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Abstract

Background: Depression is a debilitating and difficult-to-treat condition in people with HIV 

(PWH) despite viral suppression on antiretroviral therapy (ART). Depression is associated with 

activation of the PKR-like ER kinase (PERK) pathway, which regulates protein synthesis in 

response to metabolic stress. We evaluated common PERK haplotypes that influence PERK 

expression in relation to depressed mood in PWH.

Methods: PWH from 6 research centers were enrolled in the study. Genotyping was conducted 

using targeted sequencing with TaqMan. The major PERK haplotypes A, B, and D were 

identified. Depressive symptom severity was assessed using the Beck Depression Inventory-II 

(BDI-II). Covariates including genetically-defined ancestry, demographics, HIV disease/treatment 

parameters and antidepressant treatments were assessed. Data were analyzed using multivariable 

regression models.

Results: A total of 287 PWH with a mean (SD) age of 57.1±7.8 years were enrolled. Although 

the largest ethnic group was non-Hispanic white (n=129, 45.3%), African-American (n=124, 

43.5%) and Hispanic (n=30, 10.5%) made up over half the sample. 20.3% were female and 96.5% 

were virally suppressed. Mean BDI-II was 9.6±9.5, and 28.9% scored above the cutoff for mild 

depression (BDI-II>13). PERK haplotype frequencies were AA57.8%, AB25.8%, AD 10.1%, 

and BB4.88%. PERK haplotypes were differentially represented according to genetic ancestry 

(p=6.84e-6). BDI-II scores were significantly higher in participants with the AB haplotype 

(F=4.45, p=0.0007).This finding was robust to consideration of potential confounds.
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distribution, and reproduction in any medium, provided the original work is properly cited.
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Conclusion: PERK haplotypes were associated with depressed mood in PWH.Consequently, 

pharmacological targeting of PERK-related pathways might amelioratedepression in PWH.

Keywords

Haplotypes; HIV; PKR-like ER kinase (PERK)

Introduction

Depression is a burdensome comorbidity in people with HIV (PWH), being 2–3 times more 

common in PWH than in people without HIV (PWoH), with estimates as high as 37% of 

PWH in a given year [1–3]. Extensive reports have delineated how depression, particularly 

when chronic, has multiple adverse effects including poorer medication adherence [4,5], 

Lower rates of viral suppression [6,7], Worse social and health-related quality of life and 

shorter survival [8–11]. HIV activates the unfolded protein response (UPR) [12–14], which 

in turn may increase the risk of depression [15]. The UPR, which is activated in animal 

models of depression 2957466929578616 34759791and in postmortem brain tissue from 

depressed individuals [15–17], is a cellular response to endoplasmic reticulum (ER) stress 

and protein misfolding. The protein kinase R-like ER kinase (PERK) pathway is one of the 

three major branches of the UPR. PERK, encoded by eukaryotic translation initiation factor 

2 alpha kinase 3 (EIF2AK3), is a type I transmembrane protein kinase and stress sensor 

that phosphorylates eIF2α, which inhibits mRNA translation, thereby decreasing protein 

synthesis and the accumulation of misfolded proteins. The activity of the UPR system 

may be responsible for some of the underlying pathophysiology of depression, and this 

response may be involved in downstream pathways such as apoptosis, inflammation and 

dysfunctional cellular communication [16,18,19]. On the other hand, the relationship may be 

reciprocal, as inflammation is also among the stimuli that activate the PERK pathway [20]. 

Thus, depression and inflammation appear interrelated in PWH [21,22]. Treatment-resistant 

depression (TRD) in particular is associated with a heightened inflammatory response [23], 

and treatment with the anti-inflammatory tumor necrosis factor-alpha (TNF-α) antagonist, 

infliximab, has been shown to improve TRD.

Additionally, PERK-eIF2α upregulation activates the NLR family pyrin domain containing 

3 (NLRP3) inflammasome to release interleukin (IL)-1β and modulate ER stress-related 

cell death [24]. A specific haplotype of PERK, haplotype B with proposed increased kinase 

activity [25], has been genetically associated with increased risk for the neurodegenerative 

disorder progressive supranuclear palsy, in which depression is a common manifestation 

[26,27]. Thus, haplotypes that influence the activation of PERK may carry differential 

vulnerability to depression due to the associated variability in inflammatory and ER stress-

related pathways that are known to influence depression [28–32]. Such pathways may be 

particularly important in PWH since they experience persistent inflammation despite viral 

suppression on antiretroviral therapy (ART). Based on these considerations, we evaluated 

the hypothesis that common haplotypes of PERK would be associated with different degrees 

of depressed mood in PWH. Because of the reciprocal relationship between inflammation 

and PERK, we hypothesized that inflammation might serve as a mediator between PERK 

haplotypes and depressed mood.
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Methods

Participants underwent standardized clinical and laboratory evaluations at 6 U.S. academic 

centers in the CHARTER study between April 2016 and January 2020. Inclusion criteria 

included HIV infection and willingness to undergo the research assessments. All study 

procedures were approved by the Institutional Review Board (IRB), and all participants 

provided informed consent. Exclusion criteria were active neurological illnesses other than 

HIV, active psychiatric disorder (e.g., psychosis), or substance use disorder that might 

interfere with completing study evaluations.

Clinical evaluations:

Depressed mood was assessed using the Beck Depression Inventory (BDI)-II including 

the BDI cognitive, affective, and somatic subscales8991972. Lifetime major depressive 

disorder (MDD) and substance use disorders were assessed using the computer-assisted 

Composite International Diagnostic Interview (CIDI) [33], a structured instrument widely 

used in psychiatric research. The CIDI classifies current and lifetime diagnoses of mood 

disorders and substance use disorders, as well as other mental disorders. A trained clinical 

examiner interviewed and examined participants to collect information such as antiretroviral 

treatments, nadir CD4+ T cell counts and current antidepressant use. Additional assessments 

of the clinical impact of depression included dependence in activities of daily living, 

employment and quality of life. Quality of life was assessed using the Medical O 

outcomes Study HIV Health Survey Short Form 36 (MOS-HIV SF-36) [34], a reliable 

and valid tool for assessing overall quality of life, daily functioning, and physical health 

[35,36]. The MOS-HIV contains 36 questions that assess various physical and mental 

dimensions of health. Items are grouped into two overall categories (Physical and Mental 

Health), with 11 subcategories (Physical functioning, Role functioning, Pain, Social 

functioning, Emotional well-being, Energy/fatigue, Cognitive functioning, General health, 

Health distress, Overall QoL, Health transition). These are scored as summary percentile 

scales ranging from 0 to 100, with higher scores indicating better health. Dependence in 

instrumental activities of daily living (IADLs) was assessed with a modified version of the 

Lawton and Brody Scale that asks participants to rate their current and best lifetime levels of 

independence for 13 major IADLs such as shopping, financial management, transportation, 

and medication management [37,38]. An employment questionnaire asked about job status, 

work productivity, accuracy, and quality; effort required to do one’s usual job; and fatigue 

with the usual workload [34].

Clinical laboratory evaluations:

HIV infection was diagnosed using enzyme-linked immunosorbent assay with Western blot 

confirmation. HIV RNA in plasma was measured using commercial assays and deemed 

undetectable at a lower limit of quantification (LLQ) of 50 copies/mL. CD4+ T cells were 

measured by flow cytometry, and nadir CD4+ T cell count was assessed by self-report.

Soluble biomarkers were measured by immunoassay: soluble tumor necrosis factor 

receptor II (sTNFR-II), D-dimer, interleukin (IL)-6, C-reactive protein (CRP), monocyte 

chemoattractant protein (MCP)-1, soluble CD40 ligand (sCD40L), soluble CD14 (sCD14), 
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and neopterin. We selected these biomarkers based on previous studies showing their link to 

depressed mood [32,39–43].

Genotyping was performed using TaqMan SNV genotyping assays (Life Technologies) 

for rs867529, rs1805165, and rs13045. The assays were performed by polymerase chain 

reaction as reported previously [29]. Genotypes were visualized and called using a 

7900HT Fast Real-Time PCR system and the allelic discrimination function of the 

Sequence Detection System V.2.4 (Applied Biosystems, Waltham, MA, USA). The major 

PERK haplotypes A, B, and D were identified as previously described based on three 

single nucleotide polymorphisms (SNPs) in the EIF2AK3 gene: rs867529(Ser136Cys), 

rs13045(Arg166Gln), and rs1805165(Ser704Ala) forming coding haplotypes of three 

highly conserved residues: Haplotype A (conserved): Ser136-Arg166-Ser704; Haplotype 

B (divergent): Cys136-Gln166-Ala704.; Haplotype D (divergent): Ser136-Gln166-Ser704. 

Markers of ancestry were analyzed using EIGENSTRAT software to generate principal 

components [35]. Model-based clustering on the top three principal components, using the 

mclust R package (https://www.stat.washington.edu/mclust/), was used to assign individuals 

to genetic ancestry clusters [44].

Statistical analyses:

Demographic and clinical characteristics were summarized using means and standard 

deviations, medians and interquartile ranges, or percentages, as appropriate. Log10 

transformation was used to normalize the biomarker values. A factor analysis was used to 

reduce the dimensionality, and analysis of variance (ANOVA) was used to compare BDI-II 

across haplotypes. Secondary analyses evaluated correlations of BDI-II with quality of life 

(MOS-HIV), neurocognitive function, and employment status.We used multivariable linear 

regression models to test interaction effects. In the absence of an interaction, additive effects 

were tested. Relevant covariates including genetically-defined ancestry, demographics, 

HIV disease and treatment parameters, and antidepressant treatments were assessed using 

multivariable regression models. Analyses were conducted using JMP Pro version 15.0.0 

(SAS Institute, Cary, NC, 2018).

Results

The cross-sectional dataset included 287 PWH, including 58 (20.3%) females, with a 

mean age (SD) of 57.1 (7.76) and median CD4+ of 31.3/μL, and 276 (96.5%) PWH 

were virologically suppressed on ART. Self-reported race/ethnicities were African American 

(n=124, 43.5%), Hispanic (n=30, 10.5%), non-Hispanic white (n=129, 45.3%), other (n=2, 

0.70%). Mean BDI-II was 9.6; 83 (28.9%) exceeded the cutoff for mild depression.

The distribution of haplotypes was as follows: AA57.8%, AB25.8%, AD10.1%, BB4.88%, 

BD1.39%. As shown in Figure 1, the haplotypes were distributed differently with respect 

to genetically determined ancestry. No participants of African descent harbored haplotype 

BB, and no participants of Hispanic descent harbored haplotype BD. The rs1805165 and 

rs867529 SNPs were 100% concordant across all participants. Participant demographic and 

clinical characteristics by haplotype are shown in Table 1.
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Forty-four percent of participants had a history of meeting the criteria for MDD. Twenty-

nine percent had depressed mood of at least mild severity (BDI-II score > 13). BDI-II scores 

were not significantly related to demographic or HIV disease characteristics (all p values 

>0.05). Those on antidepressant medications had worse depressed mood (BDI-II 16±10.7 

versus 12.2±10.2). The distribution of haplotypes was independent of antidepressant use 

(p=0.252).

ANOVA demonstrated a significant overall effect of haplotype on depressive symptom 

severity (F=3.63, p=0.0067, (Figure 2). All BDI-II subscales contributed to the association: 

cognitive F=2.54, p=0.0404; somatic F=2.823, p=0.0254; affective F=2.517, p=0.0417. 

Follow-up pair wise comparisons among the groups using Student’s t-test showed that 

those with the AB haplotype had significantly worse depressive symptom severity than 

those with the most common AA haplotype (12.9±10.8 versus 8.83±8.83, p=0.0003) and 

BB (8.14±10.92, p=0.0417) haplotypes. Concordant with the results of depressive symptom 

severity as indexed by the BDI-II score, we found that the occurrence of incident MDD over 

the year before the visit was highest in those with haplotype AB (22/70, 31.4%), followed 

by those with haplotypes AA (43/148, 29.1%), AD (2/24, 7.69%), BB (1/13, 7.14%), and 

BD (0%) (p=0.0134). Similarly, PWH with the AB haplotype had the highest rate of lifetime 

MDD (51/74, 69.0%), compared to AA (56/165, 66.1%), AD (15/29, 51.7%), BB (6/14, 

42.9%) and BD (1/3, 33.3%; p=0.0175). The haplotype–BDI-II relationship was driven 

by rs1805165/ rs867529. For rs1805165, heterozygotes (GT) had higher BDI-II scores 

(12.6±10.7) than homozygotes (GG, TT; 8.14±10.9 and 8.52±8.60; p=0.0047).

In follow-up secondary analyses, we tested the hypotheses that the different SNPs might 

contribute additively or synergistically to depressed mood. In a multivariable regression 

predicting BDI-II from rs867529 (100% concordant with rs1805165), rs13045 and their 

interaction, the interaction term was non-significant, while the separate main effects were 

significant (for rs867529, p=0.0025; for rs13045, p=0.0074; full model p=0.0067).

Potential confounds

Since the haplotypes were distributed differently according to genetically determined 

ancestry, we assessed main effects of genetic ancestry on depression and the potential 

interaction between PERK haplotype and ancestry. In a multivariable model, the interaction 

term was not significant (p=0.695), and after removing it from the model, only haplotype 

was significant (haplotype p=0.00167; ethnicity p=0.347). Lifetime substance abuse 

diagnoses were significantly associated with worse depressed mood (mean±SD, 11.2±10.0 

versus 7.25±8.00, p=0.0006) and with PERK haplotype (AB 81.1%, AA 78.2%, AD 55.7%, 

BB 64.3%, BD 100%, 0.0380). In a multivariable model, both haplotype and lifetime 

substance abuse diagnosis were significant (p, 0.0136 and 0.00101, respectively). Their 

interaction was not significant. Haplotypes were not significantly associated with current 

or nadir CD4 (ps=0.502, 0.442, 0.762). Viral suppression was significantly related to 

haplotype, being highest in haplotype BD; in a multivariable regression predicting BDI-II 

from viral suppression, haplotype and their interaction, viral suppression and haplotype were 

not significant (ps>0.05).
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Univariable association of biomarkers with BDI-II at the first visit

Concentrations of soluble biomarkers in plasma did not correlate with depressive symptoms: 

CRP (r=−0.00817, p=0.923), D-Dimer (r=−0.00445, p=0.958), IL-6 (r=0.08535, p=0.3091), 

MCP-1 (r=−0.04532, p=0.5897) and neopterin (r=0.0724, p=0.3883). Correlations were 

not significant for sCD14 (r=0.00396, p=0.9624), sCD40L (r=0.05, p=0.5517) and sTNFR-

II (r=0.087, p=0.2968). A factor analysis was used to reduce the dimensionality of the 

biomarkers. The analysis yielded 3 Factors, with Factor 1 loading on sTNFRII and D-dimer, 

Factor 2 loading on D-dimer, IL-6 and CRP and Factor 3 loading on MCP-1 and sCD40L. 

None of the biomarker factors was associated with BDI-II (data not shown). Haplotypes 

were not significantly related to any of the biomarker factors (data not shown).

Adverseimpact of depression on IADLs, employment, and quality of life

Worse depressed mood correlated with reduced quality of life, both physical (r=−0.560, 

p=4.67 × 10−50) and mental (r=−0.831, p=3.95× 10−17). Those with worse depression 

reported greater need for assistance in IADLs (p=3.83 × 10−8), and worse depression 

was associated with a higher risk of unemployment (p=7.3 × 10−5).Worse depressed 

mood was associated with worse memory complaints (r=0.547, p=3.88 × 10−23), language 

complaints (r=0.480, p=1.82 × 1017), motor complaints (r=0.371, p=1.65 × 10−10), 

sensory complaints (r=0.285, p=5.68 × 10−29), motor complaints (r=0.558, p=1.65 × 

10−10),cognitive complaints (r=0.285, p=2.93 × 10−24) and total complaints (r=0.603, 

p=5.68 × 10−29).

Discussion

We found that specific PERK haplotypes explained a substantial fraction of the variance 

in depressed mood in PWH. The effects of PERK haplotype on depressed mood were 

robust to consideration of genetically determined ancestry, demographics, and disease status. 

Worse depressed mood was associated with a severe adverse impact on quality of life, 

employment and IADLs. We anticipated that inflammation might mediate the significant 

association between PERK haplotypes and depression. However, we found instead that the 

effects of PERK haplotypes on depressed mood were independent of inflammation. The 

relatively small sample size might explain why we did not find inflammation to mediate 

the relationship between the haplotypes and depressed mood. Also, we did not measure 

some mediators that are particularly important in downstream PERK pathways, including 

the NLRP3-associated cytokines IL-1β and IL-18. Alternative interpretations of these results 

are that additional, unobserved variables might have influenced depressed mood or mediated 

the effects of PERK haplotypes on depressed mood.

Our observations are consistent with an extensive literature on the role of PERK in 

depression. For example, C/EBP homologous protein (CHOP) Transcription Factor and 

X-box-binding factor 1 (XBP1) - both downstream indicators of the PERK-mediated 

UPR and markers of upregulated ER stress – are elevated in PWoH with MDD [45–

47]. These observations are relevant because HIV is associated with the upregulation 

of PERK despite viral suppression [48,49]. The implicated roles of PERK in the 

context of HIV infection are multipronged. HIV-induced neuroinflammation inhibits 
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oligodendrocyte maturation via glutamate-dependent activation of PERK, and blocking 

PERK protects oligodendrocyte precursor cells from HIV/monocyte-derived macrophage-

mediated inhibition of oligodendrocyte maturation [50]. HIV Tat-mediated induction of 

human brain microvascular endothelial cell apoptosis involves endoplasmic reticulum stress 

and mitochondrial dysfunction [51]. Furthermore, antiretroviral drugs and IL-1β induce the 

UPR, AEG-1 expression, increased intracellular calcium, and mitochondrial depolarization 

in astrocytes [52].

The NLRP3 inflammasome is persistently upregulated in virally suppressed PWH [53,54]. 

The NLRP3 gene codes for the NALP3 protein (cryopyrin), a member of the NLRP3 

inflammasome complex. This complex is an intracellular sensor that detects microbial 

motifs and endogenous danger signals such as reactive oxygen species and lysosomal 

damage [55], resulting in the assembly and activation of the inflammasome [56]. This 

leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18, 

as well as to pyroptosis, a rapid, inflammatory form of lytic programmed cell death. 

NLRP3 remains activated in virally suppressed PWH [53,54]. Inflammaging and NLRP3 

contribute specifically to neurodegenerationin HIV affecting neurotransmitter systems and 

neurocircuits regulating motivation, driving anhedonia [57–63]. Increased inflammatory 

cytokines, including those regulated by NLRP3, are regularly detected in blood and 

cerebrospinal fluid samples of depressed PWH [64–66]. High levels of IL-1β and IL-18 

deplete synaptic serotonin, dopamine and norepinephrine, contributing to depression, 

particularly anhedonia [67]. Dopamine metabolism in the nucleus accumbens is disrupted 

in MDD [68]. Both IL-1β and IL-18 affect dendritic sprouting, synaptic plasticity, long-

term potentiation, growth factors, and neurogenesis and modulate the HPA axis, affecting 

the stress response [69–71]. Mice exposed to unpredictable stress show inflammasome 

activation, IL-1β release, microglial activation and reduced hippocampal neurogenesis 

[72]. Treatment with iptakalim, which negatively regulates NLRP3, lowers inflammation, 

improves neurogenesis and benefits behavior [72]. We did not study IL-1β and IL-18, 

perhaps explaining why we did not find inflammation to be associated with PERK 

haplotypes and depression.

The role of PERK haplotypes in depressive mood may be leveraged for future treatment. 

PERK interventions using available PERK inhibitors are being explored as remedies 

for cellular dysfunction in chronic neurodegenerative disorders [73]. For example, 

one study reported that in an animal model, treatment with edaravone prevented the 

activation of PERK-related pathways [74]. Similarly,in preclinical models of frontotemporal 

dementia and prion disease [75,76], treatment with the potent and selective PERK 

inhibitorGSK2606414 demonstrated neuroprotective effects. Another study reported that 

GSK2606414 treatment prevented loss of dendritic spines and improved memory outcomes 

in mice after focal brain injury [77]. However, given that PERK is required for reestablishing 

cellular homeostasis, its inhibition may be associated with adverse effects, such as that 

observed in PERK knockout mice exhibiting altered glucose metabolism [78]. Another 

therapeutic avenue involves mitigating translation attenuation mediated by eIF2α, one 

of the targets of PERK. Indeed, several compounds targeting the modulation of eIF2α 
phosphorylation have been developed as potential therapeutics in neurodegenerative 

disorders and white matter disease. For example, salubrinal inhibits eIF2α phosphatase 
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[79], and guanabenz and Sephin1 selectively inhibit the eIF2α phosphatase complex 

[80,81]. Alternatively, trans-ISRIB counteracts the eIF2α-mediated translational attenuation 

by interacting with eIF2B, allowing GEF activity even in the presence of p-eIF2α [82]. 

However, as a caveat to the approaches targeting eIF2α, PERK is one of the four kinases 

that can phosphorylate eIF2α; therefore, these approaches impact signaling by the other 

three eIF2α kinases, GCN2, IRE1a, and HRI [83]. The impact of PERK genetic variants 

in implementing therapeutic interventions aimed at PERK or its target eIF2α should be 

considered.

Strengths of this study include the diverse, multicenter cohort, the rigor of the depression 

ascertainment, the concomitant characterization of PERK haplotypes, biomarkers of 

inflammation and immune activation, the biomarker dimensionality reduction approach, and 

the breadth of characterization of impact on activities of daily living and quality of life.

Limitations of this study include the inability to assign causal roles, and the potential 

omission of individuals with the depressed AB haplotype and important unobserved 

variables. The rate of virologic suppression was low compared to modern cohorts; this may 

have influenced the prevalence of depression, or vice-versa. Females were underrepresented 

here, so the results may not be generalizable to them. We studied only individuals with 

HIV infection; it is possible that PERK genetic variations also associate with depression in 

people without HIV or in other neurodegenerative diseases where there is evidence that the 

unfolded protein response is activated [84,85].

Conclusion

Aspergillus species were the most common fungi isolated from the indoor environment 

while Trichophyton species were also isolated from the plant soil surface. A high 

incidence of fungi was seen in the indoor environment of residents suffering from allergies 

and asthma. Many therapeutic options are effective against allergic rhinitis, including a 

combination of antihistamines, corticosteroids (intranasal and oral), and anti-leukotrienes. 

The treatment efficiency was improved with hygienic environmental conditions by avoiding 

fungal contaminants which were the major trigger in indoor environments.
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Figure 1: 
PERK haplotypeswere differentially distributed according to genetically-determined 

ancestry.
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Figure 2: 
Depression scores (BDI-II; higher = worse mood) according to PERK genotype. The 

numbers below each box plot are the numbers of participants with each haplotype.
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