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Scalable Parallel Programming for High Performance Seismic Simulation on Petascale 
Heterogeneous Supercomputers 

by 

Jun Zhou 
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Professor Clark C. Guest, Chair 

 

The 1994 Northridge earthquake in Los Angeles, California, killed 57 people, injured 

over 8,700 and caused an estimated $20 billion in damage. Petascale simulations are needed in 

California and elsewhere to provide society with a better understanding of the rupture and wave 

dynamics of the largest earthquakes at shaking frequencies required to engineer safe structures. 

As the heterogeneous supercomputing infrastructures are becoming more common, numerical 

developments in earthquake system research are particularly challenged by the dependence on the 

accelerator elements to enable “the Big One” simulations with higher frequency and finer 

resolution. Reducing time to solution and power consumption are two primary focus area today 

for the enabling technology of fault rupture dynamics and seismic wave propagation in realistic 

3D models of the crust’s heterogeneous structure. 
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This dissertation presents scalable parallel programming techniques for high performance 

seismic simulation running on petascale heterogeneous supercomputers. A real world earthquake 

simulation code, AWP-ODC, one of the most advanced earthquake codes to date, was chosen as 

the base code in this research, and the testbed is based on Titan at Oak Ridge National 

Laboraratory, the world’s largest hetergeneous supercomputer. The research work is primarily 

related to architecture study, computation performance tuning and software system scalability. An 

earthquake simulation workflow has also been developed to support the efficient production sets 

of simulations. The highlights of the technical development are an aggressive performance 

optimization focusing on data locality and a notable data communication model that hides the 

data communication latency. This development results in the optimal computation efficiency and 

throughput for the 13-point stencil code on heterogeneous systems, which can be extended to 

general high-order stencil codes. Started from scratch, the hybrid CPU/GPU version of 

AWP-ODC code is ready now for real world petascale earthquake simulations. This GPU-based 

code has demonstrated excellent weak scaling up to the full Titan scale and achieved 2.3 

PetaFLOPs sustained computation performance in single precision. The production simulation 

demonstrated the first 0-10Hz deterministic rough fault simulation. Using the accelerated 

AWP-ODC, Southern California Earthquake Center (SCEC) has recently created the 

physics-based probablistic seismic hazard analysis model of the Los Angeles region, CyberShake 

14.2, as of the time of the dissertation writing. The tensor-valued wavefield code based on this 

GPU research has dramatically reduced time-to-solution, making a statewide hazard model a goal 

reachable with existing heterogeneous supercomputers.  
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Chapter 1 

Introduction 

The No.1 supercomputer Tianhe-2, based on the Top 500 supercomputer list released in 

November 2013, has achieved 54.9 PFLOPs theoretical peak performance. The computing 

architectures today become increasingly more heterogeneous, over 30 supercomputers from the 

November list, in fact, exceed PetaFLOPs computation capability [1]. The computing node of 

these giant machines contains both general-purpose processors and specialized massively parallel 

processors - Graphics Processing Units (GPU). In recent years, a notable portion of large-scale 

scientific applications have taken advantage of the availability of the heterogeneous computing 

architectures. The 2011 Gordon Bell Prize winner, for example, is a phase-field simulation on 

TSUBAME 2.0 supercomputer [2], and four of six 2013 Gordon Bell Prize Finalists in 2013 used  

Titan Supercomputer [3]. The goal of this dissertation is to take physics-based seismic simulation 

to a new level to enable petascale computation on the hybrid heterogeneous systems. 

Earthquake System is one of the most important research challenges to human beings, 

which is to provide society with a better understanding of earthquake causes and effects, with the 

goal of reducing the potential of loss of lives or properties. A variety of numerical methods have 

been utilized for modeling earthquake simulation, such as Finite Difference, Finite Element, and 

Spectral Element. In recent years, many of those earthquake simulations become more and more 

data intensive, and demand not only computing capability and accuracy, but also fast and 

effective computation efficiency. Probabilistic seismic hazard analysis (PSHA) has been effective 

in helping decision-makers reduce seismic risk and increase community resilience. However, the 

earthquake threat is highly time-dependent. To understand risk and improve resilience, we need 

to quantify earthquake hazards in physics-based models that can be coupled to engineering 

models of the built environment. The enabling technology of earthquake system science and 

physics-based PSHA is the numerical simulation of fault rupture dynamics and seismic wave 

propagation in realistic 3D models of the crust’s heterogeneous structure. 

AWP-ODC, which stands for Anelastic Wave Propagation by Olsen, Day and Cui, is a 

3D Finite Difference Time Domain (FDTD) earthquake simulation code [4] used by Southern 
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California Earthquake Center (SCEC) for large-scale earthquake simulations. In 2010, the 

AWP-ODC code achieved a record earthquake simulation named “M8”: a full dynamic 

simulation of a magnitude8 earthquake on the southern San Andreas fault with a time sample rate 

up to 2Hz. The M8simulation produced 360 seconds of wave propagation in an 810km by 405km 

Southern California area, and calculated 436 billion mesh points on a uniform grid with a 

resolution of 40m. The M8 achieved 220 TFLOPS for 24 hours on Cray XT5 Jaguar machine at 

ORNL using 223,074CPU cores, an ACM Gordon Bell finalist [5]. This code has been adapted 

for the reciprocity-based CyberShake calculation, a project aiming at producing a California 

state-wide physic-based hazard map [6]. Accelerating this wave propagation engine is with a goal 

of dramatically reducing hundreds of millions of allocation hours otherwise needed to generate 

such a map at frequency as large as 1-Hz. 

Despite the improvements in heterogeneous computing driven by the increased attention 

from the HPC community, there is a significant burden for porting FDTD simulations to 

CPU-GPU heterogeneous supercomputers. FDTD applications are well known for their low 

sustained FLOPS due to frequent data communication required between the CPU and GPU. For 

this reason, considerable room remains to tune the application performance on the latest hybrid 

architectures. This dissertation presents a multi-GPU implementation of AWP-ODC, and 

describes details of the tuning techniques used for efficient CPU-GPU heterogeneous 

supercomputers. Re-structured from the Fortran-based AWP-ODC CPU code, the GPU-based 

AWP-ODC is written in C before CUDA and MPI are implemented for a hardware-oriented 

design for achieving high performance. To avoid the data communication latency due to the slow 

PCIe connection, our strategy is to extend the computing region on accelerators and decrease the 

number and size of data to be exchanged as much as possible, in order to hide the data 

communication time. The algorithms utilized are highly scalable because they are carefully 

arranged to hide latency of computation and communication, resulting in optimal speedup and 

maximized parallel efficiency. A communication model is implemented to reduce the intra-node 

frequency of data movement between CPU and GPU, which allows complete overlap of 

communication and computation. This model can be extended to general stencil computing on a 

structured grid. This GPU-based AWP-ODC code demonstrates tremendous performance 

improvement, which takes only 5.5 hours to finish a 440 billion mesh points scale earthquake 

simulation using 16K GPUs, the largest ever earthquake simulation performed. The new code is 
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carefully validated against both reference models and earthquake observations before being used 

for large-scale wave propagation simulations by SCEC. 

The new AWP-ODC production code demonstrates perfect weak scaling on Titan, the 

world’s largest GPU-based supercomputer. A sustained 2.3 PFLOPs performance in single 

precision, the code is the most scalable 3D seismic modeling code to date, particularly remarkable 

when considering the 3D computations of data-intensive memory-bound stencils. The new 

AWP-ODC also provides seismology scientists, for the first time, with ability to simulate ground 

motions with large fault ruptures to frequencies as high as 10 Hz in a physically realistic way. 

Most importantly, the new AWP-ODC capability of accelerating strain Green Tensor calculations 

promises a saving of more than 500 million computing core-hours required to generate the 

scheduled California state-wide CyberShake 1.0-Hz seismic hazard map. 

Thesis Contributions 

 Implementation of a highly scalable and efficient AWP-ODC earthquake simulation code for 

CPU-GPU based heterogeneous supercomputers. This new code is redesigned to allow 

optimal performance on the hybrid system. The enhanced computation and communication 

model effectively hide the data communication latency between CPU/GPU and between 

computing nodes. This development results in perfect weak scaling on full Titan scale, with 

a 2.3 PFLOPs sustained performance measured in single precision. 

 Development of an earthquake simulation workflow running on the XSEDE, which supports 

petascale sets of simulations effectively using XSEDE resources, including high 

performance data transfer between supercomputers and data management for tens of 

thousands of Gigabyte input/output files.  

 Demonstrated capability of a first 10-Hz deterministic earthquake simulation by the time of 

the dissertation writing. The new AWP-ODC code is extended to support the SCEC 

CyberShake project with dramatically reduction in time-to-solution and energy cost saving, 

recognized with my HPGeoC Lab colleagues together for the IDC HPC Innovation 

Excellence Award during ISC’2013 [7].  

 The development of this GPU-based AWP-ODC code provides a solid basis prepared for 

upcoming many-core architectures and programming models. This seismic code, for 

example, can be restructured as coarse-grain for the 3D domain and fine-grain for a 2D 
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surface to take advantage of NVIDIA Kepler dynamic parallelism. The original AWP-ODC 

CPU code can be also tuned on the Intel MIC processor, using the high throughput, data 

locality and communication reduction schemes developed through this work. 

Thesis Outline 

 Chapter 2 provides some background and motivation for the dissertation. It describes the 

current heterogeneous supercomputer architectures and also parallel programming models 

for current systems. The chapter also presents some well-known scientific applications 

benefits from the heterogeneous architectures. 

 Chapter 3 introduces the earthquake simulation workflow. Before introducing the workflow, 

we discuss why the workflow is necessary for large scale earthquake simulations and some 

technical background. Next, the chapter presents the workflow framework and provides 

details of its implementation. 

 Chapter 4 presents the single GPU optimization of AWP-ODC. First, it describes our deep 

analysis of AWP-ODC numerical model, showing its characteristics as a 3D 13-point stencil 

computation with data-intensive memory-bound. Then the chapter provides the details of our 

hardware-based optimization and the code validatation.  

 Chapter 5 presents the multi-GPU optimization of AWP-ODC. The chapter first describes 

the original communication model implementation on the CPU-based homogeneous 

supercomputer, then focuses on our enhanced communication model implementation for 

CPU-GPU based heterogenenous supercomputers, designed to reduce communication 

frequency between CPU/GPU and between computing nodes, and also fully hide the 

communication latency. Some code validation and benchmark experiments on OLCF Titan 

are presented. 

 Chapter 6 describes the first 10-Hz deterministic earthquake simulation using our new 

AWP-ODC code running on the OLCF Titan machine. Then our CyberShake simulation 

support and validation is presented, along with some analysis of the computation time 

reduction and power saving for the future CyberShake project. 

 Chapter 7 discusses future directions for high performance earthquake simulation using new 

architectures, and concludes the dissertation. 
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Chapter 2 

Motivation and Background 

This chapter describes the current heterogeneous supercomputers and typical stencil 

computation applications. Section 2.1 provides background information on supercomputers and 

current heterogeneous architectures utilized in the High Performance Computing (HPC) area, 

with an emphasis on the combination of Central Processing Units (CPUs) and Graphic Processing 

Units (GPUs). Section 2.2 introduces popular parallel programming models for supercomputers, 

including OpenMP (Open Multiprocessing), MPI (Message Passing Interface), CUDA (Compute 

Unified Device Architecture), OpenCL (Open Computing Language), and a developing parallel 

programming model OpenACC. Section 2.3 describes some world-class large scale stencil 

computation applications in recent years, and their sustained petascale performance results 

running on the Top 500 supercomputers. Section 2.4 presents a summary and conclusion. 

2.1  Heterogeneous Supercomputers 

“The number of transistors per integrated circuit will double every 18-24 months” [8], 

this famous Moore’s Law has been correct in semi-conductor area for almost 30 years. Then in 

2005, the maximum frequency of 3.8 GHz for a single CPU was reached and chip vendors could 

not achieve a higher number because of the “power wall” [9]: the power density is proportional to 

the cube of the frequency. Therefore, chip vendors chose to integrate two or more processing 

cores using lower frequency into a combined computing unit to provide higher performance. 

Traditional CPUs with more than one core are referred to as general-purpose multi-core 

processors. They can run any kind of applications including operating systems and database 

software. Currently most top 500 supercomputers are installed with this kind of processor [1], 

where each node contains one or two general-purpose multi-core processors. We call them 

“homogenous supercomputers”, because each computing node has exactly the same multi-core 

architecture. 
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Figure 2.1: The homogenous supercomputer, “Kraken”, with each computing nodes containing 
two general-purpose CPU sockets and six cores per socket [10]. 

Figure 2.1 shows one advanced NSF homogenous supercomputer, “Kraken”, installed at 

the National Institute for Computational Sciences (NICS), currently ranked at 35 on the Top 500 

list released in Nov. 2013 [1]. This supercomputer is a member of XSEDE (Extreme Science and 

Engineering Discovery Environment) to support large scale scientific computation and delivers 

more than 700 million CPU hours per year. The NICS Kraken is a Cray XT-5 system with 9,408 

computing nodes and 1.17 PetaFlops peak computing capability. The interconnection is a Cray 

SeaStar2+ router. Each node of the Kraken contains two AMD Opteron processors (Istanbul) with 

12 cores in total. Each AMD multi-core socket has a private 64KB L1 and 512KB L2 cache and 

shares a 6MB L3 cache with other CPU cores on the same socket. The clock frequency is 2.6 

GHz and the total memory size shared by all six CPU cores is 8 GB. The shared memory control 

design is a NUMA (Non-Uniform Memory Access) architecture that maps different memory 

banks to different cores [10].  
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The heterogeneous supercomputer has a very similar architecture to the homogenous 

supercomputer. The primary difference is that each node of a heterogeneous supercomputer is a 

combination of a general-purpose CPU and accelerators, instead of a CPU only. Two 

heterogeneous architectures have been used to build supercomputers: Cell Broadband Engine 

Architecture, and a combination of a general-purpose CPU and one or more GPU [11]. 

The IBM Roadrunner supercomputer located at Los Alamo National Laboratory is based 

on CBEA with a peak performance of 1.7 PetaFlops. It was the first heterogeneous 

supercomputer and also the first Top 500 supercomputer that achieved a sustained 1.0 PetaFlops 

using the Linpack benchmark test [12]. Roadrunner has 6,912 AMD Opteron dual-core 

processors and 12,960 IBM PowerXCell 8iTM processors as computational accelerators [13]. The 

high speed interconnection network is Infiniband. Each node of Roadrunner is a hybrid design, 

containing two AMD Opteron processors plus one IBM PowerXCell 8i processor attached to 

each of them (See Figure 2.2). 

Figure 2.2: Schematic IBM PowerXCell 8i architecture (Cell Processor): consisting of one 
Power Processing Engine (PPE) CPU and eight Synergistic Processing Elements (SPE). SPE is a 
SIMD architecture (Single Instruction Multiple Data). Each SPE has eight processing units called 
SXU (Synergistic Execution Units). Each SXU has a private 256K local memory (LS) and a 
DMA memory engine SMF (Synergistic Memory Flow). One single IBM PowerXCell 8i chip has 
a theoretical 102.4 Gigaflops peak performance and 25.6 GB/sec memory bandwidth [14].  



8	
  
	
  

	
  
	
  

Currently, most heterogeneous supercomputers are not using CBEA, but rather the 

combination of general-purpose CPU and modern programmable GPU, which is very popular and 

widespread deployed for large-scale scientific computation. The latest Top 500 list released in 

Nov. 2013 shows two out of top 10 supercomputers are based on this architecture [1]. Before our 

introduction of these heterogeneous supercomputers, we briefly go over modern GPU design.  

The adoption of Graphic Processing Units for high performance computing starts from 

2007, when the NVIDIA Company released the CUDA language for GPU computing [15]. 

Before that, GPUs were designed for vertices-to-pixels transformation, and rendering images on 

the screen. Their main function was to support and accelerate image or graphic APIs (Application 

Programming Interfaces) from OpenGL or DirectX. But now, GPUs have already evolved into 

powerful multi-core systems with super high parallel computing capability that can handle large 

scale data parallel processing more efficiently than the CPU. In addition to their original 

multimedia application, GPUs have provided significant performance improvement in many 

computation intensive scientific or industrial applications such as astrophysics, climate research, 

earthquake simulation, bioinformatics, financial computing, oil industry and etc [16].  

GPUs are not general purpose but focused on applications with high parallelism, and a 

CPU is also required to control the GPU for data management and non-parallel computing. On 

desktops or servers, the CPU and the GPU are separate chips connected by a PCI Express bus 

(Peripheral Component Interconnect Express). PCIe is very slow compared to the computations 

taking place, so data movement back and forth between CPU and GPU during computing will 

produce a serious performance penalty and should be avoided. On mobile devices, the CPU and 

the GPU are built on the same chip and share global memory, so data movement overhead can be 

avoided by memory mapping. For HPC on supercomputers, we concentrate on the GPU 

computing on server, thus we have to deal with the bottleneck caused by slow data movement, 

which will be discussed in a later section. 

NVIDIA and AMD are the two largest vendors for the GPU computing, the NVIDIA 

Tesla is more popular as a GPU accelerator for large scale scientific computation. In the Top 500 

list released in Nov. 2013, the No.12 Tianhe-1A machine in Tianjin, China and the No.21 

Nebulae in Shenzhen, China have chosen NVIDIA Telsa M2050 and provide 4.70 PetaFlops and 

2.98 PetaFlops respectively [1]. OLCF Titan is the largest CPU-GPU cluster in 2013/2014 ranked 

as No.2. Originally installed with the NVIDIA Tesla M2090, it has been upgraded by the latest 
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generation NVIDIA Kepler chipset and already achieved the theoretical peak performance with 

27.1 PetaFlops, which can be fully in production use by researchers starting from the early of 

2014 [17]. 

NVIDIA Tesla is the first dedicated “general purpose” GPU and targets high performance 

computing market. The Tesla product has gone through the 10-serials, and the Fermi architecture 

(20-serials) and the new Kepler architecture. The Kepler-based GPU was first introduced in early 

2012. Currently, only a few top supercomputers (e.g. Titan and Blue Waters) are installed with 

this new chipset, some other supercomputers are expected to be upgraded from Fermi to the 

Kepler or even newer architectures in 2014. 

The NVIDIA Fermi GPU was the most widely used product for GPU developers up to 

2013. Its fastest product is “Tesla M2090”, which was released in May 2011. As shown in Figure 

2.3, the Tesla M2090 has 16 Streaming Multi-Processor (SM) and 512 CUDA parallel processing 

cores in total (each SM contains 32 CUDA cores, running at 1.3 GHz). It delivers 1,331 GFLOPS 

in single-precision (SP) performance and 665 GFLOPS in double-precision (DP), with 6GB 

GDDR5 memory and 177GB/sec memory bandwidth [18].  

Figure 2.3: Abstract model of the NVIDIA Tesla M2090 GPU device controlled by a general 
purpose CPU [18]. 
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The memory hierarchy of the Tesla M2090 includes high latency off-chip memory 

(global device memory) and low latency on-chip memory (private registers, shared memory, L1 

Cache). The 6 GB global device memory on Tesla M2090 is shared by all 512 CUDA cores. The 

64 KB local SRAM (Static Random Access Memory), including software-managed shared 

memory and hardware-managed L1 cache, can only be accessed by the 32 CUDA cores inside the 

same SM. The private registers (maximum 63) are specific to a thread but not visible to any other 

threads, even in the same thread group. One important feature for the Fermi architecture is that 

the 64KB local SRAM can be split into two different modes: 16KB for L1 and 48KB for shared 

memory or 48KB for L1 and 16KB for shared memory, which provides considerable flexibility 

and optimization space for kernel design on the GPU. All other Fermi GPUs have the same 

architecture as the Tesla M2090 but with different numbers of CUDA cores or global memory 

size.  

In general, Kepler is an architecture that is quite similar to Fermi. They have the same 

execution model, local SRAM feature, warp size and etc. However, Kepler provides more 

advanced features. We’ll use the NVIDIA Tesla K20 as an example, which is GK110 Kepler 

architecture based and widely installed in top supercomputers. Each SMX in Tesla K20 contains 

six times the CUDA cores in the Tesla M2090 (192 cores vs. 32 cores). The clock frequency of 

each CUDA core in K20 has been lowered due to power dissipation limits, but the computing 

performance delivered by K20 is still three times better than the Tesla M2090. Secondly, each 

SMX has three schedulers instead of one in the SM of the Tesla M2090, incorporating two 

important features: Dynamic Parallelism and Hyper-Q. Dynamic Parallelism allows GPU kernel 

to launch its child kernels without going back to the CPU, while in Fermi, all GPU kernel 

launches must be controlled the CPU, which creates a lot of communication overhead between 

the CPU and GPU if there are father-son kernels. Hyper-Q provides more flexibility to GPU 

programmers, which makes sure multiple CPU cores can submit and run GPU kernels/tasks on a 

single GPU simultaneously. The Hyper-Q in K20 provides a maximum of 32 hardware-managed 

connections between the host CPU and the GPU, which strongly supports the hybrid CPU/GPU 

programming [19].  

When executing kernels on the GPU, the CPU controller must transfer the data to the 

GPU global device memory via the PCIe and then invoke the GPU hardware for parallel 

computation. The GPU kernel runs a set of thread groups, with each thread group assigned to a 
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SM and each thread assigned to a CUDA core. Each CUDA core has an individual ALU 

(Arithmetic Logic Unit) and all CUDA cores in the same SM execute the same instruction. 

Therefore, branches and thread divergence should be avoided within the same thread group, 

otherwise it will cause threads to be executed in serial and kill the parallelism. Although each SM 

only contains 32 CUDA cores, the size of each thread group can be up to 1,024 or larger. Each 

thread group is divided into subgroups of 32 and all subgroups running on the same SM are 

arranged and managed by the GPU scheduler.  

Due to the limitation of on-chip memory, GPU programmers should find an appropriate 

size for the thread group in order to achieve good device occupancy. Device occupancy means the 

ratio of the number of active subgroups to the maximum supported subgroups on a single SM. 

High occupancy can always help to hide the data transfer latency from global memory to the 

on-chip memory. For example, if there are two active subgroups on the SM, the hardware will do 

the computation for the first subgroup and also fetch the data prepared for the second subgroup 

simultaneously. However, higher occupancy does not guarantee better computation performance. 

Computing performance not only depends on occupancy, but also combined optimization 

methodology. 

Table 2.1 is a hardware specification comparison between Intel i-7 9600 CPU and 

NVIDIA Tesla M2090, showing the NVDIA GPU has significantly better computing capability 

than the CPU. Fundamentally, the CPU can provide the best performance for single thread tasks, 

but the limited number of cores restricts the data parallelism in the CPU. The GPU sacrifices 

single-thread computing performance and some general purpose processing capability (e.g. 

branch prediction), but provides more parallel processing cores and higher parallel efficiency for 

large scale throughput computing. 

Table 2.1: Hardware Specification comparison between Intel i-7 9600 CPU and NVIDIA Tesla 
M2090 

 
Num. of 

Processor 
Element 

Frequency 
(GHz) 

SP SIMD 
width 

Memory 
Bandwidth 
(GB/sec) 

Peak SP SIMD 
GFLOPS 

Intel i-7 
9600 

4 3.2 4 32 102.4 

NVIDIA 
M2090 

16 1.3 32 177 1,331 
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To compete with NVIDIA in the HPC market, Intel announced a new product called the 

Many Integrated Core (MIC) architecture in June 2011, aiming to enter into the era of HPC 

exascale computing solutions. The goal of the Intel MIC design is to create a x86-compatible 

many-core processor. Current software can benefit from the MIC architecture directly without 

changing any existing parallelization software tools [20]. The first product based on Intel MIC 

targeting HPC is codenamed “Knight Corner”, building on a 22-nanometer manufacturing 

process and featuring the world’s first 3-D Tri-Gate transistors. It will scale to more than 50 Intel 

processing cores on a single chip [21]. Based on the current top 500 supercomputers released in 

Nov. 2013, the No.1 supercomputer China’s Tianhe-2, is powered with this new Intel MIC 

architecture “Xeon Phi”, which has two Intel Xeon IvyBridge processors and three Xeon Phi 

processors with more than 190 cores in each computing node [22]. The new “Stampede” 

upgraded from “Ranger” at Texas Advanced Computing Center (TACC) also includes Intel Xeon 

Phi co-processors and provides more than 7 PetaFlops computing capability [23]. It is widely 

expected that more supercomputers will be designed with the MIC architecture in the next 1 or 2 

years to compete with the current hybrid CPU and GPU mode. 

Figure 2.4: Abstract model of the heterogeneous supercomputer for OLCF Titan and NICS 
Keeneland. The significant difference between the two machines is the number of CPUs and 
GPUs in each node and the interconnections between nodes. 
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Looking back, the first PetaFlops heterogeneous supercomputers powered with the 

combination of a CPU and GPUs is the Tianhe-1A machine in Tianjin, China released in 2012. 

Our research work is primarily based on more advanced heterogeneous supercomputer OLCF 

Titan (No. 2 of Top 500 released in Nov. 2013), and also the NICS Keeneland machine for 

development (Figure 2.4). The OLCF Titan is the Oak Ridge Leadership Computing Facility’s 

(OLCF) next generation, leadership-class supercomputers based on the Cray XK7 hybrid 

architecture [17], which is upgraded from the original Jaguar system, based on the Cray XK6 

system [17]. Currently this giant machine provides a theoretical peak performance of 27.1 

PetaFlops and consists of 18,688 computing nodes. Each computing node in OLCF Titan is 

equipped with one AMD’ 16 cores OpteronTM 6200 serial processor, and one NVIDIA Tesla K20 

Kepler GPU accelerator, connected by a PCI Express GEN2 interface. The interconnection 

between nodes is Gemini, which is 3-dimensional torus topology and provides over 20GB/sec 

bandwidth per node. The Georgia Institute of Technology Keeneland machine is located at NICS, 

which includes 120 computing nodes with total peak performance 255 TeraFlops. Each node of 

this small supercomputer contains two Intel Westmere hex-core CPUs and 3 NVIDIA Fermi 

M2090 GPUs, with a total of 120 nodes, 240 CPUs and 360 GPUs. The interconnection is Qlogic 

QDR InfiniBand [24].  

Peak performance has been mentioned often in previous sections when introducing 

supercomputers. Generally, peak performance is just theoretical number and we can easily 

calculate it using the followed formula: 

CPU_FLOPs = Core_Num * Core_Frequency * SIMD_width (2.1) 

GPU_FLOPs = Core_Num * Core_Frequency * 2 (2.2) 

Total_FLOPs = (CPU_FLOPs + GPU_FLOPs) * Num_Compute_Node   (2.3) 

In Equation 2-1, the SIMD_width is 4 for AMD CPUs and 8 for Intel CPUs due to the 

architecture difference. In Equation 2-2, the MAD or Multiply-ADD instruction has been counted 

as 2 FP operations/per clock cycle in the GPU, so the peak performance is doubled because all 

operations could be MAD.  

To validate the numbers published in Top500 supercomputers, we use OLCF Titan as an 

example. Each compute node in OLCF Titan includes 16-AMD CPU cores and 1 Tesla K20x 

GPU. The peak performance of the AMD 16-core CPU is 16 cores * 2.2GHz * 4 SIMD = 0.1408 
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TFLOPs, and the peak performance of NVIDIA Tesla K20x GPU is 896 DP units x 0.732 GHz * 

2 = 1.31 TFLOPs. Since the total number of compute nodes is 18,688 on the OLCF Titan, so the 

peak performance in total is (1.31 + 0.1408) * 18,688 = 27.1125 TFLOPs, which exactly matches 

the number published by the Top 500 [1]. 

However, peak performance is just a theoretical value, and none of application codes in 

the world can achieve that level, because the data fetch always take time even if the cache hit rate 

is 100%. Also not every operation is FP (e.g. branch) or can be completed in single clock cycle 

(e.g. division). Furthermore, most operations in the GPU program are Non-MAD instead of MAD. 

Computation pattern is largely determined by the algorithm. For this reason, a programmer 

cannot replace all computation with the MAD instructions. Therefore, the peak performance for 

Non-MAD GPU applications is considered to be up to 50% of the Full-MAD ones. 

LINPACK software has always been utilized to measure the actual performance of 

supercomputers. The LINPACK uses the BLAS (Basic Linear Algebra Subprograms) to perform 

vector and matrix operations [25]. The algorithm is highly computation intensive, and MAD 

friendly for GPU as well. The Top 500 rank is based on the outcome of LINPACK and updated 

every six months. In the latest list released in Nov. 2013, the maximum performance measured 

and the theoretical peak performance for the No.1 China’s Tianhe-2 machine are 33.8 PFLOPs 

and 54.9 PFLOPs respectively. And the maximum performance measured and the theoretical 

peak performance for the largest CPU-GPU heterogeneous supercomputer OLCF Titan are 17.5 

PFLOPs and 27.1 PFLOPs respectively. 

2.2  Parallel Programming Tools and Models 

Programming on heterogeneous supercomputers must deal with multi-core general 

purpose CPUs and multi-core modern GPUs. Applications designed for single-thread CPUs must 

be completely restructured and redesigned to make full use of the massive parallelism provided 

by supercomputers. Many parallel programming tools and models targeting HPC on 

supercomputers can help programmers control the parallel computing units and complex memory 

hierarchy. Understanding these parallel programming tools and models can help programmers 

understand the underlying architecture better and achieve higher computation performance. We 

will present the most popular parallel programming tools and models for heterogeneous 
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computing in this section. 

2.2.1 OpenMP (Open Multi-Processing) 

OpenMP is a parallel programming model for shared memory architectures and also the 

industry standard API for multithreaded programming on shared memory architectures [26]. For 

shared memory architectures, a number of CPU processors/cores share the same physical memory 

space. If these processors are utilizing a single address space and have the same view of the 

physical memory, communication can be easily implemented and controlled through shared data 

stored in the memory. Atomic operations or semaphores are also supported in shared memory 

architectures to avoid conflict when accessing the shared data. Based on these key features of the 

shared memory architectures, OpenMP has been released to help programmers write multithread 

applications simply and efficiently. The first version of OpenMP was released in 1997, which 

only supported the Fortran language. The latest version, 4.0, was released in July 2013 and 

supports C/C++ and Fortran on most processing architectures and operating systems [27]. 

OpenMP programming is just a set of high level compiler directives for parallel 

application programmers. The OpenMP-enabled compiler automatically generates parallel codes 

based on the annotation defined in the program. The OpenMP programming model is based on 

Fork-Join parallelism. The program executes a single master thread, that will spawn a team of 

threads when encountering annotated parallel codes. All multi-threading execution is invisible to 

programmers but implemented by the compiler. Figure 2.5 is an example for the loop work 

sharing use case. 

Figure 2.5: An OpenMP example for loop work sharing use case. The compiler will divide the 
iteration space into a lot of small chunks. Each thread will be executing on the same loop code 
but only on its own chunk. Suppose there are 8 threads requested, then the thread No. “N” will 
process variable “i” ranging from N*8 ~ N*8 + 7. Variable “i” is different and variables “A” and 
“Max” are same for each thread, so variable “i” is defined as private while variables “A” and 
“Max” are defined as shared.  

void	
  main()	
  
{	
  
	
   int	
  i	
  =	
  0,	
  Max	
  =	
  64,	
  A[100];	
  
	
   #paragma	
  omp	
  parallel	
  private	
  (i)	
  shared	
  (A,	
  Max)	
  
	
   for(int	
  i=0;	
  i<Max;	
  i++)	
   	
   	
   	
   A[i]	
  =	
  i;	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
}	
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OpenMP is a relatively easy to implement. However, the shared memory programming 

model has some scalability issues. The memory bus becomes the performance bottleneck if more 

and more processors concurrently access the same physical memory. In addition, programmers 

cannot control the parallelism, which might not achieve the best performance because of 

overhead caused by the compiler.  

2.2.2 MPI (Message Passing Interface) 

MPI is a parallel programming model for distributed memory architecture. Unlike the 

shared memory architecture, each core has its own memory. Even though some processors might 

share the physical memory, the memory space for each processor is still invisible to others. The 

biggest advantage of the distributed memory architecture is scalability. The number of processors 

in a machine can be as large as possible. The biggest disadvantage of the distributed memory 

architecture is data communication. All data communication between processors needs to pass 

through the interconnection (shared physical memory or network), and the scalability of a 

machine is strongly limited by the network capability. In addition, programmers must take care of 

the data communication instead of the compiler in OpenMP. 

MPI is an industry tool and standard for data communication on distributed memory 

architectures. It is language independent and supports both point-to-point and collective data 

communication [28]. The first MPI version was released in 1994 after a draft version discussed 

and presented at the Supercomputer Conference in 1993 (SC’93). The latest and most popular 

MPI version, 1.3, was released in 2008. The MPI-2, which includes many new features such as 

parallel I/O, dynamic process management, remote memory control, is a subset of the MPI 

version 1.3 [28]. 

MPI provides a very strong capability to help programmers develop parallel applications 

on large machines. However, extra effort or algorithm designs are still required to achieve better 

performance when using MPI. For example, programmers can choose either a blocking or 

non-blocking style of point-to-point communication. Blocking helps to guarantee the shared data 

is 100% correct before processing the next step, but the communication latency might be high. 

Non-blocking can reduce the data communication latency effect, since CPUs can do some 

computation work while waiting for new shared data, but programmers need to check the 

correctness of the data before the CPU does any computation.  
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2.2.3 CUDA (Compute Unified Device Architecture) 

CUDA is a parallel programming model designed by NVIDIA, running on NVIDIA GPU 

devices for general purpose processing. The CUDA programming model provides both low level 

and high level APIs to support the C/C++ and Fortran languages. All operating systems running 

on the desktop with NVIDIA GPUs and the Android system running on NVIDIA Tegra chipset, 

supports CUDA programming. The first CUDA SDK was released in 2007, and has been updated 

every year since then. Currently the latest CUDA SDK is version 6.0. The new CUDA 6 offers 

many new features to make GPU programming simple and provide high performance [29]. 

NVCC is the NVIDIA CUDA compiler and compiles both host (CPU) and device (GPU) code. 

The basic unit for CUDA programming is the thread. Each thread has a global ID and 

local ID for programmers to assign its computation work. Unlike the CPU hardware thread, 

which has a private program counter (PC) and works independently, CUDA threads are grouped 

into 32 as a warp. A CUDA thread is mapped into the real CUDA core in the NVIDIA GPU 

hardware. All 32 threads in the same warp share the same PC and follow the same execution. For 

branches or diverges, threads in the same warp have to be serialized to finish the execution, which 

will cause a performance penalty because some threads are idle instead of computing.  

A GPU kernel requests thousands of hundreds of CUDA threads to execute the 

computation. All threads are divided into blocks and blocks are mapped onto the Streaming 

Multi-processor (SM) in order. For example, the NVIDIA M2090 has 14 SMs, so only 14 blocks 

can be running simultaneously. Once one block is finished with its computation, the next 

available block will take over the resource. Inside each block, warps scheduling and management 

are controlled by the hardware scheduler. As shown in Figure 2.6, the GPU scheduler helps to 

hide the data access latency and keep all CUDA cores busy on computation. In addition to 

sharing the computing resource, threads/warps in the same block can also share data through 

shared memory. However, synchronization is required when using shared memory, to guarantee 

the shared data is updated before use. GPU programmers must be careful in determining where to 

put the variables. Private registers are fastest but limited in number and cannot be shared. Shared 

memory is larger, fast but needs synchronization. Global memory is largest and shared, but the 

access latency would kill the performance. 
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Figure 2.6: Warps scheduled and managed by the GPU scheduler (suppose occupancy is very 
low and only a single warp can be mapped to the SM). First, warp 0 takes over the hardware to do 
the computation. Once warp 0 starts to perform data access (fetching or storing data from 
global/shared memory), the scheduler switches to warp 1 and lets warp 1 take over the hardware 
resource and start the computation. When warp 1 starts the same data access and warp 0 has not 
finished the data access yet, the scheduler continues to warp 2 and keeps the GPU busy on 
computation. After warp 2 enters into the data access mode and warp 0 is done with the data 
access, the scheduler will switch back to let warp 0 resume its computation work.  

2.2.4 OpenCL (Open Computing Language) 

OpenCL is an industry open parallel programming standard for heterogeneous computing 

systems including CPU, GPU, DSP, FPGA and other processors (see Figure 2.7 for details). 

OpenCL standard is maintained by non-profit technology consortium Khronos Group [30]. The 

OpenCL was initially developed and supported by Apple only, and now it has been adopted by 

most of the top industry vendors including: Apple, Intel, Qualcomm, AMD, NVIDIA, Samsung, 

ARM Holdings and some others [31]. Some companies developed their own similar languages 

instead of supporting OpenCL, such as Renderscript from Google [32] and Directcompute/C++ 

AMP from Microsoft [33]. The first OpenCL 1.0 was released in late 2008 and the latest version 

is OpenCL 2.0 released in July 2013. OpenCL 2.0 includes a lot of new programming features 

and provides more flexibility to programmers, such as shared virtual memory (SVM) and 

Dynamic parallelism. 
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Figure 2.7: Ideal heterogeneous system architecture (HSA) for OpenCL programming: using a 
single programming language to control all four different computing devices in the same 
application. Each computing device has its private L2 cache. Fast data sharing via Shared L3 
instead of DRAM can minimize data communication latency between different computing 
devices.  

The OpenCL programming model is quite similar to CUDA. The host device launches 

kernels on the computing device, and each kernel requests thousands of threads to finish 

computing tasks in parallel. There is some different terminology between CUDA and OpenCL 

including: “thread” vs. “work-item”, “block” vs. “work-group”, “shared memory” vs. “local 

memory” “warp” vs. “wave” and “streaming multi-processor” vs. “shader processor”. In addition, 

CUDA supports more features than OpenCL, such as the Hyper-Q, which allows multiple CPU 

cores to launch and run their kernels on the same GPU simultaneously. However, CUDA is 

limited to the NVIDIA GPU product, while OpenCL is supported by most computing devices 

with great portability. To compile OpenCL code, a company always has its own compiler support, 

such as the AMD parallel processing software kit and the Qualcomm LLVM (Low Level Virtual 

Machine) compiler. OpenCL code can be compiled during run-time or pre-compiled as binary 

like the pre-compiled CUDA code by the NVCC. 

The NVIDIA GPU also supports OpenCL. However, the performance gap between 

CUDA and OpenCL is large when running an identical code on the same NVIDIA GPU device. 

Fang et. al. [34] did a comprehensive performance comparison of CUDA and OpenCL, and they 

found CUDA performs at most 30% better than the OpenCL. The reason could be CUDA is 

specificly designed for NVIDIA GPUs and can make full use of the hardware for optimization 

and tuning. But OpenCL must support all kinds of computing devices and has to sacrifice some 

optimization options due to the architectural differences.  
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2.2.5 Future Parallel Programming model - OpenACC 

OpenACC is a parallel programming model newly proposed by Cray, CAPS, NVIDIA 

and PGI [35]. Similar to OpenMP, the OpenACC offloads loops or parallel parts from the host 

CPU to attached accelerators (GPU, Cell processors, etc) for high performance computation. The 

programmer inserts directives before the loop in their high-level language program, then the 

OpenACC compiler and run-time libraries help to manage all computing tasks on accelerators, 

including initiating and releasing devices, and data transfer between devices. Programmers do not 

have to learn the architecture of the underlying computing system, but simply provide the 

performance-related information to the OpenACC compiler. The main purpose of the OpenACC 

is to simplify parallel programming on heterogeneous computing platforms. The OpenACC was 

first introduced at the International Supercomputing Conference 2012 (ISC’12) and the draft 

version was presented at Supercomputing 2012 (SC’12). In 2013, the commercial compiler PGI 

began supporting OpenACC and the GCC compiler is also adding support for OpenACC [36].  

Because OpenACC is not widely utilized yet, there are limited publications about the 

performance comparison between OpenACC and manually optimized codes. In OpenACC 

programs, only regions indicated by programmers run on the accelerators, while other parts 

execute on the host CPU. There might be more interactions between host and accelerators, 

bringing larger overhead than the manually optimized codes. In addition, the OpenACC compiler 

might request more register usage than manually optimized code, which would reduce the parallel 

efficiency and could not maximize the computation performance. Nevertheless, as the computing 

hardware continues upgrading and compilers keep improving, we believe OpenACC will become 

more powerful in the near future, comparable to CUDA and OpenCL as a main tool for parallel 

programming today. 

2.3  Petascale Stencil Computation Applications 

As the computation capability of top supercomputers has scaled from terabyte to petabyte 

levels in last five years, many large scale scientific applications have benefited from this 

increased computing power and achieved significant performance gains after aggressive tuning. 

Here we briefly show some world famous scientific computation applications, that have some 

similarity to our AWP-ODC applications in either the use of stencil or in application. All 
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application information and result numbers are from their publications. More details can be read 

through reference papers [2, 37-46]. 

2.3.1 Phase-field Simulation 

The Gordon Bell Prize winner at SC’2011 by T. Shimokawabe et al. from Tokyo Institute 

of Technology demonstrated a multi-GPU implementation of phase-field simulation modeling for 

dendritic solidification, that achieved 1.017 PetaFlops in single precision using 4,000 GPUs and 

16,000 CPUs on TSUBAME 2.0 Supercomputer [2].  

The phase-field model introduces a continuous parameter to describe whether the 

material is solid or liquid. The numerical model includes one second-order finite difference 

scheme for space and one first-order forward Euler-type finite difference method for time on a 3D 

regular computation grid (shown in Figure 2.8a). To compute a center point (i, j, k), a total of 26 

elements (6 phase field values and 19 concentration values) need to be read from memory, and 2 

elements (one phase field value and one concentration value) written back to memory.  

TSUBAME 2.0 supercomputer is located at Tokyo Institute of Technology, and is now 

upgraded to TSUBAME 2.5 ranked as No. 11 based on Top 500 released in Nov. 2013. 

TSUBAME 2.0 contains 1,408 computing nodes, where each node has two 6-core Intel Xeon 

X5670 CPUs and three NVIDIA Tesla M2050 Fermi GPUs. The interconnection is fat-tree with 

200 Tbps bi-section bandwidth. The full GPU simulation code is compiled by CUDA version 3.2. 

T. Shimokawabe et al. have developed three multi-GPU implementations in their search 

for higher computation performance, including a GPU-only method, a Hybrid-YZ method and a 

Hybrid-Y method. The GPU-only method allocates each individual sub-domain into a separate 

GPU, and the GPU takes over the entire computation. For the Hybrid-YZ method, the CPU 

computes outer region, which contains all data to be swapped, and the GPU computes the rest 

inner region. The Hybrid-Y method balances the load between CPU and GPU, meaning 

computation time and communication time spent by CPU and GPU are almost equal. As shown in 

Figure 2.8b, the weak scaling result shows the Hybrid-Y method achieved both high computation 

performance and better scalability.  
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Figure 2.8: (a) Spatial access pattern for the phase field and concentration. (b) Weak scaling 
performance by using a GPU-only method, a Hybrid-YZ method and a Hybrid-Y method in both 
single precision (SP) and double precision (DP) [2]. 

2.3.2 Global Atmospheric Simulation 

Global atmospheric simulation is a key component in climate modeling and helps 

scientists understand dynamic behaviors of the global atmosphere. Yang et al. from the Chinese 

Academy of Science developed a peta-scalable hybrid algorithm applied in a cubed-sphere 

shallow-water model for global atmospheric simulations. Their experiments demonstrated nearly 

ideal strong and weak scaling on Tianhe-1A supercomputers, with sustained performance of 0.8 

PetaFlops in DP (1.6 PetaFlops in SP) using 45,000 CPU cores and 3,750 GPUs [37]. 

The numerical model of the shallow-water equations has been simplified into two 2D 

second order finite difference schemes, which requires two 2D stencil computations at each time 

step. For each cell (i, j), 13-point mesh cell information is read from memory and the updated cell 

writes back to the memory (shown in Figure 2.9a). Yang et al. developed CPU-only and hybrid 

CPU+GPU algorithms. The main idea is to balance computational load and reduce the 

communication latency between the CPU and GPU. As shown in Figure 2.9b, the tuned 

CPU+GPU method has achieved nearly perfect weak scaling on Tianhe-1A as the number of 

computing nodes increased from 6 to 3,500.  
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Figure 2.9: (a) Top: state reconstruction in cell(i, j). Bottom: 13-point stencil exhitbits a diamond 
shape. (b) Weak scaling results on Tianhe-1A using CPU-only and hybrid CPU+GPU [37]. 

2.3.3 Seismic Simulation 

Seismic simulation is to quantify earthquake hazards in physics-based models that help to 

understand risk and improve resilience in seismically active regions. Detailed simulation hazard 

maps can provide system engineers, emergency responders and disaster planner with a realistic, 

high resolution scenario to understand the earthquake damage. In 2010, the largest ever 

wall-to-wall earthquake simulation on San Andreas Fault was achieved on OLCF Jaguar 

CPU-based machine, with the seismic frequency exceeding 2Hz and the computation size 

approaching 1017 mesh points [5]. The arrival of new heterogeneous supercomputers has opened 

the door to even higher frequencies and spatial resolution, and it provides seismologist more 

opportunities to simulate and study earthquakes at petascale level for the first time. 

A number of previous research projects focused on acceleration of seismic simulations 

have used a heterogeneous computation solution (CPU + GPU) [38-46]. Dimitri Komatitsch and 

his research team at CNRS/University of Aix-Marseille France has implemented the first GPU 

version of seismic simulation code including SPECFEM3D [38], finite-difference time domain 

(FDTD) [39] and finite-element [40-41]. Komatitsch et al. scaled their seismic simulation codes 

up to 192 Tesla 10 serial GPUs and achieved more than a 20 times speedup compared to 
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CPU-only codes. Abdelkhalek et al. [42] demonstrated 10 times and 30 times speedups with their 

3D FD implementation of reverse time migration (RTM) and seismic application respectively on 

8 NVIDIA 10 serial GPUs. Song et al. [43] accelerated the Support Operator Rupture Dynamic 

(SORD) code with 14 times speedup on 64 NVIDIA 10 serial GPUs. Okamato et al. [44-46] 

successfully accomplished the Tohoku-Oki earthquake simulation using a CPU/GPU solution, 

and reached 2.2 TFlops on 120 GPUs of the TSUBAME supercomputer. 

2.4  Summary 

In this chapter, we described two kinds of modern supercomputer architectures in details, 

including homogeneous and heterogeneous. General CPUs plus acceleration units have been the 

main stream for heterogeneous computing nodes, with CPU+GPU as the most popular one based 

on Top500 supercomputers released in November 2013. As the computation performance 

primarily relies on massive on-chip parallelism controlled by both hardware and software, 

programmers must better understand the architectures, and become familiar with programming 

models in order to deliver high performance solution. MPI+CUDA has been selected as our 

programming model and tool. This is because we target OLCF Titan supercomputer, in which 

each computing node consists of one AMD 16-core CPUs and one NVIDIA Kepler GPUs. 

We also introduced some of the advanced petascale stencil applications including seismic 

codes using heterogeneous solution. Compared to our AWP code, two petascale applications have 

smaller order of finite difference methods (4 vs. 2) and also deal less with memory-bound issue. 

None of the current seismic simulation codes mentioned in Section 2.3.3 have been extended to 

petascale level. These research investigates accelerations and time-to-solution reduction using 

smaller CPU/GPU clusters compared to CPU-only solutions. In the following chapters, we 

present new AWP code with nearly perfect scalability achieved. The new AWP provides seismic 

scientists, for the first time, with petascale ability to simulate ground motions from large fault 

ruptures to frequencies as high as 10 Hz in a physically realistic way.  
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Chapter 3 

Earthquake Simulation Workflow 

This chapter presents the whole earthquake simulation framework and the scientific 

workflow designed for the petascale earthquake simulation running on the XSEDE. Generally, 

earthquake simulation involves significant bookkeeping. This includes data collection for the 

simulated earthquake regions, translating these data into the simulation format, pre-processing 

these data before the simulation, running the full simulation on supercomputers and 

post-processing data to generate the hazard mapping for scientific research or industrial purposes. 

Our role in the simulation is to design the simulation and pre/post-processing software, run SCEC 

seismic simulations on XSEDE. SCEC provides the input meta-data. The simulation output is 

visualized by Amit Chourasia at SDSC, and the results are analyzed by the SCEC community. 

Moving from terascale to petascale, large scale earthquake simulations invovle multiple 

steps, and several hours of supercomputer computation to complete a single run. For example, the 

M8 simulation run on Jaguar machine in 2010, took around 24 hours and generated several 

peta-bytes of data for scientific research. Generally, it is unrealistic to repeat such a large 

capability simulation because of the allocation cost and significant manpower invovled. Moreover, 

there could be some data corruption during the peta-byte data transmission between 

supercomputers due to the network or file system issue, which would cause the whole simulation 

results useless and also a huge waste in computation hours. Therefore, we came up with an 

automatic workflow developed to support the data management of a petascale earthquake 

simulation, which helps manage the simulation process and make sure all data produced are valid 

and safely backed up.  

In this chapter, Section 3.1 describes some project background and motivation, including 

the XSEDE (replaced and expanded from previous TeraGrid) platform and our project center 

SCEC. Earthquake components are briefly introduced in Section 3.2 in order to better understand 

why our scientific workflow is required. Section 3.3 presents the detailed scientific workflow, 

which includes the workflow framework, software tools and simulation results tested on XSEDE 

using the Shakeout simulation. Conclusions and future work will be presented in Section 3.4. 
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Figure 3.1: NSF XSEDE Facility, including nine major supercomputers located across the United 
States. San Diego Supercomputer Center (SDSC) is one of the main connector, so our research 
can make full use of the whole XSEDE computing resource. [47]. 

3.1  Background and Motivation 

As shown in Figure 3.1, XSEDE of the United States is the world’s largest most 

comprehensive distributed cyberinfrastructure for open scientific research. It includes almost 20 

Petaflops of computing capability and 30 Petabytes for data storage and archiving. Recently the 

TeraGrid has been renamed as the Extreme Science and Engineering Discovery Environment 

(XSEDE) [48] and some supercomputers have also been upgraded to hybrid computing mode 

(CPU + GPU). Table 3.1 gives a system overview and technical specifications for the two top 

supercomputers (TACC-Stampede and NICS Kraken) in the XSEDE . 

Table 3.1: System overview and technical specification for Stampede and Kraken [23, 49] 

Supercomputers TACC-Stampede NICS-Kraken 

Peak Performance 9.6 PetaFlops 1.17 PetaFlops 

Compute Nodes 6,400 nodes and 522,080 cores 9,408 nodes and 112,896 cores 

Memory 270 TeraByte 147 TeraByte 

File System Storage 14 PetaByte 3.3 PetaByte 

Inter-Connection FDR InfiniBand Network Cray SeaStar2+ 
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Significant high performance scientific applications, such as those in bioinformatics, 

physics, earth science, astronomy, etc, are running on XSEDE. In recent years many of those grid 

applications have become more and more data intensive and massive amounts of data in such 

applications are shared and distributed across the XSEDE resources. Therefore, the ability to 

support large scale data transfer, management, distributed access and analysis becomes the key to 

adapting those data-intensive applications to exploit the aggregate capacity of the computing and 

storage resources on the XSEDE. 

SCEC [50] is a large user of XSEDE, consuming more than tens of millions of allocation 

hours each year. Researchers in the SCEC Community Model Environment (CME) program have 

developed a geophyics and IT collaboratory platform that performs seismic hazard analysis and 

geophysical modeling in the Southern California area, including a Petascale Cyberfacility for 

Physics-based Seismic Hazard Analysis Research called PetaSHA. Now the PetaSHA simulations 

are moving from TeraScale to PetaScale and our research group, led by Prof. Yifeng Cui at SDSC, 

has developed an automatic end-to-end scientific workflow to support PetaSHA simulation on 

XSEDE using the AWP-Olsen-Day-Cui (AWP-ODC) code [51]. Figure 3.2 is the SCEC 

Shakeout wave propagation simulation output on the TACC-Ranger machine (the predecessor of 

TACC-Stampede) using the AWP-ODC code in 2009, which computed billions of mesh points 

and generated several hundreds of TeraBytes of data for a 1-Hz earthquake study on the southern 

San Andreas fault. As the largest mesh simulations move into hundreds of billions of elements 

range, dynamic source nodes on fault are reaching millions, decomposing files have increased to 

hundreds of thousands, terabytes of data are transferred between sites increasingly frequently. 

High performance data transfer and ingestion in this scientific workflow becomes essential to 

support the scientific analysis on the heterogeneous collection of computational and storage 

resources on XSEDE. 

Based on the characteristics of data types in the scientific workflow and heterogeneous 

resources on XSEDE, we examine the issues related to performance optimizations of data transfer 

and ingestion in this scientific workflow to support SCEC PetaSHA simulations. Some popular 

tools for data transfer and management on XSEDE are introduced and invovled in our workflow, 

e.g. Globus and iRODs system. The primary goal is to ensure the correctness of data before 

running any computation jobs in the workflow and minimize the time-to-solution by reducing 

data transfer and archiving time. 
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Figure 3.2: SCEC Shakeout simulation of a Mw7.8 earthquake on the southern San Andreas fault: 
600 x 300 x 80 km domain, 100m resolution, 14.4 billion grids, upper frequency limit 1-Hz, 3 
minutes, 50k timesteps, minimum surface velocity 500m/s, dynamic source, velocity properties 
SCEC CVM 4.0 model. This simulation will be used as an example case in Section 3.2/3.3 [52]. 

3.2  AWP-ODC Simulation Components 

The AWP-ODC code is a fourth order finite difference 3D wave propagation code with a 

full package including pre-processing, simulation solver and post-processing. Here we briefly 

describe each component of the AWP-ODC software package in order to show why the scientific 

workflow is necessary for earthquake simulation. More details for each component of the 

AWP-ODC can be found in our SC’10 paper [5].  

In earthquake simulation, the input data includes two types: mesh and source. The mesh 

data can be treated as the property of each point in the simulation domain and the source is the 

earthquake center that pumps energy out which propagates to other points. Generally, the number 

of mesh points equals the domain size, while the number of source points is limited and 

determined by the specific earthquake. The pre-processing tools in AWP-ODC have Mesh 

Generator CVM2MESH, Petascale Mesh Partitioner PetaMeshP, Dynamic Source Generator 

dSrcG and Dynamic Source Partitoner PetaSrcP. The simulation solvers in AWP-ODC are 

Dynamic Fault Rupture Solver DFR and Wave Propagation Model AWP. The post-processing is 

composed of Validation Toolkit aVal, derived Products dPDA and iRODs ingestion tool PIPUT. 

In the simulation solvers, there are also Mesh Reader and Source Reader designed to handle data 

distribution between different compute nodes/cores. 
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Figure 3.3: Components of the AWP-ODC, including input data pre-processing, simulation and 
output post-processing. 

CVM2MESH is a mesh generator software developed by Patrick Small at SCEC, which 

is to extract material properties for each mesh point in the simulation domain. This software has 

been implemented using a scalable parallel algorithm. The program first partitions the 3D 

earthquake simulation domain into slices along the z-axis and then assigns an individual CPU 

core to extract the values of each mesh point in its slice from the original CVM model. The main 

computation is to find the corresponding position in the original CVM model for each mesh point, 

then set its values to the mesh point. In the end, all CPU cores write their outputs into a shared 

file created by the MPI-IO API for parallel writing. This mesh file will be saved as the input for 

the AWP-ODC earthquake simulation. Since the mesh file is for all mesh points in the 3D 

simulation domain, there is no need to store the location information. So the format for the mesh 

file is purely values saved in order, e.g. [values for 3D location (0, 0, 0) ], [values for 3D location 

(0, 0, 1) ], [values for 3D location (0, 0, 2) ] …. [values for 3D location (N-1, N-1, N-1) ]. This 

helps to maintain all the information with a minimum file size.  

dSrcG is a Kinematic Source Generator tool to generate the moment rate time histories at 

a finite number of points in the simulation domain. Unlike the mesh file, the source file does not 

contain information for each mesh point, but only for a limited number of points. The format for 

each source file is the 3D location and the sequential full time serial moment information, e.g. 

[3D location], [timestep 1], [timestep 2] …. [timestep N]. The file size for the source not only 

depends on the number of source points, but also the frequency and the earthquake duration. If 

the frequency is high, then we will have more timesteps for the same amount of earthquake run 

time. Generally the file size is in the hundreds of giga bytes range due to the tens of thousands of 

source points and high frequency simulation.  



30	
  
	
  

	
  
	
  

Figure 3.4: Two Partition Methods in PetaMeshP: the left is the serial approach and the right is 
the parallel approach [53].  

CVM2MESH generates a single file of enormous size, in the hundreds of giga bytes or 

even several terabytes range, depending on the 3D domain size. Since the AWP utilizes hundreds 

of thousands of CPU cores to do the computation, each core can only handle a small amount of 

data due to the limited shared memory at each computing node, and PetaMeshP is the tool to 

pre-partition the mesh data before the main computation, which has provided the AWP scalable 

capability to handle different sizes of input mesh data.  

PetaMeshP tool [53] includes a serial approach and a parallel approach, as shown in 

Figure 3.4. The serial approach is quite straightforward, and PetaMeshP generates the meta file 

for each CPU core. Suppose we request 1000 cores to do the computation, then the PetaMeshP 

will generate Media0001.bin, Media0002.bin, ….Media1000.bin. The number in the names of 

these partitioned mesh files corresponds to the rank of its CPU cores, for example, the rank 600 

CPU core reads the Media0600.bin file to do the main computation. The advantage for this 

approach is easy implementation and it also reduces the load of the file system significantly, 

because each CPU just accesses its own file and no shared file access happens during file input. 

The disadvantage is that the mesh files must be regenerated to use a different number of CPU 

cores or decomposition topology. The parallel approach is designed to solve this disadvantage. 

Unlike the serial approach, the parallel approach does not generate these separate files, but 

directly passes the data into the right memory for each CPU core. The parallel approach has 

another academic name called “two layer data decomposition”. In the first layer, a small number 

of the CPU cores read big chunks of continuous data from the file system, and the second layer 

distributes the data into the right CPU cores. More details about the parallel approach are 

presented in SC’09 poster [53]. 
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PetaSrcP is to distribute the source to the associated CPU cores. As discussed earlier, 

dSrcG generates a single moment-rate file, as the CVM2MESH does, and the source points only 

exist in a limited number. Therefore, PetaSrcP computes the right location for each source point 

and generate the source files for the associated CPU core. Since the data in the partitioned source 

file is primarily time serial information, we partition the source file again into smaller files based 

on time steps, which can help reduce the memory load for the CPU core. Otherwise, if there are 

several hundred source points belonging to the same CPU core and the simulation time is long, 

then the size of the partitioned file can be hundreds of mega bytes and not much memory space is 

left for computation. After the PetaSrcP data partition, the source files will be named: 

fault0001_0000.bin, fault0001_0300.bin, fault0001_0600.bin, …, fault0001_4800.bin, …, 

fault000N_0000.bin, fault000N_0300.bin, fault000N_0600.bin, …, fault000N_4800.bin. The first 

four digits mean the associated rank of CPU core and the last four digits are the beginning 

timestep of this source file. PetaSrcP has the same limitation as the PetaMeshP serial approach. 

We need to regenerate the partitioned source file if using different number of CPU cores or 

decomposition topology.  

Mesh Reader is the beginning of the simulation, which has four options in the 

AWP-ODC. The first option is homogeneous mesh input, where the mesh property is the same 

for all mesh points and calculated based on some input parameters. The second option is to 

handle the smaller mesh/simulation size. Each CPU core computes its data offset and acquires the 

data directly from the same mesh file via MPI IO and the parallel file system. The third option is 

to read the partitioned mesh files generated by the PetaMeshP serial approach. This option is 

utilized when dealing with hundreds of thousands of processor cores to ensure scalable and high 

performance I/O bandwidth. The last option is to use the PetaMeshP parallel approach to read 

large mesh file directly. 

Source Reader runs throughout simulation. After each timestep, the simulation must add 

new source time history information to simulation prepared for the next timestep. Source Reader 

consists of two options. The first option is to handle smaller source input. The main CPU core 

reads in all source information and then broadcasts it to all other CPU cores. Then each CPU core 

calculates its own source and starts the simulation. The second option is to read the partitioned 

source directly from the file system generated by PetaSrcP. This option is always utilized to 

handle the huge source input in Petascale level earthquake simulation.  
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Figure 3.5: AWP main computation running on supercomputers is utilizing tens of thousands of 
processors. The 3D simulation domain is decomposed into many small 3D grids, which are 
mapped into those processors. Data communication between processors close to each others 
occurs during the computation due to the computation characteristics.  

The AWP main computation starts after the mesh reader and initial source reader finishes 

the input processing. This is the core part of the AWP-ODC software, which computes the time 

serial wave propagation information for the whole 3D domain. Each timestep in the main 

computation includes two steps: the first step is to compute velocity information based on the 

stress information, and the second step is to compute new stress based on the updated velocity 

information. The computation was primarily running on CPU-based supercomputers earlier. 

Chapters 4 through 6 focus on the heterogeneous solution and present the results.  

As the AWP computation lasts for several hours for large-scale earthquake simulation, 

fault tolerance is required to deal with hardware or system issues. For example, if one computing 

node died during our computation, then the whole simulation would stop or crash because MPI 

messaging is blocked. In this case, the simulation will need to be restarted. Without fault 

tolerance feature, all internal state information of a previous run will be lost. Therefore, 

checkpointing is fundamental and implemented in AWP, and all the internal state variables are 

saved periodically to provide a restart capability. Since the mesh and source information will be 

read again in the restart simulation, we only record the time-related information including 

veloicty, stress and some intemediate variable information. 
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Figure 3.6: Improved AWP high performance output programming model. The concept is very 
similar as the parallel mesh read. First each core redistributes data into its right output core, which 
has a big continuous memory chunk. Then write these big chunk data into the file system with 
high throughput. 

After the AWP simulation code finishes the entire computation, the output data must be 

written into the file system for further scientific study. The output data includes three velocity 

files for the x, y, and z directions separately. In order to record the time serial information, 

velocity data must be saved every N timesteps (N is configured before the simulation). Therefore, 

the output data is also in the hundreds of gigabytes range or even larger. The size of data to be 

saved at each timestep is equal to the 3D domain size. All outputs generated by the simulation 

also need to be carefully archived for future research. 

Since our simulation code is using hundreds of thousands of CPU cores, the file system 

cannot afford many cores to write data into a single file simultaneously, because of the limited 

number of I/O ports shared across the whole system. Hence, we came up with a solution based on 

the idea of the parallel Mesh Reader, which is the reverse way of the Mesh Read. The improved 

solution uses a small number of CPU cores to write data into the file system in parallel instead of 

writing from all CPU cores. Before writing, data is redistributed via MPI communication and 

packed into big continuous memory data blocks (shown in Figure 3.6). Therefore, there is no data 

block that overlaps between output CPU cores, which guarantees high throughput on the parallel 

file system. 
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After the simulation is completed successsfully, post-processing is required to help 

validate results, visualize the outputs, and archive the files. Our derived products aVal 

(Automated Verification) compares new simulation results to the “correct” results from the 

reference solution by least-squares fit (L2 norm) [54]. Amit Chourasia from our team at SDSC 

has special visualization tools to generate earthquake wave propagation movies [55]. dPDA and 

PIPUT are data management script tools developed based on iRODs, which will be discussed 

more in Section 3.3. 

3.3  End-to-End Earthquake Simulation Workflow 

The goal is to develop a scientific workflow, that is designed to support SCEC PetaScale 

simulations on XSEDE and intended to manage jobs and data for the AWP-ODC simulation 

application. As the complexity and size of the simulation grows, increasing sizes of input or 

output datasets threatens to outpace the ability to archive and transfer them from site to site in this 

workflow. As discussed in Section 3.2, SCEC PetaScale wave propagation simulation on the 

supercomputers typically processes two major input data files with a total size in the 

multi-terabyte ranges, and generates hundreds of thousands of multi-gigabyte output files in a few 

hours. Also, based on the scientific workflow design shown in Figure 3.7, tremendous volume of 

partitioned data files must be transferred across XSEDE. Hence the challenge of improving the 

performance of this workflow lies in the demand for fast, efficient and reliable data transfer and 

management. 

High performance data transfer and ingestion in grid applications has always been an 

active area of research.  GridFTP [56-57] is a well-known and popular data transfer tool based 

on Globus that produces high-performance, secure and efficient data transfer technologies 

optimized for high-bandwidth wide-area networks in Grid environments. Reliable File Transfer 

(RFT) Service [58], a transfer service developed for grid applications, addresses a wide variety of 

problems such as dropped connections, machine reboots and temporary network outages 

automatically via retrying. Grid Datafarm (Gfarm) [59], an architecture designed for petascale 

data-intensive computing, exploits local I/O in a grid of clusters with hundreds or thousands of 

nodes and achieves high data transfer rate by parallel I/O read and write operations. Kangaroo 

[60], a simple data movements system, makes opportunistic use of disks and networks to improve 



35	
  
	
  

	
  
	
  

end-to-end data movement performance in grid environments. However, tools or systems 

described above mostly focus on data transfer between machines but have no data monitor or 

verification capability. In addition, some software packages supporting distributed storage 

environment on XSEDE, such as the leading iRODS software [61], typically utilizes incompatible 

and unpublished protocols for data transfer. 

Based on the characteristics of data types in the scientific workflow and heterogeneous 

resources on XSEDE, we examine the issues related to performance optimizations of data transfer 

and ingestion in this scientific workflow to support SCEC PetaSHA simulations. The primary 

goal is to ensure the correctness of data before running any computation jobs in the workflow and 

minimize the time-to-solution by reducing data transfer and archiving time. 

Figure 3.7: System architecture of an end-to-end scientific workflow for a SCEC PetaScale wave 
propagation simulation. An Shakeout simulation example are presented here: data pre-processing 
on NICS Kraken, Simulation on TACC Ranger and data archived to iRODs digital library. 
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Three major components are included in our scientific workflow: data pre-processing, 

solver simulations and validation, and post-processing data archival. In the Shakeout simulation 

example as shown in Figure 3.7, two major kinds of data transfer are addressed in the workflow: 

one is the data transfer between heterogeneous supercomputer clusters on XSEDE, e.g. from 

NICS Kraken [49] to TACC Ranger, and the other is data archival from supercomputer cluster to 

iRODS system, e.g. Ranger to iRODS digital library. To investigate these data issues and the 

feasibility of high performance data transfer and management, we consider integrating advanced 

data grid tools, remote computation and high-bandwidth networks for solutions. Since data 

transfer tends to dominate overall simulation performance, the performance evaluation of 

optimization approaches is focused on transfer or ingestion rate and reliability. All experiment 

results reported are conducted on the Shakeout Simulation case carried out on XSEDE. 

3.3.1 Data transfer between supercomputers 

This section presents an enhanced protocol framework that implements data transfer and 

parallel verification and suggests optimal Globus toolkit [62] parameters for efficient data transfer 

as part of this framework. This protocol framework has been utilized for high performance data 

transfer in our scientific workflow. Before describing the framework in some details, we 

introduce the Globus tool and the commands in use for the framework as well as the functions 

they performed to help improve the data transfer rate. 

The Globus Data Grid Toolkit developed within the Globus project provides a 

middleware for grid computing environments. Its component Grid Security Infrastructure (GSI) 

provides public-key-based authentication and authorization services, and resource management 

services [56]. The GridFTP transfer service uses GSI and supports large amounts of data transfer 

on Grid. Another feature available is the remote resource access and job management in grid 

environments. Two important commands of the Globus Toolkit are used in this framework 

including: globus-url-copy for data transfer and gsissh for remote access management. 

For the globus-url-copy command, we have to manually set the TCP buffer size, the 

number of parallel streams, and the third-party file transfer option with the following syntax: 

globus-url-copy –vb –notpt –tcp-bs <buffer> -p <parallel> gsiftp:// 

<source-machine>/<source-file> gsiftp:// <dest-machine>/<dest-file> 

where <buffer> is the TCP buffer size, <parallel> is the number of parallel streams, 
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<source-machine> is the location for source data files and <dest-machine> is the destination 

machine for the data files. To avoid high latency and bandwidth problems encountered in 

networks and maximize the transfer performance, we choose TCP buffer sizes from 1K byte to 

64Mbyte and number of parallel streams from 1 to 32 sockets. The optimal parameters supported 

by Ranger and Kraken are found to be 11Mbyte for the TCP buffer size and 12 sockets for 

parallel streams. The maximum rate achieved during the data transfer from Kraken to Ranger was 

450MB/sec, which is about 33% of the theoretical maximum network bandwidth shared with 

other TG users (10Gbits/sec). 

With the gsissh command, we can access data files on a remote machine, generate the 

MD5 checksum of each file, and save it to the local machine for data verification with the 

following syntax:	
   	
  

gsissh <dest-machine> md5sum <filepath> > <local-path> 

where <dest-machine> is the remote machine storing source data files, <filepath> is the 

source data file path on the remote machine, md5sum command is to generate the MD5 checksum 

and <local-path> is the storage path on the local machine. The MD5 checksum was employed to 

verify all data files before running any production jobs to ensure the correctness, and the gsissh 

command can help to generate MD5 checksum from the destination machine to the local machine 

directly, which costs 50% less time than generating MD5 checksums on the destination machine 

and transferring them back to local. 

Figure 3.8: Enhanced protocol framework model of high performance data transfer from NICS 
Kraken to TACC Ranger. 
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The enhanced framework brings together the Globus toolkit and parallel approaches for 

high performance data transfer. Figure 3.8 shows a real user case, that utilizes this protocol 

framework to do high performance data transfer from NICS Kraken to TACC Ranger. Detailed 

protocols are described as follows: 

Step1: TACC Ranger (destination supercomputer machine) sends a request to NICS 

Kraken (source supercomputer machine) for data transfer with location information. The NICS 

Kraken checks the data availability and sends a ready signal back to the TACC Ranger, which 

resembles the handshaking protocol in networking. 

Step2: If the ready signal is true, the TACC Ranger enables the Globus tool with 12 

threads for source data file transfer. After the network connection is built successfully and the 

data file start to transfer, TACC Ranger requests another 8 CPU cores using MPI (Message 

Passing Interface) batch jobs for remote MD5 checksum generation.  

Step3: Partitioned Data Management Engine (PDME) in the NICS Kraken allocates data 

files in equal numbers to each core in TACC Ranger and then remote MD5 checksum generation 

is executed on the TACC Ranger. This is to ensure each CPU cores on TACC Ranger is 

generating the MD5 checksum for independent files (e.g. CPU core 0 processes file 0, 8, 16, …, 

CPU core 1 processes file 1, 9, 17, … and etc). 

Step4: When the file data transfer and MD5 checksum generation are finished, these 8 

CPU cores on TACC Ranger begin to verify data files in parallel and record information about 

any incorrect data file. 

Step5: Ranger sends this information on incorrect data files to Kraken, and PDME in 

Kraken locates these data files and resends and verifies them individually until all data files are 

correct. Then the Simulation or Validation Job Management Engine (SVJME) accesses these 

transferred data files and starts computing jobs. 

In the Shakeout testing case, the number of partitioned data files is 6,400 and the size of 

each file is around 120 MB, the total size is around 770 GB. The total time spent on data transfer 

is 3881 seconds and the average transfer rate is 198.40MB/sec. Benefiting from the parallel 

implementation, the transfer time has been reduced by more than 73%, as the original data 

transfer and verification took over 4 hours using a single core in sequential order. Additional 

robustness and reliability are obtained due to the automatic error detection feature implemented in 

this framework. 
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3.3.2 Data management and archival 

In addition to the high performance data transfer, data management and archival are the 

other important issues in our scientific workflow. The iRODS system is software middleware that 

can be tuned to implement any desired data management application, ranging from a Data Grid 

for sharing data across collaborations, to a digital library for publishing data, to a preservation 

environment for long-term data retention, to a system for federating real-time sensor data streams 

[63]. In the Shakeout example (Figure 3.2), we set up an iRODS client on the TACC Ranger, and 

an iRODS server on SDSC IA64 machine, where the SCEC collection (iRODS digital library) 

[64] is located on SAM-QFS (Storage Archive Manager- Quick File System) [65] with 16 tape 

drives and 304 TB disk cache. Normally there are four kinds of data to be managed and archived:  

1. Original input data provided by seismologists, over 500GB in size. 

2. Partitioned data with total size the same as original data but comprising hundreds or 

thousands of small data files. 

3. Simulation code, configuration files and running scripts for the execution 

environment.  

4. Output data including surface and volume information, in which the size of each 

volume file is over 10 GB. 

Therefore, we set up a strategy as follows to pre-process these data files prior to archival 

and optimize archival performance to register the data into the iRODS digital library. 

Figure 3.9: Enhanced protocol framework model of high performance data transfer from NICS 
Kraken to TACC Ranger. 
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Before data archival, consider three types of jobs in pre-processing: sorting out 

directories that contains over 1000 files and compressing them individually, selecting single files 

whose size is larger than 10GB, and combining simulation code, configuration files and running 

scripts together. Because the tar command may take substantial computation resources, we take 

advantage of MPI batch jobs to arrange these tasks in parallel to improve the efficiency. 

Figure 3.9 shows example data preprocessing for the Shakeout example. In Shakeout 

simulation, a node including 16 cores on the Ranger machine was requested for data 

pre-processing. When the simulation was finished, a job queue containing 28 jobs was generated. 

These jobs were mapped equally to those requested 16 cores and executed in parallel. After each 

job was finished, the scientific workflow then transferred the pre-processed file to the archival 

machine via iRODS system automatically. 

Transfer of massive data sets to the iRODS digital library was accomplished in usual case 

by using a single iPUT command. The iPUT command can either ingest a whole directory 

hierarchy or a set of files. This mechanism is a multithreaded application and adapts the number 

of threads it uses to the size of the file it transfers. For example, if a file is 32MB or smaller, the 

iPUT command will utilize a single process and no additional threads will be spawned. If the file 

has a size between 32MB and 63MB then it will utilize one additional thread. Continuing in this 

fashion, if the file is of size 512MB or larger then it will use 16 threads, which is the maximum 

possible number per iPUT command. Our experiments showed that for large files (larger than 

3GB) the maximum transfer rate using a single iPUT command with 16 threads is 28MB/sec 

(evening test with lower system and network load). Thus, our goal was to find ways to improve 

the ingestion rate and to investigate mechanisms to automate the ingestion and the efficiency of 

data validation. 

Figure 3.10: Systems involved in the process of data transfer from Ranger to the iRODS digital 
library. 
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Figure 3.10 shows the data transfer rate measured as a combined performance result of 

many systems, where some hardware performances are fixed or depend on file system activities 

beyond our control. Below is a list of some of these systems involved in the data transfer: 

1. Hard disk layout on source machine 

2. File system organization and load on source machine 

3. CPU utilization 

4. Network bandwidth and load 

5. iRODS client and server configuration and server load 

6. SAM-QFS performance and load 

Our approach for improving transfer and ingestion rates focuses on improving CPU 

utilization and modification of iRODS client and server configurations to improve the network 

bandwidth utilization. Experiment platforms are the TACC Ranger machine and the SDSC IA64 

machine with the iRODS system for the Shakeout example. 

There are two alternatives to increase CPU utilization. One is using MPI, and the other is 

to use the multithreaded capabilities of iPUT and to concurrently invoke many iPUT processes. If 

one uses MPI then the multithreaded capabilities of iPUT will be lost. Our experiments indicated 

that 16 threads per iPUT rarely helped concurrently executed iPUT commands, however, 2 

threads per iPUT did make a difference that allowed us to improve the rate more than six-fold.  

To improve the CPU utilization, we altered the number of parallel iPUT commands and 

the number of threads each command uses. We were advised to not increase the number of 

concurrently running iPUT commands beyond 16, since iRODS server would not be able to 

handle a higher number efficiently, and we experimentally observed degradation in performance 

beyond 16 iPUT commands.  

Figure 3.11(a) presents an ingestion experiment in which we have fixed the number of 

concurrently executing iPUT commands to five and vary the thread count. The goal is to 

determine whether higher thread count results in increased performance or not.  It shows that the 

ingestion rate and the thread count are inversely proportional. 

In the following experiment we fixed the number of threads per iPUT to two. As shown 

in Figure 3.11(b), we vary the number of concurrently invoked iPUT commands. With sixteen 

parallel iPUT and each using two threads, the maximum ingestion rate we achieved is 

177.8MB/sec. 
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(a) 

(b) 

Figure 3.11: (a) For five concurrent iPUT commands and thread count varied between 3 and 16, 
best performance is achieved with thread count of three. (b) For two threads per iPUT, maximum 
rate achieved with 16 iPUT commands running concurrently can be up to 177.8MB/sec 

Based on our knowledge, SAM-QFS has only two nodes connecting it to the network 

with each having 1Gbits/sec bandwidth, hence the combined I/O bandwidth available to 

SAM-QFS is 2Gbits/sec. Note that 177.8MB/sec is equal to 1422.4Mbits/sec, which means this 

maximum dataflow rate can be up to 66% of theoretical maximum bandwidth of SAM-QFS. 
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For iRODS server and client configuration, we explored the effect of the size of the 

sliding window on the transfer rate. The higher the size of the sliding window TCP uses, the 

higher the ingestion rate, because the client can stream data up to the size of the window without 

expecting an ACK from the server. The iRODS server and client are flexible and can vary the 

size of the sliding window. The TCP window option, defined in RFC 1323 [66] can be used to 

increase the maximum window size from 65,535 bytes to 1 Gigabyte. Currently the iRODS server 

and client can use up to a 16MB window size. 

On the iRODS server side, the size of the sliding window can be adjusted by modifying 

the last parameters of microservice in msiSetNumberThreads. If it is set to 16,777,216, then the 

server will use a 16MB window size. On the iRODS Client’s side, the default sliding window size 

is 1M, and it can also be modified by setting SOCK_WINDOW_SIZE to 16*1024*1024 (16MB). 

These two optimizations were combined into our data transfer workflow and experiments 

demonstrated an average rate of 133MB/sec ingestion rate achieved from TACC Ranger to 

iRODS digital library, which is nearly five times as the maximum rate achieved per iPUT 

command (28MB/sec). 

3.4  Conclusions 

In this chapter, we have presented high performance data transfer and ingestion carried 

out in a scientific workflow to support SCEC petascale simulations on XSEDE. The scientific 

workflow for the Shakeout simulation case is an outstanding example that shows the efficiency of 

our optimizations provided for SCEC Petascale simulations. This chapter’s contributions are as 

follows. 

We have suggested best parameters for Globus toolkits to maximize data transfer 

performance. An outstanding feature is the protocol framework for data transfer between 

supercomputer clusters on XSEDE. We have also utilized advanced MPI batch jobs to generate 

MD5 checksums and verify data files in parallel. The total data transfer time has been reduced by 

more than 73% based on these parallel implementations. 

For data archival from supercomputer clusters to iRODS digital library, we developed a 

new strategy for data management and pre-processing. A job queue is created to sort out 

directories containing hundreds of thousands of files, pick up large data files and tar small files 
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together. MPI batch jobs are utilized to help run these jobs in parallel to shorten the running time 

and reduce the load on supercomputer clusters. When archiving data from Ranger to the iRODS 

system, we improved CPU utilization and modified the iRODS server and client configuration. 

We achieved an average transfer rate of 133MB/sec, which is nearly five times faster than the 

conventional iRODS method. 
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Chapter 4 

Single GPU Optimization 

This chapter presents our hands-on performance tuning experience and describes 

optimization approaches for higher computational efficiency of 13-point asymmetric 3D stencil 

based Finite Difference code used in AWP-ODC, with more focus on aggressive performance for 

the second generation NVIDIA GPU “Fermi” chipset. We completely rewrote AWP-ODC in C 

and CUDA in order to take advantage of the powerful GPU computing capabilities. We present 

performance comparisons between our fully optimized AWP-ODC Fortran MPI code running on 

different multi-core CPU systems and the new CUDA code running on different GPU chipsets. 

Benchmarks on NVIDIA Tesla M2090 demonstrated 10 times speedup versus the original fully 

optimized AWP-ODC FORTRAN MPI code running on a single Intel Nehalem 2.4 GHz CPU 

socket (4 cores/CPU), and 15 times speedup versus the same MPI code running on a single AMD 

Istanbul 2.6 GHz CPU socket (6 cores/CPU). Sustained single-GPU performance of 143.8 

GFLOPS in single precision is benchmarked for the testing case of 128x128x960 mesh size on 

the NVIDIA Tesla M2090 GPU. 

NVIDA GPU architectures for scientific computation have gone through three 

generations including Tesla 10x series, Fermi, and Kepler. All optimization approaches described 

in this chapter are mainly based on the Fermi, since Kepler was not available during the time we 

worked on single GPU code porting. However, most of these approaches work very well on the 

Kepler architecture. Benefit from the faster read-only memory and more flexible shared memory, 

further optimization research work could make our computing code running faster on this new 

chip, which will be described in the future work section. For the same reason, some optimization 

approaches cannot be run on the Tesla 10x series because of the architecture differences, e.g. 

there is no L1 cache on Tesla 10x GPUs.  

In this Chapter, we first will describe the analysis of the 13-point asymmetric 3D stencil 

kernels. Then brief summary of our CPU optimization and results will be presented. After that, 

we will discuss our optimization approaches in detail using both the algorithm and experiments. 

Finally, performance comparisons are shown to demonstrate excellent optimization results.  
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4.1  AWP-ODC Kernel Analysis 

This section describes the formulation of the AWP-ODC numerical model and analysis of 

the computation kernels. AWP-ODC solves a 3D velocity-stress wave equation using an explicit 

method with a staggered-grid finite difference method, fourth-order accurate in space and 

second-order accurate in time. The coupled system of partial differential equations includes the 

particle velocity vector ν and the symmetric stress tensorσ [5]. Let:  
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Then the governing elastodynamic equations are [1]: 
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λ and µ are the Lame coefficients and ρ is the constant density. Simplifying formulae 

(4.3) and (4.4) lead to three scalar-valued equations for velocity vector components and six 

scalar-valued equations for the stress tensor components, which are listed below: 
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AWP-ODC is a memory-intensive application using twenty-one 3D variable arrays in the 

main computation loop. In AWP-ODC, two computation kernels for velocity and stress are 

carried out in sequence for wave propagation simulation based on numerical approximation of the 

partial differential equations. At each time step in the main loop, for each mesh point in the 

domain, the velocity computation kernel updates three velocity components (in X, Y, and Z 

directions) by using six stress components (on XX, YY, ZZ, XY, XZ, and YZ faces), and then the 

stress computation kernel employs these updated velocity components to update six stress 

components. We have twenty-one 3D arrays to be maintained in the memory to process the wave 

propagation, including velocity, stress and coefficients. In addition to the three velocity vector 

components and six symmetric stress tensor components, 6 temporary variables (r1, r2, r3, r4, r5, 

r6) and 6 constant coefficients (λ , µ , ρ , quality factor for S wave Qs and P wave Qp , 

boundary condition variable Cerjan Cj [67]) are utilized in the numerical modeling. The size of 

each 3D array is the same as the 3D simulation domain, hence effective memory fetching is the 

key to achieving high computation performance. Figure 4.1 is the detailed pseudo-code of the 

computation kernels in the main loop based on the numerical approximation of the formulae 4.5 ~ 

4.13:  
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Figure 4.1: AWP-ODC pseudo code for computation kernels: vx stands for velocity in x 
direction. xy stands for stress xy component. c1, c2 and x1 are scalar constants. r1 and r4 are 
intermediate variables and also updated in stress calculation. d1 is the constant density ρ , while 
xm, xl, xmu1 qpa, h, h1and x2 are 3D static lame coefficient variables derived from λ  and µ . 

Main Loop: 

Do T= timestep 0 to timestep N: 

Compute velocities (vx, vy, vz) using stress (xx, yy, zz, xy, yz, xz)  

Update values of velocities (vx, vy) along the surface 

Update values of velocities (vz) based on (vx, vy) along the surface 

Compute stress (xx, yy, zz, xy, xz, yz) based on velocities (vx, vy, vz) 

Update values of stress (zz, xz, yz) along the surface 

END DO 

 

Velocity Computation Kernel (only vx computation is shown here, similar for vy & vz) 

vx(i, j, k) += d1(i,j,k)*( c1*(xx(i, j, k) – xx(i-1, j, k)) + c2*(xx(i+1, j, k) – xx(i-2, j, k)) 

                    c1*(xy(i, j, k) – xy(i, j-1, k)) + c2*(xy(i, j+1, k) – xy(i, j-2, k)) 

                    c1*(xz(i, j, k) – xz(i, j, k-1)) + c2*(xz(i, j, k+1) – xz(i, j, k-2)) ) 

 

Stress Computation Kernel 1 (only xx computation is shown here, similar for yy & zz) 

vxx = c1*( vx(i+1, j, k) – vx(i, j, k) ) + c2*( vx(i+2, j, k) – vx(i-1, j, k) ) 

vyy = c1*( vy(i, j, k) – vy(i, j-1, k) ) + c2*( vy(i, j+1, k) – vy(i, j-1, k) ) 

vzz = c1*( vz(i, j, k) – vz(i, j, k-1) ) + c2*( vz(i, j, k+1) – vz(i, j, k-2) ) 

tmp = (xl + d_DT*qpa)*(vxx + vyy + vzz) 

a1  = d_DT*qpa*(vxx + vyy + vzz) 

xx(i, j, k) = (xx(i, j, k) + tmp – xm*(vyy + vzz) + vx1*r1(i, j, k))*dcrj(i, j, k) 

r1(i, j, k) = x2(i, j, k)*r1(i, j, k) - h(i, j, k)*(vyy + vzz) + a1 

 

Stress Computation Kernel 2 (only xy computation is shown here, similar for xy & yz) 

vxy = c1*( vx(i, j+1, k) – vx(i, j, k) ) + c2*( vx(i, j+2, k) – vx(i, j-1, k) ) 

vyx = c1*( vy(i, j, k) – vy(i-1, j, k) ) + c2*( vy(i+1, j, k) – vy(i-2, j, k) ) 

xy(i, j, k) = xy(i, j, k) + xmu1(i, j, k)*(vxy+vyx) + x1*r4(i, j, k) 

r4(i, j, k) = x2(i, j, k)*r4(i, j, k) + h1(i, j, k)*(vxy + vyx) 
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Figure 4.2: Analysis of AWP-ODC Computation Kernels based on the pseudo-code in Figure 2: 
(a) is the velocity computation kernel for vx, 13 point asymmetric stencil computation involving 
3 stress components. (b) and (c) are for the stress component xy computation, two asymmetric 
stencils in x and y directions respectively. Asymmetric stencil computation is the same as the 
regular stencil computation for single CPU/GPU programming, but the asymmetric property is 
good for MPI optimization for multi-CPUs or GPUs programming. 

The 13-point asymmetric stencil computation for vx in the AWP-ODC main loop is 

shown in Figure 4.2a, where reads occur 12 times in three different 3D arrays and writes occur 

only once in one 3D array. Stress component xy calculation includes two 1D asymmetric stencils 

(Figure 4.2b and 4.2c), with only 4 reads from a single 3D array and also one writes in one 3D 

array. Approximately 136 reads, 15 writes and 307 FLOPs calculations in total are involved for 

each point of the 3D domain in a single iteration. Moreover, data access for these reads and writes 

occurs in the twenty-one 3D arrays described before, and each computation kernel involves more 

than three 3D variable arrays. Table 4.1 summarizes the analysis of the three kernels in Figure 4.2, 

showing that AWP-ODC is a memory-bound application because of the low FLOPS to bytes ratio 

(the average operation intensity is around 0.5), which means the application has poor temporal 

data locality and the performance is dominated by the memory system or arithmetic throughput 

[68]. Again it shows that improving the data locality has been the key to achieve the high 

computing performance for AWP-ODC kernels. 

Table 4.1: Analysis of Computation Kernels in AWP-ODC Main Loop 

Kernels Reads Writes FLOPs FLOPs/Bytes 

Velocity Computation Kernel 51 3 86 0.398 

Stress Computation Kernel 85 12 221 0.569 

Total 136 15 307 0.508 
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4.2  AWP-ODC CPU Implementation/Optimization 

The AWP-ODC CPU implementation and optimization works was done in 2010 by a 

team led by Prof. Yifeng Cui at SDSC including myself. Details are published in our SC’10 paper 

[5]. Here I will present some summary for further comparison between CPU and GPU 

optimization. The AWP-ODC CPU implementation/optimization includes three main parts: 1. 

reducing the expensive operations; 2. cache blocking for better data locality; and 3. loop unrolling 

to improve cache utilization. On OLCF Jaguar CPU-based supercomputer in 2010, the 

performance gain was around 40% at full system scale, with 31% from arithmetic optimization, 7% 

from cache blocking and 2% from loop unrolling.  

In the numerical formulae, the coefficients mentioned in Section 4.1 are constant in the 

entire simulation. However, the original numerical model requires reciprocal form of these 

coefficients, such as the lam and mu (coefficients for S wave and P wave), which are computed in 

the form 1/lam(i, j, k) and 1/mu(i, j, k) instead of lam(i, j, k) and mu(i, j, k). Therefore, 

pre-computed reciprocal values for these coefficients are stored and used in the main computation 

loop to avoid these expensive division operations [69]. Another reduced expensive operation is 

the “mod” function. We eliminated the mod function from the innermost computing loop by 

replacing it with itx = 3 - itx, where the value of itx alternates between 1 and 2. Removal of the 

mod enabled the compiler to vectorize the arithmetic in a compute-intensive loop. 

The critical subroutines share the same three nested loop structures. Each node executes 

the loop over its processor’s local mesh, which achieves good memory access behavior. However, 

the cache utilization rate is very low, primarily due to the requirement of assessing values in 

multiple 3D arrays with varying second or third indices. When one of these values is accessed, 

the whole cache line containing the value is fetched into the L1 cache. Since the number of 

variables in the inner loops is large, a cache line is usually evicted from the L1 cache right after 

being referenced.  

To improve cache utilization, we need to access as many values per cache lines loaded as 

possible. The cache blocking technique provides better cache utilization. A 3D difference 

algorithm can be extremely limited in memory bandwidth, and the number of variables that must 

be fetched from memory is relatively high given the computation performed. If the required 

operands are in cache, the effectiveness of cache reuse in the difference code is low since the 
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amount of data during the computation of an entire plane will exceed the size of the L1 and L2 

caches. Consider the AWP-ODC CPU code is developed in Fortran code, so the memory access 

pattern for each 3D variable array mu(i, j, k) is fast in i direction and slow in k direction. Here is 

an example showing how we implement the cache blocking for 3D 13-point stencil computation: 

(a)                                       (b) 

Figure 4.3: Detailed example shows the cache blocking optimization for AWP-ODC CPU 
Fortran code. The left (a) is before cache blocking and the right (b) is after cache blocking, where 
the block size is decided by kblock and jblock.  

For any reasonably sized grid in Figure 4.3a, the lines containing the variables from the 

j-1 and k-1 planes will not be located in cache when the difference equation is performed on the 

next plane. If the grid is subdivided into smaller sub-grids, the operands from the j-1 and k-1 

planes may still be in cache as the computation progresses. As shown in Figure 4.3b, the values of 

kblock and jblock are chosen to guarantee that the operands on subsequent planes are still in 

cache while those planes are computed, so that each grid point will be accessed eight times. If the 

cache blocking is perfect, then a variable will only be fetched from memory once and the other 

seven fetches will be from the L1 or L2 cache. The values of kblock and jblock are dependent 

upon the number of operands accessed within the loop and the cache/cache line size on the 

 

 

Do k = nzb, nze 

Do j = nyb, nye 

Do i = nxb, nxe 

 xm = 8.0/( mu(i, j, k) + mu(i+1, j, k) 

+ mu(i, j-1, k) + mu(i+1, j-1, k) 

        +mu(i, j, k-1) + mu(i+1, j, k-1)   

+mu(i, j-1, k-1)+mu(i+1, j-1, k-1) ) 

End Do 

End Do 

End Do 

Do kk = nzb, nze, kblock 

Do jj = nyb, nye, jblock 

 Do k = kk, min(kk+kblock-1, nze) 

 Do j = jj, min(jj+jblock-1, nye) 

Do i = nxb, nxe 

 xm = 8.0/( mu(i, j, k) + mu(i+1, j, k) 

+ mu(i, j-1, k) + mu(i+1, j-1, k) 

        +mu(i, j, k-1) + mu(i+1, j, k-1)   

+mu(i, j-1, k-1)+mu(i+1, j-1, k-1) ) 

End Do 

End Do 

End Do 

End Do 

End Do 
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architecture. For our M8 simulation on Jaguar, the optimal solution was found to be 16/8 for the 

j/k direction.  

Loop unrolling techniques are also utilized to improve cache utilization and data locality, 

even though some compilers automatically incorporate this form of optimization. Due to the 

limited number of registers on a processor, unrolling too much could deteriorate loop 

performance. In the AWP-ODC CPU Fortran code, unrolling by 2 iterations provides the best 

performance for the computing-intensive subroutines of stress xy and xz. 

4.3  NVIDIA GPU Computing Architecture 

In the high performance computing area, the NVIDIA GPU computing architecture has 

gone through three generations including the 10-series, Fermi and Kepler (More details in Section 

2.1). All these three architectures have the exact same computing and memory access pattern. The 

principal difference is the computing capability and feature support. For example, the Kepler 

architecture has more CUDA cores in each streaming multiprocessor (192 CUDA cores per SMX 

vs 32 cores on Fermi vs 16 cores on 10-series), and also supports new features such as “Dynamic 

Parallelism”, which allows threads running on the GPU to create another child thread (not 

supported by Fermi and 10-series). Other than that, the programming model is substantially the 

same for these three NVIDIA GPU architectures. 

Figure 4.4: NVIDIA GPU memory architecture hierarchy: registers are fastest but are limited in 
number per CUDA thread (64 on Fermi), while the large CPU physical memory is the slowest 
due to the PCI Express connection. Minimizing data access to global/CPU memory is one of the 
key factors to improve computing performance [70-71]. 
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Figure 4.5: NVIDIA GPU threading model: Single Program Multiple Data. Each kernel is 
decomposed into multiple blocks and each block is running on the physical streaming 
multi-processor (SM). Each block contains hundreds or thousands of threads, and the basic unit 
for each block is a warp, which is 16 for 10-series and 32 for Fermi and Kepler. Threads in the 
same block are running on the SM in the format of warps [70-71]. 

In SIMD, we need to avoid branching and hanging/waiting data fetch, but keep all CUDA 

cores busy on computation. Based on the memory hierarchy in Figure 4.4, if all threads in the 

same warp can fetch data from the fast on-chip memory in a single cycle and execute the 

computation for a long time, ideally we can achieve performance close to the theoretical value. 

Therefore, improving data locality is one of the most important optimizations for GPU 

computing. 

Figure 4.5 shows the NVIDIA GPU single program multiple data (SPMD) threading 

model. Generally, kernels have to run based on the submission order if there is dependence 

between them, and only a single kernel takes up all the computing resource. Other kernels cannot 

run until it finishes its work. In the latest Kepler architecture, each SMX contains multiple 

schedulers, which permits kernels from independent streams or CPU threads to run concurrently. 

However, AWP-ODC only contains two dependent homogenous computation kernels, so these 

new Kepler features cannot provide much help from the performance perspective other than more 

CUDA cores. Hence increasing the computing throughput is another key factor to maximize the 

computation performance on all GPU platforms for AWP-ODC.  
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4.4  Single GPU Implementation and Optimization 

This section describes the AWP-ODC GPU based code implementation and performance 

tuning strategies on a single NVIDIA GPU M2090, the Fermi Architecture with 2.0 computing 

capability. The NVIDIA Fermi Architecture is very mature and popular in the current HPC 

market (2012~2013). All optimization methods can be directly applied to the latest Kepler 

architecture as well. The NVIDIA Tesla M2090 was released in May 2011, which has 512 CUDA 

parallel processing cores, and delivers 1,331 GFLOPS in single-precision (SP) performance, with 

6 GB GDDR5 memory size and 177 GB/sec memory bandwidth (ECC off) [18]. For this Fermi 

Chipset, each streaming multiprocessor (SM) includes 32 CUDA cores, along with 16 load/store 

units for memory operations to improve I/O performance, 4 special-function units (SFU) to 

handle complex math operations and 64KB local SRAM split between hardware-managed L1 

cache and software-managed shared memory. The local SRAM can be split according to two 

different modes: 16KB/48KB or 48KB/16KB based on the users’ requirement. One of the 

partitions, “shared memory”, is the fast memory that can be accessed by all 32 cores in the same 

SM. Each Fermi Chipset also has a 768KB L2 cache shared by all SMs. In the L2 cache 

subsystem, the atomic instructions (a set of read-modify-write memory operations) have been 

improved to 5 to 20 times faster than the NVIDIA first generation GPU chipset [70]. 

The GPU codes discussed in this section are developed in C and CUDA languages, and 

compiled by the CUDA compiler nvcc 4.0, with options: “-O4 –Xptxas –dlcm=ca 

–maxrregcount=63 –use_fast_math –arch=sm_20”. Two extra layers are added to each direction 

(called ghost cells) in the kernel stencil computation, which means the actual size for the 3D grid 

in memory is (NX+4, NY+4, NZ+4) instead of (NX, NY, NZ). The value in the ghost cell regions 

are based on the “equal to the nearest value” rule, which means the mesh point values in (-1:0, 

NY, NZ) equals to the ones in (1, NY, NZ).  

When the AWP-ODC GPU program starts, the CPU initializes and allocates all 

twenty-one 3D variable arrays from input files or parameters, then copies all these 3D arrays into 

the GPU device memory via the PCI 2 Express bus and executes the velocity and stress kernels as 

shown in Figure 4.1. After the main loop computation is finished, result data are transferred back 

from GPU to CPU main memory for output. Our optimization mechanisms will be focus on five 

steps for performance tuning. 
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4.4.1 Read-Only Memory Cache 

Constant and texture memory in the GPU device have their own cache (Figure 4.4) and 

both are only for read-only data. Constant memory in the NVIDIA GPU is hardware optimized 

for broadcasting, especially when all threads from a same warp read the same constant memory 

location. We can consider some optimization using the constant memory for its temporal locality. 

However, the performance will drop dramatically if threads in the same warp access different 

constant memory allocations because accesses are serialized. In general, input parameters for 

each kernel will be put into the constant memory as well as constant values used in the kernel, i.e. 

“if (a > 1.0)” where the 1.0 is put into the constant memory by the compiler. To make full use of 

this temporal locality provided by the GPU constant memory, scalars and small coefficient 

constants with fixed access pattern are always recommended for storage in constant memory.  

Texture memory is optimized for spatial locality for both 2D and 3D textures, and the 

addressing calculations can be performed by hardware outside of the kernel. Because of the 2D 

and 3D locality, cache line fills can pull 2D and 3D blocks from memory instead of rows, perfect 

for stencil computation and filtering. Unlike the constant memory, all threads from the same warp 

can access different texture memory locations without performance penalty. Moreover, 8 bit and 

16 bit data converting to floating point numbers between 0.0 and 1.0 is done for free (good for 

interpolation), and boundary conditions can be dealt with by the texture piping for free as well. 

Therefore, texture memory is great for large blocks of read-only data or arrays, where each data 

will be accessed or shared by multiple threads. 

The physical location for both constant and texture memory is the same as the global 

memory, so it will not save any memory space if we put some data into the constant/texture 

memory instead of the global memory. In addition, the coalesced data access pattern also must be 

optimized for texture memory, otherwise high cache miss rate will kill the computation 

performance due to the memory-bound application property. 

As discussed in Section 4.1, six 3D variable arrays are constant coefficients and the 

access pattern for each variable is 13-point stencil, so we put all of them into the texture memory 

to take advantage of the texture cache for 3D spatial locality. All scalar constants (such as c1 and 

c2) in Figure 4.1 are put into constant memory for temporal locality. This also helps us to save 

register usage. All other 15 arrays have to be stored in global memory because their values are 

being updated during iterations. 
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Figure 4.6: Domain decomposition for GPU kernels: the 3D Grid (NX, NY, NZ) is decomposed 
only in the y and z directions. Suppose each block has (tx, ty, 1) threads, then the kernel function 
has (NZ/tx, NY/ty, 1) blocks and the chunk size for each block will be (NX, ny, nz). 

4.4.2 Domain Decomposition 

CUDA is an extension language of C/C++, so memory storage for 3D arrays will be fast 

in the z direction and slow in the x direction. To obtain a better cache hit rate and allow all 

threads in the same warp to access data along the fast z axis instead of the slow x axis, we 

decompose the 3D Grid only in y and z directions. Each thread calculates the entire NX for a 

given 2D (y, z) location as shown in Figure 4.6. 

Table 4.2: Performance comparison between two implementations with different decomposition 
geometry derived from a baseline code, which is based on direct global memory access without 
any optimization. The benchmark runs for 800 timesteps for time-to-solution measurement. The 
thread block for GPU Kernels is (64, 8, 1), so the value B_x = 64 and B_y=8 in the table.	
  

3D Grid Size 
(NX x NY x NZ) 

CUDA CODE for (x, y) 2D Decomposition 

1. x = blockldx.x*B_x + threadldx.x + 2; 

2. y = blockldy.y*B_y + threadldy.y + 2; 

3. for (z = NZ+1; z>=2; --z) 

4.   Velocity and Stress Computation 

CUDA CODE for (y, z) 2D Decomposition 

1. z = blockldx.x*B_x + threadldx.x + 2; 

2. y = blockldy.y*B_y + threadldy.y + 2; 

3. for (x = NX+1; x>=2; --x) 

4.   Velocity and Stress Computation 

128x128x128 0.242 sec/timestep 0.008 sec/timestep 

128x128x256 0.490 sec/timestep 0.020 sec/timestep 

128x256x256 0.977 sec/timestep 0.040 sec/timestep 

256x256x256 1.956 sec/timestep 0.086 sec/timestep 
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(a) Memory Access Pattern for (x, y) 2D Decomposition 

(b) Memory Access Pattern for (y, z) 2D Decomposition 

Figure 4.7: Memory access pattern for different 2D Decompositions: (a) is for (x, y) and (b) is 
for (y, z), where both pseudo codes can be found in Table4.2 column 2 and 3 respectively. “T0” 
and “T1” means thread 0 and thread 1, and all T0 - T3 belong to the same warp.  

The basic unit for GPU computing is the warp and the warp size is 32 in Fermi, which 

means all 32 threads in the same warp will execute the same instructions. If any thread in the 

warp needs to wait for its data, then all other threads will be hanging there to wait for the data 

fetch. Table 2 is the performance comparison between 2D decomposition in the (x, y) direction 

and the (y, z) direction. The 2D decomposition in (x, y) means threads in the x direction 

correspond to the 3D Grid x direction, and threads in the y direction correspond to the 3D Grid y 

direction. While the 2D decomposition in (y, z) means threads in the x direction correspond to the 

3D Grid z direction, and threads in the y direction correspond to the 3D Grid y direction. Figure 

4.7 shows the memory access pattern for these two decompositions. The thread block is also a 

three dimensional topology and fast in the x direction, but the memory storage is fast in z 

direction. Therefore, data requested by the 32 threads in the same warp cannot be continuous and 

the physical locations are far from each other if decomposed in (x, y) as shown in Figure 4.7a. It 

will take 32 data fetches from global memory or L3 cache. But if decomposed in the (y, z) 

directions, data will be close to each other (shown in Figure 4.7b), and single cache line fetch is 

enough to acquire all data requested by the warp. This has far less memory access latency 

compared to the (x, y) decomposition. Data in Table 4.2 shows that the code performance for 

decomposition in the (y, z) direction is 25 times faster than in the (x, y) direction. For best 

configuration, the number of threads in the x direction is considered to be a multiple of 32 for 

better performance. 
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4.4.3 Memory Padding 

In GPU computing, memory alignment accessing is also very important for performance, 

which can make best effective use of the modern DRAM architecture for memory load/store. In 

general, an address in memory is 2^n bytes aligned, such as 64 bytes with the least significant 6 

address bits equal to zero. Therefore, the ideal memory access should have each memory load 

starting from an aligned address with its size equals to the aligned region. 

As discussed earlier, each 3D domain includes two extra ghost cells in each direction 

around it, which means mesh points outside of the 3D domain are needed in order to compute 

mesh points in the boundary region. Here we use the mesh point (0, 0, 0) as an example: if this 

mesh point is at an aligned memory address, then the mesh points (0, 0, -1) and (0, 0, -2) will be 

outside of the aligned region. Therefore, we pad some additional data to the “-z” direction to 

make sure these data in the ghost cell region are also within the aligned region.  

Moreover, the domain size may not be a power of 2 in the z direction, depending on the 

earthquake region and simulation model. To guarantee data access is also within the aligned 

region when the computation starts at the next row, we have to pad some additional data at the 

end of each row. This padding data is meaningless and will not be used during the computation, 

but it helps to make sure most memory access starts from an aligned address. 

CUDA provides some functions such as “cudaMallocPitch” and “cudaPitchedPtr” to help 

ensure aligned memory access [71]. However, as shown in Figure 4.8a, instead of using these 

library functions, we manually pad zeros onto the boundaries in the z axis of the 3D grid to align 

memory for the inner region. The padding size plus NZ should also be a multiple of 32, and the 

two layers of ghost cells are included in the padding. 

Figure 4.8: (a) 3D array padding: the red cube represents the original 3D grid, the blue cube 
represents the ghost cells with 2 extra planes in each direction. The yellow part is the padding 
arrays, including two layers of ghost cells along the z axis. (b) is CUDA code for steps 2& 3, fast 
z for better memory load efficiency after padding. 
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4.4.4 Register Optimization 

Private registers are the fastest on-chip GPU memory and take only one clock cycle for 

data access or calculation. Neighboring data in y and z directions are close to each other in 

aligned memory, therefore these data can be cached or pre-fetched into shared memory. For 

neighboring data in our travel direction (x axis), three out of four values can be reused for 

computation on the next iteration. We can define four private registers to store these values and 

utilize pipeline copy between registers, reducing by 75% of the global memory access in the x 

direction. This algorithm has been widely used in seismic 3D finite difference [72], and Figure 

4.9 illustrates how it works for the velocity vx computation present in Figure 4.1. 

Figure 4.9: Illustration of register optimization: pipeline register copy to reduce global memory 
access for asymmetric 13-point stencil computation. 

VX computation kernel in thread (ty, tz) is to describe the Register Optimization: 

Four registers: Y (Yellow), R (Red), G (Green), B (Blue) 

Global memory: vx[i, ty, tz], xx[i, ty, tz] - 3D array (NX+4)*(NY+4)*(NZ+2*pad) 

On-chip memory: xy[i, j, k], xz[i, j, k] - One plane Loaded to on-chip L1/Shared memory 

1. Preload R=xx[NX+2,ty,tz], G=xx[NX+1, ty, tz], B=xx[NX, ty, tz] 

2. For (i=NX+1; i>=2; i--) 

a. load xy, xz to fast on-chip memory 

b. Y=R; R=G; G=B; - pipeline copy between registers, very fast 

c. B = xx[i-2, ty tz]; - only access xx from global memory once in each iteration 

d. VX Computation via Y, R, G, B, xy & xz 

3. End for loop and return vx 
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Figure 4.10: Memory access pattern for CUDA warp (size = 32) based on the register 
optimization algorithm for velocity vx computation, where xy and xz data will be put into the 
on-chip fast memory and shared by all threads, and xx are stored in private registers. 

Velocity vx computation, requires 12 point data access including 4 points from stress xx 

in the x direction, 4 points from stress xy in the y direction and 4 points from stress xz in the z 

direction. Based on our decomposition, each CUDA thread will be mapped in y & z directions 

and compute all the NX data in the x direction. Hence each CUDA warp will be aligned in the z 

direction and compute the YZ plane. As shown in Figure 4.10, data in the YZ plane are shared by 

threads inside the same warp, e.g. both thread 13 and thread 14 access xz(i, j, 12), xz(i, j, 13) and 

xz(i, j, 14), which means 75% of the data are shared between these two threads. Therefore, for 

each fixed iteration i, we can pre-load stress xy and xz data from the current YZ plane into the 

on-chip fast memory (shared memory or L1 cache), then all threads in the same warp or block can 

benefit from the low latency data fetching. 

For data in the x direction, each thread accesses its own stress xx and there is no data 

sharing between threads. For example, the thread (j, k) needs stress xx (i, j, k), (i-1, j, k), (i+1, j, k) 

and (i-2, j, k), while the thread (j, k-1) needs stress xx (i, j, k-1), (i-1, j, k-1), (i+1, j, k-1) and (i-2, 

j, k-1), so there is no need to pre-fetch stress xx data into the on-chip fast memory because of the 

independence. However, there is data sharing for stress xx data between iterations inside the 

individual thread based on our implementation (Figure 4.9). For each fixed iteration i, stress data 

xx (i, j, k), (i-1, j, k) and (i+1, j, k) can be re-utilized in the next iteration i+1, while these stress 

data becomes stress xx (i-1, j, k), (i-2, j, k) and (i, j, k) respectively in the next iteration. Therefore, 

we do not need to fetch four stress xx data from global memory in each iteration. Instead, we do 

the pipelining copy between registers first, and then fetch stress xx(i-2, j, k) from the global 

memory. Register optimization reduced global memory access by three times and improved the 

data locality effectively.  
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4.4.5 L1 Cache vs. Shared Memory 

GPU Fermi/Kepler provides 64KB on-chip memory and two configuration modes to 

programmers: 48KB L1 cache and 16KB shared memory for “preferL1”, or 16KB L1 and 48KB 

shared memory for “preferShared”. We chose preferL1 over preferShared in our AWP-ODC 

CUDA implementation because the two layer ghost cells are the bottleneck for high efficiency 

when fetching data into shared memory. Suppose each GPU block is to compute a plane of size 

16x32, the grid size to be fetched into shared memory should be 20x36 due to the 2 layers of 

ghost cells. Since each block only has 512 threads, some extra data loading operations are 

required to fetch data in ghost cells. Generally, at least three extra data loads are required to fill 

the data in ghost cell regions. Hence a load balance issue might occur since not all threads in the 

block are participating in ghost cell loading, and threads synchronization has to be called before 

the following computation, which would bring some extra overhead as well. For L1 cache mode, 

the hardware will take care of the data fetching automatically. As long as the data access pattern 

in the code is designed to be coalesced (Section 4.4.2 to 4.4.4), we can easily to achieve very high 

L1 cache hit rate for good data locality. 

We also implemented a shared memory version based on Section 4.4.4, which is to 

pre-fetch one (y, z) plane to shared memory instead of L1 cache in Figure 4.9, and choose 

preferShared over preferL1 for on-chip memory configuration. However, the time to solution for 

benchmark size 128x128x960 between the shared memory version and the code implemented in 

step 4 are almost the same (0.037 sec/per timestep vs. 0.038 sec/per timestep), which means 

shared memory provides little performance benefit after the first four optimization steps in the 

AWP-ODC application. Shimokawabe [2] also chose preferL1 over preferShared for a similar 

stencil-based phase-field simulation for dendritic solidification on Tesla M2050, which is also a 

3D stencil computation based on NVIDIA Fermi chipset. 

Figure 4.11 shows the improvement in computing FLOPs achieved by these 

optimizations. The computing performance of our code for size 128x128x960 on Tesla M2090 is 

143.8GFLOPs for single precision. We consider this outstanding performance for a 

memory-bound stencil computation. We compare this performance with the Schafer [73] in 

which 152.2GFLOPs was achieved with a classical 3D Jacobi Solver for single precision. While 

Schafer’s test was on a slower Fermi device (C2050), our code is more memory intensive, which 

involves nine 13-point stencil computations and twenty-one 3D variables. 
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Figure 4.11: Increment of computing GFLOPs achieved by optimization steps for various 3D 
grid sizes tested on NVIDIA M2090. The baseline version is based on pure global memory 
implementation without any optimization, and other versions are optimized step by step. 

4.5  Experiments and Performance Comparison 

The new AWP-ODC CUDA implementation has been carefully validated for correctness. 

We verified the AWP-ODC CUDA code against the original AWP-ODC Fortran MPI code for 

production simulations using two different cases. The first one is based on a point source 

propagated across the whole 3D mesh (128x128x128) with homogeneous mesh data. Figure 

4.12(a) is the first 500 timesteps of the log value of the velocity vx recorded at the source point 

between two codes, showing that the results are almost identical except negligible roundoff 

differences caused by different programming languages and compilers. The second case uses 

another point source with a real 3D mesh (non-homogeneous 256x256x256). We generated a 30 

second earthquake simulation movie for validation to compare velocity outputs in three 

dimension. Figure 4.12(b) is a snapshot of the validation movie at timestep = 1000. The third 

column in the image is the percentage difference between outputs generated by the CPU and GPU 

codes ((GPU – CPU)/CPU)*100%. The third column is almost blank, which shows the small 

difference can be neglected and demonstrates the correctness of our AWP-ODC CUDA code. 
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(a) 

(b) 

Figure 4.12: (a) The value of log (vx) of the first 500 timesteps, generated by AWP-ODC CUDA 
and AWP-ODC MPI Fortran, is compared for validation. The 3D grid size for the earthquake 
simulation is 128x128x128, and the single source point has 91 timestep inputs with homogeneous 
mesh. (b) The snapshot for a real earthquake simulation movie with non-homogeneous mesh. 
Errors are shown is column three, which are small enough to be neglected. 
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To compare the performance between the AWP-ODC CUDA code and the original fully 

optimized AWP-ODC Fortran MPI code (2010 Gordon Bell Finalist [5]), we chose one 

multi-core CPU cluster and four NVIDIA GPU devices. The multi-core CPU cluster is the 

KRAKEN machine located at the National Institute for Computational Sciences (NICS) [49]. The 

other four GPU devices are NVIDIA Tesla C1060, Tesla C2050, Tesla M2090 and Tesla K20. 

C1060 is the NVIDIA first generation GPU, while C2050 and M2090 belongs to GPU Fermi, and 

Tesla K20 is Kepler based architecture. Table 4.3 is a summary of the hardware characteristics of 

all testbed devices. 

Table 4.3: Hardware characteristics of all testbeds: one multi-core CPU cluster and four GPU 
devices.	
  

CPU/GPU Concurrency Frequency 
L1 Cache/Shared 

Memory 

Memory 

Size 

Memory 

Bandwidth 
AMD Istanbul 
on KRAKEN 6 cores 2.6 GHz 64 KB L1 1.33 

GB/core 25.6 GB/s 

NVIDIA 
C1060 240 cores 1.3 GHz 16 KB       

Shared Memory 
4 GB   

in total 102.4 GB/s 

NVIDIA 
C2050 448 cores 1.15 GHz 64 KB   

L1/Shared Memory 
3 GB   

in total 144 GB/s 

NVIDIA 
M2090 512 cores 1.3 GHz 64 KB   

L1/Shared Memory 
6 GB   

in total 177 GB/s 

NVIDIA 
Tesla K20 2688 cores 732 MHz 64 KB   

L1/Shared Memory 
6 GB   

in total 250 GB/s 

Figure 4.13 is the performance comparsion between AWP-ODC CUDA code running on 

the four GPU devices and AWP-ODC Fortran MPI code running on the AMD CPU based 

multi-core CPU clusters. All benchmark experiments run for 800 timesteps and the measurement 

is focused on the average time per timestep. For GPU devices, The NVDIA Tesla C1060 is 1.3 

capable and the compiler is NVCC 4.0 with options “-O4 -Xptxas -dlcm=ca -maxrregcount=63 

-use_fast_math -arch=sm_13”. The AWP-ODC CUDA code for Tesla C1060 is a little different 

from the one implemented in Section 4, and we used shared memory for Step 5 because there is 

no L1 cache in Tesla C1060. The Tesla C2050 and M2090 are 2.0 capable using the same NVCC 

4.0 compiler and the compiler options except “-arch=sm_20”. The Tesla K20 is updated to 3.5 

compute capability and compiled by the NVCC 5.0 compiler with the same compiler flags except 

“-arch=sm_35”. For the multi-core cluster, we only use a single socket to run the AWP-ODC 

Fortran MPI code, which means six MPI threads on a single socket of the KRAKEN machine.  
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Figure 4.13: Time-to-solution speedup for different GPU generations/architectures. The running 
time baseline is the AWP-ODC-CPU Fortran/MPI code described in section 4.2 running on AMD 
Istanbul 6-core CPU at 2.6 GHz with 6 MPI threads for 3D grid size 224x224x1024.  

In Figure 4.13,  for the same AWP-ODC CUDA code, the average running time per 

timestep on M2090 is almost 30% less than on C2050, this is because M2090 has two more SMs 

and higher clock speed. The shared-memory based code running on Tesla C1060 is 4.5x slower 

than running on M2090, due to the fewer CUDA cores, lack of L1 cache, and lower memory 

bandwidth. Note that the CUDA code running on Tesla K20 is the fastest, almost 20x faster than 

the MPI code running on AMD Istanbul 2.6 GHz CPU on KRAKEN with six MPI threads.  

Theoretically, K20 has more than 3.5 TFLOPs peak performance in single precision 

while the M2090 has around 1.3 TFLOPs, so K20 should be 3 times faster than M2090 based on 

the computing capability comparison. However, our experiments show that the performance on 

Tesla K20 is only 35% faster than on Tesla M2090 instead of 3x faster. This proves again that the 

AWP-ODC application is highly memory-bound. The computation performance is partially 

related with the computing power of the device, but mainly depends on the memory system and 

data locality. Here are two main reasons for the small performance gain between the Tesla K20 

and M2090. First reason is that the global memory size for both K20 and M2090 is the same, 

which are both 6GB. So even though K20 has more SMXs than M2090, there is not sufficient 

data for the SMXs to compute and fully utilize their computing efficiency. The other reason is the 

cache system is not as much improved as the computation. Although the L1 cache/shared 

memory per SMX has increased 33% to 64KB, and the L2 cache per SMX has also doubled in 

size (1.5MB), the cache system is shared across the whole SMX. This means 192 CUDA cores in 

each SMX sharing these new improved L1 and L2 caches in K20, compared to the 32 CUDA 

cores in each SM on M2090, which are sharing 48KB L1/Shared memory and 768KB L2 cache. 

Therefore, the L1 and L2 cache size per CUDA core is reduced in K20 compared to M2090, and 

this might also cause the smaller performance gain. 



66	
  
	
  

	
  
	
  

4.6  Mint Translator and Optimizer 

During my single GPU optimization work, I was also working with Dr. Didem Unat and 

Prof. Scott B. Baden from the Department of Computer Science and Engineering at the 

University of California San Diego on their Mint project. Here I will breifly introduce the Mint 

translator and optimizer in this section. Details can be found in our published paper [74]. 

Mint is a tool developed by Dr. Didem Unat to generate the CUDA code with high 

computing performance for 3D stencil computation code written in C. It contains two parts: a 

source to source translator and an optimizer. The source to source translator helps translate the 

annotated C source code into the CUDA code and the optimizer implements all different levels of 

optimization for the generated CUDA code. Users of the Mint are not required to be 

knowledgeable of the GPU architecture or programming, and the use of the Mint is quite 

straightforward as well. All the work required is just inserting directives between the code regions 

to be run on the GPU similar to OpenMP, and also putting clear information on the directives, 

such as source data, destination data, data transfer directions, etc. Then the Mint will do the rest 

of the work to generate a well optimized CUDA code for direct use without any modification. 

The performance of the Mint generated code is not as good as manually optimized code, since 

hand-written code can do more fine tuning. But for general purpose use without aggressive 

performance requirements, the performance of the Mint code is good enough, and significant 

effort and time can be saved on performance tuning and optimization. 

The AWP-ODC finite difference code has been selected as one of the real-world codes 

for Mint study. It turns out the Mint achieved 82.6% and 78.6% of the performance of the 

hand-written and optimized CUDA code on the NVIDIA Tesla C2050 and C1060 respectively 

[74]. There are some differences between the Mint generated code and the hand-written code 

causing the performance gap. First, the hand-written code uses texture memory and constant 

memory as we discussed in section 4.4.1, but Mint does not support either of them. Secondly, the 

hand-written code uses far fewer registers than the Mint code when implementing the same 

optimization strategy. This is because a hand coder can reorder instructions and reuse the 

registers, but the Mint only relies on registers allocated by the NVIDIA compiler NVCC. The last 

difference is the memory padding method. The Mint code always uses the “cudaMalloc3D” and 

“cudaPitchedPtr” to pad the 3D array instead of our manually padding method in Section 4.4.3.  
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4.7  Conclusions and Future Work 

We presented implementation and hands-on optimization tuning of AWP-ODC on a 

single GPU device. The performance of this memory intensive stencil computation code has been 

significantly improved through effective utilization of GPU on-chip memory and data locality. 

The single NVIDIA Tesla M2090 GPU benchmark demonstrates sustained performance of 143.8 

GFLOPS in single precision for 128x128x960 mesh size, at approximately 10% of the theoretical 

peak system performance. To our knowledge this is the highest single-GPU performance 

measured from a seismic application.  

Due to the limitation of the algorithm, the AWP-ODC GPU code cannot fully utilize the 

new features provided by the NVIDIA Kepler architecture, such as the dynamic parallelism and 

kernel launching kernel. Based on the seismic research requirement, we will reconstruct the 

algorithm to compute more coarse-grain information in deep regions and more fine-grained in 

surface areas, instead of a homogenous grid for the whole 3D region. This strategy will not only 

reduce the memory-intensive load and provide more useful information to the seismologist, but 

also can let us make full use of these new GPU features to accelerate the code and reduce the 

time-to-solution. Our goal is always to adopt the latest computing devices or features to maximize 

the AWP-ODC computation performance incorporated for future petascale or exascale 

earthquake simulations. 
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Chapter 5 

Multi-GPU Implementation 

This chapter introduces our communication model for AWP-ODC multi-GPU 

implementation on heterogeneous supercomputers. The communication model has two primary 

objectives: 1) to reduce the data communication frequency between CPU and GPU inside the 

computing nodes; and 2) to maximize the overlap time between computation and communication. 

To better explain our algorithms and strategies, first we present some analysis on the 

AWP-ODC-CPU communication model running on CPU clusters and discuss why the CPU 

communication model cannot be used for hybrid CPU-GPU clusters. Then we present details of 

our communication model and illustrate the purpose of the design. Lastly we provide experiment 

results running on OLCF Titan, NICS Keeneland and NCSA Blue Waters with excellent linear 

scalability up to the full machine scale.  

This chapter is focused on the data communication solution between nodes on 

heterogeneous supercomputers. The computation utilizes the same fully optimized GPU code 

described in Chapter 4. The faster GPU computation code presents more challenges to the 

communication, since it leaves less computation time for overlapping. Moreover, the 

communication model discussed in this chapter is not restricted to the AWP-ODC application, but 

can be extended to any other large-scale 3D stencil computations running on CPU-GPU clusters. 

5.1  AWP-ODC-CPU Communication Model 

The AWP-ODC-CPU communication model includes two parts: 3D Domain 

Decomposition and MPI asynchronous communication. For the 3D domain decomposition on 

CPU clusters, AWP-ODC partitions the simulation volume into smaller sub-domains where the 

total number of sub-domains matches the number of processors used in the simulation. The whole 

process is shown in Figure 5.1. Because of the characteristics of the 13-point stencil, the outer 

surface of each sub-domain requires an extra two-cell padding to correctly propagate waves, and 

these are called ghost cells. 
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Figure 5.1: shows the 3D domain decomposition process in AWP-ODC-CPU code: each 
sub-domain has extra 2 ghost cells in each direction with 12 in total. Most sub-domains have 
to communicate with 6 other sub-domains to exchange data in ghost cell areas during the 
computation iterations. 

The abstract processing of the AWP-ODC-CPU communication model is outlined in 

Figure 5.2. First, the three velocity components are calculated using the six stress components 

for the interior and the boundary of the 3D volume. Then velocity values in the boundary 

volume are exchanged with neighboring sub-domains in six directions including north, south, 

west, east, up and down. The next six stress components are calculated and communicated in 

the same manner. All sub-domains in AWP-ODC are 3D grids, thus data along 

non-contiguous directions must be accumulated in the source sub-domain before being sent 

out, and disseminated in the destination sub-domain after it is received. These intermediate 
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data copying stages cannot be avoided, even though we are using the “MPI_SUBARRAY” 

data type to send data out directly without any memory operation code, these data 

accumulation and dissemination processes are still implemented in the backend. 

Figure 5.2: shows detailed MPI asynchronous communication process in AWP-ODC-CPU: 
that significantly reduced the latency caused by the fine-grained MPI Send/Recv order [5]. 

AWP-­‐ODC-­‐CPU	
  Main	
  Loop:	
  
	
  
Do	
  T=	
  timestep	
  0	
  to	
  timestep	
  N:	
  
	
   Receiver	
  Buffer	
  Allocation	
  and	
  Initialization	
  (vx,	
  vy,	
  vz,	
  xx,	
  yy,	
  zz,	
  xy,	
  xz,	
  yz)	
  

Compute	
  velocities	
  (vx,	
  vy,	
  vz)	
  using	
  stress	
  (xx,	
  yy,	
  zz,	
  xy,	
  yz,	
  xz)	
  
Sender	
  sends	
  out	
  all	
  velocity	
  data	
  for	
  updating	
  ghost	
  cells	
  in	
  asynchronous	
  way	
  
Wait	
  all	
  communication	
  done	
  and	
  update	
  ghost	
  cells	
  for	
  velocity	
  (vx,	
  vy,	
  vz)	
  
Compute	
  stress	
  (xx,	
  yy,	
  zz,	
  xy,	
  xz,	
  yz)	
  based	
  on	
  velocities	
  (vx,	
  vy,	
  vz)	
   	
  
Sender	
  sends	
  out	
  all	
  stress	
  data	
  for	
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  ghost	
  cells	
  in	
  asynchronous	
  way	
  
Wait	
  all	
  communication	
  done	
  and	
  update	
  ghost	
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  for	
  stress	
  (xx,	
  yy,	
  zz,	
  xy,	
  xz,	
  yz)	
  

END	
  DO	
  
	
  
Receiver:	
  (vx	
  as	
  an	
  example)	
  

MPI_IRecv(VX_Recv_Buffer,	
  North_rank)	
   	
   //Receive	
  data	
  from	
  north	
  sub-­‐domain	
  
MPI_IRecv(VX_Recv_Buffer,	
  South_rank)	
  
MPI_IRecv(VX_Recv_Buffer,	
  West_rank)	
  
MPI_IRecv(VX_Recv_Buffer,	
  East_rank)	
  
MPI_IRecv(VX_Recv_Buffer,	
  Up_rank)	
  
MPI_IRecv(VX_Recv_Buffer,	
  Down_rank)	
  

	
  
Sender:	
  (vx	
  as	
  an	
  example)	
  

MPI_ISend(VX_Send_Buffer,	
  North_rank)	
   	
   //Send	
  data	
  to	
  north	
  sub-­‐domain	
  
MPI_ISend(VX_Send_Buffer,	
  South_rank)	
  
MPI_ISend(VX_Send_Buffer,	
  West_rank)	
  
MPI_ISend(VX_Send_Buffer,	
  East_rank)	
  
MPI_ISend(VX_Send_Buffer,	
  Up_rank)	
  
MPI_ISend(VX_Send_Buffer,	
  Down_rank)	
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Most of the communication in AWP-ODC is point-to-point between nearest 

neighbors, making the performance of AWP-ODC heavily dependent on system interconnect 

bandwidth. Generally, communication latency between cores in CPU clusters is highly 

dependent on their physical interconnect distance and the node topology in NUMA systems. 

Therefore, a sub-domain and its surrounding neighbors that need to communicate with it for 

data exchange, are grouped and allocated as closely together as possible on the physical 

machine, ideally inside the same computing node. In addition, to reduce the communication 

overhead, the AWP-ODC-CPU asynchronous communication model is designed for the 

CPU-based supercomputers, which allows out-of-order MPI message arrival and unique tags 

maintain data integrity, resulting in high balanced and low latency communication. 

Sreeram et al. from the Department of Computer Science and Engineering at Ohio 

State University (OSU) improved the MPI communication used in our AWP-ODC model 

running on homogenous CPU Supercomputers. Based on their research on the Ranger 

machine located at Texas Advanced Computing Center (TACC) described in Figure 5.3, the 

computation including both velocity and stress takes up around 63% of the running time, and 

the MPI communication consumes the other 37% [75]. Because of the different hardware 

configuration involved, the percentage numbers may vary though not significant. We will use 

the 63% for computation and 37% for communication in our following analysis. 

Figure 5.3: Analysis of AWP-ODC-CPU running on homogenous CPU supercomputers: 
percentages of time spent on computation and communication in the main loop [75]. 
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Figure 5.4: Data communication latency model on heterogeneous supercomputers.  

As shown in Figure 5.4, the data communication latency is more complex on the 

hybrid CPU-GPU cluster, including four types of data communication: CPU to CPU 

intra-node communication (RED: only via shared memory, very fast), GPU to GPU 

intra-node communication (GREEN: PCI-memory-PCI, slow), CPU to CPU inter-node 

communication (BLUE: memory-network-memory, slow), and GPU to GPU inter-node 

communication (ORANGE: PCI-memory-network-memory-PCI, very slow). To quantify the 

latency time, our definitions list is in Table 5.1: 

Table 5.1: Definition List for Different Computation/Communication Patterns. 

Mode Computation/Communication Patterns Symbol 

Computation 
Full Computation running on CPU TC_CC 

Full Computation running on GPU TC_GG 

Intra-Node 

Communication 

CPU to CPU Memory only TIA_CC 

GPU to GPU PCI->Memory->PCI TIA_GG 

Inter-Node 

Communication 

CPU to CPU Memory->Network->Memory TIE_CC 

GPU to GPU PCI->Memory->Network->Memory->PCI TIE_GG 

For homogenous CPU supercomputers, the computation time is “TC_CC” and the 

communication latency is dominated by “TIE_CC”, so the running time for CPU clusters can 

be represented as “TC_CC + TIE_CC”. For heterogeneous hybrid CPU-GPU supercomputers, 
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the computation time is “TC_GG” and the communication latency is depending on the 

longest one “TIE_GG”. Suppose we are using the same AWP-ODC-CPU communication 

model for our multiple GPU implementation, then the running time for multi-GPUs can be 

estimated as “TC_GG + TIE_GG”. Based on our results presented in Chapter 4, “TC_GG” is 

almost 15 times faster than the AMD Istanbul 2.6 GHz CPU (6 cores) on NICS Kraken 

machine. Thus the percentage of the computation will decrease proportionally. However, the 

communication time “TIE_GG” consumes significant time than “TIE_CC” as the exchanged 

data needs to pass though the slow PCI Express 2.0 twice as well as the high speed network. 

Taking the NICS Kraken supercomputer as an example, the high speed network is  a Cray 

SeaStar 2+ router with bandwidth of 45.6 GB/sec, while PCI Express 2.0 16x attached to the 

NVIDIA M2090 has only a throughput of 8 GB/sec, which is 5.5 time slower than the 

network. Because of the two data passes via PCI Express, “TIE_GG” would be 10 times 

longer than “TIE_CC”.  

Assuming to run the same M8 described in the Chapter 3 on CPU-GPU clusters, and 

considering the same parameter setting (125x125x125 cube per GPU) and communication 

model, the estimated percentage of running time for computation and communication would 

result in a heavy imbalance as shown in Figure 5.5. Note that the dramatic performance 

degradation is due to the bottleneck of the “PCI Express 2.0” bus connection between CPU 

and GPU. 

Figure 5.5: Estimated percentages of running time for computation and communication if the 
AWP-ODC-CPU communication model runs on CPU-GPU clusters. 
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5.2  AWP-ODC-GPU Communication Model 

To better illustrate the AWP-ODC-GPU communication model, we present the four 

primary parts of our algorithm in detail: two-layer 3D Domain decomposition, 

communication reduction, in-order MPI communication and effective computation and 

communication overlapping. This communication model can be adapted to any kind of 3D 

stencil computation on CPU-GPU clusters. Because of the limitation in AWP-ODC 

numerical model, our communication reduction can only be reduced once, while other 

applications with the standard 3D stencil computation could benefit even more, as will be 

explained in the following sections. 

5.2.1 Two-layer 3D Domain Decomposition 

As discussed in Section 5.1, the 3D domain is partitioned into many sub-domains and 

each sub-domain is mapped into a single CPU core for computation. For decomposition on 

heterogeneous CPU-GPU supercomputer clusters, the first step is the same and each 

sub-domain is prepared for single GPU computation. The second step is the sub-domain data 

decomposition inside a GPU for multi-streaming processors. Thus data partitioning must be 

done twice, and the whole decomposition process is called as “Two-layer 3D Domain 

Decomposition”. 

We are using exactly the same optimized GPU code described in Chapter 4 for the 

multi-GPU implementation. The second “sub-domain data decomposition inside GPU” is 

identical to what we presented in Section 4.2, which is 2D data decomposition in the Y and Z 

directions mapped onto GPU SMs. However, for the first step “3D domain decomposition for 

GPUs”, we chose 2D decomposition in X and Y directions instead of 3D in all directions. As 

shown in Figure 5.6, if the 3D domain is (NX, NY, NZ) and the decomposition topology is 

(PX, PY, 1), then the sub-domain for each GPU will be (nx, ny, NZ), where the “nx” equals 

NX/PY and the “ny” equals “NY/PY”. In this case, the MPI commutation has been reduced 

from six directions to four (south, north, west and east), and each GPU is taking the entire Z 

direction computation. Moreover, larger NZ can make GPU computing more efficient 

because of the fast Z direction in memory. In summary, the two-layer 3D Domain 

Decomposition is X/Y partition for GPUs and Y/Z partition for GPU SMs. 
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Figure 5.6: Process of Two-layer 3D Domain Decomposition: first step X/Y decomposition 
for GPUs and second step Y/Z decomposition for GPU SMs. 

5.2.2 Communication Reduction 

As discussed in Section 5.1, the longest latency communication for the multi-GPU 

implementation is GPU to GPU between different computing nodes, including passing 

through the high speed interconnect and the PCI Express 2.0 bus twice. Based on the 

decomposition described in Figure 5.6 and the original communication algorithm presented in 

Section 5.1, the MPI message size per variable per GPU becomes “2*ny*NZ” in east and 

west directions and “2*nx*NZ” in north and south directions. The minimum required GPU to 

GPU communication frequency is at least eight times per iteration, with four times for 

velocity data swaps and another four times for stress data swaps. To reduce the 

communication frequency, our idea is to utilize extra computing workload to replace the 

communication. 
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Figure 5.7: Comparison before and after showing communication reduction per iteration. 
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Since we only have MPI communication in the X/Y directions, and the NZ direction 

is decomposed inside the GPU, MPI communication only takes place between sub-domains 

(1: nx, 1: ny, 1: NZ), so we use the 2D X/Y plane instead of 3D sub-domain to show the 

communication reduction process in figure 5.7.  

Because of the nature of 13 point stencil computation, a 2 layer ghost cell region is 

always required to compute the whole sub-domain. This means for the sub-domain (1: nx, 1: 

ny, 1: NZ) output, we need (-1: nx+2, -1: ny+2, 1: NZ) input to generate the correct answer. 

Thus in AWP-ODC, the velocity sub-domain (1: nx, 1: ny, 1: NZ) computation requires stress 

input (-1: nx+2, -1: ny+2, 1: NZ) and the stress sub-domain (1: nx, 1: ny, 1: NZ) computation 

also requires velocity input (-1: nx+2, -1: ny+2, 1: NZ) for each iteration. So the original 

communication plan requires GPU to GPU communication eight times, where four times are 

for the velocity data swap for the 2 layer ghost cell region (west, east, north and south), and 

the other four are for the stress data. 

Here is the enhanced communication reduction method: for each iteration, first 

extend an extra 2 layers of ghost cells for velocity (-3: nx+4, -3: ny+4, 1: NZ), though the 

computation region is still (1: nx, 1: ny, 1: NZ). This means the valid data region is still (1: nx, 

1: ny, 1: NZ) after computation. However, when we do the GPU to GPU communication for 

velocity ghost cells, the data swapping region becomes 4 layers instead of 2, so the valid data 

region for velocity is (-3: nx+4, -3: ny+4, 1: NZ) after communication. Because of the new 

velocity valid data region, we have sufficient velocity input information to compute the stress 

region (-1: nx+2, -1: ny+2, 1: NZ), which will become the stress input to compute the 

velocity region (1: nx, 1: ny, 1: NZ) in the next iteration. Thus, only velocity data swapping is 

required and the total number of GPU to GPU communication has been reduced from 8 to 4 

for each iteration. Since velocity has 3 components but the stress has 6, the GPU to GPU 

message size is reduced by a factor of 1/3 because of this reduction method (Table 5.2).  

Table 5.2: MPI Message pattern comparison between before and after communication 
reduction per iteration. 

Communication 
Velocity Stress 

Frequency Size Frequency Size 

Before Reduction 4 6*(nx+ny)*NZ  4 12*(nx+ny)*NZ 

After Reduction 4 12*(nx+ny+4)*NZ No Communications 
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This communication reduction not only decreases the GPU to GPU data 

communication time because of the smaller message size, but also reduces the overhead time 

caused by data copying between GPU and CPU or MPI initialization. Generally speaking, the 

time cost for two MPI communications with 2MB data each is longer than one single MPI 

communication time with 4MB data, which is also the same for data copying between GPU 

and CPU. Suppose the latency cost is t1 for MPI initialization and t2 for data copying 

between GPU and CPU, then our communication reduction help save additional “4*t1 + 8*t2” 

overhead time (4 times MPI communication, plus 4 times data copying from GPU to CPU 

and another 4 times from CPU back to GPU). Moreover, because of no need for stress data 

communication, there is more opportunity for overlapping between communication and 

computation, one of the most important multi-GPU tuning approaches developed. 

5.2.3 In-Order MPI Communication 

Before dipping into the overlapping algorithm, we must decide the communication 

mode, including the MPI messaging direction, order and size. For the original communication 

method before the reduction, there is no message overlap between data in the west/east 

directions and the north/south directions. Any order is allowed, such as first west/east and 

then north/south, or first north/south and then west/east (shown in Figure 5.8). However, for 

the communication reduction scheme introduced, all four corner’s information for the extra 2 

layers of ghost cell computation is required, that means, another four MPI data swaps are 

needed, which will bring new overhead and degrade the performance. Alternatively, in-order 

communication still keep the original four MPI messages. As shown in Figure 5.8 for 

in-order communication, we first send data in the yellow regions (1: 4, 1: ny, 1: NZ) and 

(nx-3, nx, 1: ny, 1: NZ) to fill the data in red ghost cell regions (-3: 0, 1: ny, 1: NZ) and (nx+1: 

nx+4, 1: ny, 1: NZ). After the communication is done in the west/east directions, the data in 

(-3: nx+4, 1: 4, 1: NZ) and (-3: nx+4, ny-3 : ny, 1: NZ) is valid and we can send these data to 

fill the ghost cell region (-3: nx+4, -3: 0, 1: NZ) and (-3: nx+4, ny+1 : ny + 4, 1: NZ) in the 

north/south directions. In this case, we keep four MPI messages per iteration, but cover the 

four corners’ information. After the in-order communication, the velocity data in the whole 

sub-domain (-3: nx+4, -3: ny+4, 1: NZ), including all extended regions and ghost cells is 

valid as the stress computation input. 
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Figure 5.8: Comparison between original communication plan and in-order communication. 
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5.2.4 Computation/Communication Overlapping 

Communication reduction has helped reduce the frequency of data communication 

and also increased the computing time, while the in-order communication guarantees the 

accuracy of the data for computation. Next, the crucial point is how to design a good 

computing/communication schedule to hide the communication effectively.  

Figure 5.9: Definitions of some symbols for the overlapping algorithm presentation. 

Table 5.3: Description of each symbol shown in Figure 5.9 and its corresponding region. 

Symbols  Description Region 

Velocity 3D domain with 4 layer ghost cells (-3: nxt+4, -3: nyt+4, 1: NZ) 

V1 Left 4 layers in non-ghost cell region (1: 4, -3: nyt+4, 1: NZ) 

V2 Right 4 layers in non-ghost cell region (nxt-3: nxt, -3: nyt+4, 1: NZ) 

V3 Top 4 layers in non-ghost cells region (5: nxt-4, 1: 4, 1: NZ) 

V4 Bottom 4 layers in non-ghost cells region (5: nxt-4, nyt-3: nyt, 1: NZ) 

V5 The rest non-ghost cell region (5: nxt-4, 5: nyt-4, 1: NZ) 

Stress 3D domain with 4 layer ghost cells (-3: nxt+4, -3: nyt+4, 1: NZ) 

S1 Left 4 layers including 2 ghost cells (-2: 2, -3: nyt+4, 1: NZ) 

S2 Right 4 layers including 2 ghost cells (nxt-1: nxt+2, -3: nyt+4, 1: NZ) 

S3 Top 4 layers including 2 ghost cells (3: nxt-2, -2: 2, 1: NZ) 

S4 Bottom 4 layers including 2 ghost cells (3: nxt-2, nyt-1: nyt+2, 1: NZ) 

S5 1/3 of the rest stress region (3: nxt/3-1, 3: nyt-2, 1: NZ) 

S6 1/3 of the rest stress region (nxt/3: nxt*2/3-1, 3: nyt-2, 1: NZ) 

S7 1/3 of the rest stress region (nxt*2/3: nxt-2, 3: nyt-2, 1: NZ) 
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In this new data communication model, only velocity requires data swapping in its 

four layer ghost cell regions. Our plan is to use the total velocity and stress computation time 

to overlap all the overhead time caused by MPI communication and data transfer between 

CPU and GPU via PCI Express 2.0. 

Figure 5.10: Effective computation and communication overlapping algorithm for 
AWP-ODC GPU implementation. 

Figure 5.10 presents the flow of our effective computation and communication 

overlapping algorithm. As illustrated in Figure 5.11, the GPU starts to compute the velocity 

boundary along the x-axis, V1 and V2, in serial, and copies the data to the CPU immediately 

by using CUDA asynchronous memory copy when the GPU computation is done. The CPU 

will send the velocity data V1 and V2 out using the asynchronous “MPI_Isend” when the V1 

and V2 data copy is done. During the velocity data V1 and V2 are being processed, the GPU 

computes the velocity boundary along the y-axis, V3 and V4, simultaneously and also 

initiates similar asynchronous data copying and MPI data communication after the GPU 

computation is done. After all velocity boundary computation is completed, the GPU will 

focus on the remaining inside velocity region V5 computation. Thus the velocity boundary 

data processing time, which includes data copying time from GPU to CPU and MPI 

communication time, can be partially overlapped by the velocity computation.  
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Figure 5.11: Overlap of computation and communication. Top: the concept scheme and 
Bottom: nvvp profiler output matches well with the design, achieving complete overlap. 

Based on the communication reduction, the stress computation region is extended to 

(-1: nxt+2, -1: nyt+2, 1: NZ) instead of (1: nxt, 1: nyt, 1: NZ), so that no more communication 

is required for the stress component. In order to increase the overlapping time between 

communication and computation for better scalability, we divide the stress region into 7 parts 

(S1 to S7) and reorder the computation sequence from inside to outside. For the inside stress 

regions S5 to S7, all required information is available for computation if the velocity 

computation is completed, without need to wait for receiving velocity information before 

computing the inside stress. The strategy is to compute inside first and then the remaining 

boundary, so that the MPI communication time for the velocity can also be overlapped by the 

inside stress computation. Since the barrier function “MPI_Wait” must be called to make sure 

the boundary information is received successfully, the inside stress region is divided into 3 

equal parts (S5, S6 and S7), and one barrier will be inserted respectively between S5/S6 and 

S6/S7 stress computation initializations. The same data received order (v1, v2, v3 and v4) is 
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planned, and the asynchronous data copying stream from the CPU back to the GPU will be 

executed if any velocity data communication for ghost cells finished successfully. Thus the 

data copying time from CPU to GPU can be also overlapped by the stress computation, plus 

“multi-layer” overlapping can take place during the iterations. For example, the S6 stress 

computation inside GPU, V1 data copying from CPU to GPU and the V3/V4 MPI 

communication between CPUs may be running simultaneously. After the data are copied 

back from CPU to GPU, there will be no more communication activities while the remaining 

S1 to S4 is computed inside GPU in sequence. In the end, the updated stress (-1: nxt+2, -1: 

nyt+2, 1: NZ) is ready as the next iteration input. 

5.3  Experiments and Performance Discussion 

In this section, we first introduced three key supercomputer systems used for this 

research: OLCF Titan, NCSA Blue Waters and NICS KIDS system. Then a real earthquake 

simulation run by both CPU and GPU codes demonstrate validation. Finally, some study 

results on weak and strong scaling on these supercomputers are discussed.  

5.3.1 Introduction of Supercomputer Testbeds 

OLCF Titan is the Oak Ridge Leadership Computing Facility’s (OLCF) next 

generation, leadership-class heterogeneous supercomputer [17]. The Titan is upgraded from 

the Jaguar system, based on the Cray XK7 system with a hybrid CPU-GPU architecture [17]. 

The Titan Phase5 machine was provided for initial benchmark tests until late 2012, which 

consists of 960 nodes with 96 nodes per cabin. Each computing node was equipped with one 

AMD 16 core OpteronTM 6200 series processor and one NVIDIA Tesla X2090 Fermi GPU 

accelerator. The interconnection between nodes was Gemini, which was a 3-dimensional 

torus topology providing over 20GB/sec bandwidth per node [17]. The NICS Keeneland 

Initial Delivery System (KIDS) located at the Georgia Institute of Technology has also been 

adopted for our research work. It has a similar architecture as the Titan Phase 5 system, 

including 120 computing nodes with two INTEL Westmere hex-core CPUs and three 

NVIDIA Tesla M2090 Fermi GPUs per node. Therefore, the Titan Phase5 machine provides 

15,360 CPU cores with 960 GPUs [17], while the full KIDS machine provides 1,440 CPU 

cores with 360 GPUs [24]. 
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The full Titan machine became the No.1 supercomputer in the Top 500 list published 

in November 2012, which provides a peak theoretical performance of more than 20 

PetaFLOPS [17] and was open to public users from early 2013. This giant machine consists 

of 18,688 physical compute nodes, where each compute node is comprised of one 16-core 

2.2GHz AMD Opteron™ 6274 (Interlagos) CPU, one NVIDIA Kepler (K20X) GPU, and 32 

GB of RAM. Two nodes share a Gemini™ high-speed interconnect router. These routers are 

connected in a 3D torus [17]. The Blue Waters machine run by the National Center for 

Supercomputing Applications (NCSA) at the University of Illinois is another world class 

supercomputer used for our simulation and benchmarking [76]. The Blue Waters is a hybrid 

system composed of Cray XE6 and XK7 compute cabinets, where the XE6 computing nodes 

are pure CPU multi-core architecture, and the XK7 computing nodes are hybrid architecture, 

including an AMD Interlagos 16-core CPU plus one NVIDIA GK110 Kepler GPU [76]. The 

Blue Waters provides 11.61 PetaFLOPs theoretical peak performance, but since our GPU 

code is primarily running on the Cray XK7 hybrid systems, the maximum resource for our 

use is 3,073 Cray XK7 with 24,576 CPU cores and 3,073 GK110 Kepler GPUs.  

5.3.2 Real Small Case Simulation and Validation 

Our research is primarily based on OLCF Titan, NCSA Blue Water and NICS KIDS 

supercomputers. Before the weak scaling benchmarking study on these machines, we first ran 

a large scale wave propagation simulation of a Mw5.4 Chino Hills, CA earthquake to verify 

the correctness of the AWP-ODC-GPU code. This simulation has frequency up to 2.5Hz with 

a mesh dimension size of 1024x1024x1024. The total number of time steps is 75,000, where 

each timestep simulates a period of 1 millisecond, so the total simulation lasts for 75 seconds. 

A total of 980 earthquake source points is used for a duration of 2,500 time steps (2.5 seconds 

in total). AWP-ODC-CPU was previously run on the National Center for Atmospheric 

Research’s (NCAR) Yellowstone [77] homogeneous supercomputer using 512 CPU cores, 

while AWP-ODC-GPU was run for the same simulation on Keeneland at full system scale 

(KFS) using 128 NVIDIA Fermi GPUs. Figure 5.12 presents a heat map of the magnitude of 

the velocity in X direction to compare the two codes. The blank difference images show the 

accuracy of this new code. 
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Figure 5.12: Comparison of visualizations of surface velocity in X direction in units of m/s. 
Four snapshots are taken at seconds 6, 7, 10 and 25 (after 6,000, 7,000, 10,000, 25,000 
timesteps respectively). The verification of AWP-ODC-CPU code in this simulation has been 
performed by geo-scientists for years. The south-east corner of the mesh includes an area 
with rocks. This uneven distribution of materials in the simulated area results in a difference 
in the wave propagation compared to other parts of the map. 

In collaboration with Kim Olsen of San Diego State University, we have also 

generated statistical models of seismic velocities and densities in agreement with the results 

of the analysis of near-surface measurements. The effects of the near-surface heterogeneities 

on ground motion and scattering are tested using simulations of 0-2.5 Hz wave propagation 

for the 2008 Mw 5.4 Chino Hills, California earthquake. Figure 5.13 shows the visualization 

of the earthquake simulation result by our AWP-ODC-GPU code running on NICS 

Keeneland. The 2008 Mw5.4 Chino Hills earthquake was very well recorded on hundreds of 

seismic stations. The simulation including the statistical model of the heterogeneities shows 

several new and interesting results. When compared to strong-motion seismic data from the 

Chino Hills earthquake, the simulation results tend to predict the duration of ground motion 

better than the results without the statistical model of the heterogeneities, dependent on the 

relations for the anelastic attenuation. Details of the visualization can be found at [78]. 
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Figure 5.13: 0-2.5 Hz wave propagation of the 2008 Mw 5.4 Chino Hills, California 
earthquake. Minimum Vs of 200 m/s with a grid spacing of 16 m is calculated using the GPU 
version of finite-difference time domain code AWP-ODC. A fractal distribution of near 
surface heterogeneities with a Hurst exponent of 0.1 and σ=10% is added to the near-surface 
sediments. The simulation results including the statistical model of the heterogeneities predict 
the duration of ground motion better than the results without the statistical model of the 
heterogeneities [78]. 
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5.3.3 Study of Strong and Weak Scaling 

Based on the introduction of the supercomputer testbeds in Section 5.3.1, there are 

two kinds of computing resources available for the scaling study. The first one is small 

clusters based on conventional CPUs plus NVIDIA Fermi GPUs, and the other is new 

world-class supercomputers installed with conventional CPUs plus NVIDIA Kepler GPUs. 

Hence separate scaling results are presented here due to the different computing architectures 

and compiler support.  

To compute GFLOPs, the running time performance is measured by the average time 

spent on one time step after running a benchmark test for 2,000 time steps using the CPU 

timing function. The number of floating point operations is counted in the code based on 307 

FLOP per mesh point per time step discussed in the Section 4.1. Therefore, GFLOPs can be 

calculated as 307*(the total number of mesh points)/(average running time per timestep). Due 

to the enhanced overlap algorithm, some communication has been replaced by computation, 

so the GFLOPs computation must include extended mesh points in the boundary areas. Since 

different sub-domains might have different GFLOPs value, the total GFLOPs for multi-GPUs 

is acquired through MPI_AllReduce which gathers the sum of the GFLOPs from all 

sub-domains. Initialization and output writing are excluded from this calculation. The IO time 

is negligible when time iterations of tens to hundreds of thousands of time steps are involved.  

First, the AWP-ODC-GPU code is benchmarked for the weak scaling study on the 

Titan Phase 5 system and the Keeneland Initial Delivery System (KIDS) supercomputers, 

which are based on conventional CPU cores plus NVIDIA Fermi GPUs. Figure 5.14 shows 

the performance in FLOPS achieved on these two heterogeneous supercomputers. The CUDA 

compiler is version 4.1 and the MPI compiler is Ohio State University's mvapich2 version 1.8, 

but the limic library (an I/O library used by mvapich2 compiler) support is disabled during 

the benchmark test. Only one NVIDIA X2090 GPU per node is available on the Titan Phase 

5 system, but 3 NVIDIA M2090 GPUs per node can be used on the KIDS system. The full 

Titan Phase 5 system contains 960 GPUs whereas the full KIDS system contains 320 GPUs. 

In this benchmark, each GPU carries out stencil calculations for a mesh with a size of 

224x224x1024. The total number of points in the mesh becomes “224*224*1024*N*G”, 

where “N” represents the number of nodes and “G” represents the number of GPUs per node. 
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Figure 5.14 presents our weak scaling results on these two small scale systems. The 

results are indistinguishable from ideal linear weak scaling since the performance in GFLOPs 

in single precision shows a linear increase with increased number of Fermi GPUs. On the 

KIDS system, using three GPUs per node achieves triple the GFLOPs compared to one GPU 

per node. On the Titan Phase 5 system, the peak performance achieved is 101.4 TFLOPs for a 

mesh size of 7616*6272*1024 (~ 49 billion mesh points) using 952 GPUs, while the peak 

computing performance achieved on NICS KIDS system is 30.5 TFLOPs for a mesh size of 

4032*3360*1024 (~ 14 billion mesh points) using 270 GPUs. Good weak scaling means our 

communication model hides communication latency successfully and provides a good 

solution to the bottleneck caused by the data transfer between CPU and GPU. 

Figure 5.14: Weak scaling study on OLCF Titan Phase 5 system and NICS Keeneland KIDS 
system in terms of GFlops achieved with respect to the number of nodes requested. 
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With regard to weak scaling, perfect linear speedup was observed on 90 KIDS nodes 

equipped with 3 NVIDIA M2090 GPUs per node and 952 Titan Phase5 system nodes 

equipped with single NVIDIA X2090 Fermi GPU, where 10% of the peak theoretical 

performance was also achieved. In order to show the AWP code’s extraordinary scaling 

performance, a similar benchmark test was run on the full Titan machine and the Blue Waters 

machine. In the test, each GPU carries out stencil calculations for a sub-domain with size 160 

× 160 × 2048. The total number of points in the domain becomes 160 × 160 × 2048 × N, 

where N represents the number of GPUs used. Figure 5.15 and Table 5.4 show pefect weak 

scaling from 16 up to 8192 Titan nodes. To our knowledge, this is a record speedup for a 

highly memory-bounded scientific problem. A sustained performance estimate of 2.33 

PetaFlops on 16,384 Titan GPUs is achieved, which was a 2,000 time-step benchmark run of 

a problem size of 20,480 × 20,480 × 2,048 or 859 billion mesh points application achieved on 

Cray XK7.  

Figure 5.15: Weak scaling and sustained performance using AWP-ODC-GPU in single 
precision. XK7 exceeds XE6 performance by a factor of 4.2. Solid (dashed) black line is 
(ideal) speedup on Titan, rounds/triangle/cross points are FLOPS performance on Titan/Blue 
Waters/Keeneland. Solid round points are FLOPS on Blue Waters XE6. A perfect linear 
speedup is observed between 16 and 8,192 nodes. A sustained 2.3 Pflop/s performance was 
recorded on 16,384 Titan nodes. 
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Table 5.4: Time-to-Solution and Parallel Efficiency on OLEF Titan. 

XK	
  7	
  Nodes	
  Used	
   Elements	
  (Millions)	
   Wall	
  Clock	
  Time	
   Parallel	
  Efficiency	
  

16	
  (4x4)	
   838,860	
   0.1085	
   100%	
  

32	
  (4x8)	
   1,677,721	
   0.1084	
   100%	
  

64	
  (8x8)	
   3,355,443	
   0.1085	
   100%	
  

128	
  (8x16)	
   6,710,886	
   0.1085	
   100%	
  

256	
  (16x16)	
   13,421,772	
   0.1085	
   100%	
  

512	
  (16x32)	
   26,843,545	
   0.1085	
   100%	
  

1,024	
  (32x32)	
   53,687,091	
   0.1085	
   100%	
  

2,048	
  (32x64)	
   107,374,182	
   0.1084	
   100%	
  

4,096	
  (64x64)	
   214,748,364	
   0.1085	
   100%	
  

8,192	
  (64x128)	
   429,496,729	
   0.1085	
   100%	
  

16,384	
  (128x128)	
   858,993,459	
   0.1159	
   93.2%	
  

Notable slowdown was observed in the case of 16,384 nodes, although 93.5% 

parallel efficiency still can be achieved. Since the application performs only nearest-neighbor 

communications, continued linear scaling would be expected. The source of this performance 

degradation is not yet fully understood, but the topology of the network may have played a 

significant role. One future works is to explore the effect of node topology and evaluate the 

benefit of topology-aware node placement. 

Strong scaling benchmarks were also performed on NCSA Blue Waters and the full 

OLCF Titan. The small fixed size benchmark was run on Blue Waters whereas others were 

on Titan. The degradation in performance with an increase in the number of GPUs is 

expected, as the application becomes bound by communication overhead that arises from less 

compute work. As the number of GPUs is increased, so does the outer halo region to total 

sub-volume size ratio in proportion, making the application less effective in overlapping 

communication and computation. 
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Figure 5.16: Speedup of strong scaling on Cray XT7 at ORNL, with 2D square configuration 
(Z direction fixed as 2048) for problem sizes of 320, 640, 1280 and 5120. 

5.4  Conclusions and Future Work 

Recent destructive earthquakes in China, Haiti, Chile, New Zealand, and Japan, 

highlight the national and international need for improved seismic hazard information. 

Energy efficient high performance earthquake codes are vitally needed for this purpose. 

Toward this goal, we have developed a multi-GPU implementation of a highly scalable 

earthquake simulation code for heterogeneous supercomputers. This code was restructured to 

enable maximized throughput and efficiency for GPU systems. To avoid degradation of the 

computation performance achieved, a notable communication model has been developed to 

hide the communication latency, especially to overlap the high latency caused by the data 

communication between CPU and GPU. With this successful optimization approach, 

performance studies on OLCF Titan system [17], NICS Keeneland KIDS system [24] and 

NCSA Blue Waters [76] demonstrated an excellent weak scaling up to the full system. Now 
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this code has been tested up to the Petascale level and the peak performance we achieved is 

2.3 PetaFLOPs. To our knowledge, this is the first Petascale earthquake simulation code in 

the world at the time of the dissertation writing. 

There is still a lot of room for the code optimization. One optimization work is the 

topology mapping aiming to reduce MPI message latency. When running on OLCF Titan 

with tens of thousands of GPUs, a good node mapping algorithm can put the communication 

nodes physically as close as possible so the MPI communication time can be reduced 

significantly. Other optimization work will focus on a new GPU to GPU communication 

library. Now the NVIDIA Company provides some functions that support peer-to-peer 

communications between GPUs, which might already include some system level optimization 

for supercomputers, and could provide some extra benefits to our code.  
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Chapter 6 

Real-World Earthquake Simulation 

This chapter presents two real-world earthquake simulations based on our 

AWP-ODC-GPU code: the first 10Hz deterministic earthquake simulation on the Titan system, 

and the second CyberShake hazard curve on the NCSA Blue Waters system. These two 

simulations demonstrate the significant practical and social impact of our AWP-ODC-GPU code, 

which provides the capability for high-frequency ground motion earthquake simulations (up to 10 

Hz), and also helps to save millions of computation hours (up to 500 million) for the future 

CyberShake 3.0 model.  

These two real-world earthquake simulations are big projects led by my co-advisor Prof. 

Yifeng Cui from SDSC in collaboration with SCEC researchers, including Professor Kim Bak 

Olsen, Steven Day and their team. My contribution was focused on the implementation of the 

initial AWP-ODC-GPU for both forward and tensor-valued wavefield codes. The forward code is 

focus on wave propagation mode for high-frequency ground motion earthquake simulations. The 

tensor-valued wavefield code targets the CyberShake project for thousands of reciprocal runs to 

generate the hazard map. These two codes was then added parallel I/O interface similar like our 

AWP-ODC-CPU implementation, and also integrated for production simulations on Titan and 

Blue Waters systems. Most of the content and results in this Chapter has been published at the 

International Conference for High Performance Computing, Networking, Storage and Analysis 

2013 (SC 2013) as a technical paper. Simulation outputs have been visualized and adopted by 

SCEC scientists for further seismic study. 

This chapter will go over the simulations in turn. First we introduce the 10-Hz ground 

motion wave propagation simulation, which is the first time ever in earthquake simulation history 

by the time of the thesis writing (early 2014). We briefly describe the size and scientific impact of 

this earthquake simulation and also show the beautiful visualization result. Thereafter we present 

the CyberShake model and discuss the potential huge computation hours saving benefit from our 

AWP-ODC-GPU code.  
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6.1  10-Hz Ground Motion Earthquake Simulation 

High-frequency (> 1Hz) deterministic ground motion predictions are critical input to 

performance-based building design. The accuracy of the simulations is limited by the small-scale 

complexity of the source and by high-frequency wave scattering in the crust. To investigate this 

problem, we have simulated high-frequency ground motions on a mesh comprising 443-billion 

(20,800 × 10,400 × 2,048) elements in a calculation that includes both small-scale fault geometry 

and media complexity. This simulation runs on Titan machine using more than 16,000 computing 

nodes for four hours. Specifically, we have computed the ground motion synthetics using 

dynamic rupture propagation along a rough fault imbedded in a velocity structure with 

heterogeneities described by a statistical model. We first carried out simulations of dynamic 

ruptures using a support operator method [79], in which the assumed fault roughness followed a 

self-similar fractal distribution with wavelength scales spanning three orders of magnitude, from 

~102 m to ~105 m. We then used AWP-ODC-GPU code to propagate the ground motions out to 

large distances from the fault in a characteristic 1D rock model with and without small-scale 

heterogeneities. The latter employed the moment-rate time histories from the dynamic rupture 

simulations as kinematic sources.  

Figure 6.1 shows snapshots of the rupture surface wave propagation for crustal models 

with and without the media heterogeneities. The fractal roughness is controlled by a Hurst 

number, which we set at 0.2, and the size of the heterogeneity by a standard deviation, which we 

set at 5%, as constrained by near-surface and borehole velocity data. Note how the wave field in 

the bottom snapshot is scattered the small-scale heterogeneities, which generates realistic 

high-frequency synthetics. A few seismograms are shown to compare models with and without 

the small-scale structure. 

The earthquake simulation results show realistic features. The acceleration spectra from 

the simulation are nearly flat up to almost 10 Hz, in agreement with theoretical predictions. 

Moreover, the simulated response spectra compare favorably with spectra obtained from the 

empirical ground motion prediction equations (GMPEs) currently used by building engineers, 

which are calibrated to high-frequency recordings of earthquake ground motions. This is the first 

10-Hz ground motion earthquake simulation in seismic science research and the output again 

proves the accuracy of the AWP-ODC-GPU code. 
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Figure 6.1: Snapshots of 10-Hz rupture propagation and surface wavefield for a crustal model 
without (top) with (bottom) a statistical model of small-scale heterogeneities. The displayed 
geometrical complexities on the fault were included in the rupture simulation. The associated 
synthetic strike-parallel component seismograms are superimposed as while traces on the surface 
at selected sites. The part of the crustal model located in front of the fault has been lowered for a 
better view. Note the strongly scattered wavefield in the bottom snapshot due to the small-scale 
Heterogeneities. 

This simulation has a domain size of 416 km×208 km×41 km with a spatial resolution of 

20 meters. The size of this run is slightly larger than the record M8 San Andreas fault simulation 

[5]. The run took only 5 hours and 30 minutes to complete 170 seconds of simulation time 

whereas M8 ran on approximately 220K CPU cores for 24 hours. We emphasize that this 

simulation included 6.8 TB of input and 170 GB of output. To our best knowledge, this is the first 

sustained PetaFLOP seismic production simulation to date, and a new record for earthquake 

simulation in terms of scale. These results are particularly remarkable considering that 

memory-bounded stencil computations typically achieve a low fraction of theoretical peak 

performance. 
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6.2  CyberShake Hazard Model and Simulation 

Probabilistic seismic hazard analysis (PSHA) has been effective in helping 

decision-maker reduce seismic risk and increase community resilience. The arrival of Petascale 

computing has opened the door to full-scale, physic-based PSHA. For example, earthquake 

simulations have recently been validated against ground motions recorded up to 4 Hz, with 

promising results [80], and we are pushing these comparisons to even higher frequencies. 

However, in order to calculate seismic hazards in California and other tectonically active regions, 

simulating just a few earthquakes won’t do; we must adequately sample earthquake distributions 

from probabilistic models, such as the Uniform California Earthquake Rupture Forecast (UCERF) 

[81]. Using standard “forward” simulation methods, computing three-component seismograms 

from M sources at N sites requires M simulations. For the UCERF model in Southern California, 

M> 10^5; i.e., hundreds of thousands to millions of possible earthquake sources must be modeled, 

which cannot be done directly, even at petascale. 

To overcome this scale limitation, SCEC has built a special simulation platform, 

CyberShake, which uses the time-reversal physics of seismic reciprocity to turn the problem 

around [82]. A complete tensor-valued wavefield (the strain Green tensor or SGT) is calculated 

for a system of point forces at surface sites; seismic reciprocity then allows us to compute 

seismograms at those sites by fast (embarrassingly parallel) quadratures of the SGT over the fault 

surfaces. This “reciprocal” simulation method can generate 3-component seismograms for M 

sources at N sites with only 3N simulations. For the Los Angeles region, the near-surface 

geologic structure can be interpolated to produce high-resolution seismic hazard maps with N as 

small as 200-250, reducing the computations by a factor of 2,000. Scientific workflow software is 

used to manage the hundreds of millions of jobs needed to populate a CyberShake model [83].	
  

Using the CyberShake platform, SCEC have created the first physics-based PSHA 

models of the Los Angeles region from suites of simulations comprising ~10^8 seismograms. 

These models are “layered”, allowing earthquake engineers and other users to access ensembles 

of hazard curves (representing epistemic uncertainties), to disaggregate the calculations and 

identify the ruptures that dominate the hazard at a particular site, and to retrieve the actual 

seismograms, which can then be used to drive full-physics engineering models. Figure 6.2 shows 

the detailed layering information of the CyberShake hazard model.	
  



97	
  
	
  

	
  
	
  

CyberShake brings the computational challenges of physics-based PSHA into sharp focus. 

The current models are limited to low seismic frequencies (≤ 0.5 Hz). Goals are to increase this 

limit to above 1 Hz and produce a California-wide CyberShake model using the new UCERF3 

rupture forecast, which is scheduled to be released this year. The computational size of the 

statewide model will be more than 100 times larger than the current Los Angeles models. Our 

progress towards exascale is also being driven by the application of full-3D waveform 

tomography to the development of the seismic velocity models [84-85], which are required as 

input to CyberShake. Full-3D tomography using 3-component seismograms from M sources 

observed at N stations requires at least 3N + Mwavefield simulations per iteration [86]. 

Figure 6.2: The CyberShake hazard model, showing the layering of information. (1) Hazard map 
for the LA region (hot colors are high hazard). (2) Hazard curves for a site near the San Onofre 
Nuclear Generating Station. (3) Disaggregation of hazard in terms of magnitude and distance. (4) 
Rupture with the highest hazard at the site (a nearby offshore fault). (5) Seismograms simulated 
for this rupture. Arrows show how users can query the model starting at high levels (e.g. hazard 
map) to access information of progressively lower levels (e.g. seismograms) [87]. 
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PSHA results are typically delivered by hazard curves, which relate ground motion on the 

X-axis to probability of exceeding that level of ground motion on the Y-axis, for a site of interest.  

To verify AWP-SGT, we calculated a CyberShake hazard curve using the GPU version of 

AWP-ODC-SGT, and compared it to a hazard curve using the CPU version; the two are 

numerically almost identical (shown in Figure 6.3).  Calculation of a hazard curve involves SGT 

time series data from over half a million locations in the volume, providing rigorous verification. 

Figure 6.3: PSHA hazard curve calculated for the University of Southern California (USC) site. 
The horizontal axis represents ground motion at 3 seconds spectral acceleration, in terms of g 
(acceleration due to gravity).  The vertical axis gives the probability of exceeding that level of 
ground motion.  The blue line is the curve calculated using CyberShake with AWP-SGT GPU 
code.  The dashed lines are hazard curves calculated using four common attenuation 
relationships which provide validation of the CyberShake methodology [87]. 

One of the primary motivations of implementing AWP-ODC-GPU code is to accelerate 

CyberShake calculations. We are planning to use CyberShake to calculate a state-wide seismic 

hazard map using 3D waveform modeling that will improve the earthquake shaking history 

forecasts and help engineers design safer buildings and retrofit existing high-risk buildings. When 

using the heavily optimized CPU code AWP-ODC, it is expected to require 662 million 

allocation hours to complete a CA state-wide hazard map at a maximum frequency of 1-Hz. Our 

new AWP-SGT GPU code running on Cray XK7 demonstrates a performance improvement of a 
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factor of 3.7 compared to the CPU code running on Cray XE6. Table 6.1 provides some detailed 

comparisons of calculating SGTs on XK7 versus XE6, and demonstrates the saving of 579 

millions of allocation hours when using the accelerated (CPU+GPU) AWP. 

Table 6.1: CyberShake 3.0 Strain Green Tensor Calculations: 1) XE6 node (dual Interlagos); 2) 
XK7 (Operaton + Kepler K20X); 3) Wall clock time based on measurements on Cray XE6/XK7 
at NCSA for two Strain Green Tensor calculations per site; 4) Based on total 5000 sites required 
for the generation of California state-wide seismic hazard map at a maximum frequency 
resolution of 1-Hz; 5) CPU + GPU saving counts the use of XK7 CPUs for post-processing of 
seismogram extraction as co-scheduling, involving 6.2 million rupture variations calculations per 
site. 

CyberShake 3.0 CPU1 only GPU2 only CPU + GPU2 
XE61/XK72 nodes 400 400 400 

WCT3 per site 10.36hr 2.80 hr 2.80 hr 
Total SUs charged4 662 M 168 M 168 M 

Saved in Million SU5  495 M 579 M 

The results show the capability of our AWP-ODC-SGT GPU code again, which can help 

to serve as the main computational engine for the CyberShake calculation. As shown in the table 

6.1, the use of the AWP-SGT GPU-only code is expected to save up to 500 million hours of 

computation required for the proposed statewide CyberShake 3.0 model, in addition to reducing 

dramatically the time-to-solution. This AWP-ODC-SGT GPU code will provide highly scalable 

solutions for other problems of interest to SCEC as well as the wider scientific community, 

including full-3D waveform inversions to obtain better velocity models for use in structural 

studies of the Earth across a range of geographic scales. 
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Chapter 7 

Future Work and Conclusions 

In this chapter, we will discuss the future high performance seismic simulation on the 

upcoming computing architectures and also summarize the full dissertation. 

7.1  Seismic Simulation Model 

The current seismic simulation model is based on 3D structured mesh where mesh points 

are equally distributed across the 3D domain. However, the wave propogation on the surface is 

the most critical result for generating hazard map for scientific research or industry purpose. 

Wave propogation information inside the 3D domain, especially far away from the surface, is less 

important. Therefore, the seismic simulation model can be improved as coarse-grain for 3D 

domain and fine-grain for 2D surface simulation, which means there will be more mesh points on 

the 2D surface or near the surface and less mesh points (shown in Figure 7.1). The purpose of this 

simulation model improvement is to heavily reduce the computation loads while achieving the 

same output quality. 

As described in section 2.1, NVIDIA GPU with Kepler architecture supports dynamic 

parallelism, allowing GPU kernel to launch its child kernel. The proposed seismic simulation 

model can gain significant benefits from this GPU feature. In each timestep, the main GPU kernel 

is computing coarse-grain for the whole 3D domain. If the mesh point is close to the surface, it 

will launch a child kernel to compute fine-grain for the 2D surface. After all child kernels return, 

it iterates to the next timestep. In addition, due to the coarse-grain computation for the 3D domain, 

the computing performance would gain more speedup because of the less memory-bound. The 

main difficulty of this proposed seismic simulation model is the data processing on the interface 

between fine-grain and coarse-grain. This is because some wave reflection might be generated 

between this interface as a result of the different density of the mesh points between two domains. 

This issue is being investigated by computational scientists in our lab and would be done in the 

near future. 
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Figure 7.1: proposed seismic simulation model: coarse-grain computation for full 3D domain and 
fine-grain computation for 2D surface/near surface domain. 

7.2  Intel MIC Architecture 

The Intel MIC (Many Integrated Core) architecture is developed to compete with 

NVIDIA Tesla GPU for HPC market (See Figure 7.2). Each MIC co-processor has more than 50 

x86 cores and each core allows four hardware threads running simultaneously with 512-bit wide 

SIMD instructions. As mentioned in the section 2.1, the No.1 supercomputer Tianhe-2 machine 

based on the Top500 list released in Nov. 2013 is installed with such architecture, while each 

computing node of Tianhe-2 contains two Intel Ivy Bridge Xeon processors and three Xeon Phi 

processors (MIC architecture). Similar to GPU accelerators, the MIC co-processors are also 

connected to the host CPU processors via PCIe. And the MIC also supports a lot of programming 

models such as OpenMP, MPI and etc. 

To implement AWP-ODC on the MIC-based supercomputers, we can utilize the same 

parallel programming framework presented in this dissertation, because the hardware 

architectures are quite similar between MIC-based and CPU-GPU based supercomputers. 

Computation data also needs to be offloaded into the MIC co-processors and data communication 

between MIC co-processors still needs to bypass the slow PCIe connection. The main difference 

is the computation optimization on single computing node. The MIC co-processor provides more 

independent hardware threads and can handle more generation computation including if 

statements or data divergence. In addition, full use of the 512-bit SIMD is needed for vector 

computation to allow the maximum performance gain. 



102 
	
  

	
  
	
  

Figure 7.2: The architecture of Intel MIC co-processors: including 61 in-order cores and 4 
hardware threads per core. Each core has private L1 cache (32KB I-cache and D-cache) and 
shared L2 cache (512KB unified per core) [88]. 

7.3  Dissertation Conclusions 

A highly scalable finite-difference time-domain seismic simulation is presented in this 

dissertation on the world-class petascale heterogenesous supercomputer, targeting 3D earthquake 

hazard calculation with faster time-to-solution and higher computation efficiency. The primary 

goal of this work is the design, implementation, analysis and optimization of the well-known 

AWP-ODC application towards petascale computing on the largest CPU-GPU based 

supercomputer (Titan at ORNL). The production simulation using this new development has 

generated realistic dynamic earthquake source description and detailed physics-based anelastic 

ground motions at frequencies pertinent to scientific research or industry purpose (e.g. safe 

building design).  

Heterogeneous computing has becoming more and more popular in HPC. The computing 

architecture has evolved to the traditional CPU plus accelerators instead of the CPU-only. Even 

the world leading CPU vendor Intel has introduced MIC architecture as a flagship product to 

compete for HPC market. Based on the Top 500 List released in Nov. 2013, only the No.1 

supercomputer Tianhe-2 in China is installed with the MIC architecture, while the most popular 

heterogeneous supercomputers areremained with the hybrid CPU/GPU design. Our next step will 

be to migrate this GPU-based code into the Intel MIC, counting Intel’s interest to continue the 
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support of the many-core architectures.  

To enable petascale earthquake simulations on supercomputers, data management is very 

critical as many terabytes and millions of 3D input and output files are generated on petascale 

supercomputers. The end-to-end earthquake simulation workflow developed in this work help 

manage the earthquake simualtion with fault tolerance capability features added to secure the 

accuracy and correctness of input/output data. The protocol workflow framework developed for 

data transfer between HPC sites demonstrated a saving of more than 73% data transfer time. The 

job management scheme based on iRODS system for data pre-pocessing and archieval achieved 

almost 5x faster than conventional iRODs methods.  

Although our scientifc workflow handles the data pre/post-processing, the kernel part of 

the petascale earthquake simulation is the numerical simulation solver. The optimization of the 

solver are two-folds: the first is the single-GPU optimization which focuses on improving data 

locality; and the second is the multi-GPU implementation which tends to miminize the frequency 

of data communication in each iteration, thus allowing fully overlap of data communication. 

AWP-ODC as a memory-bound application (involving 21 3D variables kept on memory) 

with very low FLOPs/Bytes ratio (around 0.508), its computation performance is dominated by 

the arithmatic throughput. We completely re-wrote the AWP-ODC code using C/CUDA: first to 

put constant 3D variables into the GPU read-only memory to take advantage of read-only 

memory cache, then to design proper data decomposition strategy to make sure threads in the 

same wrap can access adjacent data for better cache hit rate. Memory padding guarantees each 

data fetching is from the same memory page and improves data fetching efficiency. Register 

optimization is to fully reuse the data already stored in registers and minimize the global memory 

access. L1 cache/shared memory optimization is to make full use of the fast on-chip memory. Our 

single GPU memory-bound code achieved remarkable 143.8 GFLOPs performance on NVIDIA 

M2090, which is approximately 10% of the peak performance. 

For multi-GPU implementation, a notable communication model has been developed to 

hide the communication latency, especially to overlap the high latency caused by the data 

communication between CPU and GPU. Firstly, we did two-layer data decomposition for CPU 

and GPU to make sure communication only happens in y and z directions (fast memory 

directions), then we extend the computation region for stress to reduce data communication for 

stress component. In-order communication guarantees data in ghost cell regions are correct and 
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also miminize the frequency of data passing through the slow PCIe bus. The overlapping method 

has fully overlapped the data communication time by the computation time and helped to avoid 

degrading the computation performance achieved by single-GPU optimization. The benchmark 

experiements on Titan demonstrated an excellent weak scaling up to full machine and a sustained  

performance up to 2.3 PetaFLOPs, the highest earthquake simulation performance to date. 

The social impact of our research work can be summarized in two recent real-world 

production earthquake simulations: the first a 0-10Hz deterministic earthquake simulation on the 

Titan system, and the second the 140-sites CyberShake 14.2 production calculations using the 

GPU-based code on the NCSA Blue Waters system. The 10-Hz run is slightly larger than the M8 

simulation performed in 2010, with a simulation time of approximately 5.5 hours using 16K GPU 

nodes compared to previous 24 hours run using 220K CPU cores. As the first sustained 

PetaFLOP seismic production simulation by Jan. 2014, this is a new record for earthquake 

simulation in terms of scale and scalability. The new AWP-ODC code is expected to save more 

than 500 million computation core-hours for the proposed statewide CyberShake 1.0-Hz model. 

Recognized by the research community [89], the social media [90] and the technology 

companies [91], and HPC User Forum [7], this work achieves we promised in terms of enabling 

petascale seismic production simulation with dramatically reduced time-to-solution and power 

consumption. In the end, the GPU-based AWP-ODC code is under development for a public 

release and tutorial by UCSD HPGeoC laboratory, with a goal of expanded use of the software by 

earthquake researchers and technical developers around the world. 
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