
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Information-theoretic and hypothesis-based clustering in bioinformatics

Permalink
https://escholarship.org/uc/item/4xm0s5gp

Author
O'Rourke, Sean Michael

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xm0s5gp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Information-Theoretic and Hypothesis-Based Clustering in
Bioinformatics

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

by

Sean Michael O’Rourke

Committee in charge:

University of California, San Diego

Professor Sanjoy Dasgupta, Chair
Professor Vineet Bafna
Professor Pavel Pevzner
Professor Nicholas Schork

University of California, Los Angeles

Professor Eleazar Eskin, Co-Chair

2009

Copyright

Sean Michael O’Rourke, 2009

All rights reserved.

The dissertation of Sean Michael O’Rourke is ap-

proved, and it is acceptable in quality and form

for publication on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2009

iii

EPIGRAPH

We were hoping for the best, but it turned out as always.

—Victor Chernomyrdin

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 Types of clustering . 2
1.2 Overview of this thesis . 3

Chapter 2 Amino acid profile clustering using Information Bottleneck . . . 7
2.1 Motivation . 8
2.2 Information Bottleneck . 11

2.2.1 Iterative vs. sequential IB 14
2.3 Method . 15

2.3.1 Constraints on cluster conditional distributions . . . 16
2.3.2 Constraining relations between cluster distributions 17

2.4 Results . 18
2.4.1 Information loss from discretization 19
2.4.2 Effect of category constraints 22
2.4.3 Alignment similarity and distant homolog search . . 23
2.4.4 Alignment running time 25

2.5 IB profile indexing . 27
2.5.1 Index construction 28
2.5.2 Sequence search . 29

2.6 Conclusion . 29

Chapter 3 Separation of overlapping subpopulations using mutual information 32
3.1 Motivation . 33
3.2 Related work . 35
3.3 Problem formulation . 36
3.4 Iterative algorithm . 38
3.5 Results . 40

v

3.5.1 HIV-1 evolution . 41
3.5.2 Human population substructure 42
3.5.3 Alu families . 43

3.6 Conclusion . 44

Chapter 4 Reconstructing the phylogeny of mobile elements 46
4.1 Motivation . 47
4.2 Alu elements . 50
4.3 Methods . 50

4.3.1 Subfamily generation model 51
4.3.2 Subfamily identification 52
4.3.3 Subfamily phylogeny 56
4.3.4 Extension for recombination 57

4.4 Results . 59
4.4.1 Simulated data . 60
4.4.2 Data preparation 62
4.4.3 Novel repeat subfamilies 63
4.4.4 SINE phylogeny . 65
4.4.5 Young Alu families 67
4.4.6 Alu age distribution 68

4.5 Conclusion . 70
4.6 Algorithmic Extensions . 70

4.6.1 Alternative phylogeny construction methods 71
4.6.2 Incremental Alignment 75

Chapter 5 Conclusions . 77
5.1 IB sequence alignment . 77
5.2 Shape-constrained clustering 79
5.3 Randomized clustering for mobile elements 81
5.4 Algorithmic contributions 84
5.5 Biological contributions . 86

Appendix A Other contributions: transducers for haplotype phasing 88
A.1 Introduction and related work 88
A.2 Methods . 90

A.2.1 The haplotype phasing problem 90
A.2.2 Basic haplotype transducers 91
A.2.3 Genotype errors . 93
A.2.4 Genotype trios . 94
A.2.5 Ancestral recombination 94

A.3 Experiments . 96
A.4 Conclusion and future work 97

Bibliography . 98

vi

LIST OF FIGURES

Figure 2.1: Five representations of a part of an alignment of Pepsin A pre-
cursor P00790. 10

Figure 2.2: Pseudocode for the iterative IB algorithm. 13
Figure 2.3: Pseudocode for the sequential IB algorithm. 14
Figure 2.4: Graphical model representations of multivariate and univariate

information bottleneck showing input (dashed) and output (solid)
conditional dependencies. 18

Figure 2.5: Sequence logos for |C| = 20, 40, 80, showing several features of IB
discretization. 20

Figure 2.6: I(Y ; X)−I(Y ; C) as a function of w for different groups of priors.
The information loss for 52 categories without priors is 0.359, for
10, 0.474. 21

Figure 2.7: ROC curve for same vs. different superfamily classification by
alignment score. 52 IB categories are used throughout. 24

Figure 2.8: Running times for profile-profile and IB-profile alignment, and
(twice) running time for IB discretization. 26

Figure 3.1: Worldwide distribution of HIV clades (from [TKM04]). 41

Figure 4.1: Classes of mobile elements, and the percentages of the human
genome they comprise (from [BK04]). 47

Figure 4.2: The rats algorithm. The optional greedy updates are performed
between split and join, and again after the final iteration. . . . 55

Figure 4.3: Population structures for simulated recombinant data. 57
Figure 4.4: Subpopulation and phylogeny reconstruction accuracy vs. per-

generation mutation rate. 58
Figure 4.5: Subpopulation and phylogeny reconstruction accuracy vs. con-

sensus sequence divergence relative to per-generation mutation rate. 59
Figure 4.6: Frequency of number of subfamilies found for different true num-

bers of subfamilies. 60
Figure 4.7: Running time of the EM algorithm and rats for different numbers

of subfamilies k and different numbers of instances per subfamily
n/k. 61

Figure 4.8: Log-probability versus random clustering for rats (lines with
marks) and EM (lines without). 61

Figure 4.9: Left: Alu phylogeny identified in RepBase. Right: Alu phylogeny
found by Price et al. 64

Figure 4.10: SINE phylogeny from one run of rats on all encode species. . 66
Figure 4.11: Histogram of Alu cluster ages versus evolutionary events, using

an Alu-specific molecular clock [XHH+04]. 69

vii

Figure A.1: Example genotype and haplotype transducers. “X/w” represents
input/output X with weight w. 92

Figure A.2: Transducers for haplotype recombination. 95
Figure A.3: Runtime versus L (left) and N (right) for the basic transducer. . 96

viii

LIST OF TABLES

Table 2.1: Information versus sequence type for consensus sequence, profiles,
and IB without priors. 20

Table 2.2: Alignment differences for alignments with IB models and sequence
alignment, within and between superfamilies. 24

Table 3.1: Regions and subtypes with frequency ≥ 0.1 in the predicted HIV-1
POL subpopulations, ordered alphabetically by primary region. . . 42

Table 4.1: Numbers of repeats in various families found in RepBase and by
our method. Alu and L1 repeats are from the full Human and
Chimpanzee genomes, while SINE repeats are from the encode
database of orthologous regions. 63

Table 4.2: Comparison of human-specific Alu clusters found by Mills et al.
[MBI+06] to clusters found by running rats over all human Alu
elements. 67

ix

ACKNOWLEDGEMENTS

I would first like to thank my advisor for his support and patience, for sparing

me from administrative nightmares, and for a confidence that usually exceeded my

own. The tireless Julie Conner was instrumental in navigating the administrative

course of the degree. I am also grateful to Noah Zaitlen and Robin Friedman for

their grunt-work on the Alu and Information Bottleneck projects. Noah deserves

additional thanks for sacrificing time, sleep, and an elbow to my Sierra ambitions.

I would also like to thank the other members of UCSD’s Zarlab for, among other

things, expanding my culinary horizons: Hyun Min Kang, Buhm Han, and Jimmie

Ye.

I would like to thank (alphabetically) Gal Chechik at Stanford, David Heck-

erman and Nebojsa Jojic at Microsoft Research, and Alkes Price at UCSD for their

good ideas and valuable discussion.

My work has been done mostly or entirely using Free Software, without which

it would have been not only more expensive, but also much more difficult. Free

programs rarely earn their authors much money or credit, especially in an academic

environment. I would therefore like to thank Larry Wall (Perl), John Eaton (Octave),

Richard Stallman (GNU Emacs, GCC), Don Knuth (TEX), Leslie Lamport (LATEX),

Till Tantau (Beamer), and the many contributors to these and other Free programs

I have used.

Finally, I am indebted to Professor Nogar for support and advice when grad-

uating seemed impossible or absurd. Coffee’s on me next time.

Chapter 2 is based on work with Gal Chechik, Robin Friedman, and Eleazar

Eskin, and published in BMC Bioinformatics, 7(Suppl 1):S8, March 2006. Chapter 3

is based on work with Gal Chechik and Eleazar Eskin and published in the proceedings

of the NIPS workshop on new methods and problems in computational biology, 2005.

Chapter 4 is based on work with Nebojsa Jojic, Noah Zaitlen, and Eleazar Eskin and

published in the proceedings of RECOMB 2007.

x

VITA

1999 B. S. in Computer Science cum laude, Rice University,
Houston

2002-2008 Graduate Teaching Assistant, University of California,
San Diego

2009 Ph. D. in Computer Science, University of California, San
Diego

PUBLICATIONS

S O’Rourke and E Eskin. A finite state transducer approach to haplotype phasing.
In NIPS workshop on new methods and problems in computational biology, 2007.

S O’Rourke, N Zaitlen, N Jojic, and E Eskin. Reconstructing the phylogeny of
mobile elements. In TP Speed and H Huang, editors, RECOMB, volume 4453 of
Lecture Notes in Computer Science, pages 196–210. Springer, 2007.

S O’Rourke, G Chechik, R Friedman, and E Eskin. Discrete profile comparison
using information bottleneck. BMC Bioinformatics, 7(Suppl 1):S8, Mar 2006.

S O’Rourke, G Chechik, and E Eskin. Separation of overlapping subpopulations by
mutual information. In NIPS workshop on new methods and problems in computa-
tional biology, 2005.

S O’Rourke, G Chechik, R Friedman, and E Eskin. Discrete profile alignment via
constrained information bottleneck. In NIPS, 2004.

M Zander, J Hall, J Painter, and S O’Rourke. Component architecture of the tecolote
framework. In D Caromel, RR Oldehoeft, and M Tholburn, editors, ISCOPE,
volume 1505 of Lecture Notes in Computer Science, pages 183–190. Springer, 1998.

SP Gary, H Li, S O’Rourke, and D Winske. Proton resonant firehose instabil-
ity: Temperature anisotropy and fluctuating field constraints. J Geophys Res,
103(A7):14,567–74, 1998.

xi

ABSTRACT OF THE DISSERTATION

Information-Theoretic and Hypothesis-Based Clustering in

Bioinformatics

by

Sean Michael O’Rourke

Doctor of Philosophy in Computer Science and Engineering

University of California San Diego, 2009

Professor Sanjoy Dasgupta, Chair

Professor Eleazar Eskin, Co-Chair

Many machine learning problems in biology involve clustering data generated

in complex or incompletely understood ways. Processes such as protein and viral

evolution are difficult to model, involving complex mechanisms and constraints at

multiple levels. This thesis presents a family of clustering algorithms, based on the

Information Bottleneck method, to cluster such datasets by imposing constraints

related to statistical tests of their known properties. The first algorithm clusters

continuous data; we apply it to amino acid profiles to derive a compact discrete

representation that preserves much of their information. This discretization yields

an easily interpretable textual representation of amino acid profiles. It also greatly

improves the speed of profile-profile alignment, and makes it possible to index large

profile databases. The second algorithm clusters discrete sequences while constraining

mutual information between sequence positions within each cluster. We apply it to

the problem of finding population substructure in viral and human SNP data, showing

it to be competitive with or superior to current approaches.

xii

Biological datasets often strain the limits of modern computers, and advances

in biotechnology promise to generate even more data in the future as computational

power increases. We therefore present a randomized clustering algorithm for dis-

crete sequences that is similar to the previous algorithm but scalable to much larger

datasets. This clustering algorithm relies on statistical tests to perform structure

learning, an approach that has the added benefit of naturally limiting model com-

plexity. We use this algorithm to produce detailed phylogenies of large DNA mobile

element families. Our results provide a more detailed picture of their history, and

their important role in genomic evolution.

xiii

Chapter 1

Introduction

Clustering, the classification of unlabeled data into one or more groups, is a

long-studied problem for which many algorithms have been developed [Har75,JMF99].

The input data may be images, documents, DNA strings, or vectors of discrete or

continuous features extracted from the original data representation. The output is

a simplification of the input data suitable for human perusal in exploratory data

analysis, or to accept or reject a postulated hypothesis. A vast number of algorithms

have been developed over the years to deal with the nature and scale of the input and

with the purpose of the output.

Many computational questions in biology can be stated as clustering prob-

lems. The most commonly-clustered objects are sequences of amino or nucleic acids,

typically represented as strings. Example problems include phylogeny [Fel04], the con-

struction of a hierarchical clustering representing a set of individuals’ shared ancestry;

population substructure identification [PSD00], the division of a set of individuals into

one or more subgroups sharing some common variation; DNA and protein homolog

search [AMS+97,YL02], the identification of nucleic and amino acid sequences similar

to one’s sequence of interest, and therefore likely to have a related function or shared

ancestry; and protein domain identification [NY04], the identification of a protein’s

structural subunits from previous structural knowledge about other proteins.

Other problems require clustering probability distributions or individuals rep-

resented by sets of binary or real-valued traits. Examples here include gene expression

analysis [JTZ04], and protein tertiary structure prediction [GH03] (the prediction of

1

2

a protein sequence’s 3-dimensional folding structure from a database of known struc-

tures).

Models for biological sequences are often complex for two kinds of reasons.

First, the processes generating the sequences create complex correlation between se-

quences and sequence positions. These processes may involve a combination of ran-

dom single-point variation, copying of parts from one or more parent sequences, and

duplication or deletion of subsequences. The rates of these different forms of varia-

tion are a product of complex underlying physical interactions. The process is also

constrained by evolutionary history, as our own DNA is a function of our ancestors’.

This results in useless relics, strange co-options, and suboptimal side-effects — the

molecular equivalents of the vestigial coccyx, the proteins forming the eye’s lens, and

the awkwardly “backward” direction of the optic nerve [TC02,Daw04].

Second, the sequences themselves are often subject to complex functional con-

straints. For example, since parts of DNA sequences may encode proteins and regu-

latory signals crucial to a cell’s or an organism’s survival, the observed distribution

of DNA sequences will be highly non-uniform. Further, sequence variations can con-

fer a small selective advantage to an organism, causing the advantageous variants

to eventually become dominant. These patterns may remain in DNA long after the

conditions in which they conferred a selective advantage are gone.

A generative model for biological sequences must therefore reflect or at least

be tolerant of these constraints, and a clustering algorithm must produce results con-

sistent with such a model. In particular, a model of the underlying generative process

is often either incomplete or far too complex to be learned in full. Furthermore, mod-

ern sequencing technology presents us with enormous datasets to be clustered under

these models. A biological clustering algorithm should therefore provide useful results

even in the face of incomplete models and vast quantities of data.

1.1 Types of clustering

Different clustering algorithms learn models varying along several dimensions,

notably the following: flat models, in which clusters contain only datapoints, versus

hierarchical ones, in which clusters may contain other clusters; hard assignment, in

3

which each datapoint is associated with one cluster, versus soft assignment, in which

each is associated with multiple clusters to a greater or lesser degree; parametric

models, in which the features of datapoints in each cluster follow some probability

distribution, versus nonparametric models, in which they do not.

Clustering algorithms also vary in whether they infer the assignment of data-

points to a fixed number of clusters, or whether they also infer the number of clusters.

These two tasks are usually called parameter learning and structure learning, respec-

tively. Because it is a discrete optimization problem, structure learning is usually

more difficult, often requiring model- or problem-specific heuristics. Finally, struc-

ture learning clustering algorithms can vary in their approach: Top-down algorithms

begin by assigning all individuals to a single cluster, and increase the number of clus-

ters according to some heuristic. Bottom-up algorithms, on the other hand, start by

assigning each individual to its own cluster, then merging these clusters.

1.2 Overview of this thesis

This thesis describes three related methods for clustering several different types

of biological data, both continuous and discrete. Algorithmically, it can be divided

in two parts: The first part, Chapters 2 and 3, describes two information-theoretic

clustering algorithms based on the Slonim and Tishby’s Information Bottleneck algo-

rithm [TPB99]. The second part, Chapter 4, discusses an algorithm related to that

in Chapter 3, but based on randomized hypothesis-testing rather than constrained

minimization of mutual information. In terms of problems addressed, the thesis can

also be divided into two, overlapping parts: Chapter 2 addresses the clustering of

discrete probability distributions over amino acids, while Chapters 3 and 4 describe

algorithms for clustering strings, typically of DNA.

In Chapter 2, we describe a flat clustering algorithm for continuous data based

on Information Bottleneck (IB) that incorporates specified constraints between clus-

ters and priors on cluster distributions. By varying the strength of the constraints

and priors, we can control a trade-off between human interpretability and information

loss. We apply this algorithm to the problem of finding an informationally optimal

clustering of distributions over amino acids, encoded as 20-dimensional vectors.

4

A protein profile is a sequence of probability distributions over amino acids

at each position of a multiple sequence alignment of that protein with other, similar

proteins. Profile comparison is useful in the study of proteins because the additional

information available in profiles allows the detection of more distant protein relation-

ships than comparison of individual sequences. Proteins that fold into similar shapes,

and thus have similar functions, are almost as dissimilar as unrelated sequences. How-

ever, aligning profiles is much more computationally expensive than aligning pairs of

sequences.

We show that pairwise alignments between IB sequences are similar to those

between the profiles which they represent, but can be computed in a fraction of the

time. We also show that IB alignment scores can, like profile alignment scores, be

used to find distant homologs in a protein database. Therefore, by encoding profiles

using an IB discretization before aligning them, we achieve much of the sensitivity of

profile alignment at the computational cost of simple sequence alignment.

The IB discretization also creates an informative, compact textual represen-

tation of protein multiple alignments. Finally, we discuss the implementation of a

fast, indexed IB sequence database. The approach is based on the classic BLAST

algorithm [AGM+90], but the different statistical properties of IB alignment require

a number of significant changes.

Chapter 3 describes sscc, a flat clustering algorithm for discrete sequence data

with a known number of clusters, based again on Information Bottleneck. In addi-

tion to minimizing within-cluster entropy, sscc constrains the clusters’ distributions’

shapes by minimizing the multi-information among sequence positions within each

cluster. The minimization is performed by sequentially moving sequences between

clusters to improve a global score.

We then extend this algorithm with a top-down structure learning heuristic

to automatically infer the number of clusters. The algorithm recursively looks within

each cluster for pairs of positions with significant mutual information. When it finds

such a pair, it splits the cluster to reduce mutual information between them. This

split is effectively making a heuristic improvement to the objective function’s multi-

information term.

We apply this algorithm to the problem of population substructure, that is,

5

recovering subpopulations of related DNA sequences from a mixture of several such

subpopulations. Identifying population substructure is a crucial step in disease as-

sociation studies because, if it is present, it can mask the effect of interest. The

correlation of specific point mutations to higher disease risk may be obscured by

other, unrelated genetic differences between subpopulations. For example, wild mice

are generally both smarter and thinner than pet mice, and these differences have

some genetic basis. However, if we search for fat genes among a mixture of wild and

pet mice, we will identify both the fat and the smart genes, since the two traits are

correlated with the two subpopulations. However, if we first separate the two sub-

populations of mice, we can use the remaining variation within each subpopulation

to identify only the fat genes.

Identifying population substructure is especially difficult in humans, where the

genetic variation within subpopulations is greater than that between them. However,

our algorithm’s shape constraints make it possible to identify population substructure

even when subpopulations are highly overlapping. On a variety of simulated data, our

algorithm significantly outperforms state-of-the-art methods when the populations are

highly similar. On human haplotype data, it matches the state-of-the-art. We also

show that it can be used to find meaningful substructure in HIV sequence data.

Chapter 4 describes rats, an algorithm related to sscc with structure learn-

ing, but applicable to much larger datasets. The algorithm is based on a more ag-

gressive structure learning heuristic guided by randomized statistical tests on clusters’

class conditional distributions, combined with greedy local improvement. By perform-

ing fewer tests and making larger steps in search space, it reaches a solution much

more quickly than sscc. It optimizes an objective function similar to that of ex-

pectation maximization, with its test’s statistical significance automatically limiting

model complexity.

Mobile elements are short sequences of DNA that have copied and reinserted

themselves into our genome millions of times, and now make up almost 45% of our

DNA [BK04]. Because they are so prevalent and active, a more detailed picture of

mobile element history can yield valuable genetic insights. For example, a comparison

of the distribution of subfamily ages to known evolutionary history suggests that

mobile element replication may coincide with periods of rapid speciation.

6

We apply rats to several large collections of mobile elements, the largest

consisting of over 2 million sequences, and demonstrate biologically meaningful re-

sults. A phylogeny constructed from all SINE elements in the encode project da-

tabase [TTB+03] of DNA samples from 64 species closely follows the known species

phylogeny, and recovers several features of known SINE evolution. Clusterings of all

human and chimpanzee L1 and Alu elements find 32 and 1484 new mobile element

subfamilies, respectively, compared to RepBase [Jur00], a standard classification of

subfamilies. We show that our finer clustering of Alu elements identifies recent in-

sertions, and also provides a high-resolution picture of the rate of insertion over time

suitable for comparison with other evolutionary events.

We conclude in Chapter 5 by reviewing the work presented here. We compare

and contrast the information-theoretic and hypothesis testing clustering approaches,

and describe our biological contributions. We also relate our methods to other prob-

lems in learning sparse correlation structures, noting similarities to current approaches

to learning causal structure.

Chapter 2

Amino acid profile clustering using

Information Bottleneck

In this chapter, we describe a method to map amino acid profiles onto a discrete

alphabet that preserves most of their information. This method finds an information-

ally optimal discretization using an extension of the Information Bottleneck approach

described in Section 2.2.

Sequence homologs are an important source of information about proteins.

Amino acid profiles, which represent the position-specific substitution probabilities

found in alignments of homologous proteins, are a richer encoding of biological se-

quences than the individual sequences themselves. The substitution probabilities

show which amino acids can be replaced without changing the protein’s structure,

and suggest which of its parts are functional.

However, profiles have a number of disadvantages as a sequence representa-

tion. First, profile comparisons are an order of magnitude slower than sequence

comparisons, making them impractical for large datasets. Second, because they are

such a rich representation, profiles are difficult to visualize. Finally, because profiles

are continuous rather than discrete, they cannot be indexed to create large sequence

databases.

Using our IB discretization, we observe that an 80-character alphabet captures

nearly 90% of the amino acid occurrence information found in profiles, compared to

the consensus sequence’s 78%. Distant homolog search with IB sequences is 88% as

7

8

sensitive as with profiles compared to 61% with consensus sequences (AUC scores

0.73, 0.83, and 0.51, respectively), but like simple sequence comparison, is 30 times

faster. Discrete IB encoding can therefore expand the range of sequence problems to

which profile information can be applied to include batch queries over large databases

like SwissProt, which were previously computationally infeasible.

2.1 Motivation

One of the most powerful techniques in protein analysis is the comparison of

a target amino acid sequence with phylogenetically related or homologous proteins.

Such comparisons can give insight into which portions of the protein are important by

revealing the parts that were conserved through natural selection. While substitutions

in non-functional regions may be harmless, those in functional regions may change

the protein’s structure, often making them lethal to the organism. For this reason,

functional regions of a protein tend to be conserved between organisms while non-

functional regions diverge through random substitution.

Many of the state-of-the-art protein analysis techniques incorporate homol-

ogous sequences by representing a set of homologous sequences as a probabilistic

profile, a sequence of the marginal distributions of amino acids at each position

in the sequence. For example, PSI-BLAST [AGM+90] uses profiles to refine data-

base searches. The PHD algorithm [RS93] uses them purely for structure prediction.

Yona and Levitt [YL02] use profiles to align distant homologs from the SCOP da-

tabase [MBHC95]; the resulting alignments are similar to results from structural

alignments, and tend to reflect both secondary and tertiary protein structure.

Although profiles provide a lot of information about the sequence, their use

comes at a steep price. While efficient algorithms exist for aligning protein sequences

and performing database queries (e.g. BLAST [AGM+90]), these algorithms operate

on strings and are not applicable to profile alignment or profile database queries.

Profile-based comparisons can be substantially more accurate than sequence-based

ones, but are about 30 times slower, since substitution penalties must be calculated by

computing distances between probability distributions rather than simply looked up in

a table. This makes probabilistic profiles impractical for use with large bioinformatics

9

databases like SwissProt, which contained 160 000 sequences comprised of 64 million

amino acids in 2005 [BAW+05], and has since grown to over 400 000 sequences and

almost 150 million amino acids [The08].

We propose a new discrete representation of proteins that incorporates in-

formation from homologs in a textual form we call IB (Information Bottleneck) se-

quences . Once a profile is represented using this discrete alphabet, alignment and

database search can be performed using the efficient string algorithms developed for

amino acid sequences, making profile information applicable to a greater range of

problems. For example, the runtime for full pairwise Smith-Waterman [SW81] align-

ment between this sequence and all of SwissProt decreases from 250 hours to less than

8; a query for high-scoring alignments to 100 sequences of interest would take nearly

three CPU-years with profiles, but just over a month with IB sequences. Either the

resulting IB sequence alignments can be used directly, or a small set of high-scoring

matches from this initial query can be realigned using profiles for greater precision.

Therefore with IB sequences, profile information may be applied to a greater range

of sequence problems with no loss in precision and minimal loss in recall.

IB sequences have another incidental benefit: By representing each class as a

letter, discretized profiles can be presented in plain text, conveying more profile infor-

mation than the original sequences in the same amount of space. These IB sequences

are more accurate than consensus sequences and denser than profile matrices or se-

quence logos (see Figure 2.1). While sequence logos are likely a better representation

for examining individual alignments, terse IB sequences are useful for presenting many

alignments at once, such as when interpreting database query results. For example,

Figure 2.1(c) shows that while logos more accurately reflect the first profile column,

information about lower-conservation regions is completely lost at ordinary text size.

The main idea behind our approach is to compress profiles in a data-dependent

manner by clustering the actual profiles and representing them by a small alphabet

of distributions. Since this discretization removes some of the information carried

by the full profiles, we cluster the distribution in a way that is directly targeted at

minimizing the information loss. This is achieved using a variant of the Information

Bottleneck (IB) method [TPB99], a distributional clustering approach for informa-

tionally optimal discretization. To preserve a clear textual representation, we want

10

A 0.0 0.0 0.0 0.09 0.34 0.23 0.12 0 0 0
C 0.0 0.0 0.0 0.04 0.01 0.01 0.03 0 0 0
D 0.0 0.0 1.0 0.01 0.05 0.14 0.09 0 1 0
E 0.0 0.0 0.0 0.38 0.04 0.00 0.04 0 0 0
F 0.0 0.0 0.0 0.06 0.00 0.08 0.04 0 0 1
G 0.0 0.0 0.0 0.00 0.06 0.01 0.03 1 0 0
H 0.0 0.0 0.0 0.02 0.00 0.04 0.00 0 0 0
I 0.0 0.0 0.0 0.00 0.00 0.03 0.00 0 0 0
K 0.0 0.0 0.0 0.04 0.01 0.01 0.00 0 0 0
L 0.0 0.0 0.0 0.01 0.01 0.00 0.09 0 0 0
M 0.0 0.0 0.0 0.00 0.00 0.03 0.00 0 0 0
N 0.5 1.0 0.0 0.05 0.05 0.01 0.01 0 0 0
P 0.0 0.0 0.0 0.02 0.00 0.23 0.00 0 0 0
Q 0.0 0.0 0.0 0.04 0.05 0.00 0.00 0 0 0
R 0.0 0.0 0.0 0.04 0.01 0.00 0.00 0 0 0
S 0.5 0.0 0.0 0.16 0.10 0.06 0.29 0 0 0
T 0.0 0.0 0.0 0.02 0.10 0.05 0.20 0 0 0
V 0.0 0.0 0.0 0.00 0.14 0.03 0.04 0 0 0
W 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0 0 0
Y 0.0 0.0 0.0 0.01 0.00 0.04 0.04 0 0 0

(a)

A

S
N

A

N
A

DR

Q

K

N

F
A
S
E
E

Q
N
D
G
T
S
V
A

Y

HT

S
F
D
P
A

Y

V

F

E

L
D
A
T
S

A

G
A

D
A

F
(b)

P00790 ---EAPT---

Consensus NNDEAASGDF

IB NNDeaptGDF

Logo A

S
N

A

N
A

DR

Q

K

N

F
A
S
E
E

Q
N
D
G
T
S
V
A

YH

T

S
F
D
P
A

Y

V

F

E

L
D
A
T
S

A

G
A

D
A

F
(c)

Figure 2.1: Five representations of a part of an alignment of Pepsin A precursor
P00790: (a) probabilistic profile; (b) sequence logo [CHCB04]; (c) four textual repre-
sentations. The IB sequence is more compact than profiles or logos, but retains much
of the conservation information lost by other textual formats. In the IB sequence,
uppercase letter X represents strong conservation (∼ 80%) of amino acid X, while
lowercase x represents low conservation (∼ 50%) of X.

11

this discretization to also reflect biologically meaningful categories by forming a su-

perset of the standard 20-character amino acid alphabet. For example, we use “A”

and “a” for strongly- and weakly-conserved Alanine. This formulation demands two

types of constraints: similarities of the clusters’ conditional amino acid distributions

to predefined values, and specific structural similarities between strongly- and weakly-

conserved variants. We show below how the original IB formalism can be extended

to naturally account for such constraints.

We apply our algorithm to SCOP [MBHC95], a database of proteins grouped

hierarchically by structural similarity, and analyze the results in terms of both infor-

mation loss and alignment quality. We show that IB discretization preserves much of

the information in the original profiles using a small number of classes. We then show

that like profile alignments, high-scoring IB alignments reflect distant homology, but

that IB alignments can be computed 30 times faster than profile ones. IB discretiza-

tion is therefore an attractive way to gain some of the additional sensitivity of profiles

on tasks for which profile-profile comparison is not computationally feasible.

2.2 Information Bottleneck

Information Bottleneck [TPB99] (IB) is an information theoretic approach for

distributional clustering. Given a joint distribution p(X, Y) of two random variables

X and Y , the goal is to obtain a compressed representation C of X, while preserving

the information about Y . The two goals of compression and information preservation

are quantified by the same measure of mutual information,

I(X; Y)
def
=

∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)

= H(X) + H(Y)−H(X, Y)

where H(X) is the entropy of p(X), and H(X, Y) of p(X, Y). I(X; Y) is symmetric

and non-negative, and is zero only when X and Y are conditionally independent. The

IB problem is defined as the constrained optimization problem

min
p(c|x):I(C;Y)>K

I(C; X) (2.1)

12

where K is a constraint on the level of information preserved about Y . The solution

must also obey the following constraints

p(y|c) =
∑

x

p(y|x)p(x|c)

p(y) =
∑

x

p(y|x)p(x)

This constrained optimization problem can be reformulated using Lagrange multipli-

ers, and turned into a tradeoff optimization function with Lagrange multiplier β:

min
p(c|x)

L def
= I(C; X)− βI(C; Y) (2.2)

As an unsupervised learning technique, IB aims to characterize the set of solutions

for the complete spectrum of constraint values K. This set of solutions is identical to

the set of solutions of the tradeoff optimization problem obtained for the spectrum

of β values.

When X is discrete, its natural compression is fuzzy clustering. In this case,

the problem is not convex and cannot be guaranteed to contain a single global mini-

mum. Fortunately, its solutions can be characterized analytically by the following set

of self consistent equations:

p(c|x) =
p(c)

Z(x, β)
exp (−βDKL[p(y|x)||p(y|c)]) (2.3)

p(y|c) =
∑

x

p(y|x)p(x|c) (2.4)

p(c) =
∑

x

p(c|x)p(x)

where

Z(x, β) =
∑

c

p(c) exp (−βDKL[p(y|x)||p(y|c)])

By first computing p(c|x) using Eq. (2.3), then recomputing the other distributions via

Eqs. (2.4), these equations yield an iterative algorithm that is guaranteed to converge

to a local minimum [TPB99]. While the optimal solutions of the IB functional are

in general soft clusters, hard clusters are often more easily interpreted in practice.

A series of algorithms was developed for hard IB clustering, including an algorithm

that can be viewed as a one-step look-ahead sequential version of k-means [Slo02].

13

Randomly initialize p(c | x)

Find the corresponding p(c), p(y | c) through Eqs. (2.4)

repeat

pi+1(c|x) ← pi(c)
Zi+1(x,β) exp (−βDKL[pi(y|x)||pi(y|c)]) , ∀ c ∈ C, ∀ x ∈ X

if hard clustering,

pi+1(c|x) =

{
1 if c = argmaxc p(c|x)

0 otherwise

endif

pi+1(c) ←
∑

x p(x)pi+1(c|x) , ∀ t ∈ C

pi+1(y|c) = 1
pi+1(c)

∑
x pi+1(c|x)p(x, y) , ∀ c ∈ C, ∀ y ∈ Y

until (stopping criterion)

Figure 2.2: Pseudocode for the iterative IB algorithm.

Section 2.2.1 describes and compares the performance of the iterative and sequential

IB algorithms.

Friedman et al. [FMST01] describe multivariate information bottleneck (mIB),

an extension of information bottleneck to joint distributions over several correlated

input and cluster variables. Instead of a single observed variable X and a single

cluster variable C, mIB incorporates sets of observed variables X and compression

variables C with a specific conditional dependency structure. Intuitively, mIB’s goal is

to find distributions p(C|X) and p(Y |C) such that
∑

c∈C p(Y |c)p(c|X) approximates

p(Y |X). For further details, including a formulation of the problem for arbitrary

compression structures and a derivation of an analogous loss function, see Friedman

et al. [FMST01].

14

C ← random partition of X into K clusters

while not done

done← TRUE

for every x ∈ X :

Remove x from current cluster c(x)

c′(x) ← argminc∈C ∆L({x}, c)
if c′(x) '= c(x)

done← FALSE .

Merge x into c′(x)

end for

end while

Figure 2.3: Pseudocode for the sequential IB algorithm.

2.2.1 Iterative vs. sequential IB

Slonim [Slo02] compares the performance and runtime of several IB algorithms.

The first, iterative IB (iIB) (Figure 2.2), alternately updates the cluster assignment

p(c|x) and the resulting cluster distributions p(y|c) and weights p(c) via Eqs. (2.3)

and (2.4). If hard clusters are desired, hard assignments are made in the first step.

Since this algorithm only guarantees convergence to a local extremum, we repeated

our experiments with five random initializations. In the current implementation,

iteration was stopped when the current and previous distributions were sufficiently

close together, as measured by
∑

y,s,c |pt+1(y|s, c)− pt(y|s, c)|.
The second IB algorithm, sequential IB (sIB) (Figure 2.3), first assigns ele-

ments to a fixed number of clusters, then individually moves them from cluster to

cluster while calculating a 1-step lookahead score, until the score converges. Like iIB,

sIB only guarantees convergence to a local extremum, and was therefore initialized

with the results of five separate iIB runs.

Slonim [Slo02] found that hard-clustering sIB outperformed soft-clustering iIB

on a document clustering task with 5,000 to 500,000 documents, finding fewer and

15

better solutions on 100 random restarts. However, while sIB is more efficient than

exhaustive bottom-up clustering methods like agglomerative clustering, sIB is still

more expensive than iIB, since each reassignment of an instance requires recomputing

the class conditional distributions. Therefore we used iIB with hard clustering, which

only recomputes the conditional distributions after performing all updates. This

reduces the convergence time by over an order of magnitude, from several hours to

around ten minutes on a modest machine.

Slonim argued that sIB outperforms soft iIB in part because sIB’s discrete

steps allow it to escape local optima. We expect hard iIB to have similar behavior.

Using the setup described in Section 2.3 with 40 clusters, we tested this by applying

three complete sIB iterations to clusters obtained by multivariate iIB. sIB decreased

the loss L by only about 3 percent (from 0.380 to 0.368), with most of this gain

occurring in the first iteration. Up to exchanging labels, the 20 tightest clusters (the

strongly-conserved categories) were nearly unchanged, while about half of the remain-

ing clusters (the weakly-conserved categories) changed only slightly. This suggests

that hard iIB and sIB find similar regularities in our data.

2.3 Method

Applying the Information Bottleneck approach to our profile discretization

problem, X ranges over the set of single-position probabilistic profiles obtained from

a set of aligned sequences and Y ranges over the set of 20 amino acids. In other words,

p(Y = y|X = x) is the probability of observing amino acid y at profile position x.

Our goal is to find a set of profile categories C such that every position x’s observed

amino acid distribution p(Y |X = x) is well-approximated by some p(Y |C = c) where

p(C = c|X = x) = 1.

The application studied in this chapter differs from standard IB in that we are

interested in obtaining a representation that is both efficient and biologically meaning-

ful. This leads us to place priors on clusters’ conditional distributions (Section 2.3.1),

and to enforce relations between certain clusters’ distributions (Section 2.3.2).

16

2.3.1 Constraints on cluster conditional distributions

First, some clusters’ identities are naturally determined by limiting them to

correspond to the common 20-letter alphabet used to describe amino acids. From

the point of view of distributions over amino acids, each of these symbols is used

today as the delta function distribution which is fully concentrated on a single amino

acid. For the goal of finding an efficient representation, we require the conditional

distributions p(Y |C = c) to be close to these delta distributions. More generally, we

require p(Y |C = c) for a specific cluster c to be close to predefined value p(Y |C = ĉ),

thus adding constraints to the IB target function of the form

DKL[p(y|ĉ)||p(y|c)] < K(c)

for each such constraint. While solving the constrained optimization problem is dif-

ficult, the corresponding tradeoff optimization problem can be made very similar to

standard IB. With the additional constraints, the IB trade-off optimization problem

becomes

min
p(c|x)

L′ ≡ I(C; X)− βI(C; Y) + β
∑

c∈C

β(c)DKL[p(y|ĉ)||p(y|c)] . (2.5)

We now use the following identity

∑

x,c

p(x, c)DKL[p(y|x)||p(y|c)]

=
∑

x

p(x)
∑

y

p(y|x) log p(y|x)−
∑

c

p(c)
∑

y

log p(y|c)
∑

x

p(y|x)p(x|c)

= −H(Y |X) + H(Y |C) = I(X; Y)− I(Y ; C)

to rewrite the IB functional of Eq. (2.2) as

L = I(C; X) + β
∑

c∈C

∑

x∈X

p(x, c)DKL[p(y|x)||p(y|c)]− βI(X; Y)

When
∑

c∈C β(c) ≤ 1, we can similarly rewrite Eq. (2.5) as

L′ = I(C; X) + β
∑

x∈X

p(x)
∑

c∈C

p(c|x)DKL[p(y|x)||p(y|c)] (2.6)

+β
∑

c∈C

β(c)DKL[p(y|ĉ)||p(y|c)]− βI(X; Y)

= I(C; X) + β
∑

x′∈X′

p(x′)
∑

c∈C

p(c|x′)DKL[p(y|x′)||p(y|c)]− βI(X; Y)

17

The optimization problem therefore becomes equivalent to the original IB problem,

but with a modified set of samples x ∈ X ′, containing X plus additional pseudo-counts

x′ with prior probability p(x′) = β(c) (hence the requirement that
∑

c∈C β(c) ≤ 1).

This is similar to the inclusion of priors in Bayesian estimation.

Formulated this way, the biases can be easily incorporated in standard IB

algorithms as additional pseudo-data. From an initial dataset defined by p(Y |X) and

p(X) (typically 1
|X| for profiles) and biases Ĉ = {ĉ} with values pβ(Y |Ĉ), we construct

a new dataset X ′ = X ∪ Ĉ defined by

p′(y|x′) =

{
p(y|x′) if x′ ∈ X

pβ(y|x′) if x′ ∈ Ĉ

and

p′(x′) =

{
(1−

∑
c β(c)) p(x′) if x′ ∈ X

β(x′) if x′ ∈ Ĉ

Finally, Eq. (2.5) is augmented to assign each pseudo-datapoint ĉ to its cluster c, with

p(c|ĉ) = 1, thereby fixing the biases to their clusters.

2.3.2 Constraining relations between cluster distributions

We want our discretization to capture both strongly- and weakly-conserved

variants of the same symbol. While this can be done with standard IB using separate

classes for the alternatives, the strong and weak variants’ distributions are likely to be

correlated. It is therefore preferable to define a single shared prior for both variants,

and to learn a model capturing their correlation. Here we derive a multivariate IB

model (see Section 2.2) to capture this dependency.

For profile discretization, we define two compression variables connected as in

Friedman et al.’s [FMST01] “parallel IB”: an amino acid class C ∈ {A, C, . . .} with an

associated prior, and a conservation strength S ∈ {0, 1}. Our goal is to maximize the

information about amino acid distribution Y contained in C and S together, while

independently minimizing the information about position X contained in C and S.

The IB loss function therefore becomes

Lm
def
= I(C; X) + I(S; X)− βI(Y ; S, C) (2.7)

18

Position

Conservation

Profile

Residue

 P(S|X)

P(Y|X)

 P(C|X)

 P(Y|S)

P(Y|C)

Position Profile

Residue +

Conservation

P(Y|X)

 P(S,C|X)
 P(Y|S,C)

UnivariateMultivariate

Figure 2.4: Graphical model representations of multivariate and univariate informa-
tion bottleneck showing input (dashed) and output (solid) conditional dependencies.

Figure 2.4 illustrates our two models’ dependency structures and parameter-

izations. Since the multivariate model correlates strong and weak variants of each

category, it requires fewer priors than simple IB. It also has fewer parameters: a

multivariate model with ns strengths and nc classes has as many categories as a uni-

variate one with nc′ = nsnc classes, but has only ns + nc− 2 free parameters for each

x, instead of nsnc − 1.

2.4 Results

We evaluate IB alignment’s ability to detect distant homologs by comparing

the orders of profile, IB, and consensus alignment scores for a set of proteins with

known evolutionary and structural relations. We also compare the pattern of gaps in

individual profile alignments to those in the equivalent IB and consensus alignments.

IB scores, like profile scores, capture a significant number of relations missed by

consensus scores, and individual IB alignments more closely reflect the pattern of

insertions in the original profile alignments.

Our data come from SCOP [MBHC95], a manually-constructed database of

proteins grouped hierarchically by structural similarity and evolutionary relatedness.

We expect proteins within the same SCOP family, which have clear evolutionary

relationships and ∼ 30% sequence identity, to have high-scoring profile and sequence

19

alignments. We also expect proteins from different families in the same superfamily,

which have probable evolutionary relationships but low sequence identity, to have

significant but lower-scoring profile alignments but no significant sequence alignments.

For each protein, we first generate a profile from a CLUSTALW [THG94] mul-

tiple alignment with other proteins in its family, yielding 425,150 individual profile

positions, then compute probabilistic profiles ignoring gap characters. We then com-

pute IB classes from these profiles using iIB and the priors described below. Finally,

we discretize the profiles into the resulting classes, using the Jensen-Shannon (JS) dis-

tance with mixing coefficient 0.5 rather than the KL distance optimized in encoding

profiles to be consistent with Yona and Levitt [YL02].

In the following sections, we first examine how the amount of information from

the original profiles encoded by IB categories varies with the number of clusters. We

then consider how model structure, i.e. priors and relations between clusters, affects

this information. Next, we compare individual IB, consensus, and profile alignments,

and compare the order of alignment scores between distantly-related and unrelated

proteins. Finally, we show how running time for profile and IB alignment varies with

sequence length.

2.4.1 Information loss from discretization

One measure of the quality of IB clusters is the amount of information about

Y (the amino acid distribution) lost through discretization, I(Y ; X)− I(Y ; C). This

represents the total information distance between profiles and the centers of their

assigned clusters, and is a task-independent measure of the quality of a discretiza-

tion. The change in I(Y ; X) − I(Y ; C) between successive values of |C| represents

the amount of information gained by adding more categories, and thus the number of

actual clusters of a particular scale in the data. Figure 2.1 shows the cluster informa-

tion I(Y ; C) and position information I(C; X) for consensus sequences, profiles, and

(iterative) IB with no priors for |C| = 40, . . . , 500. With |C| ≥ 80 the IB alphabet

captures over 90% of the available information.

Figure 2.5 shows the sequence logos for discretizations with |C| = 20, 40, 80

illustrating compression’s effects. First, when the number of labels equals the number

20

T

L

A I

K

E

G
V
A

T

L

S

V
A

CR
D

A

K

R

Q
D
E

I

Y

V

L
F

A

E

D

G
S

L

Y

R

D

Q

K

N

EH
L
V
I
T

S

D

E
R
K

V

I
L
F

A

I

V
L
M

S

A

T

E

K

G

D
NQ
P

D

I

N

S

G

K
L
Q
P

N

E

D

G

T
A
S
L

I

A

V

S
E
T

I
L
V

A

Y
L

F

W
V

L

F
Y

AK

T

E

Q
P
S
A
L

S

V

A

C
N

E

D
A

E

N
P
G
D

Q

A
D
E

K

S

T
N
R
G
E

Q

S

M
L

I
E

L

Y
F

Q

S

N

L

A
M
FGV

N
S
A
G

A

S

D

N

H
K
E

T
Q
Y
H I

E
K

E

Q

G

N
A
R
K

M

F
I

D
KLH

Y

V

A
I
L

R

Q

K
F
V
L

I

CV
S
M
L

I

MSQ

D
N

K

PD

E

R

K

QRE

I
D
L
R

A

S
NQ

K
E
D
T
S

K

Y
R
P
S

P

N

TQ

V

R
K
A
T

M
G
L
TVL

N
T
I
V

Y
D
A
V
L
S
E
P
V

Y

F
L
W
L

F
Y

AV

G

S
A
E

H
D
A

SW
C
T
A

V

L

P
I

A
V

L

K
Y
A

I

A

L

CDA

Y

S
V
P
D

E

K
G
N
D

W
S
T
R
D

E

I
H
L
DEL

N
R
E

D

T
K
E

D

H
G
E

D

S

K

A
E

V
S
D
EFL

S

P

E
A
F

Q
N
S
V
F

G
Y
F

V
L
H

I
F

K
D
R
FGN

S
G

V

M

P
A
GH

VI G

V
L

I
L

D

S

V

Y

R
K
E

I KE

D

V

N

R
T
KA

K
E

A

F
P
G
K

D

N

A

R

W

E

Q
KLQ

C

S
E
T
L

K

P
R
L

K
M
L

V

H

F

I
Y
L

I

V

A
L

VI

W
F
L

W

S

F

Y

D
N
L

A

M
A

L

E

R
F
I
V
M

N
H
S
MND

I

T
S
N

D

E

G

P
A
N

H
V
K
NPN

L

I

D
V
T
P

F
H
A
Y
R
P

D

K
Q
E
PQ

N

DS
A
Q

R

I

Y
D
E
Q

N
G
L
Q

C
H
V
QRQ

A
K
R

V
N
T
R

E
A

H
G
RS

A

I
L
V
T
S

E

H

C
R
K
S

G

A
P
STM

L

H
F

I
V
T

K

P

N

E

S

Q
D
G
TVT

A
I
V

I
L
V

I

R
W
G
Y
V
FY

WYC

Q
S
M
T
Y

Figure 2.5: Sequence logos for |C| = 20, 40, 80, showing several features of IB dis-
cretization. First, variable numbers of clusters are assigned to different amino acids
according to their overall frequencies: A and L are more common, while C is least
common. Second, clusters capture strongly- and weakly-conserved variants, as well
as some chemical similarities: I, V, L, and M are all hydrophobic.

Table 2.1: Information versus sequence type for consensus sequence, profiles, and IB
without priors.

Seq. type I(Y ; C) I(C; X)
Consensus 2.8503
|C| = 40 3.0596 5.0793
|C| = 80 3.2083 5.7160
|C| = 160 3.3248 6.2442
|C| = 320 3.3986 6.6517
|C| = 500 3.4267 6.8297
Profiles 3.643

21

!0.38

!0.42

!0.46

!0.2 !0.4 !0.6 !0.8

I(
Y

;X
)!
-!I

(Y
;C

)

w

multivariate
21/52!priors
41/52!priors
51/52!priors

Figure 2.6: I(Y ; X) − I(Y ; C) as a function of w for different groups of priors. The
information loss for 52 categories without priors is 0.359, for 10, 0.474.

22

of amino acids (|C| = 20), the frequently-occurring amino acid A is allocated two

labels, forcing D and R share a label. Second, as the number of labels increases, the

least common amino acid C is allocated only a single label, while the number of labels

assigned to the more common A and L consistently increases. This shows the data-

dependence of our discretization compared to the simpler approach of allocating one

or more clusters to each amino acid with varying levels of sequence conservation.

2.4.2 Effect of category constraints

For univariate IB, we use four types of priors reflecting biases on stability,

physical properties, and observed substitution frequencies: (1) Strongly conserved

classes, in which a single symbol is seen with S% probability. These are the only priors

used for multivariate IB. (2) Weakly conserved classes, in which a single symbol occurs

with W% probability; (S − W)% of the remaining probability mass is distributed

among symbols with non-negative log-odds of substitution. (3) Physical trait classes,

in which all symbols with the same hydrophobicity, charge, polarity, or aromaticity

occur uniformly S% of the time. (4) A uniform class, in which all symbols occur with

their background probabilities.

The choice of S and W depends upon both the data and one’s prior notions

of “strong” and “weak” conservation. Unbiased IB on a large subset of SCOP with

several different numbers of unbiased categories yielded a mean frequency approaching

0.7 for the most common symbol in the 20 most sharply-distributed classes (0.59±0.13

for |C| = 52; 0.66± 0.12 for |C| = 80; 0.70± 0.09 for |C| = 100). Similarly, the next

20 classes have a mean most-likely-symbol frequency around 0.4. These numbers can

be seen as lower bounds on S and W . We therefore chose S = 0.8 and W = 0.5,

reflecting a bias toward stronger definitions of conservation than those inferred from

the data.

Figure 2.6 shows the effect on information loss of varying the prior weight
∑

c β(c) with three sets of priors: 20 strongly conserved symbols and one back-

ground; these plus 20 weakly conserved symbols; and these plus 10 categories for

physical characteristics. As expected, increasing the number or weight of priors in-

creases information loss. However, with a small additional pool of unbiased categories

23

information loss is nearly independent of prior strength. This suggests that our pri-

ors correspond to actual regularities in the data. Finally, note that despite having

fewer free parameters than the univariate models, the mIB model achieves compara-

ble performance, suggesting that our decomposition into conserved class and degree

of conservation is reasonable.

2.4.3 Alignment similarity and distant homolog search

Since we are ultimately using the resulting IB classes in alignments, the true

cost of discretization is best measured by the amount of change between profile and

IB alignments, and the significance of this change. The latter is important because

the best alignment can be very sensitive to small changes in the sequences or scoring

matrix; if two radically different alignments have similar scores, neither is clearly

“correct”.

We can represent an alignment as a pair of index-insertion sequences, one for

each profile sequence to be aligned (e.g. “1,2, , ,3,...” versus “1, ,2, ,3,...”). The

edit distance between these sequences for two alignments then measures how much

they differ. However, even when this distance is large, the difference between two

alignments may not be significant if both choices’ scores are nearly the same. That

is, if the optimal profile alignment’s score is only slightly lower than the optimal IB

class alignment’s score as computed with the original profiles, either might be correct.

We therefore report both the edit distance between alignments and this change in

profile alignment score.

The score for aligning two IB symbols c1 and c2 is

1

2
(1−DJS[p(y|c1)||p(y|c2)]) (1 + DJS[q(y)||p̄(y)])− ks (2.8)

where q(y) = 1
2(p(y|c1) + p(y|c2)), p̄(y) is the average probability of amino acid y

across all profiles, and ks is a constant chosen so that the average alignment score

between pairs of randomly-chosen symbols is negative. We use ks = 0.45 and gap

open and extension penalties of ko = 2 and ke = 0.2, where ks, ko, and ke have been

chosen by Yona and Levitt [YL02] so that local alignment scores between random

sequences follow the expected extreme value distribution.

24

Table 2.2: Alignment differences for alignments with IB models and sequence align-
ment, within and between superfamilies.

Edit distance Score change
Same Superfamily

mIB 0.154± 0.182 0.086± 0.166
IB 0.170± 0.189 0.107± 0.198
BLOSUM 0.390± 0.065

Same Clan
mIB 0.124± 0.209 0.019± 0.029
IB 0.147± 0.232 0.022± 0.037
BLOSUM 0.360± 0.062

Figure 2.7: ROC curve for same vs. different superfamily classification by alignment
score. 52 IB categories are used throughout.

25

Figure 2.2 shows both the edit distance and score change per length between

profile alignments and those using IB classes, mIB classes, and the original sequences

with the BLOSUM62 scoring matrix. Unless otherwise noted, IB alignments use

|C| = 52 clusters, a number chosen to be conveniently represented by the 26 upper-

and lower-case letters. To compare the profile and sequence alignments, profiles

corresponding to gaps in the original sequences are replaced by gaps, and resulting

pairs of aligned gaps in the profile-profile alignment are removed. We consider both

sequences from the same family and those from other families in the same clan, the

former being more similar than the latter, and therefore having better alignments.

Assuming the profile-profile alignment is closest to the “true” alignment, IB alignment

significantly outperforms sequence alignment in both cases, with mIB showing a slight

additional improvement.

Since alignment scores predict structural relatedness, sequences with distant

structural relationships, defined as those in the same SCOP superfamily, should have

positive-scoring alignments. Yona and Levitt [YL02] compare the ranking of high-

scoring profile-profile alignments to that of PSI-BLAST e-values, and show that pro-

files consistently assign high scores to more distant homologs. We perform this same

test to compare profile, IB, and consensus sequence alignment scores. Figure 2.7

shows the ROC curve for detecting superfamily relationships between 117 families

contained in 10 randomly-chosen SCOP superfamilies with between 3 and 35 mem-

bers. While IB fares worse than profiles, consensus sequences perform essentially at

chance.

2.4.4 Alignment running time

Most of the cost of aligning two profile sequences comes from computing JS

distances between pairs of profiles. Encoding unencoded profile sequences before

alignment, by significantly reducing the number of JS distance computations, yields

a 4- to 20-fold improvement in alignment running time. Furthermore, sequences can

be pre-encoded to perform repeated comparisons, yielding a 30-fold improvement.

Encoding two sequences of lengths n and m for IB alignment requires com-

puting the |C|(n + m) JS distances between each profile and each category, a sig-

26

 1

 4

 16

 64

 400 800 1600

T
im

e
 (

s
e
c
)

Sequence Length

Profiles (2e-5*x^2)
IB (1.8e-3*x^1.07)

2*Disc (1.5e-3*x^1.06)

Figure 2.8: Running times for profile-profile and IB-profile alignment, and (twice)
running time for IB discretization. Alignments were performed using the Smith-
Waterman algorithm and computing the complete dynamic programming matrix.
For IB, each sequence was first discretized using 50 categories. For profiles, distances
were precomputed between every pair of sequence positions.

27

nificant improvement over the mn distance computations required for profile-profile

alignment when |C| + min(m,n)
2 . Once the sequences are encoded or the pairwise

distances computed, both methods take essentially the same amount of time to per-

form Smith-Waterman alignment. Figure A.3 compares the running time of profile

and IB alignment for different sequence lengths, showing best fit curves for both to

f(x) = axb. The results show that the number of JS distance computations domi-

nates running time for typical sequence lengths: despite both methods’ performing

O(n2) work in Smith-Waterman alignment, IB alignment time is essentially linear

in sequence length, while profile alignment is quadratic. Figure A.3 also plots the

time taken to encode both input profiles in a 40-character IB alphabet, showing that

encoding accounts for most of the cost of alignment. Since useful values of |C| are

much smaller than the average sequence length, and since most database applications

can use pre-encoded sequences, the effect of |C| on real running times is negligible.

In particular, the time taken to align pre-encoded sequences is independent of |C| for

the values presented here.

On average hardware, each profile distance computation takes about 16.5µs.

At this rate, just the distance computations for a full pairwise alignment of SwissProt’s

160,000 sequences, comprising 60 million residues, require 3 × 1010 CPU-seconds or

about 950 years. The distance computations required to encode the database in a 40-

character alphabet take 11 hours. Similarly, the distance computations for aligning

a single 200-element sequence with every element of SwissProt take about 260 hours,

or nearly the entire observed running time for performing full profile alignments.

To compare, our unoptimized implementation of Smith-Waterman takes around 8

hours to align a typical sequence against SwissProt. This agrees well with the figure

obtained by assuming an average sequence length of 365 residues and the observed

single alignment times shown in figure A.3 (minus encoding time).

2.5 IB profile indexing

Even with IB encoding, full pairwise alignment of SwissProt would take an

impractical 60 years using standard pairwise Smith-Waterman alignment. Although

database indexing and search algorithms like BLAST [AGM+90] have been devel-

28

oped to speed searches over large sets of amino acid sequences, a database of profile

sequences cannot be similarly indexed, because the profiles are continuous. IB dis-

cretization is a natural way to incorporate profile information in a discrete sequence

database. Although directly applying the BLAST algorithm to IB sequences fails for

reasons discussed in Section 2.5.2, a related approach can still be used.

In this section we survey the issues involved in creating an IB sequence data-

base, and describe one possible approach. Like BLAST, our algorithm quickly finds

short “seed” matches between the query and the database, then only performs full

sequence alignment near these seeds. Unlike BLAST, however, our algorithm looks

for both exact and approximate seed matches.

2.5.1 Index construction

To speed the search for high-scoring match positions, we create an index that

maps each possible k-mer to all of its high-scoring matches in the database. (The

index actually consists of two parts, a map from each k-mer s to every t satisfying

the above condition, and a map from each t to its exact occurrences in the data-

base.) Specifically, for score function S, the sum of the per-position scores defined by

Eq. (2.8), we map a query k-mer q to all database k-mers d such that for randomly-

chosen k-mers x1 and x2 and threshold ε,

P (S(x1, x2) > S(q, d)) ≤ ε

Note that k-mers with high-scoring matches to many others (i.e. those representing

strongly-peaked distributions) will have many neighbors, while those with few such

matches may have none. This is desirable since the regions of interest, functional

domains, will have high conservation rates.

ε controls the tradeoff between sensitivity and both index size and search time.

If ε is too low, then some matches’ seeds will be missed. If it is too high, then the

index becomes prohibitively large, and queries will require full alignments around a

large number of low-quality seeds.

29

2.5.2 Sequence search

The BLAST [AGM+90] program scans through a large sequence database by

looking for short exact seed matches between the query sequence and the database,

and only performing full alignments at these positions. However, this approach is

not effective with IB sequences, since interestingly-related sequences may not share

any exact seeds with the query for two reasons: First, two different categories may

be similar enough to have a high match score, but seeds containing them will not

be identical. Second, since the point of profile-profile alignment is to search for

distantly-related sequences, the sequences of interest are likely to share relatively few

exactly-matching seeds, but may still contain high-scoring non-identical ones.

Instead of finding all exact seed matches to the query sequence, we look for

high-scoring approximate matches, then score each database sequence according to

its approximate seed matches to the query. We then perform full alignment for the

highest-scoring database sequences. For global alignment, a sequence’s score is the

sum the scores of seeds positioned such that they could appear in an alignment with

fewer than w total insertions or deletions. For local alignment, the score is simply

the sum of all seeds’ scores.

Since this search algorithm operates on already-encoded IB sequences, it nat-

urally handles both profiles and IB sequences already in the database. However, we

may also want to query the IB database for matches to an ordinary amino acid se-

quence. While we could do this by aligning the input sequence against a sequence

database, encoding the resulting profile, and finally performing a standard search,

both of the encoding steps by themselves would take more time than the actual

search. The simplest alternative is to create an approximate IB sequence from the

input amino acid sequence by choosing, for each amino acid y, the IB category c most

likely to have generated that amino acid, i.e. argmaxc P (y|c).

2.6 Conclusion

We have described IB sequences, a discrete encoding of amino acid profiles

that allows profile information to be used for alignment and search at essentially the

same computational cost as simple sequence alignment. The encoding is based on

30

minimizing information loss, and its classes can be constrained to correspond to the

standard amino acid representation, thus yielding an intuitive, compact textual form

for profile information. Alignments of IB sequences encoded with a modest number

of classes correspond significantly better to the original profile alignments than do

alignments of the consensus sequences (edit distance 0.15 versus 0.39). High-scoring

IB alignments reflect distant homology detected with profiles but not with consensus

sequences (AUC score 0.73 versus 0.51).

Our model is potentially advantageous in three ways: First, it models rich

conditional distribution structures and class constraints. It can, for example, be

extended to incorporate structural information in the input representation, and to

assigning structural significance to the resulting categories. Second, it allows us to

apply existing fast discrete algorithms to continuous profile sequences when either

profile comparison is computationally impractical, or only discrete-sequence algo-

rithms exist. While the application is nearly automatic for simple applications like

text search, more complex algorithms may not directly transfer as we see in Sec-

tion 2.5. However, even problems that require new discrete algorithms are likely to

see improved performance over the brute-force continuous alternatives.

Third, our discretization avoids undersampling problems while being more

broadly applicable than single-position profiles. Ordinary profile applications are lim-

ited by high dimensionality to considering only single positions of a multiple align-

ment. This ignores significant correlation both between adjacent profile positions

and between adjacent symbols in individual aligned homologs. Single-position pro-

files thus represent a drastic simplification of the underlying data. For example, while

the average entropy of a single profile in our dataset is 0.99, the average entropy of

an adjacent pair is only 1.23, suggesting an information loss far greater than the 10%

lost by IB discretization. Therefore profile pairs can be represented more compactly

than the cross-product of the single-position alphabet. Instead of considering se-

quences of adjacent single-position profiles, our method can be extended to discretize

distributions over pairs or k-tuples of symbols in a multiple alignment. By applying

IB to the 20k-dimensional space of k-tuple profiles, we can avoid undersampling and

obtain a richer sequence representation incorporating previously-ignored local cor-

relation. Extending this approach to variable-length substrings yields an algorithm

31

similar to suffix trees, known to be some of today’s most efficient text compression

methods [RST94].

This chapter is based on work with Gal Chechik, Robin Friedman, and Eleazar

Eskin, and published in BMC Bioinformatics, 7(Suppl 1):S8, March 2006.

Chapter 3

Separation of overlapping

subpopulations using mutual

information

In the previous chapter, we described an extension of the Information Bot-

tleneck method to incorporate priors on cluster distributions. We then used this

algorithm to cluster sets of probability distributions to produce an informationally-

optimal, data-dependent discretization. In this chapter, we present an algorithm for

identifying substructure in overlapping subpopulations. The algorithm is based on

another extension of Information Bottleneck, this time to limit the multi-information

within individual clusters while clustering sets of character strings.

Identifying subpopulations and their ancestral sequences is an important first

step in understanding population history and dynamics. However, several interesting

cases including HIV evolution and human genetic variation feature highly overlap-

ping subpopulations, whose ancestral subpopulations differ by fewer than the average

number of mutations between members of the same population. In such cases both

flat and hierarchical distance-based clustering methods optimize the wrong objective

function, and will therefore fail to recover the correct population structure.

We apply our algorithm to human DNA and viral RNA to divide individu-

als into subpopulations, demonstrating its effectiveness in recovering subpopulations.

While motivated by a particular biological application, the algorithm can be applied

32

33

to both discrete and continuous clustering problems for which distance-based mea-

sures are inappropriate.

3.1 Motivation

Identifying distinct strains of HIV is an important first step in understand-

ing the virus’s spread because pathways of transmission correspond to distinct viral

strains. Each such strain or population cluster can be characterized by a common

ancestral sequence and a rate of mutation from this sequence. While there exist a

number of clustering algorithms for finding population structure, most have been de-

veloped for non-overlapping subpopulations, in which the distances between ancestral

sequences are greater than those between subpopulation members. However, because

of HIV’s high mutation rate, distances between HIV ancestral sequences are similar

to those within subpopulations, drastically limiting these methods’ effectiveness.

Many biological processes can be characterized as forms of sequence evolution,

in which a set of individual sequences is generated by a process of alternating replica-

tion and random mutation. When different sequences replicate at different rates, such

data can be modeled as a number of ancestral sequences, each generating offspring by

mutation. One well-studied problem, population substructure, aims to recover the un-

derlying ancestral sequences from the entire population and to cluster individuals by

ancestral sequence. Another problem, phylogenetic inference, aims to find the hierar-

chical relations between the ancestral sequences, summarizing the series of events by

which a diverse population has arisen from its common ancestor. Examples of these

problems include determining human population substructure [HSN+05], tracing HIV

evolution [KFF+02], and reconstructing Alu repeat insertion history [PEP04].

If the sequences are long relative to their mutation rate, the probability of the

same mutation occurring independently in unrelated individuals is vanishingly small.

Viewing subpopulations as clusters of points in sequence space, the mutation distance

between points within a single cluster will be small relative to that between cluster

means, and the substructure problem will be amenable to distance-based clustering.

However, if the sequences are short relative to the mutation rate, inter- and intra-

population mutation distances are on the same order, and the populations largely

34

overlap. In this situation distance-based clustering algorithms (such as agglomerative

linkage clustering) perform poorly, since an individual may often be closer to another

population’s ancestral sequence than to its own, and the resulting clusters will reflect

local irregularities instead of the actual generating process [PEP04]1. But if muta-

tion at one position is independent of mutation at others, then observing correlation

between two or more positions in a supposed subpopulation suggests that it actually

consists of two or more subpopulations differing at those positions.

Here we propose a top-down clustering algorithm for reconstructing population

substructure for evolutionary processes with similar mutation and replication rates.

Our algorithm, sequential shape-constrained clustering (sscc), finds clusters that

maximize information about sequence identity while minimizing mutual information

between positions within each cluster. sscc extends standard top-down clustering

with a penalty for multi-information between positions within a subpopulation. While

we present results for discrete sequence clustering with a specific penalty function,

sscc is more general, and can be applied with other penalty functions to both discrete

and continuous multivariate data.

In Section 3.3 we describe the formulation of the problem and the objec-

tive function. Section 3.4 presents a sequential iterative algorithm to minimize this

function and discusses efficient calculations of the score function. In Section 3.5 we

illustrate the objective function’s behavior on artificial data designed to show how

it differs from distance-based clustering. We then apply sscc to recover population

substructures from HIV RNA, human single nucleotide polymorphisms (SNPs), and

Alu repeat elements, and compare our results to those obtained both by k-means and

by state-of-the-art population substructure methods. In particular, we show that our

method is competitive with, and in some cases more accurate than, the structure

program [PSD00], one of the most widely-used tools for this problem. Finally in Sec-

1Consider two populations A and B of bitstrings of length n, where As are instances of Ā = 0X1,
Bs of B̄ = 1X0; X represents a sequence of n − 2 random bits. The distance DAA between an
A and Ā follows a binomial distribution B(n − 2, 0.5), while the distance DAB between it and B̄
is 2 + B(n − 2, 0.5). So the probability p(DAA ≥ DAB) of its being at least as close to B̄ as to
Ā is approximately p (DAA ≥ E[DAB]) = I0.5(n

2 + 1, n
2 − 2), which for n = 100 equals 0.38. Since

a substantial minority of the elements from each population are closer to the other’s consensus
sequence, a distance-based phylogeny will misleadingly relate elements from different populations,
obscuring the two actual subpopulations. However, testing for correlated mutation can correctly
identify Ā and B̄.

35

tion 3.6 we suggest several extensions and briefly describe other problems for which

the algorithm is well-suited.

3.2 Related work

Evolutionary biologists often combine the substructure and phylogeny prob-

lems, directly reconstructing phylogenies using distance-based algorithms such as

neighbor-joining. However, Pritchard et al. [PSD00] argue that despite their vi-

sual appeal, distance-based methods lack the statistical power of model-based ones.

Pritchard instead proposes a sophisticated Bayesian model for population substruc-

ture. The structure program optimizes this model for a fixed number of subpop-

ulations by Markov chain Monte Carlo (MCMC). Another model-based approach,

SEMPHY [FMST01], uses structural expectation maximization to address the phy-

logenetic inference problem.

Our method is related to models of clustering with side information [XNJR03,

SBHHW04,CT02]. Xing et al. [XNJR03] discuss how to learn a metric from the family

of Mahalanobis distances, given pairs of samples which are known to be “similar,”

and show how this can be used for clustering. Shental et al. [SBHHW04] show how

to use equivalence (and non-equivalence) constraints, that is pairs of samples known

to be in the same cluster (or not), in order to learn the components of the within-

cluster covariance matrix, so these can be normalized out when learning a Gaussian

mixture model. The problems discussed here differ from those discussed in these two

papers in several aspects: First, the biological process that created the clusters in our

case leads to independence between positions (spherical clusters). Therefore, rather

than learning a whitening transformation from the data, we enforce spherical clusters.

Second, we operate in a discrete space over a given alphabet rater than a continuous

space. Finally, rather than focusing on second order relations (covariance matrices),

we force high-order independencies using the mutual information measure.

Clustering categorical variables while preserving information about another

variable was addressed in the Information Bottleneck (IB) framework [TPB99]. There,

information preservation I(X; C) is traded for a compression term that determines

the loss of information due to clustering. Adapting their notation to the one used

36

here, the IB functional is

min
p(c|z)

I(Z; C)− βI(C; X)

where Z is a random variable that holds the identity of the sequence, rather than its

value. In practice, hard clustering for a fixed number of clusters is sometimes used,

and 1/β is taken to zero. Chechik et al. [CT02] discuss clustering while preserving

information about one variable X+ but removing information about a second variable

X−. In the limit of infinite β, this is formalized as finding

min I(C; X−)− γI(C; X+)

The method described here aims to cluster while preserving information about the

sequences I(C; X), but at the same time removing conditional information per cluster,

that is, finding

min I(X|C)− γI(C; X)

3.3 Problem formulation

Let X = (X1, . . . , Xl) be a vector random variable over the m-letter alphabet

Σ = {a1, . . . , am}. Each instance x of X is a vector of length l, and we model the

process that generates it as follows. First, one of n subpopulations C ∈ {1, . . . , n} is

drawn with probability p(C = c), and x is assigned the consensus sequence of the sub-

population µc = (µc1, . . . , µcl) ∈ Σl. Then the sequence is mutated independently at

each position according to a subpopulation specific mutation rate σc = (σc1, . . . ,σcl),

which determines the probability of mutating from the consensus value µcj to ak '= µcj.

Given subpopulation-specific consensus sequences and mutation rates (µc, σc), one can

calculate the probability p(x|c) that a given sequence x comes from a subpopulation c.

The pair (µc, σc) can be regarded as the discrete analogue of the mean and (spherical)

covariance matrix in a Gaussian mixture model. The goal of subpopulation identifica-

tion is to divide the input sequence set into subpopulations such that the sequences in

each subpopulation are similar. Instead of estimating the parameters µ and σ directly,

we choose here to use a nonparametric model and measure within-subpopulation sim-

ilarity by the homogeneity of the conditional entropy H(X|C) [CT91], as compared

with the overall homogeneity H(X). This reduces to using the mutual information

37

I(X; C) = H(X)−H(X|C) as a measure for the goodness of dividing sequences into

subpopulations.

Since mutations occur independently, sequences x drawn from the same sub-

population c have

p(xi|{x}j $=i, C = c) = p(xi|C = c)

where {x}j $=i is any set of positions excluding the position i. For example, focusing

on pairs we have

p(xi|xj, C = c) = p(xi|C = c)

for all j '= i. As a result of this independence, the conditional mutual information

I(Xi; Xj|C) for every pair of positions Xi, Xj within a cluster should vanish. For

subsets of higher order, the independence of all l variables can be quantified by an

extension of the mutual information, the multi-information [SV98],

MI(X1; . . . ; Xl)
def
= DKL[p(x1, . . . , xl)||p(x1) . . . p(xl)] (3.1)

which is again non-negative and vanishes if and only if all Xi are independent.

We propose using this additional knowledge about conditional independence

within subpopulations to devise a better clustering procedure for finding subpopula-

tions. This additional constraint on position independence is most useful when many

clusters are overlapping. For such data, distance-based clustering methods like k-

means and Gaussian mixtures tend to find wrong clusters that are more concentrated

in space, but have non-independent positions. This happens because when the dis-

tances between consensus vectors µi, µj are small relative to the mutation rates σi, σj

the probability of cluster ci generating a sequence x such that p(x|cj $=i) > p(x|ci) be-

comes significant. We show here that additional constraints on independence between

dimensions can eliminate this problem.

The goal of subpopulation identification is therefore to find subpopulations of

the sequences, such that sequences in each subpopulation are similar, but positions are

independent. This can be formally quantified by maximizing the mutual information

I(X; C) while removing the position dependence MI(X1; . . . ; Xl|C),

min
µ,σ

S(C) = β MI(X1; . . . ; Xl|C)− I(X; C) (3.2)

where β controls the trade-off between the two objective factors.

38

Since with limited data it is often difficult to estimate the high-dimensional

joint distribution p(X1, . . . , Xl) needed for estimating the multi-information, one can

replace the above independence condition with a weaker, pairwise one

min
µ,σ

S(C) = β
∑

i<j

I(Xi; Xj|C)− I(X; C) (3.3)

The two conditions become equivalent up to constants for Bethe-type distributions,

where no high-order correlations above second order exist.

3.4 Iterative algorithm

We find local optima of Eq. (3.3) using a two-phase iterative algorithm com-

bining sequential updates and top-down splitting. The first phase splits each existing

cluster c if doing so improves S(C). Since the number of possible splits is exponential

in cluster size, we perform a greedy step, and choose to split the cluster into two

families that differ at a single position i of the sequence. We choose the position

which reduces the dependencies the most, namely, the position

i = argmax
i

∑

j $=i

I(Xj; Xi|C = c)

We then divide c into those sequences with the most-frequent value at position i,

and those with all other values. In practice, we find that this criterion yields good

splits at a small computation time cost. The second phase iterates through the

clusters, sequentially updating each of their sequences’ cluster assignments until no

more improvement is possible.

Each step in the algorithm decreases the objective function, and Eq. (3.3) is

bounded below by −I(X; C), so the two-phase updates must converge. Furthermore,

since the cluster distributions are determined by hard assignments of a finite number

of instances, it must converge in a finite number of steps.

Since the algorithm performs a large number of sequential updates, computing

the score of a category when considering reassigning an instance becomes a major

limiting factor. We show here how the value of S(C) can be updated efficiently

after adding or removing a single instance. Consider the case where we add a single

39

instance x = (x1, . . . , xl) to a category c with a distribution p(X|c). This creates a

new category c′ with probability p(c′) = (p(c) + 1/|X|) and sequence distribution

p(X|c′) = (1− α)p(X|c) + α[X = x]

where α = 1/(|c| + 1) and [X = x] is an indicator function. Separating the Xi = xi

terms from the rest and summing over sequence positions i yields

I(X; c′) = I(X; c)− I(x; c) + I(x; c′) + p(c) log ᾱ
l∑

i=1

(1− p(xi|c)) (3.4)

where ᾱ = 1− α,

I(x; c)
def
=

∑

i

p(xi, c) log

(
p(xi|c)
p(xi)

)

is the symbol-specific information that the category c provides about the specific

sequence x, and

I(X; c)
def
=

∑

x

p(x, c) log

(
p(x|c)
p(x)

)

is the category-specific information that the category c provides about the sequences

X.

A similar transformation can be applied to the second term in Eq. (3.3). Using

I(Xi; Xj|C = c) = H(Xi|C = c) + H(Xj|C = c)−H(Xi, Xj|C = c)

the above substitution yields

H(Xi|C = c′) = ᾱH(Xi|C = c)− (1− p(xi|c))ᾱ log ᾱ

+ᾱp(xi|c) log p(xi|c)− p(xi|c′) log p(xi|c′) (3.5)

H(Xi, Xj|C = c′) = ᾱH(Xi, Xj|C = c)− (1− p(xi, xj|c))ᾱ log ᾱ

+ᾱp(xi, xj|c) log p(xi, xj|c)− p(xi, xj|c′) log p(xi, xj|c′) (3.6)

where p(xi, xj|c′) = ᾱp(xi, xj|c) + α. Combining these and summing over all (xi, xj),

i < j yields

∑

i<j

I(Xi; Xj|C = c′) = ᾱ

(
∑

i<j

I(Xi; Xj|C = c)− fc(x)

)
− fc′(x)

−ᾱ log ᾱ

(
(l − 1)

∑

i

p(xi|c′)−
∑

i<j

p(xi, xj|c′)−
l(l − 1)

2

)
(3.7)

40

where

fc(x) = (l − 1)
∑

i

p(xi|c) log p(xi|c)−
∑

i<j

p(xi, xj|c) log p(xi, xj|c)

and fc′(x) is the analogous quantity for c′ instead of c. Note that since both of these

terms depend only upon the previous values of I(Xi; Xj|C = c) and I(X; c), and

upon the probabilities of the instance s being considered, the score update can be

computed in O(l2) time rather than O(l2(|X|+ |Σ|2)).

3.5 Results

To illustrate sscc’s behavior, we generated three 50-character bit-strings with

relative Hamming distances of 2, 3, and 5, then generated 20 copies of each with mu-

tation rate 0.05, yielding a 60-member population with expected Hamming distance

of 2.5 between a mutant and its ancestral sequence. When the stopping criterion is

chosen to recover three clusters, sscc recovers the ancestral sequences exactly, and

assigns 93% of sequences to their generating clusters. On the other hand, iterative K-

means, even when initialized with the correct parent sequences, typically converges to

a degenerate solution in four or fewer iterations, demonstrating the inappropriateness

of distance-based clustering for overlapping populations.

Note that because the clusters overlap, the most probable assignment of points

to clusters may not be the one by which the data were generated. Because of this, and

because we want to recover population substructure, recovery of ancestral sequences or

cluster means is often a more appropriate performance measure than correct sequence

labeling. By this measure both structure and sscc perform perfectly on this

generated dataset. However, when the mutation rate is increased to 0.16, structure

finds a degenerate solution, while sscc still recovers the correct ancestral sequences

despite only correctly classifying 71% of individuals.

In the following sections we demonstrate the superior operation of sscc on

three real biological problems: HIV strain identification, human population substruc-

ture, and Alu repeat structure.

41

Tracking AIDS pandemic 239

Worldwide distribution of human
immunodeficiency virus variants

On a global scale, the most prevalent HIV-1 genotypes are
subtypes C (47%), A (27.2%), B (12.3%), D (5.3%) and
CRF01_AE (3.2%).

20

 The greatest genetic diversity of HIV-1
was found in Central sub-Saharan Africa. Subtype A and C
are the most common in these areas, but all groups and
subtypes have been identified (Fig. 2). This is consistent with
the hypothesis that Africa is the source of the current
pandemic. Subtype C is the predominant subtype in south
and east Africa, which has the worst epidemic with more
than 30% of the adult population infected with HIV.

21

 In West
and West-central Africa, the majority of circulating strains
is CRF02_AG.

12

 In North America and Europe, subtype B is
predominant, showing a strong founder effect. In South
America, subtype B is prevalent, while subtypes F and C, and
CRF12_BF and the related B/F recombinants have been

reported.

22

 In Asia, subtype C predominates in India and
CRF01_AE is predominant in South-east Asia.

14,23–25

 Subtype
B

!

"

 (Thailand variant of subtype B) is a unique subtype B
regional variant that spread primarily through injecting drug
user (IDU) networks in South-east Asia.

16,23,24,26,27

 Two
closely related CRFs, CRF07_BC and CRF08_BC are dis-
seminating rapidly among IDU networks in North-western
(Xinjiang Province) and South-eastern (Guangxi Province)
China, respectively.

28,29

 Injecting drug use triggered a new
HIV-1 epidemic in Eastern Europe: CRF03_AB was
identified among IDUs in Kaliningrad, and in cities in
Ukraine and Belarus.

30

Although the exact prevalence of recombinant strains is
not known, preliminary data show that the proportions of
discordant gag/env samples varied from less than 10% to up
to 40% in Africa and 10–30% in some areas in Asia,
including Central Myanmar and Western part of Yunnan
Province of China.

15–18,31–33

Fig. 2

Global distribution of human immunodeficiency virus (HIV) genotypes. Designations for types, HIV-1 groups, subtypes and circulating
recombinant forms are shown in the inset. Genotype distribution illustrated in pie graphs is based on the data from Osmanov

et al

.

20

Figure 3.1: Worldwide distribution of HIV clades (from [TKM04]).

3.5.1 HIV-1 evolution

With the large number of HIV strains that have been already sequenced, HIV

viral evolution presents a unique opportunity for studying population structure. De-

tecting this structure is extremely challenging for traditional phylogenetic methods

because of a high recombination rate and a mutation rate up to six orders of magni-

tude greater than that of typical DNA.

The HIV-1 virus originated in East Africa, where most of its ten subtypes

are found. Several subtypes have spread to other parts of Africa, while subtype B,

a descendant of subtype D, is dominant in Europe and North America, but rare in

Africa [SBR+99]. Figure 3.1 shows the worldwide prevalence of different HIV strains.

Our dataset consists of 442 HIV-1 sequences from the Los Alamos HIV sequence

database [KFF+02]. To avoid cross-strain recombination, which complicates popula-

42

Table 3.1: Regions and subtypes with frequency ≥ 0.1 in the predicted HIV-1 POL
subpopulations, ordered alphabetically by primary region. The rows represent all
predicted non-singleton clusters. See [RAB+00] for an explanation of HIV subfamily
naming.

Regions Subtypes
1 Asia (18) C (8), 08 BC (4), 07 BC (3),

BC (2)
2 Asia (9) B (6), BC (2), 01B (2)
3 N.America/Europe (40),

S.America (8)
B (51)

4 N.America/Europe (6), S.America (5) B (5), BF (4), 03 AB (3)
5 S.America (20),

N.America/Europe (6)
BF (12), F1 (6), 12 BF (5), F2 (3),
05 DF (3)

6 S/E.Africa (23) C (22)
7 S/E.Africa (49) D (35), A1D (12)
8 S/E.Africa (61) C (57), A1C (8)
9 S/E.Africa (69),

N.America/Europe (44),
N/W.Africa (37), Asia (26)

A1 (39)

tion structure analysis, we follow standard practice and consider only the polymerase

(POL) region instead of the whole genome.

Table 3.1 shows all non-singleton clusters predicted by sscc ordered alpha-

betically by geographic region, with each row representing a separate cluster. sscc

clusters usually represent a single geographic region containing multiple strains (row

1), or a single strain that has spread to many regions (row 9). sscc also well sepa-

rates the European and American B strains from sub-Saharan African strains. These

interesting relations between geographic origin of strains and sscc clusters, obtained

from sequences alone, show that the clusters reflect underlying population structure,

and suggest that sscc can be used for an even more refined classification of HIV

strains.

3.5.2 Human population substructure

Genetic association studies are heralded as a powerful tool for discovering

the genetic basis of human disease [CEKN04]. These studies analyze the genetic

sequences of sets of healthy and diseased individuals to identify sequence variation

43

associated with one or the other. Association studies assume that all subjects are

from the same population and, when performed on populations with substructure,

may produce many spurious associations. When one subpopulation has a higher

incidence of the disease, any variation specific to that population will appear to

cause the disease. Techniques for identifying mixed substructure within a sample are

therefore an important part of genetic associations studies [PSD00].

In our setting, we have information on a set of single nucleotide polymorphisms

(SNPs), or individual nucleotides that vary across a population. An individual’s SNPs

can be represented as an l-bit string encoding the variant at each position. We apply

our method to a subset of a whole genome map of 1.5 million SNPs from 23 African

Americans, 24 Asian Americans and 24 European Americans [HSN+05]. To avoid

linkage disequilibrium from proximity in the genome we use only every thousandth

SNP, leaving a total of 1598 markers.

sscc correctly labels all individuals using 1598 SNPs. We therefore compared

sscc to structure on the harder problem of labeling individuals using only 80 of

these SNPs. Our method correctly stopped at 3 clusters for 15 of 19 disjoint subsets

of SNPs examined, achieving an average classification accuracy of 91.8% (σ = 0.085).

We then ran structure on each of these subsets with standard parameters and 3

clusters, achieved 90.1% average accuracy (σ = 0.10). This demonstrates that sscc

is competitive with current state-of-the-art methods for this problem.

3.5.3 Alu families

Nearly half our genome is the result of the activity of various classes of mobile

elements [BK04]. Alus are a family of short interspersed nucleotide elements of about

280 nucleic acids that have, in the last 55 million years, been copied about 1 000 000

times, and now make up about 10% of our genome [BD02]. While it was once believed

that a few “master Alus” gave birth to all Alu repeats, recent analyses have shown that

a much larger number of Alu elements may be active [PEP04,CHB04]. Section 4.2

further describes Alu elements, and explains the motivation for better reconstructing

their history.

Alu families are highly overlapping and therefore resistant to traditional phylo-

44

genetic methods. For example, the Alu Sx, Alu Sz, Alu Sp and Alu Ya5 subfamilies we

consider have consensus sequences differing by an average of 12.8 mutations (4.6%),

while the average member of Alu Sx differs from its consensus sequence by an average

of 34.8 mutations (12.4%, σ = 4.88).

We compare structure to sscc on a dataset from Price et al. [PEP04]

of 4000 instances of the four above-mentioned families. Both methods very nearly

recover the subfamily consensus sequences, finding ancestral sequences with Hamming

distances (2, 2, 1, 0) and (3, 1, 1, 0), respectively. This small discrepancy may represent

a real shortfall of both algorithms, but may also reflect the fact that our dataset

contains a non-representative subset of the above-mentioned families. Despite finding

nearly-identical ancestral sequences, however, structure correctly labels only 78%

of sequences to sscc’s 91%.

3.6 Conclusion

We have described a clustering objective function that combines information

maximization with constraints on cluster shape, and a top-down sequential algorithm

to optimize it. To address the problem of inferring population substructure in the

presence of significant overlapping mutation, we define a version of our model which

penalizes mutual information between sequence positions within each cluster. This

constraint corresponds to the assumption that subpopulations are generated by ran-

dom, uncorrelated mutations from an ancestral sequence. Our algorithm matches the

popular structure program in inferring human population structure from SNPs,

and significantly outperforms it on the much harder problem of clustering Alu repeat

elements.

There remain a number of avenues for further theoretical and algorithmic

development. First, one could extend sscc to the continuous case, using a parametric

model for each class distribution. Second, an iterative Blahut-Arimoto [Bla72,TPB99]

style update rule may provide better scalability. Third, it is possible to consider other

forms of inter- and intra-cluster penalties. Finally, sscc can be extended to perform

hierarchical clustering by extending C in Eq. (3.3) to range over parent populations

derived from the cluster splitting rule.

45

This chapter is based on work with Gal Chechik and Eleazar Eskin and pub-

lished in the proceedings of the NIPS workshop on new methods and problems in

computational biology, 2005.

Chapter 4

Reconstructing the phylogeny of

mobile elements

The previous chapter presented a clustering algorithm for recovering popu-

lation substructure from DNA sequences based on an extension of the Information

Bottleneck algorithm. By enforcing constraints on the multi-information among posi-

tions within clusters, the algorithm was able to recover clusters even when the cluster

centers were closer to each other than were many individuals within the same cluster.

However, the algorithm is computationally intensive. While many interesting datasets

contain hundreds of thousands or millions of sequences, the previous algorithm is not

practically applicable to more than a few thousand.

The study of mobile element evolution yields valuable insights into the mech-

anism and history of genome rearrangement, and can help answer questions about

our evolutionary history. However, because the mammalian genome contains millions

of copies of mobile elements exhibiting a complex evolutionary history, traditional

phylogenetic methods are ill-suited to reconstructing their history. New phylogenetic

reconstruction algorithms which exploit the unique properties of mobile elements and

handle large numbers of repeats are therefore necessary to better understand both

mobile elements’ evolution and our own.

In this chapter, we describe a randomized sequence clustering algorithm with

a similar objective function, effectively minimizing cluster entropy and mutual infor-

mation within clusters. We show that it scales to handle millions of sequences, and

46

47

Colloquium

Retroelements and the human genome:
New perspectives on an old relation
Norbert Bannert* and Reinhard Kurth

Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany

Retroelements constitute a large portion of our genomes. One class
of these elements, the human endogenous retroviruses (HERVs), is
comprised of remnants of ancient exogenous retroviruses that
have gained access to the germ line. After integration, most
proviruses have been the subject of numerous amplifications and
have suffered extensive deletions and mutations. Nevertheless,
HERV-derived transcripts and proteins have been detected in
healthy and diseased human tissues, and HERV-K, the youngest,
most conserved family, is able to form virus-like particles. Although
it is generally accepted that the integration of retroelements can
cause significant harm by disrupting or disregulating essential
genes, the role of HERV expression in the etiology of malignancies
and autoimmune and neurologic diseases remains controversial. In
recent years, striking evidence has accumulated indicating that
some proviral sequences and HERV proteins might even serve the
needs of the host and are therefore under positive selection. The
remarkable progress in the analysis of host genomes has brought
to light the significant impact of HERVs and other retroelements on
genetic variation, genome evolution, and gene regulation.

A lmost half of the mammalian genome is derived from
ancient transposable elements. The two general types,

(DNA)-transposons and retroelements, often regarded as ‘‘self-
ish DNA parasites or junk DNA,’’ encompass !2.8% and 42.2%
of the human genome, respectively (1, 2). This striking finding is
one of the many insights from recent large-scale sequencing
projects that have provided the most valuable information in this
field since the initial discovery of mobile elements in 1956 by
Barbara McClintock (3, 4). Whereas DNA-transposons amplify
without an RNA intermediate, retroelements rely on an RNA
transcript that is retrotranscribed by a reverse transcriptase
before integration in the genome. Here, we briefly review the
characteristics of retroelements, their present classification, and
the available evidence for their biological significance and
function in normal and pathological processes. The focus is on
human endogenous retroviruses (HERVs), the remnants of
ancient germ-cell infections. Although most of the HERV
proviruses have undergone extensive deletions and mutations,
some have retained ORFs coding for functional proteins. A few
families, including the HERV-K (HML-2) group, have been
shown to form viral particles (5, 6), and an apparently intact
provirus has recently been discovered in a small fraction of the
human population, indicating a very recent acquisition (5–7).

Classification of Retroelements
Retroelements constitute 90% of the !3 million transposable
elements present in the human genome (1). They are split into
two large groups, the non-LTR and LTR elements (Fig. 1). Two
of the non-LTR members are present in extremely high copy
numbers in the mammalian germ line: the short interspersed
elements (SINE) with the prominent Alu and MIR repeats and
the long-terminal interspersed elements (LINE) containing the
autonomous L1 and L2 sequences (8). SINEs have no protein
coding capacity and depend on LINE elements for their ampli-

fication. The LTR class elements make up 8% of human
chromosomes and include retrotransposons, endogenous retro-
viruses (ERVs), and repeat elements with HERV origin, such as
SINE-R (Fig. 2). The SINE-R retroposon family contains a
partial sequence of a LTR of HERV-K. The env gene of ERVs
confers the potential to spread between cells and individuals.
Solitary LTRs of ERVs and retrotransposons, generated by
LTR-based homologous recombination processes, are usually
one or two orders of magnitude more abundant than preserved
or partially complete proviruses (9). In total, "200 families of
LTR-containing retroelements are defined in Repbase (10)
although, according to Medstrand and coworkers (8), six super-
families can be defined (Table 1). Whereas class I and II ERVs
presumably entered the germ line of primitive primates as
infectious retroviruses and subsequently have been subject to
multiple amplification and transposition bursts at several time
points during primate evolution, the other superfamilies most
likely represent ancient retrotransposons that amplified at sev-
eral stages in earlier mammalian evolution. Most of the retro-
elements appear to be deeply fixed in the primate genomes and
virus free alleles are not known. The rate of new human germ
line insertions is presently at an extremely low level compared to
earlier periods of evolutionary history or to the rate in some
other mammals. At this time, only a small fraction of the

This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, ‘‘Therapeutic Vaccines: Realities of Today and Hopes for Tomorrow,’’ held April
1–3, 2004, at the National Academy of Sciences in Washington, DC.

Abbreviations: ERV, endogenous retrovirus; HERV, human ERV; SINE, short interspersed
element; LINE, long-terminal interspersed element; HTDV, human tetratocarcinoma-
derived virus.

*To whom correspondence should be addressed. E-mail: bannertn@rki.de.

© 2004 by The National Academy of Sciences of the USA

Fig. 1. Classification of transposable elements. The percentage of each
element in the genome and the estimated number of the elements of the main
groups are indicated.

14572–14579 ! PNAS ! October 5, 2004 ! vol. 101 ! suppl. 2 www.pnas.org"cgi"doi"10.1073"pnas.0404838101

Figure 4.1: Classes of mobile elements, and the percentages of the human genome
they comprise (from [BK04]).

apply it to reconstruct the phylogenies of DNA mobile elements. Our results suggest

that the history of mobile elements is significantly more complex than we currently

understand, and that detailed understanding of mobile element history can enhance

our understanding of species history.

4.1 Motivation

Nearly half our genome is the result of the activity of mobile elements, short

sequences originating as exogenous viruses which copy and reinsert themselves into

our genetic code (see Figure 4.1).1 Of these mobile (or repeat) elements, a fifth are

evolutionarily modern, found only in primates, and a few are still actively replicating

today. Analysis of these mobile elements can help answer organism-level questions

1A fascinating recent paper by Malone and Hannon [MH09] shows that a simple immune system
based on small RNA fragments (piRNA) has evolved to control mobile element propagation. Roughly
speaking, the piRNA elements act as fingerprints for mobile elements. Piwi proteins bind to piRNA
in certain genomic regions, which direct them to silence the mobile elements’ expression. New piRNA
are acquired when a mobile element inserts itself into a piRNA region.

48

of primate phylogeny and human population structure [WRO+03]. Furthermore, a

detailed picture of mobile element evolutionary history is crucial to understanding

their role in gene expression regulation [CBC+98], tissue-specificity [KJR04], genome

rearrangement, protein evolution, and some genetic diseases [BD02,HB05]. Funda-

mental problems therefore include estimating the number, size, and age of mobile

element families, the relations between them, and their distribution over species.

Reconstructing a mobile element phylogeny is difficult for at least three rea-

sons: First, a single major repeat family can contain over 1 million elements, pre-

senting a computational challenge for traditional phylogeny methods. Second, the

families exhibit complex evolutionary history, with a large number of related and

highly similar subfamilies. Third, because many of the mobile elements are ancient

and are located in non-coding regions, they are highly degenerate due to mutation; it

is not uncommon for a mobile element to have mutated in over 20% of its positions

since insertion. Furthermore, truncation and partial insertion leave only fragments of

most instances of the longer families. Although tools such as RepeatMasker [SHG06]

exist to identify repeat elements in the genome, few computational tools exist to

identify repeat element subfamilies and construct their phylogeny.

In this chapter, we describe a method for recovering the most likely phylogeny

of observed repeats. Traditional phylogenetic methods are not appropriate for at least

three reasons: First, since most are quadratic or worse in the number of sequences,

they do not scale to the million or more repeat sequences we wish to analyze. Second,

unlike in the case of species phylogeny, only a few repeat elements in the genome

actively replicate, while the vast majority merely persist with gradual mutation. For

this reason, repeat phylogenies are characterized by a few nodes in the tree each having

a very large number of offspring and most nodes having none. Finally, since repeat

subfamilies are highly overlapping in sequence space, the results of distance-based

methods are uninformative (see Section 3.1).

Our method divides mobile elements into subfamilies via a novel clustering

algorithm, Randomized Test and Split (rats). The algorithm uses a statistical test of

subfamily validity to recursively partition the set of elements, while ensuring that the

final clustering is statistically well-motivated. A traditional approach to the subfamily

identification problem would formulate a generative model for the data and apply the

49

Expectation Maximization (EM) algorithm. However, due to the tremendous number

of mobile elements and the fact that the subfamilies are closely related to each other,

this is impractical due to slow convergence and numerous poor local optima. Using

simulated data, we demonstrate that rats approximately recovers the EM partition

in a fraction of the time.

Our method is based on the following three-phase algorithm from Price et

al. [PEP04]:

1. Repeatedly compute the correlation between amino acids at every pair of po-

sitions in each subfamily and split it into two new subfamilies if any pair of

positions fails a statistical test for independence.

2. When no such family exists, further split these initial subfamilies based on

single-position deviations from a molecular clock estimated from the initial sub-

families.

3. Construct a minimum spanning tree over subfamilies’ consensus sequences.

We extend and improve upon this approach in four ways. First, we test a random sub-

set of pairs of positions for correlation rather than testing all of them (Section 4.3.2).

This reduces the time and space complexity from quadratic to linear in repeat se-

quence length, allowing us to analyze significantly larger data sets and longer ele-

ments. Second, we incorporate more partial sequence fragments. Together, these ad-

vances allow us to extend our analysis to longer families of repeats such as L1. Third,

we apply a stronger statistical test between pairs to recover more subfamilies (many

of Price’s novel subfamilies were found not by correlation tests, but by single-position

splits). Finally, we relate our statistical test to the (approximate) optimization of an

underlying generative model, formalizing the assumed repeat generation process.

We apply rats to all mobile elements found in the encode project data-

base [TTB+03], and to repeats from the full genomes of human and chimpanzee,

finding 32 new L1, 111 new SINE, and over 1000 new Alu subfamilies. We analyze

the phylogeny of the SINE subfamilies, demonstrating its agreement with species

phylogeny and with currently known repeat subfamilies.

50

4.2 Alu elements

The spread of repeat elements and their evolutionary and developmental roles

have long aroused scientific interest, starting with McClintock’s work on coloring dif-

ferences in maize in the 1950s [OK05]. Much recent work has focused on the role and

dynamics of the Alu repeat in humans and other primates. Eichler et al. [BLE03]

investigate Alu’s potential role in producing the relatively abundant segmental du-

plications seen in the human genome. Zhou and Mishra [ZM05] propose that LINE-1

elements mediate some rearrangement in the rat genome, as Alus do in primates.

Han et al. [HXW+05] show that LINE elements may also play a role in genomic dele-

tions in chimpanzee and human. Hedges and Batzer [HB05] review the putative role

of several types of mobile element in genome growth, protein evolution, and human

disease. Jurka [Jur04] reviews the dynamics of Alu insertion and deletion, and dis-

cusses L1-mediated retrotransposition as a mechanism for their duplication. Bourque

et al. [BLV+08] show that mobile elements act as “control elements” by embedding

transcription factor binding sites, which are then spread throughout the genome.

Recent work has focused not just on the role of mobile elements in genomic

evolution, but on the phylogeny of the elements themselves. Cordaux et al. [CHB04]

reconstruct a phylogenetic network over the Alu Y subfamily, showing that human

Alu elements came from multiple active sources. Price et al. [PEP04] reconstruct

a phylogeny of all human Alu elements using a novel clustering method based on

tests for correlated mutation. Salem et al. [SRX+03] use Alu Ye elements to provide

evidence about species relations among human, chimpanzee, and gorilla. Their repeat

phylogeny, reconstructed by traditional methods [Fel04], gives evidence that hominids

are monophyletic and more closely related to chimpanzee than to gorilla. Hedges and

Batzer [HB05] argue that organism-level phylogenies should be used to provide further

insight into mobile element population dynamics.

4.3 Methods

Our goal is to recover the most likely phylogeny of the observed instances.

Rather than directly computing a phylogeny over all individuals, we approach the

51

problem in two independent steps, first identifying the most likely subfamilies and

their (implicit) source elements, then constructing the best phylogeny of these in-

ferred source elements. The phylogeny of individual elements is then specified by this

subfamily phylogeny and the individuals’ subfamily memberships, with all individu-

als in a subfamily being offspring of the subfamily source element. We present our

generative model of mobile element replication in Section 4.3.1. We then discuss the

subfamily identification problem and an efficient algorithm to solve it in Section 4.3.2,

and finally discuss the simpler problem of subsequently constructing the phylogeny

Section 4.3.3.

4.3.1 Subfamily generation model

In our model, mobile elements replicate by asexual reproduction and we assume

a neutral mutation rate. Each individual sequence z generates a copy of itself at

time t with probability pc(z, t), and each site mutates with some probability pm(z, t).

However very few individuals create copies, and these copies are all created over a

relatively short period of time. In other words, pc(z, t) = 0 almost everywhere, and

pc(z, t) - pm(z, t) where it is not. We can therefore make two simplifications: First,

since almost no mutation occurs between copies of a single active element, we assume

that all copies are initially identical. Second, since extant (inactive) individuals are

simply the result of neutral mutation from these identical copies, we assume that a

subfamily’s elements are uniformly distributed (in sequence space) around its source

element.

These considerations lead to the following view of mobile element generation:

Each subfamily consists of a large number of inactive copies of a single active source el-

ement. (Source elements which themselves mutate are considered new distinct source

elements if they are still active.) Each copy or instance undergoes independent point

mutation over time, diverging from the sequence of the original source element. Each

instance can, with some small probability, itself become a source element and gen-

erate its own distinct subfamily. Viewed as clusters of points in sequence space, the

subfamilies form a highly-overlapping set of spheres whose radii reflect their ages.

More precisely, let Σ = {a1, . . . , am} be an m-letter alphabet, and let X =

52

(X1, . . . , Xl) be a vector random variable over Σl. Let C be a scalar random variable

over cluster source element indices {1, . . . , k}, with µ(C) ∈ Σl being source element

C’s sequence. The k source elements are used to generate n sequences Z = {z}
under the following model: First select a cluster c ∈ C with probability p(C = c)

and make sequence z a copy of µ(c). Then independently mutate each letter zi to

some symbol s '= µi(c) with a small cluster- and position-dependent probability ris(c).

Equivalently, let p(Xi|C =c) define the conditional probability distribution of position

i of a sequence in c, and let µi(c) be its consensus value, µi(c) = argmaxx p(Xi =x|C =

c). Then p(Xi =s|C =c) = ris(c) for s '= µi(c) and p(Xi =µi(c)|C =c) = 1−
∑

s ris(c).

The distribution over sequences X can then be modeled as a mixture of per-cluster

distributions:

p(X) =
∑

c∈C

p(C = c)
l∏

i=1

p(Xi|C = c)

4.3.2 Subfamily identification

Given an n-element sample Z from p(X), our goal is to recover the number

of clusters k and, given k, to find the assignment p(C|Z) of individuals to clusters

maximizing the likelihood of the sample. The model’s free parameters, representing

the cluster probabilities p(C) and discrete distributions of symbols occurring at each

sequence position in each cluster p(X|C), assume their maximum likelihood values.

This is an instance of hard clustering, a well-studied problem for which EM

with soft assignment has been shown to perform well in many cases [MH98]. However,

EM is not applicable to our problem for two reasons. First, our dataset is enormous:

there are over one million elements in just the single largest repeat family in the human

genome (Alu), representing a thousand or more distinct clusters. EM clustering,

which requires O (kl(m + n)) operations per iteration (or ≈ 1011 for k = 103, n = 106,

and l = 102), is computationally impractical at this scale. Second, since the objective

function has many poor local optima, EM often requires many random restarts to

find a good solution (see Section 4.4.1), further increasing runtime.

53

Limiting model complexity

Since data likelihood will always increase as the number of clusters increases,

we need to penalize or limit model complexity. One common solution to this well-

known problem is to add a model complexity penalty to the objective function, with

the Bayesian Information Criterion (BIC) being a popular choice [CH97]. The BIC

for M model parameters and N data elements is M
2 log N .

However, we find on simulated data that the BIC penalty dominates our model

score long before we have recovered the correct number of clusters (Section 4.4.1). For

example, even on the small simulated dataset in Figure 4.8 with k = 11, the penalty is

approximately 3×104, or almost ten times the improvement in log-likelihood over the

random model. This happens because the BIC for our model, k
2 (1 + l(m− 1)) log n,

depends linearly on the number of free parameters, and hence in our case on the

sequence length. However, the number of parameters in our model is artificially high

because we learn a set of independent clusters for data we assume are generated by

a hierarchical model in which the clusters are highly dependent.

Our assumptions from Section 4.3.1 suggest an alternative approach. Since

we assume that mutations are independent within a subfamily, if the distribution

of mutations at a pair of positions within a single cluster fails a statistical test for

independence, we have evidence of further substructure. When no such pair exists,

we have evidence of a candidate solution. Therefore instead of directly maximizing

the likelihood as we would with EM, we instead search for a solution that satisfies

this statistical test.

Specifically, we consider the estimated mutual information between pairs of

positions [CT91]:

I(Xi; Xj|c) =
∑

si,sj∈Σ

p(si, sj|c) log
p(si, sj|c)

p(si|c)p(sj|c)

Goebel et al. [GDHM05] show that the mutual information between two uncorrelated

discrete random variables X1 and X2 can be approximated by a gamma distribution

Γ

(
1

2
(|X1|−1)(|X2|−1),

1

N log 2

)

where N is the sample size and |Xi| is the number of possible values of Xi. From

54

this approximation we can derive a p-value for independence between two positions

1 ≤ i < j ≤ l and a corresponding threshold α for I(Xi; Xj|c).
Rather than testing all O(l2) pairs of positions, we randomly sample enough

pairs to detect correlation with high confidence. Assume that a single supposed

cluster contains members of two true clusters differing in λ of l positions drawn from

a binary alphabet, and that we want to test at least one pair of these λ positions

with probability 1−p. Then the probability of choosing a pair of correlated positions

in a single draw is λ(λ−1)
l(l−1) and probability of not detecting correlation after t trials is

p =
(
1− λ(λ−1)

l(l−1)

)t

Therefore choosing t to achieve our desired p yields

t =
log p

log
(
1− λ(λ−1)

l(l−1)

)

For example, to detect a difference in 4 out of 300 positions with p = 0.99, similar

to the Alu problem, we must sample 343 pairs. Mutation will increase the number

of tests required by causing some of the λ(λ − 1) pairs of correlated positions to no

longer be significantly correlated.

Fast randomized clustering

Conveniently, this same random pair sampling suggests an efficient top-down

clustering algorithm. When positions i and j are correlated in cluster c, splitting

c into two clusters c1 and c2 such that c1 contains all individuals z with (zi, zj) =

argmax p(Xi = zi, Xj = zj|c), and c2 the rest, will tend to improve p(Z|C). When no

such position exists, further cluster splits cannot significantly decrease the entropy of

a cluster at multiple sequence positions at once, so we are near a local maximum of

the likelihood function.

While these tests ensure that each pair of split clusters is statistically justified,

multiple splits and poor initial splits may create clusters which could be merged

without creating correlated pairs. Such problematic pairs can be found by trying to

merge sets of clusters and repeating the above correlation sampling. Because testing

all subsets of clusters is computationally impractical, we instead test only pairs of

clusters with similar consensus sequences.

55

function rats (Z, n)

C0 ← {Z}
for i = 1 to n− 1

Ci+1 ← join
(⋃

C∈Ci
split(C)

)

end for

return Cn

end function rats

function split(C)

repeat t times

(i, j)← random([1, l])

if I(Xi;Xj |C = c) ≥ α

(si, sj)← argmax p(si, sj |c)
C ′ ← {z|zi = si, zj = sj , z ∈ C}
return split(C ′) ∪ split(C − C ′)

end if

end repeat

return {C}
end function split

function join(C)

C′ ← {}
while |C| > 1

(C1, C2)← argmin dH (µ(C1), µ(C2))

C ← C − {C1, C2}
if split(C1 ∪ C2) = {C1 ∪ C2}

C′ ← C′ ∪ {C1 ∪ C2}
else

C′ ← C′ ∪ {C1, C2}
end if

end while

return C′ ∪ C
end function join

Figure 4.2: The rats algorithm. The optional greedy updates are performed between
split and join, and again after the final iteration.

Recursively applying this cluster splitting criterion yields the iterative algo-

rithm in Figure 4.2. Starting with a single cluster, we iteratively apply the following

two steps: First, recursively test and split the current set of clusters until no cluster

fails the correlation test. Second, merge neighboring pairs of clusters when doing so

does not create detectable correlation. However, the split heuristic will poorly assign

some elements, and splitting can only make large-scale changes to the current cluster-

ing. We therefore apply an additional fine-grained greedy improvement between the

splitting and joining steps, assigning each individual z to the cluster with the closest

consensus sequence µ(c), i.e. c = argminc dH(z, µ(c)) where dH is the Hamming

distance.

56

4.3.3 Subfamily phylogeny

Given a set of subfamilies, we next reconstruct the most likely phylogeny. In

the standard formulation, one assumes that the observed sequences are the tree’s

leaves, then infers a maximum likelihood binary tree over them according to some

mutation model (see e.g. [FNPP01]). Our problem is different in three ways: First,

our subfamilies represent not just the leaves of the tree, but also its internal nodes, ob-

viating the usual optimization over unobserved ancestral nodes. Second, the inferred

p(X|C) defines the mutation model for each cluster. Third, the average divergence

within a cluster defines its age, allowing us to constrain our tree so that a node must

be younger than its parent.

We assume that the consensus sequence of each subfamily is generated from

its parent family, and is therefore drawn from the parent family’s distribution, though

it does not have to be one of the actual observed members of either. For each cluster

c ∈ C, we choose as its parent the most probable ancestor for its consensus sequence

µ(c),

argmax
{c′|age(c′)>age(c)}

p(c′)p(µ(c)|c′)

where age(c) is the estimated age of cluster c.2 By assuming that mutation rate is

constant over the genome at each point in time, we can approximate a subfamily’s age

by its average mutation rate or (equivalently) its entropy. Although this assumption

is clearly not valid for estimating a subfamily’s absolute age, our algorithm depends

only on the ordering of the age estimates across different subfamilies. Since a genome

containing elements of one subfamily will contain elements of all of its ancestors, it is

highly unlikely that molecular clock variation will cause a repeat subfamily to appear

younger than its ancestors.

2In principle, phylogeny construction should account for uncertainty in age(c), p(c), and
p(µ(c)|c′). This is becomes more important as the number of subfamilies increases, since many
will be close in sequence space and/or age. In practice, large trees were not useful for further anal-
ysis, so we used the basic approach described here, which seemed sufficient for modest numbers of
subfamilies. However, a discussion of alternative tree construction approaches, see Section 4.6.1.

57

Figure 4.3: Population structures for simulated recombinant data.

4.3.4 Extension for recombination

We can extend the above approach to recombinant phylogenies in an analogous

way. We want to find a recombinant phylogeny with relatively few recombination

events. Rather than defining a prior over recombination rates or a trade-off between

the number of recombinations and log-probability, we can select only statistically

significant recombinations. In other words, we choose a model with recombination

between parents c1 and c2 at position r only if

max
c1,c2,r

P

(
log

(
P (µ[1,r](c)|c1)P (µ[r+1,l](c)|c2)

P (µ(c)|c′)

)
> k

)
< α (4.1)

for some significance level α, where µ[a,b](c) is the subsequence of cluster c’s con-

sensus sequence between positions a and b, and c′ is its current, non-recombinant

parent. A similar equation can be derived for two-point recombination. After finding

a non-recombinant phylogeny as described in Section 4.3.3, we can assign recombinant

parents to clusters satisfying Eq. (4.1).

We validate this algorithm on simulated data with the population substruc-

tures shown in Figure 4.3. The populations are designed to test the algorithm’s

58

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.02 0.025 0.03 0.035 0.04 0.045 0.05

C
or

re
ct

 r
at

e

Mutation rate

pop 1
tree 1
pop 2
tree 2
pop 3
tree 3

Figure 4.4: Subpopulation and phylogeny reconstruction accuracy vs. per-generation
mutation rate.

sensitivity in detecting: (1) multiple recombinations from the same parents; (2) re-

combinant versus non-recombinant child populations; (3) two-point crossover events;

and (4) distinct non-recombinant children of the same parent.

We explore performance over a range of average per-generation mutation rates,

sequence lengths, and mutation counts of the subpopulation consensus sequences. We

assume a constant subpopulation size of 20 binary sequences of length 50. Figure 4.4

shows the rate of inferring the correct number of subpopulations and correct phy-

logeny versus the per-generation mutation rate for each simulated population struc-

ture. As expected, accuracy decreases more quickly for recombinant than for non-

recombinant populations, with similar performance for one- and two-point crossover.

While it is not reflected in the figures, many of the incorrect substructures and phy-

logenies are correct for the first two generations, only failing to correctly identify or

parent the third-generation populations.

Figure 4.5 shows the same information as Figure 4.4, but instead varies the

distance between cluster consensus sequences. As expected, accuracy falls off dra-

59

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
or

re
ct

 r
at

e

Separation / mutation rate

pop 1
tree 1
pop 2
tree 2
pop 3
tree 3

Figure 4.5: Subpopulation and phylogeny reconstruction accuracy vs. consensus
sequence divergence relative to per-generation mutation rate.

matically as the rate of random mutation within a cluster exceeds its divergence from

its parent. Note, however, that all populations are highly overlapping: in all cases

the mean sequence divergence in the parent population is at least as great as that

between parent and child consensus sequences.

4.4 Results

We first demonstrate that our method performs well relative to EM on sim-

ulated data similar to actual repeat elements. We then apply our method to repeat

elements collected from over sixty organisms, finding subfamilies and phylogenies of

the Alu, SINE (an evolutionary superset of Alu), and L1 families. We discuss a phy-

logeny of SINE elements across all encode project species. Our repeat phylogeny’s

close agreement with known repeat family and species phylogenies validates our ap-

proach.

60

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

Co
un

t

|C|

k=5
k=7

k=11

Figure 4.6: Frequency of number of subfamilies found for different true numbers of
subfamilies.

4.4.1 Simulated data

A repeat phylogeny algorithm should obey two correctness properties: First,

it should be approximately optimal: for any cardinality, the likelihood of the data

given the model it finds is close to the optimum likelihood. Second, it should be

conservative: the probability of the algorithm finding more than the true number

of subfamilies should be acceptably small. Here we show that rats exhibits these

properties on simulated data similar to actual repeat subfamilies.

Each dataset consists of sequences in {0, 1}300 drawn from one of k subfamilies

separated by d mutations with a uniform per-position mutation rate u. For each

(d, k, u), we generate 5 sets of repeats with these parameters, then run rats 20

times. We approximate the optimal likelihood for each number of subfamilies found

by taking the best of 10 EM solutions.

Figure 4.6 shows the distribution of the number of subfamilies found for d = 6

and u = 0.1 while varying k. As desired, rats is conservative, finding more than the

true number of subfamilies 1–12% of the time. Figure 4.8 compares the likelihood of

61

Figure 4.7: Running time of the EM algorithm and rats for different numbers of
subfamilies k and different numbers of instances per subfamily n/k.

 1000

 2000

 3000

 4000

 5000

 6000

 2 4 6 8 10 12

lo
gp

(X
) -

 lo
gp

(ra
nd

om
)

true |C|

k=5
k=7

k=11

Figure 4.8: Log-probability versus random clustering for rats (lines with marks) and
EM (lines without).

62

the best solutions found by rats and EM (with 10 restarts) to the average likelihood

of a random clustering. (The random model likelihood is used instead of the gener-

ating model likelihood because, particularly for larger numbers of subfamilies with

fewer members, the generating model can yield significantly lower likelihood than a

learned model.) As expected, rats consistently performs slightly worse than EM,

with both approaching the random score as the number of subfamilies diverges from

the true number.

Figure 4.7 shows the time for a single run of each algorithm as a function of the

subfamily arity k and subfamily size n/k. Since the two algorithms are implemented

in different languages, we cannot directly compare runtimes. However, EM’s runtime

grows at a faster rate, largely because the number of iterations to convergence grows

with k. A least-squares fit of AkB to both curves shows EM is at least quadratic in

k (B = 2.7, 2.4), where rats is nearly linear (B = 1.2, 1.1).

To show that clusterings are consistent between runs, we ran rats 10 times

on the encode data, using the pairwise adjusted Rand index to measure consistency

between runs [HA85]. The number of subfamilies ranged from 274 to 300 with a

mean of 286, and the Rand index ranged from 0.154 to 0.193 with a mean of 0.173,

corresponding to a permutation-based p-value less than 10−8.

4.4.2 Data preparation

We obtained “full” genome sequences for P. troglodytes and H. sapiens from

the most recent sequence builds available at UCSC as of March 1, 2006. We also

downloaded accession numbers for orthologous regions of 64 vertebrate species from

the NIH Intramural Sequencing Center (NISC) Comparative Sequencing Program

(encode) [TTB+03], obtaining the corresponding sequence data from GenBank. Se-

quences were joined together according to the position information specified within

the GenBank files.

A data set of repeat elements was created for the complete set of sequences

via RepeatMasker version 3.1.3 [SHG06] using a library of repeat elements from Rep-

Base [Jur00], using the lowest sensitivity for the “full” genomes and standard sensi-

tivity for the encode regions. We generated multiple alignments for single repeat

63

Table 4.1: Numbers of repeats in various families found in RepBase and by our
method. Alu and L1 repeats are from the full Human and Chimpanzee genomes,
while SINE repeats are from the encode database of orthologous regions.

Family RepBase rats Elements Source
Alu 35 1519 2 309 150 primate
L1 102 134 24 249 primate
SINE 197 308 381 248 encode

classes (e.g. Alu, L1) from pairwise alignments of each repeat instance to a single

RepBase consensus sequence (e.g Alu Sx, HAL1#LINE/L1) as follows: Consensus se-

quences for repeat classes were created by Clustal W [THG94] multiple alignment of

all constituent RepBase consensus sequences. Eleven SINE consensus sequences that

aligned poorly to the others were excluded. Positions corresponding to gaps in the

pairwise instance alignments were removed, and the aligned instances were threaded

into the repeat class multiple alignment to yield a multiple alignment of instances.

Interior gaps were treated as a separate symbol, leading and trailing gaps as missing

data.

4.4.3 Novel repeat subfamilies

Table 4.1 compares the number of subfamilies we find to the number identified

in RepBase. To ensure the correlation test’s validity, rats was constrained to test

only subfamilies of more than 200 elements for L1, and more than 1000 for Alu and

SINE. All runs used a p-value of 10−3 with a Bonferroni correction for testing multiple

positions. The relatively small number of L1 subfamilies discovered may be due to the

small number of available elements, and further L1 subfamilies may exist that cannot

be statistically validated. The results, especially those for Alu, suggest that repeat

phylogeny may exhibit much more fine-grained structure than is currently known.

Figure 4.9 shows the Alu phylogenies for subfamilies identified by RepBase

and by Price et al . Our phylogeny has a similar shape, including the new branch

reported by Price (label 7). However, a phylogeny with over one thousand is difficult

to interpret and not especially useful. Instead, we first look in detail at members of

young Alu families in Section 4.4.5. Then in Section 4.4.6, we look at the overall

distribution of family ages.

64

thousands) of Alu source elements represent a tiny fraction of the
more than 1 million Alu elements. It remains clear that the ma-
jority of Alu elements are not retrotransposition competent; a
common explanation for this is that appropriate upstream se-
quence is required for efficient Alu transcription (Ullu and
Weiner 1985). The abundance of short branches in the Alu evo-
lutionary tree suggests that many source elements are retrotrans-
position competent for only a short time, perhaps because mu-
tations to the CpG dinucleotides of an Alu source element, or to
its poly-A tail, may eliminate their retrotransposition capability
(Batzer and Deininger 2002).

Our algorithm has several known limitations. For technical
reasons, we exclude insertion/deletion mutations, frequent CpG
mutations, and mutations to nucleotide values already present in
other subfamilies as a means of identifying new subfamilies (see
Methods), making subfamilies characterized by these mutations
difficult to identify. In addition, the partition of the set of Alu
elements into statistically distinguishable subfamilies need not
be unique, and there may exist subfamilies whose elements are
distributed across more than one member of our partition, mak-
ing them difficult to identify. There is no immediate fix to these
limitations in our algorithm; they are important directions of our
ongoing research. Because of these limitations, our algorithm
identifies only 19 of the 31 subfamilies currently reported in
Repbase Update. Combining the 213 Alu subfamilies identified
by our algorithm with the 12 Alu subfamilies in Repbase Update
not identified by our algorithm (which each belong to minor
branches of the AluY subfamily), there are a total of 225 previ-
ously and presently identified Alu subfamilies. A complete list of
these subfamilies is given in the Supplemental materials.

An improved characterization of Alu subfamilies and their
evolutionary history will benefit numerous applications, such as
analysis of segmental duplications induced by Alu recombination
(Bailey et al. 2003), and phylogenetic inference using Alus. Re-
cently, a phylogenetic analysis of Alu elements in the Ye5 sub-
family has provided the strongest evidence yet that the chimp is
humans’ closest living relative (Salem et al. 2003). We hope that
the novel Alu subfamilies we have identified may lead to phylo-
genetic inferences involving other primate species. Furthermore,
our methods can be used to identify subfamilies of other repeat
families in non-primate species, an open problem. SINE elements

have already been used to make phylogenetic deductions about
cetartiodactyls (Nikaido et al. 1999) and cichlid fish (Takahashi et
al. 2001), and an improved characterization of repeat subfamilies
may aid such efforts in the future.

Methods

We generated a data set of Alu elements via a BLAST search (Ta-
tusova and Madden 1999) of Build 34 of the human genome
(International Human Genome Consortium 2001) against the
AluSx consensus sequence reported in Repbase Update (Jurka
1998, 2000); equivalently, this data set can be generated using
RepeatMasker (A.F.A. Smit and P. Green, http://repeatmasker.
org). We multiply aligned the Alu elements in our data set by
tabulating the nucleotide value of each Alu element at each po-
sition of the AluSx consensus sequence, with insertions recorded
separately. Because our method assumes that the nucleotide
value of each Alu element at each position is known, we excluded
Alu elements whose alignment to AluSx is missing more than 5
bases at the beginning or end. After imposing this restriction,
there were roughly 480,000 full-length Alu elements in our data
set.

We split subfamilies containing overrepresented pairs of
non-consensus nucleotide values as follows. Let µ1 and µ2 be two
mutations from the consensus sequence. Let N be the number of
repeat elements in the subfamily, Ni be the number of repeat
elements with mutation i (for i = 1,2), and N12 be the number of
repeat elements with both mutations. If the two mutations are
unlinked, we expect

N12 ≈
N1N2

N
.

If

N12 >
N1N2

N

Table 2. Sizes and P-values of selected subfamilies

Subfamily Size P-value

AluJo 7,266 8e!1841

AluSx 39,724 6e!4770

AluSq 4,035 2e!62

AluSp 28,063 7e!4520

AluY 27,023 2e!6924

AluYa5 3,257 4e!2813

AluSx_3 3,292 8e!1841

AluSx_5 401 3e!150

AluSq_3 1,956 2e!779

AluSg_4 1,904 1e!679

AluSc_8 9,588 1e!5959

AluY_8 107 1e!48

We list the size and P-value for each of the 12 subfamilies whose aligned
consensus sequences are listed in Figure 2. Some Repbase Update sub-
families, particularly the AluSq subfamily, contain fewer elements in our
allocation of Alu elements to subfamilies than in the allocation of Alu
elements to Repbase Update subfamilies only, because many elements
have been reallocated to neighboring subfamilies not in Repbase Update.

Figure 3. Evolutionary tree of the 31 subfamilies currently reported in
Repbase Update. (Large nodes) Subfamilies with more than 10,000 ele-
ments; (medium nodes) 1000 to 10,000 elements; (small nodes) less
than 1000 elements. Each of the 6 Repbase Update subfamilies listed in
Figure 2 is labeled. The AluJ, AluS, and AluY classes of subfamilies are
contained in boxes.

The complex evolutionary history of Alu repeats

Genome Research 2249
www.genome.org

then the ratio of the actual versus expected frequency of both
mutations, which equals

N12N
N1N2

,

quantifies the extent of the linkage (as in Table 1C). We com-
puted a P-value for the linkage using a nonparametric P-value
computation, which makes no assumptions about the underly-
ing probability distributions: the probability of at least N12 repeat
elements with both mutations occurring by chance is

!
N̂=N12

min"N1,N2# ! N
N̂ N1 − N̂ N2 − N̂ N − N1 − N2 + N̂"

! N
N1

" ! ! N
N2

" ,

where the denominator represents the total number of ways to
allocate the two mutations to the sequences, and the multino-
mial coefficient in the numerator represents the number of allo-
cations with exactly N̂ sequences containing both mutations. The
above expression, which we denote "µ1,µ2

, is a P-value for

the observed linkage of µ1 and µ2 under
the null hypothesis of uniformity. Thus,
" = minµ1,µ2

"µ1,µ2
gives an overall P-value for

the uniformity of the subfamily. If " is be-
low a threshold, which we set at 0.001, the
subfamily fails the uniformity test and we
split it accordingly. We ensure that the as-
signment of all Alu repeat elements to one
of the resulting subfamilies is consistent,
that is, that the consensus sequence defin-
ing each subfamily matches the consensus
sequence of its members: At each step of the
algorithm, we iteratively reassign all Alu re-
peat elements to subfamilies and recompute
the consensus of each subfamily, until this
process converges.

To insure the validity of our P-value
computation, we addressed several impor-
tant details. First, for a given subfamily, we
computed "µ1,µ2

for many different pairs of
mutations (µ1,µ2). To compensate for the
possibility of obtaining a low value of "µ1,µ2

by chance, we applied a Bonferroni correc-
tion, multiplying each "µ1,µ2

by the number
of pairs (µ1,µ2) tested. To verify that this
Bonferroni correction was sufficient, we
simulated a uniform data set from the prob-
ability profile of all Alu repeat elements and
observed that P-values computed from this
data set were all greater than 1, after the
Bonferroni correction. Second, in our appli-
cation to Alu repeat subfamilies, a single
source element might produce copies over a
long span of time, thus producing older
copies with many mutations from the con-
sensus and newer copies with fewer muta-
tions from the consensus. This would bias
any two mutations µ1 and µ2 into being
linked, because Alu copies with mutation µ1

would be likely to be older and thus have
mutation µ2 also. Routine calculations
showed that this effect could bias the num-

ber of repeat elements with both µ1 and µ2 upwards by a factor of
up to 4/3. We modified the computation of "µ1,µ2

to account for
this bias. Third, because insertion/deletion mutations violate our
assumption that distinct positions mutate independently and
cause further technical problems, we excluded the case of two
indel mutations in our P-value computation and imposed a mini-
mum distance of 10 nucleotides between any two mutations µ1

and µ2. Fourth, the Alu consensus sequence contains many CpG
dinucleotides, which are highly prone to methylation and sub-
sequent mutation to TpG or CpA (Labuda and Striker 1989).
These mutations violate our independence assumption and com-
plicate the computation of the correct consensus sequence (e.g.,
a dinucleotide with frequent occurrences of both TpG and CpA
has correct consensus CpG, but its consensus computed under
the independence assumption may equal TpG or CpA). Thus, we
excluded CpG → TpG and CpG → CpA mutations and the re-
verse of these mutations in our P-value computation. Fifth, we
excluded mutations to nucleotide values already present in other
subfamilies; this very conservative restriction is necessary to
avoid falsely assigning mosaic Alu elements formed by Alu–Alu

Figure 4. Evolutionary tree of the 213 subfamilies we identified. (Large nodes) Subfamilies with
more than 10,000 elements; (medium nodes) 1000 to 10,000 elements; (small nodes) less than
1000 elements. Subfamilies listed in Repbase Update are colored blue, and the 6 novel subfamilies
listed in Figure 2 are colored red. Each of the subfamilies listed in Figure 2 is labeled. A rendition
of this tree with every node labeled is available in the Supplementary materials online. The AluJ,
AluS, and AluY classes of subfamilies are contained in boxes; not all subfamilies fit into one of these
classes. A timeline roughly depicting the average divergence of each subfamily from its consensus
sequence and the approximate age obtained by applying a constant scaling factor of 4 million years
per 1% divergence from consensus sequence are included at right.

Price et al.

2250 Genome Research
www.genome.org

Figure 4.9: Left: Alu phylogeny identified in RepBase. Right: Alu phylogeny found
by Price et al.

65

4.4.4 SINE phylogeny

Figure 4.10 presents a phylogeny of 381,248 SINE elements matching RepBase

SINE elements found in 61 encode species. Subfamilies are assigned a repeat sub-

family (color) if at least 70% of their elements belong to that RepBase subfamily.

Subfamilies are also assigned a species (border) if at least 70% come from a single

species or a small group of related species. These labels may partly reflect variation

in encode’s coverage between species. However a phylogeny constructed from more

complete data, while it may have higher resolution, will still be consistent with the

one presented here. Representative subfamilies are labeled with the average percent

divergence of their elements from the subfamily consensus. The phylogeny is taken

from a single run of rats.

Although our predicted phylogeny contains 111 novel repeat subfamilies, it

still reflects many known aspects of SINE phylogeny. We recover the basic relation-

ship between the oldest Alu J, intermediate Alu S, and recent Alu Y clades. Ages

estimated from subfamily divergences are roughly in agreement with estimated family

ages [BLE03]. The Alu Jo subfamily is an ancestor of Alu Jb (Fig. 4.10, label 7). The

11%-diverged Alu Sx branch reported by Price [PEP04] appears at (Fig. 4.10, label

6).

Our results are also consistent with primate clades: for example, the Alu Jo

branch at (Fig. 4.10, label 1) separates strepsirrhins from the new- and old-world

monkeys. Additionally, the large group of Galago-specific subfamilies we observe

is consistent with the sequence analysis of Zietkiewicz et al. [ZRSL98]. The Alu Y

subfamily is (as expected) confined to old-world primates (Fig. 4.10, label 2), though

without human sequence data only a subset of the currently-known Alu Y families

are found. Finally, the divergence of the baboon-specific families dates them to after

the divergence of old-world monkeys.

Further up the tree we find additional validation of our repeat phylogeny.

Repeats from platypus and echidna, both monotremes, are concentrated in a subtree

of MIRm elements at (Fig. 4.10, label 3). Similarly, the marsupial-specific MIR Mars

elements are correctly identified at (Fig. 4.10, label 4). Our analysis does not find

a clade among marsupial, monotremic, and placental repeat elements. Monotremes

diverged before marsupials, and Gilbert et al. [GL00] argue that the Ther-2 repeat

66

22.1

21.2 20.6

4

20.2

10

12.4

8.6

5

5.9

4

13.9

3.9

2.7

3

10.5

6.4

17

8.8

2

14.5

13.4

24.4

7

1

6
AluJ

MIR_Mars MIRm

AluS AluY

MIR THER1_MD

Figure 4.10: SINE phylogeny from one run of rats on all encode species, show-
ing sequences from (1) strepsirrhins, (2) old-world primates, (3) monotremes, (4)
marsupials, and (5) new-world primates. Edges represent putative relations between
families. Node colors represent known RepBase families. Numbers inside nodes in-
dicate average percent sequence divergence from the subfamily consensus sequence.
Unattached, numbered black squares correspond to labels in the text.

67

Table 4.2: Comparison of human-specific Alu clusters found by Mills et al. [MBI+06]
to clusters found by running rats over all human Alu elements. Column 2 shows
the most common RepBase subfamily of elements in a cluster. Columns 3 and 4
show the number of elements in Mills’ and our clusters, respectively. Column 5 shows
the number and percent of elements in a rats cluster that are also found in the
corresponding Mills cluster.

Cluster RepBase Mills Us Overlap (%)
1 Ya5 1709 1795 1706 (95)
2 Yb8 1290 1098 1005 (92)
3 Yb8 – 149 136 (91)
4 Yc1 356 286 240 (84)
5 Yg6 261 234 232 (99)
6 Y 484 68 58 (85)
7 Ya4 – 162 158 (98)
8 Ye5 – 111 110 (99)
9 Yi6 – 97 96 (99)

10 Yd8 – 97 97 (100)
Total 4100 4097 3838 (94)

family is found only in marsupials and placental mammals. However, while the species

phylogeny is well-understood, there remains some disagreement about MIR repeat

phylogeny, and in some ways the marsupial genome is more similar to the monotreme

than to the placental genome [MC04].

4.4.5 Young Alu families

Some Alu elements remain active in the human genome even today [DEH03].

Availing themselves of the recently-released complete chimpanzee genome, Mills et

al. [MBI+06] take a comparative genomics approach to identifying these modern el-

ements. First, they align the human and chimpanzee genomes to locate insertions

and deletions. They then compare each inserted sequence to known mobile elements;

if the insertion consists entirely of a complete mobile element, they conclude that

it is a member of a family active since humans and chimpanzees diverged. Finally,

they group these elements by RepBase subfamily to generate a list of recently-active

mobile element families. Mills identifies five recent families of Alu Y elements.

If our method is sufficiently powerful, it should be able to identify these recent

elements by placing them together in one or more recent families. Table 4.2 compares

68

Mills’ recent families to clusters that were found by applying rats to all human

Alu elements. The corresponding ten rats clusters significantly overlapping Mills’

recent families contain 93.6% of their elements while only 6.4% of their members lie

outside these families. This result suggests that rats is able to accurately detect

recently-active Alu elements.

4.4.6 Alu age distribution

Previous studies have shown that mobile element radiation correlates with

periods of rapid speciation [Sve00,MH09]. Given their potential role in copying regu-

latory motifs [KJR04,BLV+08] and facilitating genome rearrangement [BD02,HB05],

mobile element duplication may an important means of rapid genomic and hence

phenotypic change.

Kim et al. [KHR04] investigate the distribution of ages of mobile elements from

five families (Alu, L1, LTR, MIR, L2) based on the human RepBase catalog. They

estimate the age of each element based on its divergence from its RepBase consensus

sequence a standard molecular clock [Int01]. The resulting histogram of repeat ages

shows a single major peak of expansion for each family except L1, which has two.

These peaks correspond roughly to known evolutionary branches between human

ancestors and marsupials (MIR, L2), early eutherians (L1), strepsirrhins (LTR), new-

world monkeys (Alu), and old-world monkeys (L1).

Our method’s higher-resolution repeat clustering should produce a more fine-

grained view of the historical rate of mobile element insertion. We clustered all human

Alu elements, then plotted a histogram of cluster ages as estimated from average

element divergence from its cluster mean and an Alu-specific molecular clock [Int01,

XHH+04]. The oldest distinguishable clusters, containing the oldest Alu J elements,

are approximately 80 million years old. The youngest clusters our method can reliably

detect, whose mean elements differ in approximately 4 positions, are about 4 million

years old.

Figure 4.11 shows the age histogram, annotated with the approximate times of

some evolutionary events. Our higher-resolution clustering clearly shows three peaks

corresponding, from oldest to youngest, to the major expansion periods of the Alu J ,

69

New-world

monkeys
StrepsirrhinsHominids

Apes

Old-world

monkeys

Figure 4.11: Histogram of Alu cluster ages versus evolutionary events, using an Alu-
specific molecular clock [XHH+04].

70

Alu S , and Alu Y families. These three periods of rapid Alu insertion correspond

roughly to the divergences of three major primate clades: the strepsirrhins, old-world

monkeys, and new-world monkeys. Our results do not show a corresponding burst of

Alu activity and the divergence of chimpanzees or apes from hominid ancestors. The

former event took place recently enough that our method may not able to distinguish

the relevant clusters, while the latter may be correlated with activity in some other

repeat family, such as L1. While these results are preliminary, they suggest that a

more detailed view of mobile element activity over time may yield valuable insight

into their evolutionary role.

4.5 Conclusion

This chapter has described rats, a randomized clustering algorithm for rapidly

finding repeat subfamilies and a procedure for reconstructing phylogenies from sets

of subfamilies. Because the divisions between subfamilies rats finds are statistically

validated, and because simulations show that it estimates the number of subfamilies

conservatively, we can be confident that real substructure is being detected. We

have applied our approach to SINE repeat data, yielding a phylogeny consistent

with known repeat and species relationships both among and beyond primates. We

have also applied rats to LINE and Alu elements from multiple species, showing

that mobile elements display complex family substructure and history. Our results

suggest a number of areas for further biological exploration.

4.6 Algorithmic Extensions

There remain a number of directions for algorithmic refinement. First, as

noted above, inferring the phylogeny and clustering simultaneously would yield a

more powerful model; an analogous randomized approach could again yield an effi-

cient approximation. Second, including species phylogeny and repeat orthology infor-

mation would improve sensitivity. Finally, large- and small-scale phylogeny could be

handled simultaneously using an iterative approach combining clustering on inferred

subfamilies with refinement of the guiding multiple alignment. This could substan-

71

tially increase the algorithm’s running time, but it would reduce any bias introduced

by the original RepBase-guided alignment, and could also improve cluster resolution.

A more sophisticated approach, which would construct the alignment and clustering

simultaneously is outlined in Section 4.6.2, below.

These methodological improvements, particularly the last, open up a number

of experimental avenues. Multi-scale clustering would make it possible to distinguish

clades among primates, while fine-grained distinctions between families would en-

able the detection of repeat homoplasy and the analysis of repeat insertion hotspots.

Large-scale repeat phylogeny therefore has the potential to contribute in a number of

ways to our understanding of evolutionary processes and history.

4.6.1 Alternative phylogeny construction methods

Section 4.3.3 describes a simple algorithm to construct a phylogeny (i.e. a

directed tree) from a set of clusters with estimated ages. The algorithm is not guar-

anteed to find the optimal tree, and the tree it does find can be sensitive to small

changes in the clustering output. Although these problems were not a significant

problem for our analysis, in this chapter, we first extend our simple approach to be

robust to this uncertainty. We then extend an existing optimal directed spanning tree

algorithm to construct a “minimum-weight partial ordering,” defined as the partial

ordering consistent with all possible minimum spanning trees over a directed graph

with uncertain edge weights. These two algorithms can be combined to yield a robust,

optimal ancestry tree for clusters with estimated ages.

Uncertain age and likelihood

First, when constructing a tree over many clusters, several may have similar

ages, and it may be preferable to choose c’s parent to be the most likely c′ such that

age(c′) > age(c) + δ for tolerance δ. δ can either be chosen based on underlying

biological processes, or estimated from the data itself. For example, δ could reflect

the variation in cluster ages across multiple bootstrapped clustering runs, limiting

the probability that two clusters’ ages could be reversed.

72

Second, there may be several potential parents of c with near-equal likelihood:

P = { c′′ | age(c′′) > age(c), p(c′′)p(µ(c)|c′′) + ε >p (c′)p(µ(c)|c′)}

where c′ is the most-likely parent and ε is a small constant. In this case it may be

preferable to first construct a directed acyclic graph (DAG) such that c′ → c if and

only if c′ ∈ P . In other words, each cluster c is linked from all clusters almost as

likely to be its parent as the most likely parent.

These two extensions can be combined either by choosing a hard age tolerance

δ, or by choosing an appropriate probability distribution p(c′ → c|age(c′) − age(c)).

Given the resulting DAG O, we can construct a conservative tree T as follows:

1. For each node v ∈ O, find the least common ancestor v0 of its parents.

2. Remove all incident edges to v, and add a single edge v0 → v to T .

T can be thought of as a “most specific ancestry” rather than a phylogeny: If c′ → c

in T , then c′ is the most recent certain ancestor of c, given our uncertainty about true

parentage.

Optimal DAGs with uncertain weights

The minimum-weight arboration (MWA) problem is the directed analog of the

minimum spanning tree for undirected graphs. Given a directed graph G = (V, E)

and weight function w : E → 0, we want to find a set T of |V |− 1 edges that spans

V with minimum weight. In other words, T should be the minimum-weight graph

containing exactly one edge incident to every vertex except one, the root. Chu and

Liu [CL65] and Edmonds [Edm67] describe an elegant algorithm for finding the MWA

in O(|V ||E|) time that works roughly as follows:

1. Find the subgraph G′ consisting of the minimum-weight edge incident to each

v ∈ V .

2. If no cycles exist, then G′ is an MWA, since each node has a single incident

edge and G′ has |V |− 1 edges.

73

3. Otherwise, choose a cycle with minimum-weight edge em and contract it into a

single node, adjusting the weights of all edges incident on the cycle. Specifically,

if u → v is an incident edge, and x → v is a cycle edge, then

w(u → v) ← w(u → v)− (w(x → v)− w(em))

4. Recursively find a MWA on the contracted graph.

5. Expand the contracted cycle using the edge chosen in this MWA, and remove

the “upstream” edge in the cycle, i.e. x → v in step 3.

Since each search for cycles requires O(|E|) time and there can be at most |V | − 1

contractions, the total running time is O(|V ||E|). Georgiadis [Geo03] shows that

the algorithm finds an MWA for any w with suitably-defined less-than and addition

operations on weights.

Here we extend this algorithm to the case of uncertain edge weights, i.e. weight

functions W : E → (a, b) ∈ 02 in which each edge’s weight is drawn from the range

[a, b]. We say a weight function w is consistent with range-valued weight function

W if w(e) ∈ W (e) for all e ∈ E. Given a graph and a range-valued weight function

W , we show how Edmonds’ algorithm can find a partial ordering consistent with the

MWAs for all weight functions w consistent with W (written w ∈ W).

A number of authors have previously addressed similar problems. Hutter

and Zaffalon [ZH05] address the similar problem of finding “robust edges” in undi-

rected, tree-structured graphical models with range-valued mutual information be-

tween nodes, where an edge is robust if it is common to all possible minimum span-

ning trees. They present O(n4) exact and O(n3) approximate algorithms that yield

a forest of the common node relations. However, the set of robust edges may be a

forest that does not capture all the partial ordering information available in either

the original graph or the strongest consistent partial ordering. Because edges rep-

resent transitive “parent” relations in our case, we can use this additional ordering

information to create a tree including edges not present in the original graph.

Beerenwinkel et al. [BRD+04] iteratively find mixtures of distinct trees best

capturing a distribution’s dependencies. Their problem is a form of clustering with

74

structured labels, where individuals are drawn from one of several, compact classes

of directed trees. On the other hand, our data are assumed to originate from a single

cluster, and our goal is to recover ordering information consistent with all likely

originating trees for the family.

Bagchi et al. [BBS06], in a context where computing edge weights is expensive,

find an approximate MWA by considering only the k cheapest edges incident to each

node. The resulting approximate solution is within a factor of k
k+1 of optimal, and is

computed in O(kV 2) time. Since in our case edge weights are given, reducing running

time is the only reason to restrict the number of input edges considered. Also, it is

not clear how their approximate algorithm extends to uncertain weights.

We are interested in solving the following two related problems: Minimum

weight partial ordering:

Inputs: A directed graph G = (V, E) and a range-valued weight function

W : E → (a, b) ∈ 02.

Output: A subset O ⊆ E such that O spans V with no cycles, and u ! v in O

iff u ! v in the MWA for some w ∈ W , and v ! u for the MWA of no w ∈ W .

Our algorithm for strongest consistent partial ordering is identical to the orig-

inal Chu-Liu-Edmonds algorithm except for modifications to steps 1 and 3, and a

minor change to step 5. First, instead of selecting a single minimum-weight inci-

dent edge in step 1, we select all edges with minimum weight less than or equal to

the smallest maximum incident edge weight. That is, we choose all incident edges

e = u → v such that

min W (e) ≤ argmax
e′=u′→v

max(W (e′))

Similarly, when re-expanding a node in step 5, we choose all analogous edges, and

delete all of their upstream cycle edges.

For the weight adjustment in step 3, define arithmetic on weights as

(a, b)− (c, d) = (a− d, b− c)

(a, b) + (c, d) = (a + c, b + d)

and let wmin = (lmin, umin) where lmin and umin are the minimum lower and upper edge

weights in the cycle. Then the update is the same as that of the original algorithm,

75

except using wmin instead of the weight of the minimum edge.

4.6.2 Incremental Alignment

Section 4.5 discussed the possibility of improving the final tree by realigning

sequences in smaller clusters. Since multiple alignments can improve dramatically

when aligning fewer, more closely-related sequences, this could improve the final

clustering, though perhaps at substantial computational cost. Here we describe a

similar approach which combines multiple alignment with clustering, skipping the

initial RepBase-guided multiple alignment entirely.

Having to start with a full multiple alignment presents a number of problems.

First, large multiple alignments between diverse sequences are often quite poor, with

many unnecessary gaps and mistakes. Second, aligning a large number of sequences

using a guiding alignment, as we did, may introduce bias into the initial multiple

alignment that will color the final results. Third, for de novo elements found by

algorithms such as RepeatScout [PJP05], no guiding alignment may be available.

This would force us to perform a full multiple alignment on all the mobile elements

of interest, which would be computationally infeasible for the hundreds of thousands

or millions of elements we are trying to cluster.

The intuition behind this approach is that if the input sequences are simply

stacked on top of each other naively, some similar sequences will be identical at

a number of positions, increasing the mutual information between those positions.

Therefore rats can be used to chop the full input into pieces small enough to be

consumed by a real multiple alignment algorithm, such as CLUSTAL W [THG94] or

MAFFT [KMKM02], in an acceptable period of time. As more clusters are realigned,

the overall multiple alignment and clustering will iteratively improve, converging to

a set of clusters, each admitting a good multiple alignment and satisfying rats’s

mutual information test.

To extend rats to handle incremental multiple alignment, we must define

the following operations, where a “small cluster” is one with that can be efficiently

multiply aligned, a “large cluster” is not, and a “cluster” can be either:

1. To create the initial cluster, the simplest approach is to have all sequences start

76

at the same position. A slightly more ambitious heuristic, which might create a

better starting point, would be to look for one or more seed patterns and place

sequences containing those patterns so that one or more of the patterns match.

2. To create a new large cluster after a split is the same as above, except for

possible implementation shortcuts.

3. To create a new large cluster by joining two clusters, we globally align their

consensus sequences with the Smith-Waterman algorithm [SW81], then use that

alignment to merge their sequences.

4. To create a new small cluster, whether from a join or a split, we perform a full

multiple alignment.

5. To choose a candidate pair of clusters to join, we choose the two remaining

clusters whose consensus sequences have the best global alignment score.

6. To perform a greedy update, the analogous approach would be to move each

sequence to the cluster whose consensus sequence had the best global align-

ment score. However, since this is computationally infeasible, we instead first

construct an index over the sequences, then search this index using the cluster

consensus sequences. Each sequence is assigned to the cluster whose previous

consensus sequence had the highest-scoring match.

This chapter is based on work with Nebojsa Jojic, Noah Zaitlen, and Eleazar

Eskin and published in the proceedings of RECOMB 2007.

Chapter 5

Conclusions

In the previous chapters, we have first described two algorithms, IB sequences

and sscc, which demonstrate the flexibility of an information-theoretic approach to

complex biological clustering problems. We have shown several ways of incorporating

different kinds of prior knowledge and constraints. We have also described rats, a

randomized algorithm which enforces constraints specified by hypothesis tests, and

is able to efficiently cluster millions of sequences. We have applied these algorithms

to a number of biological datasets, showing that they can be valuable bioinformatics

tools for comparing distantly-related proteins, identifying population substructure,

and showing the history of mobile elements replication in organisms’ genomes. Here

we review our work in Sections 5.1, 5.2, and 5.3, then conclude by summarizing our

algorithmic and biological contributions.

5.1 IB sequence alignment

Comparing an amino acid sequence with other phylogenetically-related pro-

teins, or homologs, is a powerful tool in bioinformatics. Since evolutionarily related

have similar biological functions, such a comparison gives insight into which segments

of the protein are functionally important, and therefore must be conserved, and which

are not, and can mutate without harming the organism. The most common repre-

sentation for a set of homologous proteins is its profile, the sequence of the marginal

distributions of amino acids at each position. Algorithms such as BLAST find ho-

77

78

mologs by aligning an amino acid sequence against a database of other sequences.

However, comparison of crystallized structures has shown that two proteins can

be structurally homologous even when their sequences are as different as those of two

randomly-chosen proteins. Since crystallizing proteins to find their structure is costly

and time-consuming, we need a more sensitive test for detecting distant homologs.

To address this problem, Yona and Levitt [YL02] proposed a method of aligning

pairs of profiles generated by a sequence-based homology search. They showed that

their approach reliably identified homologous proteins too different in sequence to be

detected by sequence-based methods. However, representing amino acid sequences

as profiles has a number of disadvantages. First, as a sequence of 20-dimensional

probability distributions, a profile is difficult to visually interpret. Second, profile

alignment is much more computationally expensive than sequence alignment, since it

must compute the distance between amino acid distributions at each point rather than

simply look up a score. Finally, because profiles are continuous, a profile database

cannot take advantage of fast indexing approaches used for discrete data.

We overcome these problems by representing profiles by a small alphabet of

representative distributions. To choose these representative distributions with min-

imal information loss, we find an informationally-optimal clustering created by an

algorithm based on Information Bottleneck; the cluster means then form our alpha-

bet of representative distributions. The IB profiles produced by this discretization can

be aligned and indexed like ordinary amino acid sequences, using fast table lookups

rather than costly distance computations. At the same time, they retain most of the

information found in the original profiles, so unlike amino acid sequences, they can

be used to detect distant homologs.

To aid human readability, we want our clustering to include the standard

amino acid alphabet, so that for example clusters “A” and “a” represent strongly-

and weakly-conserved alanine, respectively. To achieve this, we impose two types of

constraints on the cluster distributions: First, some cluster conditional distributions

should be similar to predefined values, so for example the cluster denoted “A” should

represent strongly-conserved alanine. Second, clusters representing strong and weak

conservation of the same amino acid should have similar shapes; since they have

similar chemical roles, both clusters should show similar amino acid substitution

79

patterns.

We first show that our discretization preserves most of the information in the

original profiles, ranging from 84% with 40 clusters to 94% with 500. By comparison,

representing profiles by the most-common amino acid at each position preserves 78%

of their information. Next, we show that alignments between pairs of IB sequences

are similar to those between the profiles they represent. We then show that IB

comparison identifies distant homologs nearly as well as profile comparison, a task for

which comparing the original amino acid sequences performs no better than chance.

Finally, we note that the running time of IB sequence alignment is near-linear in

sequence length, where profile alignment is quadratic, reflecting the fact that distance

computations dominate alignment time.

We conclude by examining some of the issues involved in creating a BLAST-

like seed-indexed database for IB sequences. We find that, because we are searching

for such distant matches, a direct translation of that approach is ineffective. We

instead propose a related alternative using a more sophisticated heuristic that uses

approximate seed matches, and looks for matches in regions of high seed density.

This shows that while IB encoding can greatly improve the performance of tasks once

requiring full sequence comparison, more work is needed to realize its full potential.

5.2 Shape-constrained clustering

The population substructure problem is the problem of recovering distinct

subpopulations of related DNA sequences from a mixture of several subpopulations.

Finding population substructure is important to the study of a number of biological

problems. One example is the separation of viral strains, where each subpopulation

corresponds to a different transmission vector. Another example is genetic associa-

tion studies, which try to determine the genetic basis of individual diseases or traits,

where each subpopulation corresponds to a group of individuals with common ances-

try. Identifying population substructure is crucial because subpopulations differ in

multiple traits. If one looks for the genetic basis of a single trait in a population with

substructure, it will appear that the genetic bases of all traits differing between the

two subpopulations affect the trait of interest.

80

We assume a model in which subpopulations, or clusters, are created by first

choosing a number of cluster consensus sequences, then generating sequences within

each cluster by random mutation from these consensus sequences. When the consen-

sus sequences are far apart in sequence space relative to the mutation rate, a sequence

will be closer to sequences in its own cluster than to those in other clusters. In this

case, clusters can be easily identified by distance-based clustering algorithms like ag-

glomerative linkage clustering or k-means. However, if the consensus sequences are

close relative to the rate of mutation, many sequences will be closer to those in other

clusters than to those in their own. In this case distance-based methods will recover

spurious clusters reflecting local irregularities rather than the true clusters.

To address this problem we present Sequential Shape-Constrained Cluster-

ing (sscc) an algorithm to recover highly overlapping clusters by constraining their

shapes. If each mutation at each position is independent, then all sequence positions

should be conditionally independent given the cluster, and any correlation is evi-

dence of substructure. We eliminate this substructure by penalizing this correlation.

Specifically, our score function minimizes both cluster entropy and the pairwise mu-

tual information between positions within each cluster, with a parameter controlling

the trade-off between the two.

We find local a local optimum for a given number of clusters by sequential

updates, moving individual sequences between clusters as long as doing so improves

the score. Since each move improves the global score, this process is guaranteed

to converge. Performing these updates requires recomputing the score that would

result from moving each individual to each other cluster. We avoid this expensive

computation by efficiently computing the change in score for each move without

recomputing the overall score.

Sscc infers the number of clusters by top-down splitting guided by the score’s

mutual information term. First, we choose the position i with the greatest total

mutual information with all other positions. We then split the cluster in two, with

all sequences having the most common sequence value at i in one cluster, and all

the rest in the other. Because these splits create unbalanced clusters, we optimize

via sequential updates after every split. When no position in any cluster has a large

enough mutual information with other positions, or when no cluster is above the

81

minimum size, the algorithm terminates.

Comparing sscc to structure [PSD00], a state-of-the-art algorithm for pop-

ulation substructure, on simulated data, we find that sscc outperforms structure

as the mutation rate increases relative to the distance between cluster consensus se-

quences. On human SNP data, we find that structure and sscc perform equally

well. On human Alu sequences, both algorithms recover the cluster consensus se-

quences, but sscc correctly assigns more individuals. Finally, we apply sscc to a

collection of HIV polymerase sequences, and show that it often recovers both viral

clade and continent of origin. Sscc thus represents a flexible and powerful approach

for population substructure identification.

5.3 Randomized clustering for mobile elements

Mobile elements are small, repeated sequences that make up nearly 50% of

our DNA, conventionally divided into families based on their length and method of

replication. While most individual elements remain inactive, active elements copy

and reinsert themselves in our genome through one of several processes. Mobile ele-

ments remain active even today: there are active Alu elements in the modern human

genome whose effect can be observed in population-specific Alu insertions. Past re-

search has suggested that mobile elements play a role in a variety of genetic process,

including segmental duplication, chromosome rearrangement, genome growth, protein

evolution, and relocation of transcription factor binding sites. They have also been

implicated as factors in a number of human diseases. Both their prevalence and their

many genetic effects make them a natural object of study.

One important component of that study is determining the ancestry and age

of insertion of mobile elements. Current phylogenetic algorithms are ill-suited to the

task for three reasons: First, as in the population substructure problem described in

the previous section and in Chapter 3, reconstructing mobile element history requires

separating overlapping clusters subject to certain constraints. Second, neither sscc

nor traditional phylogenetic algorithms, most of which are quadratic or worse in the

number of sequences, scale to the millions of mobile elements present in the human

genome. Finally, mobile element phylogeny has the unusual characteristic that only a

82

few elements ever become active, producing phylogenies where only a few nodes have

offspring.

We present rats, a novel clustering algorithm to recover mobile element phy-

logeny. Like sscc, rats finds a clustering obeying certain constraints on the corre-

lation structure of the cluster conditional distributions. However, rather than mini-

mizing a trade-off between cluster entropy and mutual information between pairs of

positions, we ensure that clusters satisfy a statistical test based on this mutual infor-

mation. Specifically, for each pair of positions (i, j), the mutual information between

positions i and j within a cluster must occur between uncorrelated random variables

with at least a certain probability.

This random sampling leads naturally to a top-down clustering algorithm. If

a cluster fails the statistical test above at some pair of positions (i, j), we split it to

reduce mutual information between positions i and j by placing all sequences with the

most common values at i and j in one cluster, and the rest in another. Rather than

testing all pairs of positions, we randomly sample enough pairs to detect correlation

with high probability. If no such position exists, then the cluster is statistically

justified or valid.

Recursively applying this splitting criterion yields a set of valid clusters. How-

ever, a poor sequence of splits may create sets of clusters that, when merged, would

create a larger valid cluster. Such sets can be found by merging sets of clusters and

performing our statistical test on the result. However, testing all sets of clusters is

computationally impractical, we only test pairs of clusters with similar consensus se-

quences. By alternating recursive splits with tests for clusters that can be joined, we

obtain a set of valid clusters in which no neighboring pair can be merged to form a

valid cluster. To create a phylogeny from these clusters, we first order them by cluster

entropy, which increases with age. A cluster’s parent is then the older cluster whose

conditional distribution is most likely to have generated that cluster’s consensus se-

quence.

We first apply rats to 2.3 million Alu and 24 000 complete L1 elements found

in the available complete primate genomes. While RepBase [Jur04] lists only 35 Alu

and 102 L1 subfamilies, we are able to identify 1519 and 134. Our result supports

Price et al.’s [PEP04] earlier finding that there have been many more active Alu

83

elements than were previously identified, and suggests that the same may be true for

other families of mobile elements.

We validate our Alu clustering by showing that it identifies known young Alu

families. Mills et al. [MBI+06] identified Alu families that have been active since

human and chimpanzee diverged through comparative genomics. We find that in

any cluster we identify containing a significant number of elements from one of Mills’

families, over 90% of the elements in that cluster are from that family. Thus, our

method is sensitive enough to accurately identify even these young clusters, which

should be hardest for it to distinguish due to their low sequence divergence from

related young families.

Since a 1500-node phylogeny is difficult to interpret, we instead look at our

clusters’ age distribution, where ages are inferred from average sequence divergence

using a standard molecular clock. Our results agree with those of Kim et al. [KHR04],

who find a peak of Alu activity near the divergence of old- and new-world monkeys.

Thanks to our higher-resolution phylogeny, we are able to detect three major peaks in

Alu activity, corresponding to activity of the Alu J, Alu S, and Alu Y families. These

three peaks coincide roughly with the divergences of strepsirrhins, new-world, and

old-world monkeys from the hominid ancestor. These bursts of activity in successive

Alu families may reflect repeated suppression of particular Alu families’ replication

by a mechanism like that described by Malone and Hannon [MH09], followed by

resurgence when a new family becomes active.

We also apply rats to 380 000 SINE elements from 61 species in the en-

code database, finding 308 mobile element subfamilies where RepBase contains 197.

We validate the phylogeny constructed from these subfamilies by showing that it

reflects known aspects of SINE phylogeny and evolutionary events (see Figure 4.10

and Section 4.4.4). First, the known Alu phylogeny is correctly identified as a subtree,

with the sequence divergence within clusters consistent with current estimates of

Alu family ages. Second, the Alu subtree reflects known phylogenetic relationships

between primate clades. Third, MIR elements specific to marsupials and monotremes

are placed in their own subtrees, both of which are separate from the mammalian

elements.

Our results are promising, but there remains much more analysis to be done of

84

this new, high-resolution view of mobile element history. For example, mobile element

insertion can be related to other genomic processes like segmental duplication, and

mobile element insertion hotspots can identified. Rats can also be improved in

a number of ways, including more robust methods of constructing phylogenies and

better ways of interpreting them. The requirement that input sequences be aligned

is also a weakness, which can be overcome by combining clustering with incremental

multiple alignment.

5.4 Algorithmic contributions

Our first contribution was an extension of Information Bottleneck for cluster-

ing amino acid distributions with minimal information loss. This approach allows

the incorporation of distributional constraints, including priors on class conditional

distributions and correlation between these distributions. The algorithm, based on

inference in an underlying graphical model, is flexible enough to incorporate both

new information and other types of constraints. For example, our model can be ex-

tended to incorporate structural information as input, or to account for local sequence

correlation by computing a discretization over k-tuples of adjacent sequence positions.

We have presented two related sequence clustering algorithms to address pop-

ulation substructure. The first, sscc, iteratively minimizes an objective function that

trades off between maximum entropy and a set of information-theoretic constraints.

This objective extends that of Information Bottleneck to flexibly allow constraints on

the class conditional distributions. It does so by including additional penalty terms,

each related to a likelihood ratio test. For example, the added penalty in Eq. (3.3),

added to reduce correlation between positions within each cluster, is

I(Xi; Xj|C = c) = E [log p(Xi, Xj)]− E [log p(Xi)p(Xj)]

for a single cluster c and pair of positions i and j. Given an appropriate threshold, this

is simply a (log) likelihood ratio test (LRT) between two nested hypotheses differing

in whether Xi and Xj are correlated. Thus the Lagrangian form of the objective

replaces a LRT threshold k with a tradeoff parameter β. The structure learning

extension adds a step to heuristically reduce this penalty by adding more clusters,

85

effectively reducing the value of the associated LRT.

The second algorithm, rats, directly eliminates rejections of the null hypoth-

esis of uncorrelated sequence positions by splitting clusters to reduce correlation be-

tween positions. This has the added effect of reducing within-cluster entropy. To

make this process more efficient, rats performs only enough of the possible statisti-

cal tests to find correlations with high probability.

The two algorithms are similar in that both use statistical tests to constrain

the posterior distribution inferred from nonparametric clustering. Both algorithms

also perform structure learning in a top-down manner, based on heuristics to di-

rectly reduce the value of the same statistical test. However, they differ in three

ways. First, while sscc is a forward-only algorithm, rats must perform both for-

ward (split) and backward (join) steps because its large forward steps will not always

find good solutions. Second, sscc finds a maximum-entropy solution subject to the

given constraints. rats, on the other hand, approximates a maximum likelihood

solution that does not violate the given statistical test, but that will do so if locally

modified. Finally, sscc enforces a smooth penalty term based on the test, while rats

probabilistically imposes a hard threshold of statistical significance.

The comparison between sscc and rats is somewhat analogous to that be-

tween model-scoring and constraint-based algorithms for causal inference. Model-

scoring algorithms like Suzuki’s MDL-based algorithm [Suz93] assign high scores to

models which assign high likelihood to the observed data and have low complex-

ity, and search for the highest-scoring model. While sscc does not use a complexity

penalty term, adding one would be the natural way to control model size. In contrast,

constraint-based algorithms like IC [VP90] infer the generative process by searching

for constraints, such as conditional independence. Rats performs a similar series of

tests, but since we assume that the true generative model has no conditional depen-

dencies within clusters, we are searching for dependencies rather than independencies.

We also see some of the same trade-offs between model-scoring and constraint-

based causal algorithms as we saw between sscc and rats. Constraint-based algo-

rithms are subject to cascading errors from performing many sequential independence

tests. Rats is similarly subject to poor early splits, whose effects the join tests are

intended to combat. Similarly, defining an appropriate complexity penalty in model-

86

scoring algorithms is difficult. As we saw in Section 4.3.2, standard complexity penal-

ties can be inappropriate when the family of models being explored does not exactly

match the true, complex generative model. While significance tests made a complex-

ity penalty unnecessary for rats, the choice of such a penalty for sscc would be

difficult and problem-dependent.

5.5 Biological contributions

IB sequences provide an encoding of amino acid profiles that minimizes in-

formation loss, corresponds to currently-used discrete representation of proteins, and

incorporates known chemical similarities between amino acids. The resulting rep-

resentation is useful both as a compact visual representation of profile data, and

as encoding for efficient approximate profile-profile alignment and database index-

ing. We have shown that such alignment is almost as sensitive as true profile-profile

alignment in finding distant homologs, but is much more computationally efficient.

Sscc find population substructure where genetic variation within each popu-

lation obeys certain constraints, even in cases where variation within the groups is

much greater than variation between them. Such cases include human SNPs, viral

RNA, and DNA mobile elements. In the last two cases, sscc significantly outperforms

current population substructure inference algorithms.

Rats makes it possible to create clusterings and phylogenies of entire mobile

element families composed of millions of elements found in the complete genomes of

one or more species. These clusters identify many more mobile element subfamilies

than the currently-accepted classification. These clusters are consistent with known

large-scale repeat activity: a phylogeny of SINE elements across multiple eutherian

species constructed by our method is consistent in many respects with the species

phylogeny. The results are also consistent with known small-scale repeat activity:

the subfamilies of Alu identified by rats in the human and chimpanzee genomes

reflect known recent Alu activity.

Examination of the ages of mobile element subfamilies shows a correlation

with periods of rapid speciation. As more species’ complete genomes become avail-

able, clustering of large numbers of mobile elements will be useful in two ways: First,

87

by looking at the ages of mobile element families shared by and unique to two related

species, it is possible to estimate speciation times. Second, since more precise cluster-

ing will become possible as more elements are available, estimates of each element’s

insertion age will improve. These ages can in turn be used to estimate the times of

other chromosomal events such as deletions, inversions, and duplications, as well as

to relate the mobile element replication process itself to these other processes.

Appendix A

Other contributions: transducers

for haplotype phasing

Recent high-throughput genotyping technologies promise a wealth of new in-

formation, but the data they supply provide an ambiguous and incomplete view of

the true genetic state. In particular, the problems of inferring haplotypes, single-

strand deletions, and population-wide recombination patterns from genotype data

are both challenging and well-studied. We describe a straightforward maximum like-

lihood model addressing all of these questions. While solving the model directly takes

exponential time, we show that an equivalent weighted finite state transducer model

can be solved efficiently for large samples over long genetic regions.

A.1 Introduction and related work

Recent advances in high throughput single nucleotide polymorphism (SNP)

genotyping techniques [MMea04,GSL+05] have made possible large scale surveys of

human genetic variation. Projects such as the HapMap project [AC05] and numerous

large scale association studies [RM96] have revolutionized our approach to under-

standing human evolution and the genetic basis of disease. Analysis of genotype data

presents many computational challenges including haplotype phasing [SSD01,ES95,

MDea06], estimating the haplotype frequency distribution in the population [HH06],

estimating the recombination rates of haplotypes [MMH+04], and identifying single-

88

89

chromosome deletions [CRE07].

The phasing problem is the following: Genotyping reports the allele at each

SNP on both copies of the chromosome (the genotype), but not which allele came

from which chromosome. Consider a SNP where there are two common alleles, A

and G. There are four possible cases for the haplotype: If the two chromosomes

are homozygous (i.e. they contain the same allele), the genotype is either A or G

and we can infer that the base appears in both chromosomes. If, however, they are

heterozygous (i.e. they contain either (A, G) or (G, A)), the genotype is H, and we

cannot tell which allele contains which haplotype. This ambiguity is significant when

examining haplotypes across multiple sites. For example, an individual with genotype

AGHH has either haplotypes AGAA and AGGG, or AGAG and AGGA.

Two landmark 2001 studies on human haplotype structure [DRS+01,PCea01]

observed that in any local region of the genome, a small number of haplotypes ac-

count for a majority the haplotypes observed in the population. Both of these studies

explained this behavior by positing that the human genome contains recombination

hotspots which divide it into low-recombination “blocks of limited diversity.” How-

ever, several newer studies have questioned this assumption and proposed instead that

recombination rates are variable in the genome and that the apparent block struc-

ture is simply an artifact of ancient recombination events [MMH+04]. These studies

point to a model of variable recombination rates as the right model to capture human

haplotype structure.

Despite the numerous methods proposed for analyzing haplotype and geno-

type data, it is an open question which model best captures the structure of human

haplotypes. Most state of the art haplotype phasing methods, including HAP [HE04],

PHASE [SSD01], PL-EM [NQXL02] and GERBIL [KS05], assume relatively frequent

recombination to predict haplotypes: they infer sparse haplotype probability distri-

butions in putative haplotype blocks, then combine these local predictions to generate

haplotype predictions for longer regions. Conversely, methods for inferring recombi-

nation rates usually assume that we have access to the true haplotypes, and infer

from them the recombination rates and sites [MMH+04]. Several recent methods

assume that each individual’s haplotypes are a recombination of a small number of

“ancestral” haplotypes [RKMU05].

90

We propose a new model for analysis of haplotype and genotype data which

jointly estimates haplotype phase and recombination rate. Our model applies tech-

niques long studied in the speech decoding and natural language processing commu-

nities [MPR02]. We revisit one of the first and most natural maximum likelihood

models presented for haplotype estimation, and extend the traditional Expectation-

Maximization (EM) algorithm to estimate the haplotype distribution in every local

region. While the model is straightforward to derive, estimating its parameters is pro-

hibitively expensive: analyzing a region of L SNPs, the standard EM algorithm has

complexity of O(22L) without recombinations and O(24L) with recombinations. We

show that the model can be realized using weighted finite state transducers, and that

inference on these transducers is tractable even for large samples and long genomic

regions.

A.2 Methods

We first describe the likelihood function for the basic haplotype phasing prob-

lem, and outline a straightforward EM optimization method. We then describe how

to reformulate this method in terms of efficient operations on finite state transducers.

To illustrate how the basic transducer model can be extended to handle more com-

plex models, we briefly describe transducers for genotype errors, genotype information

from father-child-mother trios, and recombination between ancestral haplotypes.

A.2.1 The haplotype phasing problem

Let H = {0, 1}L be the set of possible haplotypes of length L, with 0 and 1

representing common and rare alleles. Let G = {g1, . . . , gN} ∈ {0, 1, 2}L be a set of N

genotypes corresponding to pairs of haplotypes from H, where 0, 1, and 2 correspond

to homozygous common ((0, 0)), homozygous rare ((1, 1)), and heterozygous ((0, 1)

or (1, 0)) genotypes at each position. Our goal is to find the haplotype distribution

91

p(H) maximizing

L(H|G) =
∏

i

∑

h1,h2∈H

p(h1, h2|gi) (A.1)

∼
∏

i

∑

h1,h2∈H

p(h1)p(h2)
∏

j

C(gj
i , h

j
1, h

j
2)

where C(gj, hj
1, h

j
2) is an indicator function that is 1 when hj

1 and hj
2 are compatible

with gj according to the definition of G above, and 0 otherwise. As a convenient

shorthand, C(g, h1, h2) = 1 when C(gj, hj
1, h

j
2) = 1 for all j.

A straightforward EM solution to this problem would maximize L(H|G) by

alternately solving the following equations:

pt+1(h1, h2|gi) =
C(gi, h1, h2)pt(h1)pt(h2)∑

h′
1,h′

2∈H C(gi, h′1, h
′
2)p

t(h′1)p
t(h′2)

(A.2)

pt+1(h) =
1

2N

∑

gi

∑

h′∈H

(
pt+1(h, h′|gi) + pt+1(h′, h|gi)

)
(A.3)

Since there are 2L haplotypes of length L, this approach requires O(22L) time per

iteration, making it impractical for large L.

A.2.2 Basic haplotype transducers

We propose an alternative approach using weighted finite state transducers

(WFSTs) to efficiently represent the entire 2L-haplotype distribution. A WFST is a

finite state automaton where each transition is given a weight and a pair of symbols,

one input and one output. It represents a weighted mapping from its inputs to

its outputs, and its domain is the set of input strings corresponding to series of

transitions leading from the initial state to an accepting state. A weighted finite

state acceptor (WFSA) is a WFST representing the identity mapping. New WFSTs

can be formed by composition and union of existing ones, and equivalent ones can be

created by various “optimizations” such as determinization and elimination of null

transitions and redundant edges. WFSTs have long been used in speech and language

processing to compose models operating at different levels (e.g. phoneme, word, and

phrase) into efficient recognition systems [MPR02]. For a fuller treatment, please see

Lothaire [Lot05].

92

0:0 1:1 0:1

1:0

0:1

1:0

(a) The genotype transducer representing

0122.

0/1 1/1

0/0.5

1/0.5 5/1

1/1

0/1

(b) The haplotype acceptor resulting from

the composition H◦G◦H of transducers in

Figures A.1(a) and A.1(c), corresponding

to the distribution {0101, 0110}.

0/0.75

1/0.25

1/1

1/1
0/1

0/1
1/.33

0/.67 0/.5

1/.5

(c) The haplotype acceptor representing the

distribution {1100, 0100, 0101, 0110}

Figure A.1: Example genotype and haplotype transducers. “X/w” represents in-
put/output X with weight w.

WFSTs are particularly well-suited to distributions over sequences in which

most of the probability mass is concentrated on a polynomial-size subset, because

they represent only the non-zero-probability subset, and represent many repeated

substructures only once. Haplotype distributions have highly concentrated probabil-

ity mass for two reasons: First, a population heterozygous at k of L loci can have

at most 2k distinct haplotypes, and in many samples the individuals are homozygous

at most locations. Second, any population of N individuals can have at most 2N

distinct haplotypes, and usually 2N + 2L.

While many transducer operations can be exponential in the worst case, they

are linear in many common cases, including those encountered in haplotype phasing.

In particular, since a transducer representing 2N haplotypes of length L cannot have

more than 2N(L + 1) states and each state besides the first cannot have more than

2 outgoing edges, operations on the distribution over L-position haplotypes of N

individuals can be performed in O(NL). This makes it possible to directly optimize

equation (A.1) over thousands of positions. Furthermore, transducer composition

provides an elegant way to, from independently-derived base models, build complex

models incorporating phylogeny, measurement error, and recombination among an

unknown number of ancestral haplotypes.

93

We represent a genotype’s compatibility function as a transducer from hap-

lotypes to haplotypes (from {0, 1} to {0, 1}); figure A.1(a) shows the transducer for

the genotype 012. A haplotype is represented as an acceptor over {0, 1}, and the

haplotype distribution p(H) as union of weighted acceptors. Figure A.1(c) shows the

acceptor representing a uniform mix of the haplotypes 1100, 0100, 0101, and 0110.

To compute the unnormalized distribution C(gi, h1, h2)p(h1)p(h2) for all h1 and h2

and some particular gi, we compose gi’s transducer Gi with the haplotype distribution

transducer H on either side. We would ordinarily compute p(h1, h2|gi) by dividing

the unnormalized distribution by its sum over all 22L values of h1 and h2. With the

transducer representation we can perform this normalization (denoted N) much more

efficiently by “pushing” the edge weights so the outgoing edge weights at each state

sum to 1, then remove any excess weight pushed to the final state.

With this representation, the iteration steps described in equations (A.2) and

(A.3) are represented as the following transducer operations:

P t+1
i = N (H t ◦Gi ◦H t) (A.4)

H t+1 = N
(
O

(
⋃

i

P t+1
i

))
(A.5)

Note that the left and right haplotype distributions are equivalent, so only the output

(O) or input (I) projection is needed.

A.2.3 Genotype errors

The simplest extension we consider is handling genotype errors. These usu-

ally appear as positions with two true but unknown alleles, rather than positions

with incorrectly-identified, truly missing, or partially-known alleles. Genotype er-

rors are relatively common in most haplotype data: about 10% of positions in the

HapMap CEPH trios contain missing data. Here we assume that the probability of

error is independent of the genotype. To permit these errors, we extend G to range

over {0, 1, 2, 3}L, where 3 represents a genotyping error. We also extend C so that

C(3, h1, h2) = 1 for all h1 and h2, since any pair of haplotypes is compatible with

a genotype error. The genotype transducer for 3 has weight-one transitions for all

input/output pairs.

94

A.2.4 Genotype trios

Because genotypes collected from father-mother-child trios are redundant –

the parents each transmit a haplotype to the child – it is easier to infer haplotype

characteristics such as phase and heterozygous deletion from trio data than from the

genotypes of a population of unrelated individuals. Many haplotyping experiments

therefore collect trio data to support such inference. To model trio data, we define

a compatibility function C3 reflecting inheritance constraints among the four haplo-

types. Let fi, mi, and ci be the father’s, mother’s, and child’s genotypes, and hft, hfu,

hmt, and hmu be the father’s and mother’s transmitted and untransmitted haplotypes.

Then

C3 (fi, mi, ci, hft, hfu, hmt, hmu) = C(fi, hft, hfu) ∧ C(ci, hft, hmt) ∧ C(mi, hmt, hmu)

and equations (A.1–A.3) must be extended over the joint distribution of hft, hfu,

hmt, and hmu. Since the sums now range over 24L possible haplotype quartets, a

straightforward solution becomes impractical even for modest L.

When the transducer model is extended to haplotype trios, equations (A.4)

and (A.5) become

P t+1
i =N

(
H t ◦ Fi ◦H t ◦ Ci ◦H t ◦Mi ◦H t

)
(A.6)

H t+1 =N
(
⋃

i

(
O(P t+1

i) ∪ I(P t+1
i) ∪O(I(P t+1

i) ◦ Fi) ∪ I(Mi ◦O(P t+1
i))

)
)

(A.7)

Note that since the posterior distributions of the transmitted and untransmitted

haplotypes are not the same, both input and output projections must be included in

equation (A.7).

A.2.5 Ancestral recombination

As mentioned in section A.2.1, recombination between haplotypes reduces

long-range correlation between alleles, a property exploited by many haplotype phas-

ing methods to avoid exponential running times. Recombination also creates depen-

dencies in the haplotype distribution: For example, the probability of observing a

haplotype ABC is increased by observing the blockwise-similar haplotypes AXC and

95

X:-

-:S(1)

X:-

-:S(2)

X:-

-:S(L-1)

-:S(L)

X:X

-:F(1)

X:X

-:F(2)

X:X

-:F(L-1)

-:F(L)

X:-

S(1):-

X:X/(1-w)

F(L):-

F(2):-

...

F(L-1):-

S(2):-/w

...

S(L-1):-/w

Figure A.2: Transducers for haplotype recombination. “X” is any haplotype symbol;
“S(i)” and “F(i)” are unique recombination marks; “-” is an ε-transition; “w” is the
probability of recombination. Left: A transducer producing all substrings labeled by
start- and end-points. Right: A transducer tiling substrings.

XBC. Since ancient recombinations are more likely to be shared by a large fraction

of the present population, the effect of haplotype recombination in a modern sam-

ple can be approximated as recombination between an unknown number of ancestral

haplotypes.

With transducers we can model the effect of recombination directly, without

any assumptions about the number of ancestral haplotypes, the locations of recombi-

nation breakpoints, or the correlation of breakpoint locations between individuals. To

do so, we represent recombination using two transducers: Tsub (figure A.2(a)), produc-

ing all subsequences H i:j of the full haplotype distribution H, and Ttile (figure A.2(b)),

forming tilings of these haplotype distributions covering H = H1:L. Equation (A.5)

then becomes

H t+1 = N
(

⋃

i

O
(
K

(
P t+1

i ◦ Tsub

)
◦ Ttile

)
)

(A.8)

where K denotes Kleene closure. Note that updates to the haplotype distribution

reflecting recombination and observed genotypes are independent.

Tsub and Ttile correspond to the following likelihood function:

L(H|G) =
∏

i

∑

r1,r2∈R

p(r1)p(r2)
∑

h1,h2∈H

p(h1|r1)p(h2|r2)C(gi, h1, h2) (A.9)

96

Figure A.3: Runtime versus L (left) and N (right) for the basic transducer.

where R = {r|r ∈ P([1, L]), 1 ∈ r, L ∈ r}, p(r) = (1− w)|r| for recombination proba-

bility 0 < w ≤ 1, and

p(h|r) =
|r|−1∏

i=1

∑

h2∈H

[
h1:ri−1

2 = h1:ri−1 ∧ hri+1:L
2 = hri+1:L

]
p(h2)

A.3 Experiments

We implemented our models using the AT&T FSM Library [MPR98], which

supplies command-line tools performing the fundamental transducer operations. We

first assessed the model’s accuracy and performance on synthetic data, then com-

pared it to representative haplotyping programs on real trio data from HapMap. All

experiments were run on a 1.86 GHz Intel Xeon with 8GB memory.

Figure A.3 shows runtime versus N and L for the basic (section A.2.2) trans-

ducer over genotypes created from 4 random haplotypes without missing data. The

runtime appears linear in N but sublinear in L because, for this particular dataset

and implementation, the most expensive operation is the union and subsequent sim-

plification of the N individual haplotype distributions.

We also applied the basic model, this time with missing data, to the CEPH

trio data from HapMap. We assessed its accuracy by comparing our most likely

haplotypes to those inferred by HAP [HE04], a state-of-the-art haplotype phasing

program, within each HAP-reported recombination block. For all blocks of length

greater than four, our method’s 4 most probable haplotypes matched those reported

97

by HAP with at most one non-matching position among them.

A.4 Conclusion and future work

We have shown how finite state transducers are useful for haplotype phasing,

and that they scale efficiently to long sequences and large numbers of individuals.

Also, because independently-developed submodels can be composed automatically

and efficiently, transducers can be used to model many effects simultaneously. Geno-

type data contains many such interacting effects. Some for which transducer models

seem appropriate are phylogenies with multiple siblings, copy number variation, hap-

lotype inversion, and raw copy number data. To handle these new factors, the models

discussed so far must be extended to handle continuous inputs, tied weights, and de-

pendency structures with complex n-ary transducers.

Bibliography

[AC05] D Altshuler and International HapMap Consortium. A haplotype map
of the human genome. Nature, 437(7063):1299–320, 2005.

[AGM+90] SF Altschul, W Gish, W Miller, EW Myers, and DJ Lipman. Basic local
alignment search tool. J Mol Biol, 215(3):403–10, October 1990.

[AMS+97] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman. Gapped BLAST and PSI–BLAST: a new
generation of protein database search programs. Nucleic Acids Res.,
25:3389–3402, 1997.

[BAW+05] A Bairoch, R Apweiler, CH Wu, WC Barker, BB, S Ferro, E Gasteiger,
H Huang, R Lopez, M Magrane, MJ Martin, DA Natale, C O’Donovan,
N Redaschi, and LL Yeh. The universal protein resource (UniProt).
Nucl. Acids Res., 33(suppl. 1):D154–159, 2005.

[BBS06] A Bagchi, A Bhargava, and T Suel. Approximate maximum weighted
branchings. Information Processing Letters, February 2006.

[BD02] MA Batzer and PL Deininger. Alu repeats and the human genomic
diversity. Nature rev. genet., 3:370–9, May 2002.

[BK04] N Bannert and R Kurth. Retroelements and the human genome: new
perspectives on an old relation. PNAS, 101(suppl. 2):14572–9, 2004.

[Bla72] RE Blahut. Computation of channel capacity and rate distortion func-
tion. IEEE Trans Inform Theory, IT-18:460–73, 1972.

[BLE03] JA Bailey, G Liu, and EE Eichler. An Alu transposition model for
the origin and expansion of human segmental duplications. Am J Hum
Genet, 73:823–34, 2003.

[BLV+08] G Bourque, B Leong, VB Vega, X Chen, YL Lee, KG Srinivasan,
JL Chew, Y Ruan, CL Wei, HH Ng, and ET Liu. Evolution of the
mammalian transcription factor binding repertoire via transposable el-
ements. Genome Res, 18(11):1752–1762, 2008.

98

99

[BRD+04] N Beerenwinkel, J Rahnenf uhrer, M D aumer, D Homann, R Kaiser,
J Selbig, and T Lengauer. Learning multiple evolutionary pathways
from cross-sectional data. In Proc. RECOMB, pages 36–44, 2004.

[CBC+98] WM Chu, R Ballard, BW Carpick, BR Williams, and CW Schmid. Po-
tential Alu function: regulation of the activity ofdouble-stranded RNA-
activated kinase PKR. Mol Cell Biol, 17:804–12, 1998.

[CEKN04] CS Carlson, MA Eberle, L Kruglyak, and DA Nickerson. Mapping
complex disease loci in whole-genome association studies. Nature,
429(6990):446–52, May 2004.

[CH97] DM Chickering and D Heckerman. Efficient approximations for the
marginal likelihood of bayesian networks with hidden variables. Machine
Learning, 29(2-3):181–212, 1997.

[CHB04] R Cordaux, DJ Hedges, and MA Batzer. Retrotransposition of Alu
elements: how many sources? Trends Genet., 20(10):464–7, October
2004.

[CHCB04] GE Crooks, G Hon, JM Chandonia, and SE Brenner. WebLogo: a
sequence logo generator. Genome Research, 14(6):1188–90, 2004.

[CL65] YJ Chu and TH Liu. On the shortest arborescence of a directed graph.
Sci. Sinica, 14:1396–1400, 1965.

[CRE07] E Corona, B Raphael, and E Eskin. Identification of deletion polymor-
phisms from haplotypes. In Proc. RECOMB, volume 4453 of LNBI,
pages 354–365, 2007., 2007.

[CT91] TM Cover and JA Thomas. The elements of information theory. Plenum
Press, New York, 1991.

[CT02] G Chechik and N Tishby. Extracting relevant structures with side in-
formation. In Proc. NIPS, Cambridge, MA, 2002. MIT Press.

[Daw04] R Dawkins. The Ancestor’s Tale. Houghton Mifflin, Boston, 2004.

[DEH03] M Dewannieux, C Esnault, and T Heidemann. LINE-mediated retro-
transposition of marked Alu sequences. Nat Genet, 35:41–8, 2003.

[DRS+01] MJ Daly, JD Rioux, SF Schaffner, TJ Hudson, and ES Lander. High-
resolution haplotype structure in the human genome. Nature Genet.,
29(2):229–32, 2001.

[Edm67] J Edmonds. Optimum branchings. J Res. NBS, 71B:233–40, 1967.

100

[ES95] L Excoffier and M Slatkin. Maximum-likelihood estimation of molecular
haplotype frequenci es in a diploid population. Mol Biol Evol, 12(5):921–
7, Sept 1995.

[Fel04] J Felsenstein. PHYLIP (phylogeny inference package) version 3.6. Dis-
tributed by the author. Department of Genome Sciences, University of
Washington, Seattle, 2004.

[FMST01] N Friedman, O Mosenzon, N Slonim, and N Tishby. Multivariate infor-
mation bottleneck. In Uncertainty in Artificial Intelligence: Proceedings
of the Seventeenth Conference (UAI-2001), pages 152–161, San Fran-
cisco, CA, 2001. Morgan Kaufmann Publishers.

[FNPP01] N Friedman, M Ninio, I Pe’er, and T Pupko. A structural EM algorithm
for phylogentic inference. J. Comp. Biol., 2001.

[GDHM05] B Goebel, Z Dawy, J Hagenauer, and JC Mueller. An approximation
to the distribution of finite sample size mutual information estimates.
In IEEE International Conference on Communications (ICC), Seoul,
South Korea, May 2005.

[Geo03] L Georgiadis. Arborescence optimization problems solvable by edmond-
salgorithm. Theor. Comp. Sci., 1–3(301):427–37, 2003.

[GH03] S Goldsmith-Fischman and B Honig. Structural genomics: computa-
tional methods for structure analysis. Protein Sci, 12(9):1813–21, 2003.

[GL00] N Gilbert and D Labuda. Evolutionary inventions and continuity of
CORE-SINEs in mammals. J. Mol. Biol., 298:365–77, 2000.

[GSL+05] K Gunderson, F Steemers, G Lee, L Mendoza, and A Chee. A genome-
wide scalable SNP genotyping assay using microarray technology. Nat.
Genet., 37:549–54, 2005.

[HA85] L Hubert and P Arabie. Comparing partitions. J Classification, pages
193–218, 1985.

[Har75] JA Hartigan. Clustering. Wiley, 1975.

[HB05] DJ Hedges and MA Batzer. From the margins of the genome: mobile
elements shape primate evolution. BioEssays, 27(8):785–94, 2005.

[HE04] E Halperin and E Eskin. Haplotype reconstruction from genotype data
using imperfect phylogeny. Bioinformatics, 20(12):1842–9, 2004.

[HH06] E Halperin and E Hazan. HAPLOFREQ–estimating haplotype
frequencies efficiently. J Comp Bio, 13:481–500, Mar 2006.
10.1089/cmb.2006.13.481.

101

[HSN+05] DA Hinds, LL Stuve, GB Nilsen, E Halperin, E Eskin, DG Ballinger,
KA Frazer, and DR Cox. Whole genome patterns of common DNA
variation in diverse human populations. Science, 307:1072–9, 2005.

[HXW+05] K Han, J Xing, H Wang, DJ Hedges, RK Garber, R Cordaux, and
MA Batzer. Under the genomic radar: the stealth model of Alu ampli-
fication. Genome Res., 15:655–64, 2005.

[Int01] International Human Genome Sequencing Consortium. Initial sequenc-
ing and analysis of the human genome. Nature, 409:860–921, 2001.

[JMF99] AK Jain, MN Murty, and PJ Flynn. Data clustering: a review. ACM
computing surveys, 31(3):265–323, 1999.

[JTZ04] D Jiang, C Tang, and A Zhang. Cluster analysis for gene expression
data: A survey. IEEE Trans. Knowledge Data Eng., 16(11):1370–86,
2004.

[Jur00] J Jurka. Repbase update: A database and an electronic journal of
repetitive elements. Trends Genet, 9:418–20, 2000.

[Jur04] J Jurka. Evolutionary impact of human Alu repetitive elements. Current
Opinion in Genetics & Development, 14(6):603–8, December 2004.

[KFF+02] CL Kuiken, B Foley, E Freed, B Hahn, B Korber, P A Marx, F Mc-
Cutchan, JW Mellors, and S Wolinksy. HIV sequence compendium.
Technical Report LA-UR 03-3564, Theoretical Biology and Biophysics
Group, Los Alamos National Laboratory, Los Alamos, NM, 2002.

[KHR04] TM Kim, SJ Hong, and MG Rhyu. Periodic explosive expansion of
human retroelements associated with the evolution of the hominoid pri-
mate. J Korean Med Sci, 19:177–85, 2004.

[KJR04] TM Kim, YC Jung, and MG Rhyu. Alu and l1 retroelements are cor-
related with the tissue extent and peak rate of gene expression, respec-
tively. J Korean Med Sci, pages 783–92, 2004.

[KMKM02] K Katoh, K Misawa, K Kuma, and T Miyata. MAFFT: a novel method
for rapid multiple sequence alignment based on fast fourier transform.
Nucl. Acids Res., 30(14):3059–66, 2002.

[KS05] G Kimmel and R Shamir. GERBIL: Genotype resolution and block
identification using likelihood. PNAS, 102(1):158–62, 2005.

[Lot05] M Lothaire, editor. Applied Combinatorics on Words, volume 105 of En-
cyclopedia of Mathematics and its Applications. Cambridge University
Press, 2005.

102

[MBHC95] AG Murzin, SE Brenner, T Hubbard, and C Chothia. SCOP: a struc-
tural classification of proteins database for the investigation of sequences
and structures. J Mol Biol, 247:536–40, 1995.

[MBI+06] RE Mills, EA Bennett, RC Iskow, CT Luttig, C Tsui, WS Pittard, and
SE Devine. Recently mobilized transposons in the human and chim-
panzee genomes. Am J Hum Genet, 78(4):671–80, 2006.

[MC04] WJ Miller and P Capy, editors. Mobile genetic elements, chapter Retro-
transposon mapping in molecular systematics. Humana, 2004.

[MDea06] J Marchini, P Donnelly, and et al. A comparison of phasing algorithms
for trios and unrelated individuals. Am J Hum Genet, 78:437–50, Mar
2006. 10.1086/500808.

[MH98] M Meila and D Heckerman. An experimental comparison of several
clustering and initialization methods. Technical Report MSR-TR-98-
06, Microsoft Research, 1998.

[MH09] CD Malone and GJ Hannon. Small RNAs as guardians of the genome.
Cell, 136:656–68, 2009.

[MMea04] H Matsuzaki, R Mei, and et al. Genotyping over 100,000 SNPs on a
pair of oligonucleotide arrays. Nat. Methods., 1:109–11, 2004.

[MMH+04] GA McVean, SR Myers, S Hunt, P Deloukas, DR Bentley, and P Don-
nelly. The fine-scale structure of recombination rate variation in the
human genome. Science, 304(5670):581–4, 2004.

[MPR98] M Mohri, FCN Pereira, and M Riley. A rational design for a weighted
finite-state transducer library. In LNCS, volume 1436, 1998.

[MPR02] M Mohri, FCN Pereira, and M Riley. Weighted finite-state transducers
in speech recognition. Computer Speech and Language, 16(1):69–88,
2002.

[NQXL02] T Niu, S Qin, X Xu, and J Liu. Bayesian haplotype inference for multiple
linked single nucleotide polymorphisms. Am. J. Hum. Genet., 70:157–
169, 2002.

[NY04] N Nagarajan and G Yona. Automatic prediction of protein domains from
sequence information using a hybrid learning system. Bioinformatics,
20(9):1335–60, Jun 2004.

[OK05] EM Ostertag and HH Kazazian. LINEs in mind. Nature, 435:890–1,
2005.

103

[PCea01] N Patil, DR Cox, and et al. Blocks of limited haplotype diversity re-
vealed by high-resolution scanning of human chromosome 21. Science,
294(5547):1719–23, Nov 23 2001.

[PEP04] AL Price, E Eskin, and PA Pevzner. Whole genome analysis of Alu
repeat elements reveals complex evolutionary history. Genome Res.,
14:2245–52, 2004.

[PJP05] AL Price, NC Jones, and PA Pevzner. De novo identication of repeat
families in large genomes. Bioinformatics, 23 Suppl. 1:i351–8, 2005.

[PSD00] JK Pritchard, M Stephens, and PJ Donnelly. Inference of population
structure using multilocus genotype data. Genetics, 155:945–59, 2000.

[RAB+00] DL Robertson, JP Anderson, JA Bradac, JK Carr, B Foley,
RK Funkhouser, F Gao, and Hahn BH. HIV-1 nomenclature proposal.
Science, 288(5463):55–6, 2000.

[RKMU05] P Rastas, M Koivisto, H Mannila, and E Ukkonen. A hidden Markov
technique for haplotype reconstruction. In R Casadio and G Myers,
editors, WABI, volume 3692 of LNCS, pages 140–51, 2005.

[RM96] N Risch and K Merikangas. The future of genetic studies of complex
human diseases. Science., 273:1516–7, 1996.

[RS93] B Rost and C Sander. Prediction of protein secondary structure at
better than 70% accuracy. J Mol Biol, 232:584–99, 1993.

[RST94] D Ron, Y Singer, and N Tishby. The power of amnesia. In JD Cowan,
G Tesauro, and J Alspector, editors, NIPS, volume 6, pages 176–83.
Morgan Kaufmann Publishers, Inc., 1994.

[SBHHW04] N Shental, A Bar-Hillel, T Hertz, and D Weinshall. Computing gaussian
mixture models with EM using equivalence constraints. In S Thrun,
L Saul, and B Schölkopf, editors, Proc. NIPS 16. MIT Press, Cambridge,
MA, 2004.

[SBR+99] PM Sharp, E Bailes, DL Robertson, F Gao, and BH Hahn. Origins and
evolution of AIDS viruses. Biol Bull, 196(3):338–42, 1999.

[SHG06] AFA Smit, R Hubley, and P Green. RepeatMasker, 2006.

[Slo02] N Slonim. The Information Bottleneck: Theory and Applications. PhD
thesis, Hebrew University, Jerusalem, Israel, 2002.

[SRX+03] AH Salem, DA Ray, Jinchuan Xing, Pauline A. Callinan, Jeremy S. My-
ers, Dale J. Hedges, Randall K. Garber, David J. Witherspoon, Lynn B.
Jorde, and Mark A. Batzer. Alu elements and hominid phylogenetics.
PNAS, 100(22):12787–12791, 2003.

104

[SSD01] M Stephens, N Smith, and P Donnelly. A new statistical method for hap-
lotype reconstruction from population data. Am J Hum Genet, 68:978–
89, 2001.

[Suz93] J Suzuki. A construction of Bayesian networks from databases based on
an MDL scheme. In Proc. UAI, pages 266–73, 1993.

[SV98] M Studenty and J Vejnarova. The multi-information function as a tool
for measuring stochastic dependence. In MI Jordan, editor, Learning in
Graphical Models, pages 261–297. MIT Press, Cambridge, MA, 1998.

[Sve00] ED Sverdlov. Retroviruses and primate evolution. Bioessays, 22:161–71,
2000.

[SW81] TF Smith and MS Waterman. Identification of common molecular sub-
sequences. J Mol Biol, 147:195–197, 1981.

[TC02] JR True and SB Carroll. Gene co-option in physiological and morpho-
logical evolution. Ann Rev Cell and Devel Biol, 18:53–80, 2002.

[The08] The UniProt Consortium. The universal protein resource (UniProt).
Nucleic Acids Res, 36:D190–5, 2008.

[THG94] JD Thompson, DG Higgins, and TJ Gibson. CLUSTAL W: improv-
ing the sensitivity of progressivemultiple sequence alignment through
sequence weighting,position-specific gap penalties and weight matrix
choice. Nucleic Acids Res, 22:4673–80, 1994.

[TKM04] Y Takebe, S Kusagawa, and K Motomura. Molecular epidemiology of
HIV: Tracking AIDS pandemic. Pediatrics International, 46(2):236–244,
2004.

[TPB99] N Tishby, FC Pereira, and W Bialek. The information bottleneck
method. In Proc. of the 37th Annual Allerton Conference on Com-
munication, Control and Computing, pages 368–77, 1999.

[TTB+03] JW Thomas, JW Touchman, RW Blakesley, GG Bouffard,
SM Beckstrom-Sternberg, EH Margulies, M Blanchette, AC Siepel,
PJ Thomas, and JC McDowell. Comparative analyses of multi-species
sequences from targeted genomic regions. Nature, 424:788–93, 2003.

[VP90] TS Verma and J Pearl. Equivalence and synthesis of causal models.
Technical Report R-150, UC Los Angeles, Dept. of Comp. Sci., 1990.

[WRO+03] WS Watkins, AR Rogers, CT Ostler, S Wooding, MJ Bamshad, Brass-
ington, E Anna-Marie, and ML Carroll. Genetic Variation Among
World Populations: Inferences From 100 Alu Insertion Polymorphisms.
Genome Res., 13(7):1607–18, 2003.

105

[XHH+04] J Xing, DJ Hedges, K Han, H Wang, R Cordaux, and MA Batzer.
Alu element mutation spectra: Molecular clocks and the effect of DNA
methylation. J Mol Biol, 344:675–82, 2004.

[XNJR03] EP Xing, AY Ng, MI Jordan, and S Russell. Distance metric learn-
ing with application to clustering with side-information. In S Becker,
S Thrun, and K Obermayer, editors, Proc. NIPS 15, pages 505–512.
MIT Press, Cambridge, MA, 2003.

[YL02] G Yona and M Levitt. Within the twilight zone: A sensitive profile-
profile comparison tool based on information theory. J Mol Biol,
315:1257–75, 2002.

[ZH05] M Zaffalon and M Hutter. Robust inference of trees. Ann. Math. and
Artificial Intelligence, 45(1–2):215–39, 2005.

[ZM05] Y Zhou and B Mishra. Quantifying the mechanisms for segmental du-
plications in mammalian genomes by statistical analysis and modeling.
PNAS, 102(11):4051–6, 2005.

[ZRSL98] E Zietkiewicz, C Richer, D Sinnett, and D Labuda. Monophyletic origin
of Alu elements in primates. J. Mol. Evol., 47(2):172–82, 1998.

