
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Scalable Parallel Programming for High Performance Seismic Simulation on Petascale
Heterogeneous Supercomputers /

Permalink
https://escholarship.org/uc/item/4xd9m76m

Author
Zhou, Jun

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xd9m76m
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

	

Scalable Parallel Programming for High Performance Seismic Simulation on

Petascale Heterogeneous Supercomputers

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering
(Computer Engineering)

by

Jun Zhou

Committee in charge:

 Professor Clark C. Guest, Chair
 Professor Yifeng Cui
 Professor Chung-Kuan Cheng
 Professor William S. Hodgkiss
 Professor Vitaliy Lomakin
 Professor Jean-Bernard Minster

2014

Copyright
Jun Zhou, 2014

All rights reserved.

	

iii

This dissertation of Jun Zhou is approved, and it is acceptable in quality and form for
publication on microfilm and electronically:

Chair

University of California, San Diego

2014

	

iv

DEDICATION

To my dear father, mother and wife.

	

v

EPIGRAPH

Believe you can and you’re halfway there.

- Theodore Roosevelt

	

vi

TABLES OF CONTENTS

Signature Page ... iii

Dedication ... iv

Epigraph .. v

Table of Contents .. vi

List of Figures ... ix

List of Tables .. xiv

Acknowledgements ... xv

Vita .. xviii

Abstract of the Dissertation ... xix

Chapter 1 Introduction .. 1

Chapter 2 Motivation and Background ... 5

2.1 Heterogeneous Supercomputer .. 5

2.2 Parallel Programming Tools and Models 14

2.2.1 OpenMP .. 15

2.2.2 MPI ... 16

2.2.3 CUDA ... 17

2.2.4 OpenCL .. 18

2.2.5 OpenACC ... 20

2.3 Petascale Stencil Computation Applications 20

2.3.1 Phase-field Simulations 21

2.3.2 Global Atmospheric Simulations 22

2.3.3 Seismic Simulations ... 23

2.4 Summary .. 24

Chapter 3 Earthquake Simulation Workflow ..

3.1 Background and Motivation ..

3.2 AWP-ODC Simulation Components

3.3 End-to-End Earthquake Simulation Workflow

25

26

28

34

	

vii

3.3.1 Data transfer between supercomputers

3.3.2 Data management and archival

3.4 Conclusions ..

36

39

43
Chapter 4 Single GPU Optimization ...

4.1 AWP-ODC Kernel Analysis ..

4.2 AWP-ODC CPU Implementation/Optimization

4.3 NVIDIA GPU Computing Architecture

4.4 Single GPU Implementation and Optimization

4.4.1 Read-Only Memory Cache

4.4.2 Domain Decomposition

4.4.3 Memory Padding ..

4.4.4 Register Optimization ...

4.4.5 L1 Cache vs. Shared Memory

4.5 Experiments and Performance Comparison

4.6 Mint Translator and Optimizer ..

4.7 Conclusions and Future Work ...

45

46

50

52

54

55

56

58

59

61

62

66

67
Chapter 5 Multi-GPU Implementation ...

5.1 AWP-ODC-CPU Communication Model

5.2 AWP-ODC-GPU Communication Model

5.2.1 Two-layer 3D Domain Decomposition

5.2.2 Communication Reduction

5.2.3 In-Order MPI Communication

5.2.4 Computation/Communication Overlapping

5.3 Experiments and Performance Discussion

5.3.1 Introduction of Supercomputer Testbeds

5.3.2 Real Small Case Simulation and Validation

5.3.3 Study of Strong and Weak Scaling

5.4 Conclusions and Future Work ...

68

68

74

74

75

78

80

83

83

84

87

91

Chapter 6 Real-World Earthquake Simulation ...

6.1 10-Hz Ground Motion Earthquake Simulation

6.2 CyberShake Hazard Model and Simulation

93

94

96

Chapter 7 Future Work and Conclusions ..

7.1 Seismic Simulation Model ...

7.2 Intel MIC Architecture ..

100

100

101

	

viii

7.3 Dissertation Conclusions ... 102
Bibliography .. 105

	

ix

LIST OF FIGURES

Figure 2.1: The homogenous supercomputer, “Kraken”, with each computing nodes
containing two general-purpose CPU sockets and six cores per socket [10]. ..

6

Figure 2.2: Schematic IBM PowerXCell 8i architecture (Cell Processor): consisting of
one Power Processing Engine (PPE) CPU and eight Synergistic Processing
Elements (SPE). SPE is a SIMD architecture (Single Instruction Multiple
Data). ..

7

Figure 2.3: Abstract model of the NVIDIA Tesla M2090 GPU device controlled by a
general purpose CPU. ...

9

Figure 2.4: Abstract model of the heterogeneous supercomputer for OLCF Titan and
NICS Keeneland. The significant difference between the two machines is
the number of CPUs and GPUs in each node and the interconnections
between nodes. ...

12

Figure 2.5: An OpenMP example for loop work sharing use case. The compiler will
divide the iteration space into a lot of small chunks. Each thread will be
executing on the same loop code but only on its own chunk. Suppose there
are 8 threads requested,. ...

15

Figure 2.6: Warps scheduled and managed by the GPU scheduler (suppose occupancy
is very low and only a single warp can be mapped to the SM). First, warp 0
takes over the hardware to do the computation. Once warp 0 has to perform
data access (fetching or storing data from global/shared memory),.

18

Figure 2.7: Ideal heterogeneous system architecture (HSA) for OpenCL programming:
using a single programming language to control all four different computing
devices in the same application. Each computing device has its private L2
cache.. ...

19

Figure 2.8: (a) Spatial access pattern for the phase field and concentration. (b) Weak
scaling performance by using a GPU-only method, a Hybrid-YZ method
and a Hybrid-Y method in both single precision (SP) and double precision
(DP) [2]. ...

22

Figure 2.9: (a) Top: state reconstruction in cell(i, j). Bottom: 13-point stencil exhitbits a
diamond shape. (b) Weak scaling results on Tianhe-1A using CPU-only and
hybrid CPU+GPU [37]. ..

23

Figure 3.1: NSF XSEDE Facility, including nine major supercomputers located across
the United States. San Diego Supercomputer Center (SDSC) is one of the
main connector, so our research can make full use of the whole XSEDE
computing resource. [47]. ...

26

Figure 3.2: SCEC Shakeout simulation of a Mw7.8 earthquake on the southern San

	

x

Andreas fault: 600 x 300 x 80 km domain, 100m resolution, 14.4 billion
grids, upper frequency limit 1-Hz, 3 minutes, 50k timesteps, minimum
surface velocity 500m/s, dynamic source, velocity properties SCEC CVM
4.0 model.. ..

28

Figure 3.3: Components of the AWP-ODC, including input data pre-processing,
simulation and output post-processing. ..

29

Figure 3.4: Two Partition Methods in PetaMeshP: the left is the serial approach and the
right is the parallel approach [53]. ...

30

Figure 3.5: AWP main computation running on supercomputers is utilizing tens of
thousands of processors. The 3D simulation domain is decomposed into
many small 3D grids, which are mapped into those processors..

32

Figure 3.6: Improved AWP high performance output programming model. The concept
is very similar as the parallel mesh read. First each core redistributes data
into its right output core, which has a big continuous memory chunk. Then
write these big chunk data into the file system with high throughput.

33

Figure 3.7: System architecture of an end-to-end scientific workflow for a SCEC
PetaScale wave propagation simulation. An Shakeout simulation example
are presented here: data pre-processing on NICS Kraken, Simulation on
TACC Ranger and data archived to iRODs digital library.

35

Figure 3.8: Enhanced protocol framework model of high performance data transfer
from NICS Kraken to TACC Ranger. ..

37

Figure 3.9: Enhanced protocol framework model of high performance data transfer
from NICS Kraken to TACC Ranger. ..

39

Figure 3.10: Systems involved in the process of data transfer from Ranger to the iRODS
digital library. ...

40

Figure 3.11: (a) For five concurrent iPUT commands and thread count varied between 3
and 16, best performance is achieved with thread count of three. (b) For two
threads per iPUT, maximum rate achieved with 16 iPUT commands running
concurrently can be up to 177.8MB/sec. ..

42

Figure 4.1: AWP-ODC pseudo code for computation kernels: vx stands for velocity in
x direction. xy stands for stress xy component. c1, c2 and x1 are scalar
constants. r1 and r4 are intermediate variables and also updated in stress
calculation. d1 is the constant density ρ , ...

48

Figure 4.2: Analysis of AWP-ODC Computation Kernels based on the pseudo-code in
Figure 2: (a) is the velocity computation kernel for vx, 13 point asymmetric
stencil computation involving 3 stress components. (b) and (c) are for the
stress component xy computation,. ..

49

Figure 4.3: Detailed example shows the cache blocking optimization for AWP-ODC
CPU Fortran code. The left (a) is before cache blocking and the right (b) is
after cache blocking, where the block size is decided by kblock and jblock. ..

51

	

xi

Figure 4.4: NVIDIA GPU memory architecture hierarchy: registers are fastest but are
limited in number per CUDA thread (64 on Fermi), while the large CPU
physical memory is the slowest due to the PCI Express connection..

52

Figure 4.5: NVIDIA GPU threading model: Single Program Multiple Data. Each kernel
is decomposed into multiple blocks and each block is running on the
physical streaming multi-processor (SM). Each block contains hundreds or
thousands of threads,. ...

53

Figure 4.6: Domain decomposition for GPU kernels: the 3D Grid (NX, NY, NZ) is
decomposed only in the y and z directions. Suppose each block has (tx, ty,
1) threads, then the kernel function has (NZ/tx, NY/ty, 1) blocks and the
chunk size for each block will be (NX, ny, nz). ...

56

Figure 4.7: Memory access pattern for different 2D Decompositions: (a) is for (x, y)
and (b) is for (y, z), where both pseudo codes can be found in Table4.2
column 2 and 3 respectively. “T0” and “T1” means thread 0 and thread 1,
and all T0 - T3 belong to the same warp. ...

57

Figure 4.8: (a) 3D array padding: the red cube represents the original 3D grid, the blue
cube represents the ghost cells with 2 extra planes in each direction. The
yellow part is the padding arrays, including two layers of ghost cells along
the z axis.. ...

58

Figure 4.9: Illustration of register optimization: pipeline register copy to reduce global
memory access for asymmetric 13-point stencil computation.

59

Figure 4.10: Memory access pattern for CUDA warp (size = 32) based on the register
optimization algorithm for velocity vx computation, where xy and xz data
will be put into the on-chip fast memory and shared by all threads, and xx
are stored in private registers. ..

60

Figure 4.11: Increment of computing GFLOPs achieved by optimization steps for
various 3D grid sizes tested on NVIDIA M2090. The baseline version is
based on pure global memory implementation without any optimization,
and other versions are optimized step by step. ...

62

Figure 4.12: (a) The value of log (vx) of the first 500 timesteps, generated by
AWP-ODC CUDA and AWP-ODC MPI Fortran, is compared for
validation. The 3D grid size for the earthquake simulation is 128x128x128,
and the single source point has 91 timestep inputs with homogeneous mesh..

63

Figure 4.13: Time-to-solution speedup for different GPU generations/architectures. The
running time baseline is the AWP-ODC-CPU Fortran/MPI code described
in section 4.2 running on AMD Istanbul 6-core CPU at 2.6 GHz with 6 MPI
threads for 3D grid size 224x224x1024. ..

65

Figure 5.1: Shows the 3D domain decomposition process in AWP-ODC-CPU code:
each sub-domain has extra 2 ghost cells in each direction with 12 in total.
Most sub-domains have to communicate with 6 other sub-domains to

	

xii

exchange data in ghost cell areas during the computation iterations. 69
Figure 5.2: Shows detailed MPI asynchronous communication process in

AWP-ODC-CPU: that significantly reduced the latency caused by the
fine-grained MPI Send/Recv order [5]. ..

70

Figure 5.3: Analysis of AWP-ODC-CPU running on homogenous CPU
supercomputers: percentages of time spent on computation and
communication in the main loop [75]. ...

71

Figure 5.4: Data communication latency model on heterogeneous supercomputers. 72
Figure 5.5: Estimated percentages of running time for computation and communication

if the AWP-ODC-CPU communication model runs on CPU-GPU clusters. ...

73

Figure 5.6: Process of Two-layer 3D Domain Decomposition: first step X/Y
decomposition for GPUs and second step Y/Z decomposition for GPU SMs.

75

Figure 5.7: Comparison before and after showing communication reduction per
iteration. ..

76

Figure 5.8: Comparison between original communication plan and in-order
communication. ..

79

Figure 5.9: Definitions of some symbols for the overlapping algorithm presentation. 80
Figure 5.10: Effective computation and communication overlapping algorithm for

AWP-ODC GPU implementation. ...

81

Figure 5.11: Overlap of computation and communication. Top: the concept scheme and
Bottom: nvvp profiler output matches well with the design, achieving
complete overlap. ...

82

Figure 5.12: Comparison of visualizations of surface velocity in X direction in units of
m/s. Four snapshots are taken at seconds 6, 7, 10 and 25 (after 6,000, 7,000,
10,000, 25,000 timesteps respectively). The verification of
AWP-ODC-CPU code in this simulation. ..

85

Figure 5.13: 0-2.5 Hz wave propagation of the 2008 Mw 5.4 Chino Hills, California
earthquake. Minimum Vs of 200 m/s with a grid spacing of 16 m is
calculated using the GPU version of finite-difference time domain code
AWP-ODC. ..

86

Figure 5.14: Weak scaling study on OLCF Titan Phase 5 system and NICS Keeneland
KIDS system in terms of GFlops achieved with respect to the number of
nodes requested. ...

88

Figure 5.15: Weak scaling and sustained performance using AWP-ODC-GPU in single
precision. XK7 exceeds XE6 performance by a factor of 4.2. Solid (dashed)
black line is (ideal) speedup on Titan, rounds/triangle/cross points are
FLOPS performance on Titan/Blue Waters/Keeneland..

89

Figure 5.16: Speedup of strong scaling on Cray XT7 at ORNL, with 2D square
configuration (Z direction fixed as 2048) for problem sizes of 320, 640,
1280 and 5120. ...

91

	

xiii

Figure 6.1: Snapshots of 10-Hz rupture propagation and surface wavefield for a crustal
model without (top) with (bottom) a statistical model of small-scale
heterogeneities. The displayed geometrical complexities on the fault were
included in the rupture simulation. ...

95

Figure 6.2: The CyberShake hazard model, showing the layering of information.
(1) Hazard map for the LA region (hot colors are high hazard). (2) Hazard
curves for a site near the San Onofre Nuclear Generating Station. (3)
Disaggre-gation of hazard in terms of magnitude and distance..

97

Figure 6.3: PSHA hazard curve calculated for the University of Southern California
(USC) site. The horizontal axis represents ground motion at 3 seconds
spectral acceleration, in terms of g (acceleration due to gravity)..

98

Figure 7.1: Proposed seismic simulation model: coarse-grain computation for full 3D
domain and fine-grain computation for 2D surface/near surface domain.

101

Figure 7.2: The architecture of Intel MIC co-processors: including 61 in-order cores
and 4 hardware threads per core. Each core has private L1 cache (32KB
I-cache and D-cache) and shared L2 cache (512KB unified per core) [87].

102

	

xiv

LIST OF TABLES

Table 2.1: Hardware Specification comparison between Intel i-7 9600 CPU and
NVIDIA Tesla M2090 ...

11

Table 3.1: System overview and technical specification for Stampede and Kraken [23,
49]. ...

26

Table 4.1: Analysis of Computation Kernels in AWP-ODC Main Loop. 49
Table 4.2: Performance comparison between two implementations with different

decomposition geometry derived from a baseline code, which is based on
direct global memory access without any optimization. The benchmark runs
for 800 timesteps for time-to-solution measurement..

56

Table 4.3: Hardware characteristics of all testbeds: one multi-core CPU cluster and four
GPU devices. ...

64

Table 5.1: Definition List for Different Computation/Communication Patterns. 72
Table 5.2: MPI Message pattern comparison between before and after communication

reduction per iteration. ...

77

Table 5.3: Description of each symbol shown in Figure 5.9 and its corresponding region. 80
Table 5.4: Time-to-Solution and Parallel Efficiency on OLEF Titan. 90
Table 6.1: CyberShake 3.0 Strain Green Tensor Calculations: 1) XE6 node (dual

Interlagos); 2) XK7 (Operaton + Kepler K20X); 3) Wall clock time based on
measurements on Cray XE6/XK7 at NCSA for two Strain Green Tensor
calculations per site. ...

99

	

xv

ACKNOWLEDGEMENTS

In the first place, I would like to thank my advisor Professor Clark C. Guest, for his

extreme patience, tireless encouragement and generous support through my Ph.D. study. His

knowledge, wisdom, and principles inspired me from the very beginning of my research. He

provided me with freedom to choose research topics and work on my own pace. He helped me to

grow up from a fresh graduate student to a professional researcher. His invaluable guidance and

dedication made this dissertation a reality. It has been a great pleasure working with him as his

Ph.D. student.

 I would also like to express my gratitude to my co-advisor Professor Yifeng Cui. He is a

pioneer in high performance computing area and his invaluable insights always kept my research

on the right track. I really appreciate his talent, help and generous expertise sharing. He provided

me tremendous resource and gave me 100% trust. His advice has been always prompt and

effective. He was and remains my best role model for a scientist and mentor. This dissertation

would not have been possible to finish without his fully support. Special thanks to Sanhong Liu,

the wife of Professor Yifeng Cui, for inviting me to enjoy her awesome homemade Chinese food

and sharing her and Professor Yifeng Cui’s funny stories. Many thanks for all the memories.

 I am very thankful to other committee members: Professor Chung-Kuan Cheng,

Professor William S. Hodgkiss, Professor Vitaliy Lomakin, and Professor Jean-Bernard Minster.

I am really lucky to have these world-class professors and researchers in my committee. I would

also like to thanks my undergraduate and master advisors Professor Guangda Su and Professor

Yaolin Tan at Department of Electrical Engineering, Tsinghua University in China, who helped

me build up a solid fundamental knowledge and provided me with motivation to pursue Ph.D.

 I am truly indebted to my lab fellows; Kwangyoon Lee, Shiyu Song and Efecan Poyraz,

who provided me many helpful insights and constructive perspectives in both technical and

non-technical parts. I am especially thankful to Efecan Poyraz for helping me debug the

code/program and reviewing my papers/dissertation in details. It is my pleasure to thank Dr.

Dong Ju Choi, Amit Chourasia, Dr. Joey Reed, Dr. Hieu Nyugen and Dr. Didem Unat for their

collaboration. I gratefully acknowledge many friends during my study at UCSD; Shaohe Wang,

Minghai Qin, Yangbin Gao, Weixin Li, Menglai Han, Yichao Huang, Lele Wang, Lelin Zhang,

	

xvi

Xiang Hu, Yulei Zhang, Yufei Shi, Weiyi Lu, Yun Liang, Kan Yu, Jean Fan, Siming Wang,

Minghui Zhu. I would never have survived without these incredible friends.

Finally, I would like to thank my parents for their unconditional support. Mom and Dad,

thank you for bringing me up and allowing me to study and live in a different country far from

China to pursue my dream. I especially thank to my best friend, soul-mate and loving wife,

Serena Fan Wang. She always has faith in me and has been a great supporter during my good and

bad times. I owe sincere thankfulness to her for invaluable love and sticking by my side for last

three years. There are no words to convoy how important you are in my life. I also want to thank

my parents-law for letting their daughter marry me.

Some sections of this dissertation are based on published papers which I have

co-authored with others:

Section 3.2, Section 4.2 and Section 5.1, are based on the material as it partly appears in

proceedings of the 2010 ACM/IEEE conference on Supercomputing with title “Scalable

Earthquake Simulation on Petascale Supercomputers” by Yifeng Cui, Kim B. Olsen, Thomas H.

Jordan, Kwangyoon Lee, Jun Zhou, Patrick Small, Daniel Roten, Geoffrey Ely, Dhabaleswar K.

Panda, Amit Chourasia, John Levesque, Steven M. Day and Philip Maechling. I was one of the

primary investigators and author of this paper.

Section 3.1 and 3.3, in part, are a reprint of the material as it appears in the 2010 third

international joint conference on Computational Science and Optimization with title

“Workflow-Based High Performance Data Transfer and Ingestion to Support Petascale

Simulations” by Jun Zhou, Yifeng Cui, Sashka Davis, Clark C. Guest, Philip Maechling. I was

one of the primary investigators and author of this paper.

Section 4.1 and 4.3-4.5, in part, are a reprint of the material as it appears in the 2012

international conference on Computational Science with title “Hands-on Performance Tuning of

3D Finite Difference Earthquake Simulation on GPU Fermi Chipset” by Jun Zhou, Didem Unat,

Dong Ju Choi, Clark C. Guest and Yifeng Cui. I was one of the primary investigators and author

of this paper.

Section 5.2 and 5.3, in part, are a reprint of the material as it appears in the 2013

international conference on Computational Science with title “Multi-GPU Implementation of a

3D Finite Difference Time Domain Earthquake Code on Heterogeneous Supercomputers” by Jun

	

xvii

Zhou, Yifeng Cui, Efecan Poyraz, Dong Ju Choi, and Clark C. Guest. I was one of the primary

investigators and author of this paper.

Section 5.3 and Chapter 6 in part, are based on the material as it partly appears in

proceedings of the 2013 ACM/IEEE conference on Supercomputing with title “Physics-based

Seismic Hazard Analysis on PetaScale Heterogeneous Supercomputers” by Yifeng Cui, Efecan

Poyraz, Kim B. Olsen, Jun Zhou, Kyle Withers, Scott Callaghan, Jeff Larkin, Clark C. Guest,

Dong Ju Choi, Amit Chourasia, Steven M. Day, Philip Maechling, and Thomas H. Jordan. I was

one of the primary investigators and author of this paper.

	

xviii

VITA

2005 Bachelor of Engineering, Tsinghua University, China

2008 Master of Engineering, Tsinghua University, China

2014 Doctor of Philosophy, University of California San Diego, United States

PUBLICATIONS

J. Zhou, Y. Cui, S. Davis, C. C. Guest, P. Maechling, “Workflow-based high performance data
transfer and ingestion to petascale simulations on TeraGrid”, IEEE Computational Sciences and
Optimization (CSO10), vol. 1, pp. 343-347, 2010.

Y. Cui, K.B. Olsen, T.H. Jordan, K. Lee, J. Zhou, P. Small, G. Ely, D. Roten, DK Panda, A.
Chourasia, J. Levesque, S.M. Day and P. Maechling, “Scalable Earthquake Simulation on
Petascale Supercomputers”, In Proceedings of the 2010 ACM/IEEE conference on
Supercomputing , SC’2010, ACM Gordon Bell Finalist, New Orleans, Nov, 13-19, 2010.

D. Unat, J. Zhou, Y. Cui, X. Cai and S. Baden, “Accelerating an Earthquake Simulation with a
C-to-CUDA Translator”, Journal of Computing in Science and Engineering, vol. 14, No. 3, 48-58,
May/June, CiSESI-2011-09-0094, May, 2012.

J. Zhou, D. Unat, D. Choi, C. C. Guest, Y. Cui, “Hands-on Performance Tuning of 3D Finite
Difference Earthquake Simulation on GPU Fermi Chipset”, Proceedings of International
Conference on Computational Science, Vol. 9, 976-985, Elesvier, ICCS’2012, Omaha, Nebraska,
June 4-6, 2012.

J. Zhou, Y. Cui, E. Poyraz, D. Choi, C. C. Guest, “Multi-GPU Implementation of a 3D Finite
Difference Time Domain Earthquake Code on Heterogeneous Supercomputers”, Proceedings of
International Conference on Computational Science, Vol. 18, 1255-1264, Elsevier, ICCS’2013,
Barcelona, June 5-7, 2013.

Y. Cui, E. Poyraz, K.B. Olsen, J. Zhou, K. Withers, S. Callaghan, J. Larkin, C.C. Guest, D. Choi,
A. Chourasia, Z. Shi, S.M. Day, P. Maechling and T.H. Jordan, “Physics-based Seismic Hazard
Analysis on Petascale Heterogeneous Supercomputers”, In Proceedings of the 2013 ACM/IEEE
conference on Supercomputing, SC’2013, Denver, Nov 17-22, 2013.

Y. Cui, E. Poyraz, J. Zhou, S. Callaghan, P. Maechling, P. Chen and T. H. Jordan, “Accelerating
CyberShake Calculations on XE6/XK7 Platforms of Blue Waters”, Extreme Scaling Workshop
2013, August 15-16, Boulder, 2013.

	

	

	

xix

ABSTRACT OF THE DISSERTATION

Scalable Parallel Programming for High Performance Seismic Simulation on Petascale
Heterogeneous Supercomputers

by

Jun Zhou

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2014

Professor Clark C. Guest, Chair

The 1994 Northridge earthquake in Los Angeles, California, killed 57 people, injured

over 8,700 and caused an estimated $20 billion in damage. Petascale simulations are needed in

California and elsewhere to provide society with a better understanding of the rupture and wave

dynamics of the largest earthquakes at shaking frequencies required to engineer safe structures.

As the heterogeneous supercomputing infrastructures are becoming more common, numerical

developments in earthquake system research are particularly challenged by the dependence on the

accelerator elements to enable “the Big One” simulations with higher frequency and finer

resolution. Reducing time to solution and power consumption are two primary focus area today

for the enabling technology of fault rupture dynamics and seismic wave propagation in realistic

3D models of the crust’s heterogeneous structure.

	

	

	

xx

This dissertation presents scalable parallel programming techniques for high performance

seismic simulation running on petascale heterogeneous supercomputers. A real world earthquake

simulation code, AWP-ODC, one of the most advanced earthquake codes to date, was chosen as

the base code in this research, and the testbed is based on Titan at Oak Ridge National

Laboraratory, the world’s largest hetergeneous supercomputer. The research work is primarily

related to architecture study, computation performance tuning and software system scalability. An

earthquake simulation workflow has also been developed to support the efficient production sets

of simulations. The highlights of the technical development are an aggressive performance

optimization focusing on data locality and a notable data communication model that hides the

data communication latency. This development results in the optimal computation efficiency and

throughput for the 13-point stencil code on heterogeneous systems, which can be extended to

general high-order stencil codes. Started from scratch, the hybrid CPU/GPU version of

AWP-ODC code is ready now for real world petascale earthquake simulations. This GPU-based

code has demonstrated excellent weak scaling up to the full Titan scale and achieved 2.3

PetaFLOPs sustained computation performance in single precision. The production simulation

demonstrated the first 0-10Hz deterministic rough fault simulation. Using the accelerated

AWP-ODC, Southern California Earthquake Center (SCEC) has recently created the

physics-based probablistic seismic hazard analysis model of the Los Angeles region, CyberShake

14.2, as of the time of the dissertation writing. The tensor-valued wavefield code based on this

GPU research has dramatically reduced time-to-solution, making a statewide hazard model a goal

reachable with existing heterogeneous supercomputers.

	

1

Chapter 1

Introduction

The No.1 supercomputer Tianhe-2, based on the Top 500 supercomputer list released in

November 2013, has achieved 54.9 PFLOPs theoretical peak performance. The computing

architectures today become increasingly more heterogeneous, over 30 supercomputers from the

November list, in fact, exceed PetaFLOPs computation capability [1]. The computing node of

these giant machines contains both general-purpose processors and specialized massively parallel

processors - Graphics Processing Units (GPU). In recent years, a notable portion of large-scale

scientific applications have taken advantage of the availability of the heterogeneous computing

architectures. The 2011 Gordon Bell Prize winner, for example, is a phase-field simulation on

TSUBAME 2.0 supercomputer [2], and four of six 2013 Gordon Bell Prize Finalists in 2013 used

Titan Supercomputer [3]. The goal of this dissertation is to take physics-based seismic simulation

to a new level to enable petascale computation on the hybrid heterogeneous systems.

Earthquake System is one of the most important research challenges to human beings,

which is to provide society with a better understanding of earthquake causes and effects, with the

goal of reducing the potential of loss of lives or properties. A variety of numerical methods have

been utilized for modeling earthquake simulation, such as Finite Difference, Finite Element, and

Spectral Element. In recent years, many of those earthquake simulations become more and more

data intensive, and demand not only computing capability and accuracy, but also fast and

effective computation efficiency. Probabilistic seismic hazard analysis (PSHA) has been effective

in helping decision-makers reduce seismic risk and increase community resilience. However, the

earthquake threat is highly time-dependent. To understand risk and improve resilience, we need

to quantify earthquake hazards in physics-based models that can be coupled to engineering

models of the built environment. The enabling technology of earthquake system science and

physics-based PSHA is the numerical simulation of fault rupture dynamics and seismic wave

propagation in realistic 3D models of the crust’s heterogeneous structure.

AWP-ODC, which stands for Anelastic Wave Propagation by Olsen, Day and Cui, is a

3D Finite Difference Time Domain (FDTD) earthquake simulation code [4] used by Southern

2

	

	

California Earthquake Center (SCEC) for large-scale earthquake simulations. In 2010, the

AWP-ODC code achieved a record earthquake simulation named “M8”: a full dynamic

simulation of a magnitude8 earthquake on the southern San Andreas fault with a time sample rate

up to 2Hz. The M8simulation produced 360 seconds of wave propagation in an 810km by 405km

Southern California area, and calculated 436 billion mesh points on a uniform grid with a

resolution of 40m. The M8 achieved 220 TFLOPS for 24 hours on Cray XT5 Jaguar machine at

ORNL using 223,074CPU cores, an ACM Gordon Bell finalist [5]. This code has been adapted

for the reciprocity-based CyberShake calculation, a project aiming at producing a California

state-wide physic-based hazard map [6]. Accelerating this wave propagation engine is with a goal

of dramatically reducing hundreds of millions of allocation hours otherwise needed to generate

such a map at frequency as large as 1-Hz.

Despite the improvements in heterogeneous computing driven by the increased attention

from the HPC community, there is a significant burden for porting FDTD simulations to

CPU-GPU heterogeneous supercomputers. FDTD applications are well known for their low

sustained FLOPS due to frequent data communication required between the CPU and GPU. For

this reason, considerable room remains to tune the application performance on the latest hybrid

architectures. This dissertation presents a multi-GPU implementation of AWP-ODC, and

describes details of the tuning techniques used for efficient CPU-GPU heterogeneous

supercomputers. Re-structured from the Fortran-based AWP-ODC CPU code, the GPU-based

AWP-ODC is written in C before CUDA and MPI are implemented for a hardware-oriented

design for achieving high performance. To avoid the data communication latency due to the slow

PCIe connection, our strategy is to extend the computing region on accelerators and decrease the

number and size of data to be exchanged as much as possible, in order to hide the data

communication time. The algorithms utilized are highly scalable because they are carefully

arranged to hide latency of computation and communication, resulting in optimal speedup and

maximized parallel efficiency. A communication model is implemented to reduce the intra-node

frequency of data movement between CPU and GPU, which allows complete overlap of

communication and computation. This model can be extended to general stencil computing on a

structured grid. This GPU-based AWP-ODC code demonstrates tremendous performance

improvement, which takes only 5.5 hours to finish a 440 billion mesh points scale earthquake

simulation using 16K GPUs, the largest ever earthquake simulation performed. The new code is

3

	

	

carefully validated against both reference models and earthquake observations before being used

for large-scale wave propagation simulations by SCEC.

The new AWP-ODC production code demonstrates perfect weak scaling on Titan, the

world’s largest GPU-based supercomputer. A sustained 2.3 PFLOPs performance in single

precision, the code is the most scalable 3D seismic modeling code to date, particularly remarkable

when considering the 3D computations of data-intensive memory-bound stencils. The new

AWP-ODC also provides seismology scientists, for the first time, with ability to simulate ground

motions with large fault ruptures to frequencies as high as 10 Hz in a physically realistic way.

Most importantly, the new AWP-ODC capability of accelerating strain Green Tensor calculations

promises a saving of more than 500 million computing core-hours required to generate the

scheduled California state-wide CyberShake 1.0-Hz seismic hazard map.

Thesis Contributions

 Implementation of a highly scalable and efficient AWP-ODC earthquake simulation code for

CPU-GPU based heterogeneous supercomputers. This new code is redesigned to allow

optimal performance on the hybrid system. The enhanced computation and communication

model effectively hide the data communication latency between CPU/GPU and between

computing nodes. This development results in perfect weak scaling on full Titan scale, with

a 2.3 PFLOPs sustained performance measured in single precision.

 Development of an earthquake simulation workflow running on the XSEDE, which supports

petascale sets of simulations effectively using XSEDE resources, including high

performance data transfer between supercomputers and data management for tens of

thousands of Gigabyte input/output files.

 Demonstrated capability of a first 10-Hz deterministic earthquake simulation by the time of

the dissertation writing. The new AWP-ODC code is extended to support the SCEC

CyberShake project with dramatically reduction in time-to-solution and energy cost saving,

recognized with my HPGeoC Lab colleagues together for the IDC HPC Innovation

Excellence Award during ISC’2013 [7].

 The development of this GPU-based AWP-ODC code provides a solid basis prepared for

upcoming many-core architectures and programming models. This seismic code, for

example, can be restructured as coarse-grain for the 3D domain and fine-grain for a 2D

4

	

	

surface to take advantage of NVIDIA Kepler dynamic parallelism. The original AWP-ODC

CPU code can be also tuned on the Intel MIC processor, using the high throughput, data

locality and communication reduction schemes developed through this work.

Thesis Outline

 Chapter 2 provides some background and motivation for the dissertation. It describes the

current heterogeneous supercomputer architectures and also parallel programming models

for current systems. The chapter also presents some well-known scientific applications

benefits from the heterogeneous architectures.

 Chapter 3 introduces the earthquake simulation workflow. Before introducing the workflow,

we discuss why the workflow is necessary for large scale earthquake simulations and some

technical background. Next, the chapter presents the workflow framework and provides

details of its implementation.

 Chapter 4 presents the single GPU optimization of AWP-ODC. First, it describes our deep

analysis of AWP-ODC numerical model, showing its characteristics as a 3D 13-point stencil

computation with data-intensive memory-bound. Then the chapter provides the details of our

hardware-based optimization and the code validatation.

 Chapter 5 presents the multi-GPU optimization of AWP-ODC. The chapter first describes

the original communication model implementation on the CPU-based homogeneous

supercomputer, then focuses on our enhanced communication model implementation for

CPU-GPU based heterogenenous supercomputers, designed to reduce communication

frequency between CPU/GPU and between computing nodes, and also fully hide the

communication latency. Some code validation and benchmark experiments on OLCF Titan

are presented.

 Chapter 6 describes the first 10-Hz deterministic earthquake simulation using our new

AWP-ODC code running on the OLCF Titan machine. Then our CyberShake simulation

support and validation is presented, along with some analysis of the computation time

reduction and power saving for the future CyberShake project.

 Chapter 7 discusses future directions for high performance earthquake simulation using new

architectures, and concludes the dissertation.

	

	

	

5

Chapter 2

Motivation and Background

This chapter describes the current heterogeneous supercomputers and typical stencil

computation applications. Section 2.1 provides background information on supercomputers and

current heterogeneous architectures utilized in the High Performance Computing (HPC) area,

with an emphasis on the combination of Central Processing Units (CPUs) and Graphic Processing

Units (GPUs). Section 2.2 introduces popular parallel programming models for supercomputers,

including OpenMP (Open Multiprocessing), MPI (Message Passing Interface), CUDA (Compute

Unified Device Architecture), OpenCL (Open Computing Language), and a developing parallel

programming model OpenACC. Section 2.3 describes some world-class large scale stencil

computation applications in recent years, and their sustained petascale performance results

running on the Top 500 supercomputers. Section 2.4 presents a summary and conclusion.

2.1 Heterogeneous Supercomputers

“The number of transistors per integrated circuit will double every 18-24 months” [8],

this famous Moore’s Law has been correct in semi-conductor area for almost 30 years. Then in

2005, the maximum frequency of 3.8 GHz for a single CPU was reached and chip vendors could

not achieve a higher number because of the “power wall” [9]: the power density is proportional to

the cube of the frequency. Therefore, chip vendors chose to integrate two or more processing

cores using lower frequency into a combined computing unit to provide higher performance.

Traditional CPUs with more than one core are referred to as general-purpose multi-core

processors. They can run any kind of applications including operating systems and database

software. Currently most top 500 supercomputers are installed with this kind of processor [1],

where each node contains one or two general-purpose multi-core processors. We call them

“homogenous supercomputers”, because each computing node has exactly the same multi-core

architecture.

6	

	

	

	

High Speed Cray SeaStar2+ Network

...
CPU

Socket

CPU
Socket

...
CPU

Socket

CPU
Socket

CPU
Socket

CPU
Socket

CPU

L1

L2

CPU

L1

L2

CPU

L1

L2

CPU

L1

L2 	

CPU

L1

L2

CPU

L1

L2

Shared L3 Cache

Figure 2.1: The homogenous supercomputer, “Kraken”, with each computing nodes containing
two general-purpose CPU sockets and six cores per socket [10].

Figure 2.1 shows one advanced NSF homogenous supercomputer, “Kraken”, installed at

the National Institute for Computational Sciences (NICS), currently ranked at 35 on the Top 500

list released in Nov. 2013 [1]. This supercomputer is a member of XSEDE (Extreme Science and

Engineering Discovery Environment) to support large scale scientific computation and delivers

more than 700 million CPU hours per year. The NICS Kraken is a Cray XT-5 system with 9,408

computing nodes and 1.17 PetaFlops peak computing capability. The interconnection is a Cray

SeaStar2+ router. Each node of the Kraken contains two AMD Opteron processors (Istanbul) with

12 cores in total. Each AMD multi-core socket has a private 64KB L1 and 512KB L2 cache and

shares a 6MB L3 cache with other CPU cores on the same socket. The clock frequency is 2.6

GHz and the total memory size shared by all six CPU cores is 8 GB. The shared memory control

design is a NUMA (Non-Uniform Memory Access) architecture that maps different memory

banks to different cores [10].

7	

	

	

	

PPE CPU
SPE

SPE

SPE

SPE

SPE

SPE

SPE

SPE

DRAM Memory

SXU

LS

SMF

SXU

LS

SMF

SXU

LS

SMF

SXU

LS

SMF

SXU

LS

SMF

SXU

LS

SMF

SXU

LS

SMF

The heterogeneous supercomputer has a very similar architecture to the homogenous

supercomputer. The primary difference is that each node of a heterogeneous supercomputer is a

combination of a general-purpose CPU and accelerators, instead of a CPU only. Two

heterogeneous architectures have been used to build supercomputers: Cell Broadband Engine

Architecture, and a combination of a general-purpose CPU and one or more GPU [11].

The IBM Roadrunner supercomputer located at Los Alamo National Laboratory is based

on CBEA with a peak performance of 1.7 PetaFlops. It was the first heterogeneous

supercomputer and also the first Top 500 supercomputer that achieved a sustained 1.0 PetaFlops

using the Linpack benchmark test [12]. Roadrunner has 6,912 AMD Opteron dual-core

processors and 12,960 IBM PowerXCell 8iTM processors as computational accelerators [13]. The

high speed interconnection network is Infiniband. Each node of Roadrunner is a hybrid design,

containing two AMD Opteron processors plus one IBM PowerXCell 8i processor attached to

each of them (See Figure 2.2).

Figure 2.2: Schematic IBM PowerXCell 8i architecture (Cell Processor): consisting of one
Power Processing Engine (PPE) CPU and eight Synergistic Processing Elements (SPE). SPE is a
SIMD architecture (Single Instruction Multiple Data). Each SPE has eight processing units called
SXU (Synergistic Execution Units). Each SXU has a private 256K local memory (LS) and a
DMA memory engine SMF (Synergistic Memory Flow). One single IBM PowerXCell 8i chip has
a theoretical 102.4 Gigaflops peak performance and 25.6 GB/sec memory bandwidth [14].

8	

	

	

	

Currently, most heterogeneous supercomputers are not using CBEA, but rather the

combination of general-purpose CPU and modern programmable GPU, which is very popular and

widespread deployed for large-scale scientific computation. The latest Top 500 list released in

Nov. 2013 shows two out of top 10 supercomputers are based on this architecture [1]. Before our

introduction of these heterogeneous supercomputers, we briefly go over modern GPU design.

The adoption of Graphic Processing Units for high performance computing starts from

2007, when the NVIDIA Company released the CUDA language for GPU computing [15].

Before that, GPUs were designed for vertices-to-pixels transformation, and rendering images on

the screen. Their main function was to support and accelerate image or graphic APIs (Application

Programming Interfaces) from OpenGL or DirectX. But now, GPUs have already evolved into

powerful multi-core systems with super high parallel computing capability that can handle large

scale data parallel processing more efficiently than the CPU. In addition to their original

multimedia application, GPUs have provided significant performance improvement in many

computation intensive scientific or industrial applications such as astrophysics, climate research,

earthquake simulation, bioinformatics, financial computing, oil industry and etc [16].

GPUs are not general purpose but focused on applications with high parallelism, and a

CPU is also required to control the GPU for data management and non-parallel computing. On

desktops or servers, the CPU and the GPU are separate chips connected by a PCI Express bus

(Peripheral Component Interconnect Express). PCIe is very slow compared to the computations

taking place, so data movement back and forth between CPU and GPU during computing will

produce a serious performance penalty and should be avoided. On mobile devices, the CPU and

the GPU are built on the same chip and share global memory, so data movement overhead can be

avoided by memory mapping. For HPC on supercomputers, we concentrate on the GPU

computing on server, thus we have to deal with the bottleneck caused by slow data movement,

which will be discussed in a later section.

NVIDIA and AMD are the two largest vendors for the GPU computing, the NVIDIA

Tesla is more popular as a GPU accelerator for large scale scientific computation. In the Top 500

list released in Nov. 2013, the No.12 Tianhe-1A machine in Tianjin, China and the No.21

Nebulae in Shenzhen, China have chosen NVIDIA Telsa M2050 and provide 4.70 PetaFlops and

2.98 PetaFlops respectively [1]. OLCF Titan is the largest CPU-GPU cluster in 2013/2014 ranked

as No.2. Originally installed with the NVIDIA Tesla M2090, it has been upgraded by the latest

9	

	

	

	

generation NVIDIA Kepler chipset and already achieved the theoretical peak performance with

27.1 PetaFlops, which can be fully in production use by researchers starting from the early of

2014 [17].

NVIDIA Tesla is the first dedicated “general purpose” GPU and targets high performance

computing market. The Tesla product has gone through the 10-serials, and the Fermi architecture

(20-serials) and the new Kepler architecture. The Kepler-based GPU was first introduced in early

2012. Currently, only a few top supercomputers (e.g. Titan and Blue Waters) are installed with

this new chipset, some other supercomputers are expected to be upgraded from Fermi to the

Kepler or even newer architectures in 2014.

The NVIDIA Fermi GPU was the most widely used product for GPU developers up to

2013. Its fastest product is “Tesla M2090”, which was released in May 2011. As shown in Figure

2.3, the Tesla M2090 has 16 Streaming Multi-Processor (SM) and 512 CUDA parallel processing

cores in total (each SM contains 32 CUDA cores, running at 1.3 GHz). It delivers 1,331 GFLOPS

in single-precision (SP) performance and 665 GFLOPS in double-precision (DP), with 6GB

GDDR5 memory and 177GB/sec memory bandwidth [18].

Figure 2.3: Abstract model of the NVIDIA Tesla M2090 GPU device controlled by a general
purpose CPU [18].

10	

	

	

	

The memory hierarchy of the Tesla M2090 includes high latency off-chip memory

(global device memory) and low latency on-chip memory (private registers, shared memory, L1

Cache). The 6 GB global device memory on Tesla M2090 is shared by all 512 CUDA cores. The

64 KB local SRAM (Static Random Access Memory), including software-managed shared

memory and hardware-managed L1 cache, can only be accessed by the 32 CUDA cores inside the

same SM. The private registers (maximum 63) are specific to a thread but not visible to any other

threads, even in the same thread group. One important feature for the Fermi architecture is that

the 64KB local SRAM can be split into two different modes: 16KB for L1 and 48KB for shared

memory or 48KB for L1 and 16KB for shared memory, which provides considerable flexibility

and optimization space for kernel design on the GPU. All other Fermi GPUs have the same

architecture as the Tesla M2090 but with different numbers of CUDA cores or global memory

size.

In general, Kepler is an architecture that is quite similar to Fermi. They have the same

execution model, local SRAM feature, warp size and etc. However, Kepler provides more

advanced features. We’ll use the NVIDIA Tesla K20 as an example, which is GK110 Kepler

architecture based and widely installed in top supercomputers. Each SMX in Tesla K20 contains

six times the CUDA cores in the Tesla M2090 (192 cores vs. 32 cores). The clock frequency of

each CUDA core in K20 has been lowered due to power dissipation limits, but the computing

performance delivered by K20 is still three times better than the Tesla M2090. Secondly, each

SMX has three schedulers instead of one in the SM of the Tesla M2090, incorporating two

important features: Dynamic Parallelism and Hyper-Q. Dynamic Parallelism allows GPU kernel

to launch its child kernels without going back to the CPU, while in Fermi, all GPU kernel

launches must be controlled the CPU, which creates a lot of communication overhead between

the CPU and GPU if there are father-son kernels. Hyper-Q provides more flexibility to GPU

programmers, which makes sure multiple CPU cores can submit and run GPU kernels/tasks on a

single GPU simultaneously. The Hyper-Q in K20 provides a maximum of 32 hardware-managed

connections between the host CPU and the GPU, which strongly supports the hybrid CPU/GPU

programming [19].

When executing kernels on the GPU, the CPU controller must transfer the data to the

GPU global device memory via the PCIe and then invoke the GPU hardware for parallel

computation. The GPU kernel runs a set of thread groups, with each thread group assigned to a

11	

	

	

	

SM and each thread assigned to a CUDA core. Each CUDA core has an individual ALU

(Arithmetic Logic Unit) and all CUDA cores in the same SM execute the same instruction.

Therefore, branches and thread divergence should be avoided within the same thread group,

otherwise it will cause threads to be executed in serial and kill the parallelism. Although each SM

only contains 32 CUDA cores, the size of each thread group can be up to 1,024 or larger. Each

thread group is divided into subgroups of 32 and all subgroups running on the same SM are

arranged and managed by the GPU scheduler.

Due to the limitation of on-chip memory, GPU programmers should find an appropriate

size for the thread group in order to achieve good device occupancy. Device occupancy means the

ratio of the number of active subgroups to the maximum supported subgroups on a single SM.

High occupancy can always help to hide the data transfer latency from global memory to the

on-chip memory. For example, if there are two active subgroups on the SM, the hardware will do

the computation for the first subgroup and also fetch the data prepared for the second subgroup

simultaneously. However, higher occupancy does not guarantee better computation performance.

Computing performance not only depends on occupancy, but also combined optimization

methodology.

Table 2.1 is a hardware specification comparison between Intel i-7 9600 CPU and

NVIDIA Tesla M2090, showing the NVDIA GPU has significantly better computing capability

than the CPU. Fundamentally, the CPU can provide the best performance for single thread tasks,

but the limited number of cores restricts the data parallelism in the CPU. The GPU sacrifices

single-thread computing performance and some general purpose processing capability (e.g.

branch prediction), but provides more parallel processing cores and higher parallel efficiency for

large scale throughput computing.

Table 2.1: Hardware Specification comparison between Intel i-7 9600 CPU and NVIDIA Tesla
M2090

Num. of

Processor
Element

Frequency
(GHz)

SP SIMD
width

Memory
Bandwidth
(GB/sec)

Peak SP SIMD
GFLOPS

Intel i-7
9600

4 3.2 4 32 102.4

NVIDIA
M2090

16 1.3 32 177 1,331

12	

	

	

	

To compete with NVIDIA in the HPC market, Intel announced a new product called the

Many Integrated Core (MIC) architecture in June 2011, aiming to enter into the era of HPC

exascale computing solutions. The goal of the Intel MIC design is to create a x86-compatible

many-core processor. Current software can benefit from the MIC architecture directly without

changing any existing parallelization software tools [20]. The first product based on Intel MIC

targeting HPC is codenamed “Knight Corner”, building on a 22-nanometer manufacturing

process and featuring the world’s first 3-D Tri-Gate transistors. It will scale to more than 50 Intel

processing cores on a single chip [21]. Based on the current top 500 supercomputers released in

Nov. 2013, the No.1 supercomputer China’s Tianhe-2, is powered with this new Intel MIC

architecture “Xeon Phi”, which has two Intel Xeon IvyBridge processors and three Xeon Phi

processors with more than 190 cores in each computing node [22]. The new “Stampede”

upgraded from “Ranger” at Texas Advanced Computing Center (TACC) also includes Intel Xeon

Phi co-processors and provides more than 7 PetaFlops computing capability [23]. It is widely

expected that more supercomputers will be designed with the MIC architecture in the next 1 or 2

years to compete with the current hybrid CPU and GPU mode.

Figure 2.4: Abstract model of the heterogeneous supercomputer for OLCF Titan and NICS
Keeneland. The significant difference between the two machines is the number of CPUs and
GPUs in each node and the interconnections between nodes.

13	

	

	

	

Looking back, the first PetaFlops heterogeneous supercomputers powered with the

combination of a CPU and GPUs is the Tianhe-1A machine in Tianjin, China released in 2012.

Our research work is primarily based on more advanced heterogeneous supercomputer OLCF

Titan (No. 2 of Top 500 released in Nov. 2013), and also the NICS Keeneland machine for

development (Figure 2.4). The OLCF Titan is the Oak Ridge Leadership Computing Facility’s

(OLCF) next generation, leadership-class supercomputers based on the Cray XK7 hybrid

architecture [17], which is upgraded from the original Jaguar system, based on the Cray XK6

system [17]. Currently this giant machine provides a theoretical peak performance of 27.1

PetaFlops and consists of 18,688 computing nodes. Each computing node in OLCF Titan is

equipped with one AMD’ 16 cores OpteronTM 6200 serial processor, and one NVIDIA Tesla K20

Kepler GPU accelerator, connected by a PCI Express GEN2 interface. The interconnection

between nodes is Gemini, which is 3-dimensional torus topology and provides over 20GB/sec

bandwidth per node. The Georgia Institute of Technology Keeneland machine is located at NICS,

which includes 120 computing nodes with total peak performance 255 TeraFlops. Each node of

this small supercomputer contains two Intel Westmere hex-core CPUs and 3 NVIDIA Fermi

M2090 GPUs, with a total of 120 nodes, 240 CPUs and 360 GPUs. The interconnection is Qlogic

QDR InfiniBand [24].

Peak performance has been mentioned often in previous sections when introducing

supercomputers. Generally, peak performance is just theoretical number and we can easily

calculate it using the followed formula:

CPU_FLOPs = Core_Num * Core_Frequency * SIMD_width (2.1)

GPU_FLOPs = Core_Num * Core_Frequency * 2 (2.2)

Total_FLOPs = (CPU_FLOPs + GPU_FLOPs) * Num_Compute_Node (2.3)

In Equation 2-1, the SIMD_width is 4 for AMD CPUs and 8 for Intel CPUs due to the

architecture difference. In Equation 2-2, the MAD or Multiply-ADD instruction has been counted

as 2 FP operations/per clock cycle in the GPU, so the peak performance is doubled because all

operations could be MAD.

To validate the numbers published in Top500 supercomputers, we use OLCF Titan as an

example. Each compute node in OLCF Titan includes 16-AMD CPU cores and 1 Tesla K20x

GPU. The peak performance of the AMD 16-core CPU is 16 cores * 2.2GHz * 4 SIMD = 0.1408

14	

	

	

	

TFLOPs, and the peak performance of NVIDIA Tesla K20x GPU is 896 DP units x 0.732 GHz *

2 = 1.31 TFLOPs. Since the total number of compute nodes is 18,688 on the OLCF Titan, so the

peak performance in total is (1.31 + 0.1408) * 18,688 = 27.1125 TFLOPs, which exactly matches

the number published by the Top 500 [1].

However, peak performance is just a theoretical value, and none of application codes in

the world can achieve that level, because the data fetch always take time even if the cache hit rate

is 100%. Also not every operation is FP (e.g. branch) or can be completed in single clock cycle

(e.g. division). Furthermore, most operations in the GPU program are Non-MAD instead of MAD.

Computation pattern is largely determined by the algorithm. For this reason, a programmer

cannot replace all computation with the MAD instructions. Therefore, the peak performance for

Non-MAD GPU applications is considered to be up to 50% of the Full-MAD ones.

LINPACK software has always been utilized to measure the actual performance of

supercomputers. The LINPACK uses the BLAS (Basic Linear Algebra Subprograms) to perform

vector and matrix operations [25]. The algorithm is highly computation intensive, and MAD

friendly for GPU as well. The Top 500 rank is based on the outcome of LINPACK and updated

every six months. In the latest list released in Nov. 2013, the maximum performance measured

and the theoretical peak performance for the No.1 China’s Tianhe-2 machine are 33.8 PFLOPs

and 54.9 PFLOPs respectively. And the maximum performance measured and the theoretical

peak performance for the largest CPU-GPU heterogeneous supercomputer OLCF Titan are 17.5

PFLOPs and 27.1 PFLOPs respectively.

2.2 Parallel Programming Tools and Models

Programming on heterogeneous supercomputers must deal with multi-core general

purpose CPUs and multi-core modern GPUs. Applications designed for single-thread CPUs must

be completely restructured and redesigned to make full use of the massive parallelism provided

by supercomputers. Many parallel programming tools and models targeting HPC on

supercomputers can help programmers control the parallel computing units and complex memory

hierarchy. Understanding these parallel programming tools and models can help programmers

understand the underlying architecture better and achieve higher computation performance. We

will present the most popular parallel programming tools and models for heterogeneous

15	

	

	

	

computing in this section.

2.2.1 OpenMP (Open Multi-Processing)

OpenMP is a parallel programming model for shared memory architectures and also the

industry standard API for multithreaded programming on shared memory architectures [26]. For

shared memory architectures, a number of CPU processors/cores share the same physical memory

space. If these processors are utilizing a single address space and have the same view of the

physical memory, communication can be easily implemented and controlled through shared data

stored in the memory. Atomic operations or semaphores are also supported in shared memory

architectures to avoid conflict when accessing the shared data. Based on these key features of the

shared memory architectures, OpenMP has been released to help programmers write multithread

applications simply and efficiently. The first version of OpenMP was released in 1997, which

only supported the Fortran language. The latest version, 4.0, was released in July 2013 and

supports C/C++ and Fortran on most processing architectures and operating systems [27].

OpenMP programming is just a set of high level compiler directives for parallel

application programmers. The OpenMP-enabled compiler automatically generates parallel codes

based on the annotation defined in the program. The OpenMP programming model is based on

Fork-Join parallelism. The program executes a single master thread, that will spawn a team of

threads when encountering annotated parallel codes. All multi-threading execution is invisible to

programmers but implemented by the compiler. Figure 2.5 is an example for the loop work

sharing use case.

Figure 2.5: An OpenMP example for loop work sharing use case. The compiler will divide the
iteration space into a lot of small chunks. Each thread will be executing on the same loop code
but only on its own chunk. Suppose there are 8 threads requested, then the thread No. “N” will
process variable “i” ranging from N*8 ~ N*8 + 7. Variable “i” is different and variables “A” and
“Max” are same for each thread, so variable “i” is defined as private while variables “A” and
“Max” are defined as shared.

void	
 main()	

{	

	
 int	
 i	
 =	
 0,	
 Max	
 =	
 64,	
 A[100];	

	
 #paragma	
 omp	
 parallel	
 private	
 (i)	
 shared	
 (A,	
 Max)	

	
 for(int	
 i=0;	
 i<Max;	
 i++)	
 	
 	
 	
 A[i]	
 =	
 i;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

}	

16	

	

	

	

OpenMP is a relatively easy to implement. However, the shared memory programming

model has some scalability issues. The memory bus becomes the performance bottleneck if more

and more processors concurrently access the same physical memory. In addition, programmers

cannot control the parallelism, which might not achieve the best performance because of

overhead caused by the compiler.

2.2.2 MPI (Message Passing Interface)

MPI is a parallel programming model for distributed memory architecture. Unlike the

shared memory architecture, each core has its own memory. Even though some processors might

share the physical memory, the memory space for each processor is still invisible to others. The

biggest advantage of the distributed memory architecture is scalability. The number of processors

in a machine can be as large as possible. The biggest disadvantage of the distributed memory

architecture is data communication. All data communication between processors needs to pass

through the interconnection (shared physical memory or network), and the scalability of a

machine is strongly limited by the network capability. In addition, programmers must take care of

the data communication instead of the compiler in OpenMP.

MPI is an industry tool and standard for data communication on distributed memory

architectures. It is language independent and supports both point-to-point and collective data

communication [28]. The first MPI version was released in 1994 after a draft version discussed

and presented at the Supercomputer Conference in 1993 (SC’93). The latest and most popular

MPI version, 1.3, was released in 2008. The MPI-2, which includes many new features such as

parallel I/O, dynamic process management, remote memory control, is a subset of the MPI

version 1.3 [28].

MPI provides a very strong capability to help programmers develop parallel applications

on large machines. However, extra effort or algorithm designs are still required to achieve better

performance when using MPI. For example, programmers can choose either a blocking or

non-blocking style of point-to-point communication. Blocking helps to guarantee the shared data

is 100% correct before processing the next step, but the communication latency might be high.

Non-blocking can reduce the data communication latency effect, since CPUs can do some

computation work while waiting for new shared data, but programmers need to check the

correctness of the data before the CPU does any computation.

17	

	

	

	

2.2.3 CUDA (Compute Unified Device Architecture)

CUDA is a parallel programming model designed by NVIDIA, running on NVIDIA GPU

devices for general purpose processing. The CUDA programming model provides both low level

and high level APIs to support the C/C++ and Fortran languages. All operating systems running

on the desktop with NVIDIA GPUs and the Android system running on NVIDIA Tegra chipset,

supports CUDA programming. The first CUDA SDK was released in 2007, and has been updated

every year since then. Currently the latest CUDA SDK is version 6.0. The new CUDA 6 offers

many new features to make GPU programming simple and provide high performance [29].

NVCC is the NVIDIA CUDA compiler and compiles both host (CPU) and device (GPU) code.

The basic unit for CUDA programming is the thread. Each thread has a global ID and

local ID for programmers to assign its computation work. Unlike the CPU hardware thread,

which has a private program counter (PC) and works independently, CUDA threads are grouped

into 32 as a warp. A CUDA thread is mapped into the real CUDA core in the NVIDIA GPU

hardware. All 32 threads in the same warp share the same PC and follow the same execution. For

branches or diverges, threads in the same warp have to be serialized to finish the execution, which

will cause a performance penalty because some threads are idle instead of computing.

A GPU kernel requests thousands of hundreds of CUDA threads to execute the

computation. All threads are divided into blocks and blocks are mapped onto the Streaming

Multi-processor (SM) in order. For example, the NVIDIA M2090 has 14 SMs, so only 14 blocks

can be running simultaneously. Once one block is finished with its computation, the next

available block will take over the resource. Inside each block, warps scheduling and management

are controlled by the hardware scheduler. As shown in Figure 2.6, the GPU scheduler helps to

hide the data access latency and keep all CUDA cores busy on computation. In addition to

sharing the computing resource, threads/warps in the same block can also share data through

shared memory. However, synchronization is required when using shared memory, to guarantee

the shared data is updated before use. GPU programmers must be careful in determining where to

put the variables. Private registers are fastest but limited in number and cannot be shared. Shared

memory is larger, fast but needs synchronization. Global memory is largest and shared, but the

access latency would kill the performance.

18	

	

	

	

Figure 2.6: Warps scheduled and managed by the GPU scheduler (suppose occupancy is very
low and only a single warp can be mapped to the SM). First, warp 0 takes over the hardware to do
the computation. Once warp 0 starts to perform data access (fetching or storing data from
global/shared memory), the scheduler switches to warp 1 and lets warp 1 take over the hardware
resource and start the computation. When warp 1 starts the same data access and warp 0 has not
finished the data access yet, the scheduler continues to warp 2 and keeps the GPU busy on
computation. After warp 2 enters into the data access mode and warp 0 is done with the data
access, the scheduler will switch back to let warp 0 resume its computation work.

2.2.4 OpenCL (Open Computing Language)

OpenCL is an industry open parallel programming standard for heterogeneous computing

systems including CPU, GPU, DSP, FPGA and other processors (see Figure 2.7 for details).

OpenCL standard is maintained by non-profit technology consortium Khronos Group [30]. The

OpenCL was initially developed and supported by Apple only, and now it has been adopted by

most of the top industry vendors including: Apple, Intel, Qualcomm, AMD, NVIDIA, Samsung,

ARM Holdings and some others [31]. Some companies developed their own similar languages

instead of supporting OpenCL, such as Renderscript from Google [32] and Directcompute/C++

AMP from Microsoft [33]. The first OpenCL 1.0 was released in late 2008 and the latest version

is OpenCL 2.0 released in July 2013. OpenCL 2.0 includes a lot of new programming features

and provides more flexibility to programmers, such as shared virtual memory (SVM) and

Dynamic parallelism.

19	

	

	

	

Figure 2.7: Ideal heterogeneous system architecture (HSA) for OpenCL programming: using a
single programming language to control all four different computing devices in the same
application. Each computing device has its private L2 cache. Fast data sharing via Shared L3
instead of DRAM can minimize data communication latency between different computing
devices.

The OpenCL programming model is quite similar to CUDA. The host device launches

kernels on the computing device, and each kernel requests thousands of threads to finish

computing tasks in parallel. There is some different terminology between CUDA and OpenCL

including: “thread” vs. “work-item”, “block” vs. “work-group”, “shared memory” vs. “local

memory” “warp” vs. “wave” and “streaming multi-processor” vs. “shader processor”. In addition,

CUDA supports more features than OpenCL, such as the Hyper-Q, which allows multiple CPU

cores to launch and run their kernels on the same GPU simultaneously. However, CUDA is

limited to the NVIDIA GPU product, while OpenCL is supported by most computing devices

with great portability. To compile OpenCL code, a company always has its own compiler support,

such as the AMD parallel processing software kit and the Qualcomm LLVM (Low Level Virtual

Machine) compiler. OpenCL code can be compiled during run-time or pre-compiled as binary

like the pre-compiled CUDA code by the NVCC.

The NVIDIA GPU also supports OpenCL. However, the performance gap between

CUDA and OpenCL is large when running an identical code on the same NVIDIA GPU device.

Fang et. al. [34] did a comprehensive performance comparison of CUDA and OpenCL, and they

found CUDA performs at most 30% better than the OpenCL. The reason could be CUDA is

specificly designed for NVIDIA GPUs and can make full use of the hardware for optimization

and tuning. But OpenCL must support all kinds of computing devices and has to sacrifice some

optimization options due to the architectural differences.

20	

	

	

	

2.2.5 Future Parallel Programming model - OpenACC

OpenACC is a parallel programming model newly proposed by Cray, CAPS, NVIDIA

and PGI [35]. Similar to OpenMP, the OpenACC offloads loops or parallel parts from the host

CPU to attached accelerators (GPU, Cell processors, etc) for high performance computation. The

programmer inserts directives before the loop in their high-level language program, then the

OpenACC compiler and run-time libraries help to manage all computing tasks on accelerators,

including initiating and releasing devices, and data transfer between devices. Programmers do not

have to learn the architecture of the underlying computing system, but simply provide the

performance-related information to the OpenACC compiler. The main purpose of the OpenACC

is to simplify parallel programming on heterogeneous computing platforms. The OpenACC was

first introduced at the International Supercomputing Conference 2012 (ISC’12) and the draft

version was presented at Supercomputing 2012 (SC’12). In 2013, the commercial compiler PGI

began supporting OpenACC and the GCC compiler is also adding support for OpenACC [36].

Because OpenACC is not widely utilized yet, there are limited publications about the

performance comparison between OpenACC and manually optimized codes. In OpenACC

programs, only regions indicated by programmers run on the accelerators, while other parts

execute on the host CPU. There might be more interactions between host and accelerators,

bringing larger overhead than the manually optimized codes. In addition, the OpenACC compiler

might request more register usage than manually optimized code, which would reduce the parallel

efficiency and could not maximize the computation performance. Nevertheless, as the computing

hardware continues upgrading and compilers keep improving, we believe OpenACC will become

more powerful in the near future, comparable to CUDA and OpenCL as a main tool for parallel

programming today.

2.3 Petascale Stencil Computation Applications

As the computation capability of top supercomputers has scaled from terabyte to petabyte

levels in last five years, many large scale scientific applications have benefited from this

increased computing power and achieved significant performance gains after aggressive tuning.

Here we briefly show some world famous scientific computation applications, that have some

similarity to our AWP-ODC applications in either the use of stencil or in application. All

21	

	

	

	

application information and result numbers are from their publications. More details can be read

through reference papers [2, 37-46].

2.3.1 Phase-field Simulation

The Gordon Bell Prize winner at SC’2011 by T. Shimokawabe et al. from Tokyo Institute

of Technology demonstrated a multi-GPU implementation of phase-field simulation modeling for

dendritic solidification, that achieved 1.017 PetaFlops in single precision using 4,000 GPUs and

16,000 CPUs on TSUBAME 2.0 Supercomputer [2].

The phase-field model introduces a continuous parameter to describe whether the

material is solid or liquid. The numerical model includes one second-order finite difference

scheme for space and one first-order forward Euler-type finite difference method for time on a 3D

regular computation grid (shown in Figure 2.8a). To compute a center point (i, j, k), a total of 26

elements (6 phase field values and 19 concentration values) need to be read from memory, and 2

elements (one phase field value and one concentration value) written back to memory.

TSUBAME 2.0 supercomputer is located at Tokyo Institute of Technology, and is now

upgraded to TSUBAME 2.5 ranked as No. 11 based on Top 500 released in Nov. 2013.

TSUBAME 2.0 contains 1,408 computing nodes, where each node has two 6-core Intel Xeon

X5670 CPUs and three NVIDIA Tesla M2050 Fermi GPUs. The interconnection is fat-tree with

200 Tbps bi-section bandwidth. The full GPU simulation code is compiled by CUDA version 3.2.

T. Shimokawabe et al. have developed three multi-GPU implementations in their search

for higher computation performance, including a GPU-only method, a Hybrid-YZ method and a

Hybrid-Y method. The GPU-only method allocates each individual sub-domain into a separate

GPU, and the GPU takes over the entire computation. For the Hybrid-YZ method, the CPU

computes outer region, which contains all data to be swapped, and the GPU computes the rest

inner region. The Hybrid-Y method balances the load between CPU and GPU, meaning

computation time and communication time spent by CPU and GPU are almost equal. As shown in

Figure 2.8b, the weak scaling result shows the Hybrid-Y method achieved both high computation

performance and better scalability.

22	

	

	

	

Figure 2.8: (a) Spatial access pattern for the phase field and concentration. (b) Weak scaling
performance by using a GPU-only method, a Hybrid-YZ method and a Hybrid-Y method in both
single precision (SP) and double precision (DP) [2].

2.3.2 Global Atmospheric Simulation

Global atmospheric simulation is a key component in climate modeling and helps

scientists understand dynamic behaviors of the global atmosphere. Yang et al. from the Chinese

Academy of Science developed a peta-scalable hybrid algorithm applied in a cubed-sphere

shallow-water model for global atmospheric simulations. Their experiments demonstrated nearly

ideal strong and weak scaling on Tianhe-1A supercomputers, with sustained performance of 0.8

PetaFlops in DP (1.6 PetaFlops in SP) using 45,000 CPU cores and 3,750 GPUs [37].

The numerical model of the shallow-water equations has been simplified into two 2D

second order finite difference schemes, which requires two 2D stencil computations at each time

step. For each cell (i, j), 13-point mesh cell information is read from memory and the updated cell

writes back to the memory (shown in Figure 2.9a). Yang et al. developed CPU-only and hybrid

CPU+GPU algorithms. The main idea is to balance computational load and reduce the

communication latency between the CPU and GPU. As shown in Figure 2.9b, the tuned

CPU+GPU method has achieved nearly perfect weak scaling on Tianhe-1A as the number of

computing nodes increased from 6 to 3,500.

23	

	

	

	

Figure 2.9: (a) Top: state reconstruction in cell(i, j). Bottom: 13-point stencil exhitbits a diamond
shape. (b) Weak scaling results on Tianhe-1A using CPU-only and hybrid CPU+GPU [37].

2.3.3 Seismic Simulation

Seismic simulation is to quantify earthquake hazards in physics-based models that help to

understand risk and improve resilience in seismically active regions. Detailed simulation hazard

maps can provide system engineers, emergency responders and disaster planner with a realistic,

high resolution scenario to understand the earthquake damage. In 2010, the largest ever

wall-to-wall earthquake simulation on San Andreas Fault was achieved on OLCF Jaguar

CPU-based machine, with the seismic frequency exceeding 2Hz and the computation size

approaching 1017 mesh points [5]. The arrival of new heterogeneous supercomputers has opened

the door to even higher frequencies and spatial resolution, and it provides seismologist more

opportunities to simulate and study earthquakes at petascale level for the first time.

A number of previous research projects focused on acceleration of seismic simulations

have used a heterogeneous computation solution (CPU + GPU) [38-46]. Dimitri Komatitsch and

his research team at CNRS/University of Aix-Marseille France has implemented the first GPU

version of seismic simulation code including SPECFEM3D [38], finite-difference time domain

(FDTD) [39] and finite-element [40-41]. Komatitsch et al. scaled their seismic simulation codes

up to 192 Tesla 10 serial GPUs and achieved more than a 20 times speedup compared to

24	

	

	

	

CPU-only codes. Abdelkhalek et al. [42] demonstrated 10 times and 30 times speedups with their

3D FD implementation of reverse time migration (RTM) and seismic application respectively on

8 NVIDIA 10 serial GPUs. Song et al. [43] accelerated the Support Operator Rupture Dynamic

(SORD) code with 14 times speedup on 64 NVIDIA 10 serial GPUs. Okamato et al. [44-46]

successfully accomplished the Tohoku-Oki earthquake simulation using a CPU/GPU solution,

and reached 2.2 TFlops on 120 GPUs of the TSUBAME supercomputer.

2.4 Summary

In this chapter, we described two kinds of modern supercomputer architectures in details,

including homogeneous and heterogeneous. General CPUs plus acceleration units have been the

main stream for heterogeneous computing nodes, with CPU+GPU as the most popular one based

on Top500 supercomputers released in November 2013. As the computation performance

primarily relies on massive on-chip parallelism controlled by both hardware and software,

programmers must better understand the architectures, and become familiar with programming

models in order to deliver high performance solution. MPI+CUDA has been selected as our

programming model and tool. This is because we target OLCF Titan supercomputer, in which

each computing node consists of one AMD 16-core CPUs and one NVIDIA Kepler GPUs.

We also introduced some of the advanced petascale stencil applications including seismic

codes using heterogeneous solution. Compared to our AWP code, two petascale applications have

smaller order of finite difference methods (4 vs. 2) and also deal less with memory-bound issue.

None of the current seismic simulation codes mentioned in Section 2.3.3 have been extended to

petascale level. These research investigates accelerations and time-to-solution reduction using

smaller CPU/GPU clusters compared to CPU-only solutions. In the following chapters, we

present new AWP code with nearly perfect scalability achieved. The new AWP provides seismic

scientists, for the first time, with petascale ability to simulate ground motions from large fault

ruptures to frequencies as high as 10 Hz in a physically realistic way.

	

25

Chapter 3

Earthquake Simulation Workflow

This chapter presents the whole earthquake simulation framework and the scientific

workflow designed for the petascale earthquake simulation running on the XSEDE. Generally,

earthquake simulation involves significant bookkeeping. This includes data collection for the

simulated earthquake regions, translating these data into the simulation format, pre-processing

these data before the simulation, running the full simulation on supercomputers and

post-processing data to generate the hazard mapping for scientific research or industrial purposes.

Our role in the simulation is to design the simulation and pre/post-processing software, run SCEC

seismic simulations on XSEDE. SCEC provides the input meta-data. The simulation output is

visualized by Amit Chourasia at SDSC, and the results are analyzed by the SCEC community.

Moving from terascale to petascale, large scale earthquake simulations invovle multiple

steps, and several hours of supercomputer computation to complete a single run. For example, the

M8 simulation run on Jaguar machine in 2010, took around 24 hours and generated several

peta-bytes of data for scientific research. Generally, it is unrealistic to repeat such a large

capability simulation because of the allocation cost and significant manpower invovled. Moreover,

there could be some data corruption during the peta-byte data transmission between

supercomputers due to the network or file system issue, which would cause the whole simulation

results useless and also a huge waste in computation hours. Therefore, we came up with an

automatic workflow developed to support the data management of a petascale earthquake

simulation, which helps manage the simulation process and make sure all data produced are valid

and safely backed up.

In this chapter, Section 3.1 describes some project background and motivation, including

the XSEDE (replaced and expanded from previous TeraGrid) platform and our project center

SCEC. Earthquake components are briefly introduced in Section 3.2 in order to better understand

why our scientific workflow is required. Section 3.3 presents the detailed scientific workflow,

which includes the workflow framework, software tools and simulation results tested on XSEDE

using the Shakeout simulation. Conclusions and future work will be presented in Section 3.4.

26	

	

	

	

Figure 3.1: NSF XSEDE Facility, including nine major supercomputers located across the United
States. San Diego Supercomputer Center (SDSC) is one of the main connector, so our research
can make full use of the whole XSEDE computing resource. [47].

3.1 Background and Motivation

As shown in Figure 3.1, XSEDE of the United States is the world’s largest most

comprehensive distributed cyberinfrastructure for open scientific research. It includes almost 20

Petaflops of computing capability and 30 Petabytes for data storage and archiving. Recently the

TeraGrid has been renamed as the Extreme Science and Engineering Discovery Environment

(XSEDE) [48] and some supercomputers have also been upgraded to hybrid computing mode

(CPU + GPU). Table 3.1 gives a system overview and technical specifications for the two top

supercomputers (TACC-Stampede and NICS Kraken) in the XSEDE .

Table 3.1: System overview and technical specification for Stampede and Kraken [23, 49]

Supercomputers TACC-Stampede NICS-Kraken

Peak Performance 9.6 PetaFlops 1.17 PetaFlops

Compute Nodes 6,400 nodes and 522,080 cores 9,408 nodes and 112,896 cores

Memory 270 TeraByte 147 TeraByte

File System Storage 14 PetaByte 3.3 PetaByte

Inter-Connection FDR InfiniBand Network Cray SeaStar2+

27	

	

	

	

Significant high performance scientific applications, such as those in bioinformatics,

physics, earth science, astronomy, etc, are running on XSEDE. In recent years many of those grid

applications have become more and more data intensive and massive amounts of data in such

applications are shared and distributed across the XSEDE resources. Therefore, the ability to

support large scale data transfer, management, distributed access and analysis becomes the key to

adapting those data-intensive applications to exploit the aggregate capacity of the computing and

storage resources on the XSEDE.

SCEC [50] is a large user of XSEDE, consuming more than tens of millions of allocation

hours each year. Researchers in the SCEC Community Model Environment (CME) program have

developed a geophyics and IT collaboratory platform that performs seismic hazard analysis and

geophysical modeling in the Southern California area, including a Petascale Cyberfacility for

Physics-based Seismic Hazard Analysis Research called PetaSHA. Now the PetaSHA simulations

are moving from TeraScale to PetaScale and our research group, led by Prof. Yifeng Cui at SDSC,

has developed an automatic end-to-end scientific workflow to support PetaSHA simulation on

XSEDE using the AWP-Olsen-Day-Cui (AWP-ODC) code [51]. Figure 3.2 is the SCEC

Shakeout wave propagation simulation output on the TACC-Ranger machine (the predecessor of

TACC-Stampede) using the AWP-ODC code in 2009, which computed billions of mesh points

and generated several hundreds of TeraBytes of data for a 1-Hz earthquake study on the southern

San Andreas fault. As the largest mesh simulations move into hundreds of billions of elements

range, dynamic source nodes on fault are reaching millions, decomposing files have increased to

hundreds of thousands, terabytes of data are transferred between sites increasingly frequently.

High performance data transfer and ingestion in this scientific workflow becomes essential to

support the scientific analysis on the heterogeneous collection of computational and storage

resources on XSEDE.

Based on the characteristics of data types in the scientific workflow and heterogeneous

resources on XSEDE, we examine the issues related to performance optimizations of data transfer

and ingestion in this scientific workflow to support SCEC PetaSHA simulations. Some popular

tools for data transfer and management on XSEDE are introduced and invovled in our workflow,

e.g. Globus and iRODs system. The primary goal is to ensure the correctness of data before

running any computation jobs in the workflow and minimize the time-to-solution by reducing

data transfer and archiving time.

28	

	

	

	

Figure 3.2: SCEC Shakeout simulation of a Mw7.8 earthquake on the southern San Andreas fault:
600 x 300 x 80 km domain, 100m resolution, 14.4 billion grids, upper frequency limit 1-Hz, 3
minutes, 50k timesteps, minimum surface velocity 500m/s, dynamic source, velocity properties
SCEC CVM 4.0 model. This simulation will be used as an example case in Section 3.2/3.3 [52].

3.2 AWP-ODC Simulation Components

The AWP-ODC code is a fourth order finite difference 3D wave propagation code with a

full package including pre-processing, simulation solver and post-processing. Here we briefly

describe each component of the AWP-ODC software package in order to show why the scientific

workflow is necessary for earthquake simulation. More details for each component of the

AWP-ODC can be found in our SC’10 paper [5].

In earthquake simulation, the input data includes two types: mesh and source. The mesh

data can be treated as the property of each point in the simulation domain and the source is the

earthquake center that pumps energy out which propagates to other points. Generally, the number

of mesh points equals the domain size, while the number of source points is limited and

determined by the specific earthquake. The pre-processing tools in AWP-ODC have Mesh

Generator CVM2MESH, Petascale Mesh Partitioner PetaMeshP, Dynamic Source Generator

dSrcG and Dynamic Source Partitoner PetaSrcP. The simulation solvers in AWP-ODC are

Dynamic Fault Rupture Solver DFR and Wave Propagation Model AWP. The post-processing is

composed of Validation Toolkit aVal, derived Products dPDA and iRODs ingestion tool PIPUT.

In the simulation solvers, there are also Mesh Reader and Source Reader designed to handle data

distribution between different compute nodes/cores.

29	

	

	

	

Figure 3.3: Components of the AWP-ODC, including input data pre-processing, simulation and
output post-processing.

CVM2MESH is a mesh generator software developed by Patrick Small at SCEC, which

is to extract material properties for each mesh point in the simulation domain. This software has

been implemented using a scalable parallel algorithm. The program first partitions the 3D

earthquake simulation domain into slices along the z-axis and then assigns an individual CPU

core to extract the values of each mesh point in its slice from the original CVM model. The main

computation is to find the corresponding position in the original CVM model for each mesh point,

then set its values to the mesh point. In the end, all CPU cores write their outputs into a shared

file created by the MPI-IO API for parallel writing. This mesh file will be saved as the input for

the AWP-ODC earthquake simulation. Since the mesh file is for all mesh points in the 3D

simulation domain, there is no need to store the location information. So the format for the mesh

file is purely values saved in order, e.g. [values for 3D location (0, 0, 0)], [values for 3D location

(0, 0, 1)], [values for 3D location (0, 0, 2)] …. [values for 3D location (N-1, N-1, N-1)]. This

helps to maintain all the information with a minimum file size.

dSrcG is a Kinematic Source Generator tool to generate the moment rate time histories at

a finite number of points in the simulation domain. Unlike the mesh file, the source file does not

contain information for each mesh point, but only for a limited number of points. The format for

each source file is the 3D location and the sequential full time serial moment information, e.g.

[3D location], [timestep 1], [timestep 2] …. [timestep N]. The file size for the source not only

depends on the number of source points, but also the frequency and the earthquake duration. If

the frequency is high, then we will have more timesteps for the same amount of earthquake run

time. Generally the file size is in the hundreds of giga bytes range due to the tens of thousands of

source points and high frequency simulation.

30	

	

	

	

Figure 3.4: Two Partition Methods in PetaMeshP: the left is the serial approach and the right is
the parallel approach [53].

CVM2MESH generates a single file of enormous size, in the hundreds of giga bytes or

even several terabytes range, depending on the 3D domain size. Since the AWP utilizes hundreds

of thousands of CPU cores to do the computation, each core can only handle a small amount of

data due to the limited shared memory at each computing node, and PetaMeshP is the tool to

pre-partition the mesh data before the main computation, which has provided the AWP scalable

capability to handle different sizes of input mesh data.

PetaMeshP tool [53] includes a serial approach and a parallel approach, as shown in

Figure 3.4. The serial approach is quite straightforward, and PetaMeshP generates the meta file

for each CPU core. Suppose we request 1000 cores to do the computation, then the PetaMeshP

will generate Media0001.bin, Media0002.bin, ….Media1000.bin. The number in the names of

these partitioned mesh files corresponds to the rank of its CPU cores, for example, the rank 600

CPU core reads the Media0600.bin file to do the main computation. The advantage for this

approach is easy implementation and it also reduces the load of the file system significantly,

because each CPU just accesses its own file and no shared file access happens during file input.

The disadvantage is that the mesh files must be regenerated to use a different number of CPU

cores or decomposition topology. The parallel approach is designed to solve this disadvantage.

Unlike the serial approach, the parallel approach does not generate these separate files, but

directly passes the data into the right memory for each CPU core. The parallel approach has

another academic name called “two layer data decomposition”. In the first layer, a small number

of the CPU cores read big chunks of continuous data from the file system, and the second layer

distributes the data into the right CPU cores. More details about the parallel approach are

presented in SC’09 poster [53].

31	

	

	

	

PetaSrcP is to distribute the source to the associated CPU cores. As discussed earlier,

dSrcG generates a single moment-rate file, as the CVM2MESH does, and the source points only

exist in a limited number. Therefore, PetaSrcP computes the right location for each source point

and generate the source files for the associated CPU core. Since the data in the partitioned source

file is primarily time serial information, we partition the source file again into smaller files based

on time steps, which can help reduce the memory load for the CPU core. Otherwise, if there are

several hundred source points belonging to the same CPU core and the simulation time is long,

then the size of the partitioned file can be hundreds of mega bytes and not much memory space is

left for computation. After the PetaSrcP data partition, the source files will be named:

fault0001_0000.bin, fault0001_0300.bin, fault0001_0600.bin, …, fault0001_4800.bin, …,

fault000N_0000.bin, fault000N_0300.bin, fault000N_0600.bin, …, fault000N_4800.bin. The first

four digits mean the associated rank of CPU core and the last four digits are the beginning

timestep of this source file. PetaSrcP has the same limitation as the PetaMeshP serial approach.

We need to regenerate the partitioned source file if using different number of CPU cores or

decomposition topology.

Mesh Reader is the beginning of the simulation, which has four options in the

AWP-ODC. The first option is homogeneous mesh input, where the mesh property is the same

for all mesh points and calculated based on some input parameters. The second option is to

handle the smaller mesh/simulation size. Each CPU core computes its data offset and acquires the

data directly from the same mesh file via MPI IO and the parallel file system. The third option is

to read the partitioned mesh files generated by the PetaMeshP serial approach. This option is

utilized when dealing with hundreds of thousands of processor cores to ensure scalable and high

performance I/O bandwidth. The last option is to use the PetaMeshP parallel approach to read

large mesh file directly.

Source Reader runs throughout simulation. After each timestep, the simulation must add

new source time history information to simulation prepared for the next timestep. Source Reader

consists of two options. The first option is to handle smaller source input. The main CPU core

reads in all source information and then broadcasts it to all other CPU cores. Then each CPU core

calculates its own source and starts the simulation. The second option is to read the partitioned

source directly from the file system generated by PetaSrcP. This option is always utilized to

handle the huge source input in Petascale level earthquake simulation.

32	

	

	

	

Figure 3.5: AWP main computation running on supercomputers is utilizing tens of thousands of
processors. The 3D simulation domain is decomposed into many small 3D grids, which are
mapped into those processors. Data communication between processors close to each others
occurs during the computation due to the computation characteristics.

The AWP main computation starts after the mesh reader and initial source reader finishes

the input processing. This is the core part of the AWP-ODC software, which computes the time

serial wave propagation information for the whole 3D domain. Each timestep in the main

computation includes two steps: the first step is to compute velocity information based on the

stress information, and the second step is to compute new stress based on the updated velocity

information. The computation was primarily running on CPU-based supercomputers earlier.

Chapters 4 through 6 focus on the heterogeneous solution and present the results.

As the AWP computation lasts for several hours for large-scale earthquake simulation,

fault tolerance is required to deal with hardware or system issues. For example, if one computing

node died during our computation, then the whole simulation would stop or crash because MPI

messaging is blocked. In this case, the simulation will need to be restarted. Without fault

tolerance feature, all internal state information of a previous run will be lost. Therefore,

checkpointing is fundamental and implemented in AWP, and all the internal state variables are

saved periodically to provide a restart capability. Since the mesh and source information will be

read again in the restart simulation, we only record the time-related information including

veloicty, stress and some intemediate variable information.

33	

	

	

	

Figure 3.6: Improved AWP high performance output programming model. The concept is very
similar as the parallel mesh read. First each core redistributes data into its right output core, which
has a big continuous memory chunk. Then write these big chunk data into the file system with
high throughput.

After the AWP simulation code finishes the entire computation, the output data must be

written into the file system for further scientific study. The output data includes three velocity

files for the x, y, and z directions separately. In order to record the time serial information,

velocity data must be saved every N timesteps (N is configured before the simulation). Therefore,

the output data is also in the hundreds of gigabytes range or even larger. The size of data to be

saved at each timestep is equal to the 3D domain size. All outputs generated by the simulation

also need to be carefully archived for future research.

Since our simulation code is using hundreds of thousands of CPU cores, the file system

cannot afford many cores to write data into a single file simultaneously, because of the limited

number of I/O ports shared across the whole system. Hence, we came up with a solution based on

the idea of the parallel Mesh Reader, which is the reverse way of the Mesh Read. The improved

solution uses a small number of CPU cores to write data into the file system in parallel instead of

writing from all CPU cores. Before writing, data is redistributed via MPI communication and

packed into big continuous memory data blocks (shown in Figure 3.6). Therefore, there is no data

block that overlaps between output CPU cores, which guarantees high throughput on the parallel

file system.

34	

	

	

	

After the simulation is completed successsfully, post-processing is required to help

validate results, visualize the outputs, and archive the files. Our derived products aVal

(Automated Verification) compares new simulation results to the “correct” results from the

reference solution by least-squares fit (L2 norm) [54]. Amit Chourasia from our team at SDSC

has special visualization tools to generate earthquake wave propagation movies [55]. dPDA and

PIPUT are data management script tools developed based on iRODs, which will be discussed

more in Section 3.3.

3.3 End-to-End Earthquake Simulation Workflow

The goal is to develop a scientific workflow, that is designed to support SCEC PetaScale

simulations on XSEDE and intended to manage jobs and data for the AWP-ODC simulation

application. As the complexity and size of the simulation grows, increasing sizes of input or

output datasets threatens to outpace the ability to archive and transfer them from site to site in this

workflow. As discussed in Section 3.2, SCEC PetaScale wave propagation simulation on the

supercomputers typically processes two major input data files with a total size in the

multi-terabyte ranges, and generates hundreds of thousands of multi-gigabyte output files in a few

hours. Also, based on the scientific workflow design shown in Figure 3.7, tremendous volume of

partitioned data files must be transferred across XSEDE. Hence the challenge of improving the

performance of this workflow lies in the demand for fast, efficient and reliable data transfer and

management.

High performance data transfer and ingestion in grid applications has always been an

active area of research. GridFTP [56-57] is a well-known and popular data transfer tool based

on Globus that produces high-performance, secure and efficient data transfer technologies

optimized for high-bandwidth wide-area networks in Grid environments. Reliable File Transfer

(RFT) Service [58], a transfer service developed for grid applications, addresses a wide variety of

problems such as dropped connections, machine reboots and temporary network outages

automatically via retrying. Grid Datafarm (Gfarm) [59], an architecture designed for petascale

data-intensive computing, exploits local I/O in a grid of clusters with hundreds or thousands of

nodes and achieves high data transfer rate by parallel I/O read and write operations. Kangaroo

[60], a simple data movements system, makes opportunistic use of disks and networks to improve

35	

	

	

	

end-to-end data movement performance in grid environments. However, tools or systems

described above mostly focus on data transfer between machines but have no data monitor or

verification capability. In addition, some software packages supporting distributed storage

environment on XSEDE, such as the leading iRODS software [61], typically utilizes incompatible

and unpublished protocols for data transfer.

Based on the characteristics of data types in the scientific workflow and heterogeneous

resources on XSEDE, we examine the issues related to performance optimizations of data transfer

and ingestion in this scientific workflow to support SCEC PetaSHA simulations. The primary

goal is to ensure the correctness of data before running any computation jobs in the workflow and

minimize the time-to-solution by reducing data transfer and archiving time.

Figure 3.7: System architecture of an end-to-end scientific workflow for a SCEC PetaScale wave
propagation simulation. An Shakeout simulation example are presented here: data pre-processing
on NICS Kraken, Simulation on TACC Ranger and data archived to iRODs digital library.

36	

	

	

	

Three major components are included in our scientific workflow: data pre-processing,

solver simulations and validation, and post-processing data archival. In the Shakeout simulation

example as shown in Figure 3.7, two major kinds of data transfer are addressed in the workflow:

one is the data transfer between heterogeneous supercomputer clusters on XSEDE, e.g. from

NICS Kraken [49] to TACC Ranger, and the other is data archival from supercomputer cluster to

iRODS system, e.g. Ranger to iRODS digital library. To investigate these data issues and the

feasibility of high performance data transfer and management, we consider integrating advanced

data grid tools, remote computation and high-bandwidth networks for solutions. Since data

transfer tends to dominate overall simulation performance, the performance evaluation of

optimization approaches is focused on transfer or ingestion rate and reliability. All experiment

results reported are conducted on the Shakeout Simulation case carried out on XSEDE.

3.3.1 Data transfer between supercomputers

This section presents an enhanced protocol framework that implements data transfer and

parallel verification and suggests optimal Globus toolkit [62] parameters for efficient data transfer

as part of this framework. This protocol framework has been utilized for high performance data

transfer in our scientific workflow. Before describing the framework in some details, we

introduce the Globus tool and the commands in use for the framework as well as the functions

they performed to help improve the data transfer rate.

The Globus Data Grid Toolkit developed within the Globus project provides a

middleware for grid computing environments. Its component Grid Security Infrastructure (GSI)

provides public-key-based authentication and authorization services, and resource management

services [56]. The GridFTP transfer service uses GSI and supports large amounts of data transfer

on Grid. Another feature available is the remote resource access and job management in grid

environments. Two important commands of the Globus Toolkit are used in this framework

including: globus-url-copy for data transfer and gsissh for remote access management.

For the globus-url-copy command, we have to manually set the TCP buffer size, the

number of parallel streams, and the third-party file transfer option with the following syntax:

globus-url-copy –vb –notpt –tcp-bs <buffer> -p <parallel> gsiftp://

<source-machine>/<source-file> gsiftp:// <dest-machine>/<dest-file>

where <buffer> is the TCP buffer size, <parallel> is the number of parallel streams,

37	

	

	

	

<source-machine> is the location for source data files and <dest-machine> is the destination

machine for the data files. To avoid high latency and bandwidth problems encountered in

networks and maximize the transfer performance, we choose TCP buffer sizes from 1K byte to

64Mbyte and number of parallel streams from 1 to 32 sockets. The optimal parameters supported

by Ranger and Kraken are found to be 11Mbyte for the TCP buffer size and 12 sockets for

parallel streams. The maximum rate achieved during the data transfer from Kraken to Ranger was

450MB/sec, which is about 33% of the theoretical maximum network bandwidth shared with

other TG users (10Gbits/sec).

With the gsissh command, we can access data files on a remote machine, generate the

MD5 checksum of each file, and save it to the local machine for data verification with the

following syntax:	
 	

gsissh <dest-machine> md5sum <filepath> > <local-path>

where <dest-machine> is the remote machine storing source data files, <filepath> is the

source data file path on the remote machine, md5sum command is to generate the MD5 checksum

and <local-path> is the storage path on the local machine. The MD5 checksum was employed to

verify all data files before running any production jobs to ensure the correctness, and the gsissh

command can help to generate MD5 checksum from the destination machine to the local machine

directly, which costs 50% less time than generating MD5 checksums on the destination machine

and transferring them back to local.

Figure 3.8: Enhanced protocol framework model of high performance data transfer from NICS
Kraken to TACC Ranger.

38	

	

	

	

The enhanced framework brings together the Globus toolkit and parallel approaches for

high performance data transfer. Figure 3.8 shows a real user case, that utilizes this protocol

framework to do high performance data transfer from NICS Kraken to TACC Ranger. Detailed

protocols are described as follows:

Step1: TACC Ranger (destination supercomputer machine) sends a request to NICS

Kraken (source supercomputer machine) for data transfer with location information. The NICS

Kraken checks the data availability and sends a ready signal back to the TACC Ranger, which

resembles the handshaking protocol in networking.

Step2: If the ready signal is true, the TACC Ranger enables the Globus tool with 12

threads for source data file transfer. After the network connection is built successfully and the

data file start to transfer, TACC Ranger requests another 8 CPU cores using MPI (Message

Passing Interface) batch jobs for remote MD5 checksum generation.

Step3: Partitioned Data Management Engine (PDME) in the NICS Kraken allocates data

files in equal numbers to each core in TACC Ranger and then remote MD5 checksum generation

is executed on the TACC Ranger. This is to ensure each CPU cores on TACC Ranger is

generating the MD5 checksum for independent files (e.g. CPU core 0 processes file 0, 8, 16, …,

CPU core 1 processes file 1, 9, 17, … and etc).

Step4: When the file data transfer and MD5 checksum generation are finished, these 8

CPU cores on TACC Ranger begin to verify data files in parallel and record information about

any incorrect data file.

Step5: Ranger sends this information on incorrect data files to Kraken, and PDME in

Kraken locates these data files and resends and verifies them individually until all data files are

correct. Then the Simulation or Validation Job Management Engine (SVJME) accesses these

transferred data files and starts computing jobs.

In the Shakeout testing case, the number of partitioned data files is 6,400 and the size of

each file is around 120 MB, the total size is around 770 GB. The total time spent on data transfer

is 3881 seconds and the average transfer rate is 198.40MB/sec. Benefiting from the parallel

implementation, the transfer time has been reduced by more than 73%, as the original data

transfer and verification took over 4 hours using a single core in sequential order. Additional

robustness and reliability are obtained due to the automatic error detection feature implemented in

this framework.

39	

	

	

	

3.3.2 Data management and archival

In addition to the high performance data transfer, data management and archival are the

other important issues in our scientific workflow. The iRODS system is software middleware that

can be tuned to implement any desired data management application, ranging from a Data Grid

for sharing data across collaborations, to a digital library for publishing data, to a preservation

environment for long-term data retention, to a system for federating real-time sensor data streams

[63]. In the Shakeout example (Figure 3.2), we set up an iRODS client on the TACC Ranger, and

an iRODS server on SDSC IA64 machine, where the SCEC collection (iRODS digital library)

[64] is located on SAM-QFS (Storage Archive Manager- Quick File System) [65] with 16 tape

drives and 304 TB disk cache. Normally there are four kinds of data to be managed and archived:

1. Original input data provided by seismologists, over 500GB in size.

2. Partitioned data with total size the same as original data but comprising hundreds or

thousands of small data files.

3. Simulation code, configuration files and running scripts for the execution

environment.

4. Output data including surface and volume information, in which the size of each

volume file is over 10 GB.

Therefore, we set up a strategy as follows to pre-process these data files prior to archival

and optimize archival performance to register the data into the iRODS digital library.

Figure 3.9: Enhanced protocol framework model of high performance data transfer from NICS
Kraken to TACC Ranger.

40	

	

	

	

Before data archival, consider three types of jobs in pre-processing: sorting out

directories that contains over 1000 files and compressing them individually, selecting single files

whose size is larger than 10GB, and combining simulation code, configuration files and running

scripts together. Because the tar command may take substantial computation resources, we take

advantage of MPI batch jobs to arrange these tasks in parallel to improve the efficiency.

Figure 3.9 shows example data preprocessing for the Shakeout example. In Shakeout

simulation, a node including 16 cores on the Ranger machine was requested for data

pre-processing. When the simulation was finished, a job queue containing 28 jobs was generated.

These jobs were mapped equally to those requested 16 cores and executed in parallel. After each

job was finished, the scientific workflow then transferred the pre-processed file to the archival

machine via iRODS system automatically.

Transfer of massive data sets to the iRODS digital library was accomplished in usual case

by using a single iPUT command. The iPUT command can either ingest a whole directory

hierarchy or a set of files. This mechanism is a multithreaded application and adapts the number

of threads it uses to the size of the file it transfers. For example, if a file is 32MB or smaller, the

iPUT command will utilize a single process and no additional threads will be spawned. If the file

has a size between 32MB and 63MB then it will utilize one additional thread. Continuing in this

fashion, if the file is of size 512MB or larger then it will use 16 threads, which is the maximum

possible number per iPUT command. Our experiments showed that for large files (larger than

3GB) the maximum transfer rate using a single iPUT command with 16 threads is 28MB/sec

(evening test with lower system and network load). Thus, our goal was to find ways to improve

the ingestion rate and to investigate mechanisms to automate the ingestion and the efficiency of

data validation.

Figure 3.10: Systems involved in the process of data transfer from Ranger to the iRODS digital
library.

41	

	

	

	

Figure 3.10 shows the data transfer rate measured as a combined performance result of

many systems, where some hardware performances are fixed or depend on file system activities

beyond our control. Below is a list of some of these systems involved in the data transfer:

1. Hard disk layout on source machine

2. File system organization and load on source machine

3. CPU utilization

4. Network bandwidth and load

5. iRODS client and server configuration and server load

6. SAM-QFS performance and load

Our approach for improving transfer and ingestion rates focuses on improving CPU

utilization and modification of iRODS client and server configurations to improve the network

bandwidth utilization. Experiment platforms are the TACC Ranger machine and the SDSC IA64

machine with the iRODS system for the Shakeout example.

There are two alternatives to increase CPU utilization. One is using MPI, and the other is

to use the multithreaded capabilities of iPUT and to concurrently invoke many iPUT processes. If

one uses MPI then the multithreaded capabilities of iPUT will be lost. Our experiments indicated

that 16 threads per iPUT rarely helped concurrently executed iPUT commands, however, 2

threads per iPUT did make a difference that allowed us to improve the rate more than six-fold.

To improve the CPU utilization, we altered the number of parallel iPUT commands and

the number of threads each command uses. We were advised to not increase the number of

concurrently running iPUT commands beyond 16, since iRODS server would not be able to

handle a higher number efficiently, and we experimentally observed degradation in performance

beyond 16 iPUT commands.

Figure 3.11(a) presents an ingestion experiment in which we have fixed the number of

concurrently executing iPUT commands to five and vary the thread count. The goal is to

determine whether higher thread count results in increased performance or not. It shows that the

ingestion rate and the thread count are inversely proportional.

In the following experiment we fixed the number of threads per iPUT to two. As shown

in Figure 3.11(b), we vary the number of concurrently invoked iPUT commands. With sixteen

parallel iPUT and each using two threads, the maximum ingestion rate we achieved is

177.8MB/sec.

42	

	

	

	

(a)

(b)

Figure 3.11: (a) For five concurrent iPUT commands and thread count varied between 3 and 16,
best performance is achieved with thread count of three. (b) For two threads per iPUT, maximum
rate achieved with 16 iPUT commands running concurrently can be up to 177.8MB/sec

Based on our knowledge, SAM-QFS has only two nodes connecting it to the network

with each having 1Gbits/sec bandwidth, hence the combined I/O bandwidth available to

SAM-QFS is 2Gbits/sec. Note that 177.8MB/sec is equal to 1422.4Mbits/sec, which means this

maximum dataflow rate can be up to 66% of theoretical maximum bandwidth of SAM-QFS.

43	

	

	

	

For iRODS server and client configuration, we explored the effect of the size of the

sliding window on the transfer rate. The higher the size of the sliding window TCP uses, the

higher the ingestion rate, because the client can stream data up to the size of the window without

expecting an ACK from the server. The iRODS server and client are flexible and can vary the

size of the sliding window. The TCP window option, defined in RFC 1323 [66] can be used to

increase the maximum window size from 65,535 bytes to 1 Gigabyte. Currently the iRODS server

and client can use up to a 16MB window size.

On the iRODS server side, the size of the sliding window can be adjusted by modifying

the last parameters of microservice in msiSetNumberThreads. If it is set to 16,777,216, then the

server will use a 16MB window size. On the iRODS Client’s side, the default sliding window size

is 1M, and it can also be modified by setting SOCK_WINDOW_SIZE to 16*1024*1024 (16MB).

These two optimizations were combined into our data transfer workflow and experiments

demonstrated an average rate of 133MB/sec ingestion rate achieved from TACC Ranger to

iRODS digital library, which is nearly five times as the maximum rate achieved per iPUT

command (28MB/sec).

3.4 Conclusions

In this chapter, we have presented high performance data transfer and ingestion carried

out in a scientific workflow to support SCEC petascale simulations on XSEDE. The scientific

workflow for the Shakeout simulation case is an outstanding example that shows the efficiency of

our optimizations provided for SCEC Petascale simulations. This chapter’s contributions are as

follows.

We have suggested best parameters for Globus toolkits to maximize data transfer

performance. An outstanding feature is the protocol framework for data transfer between

supercomputer clusters on XSEDE. We have also utilized advanced MPI batch jobs to generate

MD5 checksums and verify data files in parallel. The total data transfer time has been reduced by

more than 73% based on these parallel implementations.

For data archival from supercomputer clusters to iRODS digital library, we developed a

new strategy for data management and pre-processing. A job queue is created to sort out

directories containing hundreds of thousands of files, pick up large data files and tar small files

44	

	

	

	

together. MPI batch jobs are utilized to help run these jobs in parallel to shorten the running time

and reduce the load on supercomputer clusters. When archiving data from Ranger to the iRODS

system, we improved CPU utilization and modified the iRODS server and client configuration.

We achieved an average transfer rate of 133MB/sec, which is nearly five times faster than the

conventional iRODS method.

Acknowledgements

Section 3.1 and 3.3, in part, are a reprint of the material as it appears in the 2010 third

international joint conference on Computational Science and Optimization with title

“Workflow-Based High Performance Data Transfer and Ingestion to Support Petascale

Simulations” by Jun Zhou, Yifeng Cui, Sashka Davis, Clark C. Guest, Philip Maechling. Section

3.2, is based on the material as it partly appears in proceedings of the 2010 ACM/IEEE

conference on Supercomputing with title “Scalable Earthquake Simulation on Petascale

Supercomputers” by Yifeng Cui, Kim B. Olsen, Thomas H. Jordan, Kwangyoon Lee, Jun Zhou,

Patrick Small, Daniel Roten, Geoffrey Ely, Dhabaleswar K. Panda, Amit Chourasia, John

Levesque, Steven M. Day and Philip Maechling. The dissertation author was one of the primary

investigators and author of these two papers.

	

45

Chapter 4

Single GPU Optimization

This chapter presents our hands-on performance tuning experience and describes

optimization approaches for higher computational efficiency of 13-point asymmetric 3D stencil

based Finite Difference code used in AWP-ODC, with more focus on aggressive performance for

the second generation NVIDIA GPU “Fermi” chipset. We completely rewrote AWP-ODC in C

and CUDA in order to take advantage of the powerful GPU computing capabilities. We present

performance comparisons between our fully optimized AWP-ODC Fortran MPI code running on

different multi-core CPU systems and the new CUDA code running on different GPU chipsets.

Benchmarks on NVIDIA Tesla M2090 demonstrated 10 times speedup versus the original fully

optimized AWP-ODC FORTRAN MPI code running on a single Intel Nehalem 2.4 GHz CPU

socket (4 cores/CPU), and 15 times speedup versus the same MPI code running on a single AMD

Istanbul 2.6 GHz CPU socket (6 cores/CPU). Sustained single-GPU performance of 143.8

GFLOPS in single precision is benchmarked for the testing case of 128x128x960 mesh size on

the NVIDIA Tesla M2090 GPU.

NVIDA GPU architectures for scientific computation have gone through three

generations including Tesla 10x series, Fermi, and Kepler. All optimization approaches described

in this chapter are mainly based on the Fermi, since Kepler was not available during the time we

worked on single GPU code porting. However, most of these approaches work very well on the

Kepler architecture. Benefit from the faster read-only memory and more flexible shared memory,

further optimization research work could make our computing code running faster on this new

chip, which will be described in the future work section. For the same reason, some optimization

approaches cannot be run on the Tesla 10x series because of the architecture differences, e.g.

there is no L1 cache on Tesla 10x GPUs.

In this Chapter, we first will describe the analysis of the 13-point asymmetric 3D stencil

kernels. Then brief summary of our CPU optimization and results will be presented. After that,

we will discuss our optimization approaches in detail using both the algorithm and experiments.

Finally, performance comparisons are shown to demonstrate excellent optimization results.

46	

	

	

	

4.1 AWP-ODC Kernel Analysis

This section describes the formulation of the AWP-ODC numerical model and analysis of

the computation kernels. AWP-ODC solves a 3D velocity-stress wave equation using an explicit

method with a staggered-grid finite difference method, fourth-order accurate in space and

second-order accurate in time. The coupled system of partial differential equations includes the

particle velocity vector ν and the symmetric stress tensorσ [5]. Let:

 (4.1)

 (4.2)

Then the governing elastodynamic equations are [1]:

 (4.3)

 (4.4)

λ and µ are the Lame coefficients and ρ is the constant density. Simplifying formulae

(4.3) and (4.4) lead to three scalar-valued equations for velocity vector components and six

scalar-valued equations for the stress tensor components, which are listed below:

 (4.5)

 (4.6)

 (4.7)

 (4.8)

),,(zyx νννν =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

zzzyzx

yzyyyx

xzxyxx

σσσ
σσσ
σσσ

σ

σ
ρ

ν ⋅∇=∂ 1
t

)()(T
t v∇+∇+Ι⋅∇=∂ νµνλσ

)(1
zyxt

v xzxyxxx

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂ σσσ

ρ

)(1
zyxt

v yzyyxyy

∂
∂

+
∂

∂
+

∂
∂

=
∂
∂ σσσ

ρ

)(1
zyxt

v zzyzxzz

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂ σσσ

ρ

)()2(
zyxt
zyxxx

∂
∂

+
∂
∂

+
∂
∂

+=
∂

∂ νν
λνµλσ

47	

	

	

	

 (4.9)

 (4.10)

 (4.11)

 (4.12)

 (4.13)

AWP-ODC is a memory-intensive application using twenty-one 3D variable arrays in the

main computation loop. In AWP-ODC, two computation kernels for velocity and stress are

carried out in sequence for wave propagation simulation based on numerical approximation of the

partial differential equations. At each time step in the main loop, for each mesh point in the

domain, the velocity computation kernel updates three velocity components (in X, Y, and Z

directions) by using six stress components (on XX, YY, ZZ, XY, XZ, and YZ faces), and then the

stress computation kernel employs these updated velocity components to update six stress

components. We have twenty-one 3D arrays to be maintained in the memory to process the wave

propagation, including velocity, stress and coefficients. In addition to the three velocity vector

components and six symmetric stress tensor components, 6 temporary variables (r1, r2, r3, r4, r5,

r6) and 6 constant coefficients (λ , µ , ρ , quality factor for S wave Qs and P wave Qp ,

boundary condition variable Cerjan Cj [67]) are utilized in the numerical modeling. The size of

each 3D array is the same as the 3D simulation domain, hence effective memory fetching is the

key to achieving high computation performance. Figure 4.1 is the detailed pseudo-code of the

computation kernels in the main loop based on the numerical approximation of the formulae 4.5 ~

4.13:

)()2(
zxyt
zxyyy

∂
∂

+
∂
∂

+
∂
∂

+=
∂

∂ ννλ
ν

µλ
σ

)()2(
yxzt
yxzzz

∂
∂

+
∂
∂

+
∂
∂

+=
∂

∂ ννλνµλσ

)(
yxt
yxxy

∂
∂

+
∂
∂

=
∂

∂ ννµ
σ

)(
zxt
zxxz

∂
∂+

∂
∂

=
∂

∂ ννµσ

)(
zyt
zyyz

∂
∂+

∂
∂

=
∂

∂ νν
µ

σ

48	

	

	

	

Figure 4.1: AWP-ODC pseudo code for computation kernels: vx stands for velocity in x
direction. xy stands for stress xy component. c1, c2 and x1 are scalar constants. r1 and r4 are
intermediate variables and also updated in stress calculation. d1 is the constant density ρ , while
xm, xl, xmu1 qpa, h, h1and x2 are 3D static lame coefficient variables derived from λ and µ .

Main Loop:

Do T= timestep 0 to timestep N:

Compute velocities (vx, vy, vz) using stress (xx, yy, zz, xy, yz, xz)

Update values of velocities (vx, vy) along the surface

Update values of velocities (vz) based on (vx, vy) along the surface

Compute stress (xx, yy, zz, xy, xz, yz) based on velocities (vx, vy, vz)

Update values of stress (zz, xz, yz) along the surface

END DO

Velocity Computation Kernel (only vx computation is shown here, similar for vy & vz)

vx(i, j, k) += d1(i,j,k)*(c1*(xx(i, j, k) – xx(i-1, j, k)) + c2*(xx(i+1, j, k) – xx(i-2, j, k))

 c1*(xy(i, j, k) – xy(i, j-1, k)) + c2*(xy(i, j+1, k) – xy(i, j-2, k))

 c1*(xz(i, j, k) – xz(i, j, k-1)) + c2*(xz(i, j, k+1) – xz(i, j, k-2)))

Stress Computation Kernel 1 (only xx computation is shown here, similar for yy & zz)

vxx = c1*(vx(i+1, j, k) – vx(i, j, k)) + c2*(vx(i+2, j, k) – vx(i-1, j, k))

vyy = c1*(vy(i, j, k) – vy(i, j-1, k)) + c2*(vy(i, j+1, k) – vy(i, j-1, k))

vzz = c1*(vz(i, j, k) – vz(i, j, k-1)) + c2*(vz(i, j, k+1) – vz(i, j, k-2))

tmp = (xl + d_DT*qpa)*(vxx + vyy + vzz)

a1 = d_DT*qpa*(vxx + vyy + vzz)

xx(i, j, k) = (xx(i, j, k) + tmp – xm*(vyy + vzz) + vx1*r1(i, j, k))*dcrj(i, j, k)

r1(i, j, k) = x2(i, j, k)*r1(i, j, k) - h(i, j, k)*(vyy + vzz) + a1

Stress Computation Kernel 2 (only xy computation is shown here, similar for xy & yz)

vxy = c1*(vx(i, j+1, k) – vx(i, j, k)) + c2*(vx(i, j+2, k) – vx(i, j-1, k))

vyx = c1*(vy(i, j, k) – vy(i-1, j, k)) + c2*(vy(i+1, j, k) – vy(i-2, j, k))

xy(i, j, k) = xy(i, j, k) + xmu1(i, j, k)*(vxy+vyx) + x1*r4(i, j, k)

r4(i, j, k) = x2(i, j, k)*r4(i, j, k) + h1(i, j, k)*(vxy + vyx)

49	

	

	

	

Figure 4.2: Analysis of AWP-ODC Computation Kernels based on the pseudo-code in Figure 2:
(a) is the velocity computation kernel for vx, 13 point asymmetric stencil computation involving
3 stress components. (b) and (c) are for the stress component xy computation, two asymmetric
stencils in x and y directions respectively. Asymmetric stencil computation is the same as the
regular stencil computation for single CPU/GPU programming, but the asymmetric property is
good for MPI optimization for multi-CPUs or GPUs programming.

The 13-point asymmetric stencil computation for vx in the AWP-ODC main loop is

shown in Figure 4.2a, where reads occur 12 times in three different 3D arrays and writes occur

only once in one 3D array. Stress component xy calculation includes two 1D asymmetric stencils

(Figure 4.2b and 4.2c), with only 4 reads from a single 3D array and also one writes in one 3D

array. Approximately 136 reads, 15 writes and 307 FLOPs calculations in total are involved for

each point of the 3D domain in a single iteration. Moreover, data access for these reads and writes

occurs in the twenty-one 3D arrays described before, and each computation kernel involves more

than three 3D variable arrays. Table 4.1 summarizes the analysis of the three kernels in Figure 4.2,

showing that AWP-ODC is a memory-bound application because of the low FLOPS to bytes ratio

(the average operation intensity is around 0.5), which means the application has poor temporal

data locality and the performance is dominated by the memory system or arithmetic throughput

[68]. Again it shows that improving the data locality has been the key to achieve the high

computing performance for AWP-ODC kernels.

Table 4.1: Analysis of Computation Kernels in AWP-ODC Main Loop

Kernels Reads Writes FLOPs FLOPs/Bytes

Velocity Computation Kernel 51 3 86 0.398

Stress Computation Kernel 85 12 221 0.569

Total 136 15 307 0.508

i	
 i	
 i	

j	
 j	
 j	

k	
 k	
 k	

(a)	
 (b)	
 (c)	

vx(i,	
 j,	
 k)	

vy(i,	
 j,	
 k)	

xx(i,	
 j,	
 k)	

xy(i,	
 j,	
 k)	

xz(i,	
 j,	
 k)	

+1	

0	

-­‐1	

-­‐2	

-­‐2	
 -­‐1	
 +1	
 0	

+1	

-­‐1	

-­‐2	

0	

50	

	

	

	

4.2 AWP-ODC CPU Implementation/Optimization

The AWP-ODC CPU implementation and optimization works was done in 2010 by a

team led by Prof. Yifeng Cui at SDSC including myself. Details are published in our SC’10 paper

[5]. Here I will present some summary for further comparison between CPU and GPU

optimization. The AWP-ODC CPU implementation/optimization includes three main parts: 1.

reducing the expensive operations; 2. cache blocking for better data locality; and 3. loop unrolling

to improve cache utilization. On OLCF Jaguar CPU-based supercomputer in 2010, the

performance gain was around 40% at full system scale, with 31% from arithmetic optimization, 7%

from cache blocking and 2% from loop unrolling.

In the numerical formulae, the coefficients mentioned in Section 4.1 are constant in the

entire simulation. However, the original numerical model requires reciprocal form of these

coefficients, such as the lam and mu (coefficients for S wave and P wave), which are computed in

the form 1/lam(i, j, k) and 1/mu(i, j, k) instead of lam(i, j, k) and mu(i, j, k). Therefore,

pre-computed reciprocal values for these coefficients are stored and used in the main computation

loop to avoid these expensive division operations [69]. Another reduced expensive operation is

the “mod” function. We eliminated the mod function from the innermost computing loop by

replacing it with itx = 3 - itx, where the value of itx alternates between 1 and 2. Removal of the

mod enabled the compiler to vectorize the arithmetic in a compute-intensive loop.

The critical subroutines share the same three nested loop structures. Each node executes

the loop over its processor’s local mesh, which achieves good memory access behavior. However,

the cache utilization rate is very low, primarily due to the requirement of assessing values in

multiple 3D arrays with varying second or third indices. When one of these values is accessed,

the whole cache line containing the value is fetched into the L1 cache. Since the number of

variables in the inner loops is large, a cache line is usually evicted from the L1 cache right after

being referenced.

To improve cache utilization, we need to access as many values per cache lines loaded as

possible. The cache blocking technique provides better cache utilization. A 3D difference

algorithm can be extremely limited in memory bandwidth, and the number of variables that must

be fetched from memory is relatively high given the computation performed. If the required

operands are in cache, the effectiveness of cache reuse in the difference code is low since the

51	

	

	

	

amount of data during the computation of an entire plane will exceed the size of the L1 and L2

caches. Consider the AWP-ODC CPU code is developed in Fortran code, so the memory access

pattern for each 3D variable array mu(i, j, k) is fast in i direction and slow in k direction. Here is

an example showing how we implement the cache blocking for 3D 13-point stencil computation:

(a) (b)

Figure 4.3: Detailed example shows the cache blocking optimization for AWP-ODC CPU
Fortran code. The left (a) is before cache blocking and the right (b) is after cache blocking, where
the block size is decided by kblock and jblock.

For any reasonably sized grid in Figure 4.3a, the lines containing the variables from the

j-1 and k-1 planes will not be located in cache when the difference equation is performed on the

next plane. If the grid is subdivided into smaller sub-grids, the operands from the j-1 and k-1

planes may still be in cache as the computation progresses. As shown in Figure 4.3b, the values of

kblock and jblock are chosen to guarantee that the operands on subsequent planes are still in

cache while those planes are computed, so that each grid point will be accessed eight times. If the

cache blocking is perfect, then a variable will only be fetched from memory once and the other

seven fetches will be from the L1 or L2 cache. The values of kblock and jblock are dependent

upon the number of operands accessed within the loop and the cache/cache line size on the

Do k = nzb, nze

Do j = nyb, nye

Do i = nxb, nxe

 xm = 8.0/(mu(i, j, k) + mu(i+1, j, k)

+ mu(i, j-1, k) + mu(i+1, j-1, k)

 +mu(i, j, k-1) + mu(i+1, j, k-1)

+mu(i, j-1, k-1)+mu(i+1, j-1, k-1))

End Do

End Do

End Do

Do kk = nzb, nze, kblock

Do jj = nyb, nye, jblock

 Do k = kk, min(kk+kblock-1, nze)

 Do j = jj, min(jj+jblock-1, nye)

Do i = nxb, nxe

 xm = 8.0/(mu(i, j, k) + mu(i+1, j, k)

+ mu(i, j-1, k) + mu(i+1, j-1, k)

 +mu(i, j, k-1) + mu(i+1, j, k-1)

+mu(i, j-1, k-1)+mu(i+1, j-1, k-1))

End Do

End Do

End Do

End Do

End Do

52	

	

	

	

architecture. For our M8 simulation on Jaguar, the optimal solution was found to be 16/8 for the

j/k direction.

Loop unrolling techniques are also utilized to improve cache utilization and data locality,

even though some compilers automatically incorporate this form of optimization. Due to the

limited number of registers on a processor, unrolling too much could deteriorate loop

performance. In the AWP-ODC CPU Fortran code, unrolling by 2 iterations provides the best

performance for the computing-intensive subroutines of stress xy and xz.

4.3 NVIDIA GPU Computing Architecture

In the high performance computing area, the NVIDIA GPU computing architecture has

gone through three generations including the 10-series, Fermi and Kepler (More details in Section

2.1). All these three architectures have the exact same computing and memory access pattern. The

principal difference is the computing capability and feature support. For example, the Kepler

architecture has more CUDA cores in each streaming multiprocessor (192 CUDA cores per SMX

vs 32 cores on Fermi vs 16 cores on 10-series), and also supports new features such as “Dynamic

Parallelism”, which allows threads running on the GPU to create another child thread (not

supported by Fermi and 10-series). Other than that, the programming model is substantially the

same for these three NVIDIA GPU architectures.

Figure 4.4: NVIDIA GPU memory architecture hierarchy: registers are fastest but are limited in
number per CUDA thread (64 on Fermi), while the large CPU physical memory is the slowest
due to the PCI Express connection. Minimizing data access to global/CPU memory is one of the
key factors to improve computing performance [70-71].

53	

	

	

	

Figure 4.5: NVIDIA GPU threading model: Single Program Multiple Data. Each kernel is
decomposed into multiple blocks and each block is running on the physical streaming
multi-processor (SM). Each block contains hundreds or thousands of threads, and the basic unit
for each block is a warp, which is 16 for 10-series and 32 for Fermi and Kepler. Threads in the
same block are running on the SM in the format of warps [70-71].

In SIMD, we need to avoid branching and hanging/waiting data fetch, but keep all CUDA

cores busy on computation. Based on the memory hierarchy in Figure 4.4, if all threads in the

same warp can fetch data from the fast on-chip memory in a single cycle and execute the

computation for a long time, ideally we can achieve performance close to the theoretical value.

Therefore, improving data locality is one of the most important optimizations for GPU

computing.

Figure 4.5 shows the NVIDIA GPU single program multiple data (SPMD) threading

model. Generally, kernels have to run based on the submission order if there is dependence

between them, and only a single kernel takes up all the computing resource. Other kernels cannot

run until it finishes its work. In the latest Kepler architecture, each SMX contains multiple

schedulers, which permits kernels from independent streams or CPU threads to run concurrently.

However, AWP-ODC only contains two dependent homogenous computation kernels, so these

new Kepler features cannot provide much help from the performance perspective other than more

CUDA cores. Hence increasing the computing throughput is another key factor to maximize the

computation performance on all GPU platforms for AWP-ODC.

54	

	

	

	

4.4 Single GPU Implementation and Optimization

This section describes the AWP-ODC GPU based code implementation and performance

tuning strategies on a single NVIDIA GPU M2090, the Fermi Architecture with 2.0 computing

capability. The NVIDIA Fermi Architecture is very mature and popular in the current HPC

market (2012~2013). All optimization methods can be directly applied to the latest Kepler

architecture as well. The NVIDIA Tesla M2090 was released in May 2011, which has 512 CUDA

parallel processing cores, and delivers 1,331 GFLOPS in single-precision (SP) performance, with

6 GB GDDR5 memory size and 177 GB/sec memory bandwidth (ECC off) [18]. For this Fermi

Chipset, each streaming multiprocessor (SM) includes 32 CUDA cores, along with 16 load/store

units for memory operations to improve I/O performance, 4 special-function units (SFU) to

handle complex math operations and 64KB local SRAM split between hardware-managed L1

cache and software-managed shared memory. The local SRAM can be split according to two

different modes: 16KB/48KB or 48KB/16KB based on the users’ requirement. One of the

partitions, “shared memory”, is the fast memory that can be accessed by all 32 cores in the same

SM. Each Fermi Chipset also has a 768KB L2 cache shared by all SMs. In the L2 cache

subsystem, the atomic instructions (a set of read-modify-write memory operations) have been

improved to 5 to 20 times faster than the NVIDIA first generation GPU chipset [70].

The GPU codes discussed in this section are developed in C and CUDA languages, and

compiled by the CUDA compiler nvcc 4.0, with options: “-O4 –Xptxas –dlcm=ca

–maxrregcount=63 –use_fast_math –arch=sm_20”. Two extra layers are added to each direction

(called ghost cells) in the kernel stencil computation, which means the actual size for the 3D grid

in memory is (NX+4, NY+4, NZ+4) instead of (NX, NY, NZ). The value in the ghost cell regions

are based on the “equal to the nearest value” rule, which means the mesh point values in (-1:0,

NY, NZ) equals to the ones in (1, NY, NZ).

When the AWP-ODC GPU program starts, the CPU initializes and allocates all

twenty-one 3D variable arrays from input files or parameters, then copies all these 3D arrays into

the GPU device memory via the PCI 2 Express bus and executes the velocity and stress kernels as

shown in Figure 4.1. After the main loop computation is finished, result data are transferred back

from GPU to CPU main memory for output. Our optimization mechanisms will be focus on five

steps for performance tuning.

55	

	

	

	

4.4.1 Read-Only Memory Cache

Constant and texture memory in the GPU device have their own cache (Figure 4.4) and

both are only for read-only data. Constant memory in the NVIDIA GPU is hardware optimized

for broadcasting, especially when all threads from a same warp read the same constant memory

location. We can consider some optimization using the constant memory for its temporal locality.

However, the performance will drop dramatically if threads in the same warp access different

constant memory allocations because accesses are serialized. In general, input parameters for

each kernel will be put into the constant memory as well as constant values used in the kernel, i.e.

“if (a > 1.0)” where the 1.0 is put into the constant memory by the compiler. To make full use of

this temporal locality provided by the GPU constant memory, scalars and small coefficient

constants with fixed access pattern are always recommended for storage in constant memory.

Texture memory is optimized for spatial locality for both 2D and 3D textures, and the

addressing calculations can be performed by hardware outside of the kernel. Because of the 2D

and 3D locality, cache line fills can pull 2D and 3D blocks from memory instead of rows, perfect

for stencil computation and filtering. Unlike the constant memory, all threads from the same warp

can access different texture memory locations without performance penalty. Moreover, 8 bit and

16 bit data converting to floating point numbers between 0.0 and 1.0 is done for free (good for

interpolation), and boundary conditions can be dealt with by the texture piping for free as well.

Therefore, texture memory is great for large blocks of read-only data or arrays, where each data

will be accessed or shared by multiple threads.

The physical location for both constant and texture memory is the same as the global

memory, so it will not save any memory space if we put some data into the constant/texture

memory instead of the global memory. In addition, the coalesced data access pattern also must be

optimized for texture memory, otherwise high cache miss rate will kill the computation

performance due to the memory-bound application property.

As discussed in Section 4.1, six 3D variable arrays are constant coefficients and the

access pattern for each variable is 13-point stencil, so we put all of them into the texture memory

to take advantage of the texture cache for 3D spatial locality. All scalar constants (such as c1 and

c2) in Figure 4.1 are put into constant memory for temporal locality. This also helps us to save

register usage. All other 15 arrays have to be stored in global memory because their values are

being updated during iterations.

56	

	

	

	

Figure 4.6: Domain decomposition for GPU kernels: the 3D Grid (NX, NY, NZ) is decomposed
only in the y and z directions. Suppose each block has (tx, ty, 1) threads, then the kernel function
has (NZ/tx, NY/ty, 1) blocks and the chunk size for each block will be (NX, ny, nz).

4.4.2 Domain Decomposition

CUDA is an extension language of C/C++, so memory storage for 3D arrays will be fast

in the z direction and slow in the x direction. To obtain a better cache hit rate and allow all

threads in the same warp to access data along the fast z axis instead of the slow x axis, we

decompose the 3D Grid only in y and z directions. Each thread calculates the entire NX for a

given 2D (y, z) location as shown in Figure 4.6.

Table 4.2: Performance comparison between two implementations with different decomposition
geometry derived from a baseline code, which is based on direct global memory access without
any optimization. The benchmark runs for 800 timesteps for time-to-solution measurement. The
thread block for GPU Kernels is (64, 8, 1), so the value B_x = 64 and B_y=8 in the table.	

3D Grid Size
(NX x NY x NZ)

CUDA CODE for (x, y) 2D Decomposition

1. x = blockldx.x*B_x + threadldx.x + 2;

2. y = blockldy.y*B_y + threadldy.y + 2;

3. for (z = NZ+1; z>=2; --z)

4. Velocity and Stress Computation

CUDA CODE for (y, z) 2D Decomposition

1. z = blockldx.x*B_x + threadldx.x + 2;

2. y = blockldy.y*B_y + threadldy.y + 2;

3. for (x = NX+1; x>=2; --x)

4. Velocity and Stress Computation

128x128x128 0.242 sec/timestep 0.008 sec/timestep

128x128x256 0.490 sec/timestep 0.020 sec/timestep

128x256x256 0.977 sec/timestep 0.040 sec/timestep

256x256x256 1.956 sec/timestep 0.086 sec/timestep

57	

	

	

	

(a) Memory Access Pattern for (x, y) 2D Decomposition

(b) Memory Access Pattern for (y, z) 2D Decomposition

Figure 4.7: Memory access pattern for different 2D Decompositions: (a) is for (x, y) and (b) is
for (y, z), where both pseudo codes can be found in Table4.2 column 2 and 3 respectively. “T0”
and “T1” means thread 0 and thread 1, and all T0 - T3 belong to the same warp.

The basic unit for GPU computing is the warp and the warp size is 32 in Fermi, which

means all 32 threads in the same warp will execute the same instructions. If any thread in the

warp needs to wait for its data, then all other threads will be hanging there to wait for the data

fetch. Table 2 is the performance comparison between 2D decomposition in the (x, y) direction

and the (y, z) direction. The 2D decomposition in (x, y) means threads in the x direction

correspond to the 3D Grid x direction, and threads in the y direction correspond to the 3D Grid y

direction. While the 2D decomposition in (y, z) means threads in the x direction correspond to the

3D Grid z direction, and threads in the y direction correspond to the 3D Grid y direction. Figure

4.7 shows the memory access pattern for these two decompositions. The thread block is also a

three dimensional topology and fast in the x direction, but the memory storage is fast in z

direction. Therefore, data requested by the 32 threads in the same warp cannot be continuous and

the physical locations are far from each other if decomposed in (x, y) as shown in Figure 4.7a. It

will take 32 data fetches from global memory or L3 cache. But if decomposed in the (y, z)

directions, data will be close to each other (shown in Figure 4.7b), and single cache line fetch is

enough to acquire all data requested by the warp. This has far less memory access latency

compared to the (x, y) decomposition. Data in Table 4.2 shows that the code performance for

decomposition in the (y, z) direction is 25 times faster than in the (x, y) direction. For best

configuration, the number of threads in the x direction is considered to be a multiple of 32 for

better performance.

58	

	

	

	

4.4.3 Memory Padding

In GPU computing, memory alignment accessing is also very important for performance,

which can make best effective use of the modern DRAM architecture for memory load/store. In

general, an address in memory is 2^n bytes aligned, such as 64 bytes with the least significant 6

address bits equal to zero. Therefore, the ideal memory access should have each memory load

starting from an aligned address with its size equals to the aligned region.

As discussed earlier, each 3D domain includes two extra ghost cells in each direction

around it, which means mesh points outside of the 3D domain are needed in order to compute

mesh points in the boundary region. Here we use the mesh point (0, 0, 0) as an example: if this

mesh point is at an aligned memory address, then the mesh points (0, 0, -1) and (0, 0, -2) will be

outside of the aligned region. Therefore, we pad some additional data to the “-z” direction to

make sure these data in the ghost cell region are also within the aligned region.

Moreover, the domain size may not be a power of 2 in the z direction, depending on the

earthquake region and simulation model. To guarantee data access is also within the aligned

region when the computation starts at the next row, we have to pad some additional data at the

end of each row. This padding data is meaningless and will not be used during the computation,

but it helps to make sure most memory access starts from an aligned address.

CUDA provides some functions such as “cudaMallocPitch” and “cudaPitchedPtr” to help

ensure aligned memory access [71]. However, as shown in Figure 4.8a, instead of using these

library functions, we manually pad zeros onto the boundaries in the z axis of the 3D grid to align

memory for the inner region. The padding size plus NZ should also be a multiple of 32, and the

two layers of ghost cells are included in the padding.

Figure 4.8: (a) 3D array padding: the red cube represents the original 3D grid, the blue cube
represents the ghost cells with 2 extra planes in each direction. The yellow part is the padding
arrays, including two layers of ghost cells along the z axis. (b) is CUDA code for steps 2& 3, fast
z for better memory load efficiency after padding.

59	

	

	

	

4.4.4 Register Optimization

Private registers are the fastest on-chip GPU memory and take only one clock cycle for

data access or calculation. Neighboring data in y and z directions are close to each other in

aligned memory, therefore these data can be cached or pre-fetched into shared memory. For

neighboring data in our travel direction (x axis), three out of four values can be reused for

computation on the next iteration. We can define four private registers to store these values and

utilize pipeline copy between registers, reducing by 75% of the global memory access in the x

direction. This algorithm has been widely used in seismic 3D finite difference [72], and Figure

4.9 illustrates how it works for the velocity vx computation present in Figure 4.1.

Figure 4.9: Illustration of register optimization: pipeline register copy to reduce global memory
access for asymmetric 13-point stencil computation.

VX computation kernel in thread (ty, tz) is to describe the Register Optimization:

Four registers: Y (Yellow), R (Red), G (Green), B (Blue)

Global memory: vx[i, ty, tz], xx[i, ty, tz] - 3D array (NX+4)*(NY+4)*(NZ+2*pad)

On-chip memory: xy[i, j, k], xz[i, j, k] - One plane Loaded to on-chip L1/Shared memory

1. Preload R=xx[NX+2,ty,tz], G=xx[NX+1, ty, tz], B=xx[NX, ty, tz]

2. For (i=NX+1; i>=2; i--)

a. load xy, xz to fast on-chip memory

b. Y=R; R=G; G=B; - pipeline copy between registers, very fast

c. B = xx[i-2, ty tz]; - only access xx from global memory once in each iteration

d. VX Computation via Y, R, G, B, xy & xz

3. End for loop and return vx

60	

	

	

	

Figure 4.10: Memory access pattern for CUDA warp (size = 32) based on the register
optimization algorithm for velocity vx computation, where xy and xz data will be put into the
on-chip fast memory and shared by all threads, and xx are stored in private registers.

Velocity vx computation, requires 12 point data access including 4 points from stress xx

in the x direction, 4 points from stress xy in the y direction and 4 points from stress xz in the z

direction. Based on our decomposition, each CUDA thread will be mapped in y & z directions

and compute all the NX data in the x direction. Hence each CUDA warp will be aligned in the z

direction and compute the YZ plane. As shown in Figure 4.10, data in the YZ plane are shared by

threads inside the same warp, e.g. both thread 13 and thread 14 access xz(i, j, 12), xz(i, j, 13) and

xz(i, j, 14), which means 75% of the data are shared between these two threads. Therefore, for

each fixed iteration i, we can pre-load stress xy and xz data from the current YZ plane into the

on-chip fast memory (shared memory or L1 cache), then all threads in the same warp or block can

benefit from the low latency data fetching.

For data in the x direction, each thread accesses its own stress xx and there is no data

sharing between threads. For example, the thread (j, k) needs stress xx (i, j, k), (i-1, j, k), (i+1, j, k)

and (i-2, j, k), while the thread (j, k-1) needs stress xx (i, j, k-1), (i-1, j, k-1), (i+1, j, k-1) and (i-2,

j, k-1), so there is no need to pre-fetch stress xx data into the on-chip fast memory because of the

independence. However, there is data sharing for stress xx data between iterations inside the

individual thread based on our implementation (Figure 4.9). For each fixed iteration i, stress data

xx (i, j, k), (i-1, j, k) and (i+1, j, k) can be re-utilized in the next iteration i+1, while these stress

data becomes stress xx (i-1, j, k), (i-2, j, k) and (i, j, k) respectively in the next iteration. Therefore,

we do not need to fetch four stress xx data from global memory in each iteration. Instead, we do

the pipelining copy between registers first, and then fetch stress xx(i-2, j, k) from the global

memory. Register optimization reduced global memory access by three times and improved the

data locality effectively.

61	

	

	

	

4.4.5 L1 Cache vs. Shared Memory

GPU Fermi/Kepler provides 64KB on-chip memory and two configuration modes to

programmers: 48KB L1 cache and 16KB shared memory for “preferL1”, or 16KB L1 and 48KB

shared memory for “preferShared”. We chose preferL1 over preferShared in our AWP-ODC

CUDA implementation because the two layer ghost cells are the bottleneck for high efficiency

when fetching data into shared memory. Suppose each GPU block is to compute a plane of size

16x32, the grid size to be fetched into shared memory should be 20x36 due to the 2 layers of

ghost cells. Since each block only has 512 threads, some extra data loading operations are

required to fetch data in ghost cells. Generally, at least three extra data loads are required to fill

the data in ghost cell regions. Hence a load balance issue might occur since not all threads in the

block are participating in ghost cell loading, and threads synchronization has to be called before

the following computation, which would bring some extra overhead as well. For L1 cache mode,

the hardware will take care of the data fetching automatically. As long as the data access pattern

in the code is designed to be coalesced (Section 4.4.2 to 4.4.4), we can easily to achieve very high

L1 cache hit rate for good data locality.

We also implemented a shared memory version based on Section 4.4.4, which is to

pre-fetch one (y, z) plane to shared memory instead of L1 cache in Figure 4.9, and choose

preferShared over preferL1 for on-chip memory configuration. However, the time to solution for

benchmark size 128x128x960 between the shared memory version and the code implemented in

step 4 are almost the same (0.037 sec/per timestep vs. 0.038 sec/per timestep), which means

shared memory provides little performance benefit after the first four optimization steps in the

AWP-ODC application. Shimokawabe [2] also chose preferL1 over preferShared for a similar

stencil-based phase-field simulation for dendritic solidification on Tesla M2050, which is also a

3D stencil computation based on NVIDIA Fermi chipset.

Figure 4.11 shows the improvement in computing FLOPs achieved by these

optimizations. The computing performance of our code for size 128x128x960 on Tesla M2090 is

143.8GFLOPs for single precision. We consider this outstanding performance for a

memory-bound stencil computation. We compare this performance with the Schafer [73] in

which 152.2GFLOPs was achieved with a classical 3D Jacobi Solver for single precision. While

Schafer’s test was on a slower Fermi device (C2050), our code is more memory intensive, which

involves nine 13-point stencil computations and twenty-one 3D variables.

62	

	

	

	

Figure 4.11: Increment of computing GFLOPs achieved by optimization steps for various 3D
grid sizes tested on NVIDIA M2090. The baseline version is based on pure global memory
implementation without any optimization, and other versions are optimized step by step.

4.5 Experiments and Performance Comparison

The new AWP-ODC CUDA implementation has been carefully validated for correctness.

We verified the AWP-ODC CUDA code against the original AWP-ODC Fortran MPI code for

production simulations using two different cases. The first one is based on a point source

propagated across the whole 3D mesh (128x128x128) with homogeneous mesh data. Figure

4.12(a) is the first 500 timesteps of the log value of the velocity vx recorded at the source point

between two codes, showing that the results are almost identical except negligible roundoff

differences caused by different programming languages and compilers. The second case uses

another point source with a real 3D mesh (non-homogeneous 256x256x256). We generated a 30

second earthquake simulation movie for validation to compare velocity outputs in three

dimension. Figure 4.12(b) is a snapshot of the validation movie at timestep = 1000. The third

column in the image is the percentage difference between outputs generated by the CPU and GPU

codes ((GPU – CPU)/CPU)*100%. The third column is almost blank, which shows the small

difference can be neglected and demonstrates the correctness of our AWP-ODC CUDA code.

63	

	

	

	

(a)

(b)

Figure 4.12: (a) The value of log (vx) of the first 500 timesteps, generated by AWP-ODC CUDA
and AWP-ODC MPI Fortran, is compared for validation. The 3D grid size for the earthquake
simulation is 128x128x128, and the single source point has 91 timestep inputs with homogeneous
mesh. (b) The snapshot for a real earthquake simulation movie with non-homogeneous mesh.
Errors are shown is column three, which are small enough to be neglected.

64	

	

	

	

To compare the performance between the AWP-ODC CUDA code and the original fully

optimized AWP-ODC Fortran MPI code (2010 Gordon Bell Finalist [5]), we chose one

multi-core CPU cluster and four NVIDIA GPU devices. The multi-core CPU cluster is the

KRAKEN machine located at the National Institute for Computational Sciences (NICS) [49]. The

other four GPU devices are NVIDIA Tesla C1060, Tesla C2050, Tesla M2090 and Tesla K20.

C1060 is the NVIDIA first generation GPU, while C2050 and M2090 belongs to GPU Fermi, and

Tesla K20 is Kepler based architecture. Table 4.3 is a summary of the hardware characteristics of

all testbed devices.

Table 4.3: Hardware characteristics of all testbeds: one multi-core CPU cluster and four GPU
devices.	

CPU/GPU Concurrency Frequency
L1 Cache/Shared

Memory

Memory

Size

Memory

Bandwidth
AMD Istanbul
on KRAKEN 6 cores 2.6 GHz 64 KB L1 1.33

GB/core 25.6 GB/s

NVIDIA
C1060 240 cores 1.3 GHz 16 KB

Shared Memory
4 GB

in total 102.4 GB/s

NVIDIA
C2050 448 cores 1.15 GHz 64 KB

L1/Shared Memory
3 GB

in total 144 GB/s

NVIDIA
M2090 512 cores 1.3 GHz 64 KB

L1/Shared Memory
6 GB

in total 177 GB/s

NVIDIA
Tesla K20 2688 cores 732 MHz 64 KB

L1/Shared Memory
6 GB

in total 250 GB/s

Figure 4.13 is the performance comparsion between AWP-ODC CUDA code running on

the four GPU devices and AWP-ODC Fortran MPI code running on the AMD CPU based

multi-core CPU clusters. All benchmark experiments run for 800 timesteps and the measurement

is focused on the average time per timestep. For GPU devices, The NVDIA Tesla C1060 is 1.3

capable and the compiler is NVCC 4.0 with options “-O4 -Xptxas -dlcm=ca -maxrregcount=63

-use_fast_math -arch=sm_13”. The AWP-ODC CUDA code for Tesla C1060 is a little different

from the one implemented in Section 4, and we used shared memory for Step 5 because there is

no L1 cache in Tesla C1060. The Tesla C2050 and M2090 are 2.0 capable using the same NVCC

4.0 compiler and the compiler options except “-arch=sm_20”. The Tesla K20 is updated to 3.5

compute capability and compiled by the NVCC 5.0 compiler with the same compiler flags except

“-arch=sm_35”. For the multi-core cluster, we only use a single socket to run the AWP-ODC

Fortran MPI code, which means six MPI threads on a single socket of the KRAKEN machine.

65	

	

	

	

Figure 4.13: Time-to-solution speedup for different GPU generations/architectures. The running
time baseline is the AWP-ODC-CPU Fortran/MPI code described in section 4.2 running on AMD
Istanbul 6-core CPU at 2.6 GHz with 6 MPI threads for 3D grid size 224x224x1024.

In Figure 4.13, for the same AWP-ODC CUDA code, the average running time per

timestep on M2090 is almost 30% less than on C2050, this is because M2090 has two more SMs

and higher clock speed. The shared-memory based code running on Tesla C1060 is 4.5x slower

than running on M2090, due to the fewer CUDA cores, lack of L1 cache, and lower memory

bandwidth. Note that the CUDA code running on Tesla K20 is the fastest, almost 20x faster than

the MPI code running on AMD Istanbul 2.6 GHz CPU on KRAKEN with six MPI threads.

Theoretically, K20 has more than 3.5 TFLOPs peak performance in single precision

while the M2090 has around 1.3 TFLOPs, so K20 should be 3 times faster than M2090 based on

the computing capability comparison. However, our experiments show that the performance on

Tesla K20 is only 35% faster than on Tesla M2090 instead of 3x faster. This proves again that the

AWP-ODC application is highly memory-bound. The computation performance is partially

related with the computing power of the device, but mainly depends on the memory system and

data locality. Here are two main reasons for the small performance gain between the Tesla K20

and M2090. First reason is that the global memory size for both K20 and M2090 is the same,

which are both 6GB. So even though K20 has more SMXs than M2090, there is not sufficient

data for the SMXs to compute and fully utilize their computing efficiency. The other reason is the

cache system is not as much improved as the computation. Although the L1 cache/shared

memory per SMX has increased 33% to 64KB, and the L2 cache per SMX has also doubled in

size (1.5MB), the cache system is shared across the whole SMX. This means 192 CUDA cores in

each SMX sharing these new improved L1 and L2 caches in K20, compared to the 32 CUDA

cores in each SM on M2090, which are sharing 48KB L1/Shared memory and 768KB L2 cache.

Therefore, the L1 and L2 cache size per CUDA core is reduced in K20 compared to M2090, and

this might also cause the smaller performance gain.

66	

	

	

	

4.6 Mint Translator and Optimizer

During my single GPU optimization work, I was also working with Dr. Didem Unat and

Prof. Scott B. Baden from the Department of Computer Science and Engineering at the

University of California San Diego on their Mint project. Here I will breifly introduce the Mint

translator and optimizer in this section. Details can be found in our published paper [74].

Mint is a tool developed by Dr. Didem Unat to generate the CUDA code with high

computing performance for 3D stencil computation code written in C. It contains two parts: a

source to source translator and an optimizer. The source to source translator helps translate the

annotated C source code into the CUDA code and the optimizer implements all different levels of

optimization for the generated CUDA code. Users of the Mint are not required to be

knowledgeable of the GPU architecture or programming, and the use of the Mint is quite

straightforward as well. All the work required is just inserting directives between the code regions

to be run on the GPU similar to OpenMP, and also putting clear information on the directives,

such as source data, destination data, data transfer directions, etc. Then the Mint will do the rest

of the work to generate a well optimized CUDA code for direct use without any modification.

The performance of the Mint generated code is not as good as manually optimized code, since

hand-written code can do more fine tuning. But for general purpose use without aggressive

performance requirements, the performance of the Mint code is good enough, and significant

effort and time can be saved on performance tuning and optimization.

The AWP-ODC finite difference code has been selected as one of the real-world codes

for Mint study. It turns out the Mint achieved 82.6% and 78.6% of the performance of the

hand-written and optimized CUDA code on the NVIDIA Tesla C2050 and C1060 respectively

[74]. There are some differences between the Mint generated code and the hand-written code

causing the performance gap. First, the hand-written code uses texture memory and constant

memory as we discussed in section 4.4.1, but Mint does not support either of them. Secondly, the

hand-written code uses far fewer registers than the Mint code when implementing the same

optimization strategy. This is because a hand coder can reorder instructions and reuse the

registers, but the Mint only relies on registers allocated by the NVIDIA compiler NVCC. The last

difference is the memory padding method. The Mint code always uses the “cudaMalloc3D” and

“cudaPitchedPtr” to pad the 3D array instead of our manually padding method in Section 4.4.3.

67	

	

	

	

4.7 Conclusions and Future Work

We presented implementation and hands-on optimization tuning of AWP-ODC on a

single GPU device. The performance of this memory intensive stencil computation code has been

significantly improved through effective utilization of GPU on-chip memory and data locality.

The single NVIDIA Tesla M2090 GPU benchmark demonstrates sustained performance of 143.8

GFLOPS in single precision for 128x128x960 mesh size, at approximately 10% of the theoretical

peak system performance. To our knowledge this is the highest single-GPU performance

measured from a seismic application.

Due to the limitation of the algorithm, the AWP-ODC GPU code cannot fully utilize the

new features provided by the NVIDIA Kepler architecture, such as the dynamic parallelism and

kernel launching kernel. Based on the seismic research requirement, we will reconstruct the

algorithm to compute more coarse-grain information in deep regions and more fine-grained in

surface areas, instead of a homogenous grid for the whole 3D region. This strategy will not only

reduce the memory-intensive load and provide more useful information to the seismologist, but

also can let us make full use of these new GPU features to accelerate the code and reduce the

time-to-solution. Our goal is always to adopt the latest computing devices or features to maximize

the AWP-ODC computation performance incorporated for future petascale or exascale

earthquake simulations.

Acknowledgements

Section 4.1 and 4.3-4.5, in part, are a reprint of the material as it appears in the 2012

international conference on Computational Science with title “Hands-on Performance Tuning of

3D Finite Difference Earthquake Simulation on GPU Fermi Chipset” by Jun Zhou, Didem Unat,

Dong Ju Choi, Clark C. Guest and Yifeng Cui. Section 4.2, is based on the material as it partly

appears in proceedings of the 2010 ACM/IEEE conference on Supercomputing with title

“Scalable Earthquake Simulation on Petascale Supercomputers” by Yifeng Cui, Kim B. Olsen,

Thomas H. Jordan, Kwangyoon Lee, Jun Zhou, Patrick Small, Daniel Roten, Geoffrey Ely,

Dhabaleswar K. Panda, Amit Chourasia, John Levesque, Steven M. Day and Philip Maechling.

The dissertation author was one of the primary investigators and author of these two papers.

	

68

Chapter 5

Multi-GPU Implementation

This chapter introduces our communication model for AWP-ODC multi-GPU

implementation on heterogeneous supercomputers. The communication model has two primary

objectives: 1) to reduce the data communication frequency between CPU and GPU inside the

computing nodes; and 2) to maximize the overlap time between computation and communication.

To better explain our algorithms and strategies, first we present some analysis on the

AWP-ODC-CPU communication model running on CPU clusters and discuss why the CPU

communication model cannot be used for hybrid CPU-GPU clusters. Then we present details of

our communication model and illustrate the purpose of the design. Lastly we provide experiment

results running on OLCF Titan, NICS Keeneland and NCSA Blue Waters with excellent linear

scalability up to the full machine scale.

This chapter is focused on the data communication solution between nodes on

heterogeneous supercomputers. The computation utilizes the same fully optimized GPU code

described in Chapter 4. The faster GPU computation code presents more challenges to the

communication, since it leaves less computation time for overlapping. Moreover, the

communication model discussed in this chapter is not restricted to the AWP-ODC application, but

can be extended to any other large-scale 3D stencil computations running on CPU-GPU clusters.

5.1 AWP-ODC-CPU Communication Model

The AWP-ODC-CPU communication model includes two parts: 3D Domain

Decomposition and MPI asynchronous communication. For the 3D domain decomposition on

CPU clusters, AWP-ODC partitions the simulation volume into smaller sub-domains where the

total number of sub-domains matches the number of processors used in the simulation. The whole

process is shown in Figure 5.1. Because of the characteristics of the 13-point stencil, the outer

surface of each sub-domain requires an extra two-cell padding to correctly propagate waves, and

these are called ghost cells.

69	

	

	

	

Figure 5.1: shows the 3D domain decomposition process in AWP-ODC-CPU code: each
sub-domain has extra 2 ghost cells in each direction with 12 in total. Most sub-domains have
to communicate with 6 other sub-domains to exchange data in ghost cell areas during the
computation iterations.

The abstract processing of the AWP-ODC-CPU communication model is outlined in

Figure 5.2. First, the three velocity components are calculated using the six stress components

for the interior and the boundary of the 3D volume. Then velocity values in the boundary

volume are exchanged with neighboring sub-domains in six directions including north, south,

west, east, up and down. The next six stress components are calculated and communicated in

the same manner. All sub-domains in AWP-ODC are 3D grids, thus data along

non-contiguous directions must be accumulated in the source sub-domain before being sent

out, and disseminated in the destination sub-domain after it is received. These intermediate

70	

	

	

	

data copying stages cannot be avoided, even though we are using the “MPI_SUBARRAY”

data type to send data out directly without any memory operation code, these data

accumulation and dissemination processes are still implemented in the backend.

Figure 5.2: shows detailed MPI asynchronous communication process in AWP-ODC-CPU:
that significantly reduced the latency caused by the fine-grained MPI Send/Recv order [5].

AWP-­‐ODC-­‐CPU	
 Main	
 Loop:	

	

Do	
 T=	
 timestep	
 0	
 to	
 timestep	
 N:	

	
 Receiver	
 Buffer	
 Allocation	
 and	
 Initialization	
 (vx,	
 vy,	
 vz,	
 xx,	
 yy,	
 zz,	
 xy,	
 xz,	
 yz)	

Compute	
 velocities	
 (vx,	
 vy,	
 vz)	
 using	
 stress	
 (xx,	
 yy,	
 zz,	
 xy,	
 yz,	
 xz)	

Sender	
 sends	
 out	
 all	
 velocity	
 data	
 for	
 updating	
 ghost	
 cells	
 in	
 asynchronous	
 way	

Wait	
 all	
 communication	
 done	
 and	
 update	
 ghost	
 cells	
 for	
 velocity	
 (vx,	
 vy,	
 vz)	

Compute	
 stress	
 (xx,	
 yy,	
 zz,	
 xy,	
 xz,	
 yz)	
 based	
 on	
 velocities	
 (vx,	
 vy,	
 vz)	
 	

Sender	
 sends	
 out	
 all	
 stress	
 data	
 for	
 updating	
 ghost	
 cells	
 in	
 asynchronous	
 way	

Wait	
 all	
 communication	
 done	
 and	
 update	
 ghost	
 cells	
 for	
 stress	
 (xx,	
 yy,	
 zz,	
 xy,	
 xz,	
 yz)	

END	
 DO	

	

Receiver:	
 (vx	
 as	
 an	
 example)	

MPI_IRecv(VX_Recv_Buffer,	
 North_rank)	
 	
 //Receive	
 data	
 from	
 north	
 sub-­‐domain	

MPI_IRecv(VX_Recv_Buffer,	
 South_rank)	

MPI_IRecv(VX_Recv_Buffer,	
 West_rank)	

MPI_IRecv(VX_Recv_Buffer,	
 East_rank)	

MPI_IRecv(VX_Recv_Buffer,	
 Up_rank)	

MPI_IRecv(VX_Recv_Buffer,	
 Down_rank)	

	

Sender:	
 (vx	
 as	
 an	
 example)	

MPI_ISend(VX_Send_Buffer,	
 North_rank)	
 	
 //Send	
 data	
 to	
 north	
 sub-­‐domain	

MPI_ISend(VX_Send_Buffer,	
 South_rank)	

MPI_ISend(VX_Send_Buffer,	
 West_rank)	

MPI_ISend(VX_Send_Buffer,	
 East_rank)	

MPI_ISend(VX_Send_Buffer,	
 Up_rank)	

MPI_ISend(VX_Send_Buffer,	
 Down_rank)	

	

71	

	

	

	

Most of the communication in AWP-ODC is point-to-point between nearest

neighbors, making the performance of AWP-ODC heavily dependent on system interconnect

bandwidth. Generally, communication latency between cores in CPU clusters is highly

dependent on their physical interconnect distance and the node topology in NUMA systems.

Therefore, a sub-domain and its surrounding neighbors that need to communicate with it for

data exchange, are grouped and allocated as closely together as possible on the physical

machine, ideally inside the same computing node. In addition, to reduce the communication

overhead, the AWP-ODC-CPU asynchronous communication model is designed for the

CPU-based supercomputers, which allows out-of-order MPI message arrival and unique tags

maintain data integrity, resulting in high balanced and low latency communication.

Sreeram et al. from the Department of Computer Science and Engineering at Ohio

State University (OSU) improved the MPI communication used in our AWP-ODC model

running on homogenous CPU Supercomputers. Based on their research on the Ranger

machine located at Texas Advanced Computing Center (TACC) described in Figure 5.3, the

computation including both velocity and stress takes up around 63% of the running time, and

the MPI communication consumes the other 37% [75]. Because of the different hardware

configuration involved, the percentage numbers may vary though not significant. We will use

the 63% for computation and 37% for communication in our following analysis.

Figure 5.3: Analysis of AWP-ODC-CPU running on homogenous CPU supercomputers:
percentages of time spent on computation and communication in the main loop [75].

72	

	

	

	

Figure 5.4: Data communication latency model on heterogeneous supercomputers.

As shown in Figure 5.4, the data communication latency is more complex on the

hybrid CPU-GPU cluster, including four types of data communication: CPU to CPU

intra-node communication (RED: only via shared memory, very fast), GPU to GPU

intra-node communication (GREEN: PCI-memory-PCI, slow), CPU to CPU inter-node

communication (BLUE: memory-network-memory, slow), and GPU to GPU inter-node

communication (ORANGE: PCI-memory-network-memory-PCI, very slow). To quantify the

latency time, our definitions list is in Table 5.1:

Table 5.1: Definition List for Different Computation/Communication Patterns.

Mode Computation/Communication Patterns Symbol

Computation
Full Computation running on CPU TC_CC

Full Computation running on GPU TC_GG

Intra-Node

Communication

CPU to CPU Memory only TIA_CC

GPU to GPU PCI->Memory->PCI TIA_GG

Inter-Node

Communication

CPU to CPU Memory->Network->Memory TIE_CC

GPU to GPU PCI->Memory->Network->Memory->PCI TIE_GG

For homogenous CPU supercomputers, the computation time is “TC_CC” and the

communication latency is dominated by “TIE_CC”, so the running time for CPU clusters can

be represented as “TC_CC + TIE_CC”. For heterogeneous hybrid CPU-GPU supercomputers,

73	

	

	

	

the computation time is “TC_GG” and the communication latency is depending on the

longest one “TIE_GG”. Suppose we are using the same AWP-ODC-CPU communication

model for our multiple GPU implementation, then the running time for multi-GPUs can be

estimated as “TC_GG + TIE_GG”. Based on our results presented in Chapter 4, “TC_GG” is

almost 15 times faster than the AMD Istanbul 2.6 GHz CPU (6 cores) on NICS Kraken

machine. Thus the percentage of the computation will decrease proportionally. However, the

communication time “TIE_GG” consumes significant time than “TIE_CC” as the exchanged

data needs to pass though the slow PCI Express 2.0 twice as well as the high speed network.

Taking the NICS Kraken supercomputer as an example, the high speed network is a Cray

SeaStar 2+ router with bandwidth of 45.6 GB/sec, while PCI Express 2.0 16x attached to the

NVIDIA M2090 has only a throughput of 8 GB/sec, which is 5.5 time slower than the

network. Because of the two data passes via PCI Express, “TIE_GG” would be 10 times

longer than “TIE_CC”.

Assuming to run the same M8 described in the Chapter 3 on CPU-GPU clusters, and

considering the same parameter setting (125x125x125 cube per GPU) and communication

model, the estimated percentage of running time for computation and communication would

result in a heavy imbalance as shown in Figure 5.5. Note that the dramatic performance

degradation is due to the bottleneck of the “PCI Express 2.0” bus connection between CPU

and GPU.

Figure 5.5: Estimated percentages of running time for computation and communication if the
AWP-ODC-CPU communication model runs on CPU-GPU clusters.

74	

	

	

	

5.2 AWP-ODC-GPU Communication Model

To better illustrate the AWP-ODC-GPU communication model, we present the four

primary parts of our algorithm in detail: two-layer 3D Domain decomposition,

communication reduction, in-order MPI communication and effective computation and

communication overlapping. This communication model can be adapted to any kind of 3D

stencil computation on CPU-GPU clusters. Because of the limitation in AWP-ODC

numerical model, our communication reduction can only be reduced once, while other

applications with the standard 3D stencil computation could benefit even more, as will be

explained in the following sections.

5.2.1 Two-layer 3D Domain Decomposition

As discussed in Section 5.1, the 3D domain is partitioned into many sub-domains and

each sub-domain is mapped into a single CPU core for computation. For decomposition on

heterogeneous CPU-GPU supercomputer clusters, the first step is the same and each

sub-domain is prepared for single GPU computation. The second step is the sub-domain data

decomposition inside a GPU for multi-streaming processors. Thus data partitioning must be

done twice, and the whole decomposition process is called as “Two-layer 3D Domain

Decomposition”.

We are using exactly the same optimized GPU code described in Chapter 4 for the

multi-GPU implementation. The second “sub-domain data decomposition inside GPU” is

identical to what we presented in Section 4.2, which is 2D data decomposition in the Y and Z

directions mapped onto GPU SMs. However, for the first step “3D domain decomposition for

GPUs”, we chose 2D decomposition in X and Y directions instead of 3D in all directions. As

shown in Figure 5.6, if the 3D domain is (NX, NY, NZ) and the decomposition topology is

(PX, PY, 1), then the sub-domain for each GPU will be (nx, ny, NZ), where the “nx” equals

NX/PY and the “ny” equals “NY/PY”. In this case, the MPI commutation has been reduced

from six directions to four (south, north, west and east), and each GPU is taking the entire Z

direction computation. Moreover, larger NZ can make GPU computing more efficient

because of the fast Z direction in memory. In summary, the two-layer 3D Domain

Decomposition is X/Y partition for GPUs and Y/Z partition for GPU SMs.

75	

	

	

	

Figure 5.6: Process of Two-layer 3D Domain Decomposition: first step X/Y decomposition
for GPUs and second step Y/Z decomposition for GPU SMs.

5.2.2 Communication Reduction

As discussed in Section 5.1, the longest latency communication for the multi-GPU

implementation is GPU to GPU between different computing nodes, including passing

through the high speed interconnect and the PCI Express 2.0 bus twice. Based on the

decomposition described in Figure 5.6 and the original communication algorithm presented in

Section 5.1, the MPI message size per variable per GPU becomes “2*ny*NZ” in east and

west directions and “2*nx*NZ” in north and south directions. The minimum required GPU to

GPU communication frequency is at least eight times per iteration, with four times for

velocity data swaps and another four times for stress data swaps. To reduce the

communication frequency, our idea is to utilize extra computing workload to replace the

communication.

76	

	

	

	

Figure 5.7: Comparison before and after showing communication reduction per iteration.

77	

	

	

	

Since we only have MPI communication in the X/Y directions, and the NZ direction

is decomposed inside the GPU, MPI communication only takes place between sub-domains

(1: nx, 1: ny, 1: NZ), so we use the 2D X/Y plane instead of 3D sub-domain to show the

communication reduction process in figure 5.7.

Because of the nature of 13 point stencil computation, a 2 layer ghost cell region is

always required to compute the whole sub-domain. This means for the sub-domain (1: nx, 1:

ny, 1: NZ) output, we need (-1: nx+2, -1: ny+2, 1: NZ) input to generate the correct answer.

Thus in AWP-ODC, the velocity sub-domain (1: nx, 1: ny, 1: NZ) computation requires stress

input (-1: nx+2, -1: ny+2, 1: NZ) and the stress sub-domain (1: nx, 1: ny, 1: NZ) computation

also requires velocity input (-1: nx+2, -1: ny+2, 1: NZ) for each iteration. So the original

communication plan requires GPU to GPU communication eight times, where four times are

for the velocity data swap for the 2 layer ghost cell region (west, east, north and south), and

the other four are for the stress data.

Here is the enhanced communication reduction method: for each iteration, first

extend an extra 2 layers of ghost cells for velocity (-3: nx+4, -3: ny+4, 1: NZ), though the

computation region is still (1: nx, 1: ny, 1: NZ). This means the valid data region is still (1: nx,

1: ny, 1: NZ) after computation. However, when we do the GPU to GPU communication for

velocity ghost cells, the data swapping region becomes 4 layers instead of 2, so the valid data

region for velocity is (-3: nx+4, -3: ny+4, 1: NZ) after communication. Because of the new

velocity valid data region, we have sufficient velocity input information to compute the stress

region (-1: nx+2, -1: ny+2, 1: NZ), which will become the stress input to compute the

velocity region (1: nx, 1: ny, 1: NZ) in the next iteration. Thus, only velocity data swapping is

required and the total number of GPU to GPU communication has been reduced from 8 to 4

for each iteration. Since velocity has 3 components but the stress has 6, the GPU to GPU

message size is reduced by a factor of 1/3 because of this reduction method (Table 5.2).

Table 5.2: MPI Message pattern comparison between before and after communication
reduction per iteration.

Communication
Velocity Stress

Frequency Size Frequency Size

Before Reduction 4 6*(nx+ny)*NZ 4 12*(nx+ny)*NZ

After Reduction 4 12*(nx+ny+4)*NZ No Communications

78	

	

	

	

This communication reduction not only decreases the GPU to GPU data

communication time because of the smaller message size, but also reduces the overhead time

caused by data copying between GPU and CPU or MPI initialization. Generally speaking, the

time cost for two MPI communications with 2MB data each is longer than one single MPI

communication time with 4MB data, which is also the same for data copying between GPU

and CPU. Suppose the latency cost is t1 for MPI initialization and t2 for data copying

between GPU and CPU, then our communication reduction help save additional “4*t1 + 8*t2”

overhead time (4 times MPI communication, plus 4 times data copying from GPU to CPU

and another 4 times from CPU back to GPU). Moreover, because of no need for stress data

communication, there is more opportunity for overlapping between communication and

computation, one of the most important multi-GPU tuning approaches developed.

5.2.3 In-Order MPI Communication

Before dipping into the overlapping algorithm, we must decide the communication

mode, including the MPI messaging direction, order and size. For the original communication

method before the reduction, there is no message overlap between data in the west/east

directions and the north/south directions. Any order is allowed, such as first west/east and

then north/south, or first north/south and then west/east (shown in Figure 5.8). However, for

the communication reduction scheme introduced, all four corner’s information for the extra 2

layers of ghost cell computation is required, that means, another four MPI data swaps are

needed, which will bring new overhead and degrade the performance. Alternatively, in-order

communication still keep the original four MPI messages. As shown in Figure 5.8 for

in-order communication, we first send data in the yellow regions (1: 4, 1: ny, 1: NZ) and

(nx-3, nx, 1: ny, 1: NZ) to fill the data in red ghost cell regions (-3: 0, 1: ny, 1: NZ) and (nx+1:

nx+4, 1: ny, 1: NZ). After the communication is done in the west/east directions, the data in

(-3: nx+4, 1: 4, 1: NZ) and (-3: nx+4, ny-3 : ny, 1: NZ) is valid and we can send these data to

fill the ghost cell region (-3: nx+4, -3: 0, 1: NZ) and (-3: nx+4, ny+1 : ny + 4, 1: NZ) in the

north/south directions. In this case, we keep four MPI messages per iteration, but cover the

four corners’ information. After the in-order communication, the velocity data in the whole

sub-domain (-3: nx+4, -3: ny+4, 1: NZ), including all extended regions and ghost cells is

valid as the stress computation input.

79	

	

	

	

Figure 5.8: Comparison between original communication plan and in-order communication.

80	

	

	

	

5.2.4 Computation/Communication Overlapping

Communication reduction has helped reduce the frequency of data communication

and also increased the computing time, while the in-order communication guarantees the

accuracy of the data for computation. Next, the crucial point is how to design a good

computing/communication schedule to hide the communication effectively.

Figure 5.9: Definitions of some symbols for the overlapping algorithm presentation.

Table 5.3: Description of each symbol shown in Figure 5.9 and its corresponding region.

Symbols Description Region

Velocity 3D domain with 4 layer ghost cells (-3: nxt+4, -3: nyt+4, 1: NZ)

V1 Left 4 layers in non-ghost cell region (1: 4, -3: nyt+4, 1: NZ)

V2 Right 4 layers in non-ghost cell region (nxt-3: nxt, -3: nyt+4, 1: NZ)

V3 Top 4 layers in non-ghost cells region (5: nxt-4, 1: 4, 1: NZ)

V4 Bottom 4 layers in non-ghost cells region (5: nxt-4, nyt-3: nyt, 1: NZ)

V5 The rest non-ghost cell region (5: nxt-4, 5: nyt-4, 1: NZ)

Stress 3D domain with 4 layer ghost cells (-3: nxt+4, -3: nyt+4, 1: NZ)

S1 Left 4 layers including 2 ghost cells (-2: 2, -3: nyt+4, 1: NZ)

S2 Right 4 layers including 2 ghost cells (nxt-1: nxt+2, -3: nyt+4, 1: NZ)

S3 Top 4 layers including 2 ghost cells (3: nxt-2, -2: 2, 1: NZ)

S4 Bottom 4 layers including 2 ghost cells (3: nxt-2, nyt-1: nyt+2, 1: NZ)

S5 1/3 of the rest stress region (3: nxt/3-1, 3: nyt-2, 1: NZ)

S6 1/3 of the rest stress region (nxt/3: nxt*2/3-1, 3: nyt-2, 1: NZ)

S7 1/3 of the rest stress region (nxt*2/3: nxt-2, 3: nyt-2, 1: NZ)

81	

	

	

	

In this new data communication model, only velocity requires data swapping in its

four layer ghost cell regions. Our plan is to use the total velocity and stress computation time

to overlap all the overhead time caused by MPI communication and data transfer between

CPU and GPU via PCI Express 2.0.

Figure 5.10: Effective computation and communication overlapping algorithm for
AWP-ODC GPU implementation.

Figure 5.10 presents the flow of our effective computation and communication

overlapping algorithm. As illustrated in Figure 5.11, the GPU starts to compute the velocity

boundary along the x-axis, V1 and V2, in serial, and copies the data to the CPU immediately

by using CUDA asynchronous memory copy when the GPU computation is done. The CPU

will send the velocity data V1 and V2 out using the asynchronous “MPI_Isend” when the V1

and V2 data copy is done. During the velocity data V1 and V2 are being processed, the GPU

computes the velocity boundary along the y-axis, V3 and V4, simultaneously and also

initiates similar asynchronous data copying and MPI data communication after the GPU

computation is done. After all velocity boundary computation is completed, the GPU will

focus on the remaining inside velocity region V5 computation. Thus the velocity boundary

data processing time, which includes data copying time from GPU to CPU and MPI

communication time, can be partially overlapped by the velocity computation.

AWP-­‐ODC-­‐GPU	
 Main	
 Loop:	

	

Do	
 T=	
 timestep	
 0	
 to	
 timestep	
 N:	

	
 Pre-­‐Post	
 MPI_IRecv	
 waiting	
 for	
 v1,	
 v2,	
 v3	
 and	
 v4	
 of	
 (vx,	
 vy,	
 vz).	

	
 Compute	
 v1	
 for	
 (vx,	
 vy,	
 vz)	
 in	
 GPU	

	
 Compute	
 v2	
 for	
 (vx,	
 vy,	
 vz)	
 in	
 GPU	
 and	
 initiate	
 to	
 transfer	
 v1	
 from	
 GPU	
 to	
 CPU	

	
 Compute	
 v3	
 for	
 (vx,	
 vy,	
 vz)	
 in	
 GPU	
 and	
 initiate	
 to	
 transfer	
 v2	
 from	
 GPU	
 to	
 CPU	

	
 Compute	
 v4	
 for	
 (vx,	
 vy,	
 vz)	
 in	
 GPU	
 and	
 initiate	
 to	
 transfer	
 v3	
 from	
 GPU	
 to	
 CPU	

	
 Compute	
 v5	
 for	
 (vx,	
 vy,	
 vz)	
 in	
 GPU	
 and	
 initiate	
 to	
 transfer	
 v4	
 from	
 GPU	
 to	
 CPU	

	
 Wait	
 for	
 v1/v2	
 data	
 transferring	
 done	
 and	
 initiate	
 MPI_ISend	
 for	
 v1/v2	

	
 Compute	
 s5	
 for	
 (xx,	
 yy,	
 zz,	
 xy,	
 yz,	
 xz)	
 in	
 GPU	

	
 Wait	
 for	
 v1/v2	
 MPI	
 message	
 received	
 and	
 initiate	
 to	
 transfer	
 v1/v2	
 from	
 CPU	
 to	
 GPU	

	
 Compute	
 s6	
 for	
 (xx,	
 yy,	
 zz,	
 xy,	
 yz,	
 xz)	
 in	
 GPU	

	
 Wait	
 for	
 v3/v4	
 data	
 transferring	
 done	
 and	
 initiate	
 MPI_ISend	
 for	
 v3/v4	

	
 Compute	
 s7	
 for	
 (xx,	
 yy,	
 zz,	
 xy,	
 yz,	
 xz)	
 in	
 GPU	

	
 Wait	
 for	
 v3/v4	
 MPI	
 message	
 received	
 and	
 initiate	
 to	
 transfer	
 v3/v4	
 from	
 CPU	
 to	
 GPU	

	
 Compute	
 s1	
 for	
 (xx,	
 yy,	
 zz,	
 xy,	
 yz,	
 xz)	
 in	
 GPU	

	
 Compute	
 s2	
 for	
 (xx,	
 yy,	
 zz,	
 xy,	
 yz,	
 xz)	
 in	
 GPU	

	
 Compute	
 s3	
 for	
 (xx,	
 yy,	
 zz,	
 xy,	
 yz,	
 xz)	
 in	
 GPU	

	
 Compute	
 s4	
 for	
 (xx,	
 yy,	
 zz,	
 xy,	
 yz,	
 xz)	
 in	
 GPU	

END	
 DO	

82	

	

	

	

Figure 5.11: Overlap of computation and communication. Top: the concept scheme and
Bottom: nvvp profiler output matches well with the design, achieving complete overlap.

Based on the communication reduction, the stress computation region is extended to

(-1: nxt+2, -1: nyt+2, 1: NZ) instead of (1: nxt, 1: nyt, 1: NZ), so that no more communication

is required for the stress component. In order to increase the overlapping time between

communication and computation for better scalability, we divide the stress region into 7 parts

(S1 to S7) and reorder the computation sequence from inside to outside. For the inside stress

regions S5 to S7, all required information is available for computation if the velocity

computation is completed, without need to wait for receiving velocity information before

computing the inside stress. The strategy is to compute inside first and then the remaining

boundary, so that the MPI communication time for the velocity can also be overlapped by the

inside stress computation. Since the barrier function “MPI_Wait” must be called to make sure

the boundary information is received successfully, the inside stress region is divided into 3

equal parts (S5, S6 and S7), and one barrier will be inserted respectively between S5/S6 and

S6/S7 stress computation initializations. The same data received order (v1, v2, v3 and v4) is

83	

	

	

	

planned, and the asynchronous data copying stream from the CPU back to the GPU will be

executed if any velocity data communication for ghost cells finished successfully. Thus the

data copying time from CPU to GPU can be also overlapped by the stress computation, plus

“multi-layer” overlapping can take place during the iterations. For example, the S6 stress

computation inside GPU, V1 data copying from CPU to GPU and the V3/V4 MPI

communication between CPUs may be running simultaneously. After the data are copied

back from CPU to GPU, there will be no more communication activities while the remaining

S1 to S4 is computed inside GPU in sequence. In the end, the updated stress (-1: nxt+2, -1:

nyt+2, 1: NZ) is ready as the next iteration input.

5.3 Experiments and Performance Discussion

In this section, we first introduced three key supercomputer systems used for this

research: OLCF Titan, NCSA Blue Waters and NICS KIDS system. Then a real earthquake

simulation run by both CPU and GPU codes demonstrate validation. Finally, some study

results on weak and strong scaling on these supercomputers are discussed.

5.3.1 Introduction of Supercomputer Testbeds

OLCF Titan is the Oak Ridge Leadership Computing Facility’s (OLCF) next

generation, leadership-class heterogeneous supercomputer [17]. The Titan is upgraded from

the Jaguar system, based on the Cray XK7 system with a hybrid CPU-GPU architecture [17].

The Titan Phase5 machine was provided for initial benchmark tests until late 2012, which

consists of 960 nodes with 96 nodes per cabin. Each computing node was equipped with one

AMD 16 core OpteronTM 6200 series processor and one NVIDIA Tesla X2090 Fermi GPU

accelerator. The interconnection between nodes was Gemini, which was a 3-dimensional

torus topology providing over 20GB/sec bandwidth per node [17]. The NICS Keeneland

Initial Delivery System (KIDS) located at the Georgia Institute of Technology has also been

adopted for our research work. It has a similar architecture as the Titan Phase 5 system,

including 120 computing nodes with two INTEL Westmere hex-core CPUs and three

NVIDIA Tesla M2090 Fermi GPUs per node. Therefore, the Titan Phase5 machine provides

15,360 CPU cores with 960 GPUs [17], while the full KIDS machine provides 1,440 CPU

cores with 360 GPUs [24].

84	

	

	

	

The full Titan machine became the No.1 supercomputer in the Top 500 list published

in November 2012, which provides a peak theoretical performance of more than 20

PetaFLOPS [17] and was open to public users from early 2013. This giant machine consists

of 18,688 physical compute nodes, where each compute node is comprised of one 16-core

2.2GHz AMD Opteron™ 6274 (Interlagos) CPU, one NVIDIA Kepler (K20X) GPU, and 32

GB of RAM. Two nodes share a Gemini™ high-speed interconnect router. These routers are

connected in a 3D torus [17]. The Blue Waters machine run by the National Center for

Supercomputing Applications (NCSA) at the University of Illinois is another world class

supercomputer used for our simulation and benchmarking [76]. The Blue Waters is a hybrid

system composed of Cray XE6 and XK7 compute cabinets, where the XE6 computing nodes

are pure CPU multi-core architecture, and the XK7 computing nodes are hybrid architecture,

including an AMD Interlagos 16-core CPU plus one NVIDIA GK110 Kepler GPU [76]. The

Blue Waters provides 11.61 PetaFLOPs theoretical peak performance, but since our GPU

code is primarily running on the Cray XK7 hybrid systems, the maximum resource for our

use is 3,073 Cray XK7 with 24,576 CPU cores and 3,073 GK110 Kepler GPUs.

5.3.2 Real Small Case Simulation and Validation

Our research is primarily based on OLCF Titan, NCSA Blue Water and NICS KIDS

supercomputers. Before the weak scaling benchmarking study on these machines, we first ran

a large scale wave propagation simulation of a Mw5.4 Chino Hills, CA earthquake to verify

the correctness of the AWP-ODC-GPU code. This simulation has frequency up to 2.5Hz with

a mesh dimension size of 1024x1024x1024. The total number of time steps is 75,000, where

each timestep simulates a period of 1 millisecond, so the total simulation lasts for 75 seconds.

A total of 980 earthquake source points is used for a duration of 2,500 time steps (2.5 seconds

in total). AWP-ODC-CPU was previously run on the National Center for Atmospheric

Research’s (NCAR) Yellowstone [77] homogeneous supercomputer using 512 CPU cores,

while AWP-ODC-GPU was run for the same simulation on Keeneland at full system scale

(KFS) using 128 NVIDIA Fermi GPUs. Figure 5.12 presents a heat map of the magnitude of

the velocity in X direction to compare the two codes. The blank difference images show the

accuracy of this new code.

85	

	

	

	

Figure 5.12: Comparison of visualizations of surface velocity in X direction in units of m/s.
Four snapshots are taken at seconds 6, 7, 10 and 25 (after 6,000, 7,000, 10,000, 25,000
timesteps respectively). The verification of AWP-ODC-CPU code in this simulation has been
performed by geo-scientists for years. The south-east corner of the mesh includes an area
with rocks. This uneven distribution of materials in the simulated area results in a difference
in the wave propagation compared to other parts of the map.

In collaboration with Kim Olsen of San Diego State University, we have also

generated statistical models of seismic velocities and densities in agreement with the results

of the analysis of near-surface measurements. The effects of the near-surface heterogeneities

on ground motion and scattering are tested using simulations of 0-2.5 Hz wave propagation

for the 2008 Mw 5.4 Chino Hills, California earthquake. Figure 5.13 shows the visualization

of the earthquake simulation result by our AWP-ODC-GPU code running on NICS

Keeneland. The 2008 Mw5.4 Chino Hills earthquake was very well recorded on hundreds of

seismic stations. The simulation including the statistical model of the heterogeneities shows

several new and interesting results. When compared to strong-motion seismic data from the

Chino Hills earthquake, the simulation results tend to predict the duration of ground motion

better than the results without the statistical model of the heterogeneities, dependent on the

relations for the anelastic attenuation. Details of the visualization can be found at [78].

86	

	

	

	

Figure 5.13: 0-2.5 Hz wave propagation of the 2008 Mw 5.4 Chino Hills, California
earthquake. Minimum Vs of 200 m/s with a grid spacing of 16 m is calculated using the GPU
version of finite-difference time domain code AWP-ODC. A fractal distribution of near
surface heterogeneities with a Hurst exponent of 0.1 and σ=10% is added to the near-surface
sediments. The simulation results including the statistical model of the heterogeneities predict
the duration of ground motion better than the results without the statistical model of the
heterogeneities [78].

87	

	

	

	

5.3.3 Study of Strong and Weak Scaling

Based on the introduction of the supercomputer testbeds in Section 5.3.1, there are

two kinds of computing resources available for the scaling study. The first one is small

clusters based on conventional CPUs plus NVIDIA Fermi GPUs, and the other is new

world-class supercomputers installed with conventional CPUs plus NVIDIA Kepler GPUs.

Hence separate scaling results are presented here due to the different computing architectures

and compiler support.

To compute GFLOPs, the running time performance is measured by the average time

spent on one time step after running a benchmark test for 2,000 time steps using the CPU

timing function. The number of floating point operations is counted in the code based on 307

FLOP per mesh point per time step discussed in the Section 4.1. Therefore, GFLOPs can be

calculated as 307*(the total number of mesh points)/(average running time per timestep). Due

to the enhanced overlap algorithm, some communication has been replaced by computation,

so the GFLOPs computation must include extended mesh points in the boundary areas. Since

different sub-domains might have different GFLOPs value, the total GFLOPs for multi-GPUs

is acquired through MPI_AllReduce which gathers the sum of the GFLOPs from all

sub-domains. Initialization and output writing are excluded from this calculation. The IO time

is negligible when time iterations of tens to hundreds of thousands of time steps are involved.

First, the AWP-ODC-GPU code is benchmarked for the weak scaling study on the

Titan Phase 5 system and the Keeneland Initial Delivery System (KIDS) supercomputers,

which are based on conventional CPU cores plus NVIDIA Fermi GPUs. Figure 5.14 shows

the performance in FLOPS achieved on these two heterogeneous supercomputers. The CUDA

compiler is version 4.1 and the MPI compiler is Ohio State University's mvapich2 version 1.8,

but the limic library (an I/O library used by mvapich2 compiler) support is disabled during

the benchmark test. Only one NVIDIA X2090 GPU per node is available on the Titan Phase

5 system, but 3 NVIDIA M2090 GPUs per node can be used on the KIDS system. The full

Titan Phase 5 system contains 960 GPUs whereas the full KIDS system contains 320 GPUs.

In this benchmark, each GPU carries out stencil calculations for a mesh with a size of

224x224x1024. The total number of points in the mesh becomes “224*224*1024*N*G”,

where “N” represents the number of nodes and “G” represents the number of GPUs per node.

88	

	

	

	

Figure 5.14 presents our weak scaling results on these two small scale systems. The

results are indistinguishable from ideal linear weak scaling since the performance in GFLOPs

in single precision shows a linear increase with increased number of Fermi GPUs. On the

KIDS system, using three GPUs per node achieves triple the GFLOPs compared to one GPU

per node. On the Titan Phase 5 system, the peak performance achieved is 101.4 TFLOPs for a

mesh size of 7616*6272*1024 (~ 49 billion mesh points) using 952 GPUs, while the peak

computing performance achieved on NICS KIDS system is 30.5 TFLOPs for a mesh size of

4032*3360*1024 (~ 14 billion mesh points) using 270 GPUs. Good weak scaling means our

communication model hides communication latency successfully and provides a good

solution to the bottleneck caused by the data transfer between CPU and GPU.

Figure 5.14: Weak scaling study on OLCF Titan Phase 5 system and NICS Keeneland KIDS
system in terms of GFlops achieved with respect to the number of nodes requested.

89	

	

	

	

With regard to weak scaling, perfect linear speedup was observed on 90 KIDS nodes

equipped with 3 NVIDIA M2090 GPUs per node and 952 Titan Phase5 system nodes

equipped with single NVIDIA X2090 Fermi GPU, where 10% of the peak theoretical

performance was also achieved. In order to show the AWP code’s extraordinary scaling

performance, a similar benchmark test was run on the full Titan machine and the Blue Waters

machine. In the test, each GPU carries out stencil calculations for a sub-domain with size 160

× 160 × 2048. The total number of points in the domain becomes 160 × 160 × 2048 × N,

where N represents the number of GPUs used. Figure 5.15 and Table 5.4 show pefect weak

scaling from 16 up to 8192 Titan nodes. To our knowledge, this is a record speedup for a

highly memory-bounded scientific problem. A sustained performance estimate of 2.33

PetaFlops on 16,384 Titan GPUs is achieved, which was a 2,000 time-step benchmark run of

a problem size of 20,480 × 20,480 × 2,048 or 859 billion mesh points application achieved on

Cray XK7.

Figure 5.15: Weak scaling and sustained performance using AWP-ODC-GPU in single
precision. XK7 exceeds XE6 performance by a factor of 4.2. Solid (dashed) black line is
(ideal) speedup on Titan, rounds/triangle/cross points are FLOPS performance on Titan/Blue
Waters/Keeneland. Solid round points are FLOPS on Blue Waters XE6. A perfect linear
speedup is observed between 16 and 8,192 nodes. A sustained 2.3 Pflop/s performance was
recorded on 16,384 Titan nodes.

90	

	

	

	

Table 5.4: Time-to-Solution and Parallel Efficiency on OLEF Titan.

XK	
 7	
 Nodes	
 Used	
 Elements	
 (Millions)	
 Wall	
 Clock	
 Time	
 Parallel	
 Efficiency	

16	
 (4x4)	
 838,860	
 0.1085	
 100%	

32	
 (4x8)	
 1,677,721	
 0.1084	
 100%	

64	
 (8x8)	
 3,355,443	
 0.1085	
 100%	

128	
 (8x16)	
 6,710,886	
 0.1085	
 100%	

256	
 (16x16)	
 13,421,772	
 0.1085	
 100%	

512	
 (16x32)	
 26,843,545	
 0.1085	
 100%	

1,024	
 (32x32)	
 53,687,091	
 0.1085	
 100%	

2,048	
 (32x64)	
 107,374,182	
 0.1084	
 100%	

4,096	
 (64x64)	
 214,748,364	
 0.1085	
 100%	

8,192	
 (64x128)	
 429,496,729	
 0.1085	
 100%	

16,384	
 (128x128)	
 858,993,459	
 0.1159	
 93.2%	

Notable slowdown was observed in the case of 16,384 nodes, although 93.5%

parallel efficiency still can be achieved. Since the application performs only nearest-neighbor

communications, continued linear scaling would be expected. The source of this performance

degradation is not yet fully understood, but the topology of the network may have played a

significant role. One future works is to explore the effect of node topology and evaluate the

benefit of topology-aware node placement.

Strong scaling benchmarks were also performed on NCSA Blue Waters and the full

OLCF Titan. The small fixed size benchmark was run on Blue Waters whereas others were

on Titan. The degradation in performance with an increase in the number of GPUs is

expected, as the application becomes bound by communication overhead that arises from less

compute work. As the number of GPUs is increased, so does the outer halo region to total

sub-volume size ratio in proportion, making the application less effective in overlapping

communication and computation.

91	

	

	

	

Figure 5.16: Speedup of strong scaling on Cray XT7 at ORNL, with 2D square configuration
(Z direction fixed as 2048) for problem sizes of 320, 640, 1280 and 5120.

5.4 Conclusions and Future Work

Recent destructive earthquakes in China, Haiti, Chile, New Zealand, and Japan,

highlight the national and international need for improved seismic hazard information.

Energy efficient high performance earthquake codes are vitally needed for this purpose.

Toward this goal, we have developed a multi-GPU implementation of a highly scalable

earthquake simulation code for heterogeneous supercomputers. This code was restructured to

enable maximized throughput and efficiency for GPU systems. To avoid degradation of the

computation performance achieved, a notable communication model has been developed to

hide the communication latency, especially to overlap the high latency caused by the data

communication between CPU and GPU. With this successful optimization approach,

performance studies on OLCF Titan system [17], NICS Keeneland KIDS system [24] and

NCSA Blue Waters [76] demonstrated an excellent weak scaling up to the full system. Now

92	

	

	

	

this code has been tested up to the Petascale level and the peak performance we achieved is

2.3 PetaFLOPs. To our knowledge, this is the first Petascale earthquake simulation code in

the world at the time of the dissertation writing.

There is still a lot of room for the code optimization. One optimization work is the

topology mapping aiming to reduce MPI message latency. When running on OLCF Titan

with tens of thousands of GPUs, a good node mapping algorithm can put the communication

nodes physically as close as possible so the MPI communication time can be reduced

significantly. Other optimization work will focus on a new GPU to GPU communication

library. Now the NVIDIA Company provides some functions that support peer-to-peer

communications between GPUs, which might already include some system level optimization

for supercomputers, and could provide some extra benefits to our code.

Acknowledgements

Section 5.1, is based on the material as it partly appears in proceedings of the 2010

ACM/IEEE conference on Supercomputing with title “Scalable Earthquake Simulation on

Petascale Supercomputers” by Yifeng Cui, Kim B. Olsen, Thomas H. Jordan, Kwangyoon

Lee, Jun Zhou, Patrick Small, Daniel Roten, Geoffrey Ely, Dhabaleswar K. Panda, Amit

Chourasia, John Levesque, Steven M. Day and Philip Maechling. Section 5.2 and 5.3, in part,

are a reprint of the material as it appears in the 2013 international conference on

Computational Science with title “Multi-GPU Implementation of a 3D Finite Difference

Time Domain Earthquake Code on Heterogeneous Supercomputers” by Jun Zhou, Yifeng Cui,

Efecan Poyraz, Dong Ju Choi, and Clark C. Guest. Section 5.3, in part, is based on the

material as it partly appears in proceedings of the 2013 ACM/IEEE conference on

Supercomputing with title “Physics-based Seismic Hazard Analysis on PetaScale

Heterogeneous Supercomputers” by Yifeng Cui, Efecan Poyraz, Kim B. Olsen, Jun Zhou,

Kyle Withers, Scott Callaghan, Jeff Larkin, Clark C. Guest, Dong Ju Choi, Amit Chourasia,

Steven M. Day, Philip Maechling, and Thomas H. Jordan. The dissertation author was one of

the primary investigators and author of these three papers.

	

	

93

Chapter 6

Real-World Earthquake Simulation

This chapter presents two real-world earthquake simulations based on our

AWP-ODC-GPU code: the first 10Hz deterministic earthquake simulation on the Titan system,

and the second CyberShake hazard curve on the NCSA Blue Waters system. These two

simulations demonstrate the significant practical and social impact of our AWP-ODC-GPU code,

which provides the capability for high-frequency ground motion earthquake simulations (up to 10

Hz), and also helps to save millions of computation hours (up to 500 million) for the future

CyberShake 3.0 model.

These two real-world earthquake simulations are big projects led by my co-advisor Prof.

Yifeng Cui from SDSC in collaboration with SCEC researchers, including Professor Kim Bak

Olsen, Steven Day and their team. My contribution was focused on the implementation of the

initial AWP-ODC-GPU for both forward and tensor-valued wavefield codes. The forward code is

focus on wave propagation mode for high-frequency ground motion earthquake simulations. The

tensor-valued wavefield code targets the CyberShake project for thousands of reciprocal runs to

generate the hazard map. These two codes was then added parallel I/O interface similar like our

AWP-ODC-CPU implementation, and also integrated for production simulations on Titan and

Blue Waters systems. Most of the content and results in this Chapter has been published at the

International Conference for High Performance Computing, Networking, Storage and Analysis

2013 (SC 2013) as a technical paper. Simulation outputs have been visualized and adopted by

SCEC scientists for further seismic study.

This chapter will go over the simulations in turn. First we introduce the 10-Hz ground

motion wave propagation simulation, which is the first time ever in earthquake simulation history

by the time of the thesis writing (early 2014). We briefly describe the size and scientific impact of

this earthquake simulation and also show the beautiful visualization result. Thereafter we present

the CyberShake model and discuss the potential huge computation hours saving benefit from our

AWP-ODC-GPU code.

94	

	

	

	

6.1 10-Hz Ground Motion Earthquake Simulation

High-frequency (> 1Hz) deterministic ground motion predictions are critical input to

performance-based building design. The accuracy of the simulations is limited by the small-scale

complexity of the source and by high-frequency wave scattering in the crust. To investigate this

problem, we have simulated high-frequency ground motions on a mesh comprising 443-billion

(20,800 × 10,400 × 2,048) elements in a calculation that includes both small-scale fault geometry

and media complexity. This simulation runs on Titan machine using more than 16,000 computing

nodes for four hours. Specifically, we have computed the ground motion synthetics using

dynamic rupture propagation along a rough fault imbedded in a velocity structure with

heterogeneities described by a statistical model. We first carried out simulations of dynamic

ruptures using a support operator method [79], in which the assumed fault roughness followed a

self-similar fractal distribution with wavelength scales spanning three orders of magnitude, from

~102 m to ~105 m. We then used AWP-ODC-GPU code to propagate the ground motions out to

large distances from the fault in a characteristic 1D rock model with and without small-scale

heterogeneities. The latter employed the moment-rate time histories from the dynamic rupture

simulations as kinematic sources.

Figure 6.1 shows snapshots of the rupture surface wave propagation for crustal models

with and without the media heterogeneities. The fractal roughness is controlled by a Hurst

number, which we set at 0.2, and the size of the heterogeneity by a standard deviation, which we

set at 5%, as constrained by near-surface and borehole velocity data. Note how the wave field in

the bottom snapshot is scattered the small-scale heterogeneities, which generates realistic

high-frequency synthetics. A few seismograms are shown to compare models with and without

the small-scale structure.

The earthquake simulation results show realistic features. The acceleration spectra from

the simulation are nearly flat up to almost 10 Hz, in agreement with theoretical predictions.

Moreover, the simulated response spectra compare favorably with spectra obtained from the

empirical ground motion prediction equations (GMPEs) currently used by building engineers,

which are calibrated to high-frequency recordings of earthquake ground motions. This is the first

10-Hz ground motion earthquake simulation in seismic science research and the output again

proves the accuracy of the AWP-ODC-GPU code.

95	

	

	

	

Figure 6.1: Snapshots of 10-Hz rupture propagation and surface wavefield for a crustal model
without (top) with (bottom) a statistical model of small-scale heterogeneities. The displayed
geometrical complexities on the fault were included in the rupture simulation. The associated
synthetic strike-parallel component seismograms are superimposed as while traces on the surface
at selected sites. The part of the crustal model located in front of the fault has been lowered for a
better view. Note the strongly scattered wavefield in the bottom snapshot due to the small-scale
Heterogeneities.

This simulation has a domain size of 416 km×208 km×41 km with a spatial resolution of

20 meters. The size of this run is slightly larger than the record M8 San Andreas fault simulation

[5]. The run took only 5 hours and 30 minutes to complete 170 seconds of simulation time

whereas M8 ran on approximately 220K CPU cores for 24 hours. We emphasize that this

simulation included 6.8 TB of input and 170 GB of output. To our best knowledge, this is the first

sustained PetaFLOP seismic production simulation to date, and a new record for earthquake

simulation in terms of scale. These results are particularly remarkable considering that

memory-bounded stencil computations typically achieve a low fraction of theoretical peak

performance.

96	

	

	

	

6.2 CyberShake Hazard Model and Simulation

Probabilistic seismic hazard analysis (PSHA) has been effective in helping

decision-maker reduce seismic risk and increase community resilience. The arrival of Petascale

computing has opened the door to full-scale, physic-based PSHA. For example, earthquake

simulations have recently been validated against ground motions recorded up to 4 Hz, with

promising results [80], and we are pushing these comparisons to even higher frequencies.

However, in order to calculate seismic hazards in California and other tectonically active regions,

simulating just a few earthquakes won’t do; we must adequately sample earthquake distributions

from probabilistic models, such as the Uniform California Earthquake Rupture Forecast (UCERF)

[81]. Using standard “forward” simulation methods, computing three-component seismograms

from M sources at N sites requires M simulations. For the UCERF model in Southern California,

M> 10^5; i.e., hundreds of thousands to millions of possible earthquake sources must be modeled,

which cannot be done directly, even at petascale.

To overcome this scale limitation, SCEC has built a special simulation platform,

CyberShake, which uses the time-reversal physics of seismic reciprocity to turn the problem

around [82]. A complete tensor-valued wavefield (the strain Green tensor or SGT) is calculated

for a system of point forces at surface sites; seismic reciprocity then allows us to compute

seismograms at those sites by fast (embarrassingly parallel) quadratures of the SGT over the fault

surfaces. This “reciprocal” simulation method can generate 3-component seismograms for M

sources at N sites with only 3N simulations. For the Los Angeles region, the near-surface

geologic structure can be interpolated to produce high-resolution seismic hazard maps with N as

small as 200-250, reducing the computations by a factor of 2,000. Scientific workflow software is

used to manage the hundreds of millions of jobs needed to populate a CyberShake model [83].	

Using the CyberShake platform, SCEC have created the first physics-based PSHA

models of the Los Angeles region from suites of simulations comprising ~10^8 seismograms.

These models are “layered”, allowing earthquake engineers and other users to access ensembles

of hazard curves (representing epistemic uncertainties), to disaggregate the calculations and

identify the ruptures that dominate the hazard at a particular site, and to retrieve the actual

seismograms, which can then be used to drive full-physics engineering models. Figure 6.2 shows

the detailed layering information of the CyberShake hazard model.	

97	

	

	

	

CyberShake brings the computational challenges of physics-based PSHA into sharp focus.

The current models are limited to low seismic frequencies (≤ 0.5 Hz). Goals are to increase this

limit to above 1 Hz and produce a California-wide CyberShake model using the new UCERF3

rupture forecast, which is scheduled to be released this year. The computational size of the

statewide model will be more than 100 times larger than the current Los Angeles models. Our

progress towards exascale is also being driven by the application of full-3D waveform

tomography to the development of the seismic velocity models [84-85], which are required as

input to CyberShake. Full-3D tomography using 3-component seismograms from M sources

observed at N stations requires at least 3N + Mwavefield simulations per iteration [86].

Figure 6.2: The CyberShake hazard model, showing the layering of information. (1) Hazard map
for the LA region (hot colors are high hazard). (2) Hazard curves for a site near the San Onofre
Nuclear Generating Station. (3) Disaggregation of hazard in terms of magnitude and distance. (4)
Rupture with the highest hazard at the site (a nearby offshore fault). (5) Seismograms simulated
for this rupture. Arrows show how users can query the model starting at high levels (e.g. hazard
map) to access information of progressively lower levels (e.g. seismograms) [87].

98	

	

	

	

PSHA results are typically delivered by hazard curves, which relate ground motion on the

X-axis to probability of exceeding that level of ground motion on the Y-axis, for a site of interest.

To verify AWP-SGT, we calculated a CyberShake hazard curve using the GPU version of

AWP-ODC-SGT, and compared it to a hazard curve using the CPU version; the two are

numerically almost identical (shown in Figure 6.3). Calculation of a hazard curve involves SGT

time series data from over half a million locations in the volume, providing rigorous verification.

Figure 6.3: PSHA hazard curve calculated for the University of Southern California (USC) site.
The horizontal axis represents ground motion at 3 seconds spectral acceleration, in terms of g
(acceleration due to gravity). The vertical axis gives the probability of exceeding that level of
ground motion. The blue line is the curve calculated using CyberShake with AWP-SGT GPU
code. The dashed lines are hazard curves calculated using four common attenuation
relationships which provide validation of the CyberShake methodology [87].

One of the primary motivations of implementing AWP-ODC-GPU code is to accelerate

CyberShake calculations. We are planning to use CyberShake to calculate a state-wide seismic

hazard map using 3D waveform modeling that will improve the earthquake shaking history

forecasts and help engineers design safer buildings and retrofit existing high-risk buildings. When

using the heavily optimized CPU code AWP-ODC, it is expected to require 662 million

allocation hours to complete a CA state-wide hazard map at a maximum frequency of 1-Hz. Our

new AWP-SGT GPU code running on Cray XK7 demonstrates a performance improvement of a

99	

	

	

	

factor of 3.7 compared to the CPU code running on Cray XE6. Table 6.1 provides some detailed

comparisons of calculating SGTs on XK7 versus XE6, and demonstrates the saving of 579

millions of allocation hours when using the accelerated (CPU+GPU) AWP.

Table 6.1: CyberShake 3.0 Strain Green Tensor Calculations: 1) XE6 node (dual Interlagos); 2)
XK7 (Operaton + Kepler K20X); 3) Wall clock time based on measurements on Cray XE6/XK7
at NCSA for two Strain Green Tensor calculations per site; 4) Based on total 5000 sites required
for the generation of California state-wide seismic hazard map at a maximum frequency
resolution of 1-Hz; 5) CPU + GPU saving counts the use of XK7 CPUs for post-processing of
seismogram extraction as co-scheduling, involving 6.2 million rupture variations calculations per
site.

CyberShake 3.0 CPU1 only GPU2 only CPU + GPU2
XE61/XK72 nodes 400 400 400

WCT3 per site 10.36hr 2.80 hr 2.80 hr
Total SUs charged4 662 M 168 M 168 M

Saved in Million SU5 495 M 579 M

The results show the capability of our AWP-ODC-SGT GPU code again, which can help

to serve as the main computational engine for the CyberShake calculation. As shown in the table

6.1, the use of the AWP-SGT GPU-only code is expected to save up to 500 million hours of

computation required for the proposed statewide CyberShake 3.0 model, in addition to reducing

dramatically the time-to-solution. This AWP-ODC-SGT GPU code will provide highly scalable

solutions for other problems of interest to SCEC as well as the wider scientific community,

including full-3D waveform inversions to obtain better velocity models for use in structural

studies of the Earth across a range of geographic scales.

Acknowledgements

Chapter 6, in part, is based on the material as it partly appears in proceedings of the 2013

ACM/IEEE conference on Supercomputing with title “Physics-based Seismic Hazard Analysis on

PetaScale Heterogeneous Supercomputers” by Yifeng Cui, Efecan Poyraz, Kim B. Olsen, Jun

Zhou, Kyle Withers, Scott Callaghan, Jeff Larkin, Clark C. Guest, Dong Ju Choi, Amit Chourasia,

Steven M. Day, Philip Maechling, and Thomas H. Jordan. The dissertation author was one of the

primary investigators and author of this paper.

	

	

100

Chapter 7

Future Work and Conclusions

In this chapter, we will discuss the future high performance seismic simulation on the

upcoming computing architectures and also summarize the full dissertation.

7.1 Seismic Simulation Model

The current seismic simulation model is based on 3D structured mesh where mesh points

are equally distributed across the 3D domain. However, the wave propogation on the surface is

the most critical result for generating hazard map for scientific research or industry purpose.

Wave propogation information inside the 3D domain, especially far away from the surface, is less

important. Therefore, the seismic simulation model can be improved as coarse-grain for 3D

domain and fine-grain for 2D surface simulation, which means there will be more mesh points on

the 2D surface or near the surface and less mesh points (shown in Figure 7.1). The purpose of this

simulation model improvement is to heavily reduce the computation loads while achieving the

same output quality.

As described in section 2.1, NVIDIA GPU with Kepler architecture supports dynamic

parallelism, allowing GPU kernel to launch its child kernel. The proposed seismic simulation

model can gain significant benefits from this GPU feature. In each timestep, the main GPU kernel

is computing coarse-grain for the whole 3D domain. If the mesh point is close to the surface, it

will launch a child kernel to compute fine-grain for the 2D surface. After all child kernels return,

it iterates to the next timestep. In addition, due to the coarse-grain computation for the 3D domain,

the computing performance would gain more speedup because of the less memory-bound. The

main difficulty of this proposed seismic simulation model is the data processing on the interface

between fine-grain and coarse-grain. This is because some wave reflection might be generated

between this interface as a result of the different density of the mesh points between two domains.

This issue is being investigated by computational scientists in our lab and would be done in the

near future.

101
	

	

	

Figure 7.1: proposed seismic simulation model: coarse-grain computation for full 3D domain and
fine-grain computation for 2D surface/near surface domain.

7.2 Intel MIC Architecture

The Intel MIC (Many Integrated Core) architecture is developed to compete with

NVIDIA Tesla GPU for HPC market (See Figure 7.2). Each MIC co-processor has more than 50

x86 cores and each core allows four hardware threads running simultaneously with 512-bit wide

SIMD instructions. As mentioned in the section 2.1, the No.1 supercomputer Tianhe-2 machine

based on the Top500 list released in Nov. 2013 is installed with such architecture, while each

computing node of Tianhe-2 contains two Intel Ivy Bridge Xeon processors and three Xeon Phi

processors (MIC architecture). Similar to GPU accelerators, the MIC co-processors are also

connected to the host CPU processors via PCIe. And the MIC also supports a lot of programming

models such as OpenMP, MPI and etc.

To implement AWP-ODC on the MIC-based supercomputers, we can utilize the same

parallel programming framework presented in this dissertation, because the hardware

architectures are quite similar between MIC-based and CPU-GPU based supercomputers.

Computation data also needs to be offloaded into the MIC co-processors and data communication

between MIC co-processors still needs to bypass the slow PCIe connection. The main difference

is the computation optimization on single computing node. The MIC co-processor provides more

independent hardware threads and can handle more generation computation including if

statements or data divergence. In addition, full use of the 512-bit SIMD is needed for vector

computation to allow the maximum performance gain.

102
	

	

	

Figure 7.2: The architecture of Intel MIC co-processors: including 61 in-order cores and 4
hardware threads per core. Each core has private L1 cache (32KB I-cache and D-cache) and
shared L2 cache (512KB unified per core) [88].

7.3 Dissertation Conclusions

A highly scalable finite-difference time-domain seismic simulation is presented in this

dissertation on the world-class petascale heterogenesous supercomputer, targeting 3D earthquake

hazard calculation with faster time-to-solution and higher computation efficiency. The primary

goal of this work is the design, implementation, analysis and optimization of the well-known

AWP-ODC application towards petascale computing on the largest CPU-GPU based

supercomputer (Titan at ORNL). The production simulation using this new development has

generated realistic dynamic earthquake source description and detailed physics-based anelastic

ground motions at frequencies pertinent to scientific research or industry purpose (e.g. safe

building design).

Heterogeneous computing has becoming more and more popular in HPC. The computing

architecture has evolved to the traditional CPU plus accelerators instead of the CPU-only. Even

the world leading CPU vendor Intel has introduced MIC architecture as a flagship product to

compete for HPC market. Based on the Top 500 List released in Nov. 2013, only the No.1

supercomputer Tianhe-2 in China is installed with the MIC architecture, while the most popular

heterogeneous supercomputers areremained with the hybrid CPU/GPU design. Our next step will

be to migrate this GPU-based code into the Intel MIC, counting Intel’s interest to continue the

103
	

	

	

support of the many-core architectures.

To enable petascale earthquake simulations on supercomputers, data management is very

critical as many terabytes and millions of 3D input and output files are generated on petascale

supercomputers. The end-to-end earthquake simulation workflow developed in this work help

manage the earthquake simualtion with fault tolerance capability features added to secure the

accuracy and correctness of input/output data. The protocol workflow framework developed for

data transfer between HPC sites demonstrated a saving of more than 73% data transfer time. The

job management scheme based on iRODS system for data pre-pocessing and archieval achieved

almost 5x faster than conventional iRODs methods.

Although our scientifc workflow handles the data pre/post-processing, the kernel part of

the petascale earthquake simulation is the numerical simulation solver. The optimization of the

solver are two-folds: the first is the single-GPU optimization which focuses on improving data

locality; and the second is the multi-GPU implementation which tends to miminize the frequency

of data communication in each iteration, thus allowing fully overlap of data communication.

AWP-ODC as a memory-bound application (involving 21 3D variables kept on memory)

with very low FLOPs/Bytes ratio (around 0.508), its computation performance is dominated by

the arithmatic throughput. We completely re-wrote the AWP-ODC code using C/CUDA: first to

put constant 3D variables into the GPU read-only memory to take advantage of read-only

memory cache, then to design proper data decomposition strategy to make sure threads in the

same wrap can access adjacent data for better cache hit rate. Memory padding guarantees each

data fetching is from the same memory page and improves data fetching efficiency. Register

optimization is to fully reuse the data already stored in registers and minimize the global memory

access. L1 cache/shared memory optimization is to make full use of the fast on-chip memory. Our

single GPU memory-bound code achieved remarkable 143.8 GFLOPs performance on NVIDIA

M2090, which is approximately 10% of the peak performance.

For multi-GPU implementation, a notable communication model has been developed to

hide the communication latency, especially to overlap the high latency caused by the data

communication between CPU and GPU. Firstly, we did two-layer data decomposition for CPU

and GPU to make sure communication only happens in y and z directions (fast memory

directions), then we extend the computation region for stress to reduce data communication for

stress component. In-order communication guarantees data in ghost cell regions are correct and

104
	

	

	

also miminize the frequency of data passing through the slow PCIe bus. The overlapping method

has fully overlapped the data communication time by the computation time and helped to avoid

degrading the computation performance achieved by single-GPU optimization. The benchmark

experiements on Titan demonstrated an excellent weak scaling up to full machine and a sustained

performance up to 2.3 PetaFLOPs, the highest earthquake simulation performance to date.

The social impact of our research work can be summarized in two recent real-world

production earthquake simulations: the first a 0-10Hz deterministic earthquake simulation on the

Titan system, and the second the 140-sites CyberShake 14.2 production calculations using the

GPU-based code on the NCSA Blue Waters system. The 10-Hz run is slightly larger than the M8

simulation performed in 2010, with a simulation time of approximately 5.5 hours using 16K GPU

nodes compared to previous 24 hours run using 220K CPU cores. As the first sustained

PetaFLOP seismic production simulation by Jan. 2014, this is a new record for earthquake

simulation in terms of scale and scalability. The new AWP-ODC code is expected to save more

than 500 million computation core-hours for the proposed statewide CyberShake 1.0-Hz model.

Recognized by the research community [89], the social media [90] and the technology

companies [91], and HPC User Forum [7], this work achieves we promised in terms of enabling

petascale seismic production simulation with dramatically reduced time-to-solution and power

consumption. In the end, the GPU-based AWP-ODC code is under development for a public

release and tutorial by UCSD HPGeoC laboratory, with a goal of expanded use of the software by

earthquake researchers and technical developers around the world.

	

	

105

Bibliography

[1] Top 500 Supercomputer List: http://www.top500.org/list/

[2] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka, N. Maruyama, A. Nukuda, S.

Matsuoka. “Peta-scale Phase-field Simulation for Dendritic Solidification on the TSUBAME

2.0 Supercomputer”, in SC’2011: Proceeding of the Conference on High Performance

Computing Networking, Storage and Analysis. Seattle, WA, USA, ACM 2011. pp.1-11.

[3] Inside HPC: Four Gordon Bell Finalists using GPU-powered Titan Supercomputer, 2013.

http://insidehpc.com/2013/10/31/four-gordon-bell-finalists-using-gpu-powered-titan-superco

mputer/.

[4] K. B. Olsen, “Simulation of Three-Dimension Wave Propagation in the Salt Lake Basin”.

Doctoral Dissertation, University of Utah, 1994.

[5] Y. Cui, K. B. Olsen, T.H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G. Ely, D. Panda, A.

Chourasia, J. Levesque, S. M. Day and P. Maechling.“Scalable Earthquake Simulation on

Petascale Supercomputers”, In Proceedings of the 2010 ACM/IEEE conference on

Supercomputing, SC’10, pp.1-20, Nov. 2010.

[6] SCEC CyberShake Project: http://scec.usc.edu/research/cme/groups/cybershake.

[7] HPC Wire News released in June 24th, 2013 (Source from UC San Diego): SDSC

Geocomputing Lab named winner of HPC Innovation Excellence Awarded by IDC

http://archive.hpcwire.com/hpcwire/2013-06-24/sdsc_geocomputing_lab_named_winner_of

_hpc_innovation_excellence_award_by_idc.html

[8] G. E. Moore, Cramming More Components onto Integrated Circuits. Proceedings of The

IEEE, Vol. 86, No. 1, January 1998.

[9] T. Mudge, Power: A First-Class Architectural Design Constraint. IEEE Computer, Vol. 34,

Issue: 4, Page 52-58. April, 2001.

[10] Kraken Supercomputer: http://www.nics.tennessee.edu/computing-resources/kraken

[11] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik and O. O. Storaasli.

State-of-the-art in heterogeneous Computing. Scientific Programming, Vol. 18. Page 1-33.

2010.

[12] IBM RoadRunner Supercomputer: http://en.wikipedia.org/wiki/IBM_Roadrunner

[13] Top 500 Supercomputer News in June, 2008: International Supercomputing Conference To

106
	

	

	

Host First Panel Discussion on Breaking the PetaFlops/s Barrier.

http://top500.org/blog/2008/06/09/international_supercomputing_conference_host_first_pan

el_discussion_breaking_petaflop_s_barrier

[14] Los Alamos National Laboratory: First Science at The Petascale – Results from the

Roadrunner Supercomputer. Open Science, Oct, 2009.

[15] NVIDIA CUDA 1.0 Release: http://www.beyond3d.com/content/news/304

[16] General Purpose Graphics Processing Units : http://en.wikipedia.org/wiki/GPGPU

[17] TITAN Supercomputer: http://www.olcf.ornl.gov/computing-resources/titan/

[18] NVIDIA Cooperation. http://developer.nvidia.com/content/tesla-m2090-announced

[19] NVIDIA Cooperation. NVIDIA’s Next Generation CUDA Compute Architecture, Kepler

GK110. White Paper, 2012.

[20] Intel Cooperation. Intel Many Integrated Core (Intel MIC) Architecture. International

Supercomputing (ISC’11), Demos and Performance Description, June, 2011.

[21] Intel Cooperation-Many Integrated Core (MIC). Knights Corner launches the technology.

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/

intel-many-integrated-core-architecture.html

[22] IEEE Spectrum: China’s Tianhe-2 Caps Top 10 Supercomputers. Jun 17, 2013.

http://spectrum.ieee.org/tech-talk/computing/hardware/tianhe2-caps-top-10-supercomputers

[23] TACC Stampede Supercomputer: https://www.tacc.utexas.edu/.

[24] NICS Keeneland Supercomputer: http://keeneland.gatech.edu/

[25] LINPACK, Wikipedia: http://en.wikipedia.org/wiki/LINPACK

[26] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable Shared

Memory Parallel Programming (Scientific and Engineering Computation). The MIT Press,

2007. 18, 27, 29

[27] OpenMP: Wikipedia: http://en.wikipedia.org/wiki/OpenMP

[28] MPI: Wikipedia: http://en.wikipedia.org/wiki/Message_Passing_Interface

[29] NVIDIA News: NVIDIA Dramatically Simplifies Parallel Programming with CUDA 6.

http://nvidianews.nvidia.com/Releases/NVIDIA-Dramatically-Simplifies-Parallel-Programm

ing-With-CUDA-6-a62.aspx

[30] Khronos Group: http://www.khronos.org

[31] OpenCL, Wikipedia: http://en.wikipedia/wiki/OpenCL

107
	

	

	

[32] RenderScript: http://developer.android.com/guide/topic/renderscript/

[33] DirectCompute, Wikipedia: http://en.wikipedia.org/wiki/DirectCompute/

[34] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive performance

comparison of CUDA and OpenCL. In The 40-th International Conference on Parallel

Processing (ICPP’11), Taipei, Taiwan, September 2011.

[35] OpenACC: Directives for Accelerators: http://www.openacc-standard.org

[36] OpenACC, Wikipedia: http://en.wikipedia.org/wiki/OpenACC

[37] C. Yang, W. Xue, H. Fu, L. Gan, L. Li, Y. Xu, Y. Lu, J. Sun, G. Yang and W. Zheng. A

Peta-scalable CPU-GPU algorithm for global atmospheric simulations. In PPoPP

13: proceedings of 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, February 23-27, 2013, Shenzhen, China, pp. 1-12.

[38] D. Komatitsch, D. Goddeke, G. Erlebacher, D. Michea. “Modeling the Propagation of

Elastic Waves Using Spectral Elements on a Cluster of 192 GPUs”. Computer Science –

Research and Development. Vol. 25, No. 1-2. pp. 75-82.

[39] D. Michea, D. Komatitisch. “Accelerating a three-dimensional finite-difference Wave

Propogation Code Using GPU Grapics Cards”. Geophys. J. Int. 182(1) (2010), pp. 389-402

[40] D. Komatitsch, D. Michea, G. Erlebacher. “Porting a high-order Finite-element Earthquake

Modeling Application to NVIDIA Graphic Cards Using CUDA”. J. Parallel Distributed

Comput. 69 (5) (2009) pp.451-460.

[41] D. Komatitsch, G. Erlebacher, D.Goddeke, D. Michea. “High-order Finite-element Sesimic

Wave Propagation Modeling with MPI on a Large GPU Cluster”. J. Comput. Phys. Vol. 229,

Issue 20, Oct. 2010, pp.7692-7714.

[42] R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman, G. Latu. “Fast Seismic Modeling and

Reverse Time Migration on a GPU Cluster”. International Conference on High Performance

Computing and Simulation, 2009, HPCS’09, Leipzig, Germany, pp.36-43. Aug. 07, 2009.

[43] S. Song, T. Dong, Y. Zhou, D. Yuan, and Z. Lu. “Seismic Wave Propagation Simulation

Using Support Operator Method on Multi-GPU System”. In Technical Report, University of

Minnesota, 2010.

[44] T. Okamoto,H. Takenaka, T. Nakamura, and T. Aoki. “Accelerating large-scale simulation

of seismic wave propagation by multi-GPUs and three-dimensional domain decomposition”,

Earth Planets and Space, 62, pp.939-942, 2010

108
	

	

	

[45] T. Okamoto, H. Takenaka, T. Nakamura, and T. Aoki. “Accelerating Simulation of Seismic

Wave Propagation by Multi-GPUs”. AGU2010 Meeting, San Francisco, California, Dec.

13-17, 2010.

[46] T. Okamoto, H. Takenaka, T. Hara, T. Nakamura, and T. Aoki. “Rupture Process And

Waveform Modeling of The 2011 Tohoku-Oki, Magnitude-9 Earthquake”. AGU 2011, San

Francisco, California, Dec. 5-9, 2011.

[47] NSF TeraGrid Facility, http://www.globus.org/solutions/tgcp/

[48] Extreme Science and Engineering Discovery Environment (XSEDE),

https://www.xsede.org/

[49] National Institute for Computational Sciences. Oak Ridge National Laboratory at University

of Tennessee. http://www.nics.tennessee.edu/computing-resources/kraken, 2013

[50] Sourthern California Earthquake Center, http:// www.scec.org

[51] Y. Cui, A. Chourasia, R. Moore, K. Olsen, P. Maechling, T. Jordan, The TeraShake

Computational Platform, Advances in Geocomputing, Lecture Notes in Earth Sciences 119,

DOI 10.1007/978-3-540-85879-9_7, pp229-278, editor H. Xing, Springer-Verlag Berlin

Heidelberg, 2009.

[52] K.B. Olsen, S.M. Day, J.B. Minster, Y. Cui, A. Chourasia, D. Okaya, P. Maechling and T.H.

Jordan, “TeraShake2: spontaneous rupture simulations of Mw 7.7 earthquakes on the

southern San Andreas fault”, Bull. Seism, Soc, Am. Vol.98, no.3, pp. 1162-1185, June 2008,

doi:10.1785/0120070148.

[53] K. Lee, Y. Cui, T. Kaiser, P. Maechling, K.B. Olsen, and T.H. Jordan, “I/O Optimizations of

SCEC AWP-Olsen Application forvPetascale Earthquake Computing,” Supercomputing

conf. (SC’09), 2009, Poster.

[54] P. Maechling, E. Deelman, and Y. Cui, “Implementing Software Acceptance Tests as

Scientific Workflows,” PDPTA CSREA Press, 2009, pp. 317-323.

[55] Amit Chourasia: M8 Quake. http://users.sdsc.edu/~amit/web/viz/m8

[56] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder, V.

Nefedova, D. Quesnel, S. Tuecke. Data Management and transfer in high-performance

computational grid environments. Parallel Computing Journal, Vol. 28, pp.749-771. 2002.

[57] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.

Nefedova, D. Quesnel and S. Tuecke. Secure, efficient data transport and replica

109
	

	

	

management for high-performance data-intensive computing. IEEE Mass Storage

Conference, San Diego, CA, Apr, 2001.

[58] R. Madduri, W. Allcock, C. Hood. Reliable File Transfer in Grid Environments. Proceedings

of the 27th IEEE Conference on Local Computer Networks, pp737-738.

[59] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda and S. Sekiguchi. Grid DataFarm Architecture

for Petascale Data Intensive Computing. Proceedsings of the 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid 2002), pp.102-110, 2002.

[60] D. Thain, J. Basney, S. Son, M. Livny. The Kangaroo Approach to Data Movement on the

Grid. 10th IEEE International Symposium on High Performance Distributed Computing

(HPDC-10’01), 2001.

[61] IRODS: Data Grids, Digital Libraries, Persistent Archives, and Real-time Data Systems.

https://www.iRODS.org/ , 2013

[62] I. Foster, Globus toolkit version 4: Software for service-oriented systems. Proceedings of

IFIP International Conference on Network and Parallel Computing, Springer-Verlag LNCS

3779, pp 2-13, 2005. http://www.globus.org/

[63] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, S. Chen, L. Gilbert, C. Hou, C. Lee, R.

Marciano, P. Tooby, A. Torcy, B. Zhu. iRODS Primer: integrated Rule-Oriented Data

System.(Book to be published)

[64] IA-64 Linux Cluster, San Diego Supercomputer Center, University of California, San Diego.

http://www.sdsc.edu/us/resources/ia64/

[65] SAM (Storage Archive Manager)-QFS, San Diego Supercomputer Center (SDSC).

http://www.sdsc.edu/us/resources/samqfs/index.html

[66] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high performance. Request for

Comments 1323, May 1992.

[67] Simone, A., and S. Hestholm, Instabilities in applying absorbing boundary conditions to

high-order seismic modeling algorithms, Geophysics, 63,1017– 1023, 1998.

[68] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance

model for multi-core architectures. Commun. ACM, 52:65-76. April 2009.

[69] H. Nguyen, Y. Cui, K.B. Olsen, K. Lee, “Single CPU optimization of SCEC AWP-Olsen,”

SCEC Annual Meeting, 2009, Poster.

[70] P. N. Glaskowsky. NVIDIA’s Fermi: The First Complete GPU Computing Architecture.

110
	

	

	

NVIDIA White Paper, 2009.

[71] NVIDIA C Programming Guide, Version 4.0. NVIDIA Cooperation. May, 2011.

[72] P. Micikevicius. 3D Finite-difference Computation on GPUs Using CUDA. In GPGPU-2:

Proceedings of the 2nd Workshop on General Purpose Processing on Graphics Processing

Units, Washington, DC, USA, 2009, pp. 79-84.

[73] A. Schafer, D. Fey. High Performance Stencil Code Algorithms for GPGPUs. In Proceeding

of International Conference on Computational Science, pp.2027-2036. ICCS 2011.

[74] Accelerating a 3d finite-difference earthquake simulation with a c-to-cuda translator. D. Unat,

J. Zhou, Y. Cui, S.B. Baden, X. Cai. Computing in Science & Engineering, 2012

[75] S. Potluri, P. Lai, K. Tomko, S. Sur, Y. Cui, M. Tatineni, K. W. Schulz, W. L. Barth, A.

Majumdar and D. K. Panda. Quantifying Performance Benefits of Overlap using MPI-2 in a

Seismic Modeling Application. International Conference on Supercomputing, Tsukuba,

Ibaraki, Japan, 2010 (ICS’2010).

[76] Blue Water Supercomputer: http://www.ncsa.illinois.edu/BlueWaters/system.html

[77] NCAR Yellowstone Supercomputer: https://www2.cisl.ucar.edu/resources/yellowstone

[78] Olsen, K. et al., Ground Motion Prediction From Low-velocity sediments including

Statistical Models of inhomogeneities in Southern California Basins.

http://scec.usc.edu/scecpedia/SDSC/NCAR_Viz.

[79] Z. Shi and S. M. Day, "Rupture dynamics and ground motion from 3-D rough-fault

simulations," Journal of Geophysical research, vol. 118, pp. 1-20, 2013

[80] R. Taborda and J. Bielak, "Ground-motion simulation and validation of the 2008 Chino

Hills," Bulletin of the Seismological Society of America, vol. 103, pp. 131-156, 2013.

[81] E. H. Field, T. E. Dawson, K. R. Felzer, A. D. Frankel, V. Gupta, T. H. Jordan, T. Parsons,

M. D. Petersen, R. S. Stein, R. J. Weldon II, and C. J. Wills, "Uniform california earthquake

rupture forecast, version 2 (UCERF 2)," Bulletin of the Seismological Society of America,

vol. 99, no. 4, pp. 2053-2107, August 2009.

[82] R. Graves, T. H. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve, C. Kesselman, P.

Maechling, G. Mehta, K. Milner, D. Okaya, P. Small, and K. Vahi, "CyberShake: A

physics-based seismic hazard model for southern california," Pure and Applied Geophysics,

vol. 168, no. 3, pp. 367-381, March 2011.

[83] S. Callaghan, E. Deelman, D. Gunter, G. Juve, P. Maechling, C. Brooks, K. Vahi, K. Milner,

111
	

	

	

R. Graves, E. Field, D. Okaya, and T. Jordan, "Scaling up workflow-based applications,"

Journal of Computer and System Sciences, vol. 76, no. 6, pp. 428–446, September 2010.

[84] P. Chen, L. Zhao, and T. H. Jordan, "Full 3D tomography for the crustal structure of the Los

Angeles region," Bulletin of the Seismological Society of America, vol. 97, no. 4, pp.

1094-1120, 2007.

[85] P. Chen, T. H. Jordan, and L. Zhao, "Full three-dimensional tomography: a comparison

between the scattering-integral and adjoint-wavefield methods," Geophysical Journal

International, vol. 170, no. 1, pp. 175-181, 2007.

[86] C. Tape, Q. Liu, A. Maggi, and J. Tromp, "Seismic tomography of the southern California

crust based on spectral-element and adjoint methods," Geophysical Journal International, vol.

180, no. 1, pp. 433-462, 2010.

[87] Y. Cui, E. Poyraz, J. Zhou, S. Callaghan, P. Maechling, P. Chen and T. H. Jordan,

“Accelerating CyberShake Calculations on XE6/XK7 Platforms of Blue Waters”, Extreme

Scaling Workshop 2013, August 15-16, Boulder, 2013.

[88] Intel Cooperation: Beginning Intel Xeon Phi Coprocessor Workshop Introduction, 2012.

http://software.intel.com/sites/default/files/Beginning%20Intel%20Xeon%20Phi%20Coproc

essor%20Workshop%20Introduction.pdf

[89] OLCF: Titan Simulates Earthquake Physics Necessary for Safer Building Design

https://www.olcf.ornl.gov/2013/12/16/titan-simulates-earthquake-physics-necessary-for-safe

r-building-design/

[90] HPC Wire: Researchers Develop Code that Reduces Time and Cost in Simulating Seismic

Hazards in Apr.02, 2013 from San Diego Supercomputer Center.

http://archive.hpcwire.com/hpcwire/2013-04-02/researchers_develop_code_that_reduces_ti

me_and_cost_in_simulating_seismic_hazards.html

[91] NVIDIA Cooperation - CUDA SPOTLIGHT: GPU-Accelerated Earthquake Simulations.

http://www.nvidia.com/content/newsletters/web/CUDA-Week-in-Review-july-03-13-web.ht

ml

