UC Berkeley
SEMM Reports Series

Title
A Triangular Element Based on Reissner-Mindlin Plate Theory

Permalink
bttgs:ééescholarshiQ.orgéucgitem44xv8t4bg
Authors

Papadopoulos, Panayiotis
Taylor, Robert

Publication Date
1989-08-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4xv8t4b2
https://escholarship.org
http://www.cdlib.org/

REPORT NO.
UCB/SEMM-89/19

STRUCTURAL ENGINEERING,
MECHANICS AND MATERIALS

A TRIANGULAR ELEMENT
BASED ON REISSNER-MINDLIN
PLATE THEORY

by

PANAYIOTIS PAPADOPOULOS

and

ROBERT L. TAYLOR

AUGUST 1989

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA

40



A TRIANGULAR ELEMENT BASED
ON REISSNER-MINDLIN PLATE THEORY

PANAYIOTIS PAPADOPOULOS' and ROBERT L. TAYLOR?

Department of Civil Engineering
University of California at Berkeley, Berkeley, CA, USA

ABSTRACT

A new triangular plate bending element based on the Reissner-Mindlin theory is developed
through a mixed formulation emanating from the Hu-Washizu variational principle. A main
feature of the formulation is the use of a linear transverse shear interpolation scheme with discrete
constraint conditions on the edges. The element is shown to avoid shear lockin g, converge to the
Kirchhoff plate theory as the plate thickness approaches zero, and generally exhibit excellent
behavior on a series of standard problems and tests.

INTRODUCTION

Even though the problem of plate bending was originally tackled with the finite ele-
ment method in the sixties, [1], it is widely accepted that the current state-of-the art allows
for significant improvements to be made. During the present decade, many new finite ele-
ment formulations have been introduced in a continuous attempt to attain satisfactory
numerical treatment of the plate theories.

At the early stages of this process, interest was mainly oriented towards the classical
plate theory that neglects shear deformation, usually referred to as Kirchhoff theory. How-
ever, the requirement of C! continuity of the shape functions, needed to guarantee the
existence of the integral expression for the stiffness matrices, made researchers turn to
theories of shear deformable plates, e.g. the theories of Reissner, [2], or Mindlin, [3].
Here, only C° continuity is required, consequently shape functions are considered easier to
construct. This treatment, however, soon brought up the problem of shear locking, typical
of formulations where overconstraining occurs.

Initially, locking was eliminated by using reduced integration schemes for the shear
part of the stiffness, [4,5]. This obviously results in lower number of constraints and can be
effective in many cases. It has to be pointed out though, that selective reduced integration
may lead to singular behavior (rank deficiency), which is also undesirable (e.g., see [6]).

During the seventies and eighties, mixed variational formulations, [7], gave new
insight to the treatment of many classes of problems with constraints, including plate bend-
ing and provided the basis for the development of new effective finite elements. Malkus
and Hughes, [8], demonstrated the equivalence between some selective reduced integration
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and mixed formulations.

Two main directions emerged in the plate bending finite element literature within the
context of mixed interpolations. The first, focused on overcoming the difficulty of C! con-
tinuity requirement of Kirchhoff’s bending theory by imposing the zero-shear constraint in
a discrete manner. The attempt was successful, [9], and a popular element, known as the
DKT (Discrete Kirchhoff Triangle), appeared, [10]. The second approach developed thick
plate elements using smooth shear strain fields together with appropriate discrete con-
straints, [11,12]. Finally, the incompatible element of Arnold and Falk, [13], is notable,
since it has been shown to exhibit uniform convergence (for a restricted class of boundary
conditions) in the context of Sobolev spaces.

In this paper, a "thick" plate approach is considered. This work is an extension to
results presented in [15]. A key feature of the proposed element is the mixed interpolation
of the transverse shear strain. A rotational degree of freedom is introduced for every edge
to permit interpolation of rotations by (incomplete) quadratic functions, while the
transverse displacement is interpolated cubically (also incompletely). Extensive tests
demonstrate that the element:

(1) avoids shear locking and passes the patch test,

(2) is very accurate,

(3) is insensitive to geometric distorsions,

(4) provides stable solutions,

(5) converges to Kirchhoff solutions as the plate thickness goes to zero ("thin" plate
limit),

(6) is applicable to a wide range of static and dynamic problems.

1. THE REISSNER-MINDLIN PLATE BENDING THEORY

In this work we use the simplest plate formulation which accounts for the effects of
shear deformation. The assumptions of the theory are as follows:

(i) The domain Q of the plate is of the form
( \ )
Q= t(x sy 92)6R I z 6[_%1 ’%I] ’ (x ’y)eA CR J

(ii) O33 = 0
(iii) u=2z0,(xy) , v=—0,(xy), ws= w(x,y),
where 6, and @, are the rotations of transverse line elements about the x and y axes,

respectively (e.g. see [14]). Assumption (iii) implies that straight normals to the reference
surface, (z=0), remain straight, but do not necessarily remain normal to it after
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deformation takes place. Also the transverse displacement w does not depend upon the
thickness. Assumption (ii) is obviously inconsistent with three-dimensional elasticity.
However, the transverse normal stress may be neglected for plates where the thickness is
small compared with the other dimensions. The constitutive equations are required to
satisfy the plane stress conditions.

A more refined theory (e.g. the Reissner theory, [2]) accounts for transverse warping
and nonzero o33 stress. However, these effects will not influence significantly the overall
finite element analysis and thus are not included in this work.

The assumed displacement field (iii) yields in-plane strains of the form
€& =28, ; , € = 20,y , vy =2(8,, —6,,) (1.1
and transverse shear strains
Yo =W ¥ 0, , vy, = W,y — 0, (1.2)

The above strain field for plane stress and isotropic linear elasticity gives in-plane
stresses

o, = ——le, +ve)] ,
v
o, = ————2-[ey + ve, ] ,
On = Oy = Gy

Similarly, the out-of-plane stresses are given by
Gy =0, =Gy, ,

g =0

¥z y =G

where G = 2—(1—6_—-)— Integrating the in-plane stresses, which vary linearly along the plate
v

thickness, gives stress resultants (moments) of the following form :

L, X L8
2 2 2
My = [o2dz , My= [oy2dz , My =M, = [0,z (1.3)
! ! !
2 2 2
At this point, we introduce the matrix notation
= 1 T
M= lM’ My, M,,
and
'|T

k= [ey,r Bz y ey,y—ex,xj
It follows that the moment-curvature relation may be expressed as

M=Dx , (1.4)



where

3 v o
E——s|v 1 0
20 -v) [0 0 (1-wv)2]

Similarly, the out-of-plane stresses, when integrated along the thickness, give transverse

shear forces
dz (1.5)

In short-hand notation we may again write
S = Gry=ay , (1.6)

where
T T
S = [S“r Sy} s Y = {w,x+9y w,y—Gx]

Summation convention is implied over X,y,z for Latin indices and over x,y for Greek
indices, so that the local equilibrium equations may be appropriately integrated through
the thickness to deduce the plate equilibrium equations

Mapp —Sa=0, Syq+g=0, (1.7)

where q denotes the transverse surface loading. The first equation of equilibrium relates
the bending moments to the shear forces, whereas the second one is a statement of
transverse force equilibrium.

In the limiting case where r -0 the Kirchhoff hypothesis of zero transverse shear strain
must hold. Hence

w,+8 =0, w,, —06, =0

Equations (1.2) imply that the transverse shear strain remains constant throughout the
thickness. This is inconsistent with classical theory, where the corresponding transverse
shear stress varies quadratically. Consequently, we may make a temporary modification to
the displacement field, namely

u =120, + (22 + Bz)é (x,y) (1.8)

We impose the constraint

4
2
f(z3 + Bz)zdz = 0

M|-.

and y,, = 0 on the plate faces to obtain

Y = 1= 2(G22= 20100 4 ) (1.9)
= 32 20 10y T W '
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Moreover, substituting (1.9) into (1.6) we get

LN LS
2 2
_ _ 5 .2 32, 5 ,
S, = J;G'yxzdz = G(ey+w,,)f’[1-3t—2(3z =55z = 2G (0, +w.,)
“7 )

Hence, for consistency reasons, we incorporate a "shear correction” term

k=2
6
into equation (1.6), which now becomes
S = g—-cx'y =ay , (1.10)

where a = Z—Gt and is used in this form hereafter.

For the purpose of the finite element approximation in the next section, we introduce
a mixed variational form of the problem, based on the total potential energy for bending
and on the Hu-Washizu principle for the transverse shear energy. Accordingly,

I,(8,w,8,y) = ;—fKT(G)DK(B)dA + %f’yToT-ydA - (1.11)
A A
—fST('y — Vw —e0)dA —qudA + I
A A

where e is the alternating tensor

[0 1]

sl 1—1 oJ

and I1,,, decribes the effect of boundary and other loads.

Taking the variation of I1; with respect to S and setting it equal to zero, we get

JoST(y — Vw—e0)da =0 , (1.12)
A

which must be viewed as a constraint equation.

In the limiting case of -0, the functional in (1.11) becomes

I,(8,w,S) = %— { xT(0)Dk(0)dA + (1.13)

+ [ST(Vw + e0)dA — [wgda + 11
A A

Pointwise satisfaction of (1.12) leads to a displacement formulation with the total
potential energy functional given by

ne,w) = ;foTDdi + ;—f-yToT'ydA — fwgaa + 11, | (1.14)
A A A
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whereas the weak form (1.11) is exploited in performing mixed finite element approxima-
tions described below.

2. FINITE ELEMENT APPROXIMATION

The fields 6 = [Gx,f)y]T, W, § and <y are considered as independent variables, in
(1.11). Therefore, independent approximation schemes may be used for each field. In the
general case we will assume an approximation

6 = Ngb , (2.1)
w = N, W+ N, q0 (2.2)

and
v¥=Ny¥, (2.3)

where § , w and 4 are the nodal values of each variable, respectively. In addition, S will
be approximated by

3 -
S=8(0,w) = 38(x — xS~
k=1
where 8 is the Dirac function, t; is the tangent to the element side and S—,-k is the tangential
shear stress at the midpoint k of the element side.

Taking into account the constraint equation (1.14) along with the above interpolation
for S, equation (2.3) becomes (e.g., see [15])

Y= Q¢ +Q,W (2.4)
Note that, due to this constraint equation, § is no longer an independent variable.

It is important to point out that the constraint equation will be satisfied only in a
discrete sense, i.e. only at appropriately chosen parts of the boundary. Accordingly, this is
essentially a Discrete Reissner-Mindlin plate formulation (DRM).

Upon substitution of (2.1) (2.2) and (2.4) into (1.11), we get

I, = % [(LNgB)TD(LN,)da + (2.5)
A

1 a R a R w -
+ & J(N,Qo8 + N,Q, ][N, Q4 + N,Q,WldA — [(N,W + N, ¢0)Tqda + 11, ,
A A

where L is a differential operator defined by



T

[0 -2 -2

y X

i El
lax ayJ

Minimization of (2.5) with respect to 6 and w leads to a matrix equation of the form

[Kee Kew] 01= [fel
K,, K £, -

L we ] (V) ]
where
Koo = [{[LNg]"D[LNg] + [N,Q]” &[N, Qq]}dA | (2.6)
A
Kow = Ko = [[N,Q,]7&[N,QqldA , (2.7)
A
K = [IN,Q,]"&IN,Q,, JdA (2.8)
A
and
fo = NTgqdA , £, = [NTqda (2.9)
A A

External forces are also affected by I1,,, .

3. FINITE ELEMENT FORMULATION - A NEW TRIANGULAR ELEMENT

A new triangular plate bending finite element is developed based upon the approxi-
mation described in the previous section. Following the approach used in [15] and [16], 6
is assumed to vary quadratically (although not all quadratic terms are present) in each ele-
ment, according to the following interpolation, Fig. (3.1),

3 a
0= EL,'G" +

i=1 i

3 "
4L,'LjnkA9k N (31)
=1

where j = mod(i,3) + 1 , k = mod(j,3) + 1, L; are the standard area coordinates, [17],
and n; is the normal to the edge k. It should be noted that the interpolation for each edge
degree of freedom is hierarchical.

In addition, w is assumed to vary cubically (also incompletely), according to
3 3
w = ELI'W[' + 24L,L_,(akL, + Bij) N (32)
i=1 i=1

where the parameters «;,B,;, 1=1,2,3 are to be determined by requiring the tangential shear
strain to be constant along each edge of the triangle. Imposing the above constraints yields

(1 ~
o = =* «l%[(eyi —0,, )sinw; + (Oxj — 8, )cosw;] + —é’-—Ae,} (3.:3)
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li li
B; == {E-[(Oyi —0,, )sinw; + (6, — 8, )cosw;] + 6—A9;} (3.4)

where ; is shown in Fig. (3.2).

In the above equations, the sign attached to a; , B; is determined once a unique
boundary direction is selected. Detailed derivation of the above result may be found in
Appendix A. Special care must be taken in order to guarantee a unique definition of the

positive direction along every edge. Failure to achieve this, results in inconsistent definition
of the edge rotational degrees of freedom.

Substitution of (3.1) to (3.4) in (A.5) gives the constant tangential shear along the
edge i-j

1 1 : 2
Yy = = l-u—(\vj —‘H)‘-) - E[(ey‘ + Byl)smu)k + (Gx.' + ex})COS(l)k] - E‘AGL

Finally, the out-of-plane shear strain field is assumed to be linear
3
Y= ELi'Yi ’
i=1
where §; are to be determined by satisfying the discrete edge constraints of constant
tangent shear strain. Along the generic edge i-j, Fig. (3.2), the constraint conditions are
| P .
5‘(‘1: + V)4 =y, =C;
and

1.,. i
2—(’Yi - ¥)te =0 ,

where t; is the tangent vector to the j-k edge The above equations may be rewritten as
Ci = .‘ii‘tk = ?th N

where i,j,k satisfy the modulo expressions defined above. Note that with the above conven-
tion

t = [-sino; cosw;)" = [, 1,7

The above six equations we obtain (2 per edge) may be solved for the values of Yi, 1 =
1,2,3 (e.g., see [13]).

Hence,
3 = (-:y,-x\ _ 1[G —1;) , (3.5)
t'yr.yj 3 |Cj — tj,CkJ
where
8 = liely — tiyly (3.6)

The strain-displacement matrices due to bending, B,, and shear, B;, are easily obtained



-9-

using the above results. The element stiffness matrix then may be computed as

K= [B,”’DB,dA + [B,7aB,dA (3.7)
A A

The load vector also may be computed consistently using (2.9). As an alternative option, a
"lumped"” load vector is also computed by ignoring the dependence of the transverse dis-
placement on the rotational degrees of freedom. In the numerical applications, the con-
sistent loading will be shown to behave better than the "lumped”. Since both the in-plane
and the out-of-plane strains vary linearly along the element, a three point Gauss quadra-
ture, [18], is sufficient for exact integration.

4. FINITE ELEMENT PROPERTIES

4.1 Locking

In recent finite element literature, conditions have been determined, under which an
element displays the locking phenomenon.

A quick and generally reliable method of assessing element performance with regard
to ocking calls for a simple constraint count, [15,19,20], as below; we define ng,n, and n,
as the number of variables involved in the interpolation of each one of 8, w and v, respec—

tively. In addition, interpolations for S with ng independent parameters always satisfy
ng = n,

Minimization of the functional in (1.13) gives rise to the following matrix system of equa-
tions to be satisfied in the thin plate limit :

(s B olls] Tcl

0
IBTOC||= ol, (4.1)

¢l |
o e ofle] " Je]

where

A= f [LNoJ"D[LNgJdA
B = f[VN oN; + (eNg)'N,JdA
C = [NJVN, d4
A

and fy, f,, asin (2.9).

Non-singularity of the system in (4.1) implies that

ng + n,=ng (4.2)
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and
(4.3)

are necessary conditions for solution of the limit problem on any element patch. These,
however, are not sufficient conditions for convergence and here numerical testing is used
to assess overall performance.

In the case of our element, the test is passed for a single element with all boundaries
fixed, as well as with only the rigid body motion constrained, Fig. (4.1.1). The same
count may be repeated successfully for patches consisting of more than one element.

4.2 Relation to the DKT family of elements

Recall that DKT elements, [10], are based on the minimization of the total potential
energy, neglecting the shear part, namely

= ll—fKTDKa’A -~ qudA + Iy ,
24 A

subject to the constraint

2
I
Q||'~'A
]
o

along the edges.

The fact that in the present formulation, the same type of constraint is applied (here
Y = constant along the edges), together with the inclusion of the shear energy, which
approaches zero as t~0 can explain why the element converges to the DKT in the limit of
the thin plate. The numerical results will verify this claim, as will be evident in the next
chapter. Of course, to obtain a complete agreement in the thin limit, the nodal forces
applied from uniform loads, q, must be the same for the two formulations.

4.3 A brief discussion of the boundary conditions
The boundary conditions of a clamped edge are universally accepted to be
w=26,=06=0 ,
as illustrated in Fig. (4.3.1). A simply supported edge, on the other hand, may be approx-

imated in more than one way. Thus we have
(1) "soft” simply supported edge (SS1)

w=0 , M,=0 and M, =0

and
(2) "hard" simply supported edge (SS2)
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It can be easily deduced that the "hard" simply supported conditions are suitable for
the thin plate limit. In most of the literature, the "soft" conditions are being used, because
they are free of deficiencies concerning well-possedness of the problem for curved boun-
daries. A detailed discussion is given in [14]. In the present formulation an additional
difficulty occurs. Specifically, the soft boundary conditions lead to a situation, where the
transverse displacement is not equal to zero pointwise. This can be easily deduced from
€q.(3.2). However, it is evident that w converges to zero in a weak sense, when the mesh
is refined.

5. NUMERICAL PERFORMANCE

A series of numerical tests have been conducted in order to assess the performance of
the new triangle. The new element with cubic transverse displacement (which in the sequel
will be referred to as DRM3) has been incorporated into the Finite Element Analysis Pro-
gram (FEAP), (e.g., see Chapter 15 of [17]) and all computations have been conducted
within the FEAP environment. All results are compared to exact or approximate solutions
as well as to results obtained with other elements. In addition, patch tests were conducted
on the square plate of arbitrary triangles shown in Fig. (5.1). The tests include:

(i) pure bending (distributed constant edge moments along one edge, the opposite
clamped and all lateral boundary tangential ratations fixed),

(ii) pure shear (distributed constant edge forces on one edge, the opposite clamped, and
all rotations fixed in order to prevent bending),

(iii) pure twist (distributed constant edge twisting moments along two adjacent sides the
other two sides restrained with SS2 simply supported conditions).

All the above tests are passed.

5.1 Uniform loading on square plate

A quadrant of a square plate is modeled with different meshes, Fig. (5.1.1), and for
simply supported and clamped boundary conditions. Both soft and hard boundary condi-
tions are considered for the simply supported case. Loading is consistent with the w-
interpolation used and two mesh orientations (labeled A and B) are examined. The results
are reported in Table 5.1 below. The analytical solution (in a series form) for the thin
plate limit may be found in [21]. For the hard (S52) simply supported conditions a correc-
tion (also in series form) may be added.
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Table 5.1 : Uniform Loading on Square Plate

Uniform Loading (x 1074
Simply Supported Clamped
Soft Hard
Mesh A B A B A B
1x1 4.7896 | 3.9028 | 4.7881 | 3.9023 | 1.8921 | 1.0377
2x2 4.1876 | 4.1627 | 4.1860 | 4.1619 | 1.4834 | 1.2884
4x4 4.0998 | 4.1010 | 4.0968 | 4.0988 | 1.3285 | 1.2822
8x8 4.0788 | 4.0791 | 4.0731 | 4.0739 | 1.2834 | 1.2719
16x16 4.0773 | 4.0771 | 4.0667 | 4.0669 | 1.2718 | 1.2689
Series (thin) 4.0623 | 4.0623 | 4.0623 | 4.0623 | 1.260 1.260
Series (thick) 4.0644 | 4.0644

The material properties of the plate are
E=1092 , v=03,

the side length is a = 10, the uniform loading q = 1.0 and the thickness t = 0.1. Thus, a
condition approaching the thin plate limit is expected and, indeed, achieved, as seen from
Table 5.1 .

5.2 Circular plate under uniform loading

Due to symmetry, one quadrant of a circular plate has been discretized with different
meshes, Fig. (5.2.1), and the results for both the clamped and the simply supported case
are obtained for a thick (R/t = 5/1) and a relatively thin (R/t = 5/0.1) plate. The results
are compared to the exact thick plate solution.
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Table 5.2 : Circular Plate under Uniform Loading

Displacement w at the center

Thickness t=0.1 t= 1.0

boun. cond. SS1 clamped SS1 clamped
No. of elements

6 41990.8 10104.5 43,75 11.79
24 40469.6 9914.03 42.27 11.69
96 39999.3 9826.49 41.78 11.61
384 39874.9 9796.08 41.65 11.57
1536 39842.9 9787.15 41.61 11.56
Exact solution 39831.5 9783.48 41.60 11.55

The properties of the plate are
E=1092 , v=03,

and the uniform loading q = 1.0.

5.3 Skew cantilever plates

Here three skew cantilever plates are analyzed using different meshes and orientations
of the triangles, Fig. (5.3.1). The results are compared with those obtained in [22].
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Table 5.3 : Skew cantilever plates

wat 1 (x Et3/qa4) wat 2 (x Er¥/ga
Mesh B DRM3 DRM3 [22] DRM3 DRM3 [22]
(o) A B B A B B
20 1.3557 1.5438 1.3808 1.0704 1.0782 1.0297
2%2 40 1.0637 1.2955 1.0867 0.5329 0.6182 0.5255
60 0.7416 0.8523 0.7370 0.1259 0.2133 0.1373
20 1.4024 1.4446 1.4233 1.0489 1.0388 1.0419
4x4 40 1.1266 1.1777 1.1613 0.5381 0.5435 0.5429
60 0.7814 0.7956 0.8186 0.1411 0.1551 0.1510
20 1.4204 1.4285 1.4297 1.0440 1.0386 1.0442
8x8 40 1.1619 1.1646 1.1613 0.5426 0.5375 0.5468
60 0.8192 0.7935 0.8502 0.1501 0.1437 0.1562
20 1.4269 1.4275 - 1.0436 1.0413 -
16x16 40 1.1789 1.1720 - 0.5456 0.5411 -
60 0.8435 0.8128 - 0.1553 0.1471 -

The plate properties are

E =100 , v=0J3,
the thickness is t = 4.0, the side length L = 100 and the load q = 1.0 .
It should be noted that the element in [22] is of higher order than the DRM3 (it has
22 dof’s, while DRM3 has only 12). The table indicates that the DRM3 results are only
slightly sensitive to the triangle orientation, especially in coarse meshes. Generally, conver-

gence is attained more easily for the 20° plate rather than the other two. This is expected,
since for highly skewed plates the effect of the obtuse angle singularity becomes stron ger.

5.4 Simply supported skew plate (30°)

For a highly skewed simply supported,
(B=60° , 6=30°=90°—B) the results obtained for a set of meshes are compared to those
of other elements and to the solution given in [23] for the “"thin" plate. Results for the

uniformly  loaded plate

DRMS3 subjected to lumped and consistent loading are given. Two different thicknesses are
considered and the boundary conditions are taken to be soft throughout the analysis. A
typical mesh is shown in Fig. (5.4.1).
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Table 5.4a : Simply supported skew plate (t=1.0)

Center Displacement
Side Tri-6R DRM3 DRM3 T1 QUAD9*
Nodes [15] (cons.) (lumped) [24] [12]
3 0.04859 0.08203 0.06798 0.00279 -
5 0.05739 0.04861 0.04599 0.04282 -
9 0.04161 0.04385 0.04384 0.03899 0.04237
17 0.04299 0.04510 0.04494 0.04187 0.04302
33 0.04491 0.04572 0.04568 0.04410 -
Ref. [23] 0.04455 0.04455 0.04455 0.04455 0.04455

Table 5.4b : Simply supported skew plate (t=0.1)

Center Displacement

Side Tri-6R DRM3 QUAD9Y*
Nodes [15] (cons.) [12]

3 48.47 81.53 -

5 57.19 52.30 -

9 39.78 47.00 41.61
17 37.83 45.96 39.42
33 39.28 45.53 -

Ref. [23] | 44.55 44.55 44.55

Plate properties:
E=10.x10° ; v=10.3 ;

Side length a = 100 and uniform loading q = 1.0

5.5 Free vibration analysis

For dynamic applications the inertia effects may be included by replacing q in (2.9)
by g — phw. The second term then leads to the definition of the mass matrix (M3)

IN’N., NIN.. ]
M = o wilw wilw0 dA
Jer|NEN, NI

A "lumped” mass, (ML), may be computed using nodal quadrature (e.g., see [17]. app. 8)
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and yields the result

_ pMA 1 0]
M. = 3 [0 0]

For the element using linear interpolation for w, which has been reported in [15],
N,o = 0. The consistent mass for this interpolation (M1) is a special case of the cubic
integral result.

Table 5.5 shows results computed for a simply supported (hard) square plate mesh
type B as in Fig. (5.1.1).

Table 5.5 : Frequencies of a simply supported plate

frequencies w? (x1072)
Modes of vibration
(1,3) (1,3) (1,5) (1,5)
(1,1) + - (3,3) + -
Mesh Mass 3,1) (3,1) (5,1) (5,1)
M3 0.03468
1x1 M1 0.04803
ML 0.02402
M3 0.03840 1.0753 1.0047 2.5472
2x2 M1 0.04330 1.9112 1.4438 4.2305
ML 0.03444 0.6841 0.7219 1.4448
M3 0.03879 1.0032 0.9825 3.0582 7.0703 7.0482
4x4 M1 0.04006 1.2384 1.1503 4.0977 10.989 10.621
ML 0.03770 0.9090 0.9362 2.7134 5.6589 5.8238
M3 0.03890 0.9795 0.9739 3.1153 6.6758 6.6721
. 8x8 M1 0.03922 1.0346 1.0158 3.3942 7.5804 7.5737
ML 0.03862 0.9557 0.9632 3.0281 6.3762 6.4355
M3 0.03893 0.9733 0.9719 3.1331 6.5704 6.5701
16x 16 M1 0.03901 0.9868 0.9824 3.2035 6.7881 6.7857
ML 0.03886 0.9673 0.9693 3.1110 6.4978 6.5136
Exact 0.03896 0.9732 0.9732 3.1511 6.5700 6.5700

The material and geometric properties are as in section 5.1 . A 7-point quadrature is

used for the integration of the mass matrix, [18].

Only the eigenvalues associated with doubly symmetric modes are computed. It is

noted that the consistent mass matrix based on the cubic interpolation of w gives more
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accurate results than the lumped matrix. Moreover, the results based on the linearly inter-
polated w are less accurate than the lumped approximation. Thus, it is evident that the
cubic interpolation is especially beneficial for dynamic applications.

The eigenvalues associated with the (1,3) and (3,1) eigenmodes (similarly (1,5) and
(5,1)) are theoretically equal. The finite element analysis exhibits a slight difference in
these values, due to the fact that the computed eigenvalues correspond to linear combina-
tions of the theoretical modes. In fact, both values converge to the exact solution.

CLOSURE

The trianglular conforming plate bending element presented here is representative of
a broad class of elements that feature discrete transverse shear constraints on the boun-
daries within the context of the Hu-Washizu principle. The particular element overcomes
shear-locking a-priori via the constraint count procedure and exhibits excellent numerical
behavior in terms of accuracy and stability over a comprehensive set of static test problems
and a single test for modes of free vibration. Finally it should be noted that the cubic inter-
polation for w may be effectively used to compute loads, mass and geometric stiffness for
the DKT triangle.
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APPENDIX A : Derivation of the transverse displacement interpolation

The shear strain along the edges is calculated in a straightforward way as follows:
Along the typical edge i-j, we have, Fig. (A.1),

aw

Ye = 57T (6 cosw; + Oysinw;) (A.1)
where
aL;
ow _ 8w %Hi (A.2)
as aL, as
and
aw
For the choice of positive direction along the edge 1-2, as in the figure
oL oL oL
lml2a L 284 (A.4)
as as 112 as

11 being the length of the edge 1-2. Similar results may be obtained for the other edges.

After some algebraic manipulations, equation (A.1), with the use of (A.2), (A.3)
and (A.4), becomes

glv- = O,, = _1—(W2 - W]) - '1—433 e Gx COsSw3 — (4] sinw3 + (AS)
as l12 l12 ? 72

+L1[—£2—(a3 — B3 + 52—63 — 8;,cosw3 — 6, sinwz + 6, cosws + B, sinw3 — 4A65] +

1 1
+4L12[—71'2‘(2013 + B3) + 1‘;2“(013 —2B3) + 446,]

Imposing the constant shear constraint along the edge, the coefficients of L, and L? must
vanish, hence we obtain the following system of equations

1
o3 = By = —37483 ,

!
o3 = 283 = ——H{(8,, — 0, )sinw; + (8, ~ 6, )cosws + 4A0;]

b

which, when solved, gives eq. (3.3) and (3.4). The same technique is employed for the
other two edges edges of the triangular element, so that all six parameters o ,B;, k=1,2,3
are uniquely determined.

It is important to note that the values of the two parameters for every edge, depend
only on the nodal values and the edge value along this edge, therefore continuity of
tangential strains is satisfied along the interelement boundaries. Of course, this is not the
case, in general, for the normal strains.
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Fig. 3.1 Node and dof assignment for the triangular DRM3 element
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Fig. 3.2 Geometric data and positive direction along an edge
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Test R: ng=9-2=7 n, =3-1=2

C: all boundary dofs constrained
R: rigid body motion constrained

Fig. 4.1.1 Constraint count for a single element




Fig. 4.3.1 Boundary conditions for a thick plate



Fig. 5.1 Patch test mesh
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Fig. 5.1.1 Square plate meshes
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Fig. 5.2.1 Typical circular plate mesh
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Fig. 5.3.1 Typical cantilever skew plate mesh
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Fig. 5.4.1 Simply supported skew plate mesh



Fig. A.1 Evaluation of the tangential shear along an edge





