 8 6 6 6

POC fluxes, mg C per m -2 d-1Model Performance

 

Table 1. Model performance metrics for the suite of optimizations are shown. Mean (μ) 

and standard deviation (σ) POC fluxes are reported in mg C m-2 d-1.  
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Figure 5. Comparisons of POC fluxes (in mg C m-2 d-1) between the optimized model in 

this study and the original model from Guidi et al., (2008) are shown for different depths and 

surface ocean conditions.    
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Figure 6. Comparisons of POC fluxes (in mg C m-2 d-1) between the UVP model and the 

Honjo trap compilation shown using either optimized parameters from this study or the 

original parameters of Guidi et al., 2008.  
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Figure 7. POC flux differences( in mg C m-2 d-1) derived from the Guidi et al (2008) 

parameters – the parameters from this study are shown for different depth horizons.  
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Figure 8. Top panel: The distribution of b values from the power law relationship that 

quantifies flux attenuation are shown for UVP-derived POC fluxes using optimized 

parameters from this study as compared to the Guidi et al., (2008) study. The solid line is the 

unbiased ‘b’ value from a observational profile compilation, and the dashed line is the 

estimate from the Martin et al., 1987 study. Bottom panel: The distribution of ‘b’ values 
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using optimized or  Guidi et al., 2008 parameters is shown alongside the distribution of ‘b’ 

values from the profile compilation of Cael and Bisson (2018) in green. 
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