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ABSTRACT: Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated
individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population
and pedigree data. Even datasets thought to consist of only unrelated individuals may include cryptic relationships that can
lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They
are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin
effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees
are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously
hard to compute. In this paper, we reexamine the computational bottlenecks and implement ultra-fast pedigree-based GWAS
analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense
markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c)
allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs
under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits.
On a typical personal computer (six CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait
from the San Antonio Family Heart Study (935,392 SNPs on 1,388 individuals in 124 pedigrees) takes less than 2 min
and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate
trait takes less than 5 min and 1.5 GB of memory. The algorithm is implemented as the Ped-GWAS Analysis (Option
29) in the Mendel statistical genetics package, which is freely available for Macintosh, Linux, and Windows platforms from
http://genetics.ucla.edu/software/mendel.
Genet Epidemiol 00:1–13, 2016. © 2016 Wiley Periodicals, Inc.
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Introduction

Genome-wide association studies (GWAS) are now at a cross-
roads. After the discovery of thousands of genes influencing
hundreds of common traits [Hindorff et al., 2009], much
of the low-hanging fruit has been plucked [Ku et al., 2010,
Visscher et al., 2012]. Because of the enormous sample sizes
of current studies, new trait genes are still being uncovered.
Unfortunately, most entail small effects. Is it possible that
inheritance is predominantly polygenic, and a law of dimin-
ishing returns has set in? The push to exploit rare variants
is one response to this dilemma. The previous generation of
geneticists relied on linkage to map rare variants. Linkage
mapping fell from grace because of its poor resolution. Re-
ducing a genome search to a one or two megabase region
leaves too large an expanse of DNA to sift. The real gold of
linkage mapping may well be its legacy pedigrees [Ott et al.,

∗Correspondence to: Eric Sobel, Department of Human Genetics, University of Cali-

fornia, Los Angeles, California 90095, United States of America. E-mail: esobel@ucla.edu

2011]. Pedigree data is particularly attractive in association
studies because it permits control of population substruc-
ture and study of parent-of-origin effects. Related affecteds
are also more likely to share the same disease predisposing
gene than unrelated affecteds. Even in population-based as-
sociation studies, taking into account estimated identity-by-
descent (IBD) information is apt to reduce false positives and
increases power. The recent availability of dense marker data
from genotyping chips enables quick and accurate estimation
of global and even local IBD [Day-Williams et al., 2011].

Geneticists turned to random sample and case-control data
because of the relative ease of collecting population data
and the computational challenges posed by pedigrees. The
tide of computational complexity is now beginning to turn.
To handle pedigree data in association testing, statistical ge-
neticists have proposed semiparametric methods such as the
generalized linear-mixed model (GLMM) [Amin et al., 2007,
Aulchenko et al., 2007] and generalized estimating equations
(GEE) [Chen and Yang, 2010, Chen et al., 2011]. Although

C© 2016 WILEY PERIODICALS, INC.



such methods work for both quantitative and binary traits,
they are compromised by current restrictions that reduce
power. The GEE approach requires input of a working corre-
lation structure for each pedigree. The kinship coefficient ma-
trix is a natural candidate. However, current implementations
require the same working correlation matrix across all clus-
ters, which implicitly requires all pedigrees to have the same
structure [Chen et al., 2011]. This is a dubious and restrictive
assumption. In the limited context of case-control studies, re-
cent methods such as MQ L S [Thornton and McPeek, 2007],
ROADTRIPS [Thornton and McPeek, 2010], and FPCA [Zhu
and Xiong, 2012] correct for pedigree and ethnically induced
correlations by exploiting dense marker data. Other authors
attack the same issues more broadly from the GLMM per-
spective [Kang et al., 2010, Zhang et al., 2010, Lippert et al.,
2011]. Korte et al. [2012] generalizes GLMM to multivari-
ate traits. Models based on the transmission-disequilibrium
test (TDT) [Spielman and Ewens, 1998] and its generaliza-
tion, the family-based association test (FBAT) [Laird et al.,
2000, Lange and Laird, 2002, Van Steen and Lange, 2005,
Won et al., 2009a, 2009b], are promising but ignore covari-
ates and polygenic background. See Van Steen [2011] for a
recent overview of FBAT methods for GWAS. We treat all
of these extensions in a unified framework consistent with
exceptionally fast computing.

The present paper reexamines the computational bottle-
necks encountered in association mapping with pedigree
data. It turns out that the previous objections to pedigree
GWAS can be overcome. Kinship coefficients can be based
on explicitly provided pedigree structure or estimated from
dense markers when genealogies are missing or dubious. Fre-
quentist hypothesis testing usually operates by comparing
maximum likelihoods under the null and alternative hy-
potheses. Maximization of the alternative likelihood must be
conducted for each and every marker. Score tests constitute a
more efficient strategy than likelihood ratio tests. This is the
point of departure taken by Chen and Abecasis [2007], but
they use approximations that we avoid. The GLOGS program
[Stanhope and Abney, 2012] makes similar approximations
in the case-control setting. Here, we consider arbitrary pedi-
grees and multivariate quantitative traits. Score tests require
no additional iteration under the alternative model. All that is
needed is evaluation of a quadratic form combining the score
vector and the expected information matrix at the maximum
likelihood estimates under the null model. Although it takes
work to assemble these quantities, a careful analysis of the
algorithm shows that fast testing is perfectly feasible.

In our implementation of score testing, the few SNPs with
the most significant score-test P-values are automatically re-
analyzed by the slightly more powerful, but much slower,
likelihood ratio test (LRT). Our fixed effects (mean compo-
nent) model assumes Gaussian variation of the trait; the two
alleles of a SNP shift trait means. There is no confounding of
association and linkage. This framework carries with it sev-
eral advantages. First, it applies to random sample data, pedi-
gree data, or a mix of both. Second, it enables covariate ad-
justment, including correction for population stratification.
Third, it accommodates additive, dominant, and recessive

Table 1. Comparison of features in MENDEL, FAST-LMM, and
GEMMA for GWAS of QTLs

MENDEL FAST-LMM GEMMA

Multithreaded operation Yes Yes No
Can estimate kinships via SNPs Yes Yes Yes
Imports and exports kinship estimates Yes Yes Yes
Allows retained covariates Yes Yes Yes
Allows linear constraints on covariates Yes No No
Can use either LRT or score test Yes No Yes∗

Allows multivariate analysis Yes No Yes
Can perform multiple univariate analyses Yes No No
Allows > 2 variance components Yes No No
Analyzes X-linked loci Yes No No
Automatic SNP filtering on MAF Yes No Yes
Allows nonadditive SNP models Yes No No
Detects outlier pedigrees Yes No No
Detects outlier individuals Yes No No
Can simulate genotype/phenotype data Yes No No
Reads in fractional genotype values No Yes Yes

∗GEMMA can use the likelihood ratio, score, or Wald test

SNP models. Fourth, it also accommodates both univariate
and multivariate traits. And fifth, as just mentioned, it fosters
both likelihood ratio tests and score tests. The mean com-
ponent model is now implemented in our software package
MENDEL for easy use by the genetics community. In addition,
MENDEL provides a complete suite of tools for pedigree anal-
ysis, including GWAS data preparation and manipulation,
pedigree genotype simulation (gene dropping), trait simu-
lation, genotype imputation, local and global kinship coef-
ficient estimation, and pedigree-based GWAS (ped-GWAS)
[Lange et al., 2005, 2013].

The competing software packages EMMAX [Kang et al.,
2008], MMM [Pirinen et al., 2013], FAST-LMM [Lippert
et al., 2011, Listgarten et al., 2012], GEMMA [Zhou and
Stephens, 2012, 2014], and GWAF [Chen and Yang, 2010]
already implement variance component models for quanti-
tative trait locus (QTL) analysis. Exhaustive comparison of
MENDEL to each of these programs is beyond the scope of
the current paper. We limit our comparisons of MENDEL to
the state-of-art packages FAST-LMM and GEMMA, arguably
the fastest and most sophisticated of the competition. Table 1
summarizes some of the qualitative features of these pack-
ages. Our numerical examples also demonstrate an order of
magnitude advantage in speed of MENDEL over FAST-LMM,
GEMMA, and GWAF. This advantage stems from our careful
formulation of the score test and our exploitation of the mul-
ticore processors resident in almost all personal computers
and computational clusters.

Methods

QTL Association Mapping With Pedigrees

QTL association mapping typically invokes the multivari-
ate Gaussian distribution to model the trait values y = (yi)
over a pedigree. The observed trait value yi of person i can be
either univariate or multivariate. For simplicity we first as-
sume yi is univariate and later indicate the necessary changes
for multivariate yi . The standard model [Lange, 2002]

2 Genetic Epidemiology, Vol. 00, No. 0, 1–13, 2016



Table 2. Genotype encodings for the major gene models

Genotype Additive Dominant Recessive

1/1 –1 –1 –1
1/2 0 –1 +1
2/2 +1 +1 +1

The additive model is the default choice. In the genotype column, “1” and “2”
represent the first and second alleles for each SNP. An effect size estimate reflects the
change in trait values due to each positive unit change in the encodings. For example,
the default additive model estimates the mean trait difference in moving from a 1/2
genotype to a 2/2 genotype.

collects the corresponding trait means into a vector ν and
the corresponding covariances into a matrix � and repre-
sents the loglikelihood of a pedigree as

L = –
1

2
ln det � –

1

2
(y – ν)t�

–1(y – ν), (1)

where det denotes the determinant function and the covari-
ance matrix is typically parametrized as

� = 2σ2
a� + σ2

d�7 + σ2
hH + σ2

e I . (2)

Here the variance component � is the global kinship coef-
ficient matrix capturing additive polygenic effects, and �7

is a condensed identity coefficient matrix capturing domi-
nance genetic effects. When pedigree structure is explicitly
given, these genetic identity coefficients are easily calculated
[Lange, 2002]. With unknown or dubious genealogies, the
global kinship coefficient can be accurately estimated from
dense markers [Day-Williams et al., 2011]. The household
effect matrix H has entries hij = 1 if individuals i and j
belong to the same household and 0 otherwise. Individual
environmental contributions and trait measurement errors
are incorporated via the identity matrix I . MENDEL’s imple-
mentation of this model can include both the two standard
variance classes, additive and environmental, as well as the
two extra variances classes, dominance and household. In-
clusion of additional variance classes has no significant effect
on MENDEL’s speed of computation.

In general, a mixed model for QTL association mapping
captures polygenic and other random effects through � and
captures QTL fixed effects through ν. Let β denote the full
vector of regression coefficients parameterizing ν. In a linear
model one postulates that ν = Aβ for some predictor ma-
trix A incorporating relevant covariates such as age, gender,
and diet. In testing association against a given SNP, A is
augmented by an extra column whose entries encode geno-
types according to one of the models (additive, dominant,
and recessive) shown in Table 2. To accommodate impre-
cise imputation in an additive model, these encodings can be
made fractional. The corresponding component of β, βSNP, is
the SNP effect size. In likelihood ratio association testing one
contrasts the null hypothesis βSNP = 0 with the alternative hy-
pothesis βSNP � = 0. In testing a univariate trait, the likelihood
ratio statistic asymptotically follows a χ2

1 distribution. In test-
ing a multivariate trait with T > 1 components, each row of
A must be replicated T times. The likelihood ratio statis-
tic then asymptotically follows a χ2

T distribution. To imple-
ment likelihood ratio testing, iterative maximum likelihood

estimation must be undertaken for each and every SNP under
the alternative hypothesis. This unfortunate requirement is
the major stumbling block retarding pedigree analysis.

Score tests serve as convenient substitutes for likelihood
ratio tests. The current paper describes how to implement
ultra-fast score tests for screening SNPs. Only SNPs with
the most significant score-test P-values are further subjected
to the more accurate likelihood ratio test. An advantage of
the likelihood ratio method is that it estimates effect sizes.
In contrast, the score test only requires parameter estimates
under the null hypothesis and involves no iteration beyond
fitting the null model. The score vector is the gradient ∇L (θ)
of the loglikelihood L (θ), where the full parameter vector θ

includes variance components such as the additive genetic
variance in addition to the regression coefficient vector β.
The transpose dL (θ) of the score is a row vector called the
first differential of L (θ). The expected information J (θ) is the
covariance matrix of the score vector. It is well known that the
expected value of the observed information matrix (negative
second differential) –d2L (θ) coincides with J (θ) [Rao, 2009].
The score statistic

S(θ) = dL (θ)J (θ)–1∇L (θ) ≈ dL (θ)[–d2L (θ)]–1∇L (θ)

is evaluated at the maximum likelihood estimates under the
null hypothesis with the parameter βSNP of the alternative
hypothesis set to 0.

Fast Score Test for Individual SNPs

Under the multivariate model, the expected information
matrix J (θ) for a single pedigree can be written in the block
diagonal form

J (θ) =

(
E
[

– d2
βL (θ)

]
0

0 E[–d2
σL (θ)]

)
, (3)

where σ denotes the vector of variance parameters [Lange,
2002]. For independent pedigrees, the loglikelihoods (1) and
corresponding score vectors and expected information matri-
ces add. Hence, the block diagonal form of J (θ) is preserved.
Because the inverse of a block diagonal matrix is block diag-
onal, the score statistic splits into a piece contributed by the
variance components plus a piece contributed by the mean
components. The maximum likelihood estimate θ̂ = (β̂, σ̂)
under the null model is a stationary point of the loglikeli-
hood. Thus, the variance components segment ∇σL (θ̂) of
the score vector vanishes. We therefore focus on the mean
components segment of the score vector.

If the pedigrees are labeled 1, . . . , n, then the pertinent
quantities for implementing the score test are

n∑
i=1

∇βL i(θ) =

n∑
i=1

A t
i�

–1
i ri

n∑
i=1

E
[

– d2
βL i(θ)

]
=

n∑
i=1

A t
i�

–1
i A i,

where ri = y i – A iβ̂ is the residual for pedigree i and the
covariance matrix �i for pedigree i is determined by
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Equation (2). See Chapter 8 of Lange [2002] for a detailed
derivation of the score and expected information. Since the
score statistic is calculated from estimated parameters under
the null model, residuals do not change when we expand the
null model to the alternative model keeping βSNP = 0. Calcu-
lation of the maximum likelihood estimate θ̂ under the null is
accomplished by a quasi-Newton algorithm whose initial step
reduces to Fisher scoring [Lange et al., 1976, Lange, 2002].

For pedigree i under the alternative hypothesis, the design
matrix A i can be written as (ai, N i), where N i is the design
matrix under the null hypothesis and ai conveys the geno-
types at the current SNP. In testing a univariate trait, the
entries of ai are taken from Table 2. If allele counts are im-
puted under the additive model, then the entries of ai may be
fractional numbers drawn from the interval [–1, 1]. In test-
ing a multivariate trait with T > 1 components, each row of
A i = (ai, N i) must be replicated T times. The only exceptions
to this rule occur for people missing some but not all compo-
nent traits; otherwise, the covariance matrix �i for pedigree i
decomposes into a sum of Kronecker products [Lange, 2002].
Regardless of whether the trait is univariate or multivariate,
one must compute the quantities

n∑
i=1

∇βL i(θ) =

⎛
⎜⎜⎜⎜⎝

n∑
i=1

at
i�

–1
i ri

n∑
i=1

N t
i�

–1
i ri

⎞
⎟⎟⎟⎟⎠

n∑
i=1

E[–d2
βL i(θ)] =

⎛
⎜⎜⎜⎜⎝

n∑
i=1

at
i�

–1
i ai

n∑
i=1

at
i�

–1
i N i

n∑
i=1

N t
i�

–1
i ai

n∑
i=1

N t
i�

–1
i N i

⎞
⎟⎟⎟⎟⎠ .

At the maximum likelihood estimates under the null model,
the partial score vector

∑n
i=1 N t

i�
–1
i ri vanishes. Hence, the

score statistic for testing a SNP can be expressed as

S = R t

⎡
⎣Q – Wt

(
n∑

i=1

N t
i�

–1
i N i

)–1

W

⎤
⎦

–1

R ,

where

Q =

n∑
i=1

at
i�

–1
i ai, R =

n∑
i=1

at
i�

–1
i ri,

W =

n∑
i=1

N t
i�

–1
i ai.

In the score statistic S , the covariance matrices �
–1
i and resid-

ual vectors ri are evaluated at the maximum likelihood esti-
mates under the null model. Large sample theory says that S
asymptotically follows a χ2

T distribution.
These formulas suggest that we precompute and store

the quantities �
–1
i , �

–1
i N i , and �

–1
i ri for each pedigree i

and the overall sum
∑n

i=1 N t
i�

–1
i N i at the maximum like-

lihood estimates under the null hypothesis. From these
parts, the basic elements of the score statistic can be quickly

assembled. The most onerous quantity that must be com-
puted on the fly as each new SNP is encountered is∑n

i=1 at
i�

–1
i ai . If there are p i people in pedigree i, then com-

putation of the quadratic form at
i�

–1
i ai requires O(p 2

i ) arith-
metic operations. This looks worse than it is in practice since
the entries of ai are integers (–1, 0, and 1) in the absence of
fractional imputation. This simplification allows one to avoid
a fair amount of arithmetic. Assembling the remaining parts
of the score statistic requires O(p i) arithmetic operations.

Individuals missing univariate trait values are omitted from
analysis. Individuals missing some but not all components
of a multivariate trait are retained in analysis. The proper
adjustments for missing data are made automatically in the
score statistic because sections of Gaussian random vectors
are Gaussian.

SNPs with minor allele counts below a user-designated
threshold are also omitted from analysis. Note that if the mi-
nor allele count across a study is 0, then the given SNP is
mono-allelic and worthless in association testing. MENDEL’s
default threshold of three is motivated by the rule of thumb in
contingency table testing that all cells have an expected count
of at least three. For a multivariate trait, a SNP may fall below
the threshold for some component traits but not for others.
This situation can occur when each trait displays a different
pattern of missing data across individuals. MENDEL retains
such anomalous SNPs only for those component traits with
a sufficient number of minor alleles. Again, proper adjust-
ments are made automatically within the score-test statistic
to account for partial data.

MENDEL’s analysis yields a score-test P-value for each SNP.
For the user-designated most significant SNPs, MENDEL’s sub-
sequent likelihood ratio test outputs an estimated SNP effect
size, a standard error of that estimate, and the fraction of the
total variance explained by that SNP. For a multivariate trait,
MENDEL outputs a SNP effect size and associated standard
error for each component trait. In the initial analysis under
the null model with no SNPs, MENDEL provides estimates
with standard errors of all mean and variance components
included in the model. Finally, an estimate of heritability with
standard error is also provided.

The extension of the score test to the multivariate t-
distribution is straightforward [Lange et al., 1989]. Suppose
η equals the degrees of freedom of the t-distribution and mi

equals the number of observed person-trait combinations
for pedigree i. The sections of the score and expected infor-
mation pertinent to the mean components for the pedigree
reduce to

∇βL i(θ) =
η + mi

η + si
A t

i�
–1
i ri

E
[

– d2
βL i(θ)

]
=

η + mi

η + mi + 2
A t

i�
–1
i A i,

where ri is the residual and si = rt
i�

–1
i ri is the associated Ma-

halanobis distance. A sensible choice for ηis its estimate under
the null model.
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Kinship Estimation From SNPs

MENDEL can either calculate the global kinship coefficient
matrix � from the provided pedigree structures or estimate it
from dense genotypes. In global kinship estimation, MENDEL’s
default uses an evenly spaced 20% of the available SNPs, and
only compares pairs of individuals within defined pedigrees.
Hence, � is block diagonal. Users can trivially elect to exploit
a larger fraction of the available SNPs or estimate kinship
for all pairs of individuals. Given S selected SNPs, MENDEL

estimates the global kinship coefficient of individuals i and j
based on either the genetic relation matrix (GRM) method

�̂ij =
1

2S

S∑
k=1

(xik – 2p k)(xj k – 2p k)

2p k(1 – p k)

or the method of moments (MoM) [Day-Williams et al.,
2011, Lange et al., 2014]

�̂ij =
eij –

∑S
k=1

[
p 2

k
+ (1 – p k)2

]
S –

∑S
k=1

[
p 2

k
+ (1 – p k)2

] ,

where p k is the minor allele frequency at SNP k, xik is the
number of minor alleles in i’s genotype at SNP k, and

eij =
1

4

S∑
k=1

[
xikxj k + (2 – xik)(2 – xj k)

]
is the observed fraction of alleles identical-by-state (IBS) be-
tween i and j . The GRM method is MENDEL’s default. In
general, one can think of the GRM method centering and
scaling each genotype, while the MoM method uses the raw
genotypes and then centers and scales the final result.

Other Utilities for Handling Pedigree Data

To encourage thorough testing of new statistical methods,
such as the current Ped-GWAS score test, we have imple-
mented both genotype and trait simulation in our genetic
analysis program MENDEL [Lange et al., 2013]. MENDEL does
genotype simulation (gene dropping) subject to prescribed
allele frequencies, a given genetic map, and Hardy–Weinberg
and linkage equilibrium. If one fixes founder haplotypes and
simulates conditional on these, then the unrealistic assump-
tion of linkage equilibrium can be relaxed. Missing data pat-
terns are respected or imposed by the user. It is also possible
to set the rate for randomly deleting data and to simulate
genotypes for people of mixed ethnicity by defining different
ancestral populations, each with its own allele frequencies. If
this feature is invoked, then each pedigree founder should be
assigned to a population.

Trait simulation can be layered on top of genotype simu-
lation. MENDEL simulates either univariate traits determined
by generalized linear models or multivariate Gaussian traits
determined by variance component models. The biggest
limitations are the restriction to a single major locus and
the generalized linear model assumption that trait correla-
tions are driven solely by this locus. Variance component
models enable inclusion of environmental effects and more
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Figure 1. Histogram of minor allele frequencies (MAF) of 253,141
SNPs on chromosome 19 in 85 individuals.

complicated correlations among relatives. In the variance
component setting, univariate as well as multivariate Gaus-
sian traits can be simulated. Most variance component mod-
els are built on Gaussian distributions, but MENDEL allows one
to replace these by multivariate t-distributions. Thus, users
can investigate robust statistics less prone to distortion by
outliers. More theoretical and implementation details appear
in the MENDEL documentation [Lange et al., 2013].

Results

Simulated Data Examples

We performed a variety of simulations to evaluate the score
test’s computational efficiency, type I error, power, and treat-
ment of multivariate traits. Run times in this section were
recorded on a standard laptop computer with a 2.6 GHz Intel
i7 CPU.

SNP Data Preparation

To simulate data with realistic linkage disequilibrium (LD)
structure, we took advantage of phased sequence data from
chromosome 19 on 85 individuals of northern and west-
ern European ancestry (originally from the CEPH sample)
made publicly available in the 1000 Genomes Project [The
1000 Genomes Project Consortium, 2010]. After we used the
VCFTOOLS software [Danecek et al., 2011] to remove markers
that were mono-allelic in this set of individuals, 253,141 SNPs
remained. Figure 1 displays the histogram of the minor al-
lele frequencies (MAF) in these individuals. Almost half of the
SNPs have MAFs below 5%. The haplotype pairs attributed to
the 85 CEPH members were reassigned to the 85 founders of
27 pedigree structures selected from the Framingham Heart
Study (FHS). The selected Framingham pedigrees were cho-
sen to reflect the kind of pedigrees commonly collected in
family-based genetic studies. The 27 pedigrees encompass

Genetic Epidemiology, Vol. 00, No. 0, 1–13, 2016 5
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Figure 2. Histogram of pedigree sizes.

212 people, range in size from 1 to 36 people and from 1 to
5 generations, and contain sibships of 1–5 children. Figure 2
shows the histogram of the pedigree sizes. The genotypes of
nonfounders were simulated conditional on the haplotypes
imposed on the founders and recorded as unordered for sub-
sequent analysis purposes.

Univariate Trait QTL Mapping

We simulated a univariate quantitative trait with a major lo-
cus at SNP rs10412915 (MAF = 0.259; position 55,494,740
on chromosome 19) using the trait simulation option of
MENDEL. The mean effects included the intercept μ = 40 and
the regression coefficients βsnp = 2 and βsex = 6; the variance
components included σ2

a = 5, σ2
e = 1, and σ2

h = σ2
d = 0. (See

Eq. (2) and the subsequent description of the model for the
definition of these parameters.) Power under other effect sizes
is explored in a later experiment. Figure 3 displays a Man-
hattan plot of the P-values generated by the score tests. The
signal emanating from the major locus is clearly discernible
and is the only significant finding. MENDEL took about 6.5 sec
for initialization, which includes reading the data, checking
for gross errors, performing standard quality control (QC)
procedures such as filtering of SNPs and individuals with low
genotyping rates, and computing summary statistics. Using
all 27 pedigrees, MENDEL then required 5.9 sec to compute
the score-test P-values at all 253,141 SNPs. Total run time
was less than 13 sec.

Score Test vs. LRT

MENDEL allows users to specify how many of the most
significant score-test SNPs are reanalyzed using a likelihood
ratio test (LRT). In the current example we told MENDEL to
calculate the LRTs on the 50 most significant SNPs flagged by
the score test. It took MENDEL an additional second to perform
these LRTs. This translates into a total run time for data input,
QC, and analysis of less than 14 sec. When we told MENDEL

to perform LRTs on all SNPs, it took 53 min and 37 sec.

Figure 3. Manhattan plot of the score-test P-values for 253,141 SNPs
on chromosome 19. Trait values were simulated based on a major lo-
cus at SNP rs10412915 (position 55,494,740) in the NLRP2 gene. The
-log10(score P-value) at this SNP is marked with a plus sign. The hor-
izontal line represents the significance threshold for this dataset. See
the text for the detailed simulation model.

The almost 500-fold speedup of the score test over the LRT
demonstrates the dramatic gains in computational efficiency
possible. In large-scale sequencing studies, we expect an order
of magnitude increase in both study individuals and typed
SNPs. In later sections we discuss more fully efficiency and
power for various models and datasets.

To alleviate concerns about the loss of power in substituting
the score test for the LRT, we plot in Figure 4 the top 50 score
test and LRT P-values. The two top-50 SNP sets coincide. The
scatter plot (left panel) shows extremely high correlation (r =

0.9999). That all points lie above the 45-degree line indicates
that the LRT has uniformly more power (smaller P-values)
than the score test. The ranking of SNPs is of interest in
many pilot studies. The Q–Q plot (right panel) shows that
these two tests produce virtually identical rankings. Kendall’s
τ correlation is 0.9983, and Spearman’s correlation is 0.9998.

Discarding vs. Estimating Pedigree Information

We performed two experiments to evaluate the impact of
discarding pedigree information in association testing. In the
first, we treated all 212 individuals as unrelated and tested all
SNPs by linear regression with sex as a covariate. This is the
same mean effects model employed in the previous example.
It took MENDEL about 6.5 sec for initialization and 5.3 sec for
analysis. In the second experiment, we discarded the non-
founders and carried out the same association testing on just
the 85 founders. This took MENDEL 4.3 sec for initialization
and 4.5 sec for analysis. The top two panels of Figure 5 display
the Manhattan plots of the two experiments discarding pedi-
gree information. As expected, ignoring relationships, which
means ignoring the reason for some of the genetic similarity,
leads to many false positives (as seen in the first experiment).
Also as expected, reducing the size of the dataset to include
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Figure 4. Comparisons of the score and LRT P-values. Left: A scatter plot of the top 50 score and LRT P-values demonstrates extremely high
correlation (r = 0.9999) between the two sets of P-values and a uniformly higher power for the LRT. Right: A Q–Q plot of the top 50 score and LRT
P-values shows that the two tests produce virtually identical rankings. The simulation model is the same as in Figure 3.

Figure 5. GWAS results suffer when pedigree structure is ignored. Upper left: Manhattan plot of GWAS that treats all 212 individuals as unrelated
shows the expected many false positives. Upper right: Manhattan plot of GWAS that includes only the 85 founders shows the expected loss of
power. Lower: Manhattan plot of GWAS using all 212 individuals and estimating all kinship information from only the SNP data. A plus sign marks
the −log10(P-value) at the SNP used to simulate the trait. The horizontal line represents the significance threshold for this dataset. The simulation
model is the same as in Figure 3.
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Figure 6. Bivariate QTL mapping. Upper left: Manhattan plot for testing trait 1. Upper right: Manhattan plot for testing trait 2. Lower: Manhattan
plot for testing traits 1 and 2 together. Bivariate QTL mapping demonstrates better power than testing each univariate trait separately. The
−log10(score P-value) at the major locus rs10412915 (position 55,494,740) is marked with a plus sign. The horizontal line represents the significance
threshold for this dataset. See the text for the simulation model.

only unrelateds greatly reduces power (as seen in the second
experiment).

Fortunately, when genealogies are missing or dubious, the
method of Day-Williams et al [Day-Williams et al., 2011]
implemented in MENDEL allows fast and accurate estimation
of global kinship coefficients from dense markers. It took
MENDEL 18.8 sec to estimate all global kinship coefficients
from the 253,141 SNPs. The lower panel in Figure 5 shows the
Manhattan plot of the pedigree GWAS based on the estimated
kinship coefficients. There is little difference from the results
using exact pedigree structures.

Multivariate Trait QTL Mapping

To assess the ability of our ped-GWAS method to detect
a pleiotropic effect at the selected major locus rs10412915,
we simulated two correlated quantitative traits on the previ-
ously constructed pedigrees. Trait 1 has mean effects μ1 = 40,
βsex,1 = 6, and βsnp,1 = 1.5 and variance components σ2

a1 = 5
and σ2

e1 = 1. Trait 2 has mean effects μ2 = 20, βsex,2 = 4, and
βsnp,2 = 1.5 and variance components σ2

a2 = 5 and σ2
e2 = 1.

The additive and environmental covariances between the two
traits are σ2

a1,a2 = 1 and σ2
e1,e2 = 0. Compared to our earlier

univariate trait simulation, SNP effects are reduced for each
trait while variance components are held fixed. Figure 6 dis-
plays Manhattan plots for testing trait 1 alone, trait 2 alone,
and both traits 1 and 2 together. When both traits are tested si-
multaneously, it takes MENDEL about 6.9 sec for initialization
and 9.9 sec for analysis. Despite the reduction in SNP effect
sizes, testing both traits simultaneously boosts power signifi-
cantly. The benefits diminish when the traits are more highly
correlated, for example by taking σ2

a1,a2 = 3 and σ2
e1,e2 = 0.5.

For the sake of brevity, these further results are not graphed.

Comparison to Current Methods

In this section, we compare the score test to the com-
peting generalized estimating equation (GEE) and variance
component model (linear-mixed model, LMM) approaches
implemented in the R package GWAF [Chen and Yang, 2010].
Our comparison criteria include computational efficiency,
memory usage, type I error, and power. Table 3 shows run
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Table 3. Comparison of total run times (in seconds on a standard
laptop computer) with GWAF

# SNPs MENDEL-Score MENDEL-LRT GWAF-GEE GWAF-LMM

100 4.69 5.32 0.71 8.83
1,000 4.75 5.48 7.71 87.06
10,000 5.28 6.05 207.60 894.82
100,000 10.28 11.07 26,486.92 11,703.88

Run times are based on testing the first 100, 1,000, 10,000 and 100,000 SNPs on
chromosome 19. The column labeled MENDEL-LRT displays the total run times after
adding likelihood ratio tests for the top 50 SNPs identified by the score test. The
simulation model is the same as in Figure 3.

Table 4. Empirical power and type I error for various major-locus
effect sizes

MENDEL-Score MENDEL-LRT GWAF-GEE GWAF-LMM

Power
(βsnp = 2.0) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
(βsnp = 1.5) 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.02 1.00 ± 0.00
(βsnp = 1.2) 0.98 ± 0.01 0.98 ± 0.01 0.89 ± 0.03 0.98 ± 0.01
(βsnp = 1.0) 0.92 ± 0.03 0.92 ± 0.03 0.80 ± 0.04 0.92 ± 0.03
(βsnp = 0.8) 0.75 ± 0.04 0.75 ± 0.04 0.54 ± 0.05 0.75 ± 0.04
(βsnp = 0.5) 0.38 ± 0.05 0.39 ± 0.05 0.29 ± 0.05 0.40 ± 0.05
(βsnp = 0.3) 0.14 ± 0.03 0.15 ± 0.04 0.16 ± 0.04 0.15 ± 0.04

Type I Error (βsnp = 0.0) 0.04 ± 0.02 0.04 ± 0.02 0.09 ± 0.03 0.04 ± 0.02

The simulation model is the same as in Figure 3. The empirical power is the
proportion of replicates with P-values less than 0.05 under the alternative model with
the listed major-locus effect size. The empirical type I error is the proportion of
replicates with P-values less than 0.05 under the null model with no major locus. All
results represent averages across 100 replicates per model; standard errors appear to
the right of each average. The column labeled MENDEL-LRT displays the results after
adding likelihood ratio tests for the top 50 SNPs identified by the score test.

times for testing the first 100, 1,000, 10,000, and 100,000
SNPs on chromosome 19. Simulation parameters coincide
with those used in Figure 3. MENDEL-LRT lists runs in which
the 50 most significant SNPs were further subjected to an
LRT. The table lists the total wall clock times for the initial-
ization and analysis phases. In testing 100,000 SNPs, MENDEL

shows a roughly 1000-fold speed-up over the GWAF-GEE
and GWAF-LMM approaches. This fact validates our initial
premise that the score test would offer large gains in speed.
When testing 100,000 SNPs, MENDEL never used more than
76 MB of RAM. In contrast, GWAF had a memory footprint
larger than 500 MB, a serious concern for testing large-scale
GWAS data.

Next we compared the type I error and power of the four
methods. In the alternative model, we simulated trait values
according to the settings pertinent to Figure 3 with the major
locus rs10412915 retained but with varying effect sizes βsnp.
In the null model, we discarded the major locus effect and
kept the other simulation parameters. All results represent
averages across 100 replicates per model. Table 4 tallies the
empirical type I error (proportion of replicates with P-values
less than 0.05 under the null model) and power (proportion
of replicates with P-values less than 0.05 under the alterna-
tive model), along with their standard errors. We observe
inflated type I error and lowest power in the GEE results,
especially at medium to large effect sizes. This is possibly due
to the imposition in the current implementation of GWAF-
GEE of a uniform working correlation structure across all

pedigrees. Although standard semiparametric theory states
that main effects can be consistently estimated even under
misspecification of the correlation structure, the sample sizes
in real genetic studies are rarely sufficient for such asymp-
totics to hold. Table 4 suggests that Mendel and GWAF-LMM
possess similar operating characteristics. Unfortunately, the
extremely low computational efficiency of GWAF-LMM
makes it an unattractive choice for GWAS. Modern genetic
studies such as those in Framingham and San Antonio of-
ten involve at least an order of magnitude more people and
(imputed) SNPs than we have simulated here.

Real Data Examples

The San Antonio Family Heart Study

We analyzed a real dataset collected by the San Antonio
Family Heart Study (SAFHS) [Mitchell et al., 1996]. The data
consist of 3,637 individuals in 211 Mexican American fami-
lies. High-density lipoprotein (HDL) levels were measured at
up to three time points for each of the 1,429 phenotyped in-
dividuals. These traits are denoted HDL1, HDL2, and HDL3,
measured at corresponding ages AGE1, AGE2, and AGE3.
Some of the phenotyped individuals have HDL measure-
ments at only one or two of the time points. Of the 1,429
phenotyped individuals, 1,413 were genotyped at 944,427
genome-wide SNPs. The genotyping success rate exceeded
98% in 1,388 of these individuals over 124 pedigrees. The
largest family contains 247 individuals; five others also con-
tain more than 90 individuals. The smallest pedigree was
a singleton. Genotyping success rates were above 98% for
935,392 SNPs.

Comparison With FAST-LMM and GEMMA

For fair comparisons, we directed MENDEL to estimate SNP-
based global kinship coefficients for all pairs of individuals
ignoring the input pedigrees. This is the default in FAST-
LMM and GEMMA. In addition, we ran MENDEL’s default
in which the coefficients are estimated only for pairs of in-
dividuals within the same input pedigree. We also slightly
adjusted some of the default quality control thresholds so the
programs would be analyzing roughly the same set of SNPs
and individuals. For example, by default MENDEL filters SNPs
with fewer than three occurrences of the minor allele in the
data; in contrast, FAST-LMM only filters SNPs with zero oc-
currences of the minor allele, and GEMMA filters SNPs with
minor allele frequency (MAF) < 0.01. All other defaults were
observed throughout. Users can easily adjust the MENDEL

analysis parameters via its control file and the FAST-LMM
and GEMMA analysis parameters via their command line.

We first carried out three univariate QTL analyses of HDL1,
HDL2, and HDL3, using SEX and AGE1, AGE2, or AGE3 as
covariates. We then ran a multivariate QTL analysis of HDL1,
HDL2, and HDL3 jointly, which we refer to as HDLJoint. For
the multivariate analysis, the most appropriate configuration
is to constrain the effects of the SEX and AGE covariates to
be the same on all three HDL measurements. Such linear
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Table 5. All SNPs with minor allele frequency (MAF) above 0.001 that reach genome-wide significance in any of the analyses of the
HDL traits from the San Antonio Family Heart Study (SAFHS)

Base pair – log10(P – val) – log10(P – val) – log10(P – val) – log10(P – val)
Trait SNP Chr. position MAF MENDEL default MENDEL all-pairs FAST-LMM GEMMA

rs7303112 12 97,596,023 0.00455 10.21 10.71 7.63 7.24
HDL1 rs8040647 15 32,304,988 0.00147∗ 7.44 7.56 7.35 7.45

rs9972594 15 32,421,102 0.00147∗ 7.44 7.56 7.37 7.46
rs7167103 15 32,830,477 0.00147∗ 7.44 7.56 7.35 7.44

HDL2 rs7100957 10 28,207,332 0.00183∗ 8.84 8.95 8.88 8.82

HDL3 rs17060933 8 22,510,029 0.00382 8.23 8.28 8.61 8.59

rs7303112 12 97,596,023 0.00644 9.89 9.94
HDLJoint with

constrained
covariates

rs16925210 10 25,308,103 0.00217 8.15 8.33
rs7091416 10 25,318,381 0.00217 8.15 8.33 Not Available Not Available
rs10075658 5 148,911,957 0.00144∗ 8.16 8.21
rs7733139 5 145,977,990 0.00217 7.36 7.34
rs7100957 10 28,207,332 0.00870 7.20 7.30

rs7303112 12 97,596,023 0.00644 9.82 9.88 11.08
HDLJoint without

constrained
covariates

rs16925210 10 25,308,103 0.00217 8.04 8.23 3.53
rs7091416 10 25,318,381 0.00217 8.04 8.23 Not 3.52
rs10075658 5 148,911,957 0.00144∗ 8.12 8.17 Available 3.47
rs7733139 5 145,977,990 0.00217 7.41 7.40 3.47
rs7100957 10 28,207,332 0.00870 7.19 7.30 4.48
rs10083226 13 104,434,452 0.00219 7.10 7.31 2.14

All default parameters were used except for minor changes to the quality control thresholds (see text). Also, MENDEL was run in both default and all-pairs modes. MENDEL’s
default mode estimates nonzero global kinship coefficients only for pairs of individuals within the same input pedigree; MENDEL in all-pairs mode, FAST-LMM, and GEMMA
estimate coefficients for all pairs of individuals. Genome-wide significance was declared for P-values < 5 × 10–8 ⇒ – log10(P – value) > 7.3. The SAFHS has 1,413 genotyped and
phenotyped individuals in 124 pedigrees. The genotypes include roughly 1 million SNPs. The phenotypes include the subjects’ high-density lipoprotein (HDL) level and age at
three time points. The HDLJoint runs are multivariate analyses of HDL1, HDL2, and HDL3 jointly; all other runs are univariate analyses. See the text for a list of the covariates
used in each analysis. Note that in the multivariate analysis, MENDEL is able to use roughly twice as many individuals as GEMMA (see text and Table 6), which may explain the
less significant findings for GEMMA. Each MAF is based on the pedigree founders, except where marked by an asterisk (∗). In these cases the minor allele did not appear in the
genotyped founders, and its frequency was estimated from all genotyped individuals.

constraints are imposed in MENDEL via a few simple lines
in its control file. FAST-LMM and GEMMA do not allow
constraints on covariates. Therefore, we also ran a multivari-
ate analysis with only the SEX covariate and no constraints.
With no constraints, SEX will have a slightly different effect
on each component phenotype in the multivariate analysis.
For example, MENDEL’s default run estimated a female effect
of 2.5 ± 0.3 on HDL1, 2.1 ± 0.4 on HDL2, and 2.7 ± 0.4 on
HDL3. FAST-LMM cannot do multivariate analyses.

Table 5 reports all SNPs with MAF > 0.001 that achieve
genome-wide significance (P-values less than 5 × 10–8) as re-
ported by at least one software package. For the univariate
analyses, each software package found the same set of sig-
nificant SNPs, except that one of GEMMA’s P-values was
slightly short of the significance threshold. Figure 7 shows
a Manhattan plot and a Q–Q plot from the HDL1 analysis
by MENDEL given kinship estimates for all pairs of individ-
uals. The results for the other analyses, both univariate and
multivariate, were similar. Each MENDEL all-pairs univariate
analysis had genomic control λ in the range 1.002 to 1.006; in
default mode, λ was in the range 0.992 to 1.022. The various
Q–Q plots and associated λ values show there is no system-
atic biases in the data or analysis. In the all-pairs MENDEL

HDL1 analysis, the grand mean (intercept) was 49.0 ± 0.8.
The SEX covariate was significant in all null models. For
example, in the all-pairs MENDEL HDLJoint analysis with con-
strained covariates, the SEX effect was 2.4 ± 0.3 for females
and, by design, the opposite for males. The AGE covariate

was not significant in any run. For example, again in the
all-pairs HDLJoint analysis with parameter constraints, the
AGE effect was 0.04 ± 0.02. In the null model for the all-pairs
MENDEL HDL1 analysis, the additive variance was estimated as
78.8 ± 9.9, and the environmental variance was estimated as
78.1 ± 7.2. This gives an overall heritability estimate for HDL1

of 0.50 ± 0.04. Similar variance estimates were seen in other
null models.

For the multivariate analysis without parameter con-
straints, MENDEL is able to include almost twice as many
individuals in the analysis as GEMMA (see Table 6). GEMMA
only includes individuals phenotyped at all component
traits and covariates. This probably explains why MENDEL

finds several more SNPs with significant P-values than
GEMMA.

Table 6 tallies the run times and memory footprints from
each analysis on a typical personal computer with adequate
RAM to accommodate FAST-LMM (six CPU cores at 2.67
GHz, with 48 GB total RAM). Even when estimating the
global kinship coefficients for all pairs of individuals, each
univariate QTL run took MENDEL less than 8 min to read,
quality check, and analyze the data for kinship estimates
and association tests, roughly 10% of the time required for
FAST-LMM and 5% of the time required by GEMMA. (For
GEMMA, the kinship estimation and association tests are run
separately. The run times reported here are their total.)

The three programs use different association test strategies:
MENDEL performs score tests for all SNPs and LRTs for the top
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Figure 7. The results of MENDEL’s HDL1 univariate analysis in the SAFHS dataset with global kinship coefficients estimated for all pairs of
individuals. Left: The Manhattan plot graphs roughly one million SNPs against their − log10(P − value). The horizontal line is the genome-wide
significance threshold, 7.3 = − log10(5 × 10−8). Right: The Q–Q plot graphs the observed − log10(P − value) quantiles vs. their expectations. The
genomic control value of λ̂ = 1.006 derived from this comparison suggests no systematic biases in the data or analysis.

Table 6. Comparison of run times and memory (RAM) usage on a
typical computer but with adequate RAM to accommodate FAST-
LMM (six CPU cores at 2.67 GHz, with 48 GB total RAM)

Program Trait Analyzed Analyzed RunTime RAM
samples SNPs (min:sec) (GB)

MENDEL default 1,357 935,392 1:51 1.2
MENDEL all-pairs HDL1 1,357 935,392 7:49 1.2
FAST-LMM 1,397 941,546 76:11 30.0
GEMMA 1,397 919,050 206:54 0.4

MENDEL default 818 935,392 1:33 1.1
MENDEL all-pairs HDL2 818 935,392 3:25 1.1
FAST-LMM 840 934,216 49:44 18.0
GEMMA 840 914,051 180:21 0.3

MENDEL default 914 935,392 1:38 1.1
MENDEL all-pairs HDL3 914 935,392 3:54 1.1
FAST-LMM 939 937,208 54:58 20.0
GEMMA 939 918,626 182:26 0.3

MENDEL default HDLJoint 1,388 935,392 4:08 1.2
MENDEL all-pairs with 1,388 935,392 83:24 1.2
FAST-LMM constrained Not available
GEMMA covariates Not available

MENDEL default HDLJoint 1,388 935,392 3:49 1.2
MENDEL all-pairs without 1,388 935,392 80:04 1.2
FAST-LMM constrained Not available
GEMMA covariates 712 912,318 630:37 0.6

The listed run times include reading the dataset, performing quality checks,
estimating the kinship coefficients, and calculating the association test P-values. All
default parameters were used except for minor changes to the quality control
thresholds (see text). Also, MENDEL was run in both default and all-pairs modes.
MENDEL’s default mode estimates nonzero global kinship coefficients only for pairs of
individuals within the same input pedigree; MENDEL in all-pairs mode, FAST-LMM,
and GEMMA estimate coefficients for all pairs of individuals. For the multivariate
analysis, MENDEL includes roughly twice as many individuals as GEMMA because
GEMMA only analyzes individuals phenotyped at all component traits and covariates.
MENDEL performs score tests for all SNPs and LRTs for the top SNPs; FAST-LMM
performs LRTs; and GEMMA by default performs Wald tests, but the user can change
this to LRTs or score tests. Using score tests in GEMMA would make it faster (see text).

SNPs; FAST-LMM performs LRTs; and GEMMA by default
performs Wald tests, but the user can change this to LRTs or
score tests. For the univariate analyses on a six-core computer,
excluding estimation of kinship coefficients, GEMMA’s run
times under the Wald test and LRT options were roughly
similar to FAST-LMM’s; GEMMA’s run time under the score
test option was roughly double MENDEL’s in all-pairs mode.
This is impressive given GEMMA’s lack of multithreading.
It is kinship estimation, which in practice can be done once
per dataset, that is substantially slower in GEMMA (running
roughly 135 minutes) than in FAST-LMM or MENDEL (less
than 1 min).

Each trivariate QTL run took MENDEL less than 90 min.
MENDEL required roughly one-eighth the time of GEMMA
while analyzing almost twice as many individuals. MENDEL

is also memory efficient. The univariate and multivariate
runs each required less than 1.5 GB of memory, which is
well below the amount of RAM in a typical computer. FAST-
LMM’s memory usage is more than 15 times larger than
MENDEL’s. GEMMA uses even less memory than MENDEL but
is considerably slower.

Discussion

We have implemented an ultra-fast algorithm for QTL
analysis of pedigree data or mix of population and pedigree
data. In our opinion MENDEL’s comprehensive environment
for genetic data analysis is a decided advantage. In addition
to its exceptional speed and memory efficiency, MENDEL can
handle multivariate quantitative traits and detect outlier trait
values and pedigrees. Most competing programs ignore mul-
tivariate traits and outliers altogether.
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A recent review of univariate QTL analysis packages for
family data [Eu-ahsunthornwattana et al., 2014] shows that
all the explored packages obtain similar results, leaving speed,
features, and ease of use as the important factors in choosing
between them. Once the current version of MENDEL came out,
the authors of the review were kind enough to add a comment
(http://www.plosgenetics.org/annotation/listThread.action?
root=81847) to their article observing that MENDEL was
now the fastest and one of the easiest to use packages they
reviewed.

In the SAFHS example dataset we used with HDL pheno-
types, all the significant SNPs we found had MAF < 0.01. Due
to these low MAFs, we do not claim these SNPs are strong can-
didates for further study. However, the key point here is that
all four methods found the same SNPs, at least for the univari-
ate analyses. We also note that the P-values are quite similar
regardless of whether one uses kinship estimates between all
individuals (MENDEL’s all-pairs mode) or only between in-
dividuals within the same input pedigrees (MENDEL’s default
mode). This suggests that the input pedigree structures for
this dataset are substantially correct and complete, with few
mistaken or hidden relationships. Obviously, this may not
be true for other datasets. By supplying good kinship esti-
mates ignoring pedigree structures, the currently reviewed
packages make the hard fieldwork of relationship discovery
superfluous.

A future version of MENDEL will address its failure to read
fractional genotype values. This is simply a logistical issue,
as all MENDEL’s internal genotype computations are already
handled as floating point operations. Another imminent fea-
ture is a fourth style of kinship coefficient estimation that
allows the user to force theoretical kinship coefficients for
pairs of individuals within the same pedigree and estimated
kinships for all other pairs.

By supplying a comprehensive, fast, and easy to use pack-
age for GWAS on quantitative traits in general pedigrees, we
hope to encourage exploitation of family-based datasets for
gene mapping. A gene mapping study should collect as large a
sample as possible consistent with economic constraints and
uniform trait phenotyping. If the sample includes pedigrees,
all the better. One should not let the choice of statistical test
determine the data collected; on the contrary, the data should
determine the test. Here, we have argued that score tests can
efficiently handle unrelated individuals, pedigrees, or a mix-
ture of both. For human studies, where controlled breeding
is forbidden, nature has provided pedigrees segregating ev-
ery genetic trait. Many of these pedigrees are known from
earlier linkage era studies and should be treasured as valu-
able resources.

Let us suggest a few directions for future work. The cur-
rent method works marker by marker and is ill equipped to
perform model selection. Penalized regression, such as lasso,
is available to handle model selection for case-control and
random sample data [Wu and Lange, 2008, Wu et al., 2009,
Zhou et al., 2010, 2011] and can be generalized to variance
component models. Although we have generalized the score
test to distributions such as the multivariate t, extending it
to discrete traits may be out of reach. For likelihood-based

methods, there simply are no discrete analogues of the Gaus-
sian distribution that lend themselves to graceful evaluation
of pedigree likelihoods. Treating case/control data as a 0/1
quantitative variable is a possibility that has been explored
by Pirinen et al. [2013]. The GEE method is another fallback
option because it does not depend on precise distributional
assumptions.

In rare variant mapping, grouping related SNPs in a vari-
ance component may be a good alternative to the mean com-
ponent models used here. Each variant may be too rare to
achieve significance in hypothesis testing. Fortunately, ag-
gregating genotype information within biological units such
as genes or pathways offer better power than marginal test-
ing of individual SNPs. See Asimit and Zeggini [2010] for
a recent review of aggregation strategies. Kwee et al. [2008]
have successfully applied a variance component model for
association testing of SNP sets in a sample of unrelated sub-
jects. Rönnegård et al. [2008] consider score tests for random
effects models in the context of experimental line crosses.
Score tests may well be the key to implementing random
effect models in pedigrees. However, the computational de-
mands are apt to be more formidable than those encountered
here with fixed effects models. In particular, if tests are based
simply on local identity-by-descent (IBD) sharing, then the
boundaries between pedigrees disappear, and the entire sam-
ple collapses to one large pedigree. The required local kinship
coefficients can again be well estimated from dense markers,
but this demands more computation than the estimation
of global kinship coefficients under the mean components
model advocated here [Day-Williams et al., 2011]. Since in-
version of a pedigree covariance matrix scales as the cube of
the number of individuals in the pedigree, treating the entire
sample as a single pedigree will put a practical upper limit on
sample size. There are other issues in implementing variance
component models such as assigning P-values and dealing
with multivariate traits that are best left to a separate paper.
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