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Abstract

Social-enabled Urban Data Analytics

by

Danqing Zhang

Doctor of Philosophy in Engineering - Civil & Environmental Engineering

University of California, Berkeley

Assistant Professor Alexei Pozdnukhov, Chair

Increasing traffic congestion, vehicle emissions and commuters delay have been major chal-
lenges for urban transportation systems for years. The economic cost of traffic congestion
in the US is Increasing from 200 billion in 2013 to 293 billion in 2030. There is an increas-
ing need for a better solution to long-term transportation demand forecasting for urban
infrastructure planning, and solution to short-term traffic prediction for managing existing
urban infrastructure. Accordingly, understanding how urban systems operate and evolve
through modeling individuals’ daily urban activities has been a major focus of transportation
planners, urban planners, and geographers. Traffic data (loop sensors, surveillance cameras,
and GPS in taxis, buses), survey data (ACS, CHTS), mobile phone signals (CDR and GPS)
and Location Based Social Network (LBSN) data (Facebook, Twitter, Yelp, and Foursquare)
have enabled data-driven research on transportation behavior research. The data-driven
research, urban data analytics, is an interdisciplinary field where machine learning/ deep
learning methods from computer science and optimization/ simulation methods from opera-
tion research are applied in conventional city-related fields using spatial-temporal data. In
this dissertation, we aim to add the third dimension, social, to urban data analytics research
using social-spatial-temporal data, whose key topic is understanding how friendship influences
human behavior over time and space. In this era of transformative mobility, this can help
better design policies and investment strategies for managing existing urban infrastructure
and forecasting future urban infrastructure planning. In this dissertation, we explored two
research directions on social-enabled urban data analytics. First, we developed new machine
learning models for social discrete choice model, bridging the gap between discrete choice
modeling research and computer science research. Second, we developed a methodology
framework for synthetic population synthesis using both small data and big data.

The first part of the dissertation focus on modeling social influence on human behavior from
a graph modeling perspective, while conforming to the discrete choice modeling framework.
The proposed models can be used to model how friends influence individual’s travel mode
choice and other transportation related choices, which is important to transportation demand
forecasting. We propose two novel models with scalable training algorithms: local logistics
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graph regularization (LLGR) and latent class graph regularization (LCGR) models. We add
social regularization to represent similarity between friends, and we introduce latent classes
to account for possible preference discrepancies between different social groups. Training of
the LLGR model is performed using alternating direction method of multipliers (ADMM),
and training of the LCGR model is performed using a specialized Monte Carlo expectation
maximization (MCEM) algorithm. Scalability to large graphs is achieved by parallelizing
computation in both the expectation and the maximization steps. The LCGR model is the
first latent class classification model that incorporates social relationships among individuals
represented by a given graph. To evaluate our two models, we consider three classes of data:
small synthetic data to illustrate the knobs of the method, small real data to illustrate one
social science use case, and large real data to illustrate a typical large-scale use case in the
internet and social media applications. We experiment on synthetic datasets to empirically
explain when the proposed model is better than vanilla classification models that do not
exploit graph structure. We illustrate how the graph structure and labels, assigned to each
node of the graph, need to satisfy certain reasonable properties. We also experiment on
real-world data, including both small scale and large scale real-world datasets, to demonstrate
on which types of datasets our model can be expected to outperform state-of-the-art models.

This dissertation also develops an algorithmic procedure to incorporate social information
into population synthesizer, which is an essential step to incorporate social information into
the transportation simulation framework. Agent-based modeling in transportation problems
requires detailed information on each of the agents that represent the population in the
region of a study. To extend the agent-based transportation modeling with social influence, a
connected synthetic population with both synthetic features and its social networks need to
be simulated. However, either the traditional manually-collected household survey data (ACS)
or the recent large-scale passively-collected Call Detail Records (CDR) alone lacks features.
This work proposes an algorithmic procedure that makes use of both traditional survey data
as well as digital records of networking and human behaviors to generate connected synthetic
populations. This proposed framework for connected population synthesis is applicable
to cities or metropolitan regions where data availability allows for the estimation of the
component models. The generated populations coupled with recent advances in graph (social
networks) algorithms can be used for testing transportation simulation scenarios with different
social factors.
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Chapter 1

Introduction

1.1 Motivation

Urban data analytics (or urban computing [140, 139]) is an interdisciplinary field where
machine learning/ deep learning methods from computer science and optimization/ simu-
lation methods from operation research are applied in conventional city-related fields, like
transportation, environment, social science, ecology, urban planning and civil engineering.
Sensing technologies, data management tools and large-scale GPU computing infrastructure
have made it much easier to collect, store and analyze big data in urban areas.

For urban data analytics on the topic of transportation machine learning models and
transportation simulation, traffic data (loop sensors, surveillance cameras, and GPS in taxis,
buses), survey data (ACS, CHTS), mobile phone signals (CDR and GPS) and Location Based
Social Network (LBSN) data (Facebook, Twitter, Yelp and Foursquare) have been the main
data sources. The availability of these data sources has enabled urban data analytics research
at different levels, below are some research topics:

• Marco Traffic Flow Prediction: Call Detail Record (CDR) data and traffic sensor data
have been used for route flow (traffic demand) estimation [128, 49, 13] through convex
optimization. Loop detectors data and sensor data have been used for traffic forecasting
through spatio-temporal machine learning models [28] and deep learning models [73,
18, 29]. While in classic traffic flow forecasting research in transportation engineering
and operation research, queuing theory and simulations are the primary methods [33].

• Exploring urban spatial structure: Human mobility data and POIs have been used for
identifying functional regions in a city [135, 3]. Taxi trajectories have been used for
finding underlying problems of Beijing’s road network [136].

• Human Mobility Location Prediction and Activity Recognition: Statistical models like
Hidden Markov Chain Model (HMM) [95, 79, 52, 131, 2], Conditional Random Field
(CRF) [124] and Input-Output Hidden Markov Chain Model (IO-HMM) model [133]
have been used to understand human mobility patterns. IO-HMM [133, 74] has also
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been used on CDR data to learn individual activity pattern and a corresponding LSTM
model [74] has been used to generate activity chain, which is used as the input data to
a traffic simulation software MATSim [6].

Social-enabled urban computing adds the third dimension, social, to spatial-temporal
urban computing. CDR data and Location Based Social Networks (LBSN) data have been
the main data sources for social-enabled urban data analytics research. There has been
little research on social-enabled urban data analytics, although urban data analytics is
a popular research field. Most of the early works on CDR social network data focus on
exploring social networks structure patterns, e.g., the persistence of links with respect to
popular node features like degree, centrality, and clustering coefficient [58]. Recent works on
networks based on CDR data focus on using location information, and for this most papers
focus on large-scale community pattern. For example, in [97] the authors studied how large
communities correspond to spatial administrative boundaries, in [42] the authors studied
how distance decay effect and spatial continuity control the process of partitioning CDR
communities. Other works focus on exploring CDR social networks at the community level,
comparing homogeneity of location, age, and mobility pattern within a community, and the
heterogeneity of these features between different communities [91, 110]. Furthermore, there
has been work on dynamic CDR social network for discovering the relationship between age
and size of communities [91]. Other works use CDR data or LBSN data to find individual
level pattern, like distance and friendship, mobility and friendship. In [93] the authors found
that a large portion of places visited is within several social circles centered at their nearest
social ties’ locations. In [20] the authors showed that social relationships from CDR data can
explain about 10% of all human movement and developed a model using the social network
structure to explain periodic short-range movements with travel. LBSN data, like Facebook,
Twitter, Yelp, Foursquare, and Gowalla, has mostly been used for point of interests (POI)
recommendations based on social network information [17, 75, 137].

1.1.1 Background and motivation for social discrete choice model
Big data is generated every day. It can be generated from online social networks like Facebook
and Twitter, web services like Amazon and eBay, and cellular network providers like AT&T
and Verizon. A dynamic large-scale social network can be generated based on the big raw
data. How to efficiently utilize the large-scale social network information for individual
analysis, and how to use small-scale community information to explore collaborative activity
patterns of a group of individuals, are interesting topics to explore.

On the other hand, Social influence on human behavior is a topic that both social scientists
and computer scientists are interested in, yet they approach this topic in different ways.
Social scientists propose various models with latent class and latent variable in the discrete
choice modeling framework, and most of the time focus on small graphs. Computer scientists
generalize this problem to graph-based problems and propose various methods to deal with
large graphs.
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Figure 1.1: Large scale graph data

Figure 1.2: Social influence on human behavior
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In social science, social preferences have been shown to play an important role in deter-
mining the extent to which individuals are likely to exhibit a certain behavior. There is a lot
of experimental research in different social science fields that studies the social influence in
different ways. For example, (1) recently, travel behavior researchers have become interested
in the effects of social influence on travel choice behavior. Conformity behavior as an effect
of social influence has been investigated in various qualitative and quantitative studies about
travel-mode choice ([34, 94]). There is also some research on the intention to purchase hybrid
electric vehicles [5, 63] and attitudes toward bicycling [45]. Recent work studying social
influence on car-sharing decision ([64]) shows that people tend to conform to their networks
for the car-sharing decision, and the strength of social influence tends to vary according to
the social distance. (2) There is also some research studying social influence on health, like
obesity [24, 51]and pregnancy [83, 11].

In computer science, the social discrete choice problem is formulated into a semi-supervised
graph-based classification problem, for which three mainstream solutions exist. (1) The first
category is the graph regularization approach, which adds a graph Laplacian regularization
term to the objective function of supervised loss [142, 141, 125]. In this way, connected
nodes tend to have similar probability distribution of labels, which means nearby nodes in a
graph are likely to have the same labels. (2) The second category is the random-walk based
index-context pair approach. This approach introduces the idea of skip-gram framework [81,
82] from natural language processing into node embedding. The objective is to maximize the
probability of observing a context based on an index (node), where the context can either
be k-hops neighbors of the node [116] or the random path of the node [92, 47]. By adding
an extra supervised term to the objective function, both node embedding and classification
tasks can be done simultaneously [130]. (3) The third approach is the deep learning approach.
Recent development in deep learning has extended the convolutional networks idea from
image to graphs [27, 56, 65]. These models are feedforward neural networks that directly
apply spectral convolution operations to inputs.

To design a scalable yet predictive model for social discrete choice models is vital for
both explanatory research in social science and large-scale machine learning applications in
computer science. Our algorithmic models, Local Logistics Graph Regularization (LLGR)
and Latent Class Graph Regularization (LCGR), bridge the gap between the two distinct
research fields. We also propose Localized Social Discrete Choice Model, combining local
graph clustering (LGC) with Local Logistics Graph Regularization (LLGR) for applications
on large graphs with local attention.

1.1.2 Background and motivation for social-enabled
transportation simulation

Increasing traffic congestion, vehicle emissions and commuters delay have been major chal-
lenges for urban transportation systems for years. The economic cost of traffic congestion
in the US is increasing from 200 billion in 2013 to 293 billion in 2030 [104]. There is an
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Figure 1.3: Challenges for urban transportation system

increasing need for a better solution to long-term transportation demand forecasting for urban
infrastructure planning, and solution to short-term traffic prediction for managing existing
urban infrastructure. Accordingly, understanding how urban systems operate and evolve
through modeling individuals’ daily urban activities has been a major focus of transportation
planners, urban planners, and geographers. To address operational needs in planning and pol-
icy decision making, reliable agent-based land use and urban transportation micro-simulation
frameworks such as TRANUS [26], UrbanSIM [118], ILUTE [103], MATSim [6], MEPLAN [23]
are becoming popular. Traditional agent-based travel models utilize only the survey data like
American Community (ACS) or National Household Travel Survey (NHTS) as the input data.
However, the survey data has the problem of data deficiencies and data latencies. Recently,
much research has focused on utilizing ubiquitous cellular networks data and location-based
services data as input data [133, 60, 62, 74].

However, human aspect in the agent-based travel models is not explored and is an
interesting topic. For example, how will your friend influence your commuting trip traveling
mode? How will your friends influence your decision to buy an electrical vehicle? What is
the difference of the traveling mode between going to the supermarket alone and going to
the supermarket together with friends? What is the next activity if I go to the supermarket
alone or go to the supermarket with my friends? If I am carpooling with someone, when
will I prefer to carpool with him again or hang out with him? How to design a socially and
environmentally car-pool mechanism for commuting trips?

To answer these questions, we have to enable the current agent-based travel models with
social information. To efficiently incorporate social information into the agent-based modeling
framework, below three parts need to be modified from Figure 1.4, as shown in Figure 2.1: (1)
connected synthetic population, with detailed information on each of the agents and the social
connections between individuals, is needed to be provided as input to the micro-simulation
model; (2) activity plan generator with social interaction, is needed to generate the activity
plans for the connected synthetic population, which is also the input to the micro-simulation
model; (3) social discrete choice model is needed to model the route choice of individuals
given activity plans and social networks; (4) social carpool scenarios mechanism design is
needed to incorporate the social carpooling mode choice into the microsimulation system.

The review of the state-of-the-art models in different components are reviewed separately
in different chapters of this thesis. Chapter 3 and chapter 5 are self-contained research papers.
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Figure 1.4: Agent-based travel model utilizing CDR and ACS [133]
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Chapter 2

Problem Statement and Contributions

2.1 Objective and challenges

This dissertation aims to explore two directions for future research on social-enabled urban
data analytics:

• We explored how to develop new machine learning models well suited to the social urban
data analytics research. We focus on modeling social influence on human behavior
from a graph modeling perspective while conforming to the discrete choice modeling
framework.

• We explored how to incorporate social factor into the existing urban simulation frame-
work of urban data analytics. We focus on developing an algorithmic procedure that
makes use of both traditional survey data as well as digital records of networking and
human behaviors to generate connected synthetic populations.

This dissertation also provides the derivation and formulation of all required steps of the
Alternating Direction Method of Multipliers (ADMM) algorithm in the context of the specific
type of graph regularization with both global and local variables, as well as the Expectation
Maximization (EM) algorithm in the context of the latent class model and the latent class
graph regularization model. A localized version of the proposed social discrete choice model,
which can deal with huge graph for certain type of modeling task, is also introduced in this
dissertation. Throughout this dissertation, models are tested on real-world small data and
big data. Predicting and modeling results are presented to empirically demonstrate the
performance of our models.

2.2 Proposed Research Pipeline

This thesis explores how to add social information to urban data analytics, with the potential
application in social-enabled transportation simulation. The thesis is organized in the below
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Figure 2.1: Proposed research pipeline

way

• chapter3 The central topic of social-enabled transportation simulation is how friends
influence individual’s travel mode choice and other transportation related choices. In
chapter 3, two novel machine learning algorithms: Local Logistics Graph Regularization
(LLGR) and Latent Class Graph Regularization (LCGR) are proposed to solve the
social discrete choice models as a graph-based semi-supervised classification problem.
Both small scale and large scale experiments are conducted to illustrate the usefulness
of the methodology.

• chapter4. Chapter 4 entails several parts: (1) the discussions of the social discrete
models; (2) the derivation and formulation of latent class model, LLGR and LCGR
models: detailed line by line derivation and proof of correctness are provided; (3)
extension of social discrete choice models: localized social discrete choice model.

• chapter5 In chapter 5, a novel data simulation framework is proposed to make use
of both traditional survey data as well as digital records of networking and human
behaviors to generate connected synthetic populations. The generated populations
coupled with recent advances in graph (social networks) algorithms can be used for
testing transportation simulation scenarios with different social factors.

• chapter6 Chapter 6 provides a comprehensive summary of the research motivation,
objective, adopted methodological frameworks and corresponding findings. This chapter
also focuses on identifying future research directions for the proposed social-enabled
urban data analytics.
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List Of Abbreviations Used

ADMM Alternating Direction Method of Multipliers
LSTM Long-Short Term Memory
GCN Graph Convolutional Networks
LLGR Local Logistics Graph Regularization
LCGR Latent Class Graph Regularization
LTD-Graph LSTM Localized Temporal Dynamic Graph LSTM
CDR Call Detail Records
ACS American Community Survey
NHTS National Household Travel Survey
TAZ Traffic Analysis Zone
LGC Local Graph Clustering
DCM Discrete Choice Models
EM Expectation Maximization Algorithm
MCEM Monte Carlo Expectation Maximization Algorithm
NLP Natural Language Processing
word2vec word2vec word embedding algorithm from NLP
node2vec node2vec node embedding algorithm
MCMC Markov chain Monte Carlo algorithm
ERGM Exponential Random Graph Model
IPF Iterative Proportional Fitting
BIC Bayesian information criterion
AIC Akaike information criterion
LLBP Lagrangian Relaxation Lower Bound
MO Modus Operandi
DNN Deep Neural Networks
NCP Network Community Profile
DCP Distance Community Profile
DnCP Density Community Profile
LBSN Location Based Social Networks
HMM Hidden Markov Model
IOHMM Input- Output Hidden Markov Model
RNN Recurrent Neural Networks
LSTM Long short-term memory

Table 2.1: Abbreviations

2.3 Key Contributions

The key contributions of this research may be summarized as:



CHAPTER 2. PROBLEM STATEMENT AND CONTRIBUTIONS 10

• Social Discrete Choice Models (chapter3)

– Proposed the first model that combines graph regularization with latent class
model, with rigorous mathematical formulation

– Proposed scalable parameter estimation strategy for both LLGR and LCGR
models.

– Empirically illustrated the impact of graph structure by varying the connectivity
between different classes in the graph, and illustrated the impact of label assignment
by varying the discrepancies of labels in communities of the graph.

– Analyzed relative performance of the Local Logistics Graph Regularization (LLGR)
and Latent Class Graph Regularization (LCGR) models compared with baseline
logistics regression model and latent class model, on small scale dataset

– Analyzed relative performance of the Local Logistics Graph Regularization (LLGR)
model compared with baseline logistics regression model, Graph Convolutional
Networks (GCN) model, random-walk index-context pair node embedding model
on large scale dataset

• Social Discrete Choice Models Appendix

– Provided empirical result of parallel block Markov chain Monte Carlo (MCMC)
and explored the possibilities of running this algorithm in E step fo the Latent
Class Graph Regularization (LCGR) model.

– Provided the derivation and formulation of all required steps of the Alternating
Direction Method of Multipliers (ADMM) algorithm in the context of the specific
type of graph regularization with both global and local variables, as well as the
Expectation Maximization (EM) algorithm in the context of the latent class model
and the latent class graph regularization model.

– Proposed Localized Social Discrete Choice Models, which benefits of both Social
Discrete Choice Model and Local Graph Clustering. The model is tested on a real
world online retail account relation graph from a leading commercial company in
the US, for the task of graph-based fraud detection.

• Connected Population Synthesis (chapter5)

– Proposed the first algorithmic procedure that makes use of both traditional survey
data as well as digital records of networking and human behaviours to generate
connected synthetic populations.

– The generated synthetic population can replicate the below properties
⇤ marginal and joint distributions of individuals and household level socio-

economic characteristics as the American Community Survey (ACS)



CHAPTER 2. PROBLEM STATEMENT AND CONTRIBUTIONS 11

⇤ geographical pattern of the observed community structure as from the Call
Detail Record (CDR)
⇤ the graph statistics of the observed Call Detail Record (CDR) social networks.
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Chapter 3

Social Discrete Choice Models

3.1 Introduction

In this paper, we focus on how to efficiently incorporate social network information into
latent class models for user discrete choice modeling problems. Traditional models ignore
social information and make the assumption that labels are separable in the feature space.
However, for many life-style related choices (such as bicycling vs. driving to work, smoking
vs. not smoking, overeating vs. not overeating), social considerations are thought to be a key
factor. People with very similar characteristics can have very different choices, often thought
to be due to the influence of their friends. Also, people who make similar lifestyle related
choices are thought to be more likely to be connected and form communities. Although
these "birds of a feather flock together" phenomena are widely studied in social sciences, no
existing predictive model can efficiently solve this problem in computational social science.
In this paper, we reformulate the problem from discrete choice settings into a graph-based
semi-supervised classification problem.

We propose two models to efficiently exploit the social network (graph) information.
(1) The first model is the local logistics graph regularization (LLGR) method. Parameter
estimation of this model is performed using a specialized Alternating Direction Method of
Multipliers (ADMM), where the computation of each node can be parallelized, making the
algorithm very scalable to large graphs. (2) The second model is the latent class graph
regularization (LCGR) model, where we aim to combine the expressiveness of parametric
model specifications with descriptive exploratory power of latent class models. Parameter
estimation of the LCGR model is performed using a specialized Monte Carlo expectation
maximization algorithm presented in Section 3.5. We adopt the same ADMM techniques for
the M step and discuss the parallel computation for the E step in Section 4.1. The LCGR
model can outperform the LLGR model, but it is computationally more expensive. We
recommend using the LCGR model for small graphs and the LLGR model for large graphs
(both of which are of interest in web applications).

To illustrate the usefulness of our methodology, we look at three classes of data. (1) The
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first class is small synthetic data used to illustrate how the knobs of our methods perform in
idealized and less-than-idealized situations. We experimented with our methods by tuning the
class connectivity hyperparameter � and choice preference hyperparameter w. When labels
are not separable in feature space (which means linear hyperplanes that separate the data xi

accurately do not exist), but are separable in the graph space (which means decisions yi are
clustered based on communities in the graph), our model outperformed all other baseline
models. In other cases, our model performed no worse than other models. (2) The second
class is small real data used to illustrate how our method performs on a typical example of
interest to social scientists, and we compared with the state-of-arts methods in social science.
We experimented with our models on real-world adolescent smoking dataset from 1995 to
1997. We found out that the smoking preferences were largely defined by the objective factors
for those adolescents at first in 1995. But smoking within a certain group of teenagers became
a social norm in 1997, and our social discrete choice model performed much better than
models that ignore social networks structure. (3) The third class is a large-scale example
from internet analysis used to illustrate how our method can be expected to perform in the
larger-scale internet and social media applications, compared with other scalable methods
[47, 27, 65]. A large-scale experiment is conducted on an online retail account relation graph
for fraud detection. Our method is more robust than other semi-supervised graph-based
classification methods on a graph with huge components and high average degree, which is
very common in real-world applications.

3.2 Problem Formulation

Social discrete choice model is to utilize social network data with discrete choice models, to
study social influence on human behavior. We illustrate how social discrete choice model is
formulated by an example: adoption of electric vehicles (Figure 3.1).

As shown in Figure 3.1, each individual is represented by a vertex in the graph, we connect
two vertices by an edge if they are friends with each other. Apart from the social network
information, individual’s socio-economic and demographic information is also given as feature
vector. The color of node represents whether an individual is willing to buy an electric vehicle:
“red” represents not willing, “green” represents willing. As we can observe from the graph,
only part of the nodes have color, which means we only know the choices of some of the
individuals. And we are interested in predict the choice of the rest of the individuals, which
are represented by white nodes in the graph. So the social discrete choice model is to predict
the choices the rest of the people in the graph, given the graph structure and the choices of
some of the individuals as well as the feature vector of everyone.
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Figure 3.1: Problem formulation of social discrete choice model: the study of social influence
on the adoption of electric vehicles. Each individual is represented by a vertex in the graph,
we connect two vertices by an edge if they are friends with each other. The color of a node
represents whether an individual is willing to buy an electric vehicle: “red” represents not
willing, “green” represents willing.

3.3 Literature Review

Social discrete choice model is a topic that both social scientists and computer scientists
are interested in, yet they approach this topic in different ways. Social scientists propose
various models with latent class, and most of the time focus on small graphs. Computer
scientists generalize this problem to graph-based semi-supervised classification and come up
with various of methods to deal with large graphs.

3.3.1 Discrete Choice Modeling and Latent Class Model
In many application domains, human decision making is modeled by discrete choice models.
These models specify the probability that a person chooses a particular alternative from a
given choice set, with the probability expressed as a function of observed and unobserved
latent variables that relate to the attributes of the alternatives and the characteristics of
the person. Multinomial logit models are in the mainstream of discrete choice models, with
maximum likelihood used for parameter estimation from manually collected empirical data.
It is important for practitioners to interpret the observed choice behaviors, and models that
are linear in parameters are most common. At the same time, choice preferences within
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different social groups (though seemingly similar in terms of the observed characteristics) can
vary significantly due to the unobserved factors or different context of the choice process. One
way of accounting for this is to introduce latent class models. Latent class logistic regression
models are common tools in multiple domains of social science research [22, 101, 120].

It is also recognized that social influence can be a strong factor behind variability in
choice behaviors. The impact of social influence on individual decision-making has attracted
a lot of attention. Researchers have employed laboratory experiments, surveys, and studied
historical datasets to evaluate the impact of social influence on individual decision making.
However, it is difficult to avoid an identification problem in the analysis of influence processes
in social networks [78]. One has to account for endogeneity in explanatory variables in order
for claims of causality made by these experiments to be useful [35]. Due to these limitations
of observational studies of influence, randomized controlled trials are becoming more common.
In general, distinguishing social influence in decision making from homophily, which is defined
as the tendency for individuals with similar characteristics and choice behaviors to form
clusters in social networks, is currently a growing area of research and debate [109, 21].

3.3.2 Graph-based semi-supervised classification
Our graphical extension to the latent class model reformulates the social discrete choice
problem into a semi-supervised graph-based classification problem, for which three mainstream
solutions exist.

3.3.2.1 Graph Regularization approach

Graph regularization methods that penalize parameter differences among the connected nodes
have been studied in the context of classification, clustering, and recommendation systems [1,
76]. Graph-based semi-supervised learning of this kind adds a graph Laplacian regularization
term to the objective function of supervised loss [142, 141, 125, 8]. The graph Laplacian
regularization term in the loss function is shown as below, where � is the graph Laplacian
matrix:

�

X

(i,j)2E

ai,j||f(xi)� f(xj)||2 = �f
T (A�D)f = �f

T�f (3.1)

where A is the adjacency matrix, D is the diagonal matrix, and f is the function that maps
feature vector into probability distribution vector.
These models assume that connected nodes tend to have similar probability distribution
of labels, which means nearby nodes in a graph are likely to have the same labels. For
parameter estimation, Zhu et al. [142] and Zhou et al. [141] proposed diffusion-based learning
algorithms that involve solving linear systems directly using matrix operations. Gleich et
al.[43] reformulated the diffusion-based learning problem into an optimization problem and
added l1 regularization term to obtain a more robust solution. And a local push algorithm as
in [4] was introduced to calculate a local solution.
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On the other hand, our proposed semi-supervised latent class classification has simpler
problem formulation. Our model assumes that connected nodes tend to have similar local
classifier. That means connected nodes have similar probability distribution of labels only
when they have similar feature vectors. Our graph regularization objective function is shown
below, where notations are defined in Table 5.1:

min
X

i2V

log
⇣
1 + e

�yi⇥(WT xi+bi)
⌘
+ �

X

(i,j)2E

(bi � bj)
2 (3.2)

In addition, we used the ADMM method to speed up the algorithm by distributing the
computation, owing to recent advances in distributed optimization applied to parametric
models on networks [50].

3.3.2.2 Random-walk based index-context pair approach

The recently developed skip-gram model is widely used in learning word embedding [81, 82]
and node embedding, both in unsupervised and semi-supervised manner. The objective is to
maximize the probability of observing a context based on an index (node), where the context
can either be k-hops neighbors of the node [116] or the random path of the node [92, 47].
By adding an extra supervised term to the objective function, both node embedding and
classification tasks can be done simultaneously [130].

3.3.2.3 Deep Learning Approach

Recent development in deep learning has extended the convolutional networks idea from
image to graphs [27, 56, 65]. These models are feedforward neural networks that directly
apply spectral convolution operations to inputs. Henff et al. [27] used K-localized convolution
to replace the spectral convolution operations, Kipdf et al. [65] used a linear model as a first-
order approximation of localized spectral filters. Graph Convolutional Networks (GCN) [65]
is computationally less expensive than CNN on graphs [27], and the authors claimed the
model can outperform all other models on the public dataset for semi-supervised classification
problem.

3.4 Social Models

3.4.1 Notations
We define [N ] := {1, 2, . . . , N}, i 2 [N ], t 2 [K], where N and K are integers. We will use
the following notations and definitions. For simplicity, in this paper, we focus on binary
discrete choice case, which can be easily extended to multinomial discrete choice.

We assume that there is only one sample per node, i.e., n = 1. However, the proposed
models can be extended to the case of n > 1. We further assume that the graph (V , E) is
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Table 3.1: Notation: Table for notations

Variable Definition
N number of individuals
K number of latent classes
n number of samples per node
d number of features for each

individual
xi 2 Rd⇥n feature-samples matrix of in-

dividual i
zi 2 [K] latent class variable of indi-

vidual i
yi 2
{�1, 1}

binary choice of individual i

Wt 2 Rd model coefficients of class t

bit 2 R model offset coefficients of
individual i with class t

V set of nodes in a social graph,
with each node correspond-
ing to an individual

E1 set of edges, presenting re-
lationship between two indi-
viduals

unweighted, noting that the models can be extended to weighted graphs. In the following
subsections we occasionally drop indices i and t depending on the context to simplify notation.
We denote with ✓ := {W, b} the set of model coefficients Wt, bit, 8i, t.

Let hit(xi) := W
T
t xi + bit, we consider the probability distribution for the choice of

individual i in class t, as below:

P (Yit = yit) =
1

1 + e�yithit(xi)
(3.3)

where yit can take values of 1 or �1. Note that the following two state-of-the-art discrete
choice models follow this probability distribution: (1) logit discrete choice model without
alternative specific attributes, which is proved to be equivalent to the logistics regression
model [84], where t ⌘ 1 and bit = bjt, 8{i, j} 2 V2; (2) latent class model, where t > 1 and
bit = bjt, 8{i, j} 2 V2

, 8t. We also define our models according to the probability distribution
in Equation (3.3): (1) LLGR model where t ⌘ 1, and bit are not constant; (2) LCGR model
where t ⌘ 1, and bit are not constant.
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Figure 3.2: Adoption of electric vehicles example. Each individual is represented by a vertex
in the graph, we connect two vertices by an edge if they are friends with each other. The color
of node represents whether an individual is willing to buy electric vehicle: “red” represents
not willing, “green” represents willing.

3.4.2 Motivation for the first model
Figure 3.2 is a snapshot of the large social network for the study of adoption of electric
vehicles. As defined in Figure 1.1, the color of a node represents whether an individual is
willing to buy an electric vehicle: “red” represents not willing, “green” represents willing.
As shown in the graph, node A and node B, node A and node C are connected. Node A
and node B have exactly the same feature vectors, while node A and node C have different
feature vectors. Node A and node B are not willing to buy electric vehicles, while node C is
willing to buy electric vehicles. The old graph regularization model [142, 141, 125, 8] assumes
connected nodes are more likely to have similar probability distribution of labels no matter
what their feature vectors are, because the optimization objective function as in equation 3.4
are forcing f(xi) and f(xj) equal to each other when node i and node j are connected, and
f(xi) is the probability distribution or its variants for node i.

�

X

(i,j)2E

ai,j||f(xi)� f(xj)||2 = �f
T (A�D)f = �f

T�f (3.4)
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However, based on the observation from Figure 3.2 and everyday life, feature vectors indeed
have influence on choices for connected individuals. Although node A and node B are
connected, and node A and node C are also connected. Node A and node B have the same
choice because they have the same input feature vector, and node A and node C have different
choices because they have different input feature vectors. This is the motivation for the local
logistic graph regularization (LLGR) model, where the underlying statistical assumption is
that only when connected nodes have similar feature vectors that they are more likely to
have similar probability distribution of labels.

3.4.3 Local logistic graph regularization (LLGR)
Canonical graph regularization models [142, 141, 125, 7] assume connected nodes are more
likely to have similar probability distribution of labels. However, friends can make quite
different choices because they have different features such as age, gender, and income. Our
LLGR model also emphasizes the importance of individual feature vector. The LLGR model
assumes that only if two nodes are connected and have similar feature vectors, they are likely
to have similar probability distribution of labels.

The LLGR model is also included in the choice model specified by Eq. (3.3). In the
LLGR model there is no latent class, so t is removed, K = 1 and yi follows a Bernoulli
distribution given xi. To incorporate the social aspect in logistic regression one assumes that
the parameters b follow an exponential family parameterized with the given graph

P (b) /
Y

(i,j)2E

e
��(bi�bj)2 , (3.5)

where � 2 R is a hyper-parameter. This model is usually trained by using maximum a
posterior (MAP) estimator which reduces to the following regularized logistic regression
problem

✓
⇤ := argmin

✓

NX

i=1

log
�
1 + e

�yihi(xi)
�
+ �

X

(i,j)2E

(bi � bj)
2
, (3.6)

where hi(xi) := W
T
xi + bi. Notice that the social information, i.e., edges E , appears as

Laplacian regularization for the coefficients b.

3.4.4 Motivation for the second model
Figure 3.3 is another snapshot of the large social network for the study of the adoption of
electric vehicles. The connections and feature vectors of nodes A, B and C are the same as
in figure 3.2. Node A and node B have different choices, although node A and node B are
connected and have the same feature input vector. If this phenomenon is observable across
the graph, then the observation is contradictory to the statistical assumptions of the LLGR
model. Inspired by the latent class model, the natural explanation is that node A and node B
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Figure 3.3: Adoption of electric vehicles example. Each individual is represented by a vertex
in the graph, we connect two vertices by an edge if they are friends with each other. The color
of a node represents whether an individual is willing to buy electric vehicle: “red” represents
not willing, “green” represents willing.

have some unobservable heterogeneity that they are in different class. This is the motivation
for the Latent class graph regularization (LCGR) model, where graph regularization model
interacts with the latent class model.

3.4.5 Latent class graph regularization (LCGR)
However, connected nodes with similar feature vectors not always have similar probability
distribution because unobserved heterogeneity among individuals exists such as taste differ-
ences. To solve this issue, we propose the LCGR model to combine social relations and latent
class. It is an extension to LLGR model with latent classes where K > 1. In this model, yit
follows a Bernoulli distribution given xi and zi = t. To incorporate social information, we
assume that latent class variables zi are distributed based on the following exponential family
parametrized by the given social graph

P (z; b) /
Y

(i,j)2E

exp

 
��

KX

t=1

(bit � bjt)
21(zi = zj = t)

!
, (3.7)

where b represents the collection of coefficients bit 8i, t, which are the parameters of the
distribution.
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Figure 3.4: Graphical model representation for social logistic regression models with latent
variables. We use a modified plate notation to represent conditional dependence among
random variables and dependence on parameters. In particular, random variables are
represented using circles and their number is shown in brackets inside the circle, i.e., yi
corresponds to K variables. Parameters are represented in rectangles, and their sizes are
shown in brackets with two components, i.e., W corresponds to K ⇥ d coefficients. Data are
shown in rectangles and their size in brackets, i.e., xi corresponds to d features. There are N

nodes in the graph and each node corresponds to a random variable zi which takes values in
[K] := {1, . . . , K}. The hyper-parameter � is represented using a grey rectangle.

Note that this specification allows utilizing social structures by introducing (1) continuous
latent variables bit defined in graph regularization; (2) discrete latent variables zi defined
in the above Markov Random Field. For continuous latent variables bit in this model, we
assume that each individual has its own local coefficient bit for each class. Notice that this
model does not penalize different coefficients bit among connected individuals in different
classes. This is because we assume that connected individuals in different classes should
have independent linear classifiers. For discrete latent variables zi in the common latent
class models, they are independent and identically distributed following the multinomial
distribution, i.e., zi ⇠ Mult(⇡, 1) 8i, where ⇡ is the probability of success. However, in our
specification, hidden variables z are correlated and are not necessarily identically distributed.
Hence the continuous latent variables b and the discrete latent class variable z in our model
can better model the observed choice processes, through which we can improve the model
performance compared with the state-of-the-art models.

A graphical interpretation of this model is given in Figure 3.4. The resulting model can
be trained using maximum likelihood and the Expectation-Maximization (EM) algorithm;
details are discussed in Section 3.5.
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3.5 Parameter Estimation

In this section, we focus on the parameter estimation algorithms for both the LLGR model
and the LCGR model.

3.5.1 Local logistics graph regularization: ADMM
In this section, we discuss how to conduct optimization in a distributed manner for maximum
a posterior probability (MAP) parameter estimation. Following the work of [50] that applies
ADMM to network lasso method, we extend it by allowing both local b and global variables
W on nodes. Let

Q(✓; x, y) :=
X

i2V

log
�
1 + e

�yihi(xi)
�
+ �

X

(i,j)2E

(bi � bj)
2 (3.8)

be the objective function, where ✓ represents the collection of parameters W and b and
hi(xi) := W

T
xi + bi. To minimize (3.8) using ADMM, we introduce a copy of bi denoted by

sij, 8i, and a copy of W denoted by gi, 8i,

min
W,b

P
i2V

log
⇣
1 + e

�yi(gTi xi+bi)
⌘
+ �

P
(i,j)2E

(sij � sji)2

s.t:. bi = sij j 2 N (i), 8i
W = gi, 8i,

(3.9)

where N (i) are the adjacent nodes of node i. By introducing copies for bi, 8i, we dismantle
the sum over edges into separable functions. Additionally, by introducing copies for W , we
dismantle the sum over the nodes for the logistic function. Then by relaxing the constraints
we can make the problem (3.9) separable, which allows for distributed computation.

We define the augmented Lagrangian below, where u and r are the dual variables and ⇢1
and ⇢2 are the penalty parameters.

L⇢,�(W, b, g, s, u, r) :=
X

i2V

n
log
⇣
1 + e

�yi(gTi xi+bi)
⌘

+
⇢1

2

⇣
� krik22 + kW � gi + rik22

⌘o
+
X

(i,j)2E

n
�(sij � sji)

2

+
⇢2

2

⇣
� kuijk22 � kujik22 + kbi � sij + uijk22 + kbj � sji + ujik22

⌘o

The resulting ADMM algorithm is presented in Algorithm 3, where

f(sij, sji) := L⇢(W
k+1

, b
k+1

, g
k+1

, (sij, sji, s
k
(ij)c), u

k
, r

k)

Notice that the subproblems in Step 4 do not have closed form solutions. However, they
can be solved efficiently using an iterative algorithm since they are univariate problems that
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depend only on xi and not all data. Similarly, the subproblems in Step 5 do not have closed
form solution, but they have only d unknown variables and depend only on xi and not all
data. Moreover, Step 6 has a closed form solution, which corresponds to solving a 2 ⇥ 2
linear system. Observe that the ADMM algorithm 3 can be run in a distributed setting by
distributing the data among processors, because within each iteration, the computation of
the value update of each node and edge are independent. Figure 3.5 demonstrates how

Algorithm 1 ADMM for Problem 3.9
1: Initialize:

k  0, W k, bk, gk, sk, uk and r
k

2: repeat
3: Set W

k+1
t = 1

N

PN
i=1(g

k
i � r

k
i )

4: b
k+1
it := argmin

bi
L⇢(W

k+1
t , bi, g

k
, s

k
, u

k
, r

k) 8i 2 V

5: g
k+1
i := argmin

gi
L⇢(W k+1

, b
k+1

, gi, s
k
, u

k
, r

k) 8i 2 V

6: s
k+1
ij , s

k+1
ji = arg min

sij ,sji
f(sij, sji) 8(i, j) 2 E

7: Set

r
k+1
i = r

k
i + ⇢1(W

k+1 � g
k+1
i ) 8i 2 V

u
k+1
ij = u

k
ij + ⇢2(b

k+1
i � s

k+1
ij ) 8(i, j) 2 E

u
k+1
ji = u

k
ji + ⇢2(b

k+1
j � s

k+1
ji )

8: k  k + 1
9: until termination criteria are satisfied.

distributing the data among processors can speed up the convergence of the ADMM algorithm.
In this experiment, we randomly generate a binomial graph with 100k nodes, 500k edges.
Then we randomly generate the feature matrix and response vector for the graph. We test the
model on a server with 12 processors, and we use the multiprocessing package from Python
to control the number of processors used in the parallel computing paradigm. As can be
seen from Figure 3.5, distributing the computation among processors can greatly reduce the
running time. Note that the running time does not decrease proportionally to the number of
processors. It is because Python multiprocessing module is used here, but it takes time for
process to communicate with the memory, and only the step for updating bit is parallelled.

3.5.2 Latent Class Graph Regularization: Monte Carlo EM
Generally, graphical models with categorical latent variables can be solved using the expecta-
tion maximization (EM) algorithms. However, correlations among latent variables imposed by
the social graph do not allow exact calculation of posterior distributions in the E-step using



CHAPTER 3. SOCIAL DISCRETE CHOICE MODELS 24

Figure 3.5: Illustration of the performance of ADMM algorithm with different number of
processors. Each node represents the running time and objective value of a iteration in an
experiment

standard EM approaches. Instead, an approximate calculation of the E-step using Monte
Carlo EM (MCEM) [86, 72, 30, 123] is employed. It is a modification of the original EM
algorithm where the E-step is conducted approximately using a Monte Carlo Markov Chain
(MCMC) algorithm. The details for each step of the MCEM algorithm for the proposed
models are provided in the following subsections.

3.5.2.1 Expectation step

In this step the objective is to compute the marginal posterior distribution for nodes and
edges, which will be used in the M-step to calculate the negative expected log-likelihood
function. Refer to the Appendix for derivation of negative expected log-likelihood, which
reveals the need for calculation of marginal posterior distributions.

In particular, for the E-step, one needs to calculate the following node marginal posterior
probability

P (zi = t|yi, xi; ✓) =
P (yi|xi, zi = t; ✓)P (zi = t; b)

KP
s=1

P (yi|xi, zi = s; ✓)P (zi = s; b)

(3.10)
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Algorithm 2 MCEM algorithm for LCGR
1: Inputs:

(xi, yi), i = 1 . . . N
2: Initialize:

✓
0 := {W 0

, b
0} arbitrary value, k  0

3: repeat
4: E-step: (Subsection 3.5.2.1)
5: Calculate approximate node posterior
6: for each node i 2 [N ]

q(zi = t) := P (zi = t|yi, xi; b
k)

, and for each edge (i, j) 2 E , the edge posterior

q(zi = zj = t) := P (zi = t, zj = t|yi, yj, xi, xj; b
k)

7: by using the MCMC sampling.
8: M-step: (Subsection 3.5.2.2)
9: Solve the optimization problem

✓
k+1 := argmin

✓
Q(✓; x, y),

where Q(✓; x, y) is defined at Equation 3.12.
10: k  k + 1
11: until termination criteria are satisfied.

and the following edge posterior probability

P (zi = t, zj = t|yi, yj, xi, xj; ✓) (3.11)

=
P (yi, yj|xi, xj, zi = t, zj = t; ✓)P (zi = t, zj = t; b)

KP
m,q=1

P (yi, yj|xi, xj, zi = m, zj = q; ✓)P (zi = m, zj = q; b)

,

where ✓ represents the collection of parameters W and b. For small graphs, we can approximate
the above distributions using standard MCMC algorithms. Parallel block MCMC can be
considered for large graphs.

3.5.2.2 Maximization step

Let us denote with q(zi = t) = P (zi := t|yi, xi; ✓) and q(zi = zj = t) := P (zi = t, zj =
t|yi, yj, xi, xj; ✓) the marginal posterior distributions. The M-step of the EM algorithm
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requires minimizing the negative expected log-likelihood function

Q(✓; x, y) :=
X

i2V

KX

t=1

q(zi = t) log
�
1 + e

�yihit(xi)
�

(3.12)

+ �

X

(i,j)2E

KX

t=1

(bit � bjt)
2
q(zi = zj = t),

where ✓ represents the collection of parameters W and b and hit(xi) := W
T
t xi+ bit. Derivation

of this function is given in Subsection 4.2 in the Appendix. For small graphs, standard
convex optimization solvers can be used. For large graphs, please refer to Section 3.5.1 where
we discuss how we can maximize the expected log-likelihood efficiently with a distributed
algorithm for LLGR. The objective function of the E step of LCGR model is the weighted
version of the objective function of the LLGR model.

We now comment briefly on the theoretical asymptotic convergence of MCEM to a
stationary point of the likelihood function. Convergence theory of MCEM in [86, 30]
states that if standard MCMC is used in E step and that the MCMC sample size increases
deterministically across MCEM iterations, then MCEM converges almost surely. Parallel block
MCMC can be considered for large graphs, then a consequence of blocking of latent variables
for the MCMC algorithm is that asymptotic convergence of MCEM is not guaranteed anymore.
However, in practice, MCEM is often terminated without even knowing if the algorithm
converges to an accurate solution. See for example Section 5 in [86] and references therein
about arbitrary termination criteria of MCEM. Therefore, we consider that the parallelism of
block MCMC Algorithm offers a trade-off between convergence and computational complexity,
which in practice can speed up each iteration of the MCEM algorithm significantly.

3.6 Experiments

In this section, we analyze the empirical performance of the proposed social models on a
range of datasets. We outline practical recommendations and illustrate examples where the
proposed model is most suitable. The number of iterations of Gibbs sampler in the E-step
grows with the number of iterations of the MCEM algorithm. The M-step is implemented
using ECOS solver [32] embedded in CVXPY [31] for W updates, bisection line search for b
updates, within ADMM iterations.

3.6.1 Illustrative Synthetic Data
We demonstrate that when graph structure and label assignment satisfy certain conditions,
our LLGR and LCGR models performs better than other models without social information.
We empirically illustrate the impact of graph structure by varying the connectivity between
different classes in the graph and illustrate the impact of label assignment by varying the
discrepancies of labels in communities of the graph.
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(a) � = 10�4 (b) � = 10�2 (c) � = 10�1

Figure 3.6: The nodes with square shape and yellow color correspond to class t = 1. The
nodes with triangle shape and turquoise color correspond to class t = 2. The larger � the
more edges among nodes with different class.

3.6.1.1 Varying connectivity between classes

We consider N = 300 individuals and use two different Gaussian distribution to generate
the feature vector for each individual. Then we randomly split the individuals into three
communities with the same size. We assume that there are two classes, shown in blue and
yellow in Figure 3.6. Notice that the feature vectors are assigned to communities regardless
of their Gaussian distribution and labels are set based on the classes, which correspond to
communities. Therefore, the labels are in align with the graph structure but not in align with
the feature space. We set the probability of two individuals that are in the same community
to get connected to 0.2, and the probability of two individuals that are in the same class
but not in the same community to get connected to 0.01. Then we vary parameter �, the
probability of two individuals in different classes to get connected.

Figure 3.6 shows the graph structure when � = 10�4, � = 10�2 and � = 10�1. Notice that
the larger � is, the more edges among the communities belong in different classes. Table 3.2
shows the prediction result of four models as a function �. Notice that since feature vectors
and labels are not changed as � changes, the prediction of logistic regression and logistic
regression with latent class remains constant at 62%. The reason that these models perform
poorly is that the labels are not separable given the feature vectors xi only. Observe in Table
3.2 that when � is as small as 10�4, which means that individuals in different classes are very
unlikely to get connected, see Figure 3.6a, the prediction result of the proposed social models
is larger than 80%. On the other hand, when � becomes larger, the prediction of the social
models is declining. However, as long as � < 0.1, the proposed LCGR model performs better
than logistic regression and logistic regression with latent class models. When � = 0.1 the
social models have the same prediction performance as the logistic regression and latent class
models. This is because the classes are not clearly separable on the graph, see Figure 3.6c.
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Table 3.2: Prediction results on a randomly chosen test set of 50 individuals when � is
varied, i.e., connectivity between classes. For all models the regularization parameter � which
corresponds to the best prediction result out of a range of parameters is chosen.

�

model 10�4 10�3 5⇥ 10�3 10�2 10�1

logistic reg. 62% 62% 62% 62% 62%
log. reg. lat. class 62% 62% 62% 62% 62%

LLGR 80% 62% 62% 62% 62%
LCGR 88% 82% 64% 62% 62%

3.6.1.2 Varying choice preference parameters

An ideal scenario for the proposed social models is when classes correspond to communities of
the given graph and when the labels yi are clustered according to the classes. However, labels
yi might be misplaced in wrong classes. We study how the preference difference between
classes affects the performance of the proposed model.

For this experiment individual feature vectors are generated from a Gaussian distribution
with sample size N = 200. We randomly split this set of individuals into two parts with the
same size, and each part represents a class where individuals share the same parameters W .
Assume that Wi is the weight corresponding to the ith group, and W1 = �W2. For each
individual j, bj is sampled from the same Gaussian distribution. For the graph setting, we
set the probability of people in the same class to be connected as 0.2, and the probability
of people in different classes to be connected as 10�4. This way, we ensure that classes
correspond to communities.

Based on the data generation process, by tuning kW1k, we are able to get full control
of preference difference among individuals in the two classes. When kW1k becomes larger,
preference difference becomes larger as well. As we see in Figure 3.7, when kW1k becomes
larger, more individuals in class one have yi = 1 (i.e., yellow squares) and more individuals
in class, two have have yi = 1 (i.e., turquoise triangles). When W1 = 0, around half of the
individuals in both classes have yi = 1, the other half yi = �1, which means that there is
no preference difference between the two classes. Prediction results for this experiment are
shown in Table 3.3.
3.6.2 Adolescent smoking
This example uses a dataset collected by [14]. This research program, known as the teenage
friends and lifestyle study, has conducted a longitudinal survey of friendships and the
emergence of the smoking habit (among other deviant behaviors) in teenage students across
multiple schools in Glasgow, Scotland.
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Table 3.3: Prediction results on a randomly chosen test set of 50 individuals when kW1k2 is
varied. For all models the regularization parameter � which corresponds to the best prediction
result out of a range of parameters is chosen.

kW1k2
model 10 5 3 2 1 0

logistic reg. 48% 44% 42% 52% 58% 52%
log. reg. lat. class 48% 48% 54% 54% 42% 36%
LLGR and LCGR 100% 100% 94% 86% 68% 36%

(a) kW1k2 = 0 (b) kW1k2 = 4 (c) kW1k2 = 6

Figure 3.7: Three synthetic examples showing the influence of parameter W1 on class
preference. The nodes with square shape and yellow color correspond to choice yi = 1. The
nodes with triangle shape and turquoise color correspond to choice yi = �1.

3.6.2.1 Dataset

Social graphs of 160 students (shown in Figure 3.8) within the same age range of 13-15 years
is constructed following a surveyed evidence of reciprocal friendship, with an edge placed
among individuals i and j if individual i and individual j named each other friends. We
included five variables into the feature vector xi: age; gender; money: indicating how much
pocket money the student had per month, in British pounds; romantic: indicating whether
the student is in a romantic relationship; family smoking: indicating whether there were
family members smoking at home. Notice that the feature vectors xi and the edges of the
graph are different at different timestamps. The response variable y represents the stated
choice that whether a student smokes tobacco (yi = 1), otherwise yi = �1. Note there
are nodes with missing labels, but the graph structure should be intact for the parameter
estimation of b. Therefore, we set yi = 0 for these nodes, so that the corresponding xi are
not used in the parameter estimation while keeping the graph structure unchanged.
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Figure 3.8: Social graphs of student friendships and smoking behaviors within the 2 years
period of the study.

3.6.2.2 Models comparison

We measured predictions on this dataset and report here 3-fold cross validation results
of four models: i) logistic regression; ii) latent class logistic regression; iii) social logistics
regression, see Subsection 3.4.3; iv) social latent class logistics regression, see Subsection 3.4.5.
Cross-validation process treats the removed nodes as nodes with missing labels, as described
above. We consider K = 2 latent classes in this experiment. The prediction performance is
shown in Tables 3.4.

Table 3.4: Adolescent smoking prediction accuracy, February 1995 and January 1997

model 1995 1997

logistic regression 81.1% 68.5%
latent class 78.9% 72.1%

LLGR 80.0% 76.9%
LCGR 82.2% 80.8%

The high performance of logistic regression and latent class model for the beginning
of the study (Table 3.4) indicates that the smoking preferences are largely defined by the
individual feature vector. Moreover, parameters in the underlying classes of the latent class
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model don’t differ much. Social latent class model performs equally well. This difference
grows significantly when a confounding variable of smoking in the family is removed from the
feature list.

Furthermore, by the end of the study (January 1997, Table 3.4 column 2) one can see a
significantly higher predictive accuracy of the LLGR and LCGR models. It may indicate
that smoking within a certain group of teenagers has become a social norm (indicating the
difference in offset parameters bit), or that the response yi to independent factors xi within
that group differs from the others as reflected by differences in Wt.

Notice the significant decrease in prediction accuracy for nonsocial models between column
1 and column 2 in Table 3.4. This is because at the beginning of the study (February 1995)
less than 15% of teenagers smoked, while at the end of the study (January 1997) about 25%
of teenagers smoked. This difference is likely due to social norms developed among teenagers
that are captured by the graph and therefore missed by nonsocial models.

3.6.2.3 Parameter visualization

We are going to illustrate how the specification of the proposed model allows in-depth
exploration of the parameters to assist in making this type of conclusions. To that end, we are
going to explore parameters bit and class membership probabilities across the regularization
path of hyper-parameter �.

The estimated class membership (the probability of being in a given latent class) on the
graph is shown in Figure 3.9. A visualization of estimated bit of one latent class for several
values of � is shown in Figure 3.10. When � = 0.1, smoking pattern begins to show across
the graph, i.e., compare Figures 3.8 and 3.10b. Let us note that � = 0.1 value corresponds to
the best prediction accuracy in our experiments for the proposed social latent class logistic
regression model for the smoke data at the end of the study (January 1997). This is because
the social latent class logistic regression model is able to clearly distinguish a group of socially
connected individuals within which the choice preferences towards smoking are higher.

When � = 0.01, bit are similar across the nodes. On the other hand, when � = 10, bit are
not similar across the nodes. Although this is counter-intuitive since the graph regularization
favors similar bit across nodes for large values of �, it is explained by the node and edge
posterior distribution in the M-step which also controls regularization across nodes during
the execution of the algorithm.

3.6.3 Online Retail Account Relation Graph Data
In this section, we experimented our model on a real world online retail account relation
graph from a leading commercial company in the US, and showed that our model excelled
in fraud account prediction task when compared with other models. More details on the
data and the empirical results have been redacted until their release has been
approved
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(a) � = 10 (b) � = 1 (c) � = 0.01

Figure 3.9: Class membership probabilities estimated for the nodes for multiple values of �.
Blue, yellow, green, black and red colours correspond to probabilities about 0, (0, 0.5), 0.5,
(0.5, 1) and 1, respectively.

(a) � = 10 (b) � = 1 (c) � = 0.01

Figure 3.10: The values of bit estimated for the nodes for multiple values of �. Lighter color
corresponds to higher values.

3.7 Conclusions and Future Work

In this paper, we introduced social graph regularization ideas into discrete choice models for
user choice modeling. We proposed local logistics graph regularization (LLGR) method and
latent class graph regularization (LCGR) model. We developed scalable parameter estimation
method for LLGR model on large graphs benefiting from recent advances in distributed
optimization based on ADMM methods. Also, we have developed, implemented, and explored
parameter estimation algorithms that allow parallel processing implementation for both E- and
M-steps of the Monte Carlo Expectation Maximization (MCEM) algorithms for LCGR model.
In experimental evaluation, we have focused on investigating the usefulness of the models in
revealing and supporting the hypothesis in studies where not only predictive performance
(that was found to be highly competitive), but also understanding social influence, is crucial.
Our models can be directly applied to study social influence on revealed choices in large
social graphs with rich node attributes. One challenge with extending our results is that such
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data are very rarely available in open access due to privacy issues.
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Chapter 4

Social Discrete Choice Models Appendix

4.1 Improving E step

Here, we describe how to scale up the E step in Section 3.5.2.1, which is important for MCEM
method, as described in Section 3.5.2. In the LCGR model, we use a markov random field
to model the joint distribution of latent class conditioned on local coefficients b. And we
need to calculate the posterior node probabilities (Equation (3.10)) and edge probabilities
(Equation (3.11)) in the E step based on Equation (3.7). Let us consider the case of two
classes as an example. Assume the labels of the two classes are 1 and �1, then we can
simplify Equation (3.7) to

P (z; b) /
Y

(i,j)2E

exp((
✓ij � �ij)zi

4
+

(✓ij + �ij)zj
4

+
(✓ij + �ij)zi ⇥ zj

4
+

(✓ij + �ij)

4
)

where we have:

✓ij = (bik � bjk)
2
, k = 1

�ij = (bik � bjk)
2
, k = �1

And the edge potentials are defined as below:

exp((
✓ij � �ij)zi

4
+

(✓ij + �ij)zj
4

+
(✓ij + �ij)zi ⇥ zj

4
+

(✓ij + �ij)

4
)

Thus, our model belongs to the standard pairwise Markov Random Field.
Both variational methods and sampling-based methods are suitable for our problem

setting. (1) For variational methods, the exact inference of Markov Random Field using Bethe
approximation [126, 119] can calculate distributions of nodes and edges. The approximate
inference algorithms, e.g., mean field inference [119] and loopy belief propagation (BP) [85],
although exhibiting excellent empirical performance, P (zi = t, zj = t; b) is not calculated.
(2) For sampling-based approach, MCMC algorithms can calculate both the node and edge
distributions.
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(a) Parallel block MCMC computation time (b) Facebook Ego Network Community Detection
Result

Figure 4.1: Left: Visualization of Facebook Ego Graph, where color represents community
membership. Right: plot of number of samples VS running time, for standard MCMC, block
MCMC and parallel block MCMC

Calculating the marginal posterior probabilities Equation (3.10) and Equation (3.11) is
computationally expensive due to the marginal probabilities P (zi = t; b) and P (zi = t, zj =
t; b). This is because to calculate the latter two, we have to marginalize N�1 and N�2 latent
variables, respectively. We chose sampling-based method and accelerated the computation
by using a block MCMC sampling technique to compute P (zi = t; b) and P (zi = t, zj = t; b).
The algorithm uses a preprocessing step to partition the graph into c disjoint communities.
Then it runs an MCMC algorithm on each community/block in parallel by ignoring the edges
among the blocks.

Figure 4.1a demonstrates how parallel block MCMC speed up the computation. We use
the Facebook Ego Network Data as shown in Figure 4.1b, where there are 4039 nodes and
88234 edges. We randomly generate the local b value of each class for all the nodes. We first
run Louvain community detection algorithm [10], the state-of-the-art greedy optimization
algorithm for global community detection, and extract 10 communities from the graph. We
then run MCMC/ Block MCMC and Parallel Block MCMC and time the code for each
iteration. As can be seen from Figure 4.1a, the performance of MCMC and Block MCMC
are almost the same, because the only difference is that Block MCMC omits the edges
between communities for the Gibbs update. Since the MCMC update of each community is
independent of each other, we can adopt the parallel computing paradigm for Block MCMC.
As we can see from Figure 4.1a, Parallel Block MCMC performs much better than the other
two.

4.2 Negative expected log-likelihood in Eq. (8)

We denote with q(z) := P (z|y, x; ✓) the posterior distribution, with
P

z the sum over all
latent variables z, and ✓ represents the collection of parameters W and b. Let 1(zi = t) be
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the indicator function, which is equal to 1 if zi = t. We assume that z follows

P (z; b) /
Y

(i,j)2E

exp

 
��

KX

t=1

(bit � bjt)
21(zi = zj = t)

!
, (4.1)

and

P (yi|xi, zi = t, ✓) = 1/(1 + e
�yihi(xi)), (4.2)

where hit(xi) := W
T
t xi + bit. The derivation of the expected log-likelihood is shown below.
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q(z) logP (z; b)

=
X

z

q(z) log

 
Y

i2V

KX

t=1

P (yi|xi, zi = t, ✓)1(zi = t)

!

=
X

z

q(z)
X

i2V

log

 
KX

t=1

P (yi|xi, zi = t, ✓)1(zi = t)

!

� �
X

z

q(z)
X

(i,j)2E

KX

t=1

(bit � bjt)
21(zi = zj = t).

We can exchange the sequence of log and
PK

t=1 because each node can only be in one class,
thus we have

Q̃(✓; x, y) =
X

z

q(z)
X

i2V

KX

t=1

1(zi = t) logP (yi|xi, zi = t; ✓)

�
X

z

q(z)
X

(i,j)2E

KX

t=1

�(bit � bjt)
21(zi = zj = t).

Let’s write the summation over z inside the summation over vertices and the summation over
latent variables

Q̃(✓; x, y) =
X

i2V

KX

t=1

X

z

q(z)1(zi = t) logP (yi|xi, zi = t; ✓)

� �
X

(i,j)2E

KX

t=1

X

z

q(z)(bit � bjt)
21(zi = zj = t),
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and then we get the marginal probabilities

Q̃(✓; x, y) =
X

i2V

KX

t=1

q(zi = t) logP (yi|xi, zi = t, ✓)

� �
X

(i,j)2E

KX

t=1

(bit � bjt)
2
q(zi = zj = t).

Using (4.2) and multiplying by minus equation Q̃(✓; x, y) we get the negative expected
log-likelihood function in (3.12).

4.3 Discrete Choice Models Review

We have used logistics regression and latent class models as benchmarks for the Local Logistics
Graph Regularization (LLGR) and Latent Class Graph Regularization (LCGR) models. In
this section, we focus on the specifications and estimation of the two models.

4.3.1 Random Utility Models and Multinomial Discrete Choice
Models

Random utility models in discrete choice analysis is based on the assumption that the utility,
associated with each available alternatives in the consideration set, is stochastic. As shown in
structural equation 4.3, random utility of alternative n for individual i (Ui,n), consists of the
two parts: the observed deterministic component Vi,n and the errors of the utilities ✏i,n [121,
84]. It is assumed that the observed deterministic component Vi,n is a function of feature
vector Xi,n with parameter �.

Ui,n = Vi,n + ✏i,n (4.3)

The random utility models also conform to the utility maximization decision rule: the decision
maker will choose the alternative that maximizes his/her utility. Ci denotes the choices set
available to decision maker individual i.

Yi = n, if Ui,n = max
m2Ci

U(i,m) (4.4)

McFadden [80] derived the multinomial logit model (MNL) from the random utility
framework by making below assumptions:

• All ✏i,n are independent and identically distributed (IID) following Gumbel extreme
value distribution.

• The location parameter ⌘ of the Gumbel extreme value distribution is set to 0, and the
scale parameter µ is set to 1.
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These assumptions lead to the probability distribution of individual choices 4.5.

P (Yi = n|Xi; ✓) =
e
V (Xi,n;✓)

P
m2Ci

eV (Xi,m;✓)
(4.5)

The binary logit (BNL) model, without alternative specific attributes, is equivalent to the
logistics regression model. While the multinomial logit (MNL) model, without alternative
specific attributes, is equivalent to the softmax regression model. This is how the discrete
choice analysis theory in the social science, is connected to machine learning in computer
science.

4.3.2 Latent Class Models
4.3.2.1 Assumption and log-likelihood objective function

Latent class model was introduced into the discrete choice analysis to overcome the limitations
of multinomial logit model (MNL), most notably the independence from irrelevant alternatives
property (IIA). The underlying assumption for the latent class model is that choices are
dependent on observed attributes (feature vectors) and unobserved latent heterogeneity
among individuals. For example, taste differences and decision protocols. This heterogeneity
is analyzed by approximating a continuous distribution with a discrete distribution through
latent class discrete variables. It is assumed that the probability distribution for individual
i, conditioned on the individual belongs to a latent class k, are independent. Assume that
conditional probability distribution is P (Yi|xi, Zi = k, ✓), then the probability distribution of
the choice of individual i is as below 4.6. Assume that we don’t have any assumption on the
distribution of the latent class variables for now :

P (Yi = n|xi, ✓) =
KX

k=1

1(zi = k)P (Yi = n|xi, zi = k, ✓) (4.6)

Based on this probability distributions, the objective function of the maximum likelihood
estimation (MLE) can be rewritten as below. However, because there is summation within
the logarithmic operation, the direct optimization could be difficult and highly unstable.
Instead of directly optimizing the parameters, we convert the MLE problem to another
easier optimization problem. Jensen’s Inequality is used to derive the lower bound of the
log likelihood. The lower bound which is also called the auxiliary, contains q(z) and the
complete log likelihood logP (y, x, z; ✓). Note here q(z) is an arbitrary distribution q over the
latent variables space Z. The MLE parameter estimation problem of latent class model is
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transformed into finding optimal q(z) and ✓.

logP (y; x, ✓) = log
X

z

P (y, x, z; ✓) = log
X

z

q(z)
P (y, x, z; ✓)

q(z)

= logEz⇠q


P (y, x, z; ✓)

q(z)

�

�
X

z

q(z) log
P (y, x, z; ✓)

q(z)
⌘ L(q, ✓)

=
X

z

�q(z) log q(z) +
X

z

q(z) logP (y, x, z; ✓).

The Expectation-Maximization (EM) algorithm proceeds by coordinate ascent algorithm in
which we alternatively update the q(z) distribution and ✓, to find the optimal q(z) and ✓. In
the E step, the target is to find the optimal q(z) given the estimated ✓. In the M step, the
target is to update the value of parameters given the updated q(z) distribution. The EM
algorithm alternates the E step and the M step until convergence.

4.3.2.2 EM algorithm

In the Expectation step (E-step), we form the following optimization problem to to find the
optimal distribution q(z)

max
q(z)

X

z

�q(z) log q(z) +
X

z

q(z) logP (y, x, z; ✓).

Let’s take the gradient of the objective function and set it to zero

rq(z) =
X

z

� log q(z)� 1 + logP (y, x, z; ✓)

=
X

z

✓
log

P (y, x, z; ✓)

q(z)
� 1

◆

= 0.

To solve this optimization problem, q(z) must be such that log(P (y,x,z;✓)
q(z) ) is constant, and this

is satisfied by setting, which means the optimal distribution q(z) is the posterior distribution
of latent variables.

q(z) =
P (y, x, z; ✓)P
ż P (y, x, ż; ✓)

= P (z|y, x; ✓).

Let’s denote ⌧it as the posterior distribution defined as below:

⌧it = P (zi = t, yi|✓, xi)/
kX

j=1

P (yi|zi = j; ✓, xi)P (zi = j)
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In the Maximization step (M-step) we form the following optimization problem

max
✓

X

z

�q(z) log q(z) +
X

z

q(z) logP (y, x, z; ✓).

Since the first part of the summation is not related to ✓ our goal is to maximize the expectation
of log likelihood with respect to ✓, therefore we will focus on the second part.

Ez⇠q[logP (y, x, z; ✓)] ⌘
X

z

q(z) logP (y, x, z;W, b)

Notice here we have another important assumption on the distribution of latent class
variables: And we assume the latent class variables are independent and identically distributed
(IID) following the multinomial distribution. That is,

zi ⇠ Mult(⇡, 1), 8i

Given the assumption on the latent class variables probabilities distribution, we can write
P (yi, zi; ✓) as

P (yi, zi; ✓) =
kX

t=1

P (yi|zi = t, ✓)⇡t

Assume the parameters are ✓ = (w, b, ⇡). Then the optimization problem of the M step is
formulated as below:

max
w,b,⇡

X

i2V

KX

t=1

log(yi|zi = t, ✓)⌧it +
X

i2V

KX

t=1

⌧it log ⇡t

s.t.

KX

t=1

⇡t = 1

Note that the objective function is separable regarding t, so 8t, a sub optimization problem
is formulated as below:

max
w,b

KX

t=1

log(yi|zi = t, ✓)⌧it +
X

i2V

⌧it log ⇡t

Since this objective function is concave in wt and bt and differentiable, we can use CVXPY
[31] convex optimization solver to find optimal W and b. To update ⇡, we need to solve the
following linearly constrained optimization problem

max
⇡

X

i2V

log(⇡t)⌧it, 8t 2 [1, K]

s.t.

KX

t=1

⇡t = 1
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The optimal solution for this problem is ⇡t = 1
N

PN
i=1 ⌧it.

The code based on the derivation is implemented in Python using numpy library and
CVXPY [31] library. The implementation is available at https://github.com/DanqingZ/social-
DCM.

4.4 Alternating Direction Method of Multiplier

(ADMM) Algorithm for Local Logistics Graph

Regularization (LLGR) model

The objective function of the Local Logistics Graph Regularization (LLGR) model 3.8 consists
of local variables on each node.

Q(✓; x, y) :=
X

i2V

log
�
1 + e

�yihi(xi)
�
+ �

X

(i,j)2E

(bi � bj)
2 (4.7)

Although the objective function is convex, stochastic gradient descent cannot be simply applied
for the parameter estimation. In section 3.5.1, we proposed to use an easy-to-implement
algorithm based on the Alternating Direction Method of Multiplier. In this section, we
focus on the motivation, derivation and formulation for the Alternating Direction Method of
Multiplier (ADMM) Algorithm for Local Logistics Graph Regularization (LLGR) model.

4.4.1 Introduction of ADMM
ADMM is a simple yet powerful algorithm that solves the large-scale distributed optimization
problem in a distributed and scalable manner. It is an algorithm that blends the benefits
of two earlier approaches, which are dual decomposition algorithm [37, 68] and augmented
Lagrangian algorithms for the constrained optimization problem [12].
Dual decomposition method is based on the dual ascent method. In the dual ascent method,
we run gradient descent on the dual problem instead of running projected gradient descent
on the primal problem. The dual ascent method consists of two steps, the primal variables
optimization steps, and the dual variables update step. The benefit of the dual ascent method
is that when the primal objective function is separable, the dual ascent method can lead to a
scalable decentralized algorithm, which means the primal variables optimization steps can be
implemented in parallel. This kind of dual ascent method is called the dual decomposition
method.
The other related method is the augmented Lagrangian method, which was developed to
add robustness to the dual ascent method. The first step of the augmented Lagrangian method
is to define the augmented Lagrangian, where we add an extra term to the objective function
as the penalty term. The second step is to run the dual ascent algorithm on the augmented
Lagrangian, which is called the method of multipliers algorithm. It is straightforward to
blend the method of multipliers with the dual decomposition when the objective function

https://github.com/DanqingZ/social-DCM/blob/master/src/models/EM_Latent_Class.py
https://github.com/DanqingZ/social-DCM/blob/master/src/models/EM_Latent_Class.py
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is separable. And this how the alternating direction method of multiplier method is motivated.

The canonical form of problem that ADMM solves is as below, where f and g are convex
functions, x and z are decision variables:

min
x

f(x) + g(z)

subject to Ax+Bz = c

Then the augmented Lagrangian can be formed as below, where penalty term is added to
the Lagrangian for the primal problem.

L⇢(x, y, r) = f(x) + g(z) + r
T (Ax+Bz � c) + (⇢/2) kAx+Bz � ck22

Then we can run gradient ascent algorithm. And since the objective function of the primal
problem is decomposable into two parts, the primal variables optimization steps can be
implemented in parallel. ADMM algorithm consists of below steps in each iteration.

x
k+1 = argmin

x
L⇢(x, z

k
, r

k)

z
k+1 = argmin

z
L⇢(x

k+1
, z, r

k)

r
k+1 = r

k + ⇢(Axk+1 +Bz
k+1 � c)

ADMM algorithms has the advantages of both dual decomposition and augmented Lagrangian,
that it is a robust and scalable decentralized algorithm.

We refer the reader to [12, 44] for a detailed discussion of dual ascent, dual decomposition,
augmented Lagrangian, ADMM scaled form and ADMM convergence rates.

4.4.2 ADMM for the LLGR model
Following the work of [50] that applies ADMM to network lasso method, we aim to use the
ADMM algorithm in a way that each node solves it own optimization problem and then
pass the output of its optimization problem to its neighbors, update the values of the dual
variables, and repeats until convergence. The difference between our model and the network
lasso problem [50] is that the network lasso problem assumes the optimization problem only
has local variables. However, our model assumes that there are both local variables and global
variables in the optimization problem, which is a more general case. The first step of our
algorithm is to convert the unconstrained optimization problem into a equality-constrained
optimization problem. In this way, the objective function of the primal optimization problem
is separable for each node and each edge.

min
W,b

P
i2V

log
⇣
1 + e

�yi(gTi xi+bi)
⌘
+ �

P
(i,j)2E

(sij � sji)2

s.t:. bi = sij j 2 N (i), 8i
W = gi, 8i,

(4.8)
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Based on the equality-constrained optimization problem, we can define the augmented
Lagrangian below, where u and r are the dual variables and ⇢1 and ⇢2 are the penalty
parameters. Note this augmented Lagrangian is written slightly different from 4.4.1, which is
called the unscaled form of augmented Lagrangian [12]. In our ADMM algorithm, we use the
scaled form of augmented Lagrangian [12], because it is shorter and easier to demonstrate.
We define the augmented Lagrangian below, where u and r are the dual variables and ⇢1 and
⇢2 are the penalty parameters, � is the regularization hyperparameter.

L⇢,�(W, b, g, s, u, r) :=
X

i2V

n
log
⇣
1 + e

�yi(gTi xi+bi)
⌘

+
⇢1

2

⇣
� krik22 + kW � gi + rik22

⌘o
+
X

(i,j)2E

n
�(sij � sji)

2

+
⇢2

2

⇣
� kuijk22 � kujik22 + kbi � sij + uijk22 + kbj � sji + ujik22

⌘o

Based on the scaled-form augmented Lagrangian, we can derive the ADMM algorithm as
below:

Algorithm 3 ADMM for Problem 3.9
1: Initialize:

k  0, W k, bk, gk, sk, uk and r
k

2: repeat
3: Set W

k+1
t = 1

N

PN
i=1(g

k
i � r

k
i )

4: b
k+1
it := argmin

bi
L⇢(W

k+1
t , bi, g

k
, s

k
, u

k
, r

k) 8i 2 V

5: g
k+1
i := argmin

gi
L⇢(W k+1

, b
k+1

, gi, s
k
, u

k
, r

k) 8i 2 V

6: s
k+1
ij = (2�+⇢2)(bi+uij)+2�(bj+uji)

4�+⇢2

7: s
k+1
ji = (2�+⇢2)(bj+uji)+2�(bi+uij)

4�+⇢2
8(i, j) 2 E

8: Set

r
k+1
i = r

k
i + ⇢1(W

k+1 � g
k+1
i ) 8i 2 V

u
k+1
ij = u

k
ij + ⇢2(b

k+1
i � s

k+1
ij ) 8(i, j) 2 E

u
k+1
ji = u

k
ji + ⇢2(b

k+1
j � s

k+1
ji )

9: k  k + 1
10: until termination criteria are satisfied.

Note updating sij and sji procedure can be formulated as an optimization below:

s
k+1
ij , s

k+1
ji = arg min

sij ,sji
f(sij, sji) 8(i, j) 2 E 00
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It has closed form solution:

s
k+1
ij =

(2�+ ⇢2)(bi + uij) + 2�(bj + uji)

4�+ ⇢2

s
k+1
ji =

(2�+ ⇢2)(bj + uji) + 2�(bi + uij)

4�+ ⇢2

For the weighted version of the LLGR model as below:

Q(✓; x, y) :=
X

i2V

log
�
1 + e

�yihi(xi)
�
+ �

X

(i,j)2E

qij(bi � bj)
2 (4.9)

where qij is the weight on edge eij representing the closeness between individual i and
individual j. For friends with similar feature vector, the closer they are, the more similar
their probability distributions are.
Based on the objective function, we can conduct similar procedure to convert the uncon-
strained optimization problem and write out the augmented Lagrangian for the constrained
optimization problem.

L⇢,�(W, b, g, s, u, r) :=
X

i2V

n
log
⇣
1 + e

�yi(gTi xi+bi)
⌘

+
⇢1

2

⇣
� krik22 + kW � gi + rik22

⌘o
+
X

(i,j)2E

n
�qij(sij � sji)

2

+
⇢2

2

⇣
� kuijk22 � kujik22 + kbi � sij + uijk22 + kbj � sji + ujik22

⌘o

The ADMM algorithm for the weighted LLGR model is similar to the unweighted version.
The difference is in the update rule of sij and sji. The closed form solution of the sij and sji

update are as follows:

s
k+1
ij =

(2�qij + ⇢2)(bi + uij) + 2�qij(bj + uji)

4�qij + ⇢2

s
k+1
ji =

(2�qij + ⇢2)(bj + uji) + 2�qij(bi + uij)

4�qij + ⇢2

As we can see from above, the ADMM algorithm mainly consists of two blocks, the primal
variables optimization, and the dual variables update via dual ascent. “Alternating" means
that we can alternately update the values of the primal and dual variables in each iteration
until convergence. In each iteration, the computation of each node is fully distributed so that
the LLGR method can be fully parallel.
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4.5 Detailed Proof of Expectations Maximization

Algorithm for the Latent Class Graph

Regularization (LCGR) Model

4.5.1 Lower bound
Based on the assumption of the conditional probabilities distribution given latent class 3.3,
and the joint probability distribution of the latent class variables 3.7. The objective function
of the maximum likelihood estimation (MLE) can be rewritten as below. Similar to the first
step of the latent class model, we convert the optimization problem into another optimization
problem eliminating discrete variables zi. Let z denote the vector of hidden variables for all
individuals which follows some distribution z ⇠ q(z). Moreover, we denote with ✓ all the
parameters of our model. We can use Jensen’s inequality to derive lower bound for the log
likelihood of our model

logP (y; x, ✓) = log
X

z

P (y, x, z; ✓) = log
X

z

q(z)
P (y, x, z; ✓)

q(z)

= logEz⇠q


P (y, x, z; ✓)

q(z)

�

�
X

z

q(z) log
P (y, x, z; ✓)

q(z)

=
X

z

�q(z) log q(z) +
X

z

q(z) logP (y, x, z; ✓).

4.5.2 Expectation step
In the Expectation step (E-step), we form the following optimization problem to to find the
optimal distribution q(z)

max
q(z)

X

z

�q(z) log q(z) +
X

z

q(z) logP (y, x, z; ✓).

Let’s take the gradient of the objective function and set it to zero.

rq(z) =
X

z

� log q(z)� 1 + logP (y, x, z; ✓)

=
X

z

✓
log

P (y, x, z; ✓)

q(z)
� 1

◆

= 0.
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To solve this optimization problem, q(z) must be such that log(P (y,z;x,✓)
q(z) ) is constant, and this

is satisfied by setting

q(z) =
P (y, z; x, ✓)P
ż P (y, ż; x, ✓)

= P (z|y; x, ✓).

This means that the optimal distribution q(z) is the posterior distribution of latent variables.

4.5.3 Maximization step and the expected complete log likelihood
In the Maximization step (M-step) we form the following optimization problem

max
✓

X

z

�q(z) log q(z) +
X

z

q(z) logP (y, z; x, ✓).

Since the first part of the summation is not related to ✓ our goal is to maximize the expectation
of log likelihood with respect to ✓, therefore we will focus on

Ez⇠q[logP (y, z; x, ✓)] ⌘
X

z

q(z) logP (y, z; x,W, b)

=
X

z

q(z) log(P (y|z; x,W, b)P (z;W, b))

=
X

z

q(z) logP (y|x, z;W, b) +
X

z

q(z) logP (z;W, b)

=
X

z

q(z) log

 
Y

i2V

KX

k=1

P (yi|xi, zi = k, ✓)1(zi = k)

!

� �
X

z

q(z)
X

(i,j)2E

KX

k=1

�
(bik � bjk)

2 + kwik � wjkk22
�
1(zi = zj = k)

=
X

z

q(z)
X

i2V

log

 
KX

k=1

P (yi|xi, zi = k, ✓)1(zi = k)

!

� �
X

z

q(z)
X

(i,j)2E

KX

k=1

�
(bik � bjk)

2 + kwik � wjkk22
�
1(zi = zj = k).

We can exchange the sequence of log and
PK

t=1 because each node can only be in one class,
thus we have

Ez⇠q[logP (y, x, z; ✓)] =
X

q(z)
X

i2V

KX

k=1

1(zi = k) logP (yi|xi, zi = k, ✓)

� �
X

z

q(z)
X

(i,j)2E

kX

k=1

�
(bik � bjk)

2 + kwik � wjkk22
�
1(zi = zj = k).
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Let’s write the summation over z inside the summation over vertices and summation over
latent classes

Ez⇠q[logP (y, x, z; ✓)]

=
X

i2V

KX

k=1

X

z

q(z1, . . . , zi, . . . , zn)1(zi = k) logP (yi|xi, zi = k, ✓)

��
X

(i,j)2E

KX

k=1

X

z

q(z1, . . . , zi, . . . , , zj, . . . , zn)
�
(bik � bjk)

2 + kwik � wjkk22
�
1(zi = zj = k).

Notice that we can pull log(P (yi|xi, zi = k, ✓)) outside because the probability takes as input
the class and the index i. On the other hand the indicator function 1(zi = k) cannot be
pulled outside because the indicator function is a function of zi. Therefore we have that

Ez⇠q[logP (y, x, z; ✓)] =
X

i2V

KX

k=1

log(P (yi|xi, zi = k, ✓))
X

z

q(z)1(zi = k)

� �
X

(i,j)2E

KX

k=1

�
(bik � bjk)

2 + kwik � wjkk22
�X

z

q(z)1(zi = zj = k)

=
X

i2V

KX

k=1

log(P (yi|xi, zi = k, ✓))
X

z\zi

q(z \ zi, zi = k)

� �
X

(i,j)2E

KX

k=1

�
(bik � bjk)

2 + kwik � wjkk22
� X

z\{zi,zj}

q(z \ {zi, zj}, zi = zj = k)

=
X

i2V

KX

k=1

q(zi = k) logP (yi|xi, zi = k, ✓)

� �
X

(i,j)2E

KX

k=1

�
(bik � bjk)

2 + kwik � wjkk22
�
q(zi = zj = k).

where we already have joint posterior q(z) calculated in the E-step, and we have to get
the node marginal posterior distribution q(zi = k) and edge marginal posterior distribution
q(zi = zj = k). Based on equation (4), q(zi = k) is defined as below:

q(zi = k) = P (zi = k|yi, xi; ✓) =
P (yi|xi, zi = k; ✓)P (zi = k; ✓)

PK
s=1 P (yi|xi, zi = s; ✓)P (zi = s; ✓)

.
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Similarly, based on equation (4), q(zi = zj = k) is defined as below:

q(zi = zj = k) = P (zi = k, zj = k|yi, yj, xi, xj; ✓) =

P (yi, yj|xi, xj, zi = k, zj = k; ✓)P (zi = k, zj = k; ✓)
PK

m=1

PK
n=1 P (yi, yj|xi, xj, zi = m, zj = n; ✓)P (zi = m, zj = n; ✓)

.

Notice that to compute the above probabilities it is required to know the marginal P (zi = s; ✓),
which is expensive to compute since it requires marginalizing P (z; ✓) which involves an
exponential number of calculations. In the next section, we discuss how to compute the
marginal P (zi = s; ✓) approximately.

4.5.4 Approximate Inference for the E step
The exact inference for our model is hard, but we can have approximate inference through
sampling, to be more exact Gibbs sampling in our model. Our objective is to approximate
the marginal distribution P (zi = s; ✓) 8i by sampling from this distribution using the Gibbs
sampling algorithm. Below we present the Gibbs sampling algorithm and the definition of
the conditional probabilities that are required for sampling. After running Algorithm 4 we

Algorithm 4 Gibbs sampling for P (zi; ✓) 8i
Inputs:

Parameters w and b

Initialize:
z
(0) ⇠ q(z)

for iteration i = 1, 2, . . . do
z
(i)
1 ⇠ P (z1|z(i)[N ]\1)

...
z
(i)
N ⇠ P (zN |z(i)[N ]\N)

end for

obtain samples for each variable zi 8i. We can use these to form a histogram and use this
distribution as an approximation to the marginal P (zi; ✓). Having this distribution we can
perform inference and compute P (zi = k|yi, xi; ✓).

To implement Algorithm 4 we need formulas for the conditional probability P (zi = k|z[N ]\i).
When there are K classes for the latent variables, the conditional probability is given by

 (i, j, k) =
�
(bik � bjk)

2 + kwik � wjkk22
�
1(zj = k)

and

P (zi = k|z[N ]\i) =
exp

⇣
��
P

j2N(i)  (i, j, k)
⌘

PK
k̃ exp

⇣
��
P

j2N(i)  (i, j, k̃)
⌘ (4.10)
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To perform the M-step we also need to know the edge marginal posterior P (zi = k, zj =
k|yi, yj, xi, xj; ✓) which in turn requires knowing the marginal P (zi = k, zj = k; ✓). We
compute the latter approximately by using the samples obtained by the Gibbs sampling
Algorithm 4.
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Chapter 5

Connected Population Synthesis

5.1 Introduction

Understanding how urban systems operate and evolve through modeling individuals’ daily
urban activities has been a major focus of transportation planners, urban planners, and
geographers. To address operational needs in planning and policy decision making, reli-
able agent-based land use and urban transportation micro-simulation frameworks such as
TRANUS [26], UrbanSIM [118], ILUTE [103], MATSim [6], MEPLAN [23] are becoming
popular. Models implemented via micro-simulations require detailed information on each of
the agents that represent the population in the region of study. Traditional ways of obtaining
this information include using community survey data, or travel surveys based on individual
or households travel diaries. These datasets provide a rich set of features but are limited in
sampling size, geographical scope, and frequency of updates. The reasons for the limited
availability of such detailed disaggregated data to researchers range from the lack of technical
means and resources for surveying to personal information protection requirements, related
data security and privacy concerns.

This work is motivated by the lack of inter-personal communication networks in the
traditional data collection methods. This deficiency limits the development of the next
generation of models that would appropriately integrate social effects with spatial-temporal
information to better capture the dynamics of urban systems. To enable agent-based
simulation in the presence of social influence effects, a connected synthetic population is
needed as input. However, current state-of-the-art population synthesis models fail to generate
social networks information because household surveys do not include social information.
Alternatively, the prevalence of mobile phones provides a new data source for generating
social networks. Pervasive sensing by telecom companies and location-based service providers
generates large-scale geolocated communication datasets in which timestamped locations of
users are recorded whenever calls are placed or messages are sent. An example of such data is
the network carrier mobile phone usage logs, such as Call Detail Record (CDR) data. While
manual surveying techniques are limited in their ability to collect social network data on a
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Figure 5.1: Population synthesis framework, ACS: American Community Survey Data, TAZ:
Traffic Analysis Zone, CDR: Call Detail Record Data, ERGM: Exponential Random Graph
Model

large scale, digital records of CDR provide an abundance information on spatial patterns of
social networks [122].

In this paper, we propose an integrated methodology for incorporating various types of
data into an integrated model that captures both social interactions and spatial patterns. It
brings together several data components, reproducing the marginal and joint distributions of
individuals and household level socio-economic characteristics, a geographical pattern of the
observed community structure, and the statistics of the observed social networks.

The proposed population synthesis methodology includes the following steps, presented
graphically in Figure 5.1. First, the household data is used to reproduce the socio-economic
characteristics within the generated synthetic population. Next, the structure of the social
network in the region is inferred from available network data and applied to connect the
members of the generated households into a synthetic social network that follows the key
structural properties of the observed one. The proposed methodology acknowledges the
limitations of the data availability, as household and social network data are typically
available from two separate sources with no implicit way to identify individuals present
in both. Therefore, the sequence of methods that we introduce are aimed to model and
reproduce key statistical characteristics of the connected population. The methods involved
in the population synthesis are:

• Step 1. Bayesian Networks: Composition and socio-economic characteristics of the
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synthetic households are generated based on Bayesian network parameters estimated
from a typical household survey data (such as the American Community Survey);

• Step 2. Community allocation: Integer programming problem of community
assignment is solved with the Lagrangian Relaxation Method to enrich the simulated
population with community membership;

• Step 3. ERGM learning and simulation: Parameters of an Exponential Random
Graph Model are calibrated on the available social network data and applied to simulate
social connections between the members of the synthetic population.

The rest of the paper is organized as follows. Section 5.2 presents the methods involved in
each step, while comparing them to the state-of-the-art methods. The following Sections 5.3
and 5.4 illustrate the application of the methods on real data, simulating a connected
population in the San Francisco Bay Area in California, US. Finally, Section 3.7 concludes
the paper with a discussion of the achieved results and outlines the directions for future work.

5.2 Methods

In this section, we explain the methods explicitly adopted in each step as shown in Figure 5.1.
We first introduce the Bayesian Networks estimated from American Community Survey (ACS)
for simulating synthetic population in step 1. Then we use Lagrangian relaxation to solve
the integer problem formulated for community assignment in step 2 with parameters learned
from Call Detail Records (CDR). In the final step, we explain how the Exponential Random
Graph Models (ERGM) learning is applied to social network simulation.

5.2.1 Step 1: Generating Synthetic Population
In this section, we explain how to use the state-of-the-art techniques to generate synthetic
population, which is used as input for step 2 and step 3. The problem of this step can be
regarded as the canonical synthetic population problem.

5.2.1.1 Related Work

Traditional population synthesis methods encompass two main directions: (1) Iterative
Proportional Fitting (IPF) related models that focus on fitting a contingency table constructed
from the micro samples to satisfy marginal distribution constraints from aggregated census
data, along with the extensions of IPF models that aim to satisfy marginal distribution
constraints of both individuals and households characteristics [132, 15, 143]; (2) statistical
models that use MCMC (Monte Carlo Markov Chain) to sample a vector of socio-economic
characteristics of each individual sequentially so that it captures the observed conditional
relationships between the variables [38].
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As a method of replicating existing sample data, IPF-related methods are sensitive to data
quality and sample size. MCMC-based approach, however, also suffers from the drawback
that it is hard to obtain the specified conditional distributions especially when one deals with
many variables of interest. As pointed out by Sun et al. [115], Bayesian network approach is
powerful in characterizing the underlying joint distribution, outperforming IPF and MCMC,
and avoiding over-fitting the data.

5.2.1.2 Proposed Method: Bayesian Networks

Based on the vast amount of literature on population synthesis, we choose to follow the
Bayesian networks approach similar to the approach in [115]. The Bayesian network approach
is a generic formalism aiming at modeling the joint distribution of X from data. It consists
of two main steps: (1) structure learning to define the Bayesian network structure G that
describes the conditional independence of the random variables, and (2) parameter learning
to learn a conditional distribution of random variables given this fixed directed acyclic graph
(DAG) structure G.

In the context of population synthesis, the objective of this method is to infer the
multivariate probability distribution P (X) of socio-economic parameters of households based
on observed data. Socio-economic parameters X 2 R

d and X1, X2, · · · , Xd are typically
composed of d discrete random variables representing the available information on both
households and individuals, which was collected via surveying, and regarded as the complete
set of observations D = {(xt

1, x
t
2, · · · , xt

d), t 2 [1, n]} where (xt
1, x

t
2, · · · , xt

d) is one realization
of X.

5.2.1.3 Structural learning and parameter estimation

The Bayesian network structure learning algorithms can be grouped into two categories:
(1) constrained-based algorithms where dependencies are set using domain knowledge, and
the resulting models are interpreted as causal models; (2) score-based algorithms where we
select the graph structure G that results in the highest score following some accepted scoring
criterion. In the present work, we use the algorithms from the second category.

For each graph structure G, we factorize the joint distribution P (X) as the product of
conditional distributions P (Xi|X⇡i) where X⇡i represents the parent nodes of Xi given graph
G.

P (X;G) =
dY

i=1

P (Xi|X⇡i) (5.1)

Then we can rewrite the log likelihood of the data given model parameters ✓ and the graph
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structure G in question as:

l(D; ✓,G) =
nX

t=1

log(P (xt
1, ..., x

t
d; ✓,G))

=
nX

t=1

dX

i=1

log(P (xt
i|xt

⇡i
; ✓)),

(5.2)

where d = dim(G) is the number of parameters (a table of conditional probabilities in case of
the discrete variables), and n is the number of observations in D. Based on the definition
of log likelihood, one can get the probability parameters ✓̂ based on maximum likelihood
estimation. One can then consider the maximum value of log likelihood for the graph structure
G, given estimated parameters ✓̂ as l(D; ✓̂,G). Each candidate Bayesian network can be
assigned a score, and a final model can be selected based on the graph structure that results
in the highest score. There are different network scores that can be used, among which the
BIC (Bayesian information criterion) and AIC (Akaike information criterion)

BIC(G) = l(D; ✓̂,G)� d

2
log(n), (5.3)

AIC(G) = l(D; ✓̂,G)� d, (5.4)

are the most common choices. It is impossible to search over all possible graph structures
G since the number of candidate graph structures increases super-exponentially with the
number of variables [100]. The admissible set of structures can be defined using domain
knowledge, and the selection process then can be optimized with some heuristic algorithms
such as hill-climbing or tabu search. In this work, we followed [115] to use tabu search
algorithm and AIC score for Bayesian networks structural learning. We further refer the
reader to [54, 55, 19] for a detailed survey on Bayesian networks.

Parameters of a specific Bayesian network model are estimated for every type of a
household, following a descriptive classification accepted in a region of study. Household
tables are produced with an IPF method to match the marginal distribution of household
types within the total population. Population synthesis includes sampling N entries from
the P (X), specific to the household composition dependencies captured by the structure
of the graph G for the given type of the household. It results in a complete set of N

individuals within H households with detailed socio-economic characteristics. Section 5.4.1
below illustrates the use of the method in the context of typically available survey data.

5.2.2 Step 2: Community Assignment
As justified in the introduction, community membership is one of the key features that we
would like to reproduce in the connected population synthesis. We consider community to be
defined as a group of individuals that possess stronger ties within the group as compared
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to the connections emanating to the outside of the group. Within communities, homophily
pattern [78, 21, 109] are often observed. Spatial proximity is one of the most important
homophily patterns for spatial communities. For example, urban sociology studies have
identified communities based on neighborhoods and social activities [48].

Therefore, we acknowledge spatial proximity as a primary property that needs to be
included in the community assignment step of population synthesis. Here spatial proximity
means members within the same community are spatially not too far from each other, but
not spatially clustered. For instance, people in the same office building are not necessarily in
the same community. Therefore, geographically clustering algorithm cannot be directly used
here. Besides, as observed from real-world data, most communities have a reasonable size
bound, so we also need to constrain the community size. Considering the spatial proximity
and community size, we formulate an integer optimization problem to solve the prescriptive
assignment of community membership, which is then taken into account in the actual social
networks simulation step using the model described in Section 5.2.3.

5.2.2.1 Formulation

To assign individual to communities, we formulate the community assignment as an integer
programming problem. Without loss of generality, we consider spatial locations to be known
at the resolution of a spatial zone according to the system defined by a population census. A
random location within a zone can be assigned to each household, or a location following the
exact address can be specified if available from a real estate or a cadaster dataset.

Assume a synthetic population of the total of N people is grouped into a total of K
communities. Suppose F 2 R

N⇥N is the feature distance matrix between individuals. The
distance can be defined based on the vector of socio-economic characteristics to capture
homophily relationships. The distance can also be extended (or replaced) with a similarity
measure available from the data in hand. An appropriate model for F is therefore specifically
determined by the application and is governed by the type of the simulation that the synthetic
population is intended to serve. We provide an example in the experimental section below.

We further introduce cj and Zij as decision variables. For the convenience of the assignment
formulation, we define cj = 1 if the j

th person is the social center of his/her community.
This representation does not carry a functional meaning but defines a convenient way to
enumerate the groups. Similarly, Z is an assignment matrix, with Zij = 1 if the i

th person
belongs to the community centered around cj and Zij = 0 otherwise.

In the presented approach, we formulate an optimization problem for the community
assignment procedure. Assume we first select K individuals serving as centroids of the
communities, and then assign other individuals to these centroids. Under the assumption that
members within the same community tend to have similar features defined and available in
F , we relax this assumption to the one in which people tend to have similar features as their
community centroids, justifying the re-assignment step that maximizes the objective function.
An individual can only belong to one community. Finally, the size of each community is
bounded by the lower and upper bound detected from data or otherwise specified. This set of
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Table 5.1: Notation

Variable Definition

Fij the feature distance between individual i and j

Zij individual i belongs to the community whose center is j

m the smallest size of the community
M the largest size of the community
uj if jth individual is the center of the community

assumptions corresponds to the optimization problem below for the community assignment
step (refer to Table 5.1 for notation).

minimize
Z

NX

i=1

NX

j=1

Fij ⇤ Zij

subject to
NX

j=1

Zij = 1, 8i;

NX

i=1

Zij M ⇤ uj, 8j;

NX

i=1

Zij � m ⇤ uj, 8j;

uj = 1 or 0, 8j;
Zij = 1 or 0, 8i, j.

(5.5)

5.2.2.2 Lagrangian Relaxation

To efficiently solve the assignment problem we relax the condition
PN

j=1 Zij = 1, using the
Lagrangian Relaxation Lower Bound (LLBP) method that results in an formulation defined
in Equation 5.6:

minimize
Z

NX

i=1

NX

j=1

(Fij + �i) ⇤ Zij �
NX

i=1

�i

subject to
NX

i=1

Zij M ⇤ uj, 8j

NX

i=1

Zij � m ⇤ uj, 8j

uj = 1 or 0, 8j
Zij = 1 or 0, 8i, j

(5.6)



CHAPTER 5. CONNECTED POPULATION SYNTHESIS 57

This problem is separable, so we write the sub-problem as j-problem:

minimize
Z

NX

i=1

(Fij + �i) ⇤ Zij � �i

subject to
NX

i=1

Zij M ⇤ uj

NX

i=1

Zij � m ⇤ uj

uj = 1 or 0

Zij = 1 or 0 , 8i

This problem can be solved numerically using Algorithm 5. For the j-problem, we can
solve it following the steps below.

1. If uj = 1, we pick at least m and at most M units of Zij among i to be 1, that is, if uj

is a community center, then at least m people and at most M people should belong to
this community. We compute Fij + �i for each i and rank them in an ascending order.

2. We denote Nc as the number of negative values for Fij + �i with all i and fixed j. If
Nc  m, we sum the first m smallest coefficients. If m < Nc M , we sum the first Nc

smallest coefficients. If Nc > M , we sum the first M coefficients. We define S as this
sum. Since the goal is to minimize the objective function, we set uj = 1 if S < 0 and
set uj = 0 otherwise.

3. For any �, what we calculate for Lagrangian relaxation is a lower bound, which is
denoted as LB. To update �, we also need to compute the upper bound, which is
denoted as UB. Let L = {i|

P
j Zij = 0}, which denotes the set of points that are not

assigned yet. We randomly pick d|L|/Me points from the set L as centers C. Then we
set each point i 2 L to a center j 2 C until each community has m people according
to the ascending order of Fij + �i for each i. After that, we continue to add the
unassigned points i 2 L to center j 2 C until the number of points belonging to j

reaches M . When all members are allocated, we find a feasible solution and thus an
upper bound for this problem. Lagrange multipliers �i are then updated as follows:
�
t+1
i = �

t
i +�t(

PN
j=1 Zij � 1) with the step size �t = ↵(UB�LB)P

i(
P

j Zij�1)2 .

The output of this algorithm is the community assignment matrix Z and membership
labels u that match the required spatial structure and sizes of the observed communities. It
will be used in social network simulation step as described below.
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Algorithm 5 Community Assignment Lagrangian Relaxation Algorithm
Initialize: � = 0,↵ = 0.01

while UB�LB
LB > ✏ do Solve LLBP given � values to get LB, cj, Zij

Find a feasible solution to get UB

Calculate the subgradients Gi =
PN

j=1 Zij � 1

Calculate the step size �t = ↵(UB�LB)Pn
i=1 G

2
i

Update �i = �i +�t
Gi

5.2.3 Step 3: ERGM learning and social network simulation
Various methods and software have been proposed for social network simulation, such as
Forest Fire model [70], Exponential Random Graphs Models [114], Markov Random Graphs
Model [41], and YANG (Yet Another Network Generator) [117], etc. In this paper, the
objective of the final step is to generate social connections for the simulated population data
enriched with community assignment and household locations. For this purpose, we adopt
the Exponential Random Graph Model (ERGM) to learn the parameters from available social
network data and use the learned parameters to create the social connections between the
synthetic population members. This step concludes with the generation of the complete
connected population enabling transportation simulation with social extensions.

5.2.3.1 Methodology review of ERGM models

Among the large amount of literature on the existing models of social networks, one cornerstone
approach is the exponential random graph models. It is a set of models that assume the
probability of the existence of certain graph structure with the corresponding adjacency
matrix a as belonging to an exponential family

Pr(A = a|✓) = exp(✓T s(a)�  (✓)), (5.7)

where ✓ is the vector of unknown parameters, s(a) is the vector of sufficient statistics computed
on the adjacency matrix a, such as the counts of subgraphs like triangles and k-stars, and  
is the normalizing constant. It is therefore focused on deriving probabilistic models of graphs
that match the statistics of the structural properties of the observed networks.

The work on Exponential Random Graphs Models can be classified into two groups
concerning the statistical independence or dependence of links.
Type I ERGM: Links are independent. The sufficient statistics in this case is the total
number of links. In the simplest case introduced by Erdós et al. [36], one assumes all network
edges are random variables that follow the same distribution. The model can be parameterized
with more variables when more information on the node properties becomes available. For
example, the classical stochastic block model [114, 88] incorporates community assignment. It
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assumes that the probability of the existence of an edge between two nodes within the same
community and the probability of the existence of an edge between two nodes from different
communities are different. Some other models [127] use ERGM with the assumption that the
edge probability between any two nodes depends on the characteristics difference. Variables
such as age, gender [53], as well as spatial distance [127] can be considered as factors defining
the edge probabilities. Such models incorporate the homophily assumptions and are used
extensively in social sciences [99, 113, 98].
Type II ERGM: Links are dependent. Link independence, resulting in Bernoulli and
dyadic dependence structures, are unrealistic assumptions in many circumstances, both
empirically and theoretically. To address this shortcoming, models which add the dependence
of links were proposed. The classical model is a Markov Random Graphs Model [41], where
the number of triangles and number of k-stars are used as sufficient statistics, so that two
edges are supposed to be conditionally dependent, given the values of all other ties. A
major difficulty in Type II ERGM model inference is how to evaluate  (✓), as there is no
feasible analytic method for approximating  (✓) for large networks [96]. Various Monte
Carlo schemes have been proposed to approximate  (✓), but two fundamental difficulties of
this type of ERGM model still remain. First, the estimation result using Markov Random
Graph Models is not robust, and Monte Carlo methods converge to ERGM model with link
independence within mixing time. Second, Markov Random Graph Model is not scalable
enough to handle large network inputs, which means that the parameter estimation in practice
will be computationally slow, if at all possible.

5.2.3.2 Community-distance ERGM

Given the limitations of conventional ERGMs mentioned above, we propose the “community-
distance” ERGM model where we make the following assumptions: (1) links are independent;
(2) people who are characteristically close to each other are more likely to be connected; (3)
people in the same community are more likely to get connected with each other.

We, therefore, aim to infer the parameters ✓ based on observation of adjacency matrix A,
characteristics distance matrix F and community labels C from available social networking
data. The learned parameter ✓ is then used to generate links for the simulated population,
given the characteristics distance matrix F and community assignment C where Ci = j

indicates that the community label of individual i is j.
The probability of the social graph in our model is:

Pr(A = a|X,F ) =
1

K exp(
⇥
✓1 ✓2 ✓3

⇤

2

6666664

NP
i=1

NP
j=1

Aij

P
{(i,j):Ci=Cj}

Aij

NP
i=1

NP
j=1

FijAij

3

7777775
) (5.8)
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where
NP
i=1

NP
j=1

Aij is twice the total number of edges,
P

{(i,j):Ci=Cj}
Aij represents twice the number

of edges that connect two nodes belonging to the same community, and
NP
i=1

NP
j=1

FijAij represents

twice the sum of the distances between pairs of nodes connected by an edge. To transform
this problem into standard logistic regression problem, we introduce a random variable Yij,
with Yij = 1 when Aij = 1, and Yij = �1 when Aij = 0. Model parameters can then be
estimated based on maximum likelihood, given by

l(A = a; ✓) = log(P (A = a|X,F )) =
NX

i=1

NX

j=1

log(P (Aij = aij))

=
NX

i=1

NX

j=1

log(P (Yij = yij)) =
NX

i=1

NX

j=1

log(
1

1 + e�yijsij
)

(5.9)

where

sij =

(
✓1 + ✓2 + ✓3Fij; if Ci = Cj

✓1 + ✓3Fij; otherwise.
(5.10)

Unlike Type II ERGM models where links are dependent, this model specification does not
require MCMC procedure to generate possible graph structures, and maximum likelihood
estimation provides numerically stable and robust parameter estimation ✓̂. The social network
for the synthetic population A can then be simulated given the characteristics distance matrix
F and community assignment C, with

Pr(Aij = 1) =
1

1 + e�ŝij
, (5.11)

where

ŝij =

(
✓̂1 + ✓̂2 + ✓̂3Fij; if Ci = Cj

✓̂1 + ✓̂3Fij; otherwise.
(5.12)

The following sections of the paper illustrate the use of the aforementioned methodology
and describe the practicalities of the applications of methods to the particularities of available
data.

5.3 Data

Model specifications for an application of the described methods depend on the availability of
data. This section describes two typical data sources that are used to illustrate the synthesis
of individuals for a given type of the households, and a corresponding social network of
the required community structure for this synthetic population. Due to privacy protection
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regulations, it is unlikely that the two components of data will become readily available in
a way enabling matching the users across two sources, motivating the development of the
population synthesis methodology presented in this paper.

5.3.1 American Community Survey
The first data source we utilized in the experiments part of this paper is a typical household
survey data, known as the Public Use Microdata Sample (PUMS) of the American Community
Survey (ACS). It contains multiple socio-economic parameters of the household members for
a sample of the households in the region. This sample size typically ranges from 1% to 10%,
and is maintained by regional governments and agencies. Apart from this micro sample data
set, the aggregated marginal distribution of the population totals at the block group and
census tract levels are also provided.

In the presented work, the region of study encompasses the San Francisco Bay Area: a
7,000 square-mi region spanning nine counties under the jurisdiction of the Association of Bay
Area Governments. According to the updated information from Metropolitan Transportation
Commission and the Association of Bay Area Governments, there are 7 million people residing
in nine counties and 101 cities. There are in total 1588 census tracts and 72 Public Use
Microdata Areas. The data available from the ACS database carries the records for 439,525
people from 132,311 households, which corresponds to a sampling rate of 6.1%.

By the ACS classification, households are divided into several different types based on
the household size and structure. In this paper, we use 2-people households as an example.
There are a total of 23895 2-people households in the PUMS of the study area.

5.3.2 Social Network Data
Social network data sources range from small-scale samples collected from research projects
to massive repositories of users data kept by online social network companies and telecom
operators. One source of the latter type is known as the Call Detail Records (CDR), which is
a standardized format of call logs collected by the operators of cell phone networks. Below
we give a brief introduction to CDRs data and then elaborate on how we construct the social
networks from these records.

Collected by cellular network operators for billing purposes, CDR datasets contain several
features that have helped fuel the burgeoning field of computational social science. Each
record describes a communication event on the cellular network. It contains Universally
Unique Identifiers (UUIDs) representing the anonymized calling (or texting) and receiving
individuals, the time of initiation, its length (if it was not a text), and the unique identifiers
of the cell towers at the outgoing and incoming locations (see Figure 5.2 for an example).
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Figure 5.2: A sample CDR(Call Detail Record) with highlighted data fields.

5.3.2.1 Data preparation for network generation

To construct a social network using CDR data, certain pre-processing operations are often
necessary in order to filter out spurious calls, marketing calls, and other interactions not
necessarily indicative of social contact [10, 67, 89, 90]. Regarding the construction of
the CDR network, there are multiple ways to represent edges between two individuals.
Key choices depend on the desired network representation to be weighted/unweighted and
directed/undirected. For the purpose of population synthesis, we choose to construct the
social network as unweighted and undirected. We add an edge between individuals i and j if
individual i called/received a call or send/received a message from individual j, and it has
been reciprocated within the time span of the dataset. In the sample available to us from a
telecom operator, the resulting network representation consists of 1,321,765 edges and 343,299
nodes. This way of constructing the CDR network is based on Section 2.1 of [9] and Section
2.1.1 of [77]. No personally identifiable information is available due to privacy protection,
making it impossible to match the users to the community survey sample, or to assign the
users with the exact set of the socio-economic parameters. Instead, the key objective of the
proposed methodology is to infer the structural properties of the social networks in order to
reproduce them in its synthetic version.

5.3.2.2 Home and work locations

The first characteristic that is required for social network synthesis is the spatial spread of
the detected communities. It defines the decay of the edge probability with the distance
between nodes as well as the geographical boundaries between the communities that are
known to be different from the administrative or other artificially defined divisions [67]. A
set of “anchor” locations such as home and work are required in order to define characteristic
spatial structure of communities that we use in the assignment algorithm described above
in Section 5.2.2. There are mainly two popular ways for home and work detection: first, a
Gaussian mixture model is adopted to model locations centered around home and work [20];
second, “home” is defined as the location where the user spends more than 50% of her/his
time during night hours. Similarly, “work” is defined as the location where the user spends
more than 50% of her/his time during day hours [66, 134, 93]. In this paper, we adopt the
similar approach as in [134], and we define 6pm-8am as night hours and 8am-6pm as day
hours.
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5.3.2.3 Community Detection

The second characteristic of interest is the community structure of the social network. To
obtain the largest community size M and the smallest community size m for the improved
two-stage Lagrangian relaxation method, we need to conduct community detection on Call
Detail Records social networks to obtain these features.

Within the variety of state-of-the-art methods of community detection, two main ap-
proaches are modularity-based methods [87] and conductance-based methods [61], with
modularity and conductance correspondingly serving as the criteria for community detection.
Conductance is a local metric, whereas modularity is a global metric. The smaller the
conductance is, or the bigger the modularity is, the better the community detection is.

The majority of studies involving CDRs for community detection use modularity due to
their focus on intra-community size and homogeneity. For example, a common approach is to
use the well-established Louvain method [10], as exemplified by [122, 57], with extensions
such as fast hierarchical agglomerative clustering based on the modularity metric [42, 110].
However, modularity-based methods fail to capture small-scale community patterns [71]
typical for small social groups at the scale of households that we are interested in. Thus we
propose to use conductance-based local community detection methods [61], particularly the
local graph clustering [40, 112], for finding realistic upper and lower bound for community
size required for the assignment step described in Section 5.2.2. We refer the reader to [39, 4]
for detailed surveys of conductance-based methods.

5.4 Experiments

We provide an illustrative experiment by generating a synthetic connected population within
the San Francisco Bay Area, California. The experiment was run on a MacBook with 2.5
GHz Intel Core i7 processor and 16 GB memory. The results at each step of the methodology
are described in detail for the county of Napa, which consists of 108 census tracts and a total
of 48,876 households with 131,556 residents according to the US Census Bureau.

5.4.1 Household synthesis
A specific Bayesian network model has to be produced for each household category, calibrated
from micro-census sample and applied to synthesize the required number of households of
each type following the available aggregate numbers of household types in the area of interest.

For simplicity of the illustration, out of the total set of observations with 500 variables
contained in the PUMS, we restrict the example to 23,895 2-people households. The latter
consists of the head of the household (the householder) and a spouse or a domestic partner.
For the set of socio-economic parameters, we choose the variables that are of interest to urban
planners and transportation researchers, which are: SEX (sex of householder), SEX_S (sex
of householder spouse), AGE_index (age level of householder), AGE_S_index (age level of
householder spouse), PINCP_index (income level of householder), PINCP_S_index (income
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Figure 5.3: The learned structure of the Bayesian network for 2-people households.

level of householder spouse), and VEH (number of vehicles owned by this household). We
factorized raw input data from Public Use Microdata Sample (PUMS) to categorical variables
based on the corresponding ACS age and income level bins so that it can be matched with
aggregated marginal distributions in full population synthesis.

5.4.1.1 Bayesian Network Structure and Parameter Learning

Within each type of a household, the dependency structure between the chosen variables
needs to be defined. This problem is known as the structure learning. By applying the tabu
search methods [115], we realized that the estimated model structure is not robust when
we bootstrap or use multiple data subsets. This behavior was not reported in [115]. To
overcome the undesirable outcomes and constrain the dependencies based on the domain
knowledge and common-sense relationships, we defined a “whitelist”, which defines a set of
relationships in structural learning procedure that must be preserved and are guaranteed to be
present in the final graph. The whitelist used in our experiments included the gender/income
dependence, which means the arrow, SEX ! PINCP_index, is whitelisted. Figure 5.3
presents an estimated model structure for 2-people households.

Parameter learning for the fixed structure of the Bayesian network is straightforward. We
use an implementation of bnlearn R package [108] for the parameter learning and sample
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(a) PUMS data (b) Bayesian Network Model Simulated Data

Figure 5.4: Joint distribution of the household head income and the age of the spouse/partner
in the 2-people households.

from the final model for population synthesis.

5.4.1.2 Metrics Evaluation

To keep the presentation concise, we report on the representative results of the parameter
estimation without providing a full set of tables for conditional distributions between pairs of
variables (shown in Figure 5.3). Figure 5.4 shows the joint distribution of owner income and
spouse age of PUMA and simulated data from Bayesian network, and Figure 5.5 shows the
joint distribution of owner age and spouse age of PUMA and simulated data from Bayesian
network. It illustrates that the Bayesian network satisfies the joint distribution of variables.
One can clearly observe that the pairs of variables are not independent, and the dependency
structures between the variables of household members are preserved.
To quantitatively access the performance of the synthetic population simulation, we measure
the Kullback–Leibler divergence (KL divergence) (5.13), which is used to measure the
difference between two probability distributions.

DKL(P ||Q) =
X

i

P (i) log
P (i)

Q(i)
(5.13)

However, in practice, it is very difficult to compute the KL divergence between the joint
distribution of simulated data and input survey data due to the large categorical tuple space.
As a trade-off, we calculate the KL divergence of the joint distributions in the Figure 5.4 and
the joint distributions in the Figure 5.5 as examples of the overall simulation performance.
The KL divergence of joint distribution of owner income and spouse age for simulated data and
survey data data, as shown in Figure 5.4, is 0.008, and the KL divergence joint distribution
of owner age and spouse age for simulated data and survey data, as shown in Figure 5.4, is
6.4e�5.
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(a) PUMS data (b) Bayesian Network Model Simulated Data

Figure 5.5: Joint distribution of the age of the head of the household and the spouse/partner
in the 2-people households.

5.4.1.3 Synthesis with Bayesian networks and marginal distributions

Marginal distribution or joint distribution of two or more variables, which comes from
aggregated census data, can be used as a metric to control the quality of sampled populations
from the inferred Bayesian network [115]. However, it is instead desirable to match the
observed marginal distributions precisely. Although one can access all aggregated feature
variables for different geographical zones, in Bayesian network models, it is only possible to
precisely match the distribution of the mother node. That is because based on the conditional
distribution theorem, once the distribution of mother nodes and the conditional probability
table are known, the distribution of child nodes are uniquely defined [54, 55, 19]. Thus it is
impossible to satisfy the conditional distributions while satisfying the marginal distributions
of all variables at the same time. A theoretically justified method for the latter is an open
research problem. An acceptable practical strategy is to keep the Bayesian network as
simple as possible, only capturing the dependencies between variables with strong statistical
significance in addition to the white-listed ones. In our application, we observed the best
results when we maintained the marginal distribution of the sex of the head of a household
(mother node “sex” in Figure 5.3) according to the gender distribution from the aggregated
census data.

5.4.2 Community Assignment
In this step, we need to obtain the necessary parameters for community assignment, including
the Fij matrix for the simulated population of the households, as well as the lower bound
m and upper bound M of community size, based on the community detection results on
available social network data set.
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5.4.2.1 Community detection result

Structural properties of the social network in the presented application were detected from
the available CDR data described in Section 5.3. We use the parallel local graph clustering
method [112] implemented in Ligra [111] for the community detection. Because 77% of the
communities have 30-50 individuals, we set the size range for m and M to be 30 and 50,
respectively. Then, home and work locations were detected with the algorithm described
above. The detected communities were found to be clustered geographically, while preserving
the different characteristic spatial scale of their spread within the high and low population
density areas.

We then aim at reproducing the spatial proximity and geographical boundaries within the
detected community and the synthetic population, using the pairwise distances between the
locations of the synthetic households as elements of Fij . Having introduced a generic method
of assignment communities to reproduce the observed spatial structure, we leave the detailed
study on modeling Fij and the relative importance of social versus spatial factors to further
research.

5.4.2.2 Community Assignment Experiments

With derived values of m, M and Fij we then perform community assignment. Since the
large-scale assignment problem is quite time-consuming to solve, we implement the community
assignment using CPLEX solver [25] and parallel computing paradigm known as Message
Passing Interface (MPI) [46]. We randomly partition the input data into K groups, each with
300 individuals, and use CPLEX solver for each sub-problem, coordinated by MPI. We have
controlled the running time of CPLEX by setting the relative MPI gap tolerance to 20%.
Because we are not interested in finding the exact minimum value of the original problem, we
can tolerate an approximate assignment. CPLEX with MPI was found to provide a sufficient
small objective value while satisfying all the constraints. We found that it is also much faster
than solving the original large mixed integer program.

5.4.2.3 Metrics Evaluation

Figure 5.6 illustrates the assigned communities color-coded on a map overlay, illustrating
the spatial spread of the communities. We can notice the characteristic structure of a more
spatially homogeneous communities in the rural areas and higher overlapping ones in the
suburban zones, also with the county capital town as observed in previous studies [69]. It
shows that our community assignment algorithm guarantees that individuals in a community
geographically close to each other but not at the same location. If we apply other geographical
clustering algorithms, like K-means or DBSCAN for the community assignment procedure,
members of each community will be geographically clustered, which is not what Call Detail
Records data (CDR) implies.
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Figure 5.6: Mapping Assigned Communities

5.4.3 Step 3: ERGM learning & simulation
In this step, we apply the community-distance ERGM model implemented using CVX solver.
We learn model parameters based on a subsample of a CDR network, and generate links for
synthetic individuals. We then overlay the communities on a map and explore the network
statistics of the simulated connected population.

5.4.3.1 ERGM learning

In our experiments we tried to adopt the type II ERGM model with dependent links, using
the current state-of-the-art R ERGM implementations: (1) block exponential random graph
model from “blkergm” package [129], and (2) exponential random graph model with local
dependence [107] from “hergm” model [106]. However, both models were found to be not
scalable to efficiently process the sampled CDR networks. Since there are no existing scalable
parameter learning methods for Markov Random Graph Model that can efficiently handle
large networks [105], we propose to use a model where edges are independent. However, even
with the state-of-the-art R ergm packages [59] for the type I ERGM models, the estimation
result is still not satisfiable because the implementation involves Monte Carlo MLE estimates.
Here we report on the results achieved by maximizing the convex maximum likelihood function
of the community-distance ERGM model. We implemented it using CVXPY [31].

Based on Equations (5.11)(5.12) and estimation result of Table 5.2, we observe that the
probability of a connection decreases with distance. The probability of two individuals getting
connected when they are in the same group is bigger than when they are not in the same
group, since we have 1

1+e�(✓1+✓3⇤Dij+✓2)
>

1

1+e�(✓1+✓3⇤Dij)
because ✓2 > 0 (check [16] for more
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Table 5.2: Estimation result of community-distance ERGM
Parameters Estimate

✓1 -0.8803
✓2 0.1182
✓3 -14.5637

details), and it corresponds to the increasing trend of sigmoid function. This indicates that
people who are in the same community are more likely to get connected.

5.4.3.2 ERGM simulation and Metrics Evaluation

With parameters learned from community-distance ERGM learning step, we can simulate the
social connections for the simulated households. We illustrate and report on the properties
of the simulated social networks. We report the performance of ERGM simulation in the
following three metrics:
(1) Degree Distribution Figure 5.7 shows the degree distribution in log scale. Since the
straight line fits the points quite well where R

2 = 0.85, it shows strong evidence of power law
distribution.
(2) Distance Effect Figure 5.8 shows a geographical visualization of simulated social
networks. It shows that people who live closer have higher probability to be connected.
(3) Community Membership Effect We also attempt to illustrate that people who are in
the same community are more likely to get connected (given the same distance). We provide
Figure 5.9 (right), which is a visualization of 10 communities within the simulated social
network. As one can see from Figure 5.9 (right), there are people living far away that are
connected, but they are most likely to be in the same community in accordance with the
parameter estimation results. Note that there are some isolated nodes in Figure 5.9 (right)
for two reasons: (1) this graph is a subgraph sampled from the simulated social networks,
and some nodes are connected with ones which are not in this subgraph; (2) ERGM is a
probabilistic model, and it is possible that the probability of one given node connected with
each other node is small.

5.5 Potential Applications

Large volumes of call detail records (CDR) from mobile phones have been adopted in
multiple transportation modeling framework [62, 74, 134]. These frameworks have similar
data processing procedures: (1) generating synthetic population for a region, (2) producing
synthetic travel plans for the population in the region by sampling models trained on CDR
data, (3) using travel plans as inputs to an agent-based microscopic traffic simulator [6].

Since the social network property of call detail record (CDR) is not exploited, we can further
use this information to obtain the statistics of the observed call detail record (CDR). Combined
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Figure 5.7: Degree Distribution plot of simulated social networks

Figure 5.8: Histogram plot of distance between two individuals connected by an edge

with the marginal and joint distributions of individual and household level socio-economic
characteristics, and a geographical pattern of the observed community structure, (1) social
activity prediction model can be adopted to generate synthetic travel plans considering the
effect of social connections; (2) social discrete choice model [138] can replace the multinomial
discrete choice model in agent-based microscopic traffic simulator, to model the mode choice;
(3) peer pressure effect [102] can be efficiently integrated into the agent-based microscopic
traffic simulator.
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Figure 5.9: Social Networks visualization in a geographical space (left), and a subgraph for
selected 10 communities in a network layout representation (right).
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Chapter 6

Conclusion

6.1 Summary and conclusions

Understanding how friendship influences human behavior over time and space is the key topic
of social-enabled urban data analytics. In this era of transformative mobility, this can help
better design policies and investment strategies for managing existing urban infrastructure
and forecasting future urban infrastructure planning. In this dissertation, we explored two
research directions on social-enabled urban data analytics. First, we developed new machine
learning models for social discrete choice model, bridging the gap between discrete choice
modeling research and computer science research. Second, we developed a methodology
framework for synthetic population synthesis using both small data and big data.

In the first part of the dissertation, we introduced social graph regularization ideas
into discrete choice models for user choice modeling. We proposed local logistics graph
regularization (LLGR) method and latent class graph regularization (LCGR) model. We
developed scalable parameter estimation method for LLGR model on large graphs benefiting
from recent advances in distributed optimization based on ADMM methods. Also, we
have developed, implemented, and explored parameter estimation algorithms that allow
parallel processing implementation for both E- and M-steps of the Monte Carlo Expectation
Maximization (MCEM) algorithms for LCGR model. In experimental evaluation, we have
focused on investigating the usefulness of the models in revealing and supporting the hypothesis
in studies where not only predictive performance (that was found to be highly competitive)
but also understanding social influence, is crucial. Our models can be directly applied to
study social influence on revealed choices in large social graphs with rich node attributes.
One challenge with extending our results is that such data are very rarely available in open
access due to privacy issues.

In the second part of the dissertation, we developed an algorithmic framework to incor-
porate social information in population synthesizer.This proposed framework for connected
population synthesis is applicable to cities or metropolitan regions where data availability
allows for the estimation of the component models. The framework utilizes both traditional
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data sources such as household survey and census data (such as an ACS PUMS (public
micro sample) and ACS aggregated census data in the context of the United States), and
social network information that can be available for the region from cellular records or
social media data. We implemented the proposed methods in code using state-of-the-art R
packages [59, 108] and optimization toolboxes CPLEX [25] and CVX [31], applying an MPI
parallel computing approach [46] to guarantee scalability. The code we developed in this
work is available at https://github.com/DanqingZ/CPS_TRC.

A practical application of the proposed methods has demonstrated its usefulness. We
presented an example illustrating the application of the approach to simulating a connected
population for the Napa County, California, describing the modeling choices we made. The
results have shown that the simulated connected population successfully captures a pattern
from household survey data and transforms the observed community structure into a simulated
population. We believe this framework presents a starting point for connected population
synthesis research.

6.2 Future Work

The presented work has faced several limitations that we expect to address in future research.
Particularly, we expect new developments to emerge along the lines of:

• Social Discrete Choice Models

– Explore deep learning based models in the E step of MCEM to speed up the
computation

– Explore deep learning method to approximate the probability distribution instead
of solving them explicitly.

• Connected Population Synthesis

– Amending the Bayesian Networks modeling step with an advanced method that
simultaneously allows: (1) fitting parameters of Step 1 by constructing a con-
strained optimization problem where the objective function is the data likelihood
under a given network structure and meanwhile satisfying marginal distributions;
(2) extending the current work to generate hierarchical structures of the social
networks;

– Generating more realistic home locations based on third-party real estate data;

– Replacing ERGM with a more scalable social network generation method that can
both handle large input networks and account for link dependence, particularly
incorporating the effect of the households structure;

https://github.com/DanqingZ/CPS_TRC
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– Thoroughly applying the synthetic population within a larger-scale agent-modeling
framework.

• Other Research Direction in Social-enabled Urban Data Analytics

– Introduce social information in analyzing human trajectory data. Develop new
machine learning/deep learning models for social-enabled activity recognition and
location prediction models.

– Design robust social carpool mechanism to incorporate the social carpooling mode
choice into the microsimulation system.
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