
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
A New Human-Readability Infrastructure for Computing

Permalink
https://escholarship.org/uc/item/4x31p7dn

Author
Hall, Christopher K

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x31p7dn
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

A New Human-Readability Infrastructure for

Computing

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Christopher Kyle Hall

Committee in charge:

Professor Tobias Höllerer, Chair
Professor Tevfik Bultan
Professor Chandra Krintz

September 2017

The Dissertation of Christopher Kyle Hall is approved.

Professor Tevfik Bultan

Professor Chandra Krintz

Professor Tobias Höllerer, Committee Chair

March 2017

A New Human-Readability Infrastructure for Computing

Copyright c© 2017

by

Christopher Kyle Hall

iii

I dedicate this manuscript to my father Stan, who has always

stoked the fire of my curiosity, and to Kyle, my late grandfather

whom I have never met, but who would have also been deeply

invested in this particular academic pursuit.

iv

Acknowledgements

I am eternally grateful to my advisor, Prof. Tobias Höllerer, for his trust and generos-

ity in creating a research environment that enabled me to incubate a long-term agenda.

I thank Trevor for accepting nothing less than excellence from me, for helping to keep

my priorities balanced with a complementary perspective, and for all the sleepless nights

we spent writing. I thank Erica for her support, enthusiasm, and patience through this

process. She and I have shared the strains of a long-distance relationship as well as the

celebrations of momentous milestones. I thank my mother and grandmother for keeping

me housed and fed during the final push to completion.

Thanks for all your encouragement!

v

Curriculum Vitæ
Christopher Kyle Hall

Education

2017 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2012 M.S. in Computer Science, University of California, Santa Barbara.

2010 B.S. in Computer Science, University of California, Santa Barbara.

Publications

Hall, C., Standley, T., & Hollerer, T. (2017, October). Infra: Structure All the Way
Down - Structured Data as a Visual Programming Language. In Proceedings of the
2017 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (to appear). ACM.

Hall, C. (2015, October). Rethinking the human-readability infrastructure. In Proceed-
ings of the Workshop on Future Programming (pp. 1-6). ACM.

Hall, C. (2014, October). HCI metacomputing: universal syntax, structured editing, and
deconstructible user interfaces. In Proceedings of the companion publication of the 2014
ACM SIGPLAN conference on Systems, Programming, and Applications: Software for
Humanity (pp. 21-24). ACM.

Bostandjiev, S., O’Donovan, J., Hall, C., Gretarsson, B., & Hollerer, T. (2011, Septem-
ber). Wigipedia: A tool for improving structured data in wikipedia. In Semantic Com-
puting (ICSC), 2011 Fifth IEEE International Conference on (pp. 328-335). IEEE.

Gretarsson, B., O’Donovan, J., Bostandjiev, S., Hall, C., & Hllerer, T. (2010, June).
Smallworlds: visualizing social recommendations. In Computer Graphics Forum (Vol.
29, No. 3, pp. 833-842). Blackwell Publishing Ltd.

vi

Abstract

A New Human-Readability Infrastructure for Computing

by

Christopher Kyle Hall

We present Infra, a new baseline medium for representing data. With Infra, arbitrarily-

complex structured data can be encoded, viewed, edited, and processed, all while re-

maining in an efficient non-textual form. It is suitable for the full range of information

modalities, from free-form input, to compact schema-conforming structures. With its own

equivalent of a text editor and text-field widget, Infra is designed to target the domain

currently dominated by flat character strings while simultaneously enabling the expres-

sion of sub-structure, inter-reference, dynamic dependencies, abstraction, computation,

and context (metadata).

Existing metaformats fit neatly into two categories. They are either textual for human

readability (such as XML and JSON) or binary for compact serialization (such as Thrift

and Protocol Buffers). In contrast, Infra unifies those two paradigms. In order to have

the desirable properties of binary formats, Infra has no textual representation. And yet,

it is designed to be easily read and authored by end-users.

We show how the organization Infra brings to data makes a new non-textual pro-

gramming paradigm viable. Programs that modify data can now be embedded into the

data itself. Furthermore, these programs can often be authored by demonstration. We

argue that Infra can be used to improve existing software projects and that bringing

direct authoring and human readability to a binary data paradigm could have rippling

ramifications on the computing landscape.

vii

Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Revolutions in End-User Media . 3
1.2 Why Another Revolution is Needed . 6
1.3 The Opportunity . 10

2 Infra: A New Infrastructure 16
2.1 The Metaformat . 19
2.2 The Editor . 21

3 Base Semantics and Interaction 30
3.1 Base type: UTF-8 . 32
3.2 Base type: List . 34
3.3 Base type: Keyed List . 35
3.4 Base type: Free . 36
3.5 Base type: Metadata . 41
3.6 Base type: Continuation . 47
3.7 Base types: Integer and Floating-Point 50
3.8 Base type: Byte Array . 52
3.9 Special Leaf Types: Bits, Nibble, Symbol 53
3.10 Singleton Unwrapping . 55
3.11 Delayed Loading and Incremental Decoding 56

4 Patch: Reference and Modify 58
4.1 Opcodes for Navigation . 62
4.2 Circular Reference . 64
4.3 Opcodes for Modification . 66
4.4 Nesting Statements and Shorthand . 67
4.5 Persistent Data Structure . 69

viii

4.6 Parent Pointers / Closures . 75
4.7 Patch as Function Application . 77
4.8 Effect System . 79
4.9 Extended Opcodes . 81

5 Native-Service Objects 83
5.1 Logic and Arithmetic . 84
5.2 Operating System Integration . 87
5.3 Runtime Language Reflection . 91

6 Second-Order Infrastructure 93
6.1 Monitoring Edits for Smart Patch Recalculation 93
6.2 Encoding Plan Models . 98
6.3 Authoring Patches By Demonstration . 99
6.4 Authoring Function Calls by Example 100
6.5 Type System . 104
6.6 Schema-Guided Editing . 105
6.7 Suite of Converters (Parsers and Renderers) 106

7 Applications 107
7.1 Case Study 1: URL Syntax . 109
7.2 Case Study 2: Data-Driven Presentation 112
7.3 Case Study 3: Plain Text at Scale . 114
7.4 Case Study 4: Protocol Buffers Replacement 116
7.5 Runtime-Heap Encoding . 120
7.6 Infra Dialects of Existing Languages . 121
7.7 Designed User-Interfaces . 123
7.8 Synthetic User-Interfaces . 123
7.9 Backwards Compatibility and Adoption 124

8 Related Work 127
8.1 Textual Metaformats . 127
8.2 Binary Metaformats . 128
8.3 Structured Editors . 128
8.4 Programmable User-Environments . 129

9 Conclusions and Further Work 131

Bibliography 134

ix

Chapter 1

Introduction

Early computers used electromechanical typewriters to interface with humans. That

legacy is alive today. Printable character codes are the sole building blocks of source code

files, command line languages, form fields, Web formats (HTTP, URL, HTML, JSON,

CSS) and all other “human-readable” formats. “A coded character set provides the basic

elements of communication between humans and data-processing or telecommunication

machines.” [1] Though all CPUs and runtime data-structures rely on binary-encoded

quantities to structure information for random access, formats that need to be able to

have a direct relationship with users are stuck with essentially one option - encoding

their structure indirectly via contrived patterns of co-opted character codes. This is

unfortunate because, text, as an infrastructure and encoding paradigm, comes not only

with compromises to efficiency, but functionality in general.

Let us define “plaintext infrastructure” as the set of text encoding, display, manip-

ulation, and processing artifacts currently ubiquitous in computing: ASCII, UTF8, text

editors, text-field or text-area UI widgets, terminals / consoles, keyboards (physical and

virtual), String types, object-to-String rendering functions, human-readable format li-

braries, tokenizers, parsers, escape sequences and input sanitization, Base64 encoding,

1

Introduction [top] Chapter 1

line-ending and whitespace conventions, and the fallback data-flavor of the copy/paste

clipboard. We believe that an alternative infrastructure, centered around metadata, can

be positioned to fill the same role that the plaintext infrastructure currently plays, while

bringing with it the building blocks of software (structure and abstraction), time and

space encoding efficiencies, improved human-readability, and richer ways to author and

interact with raw and persistable information. With a new medium such as this made

common across user environments, the natures of file formats, data structures, hyper-

media, source code, and graphical user-interfaces, can be unified. This could simplify

computing by reducing the number of distinct modalities that users need to learn and

allow the best properties of each to exist evenly throughout. By removing the need for

formats to choose between an efficient structured binary type of encoding and a compro-

mised but human readable type of encoding, every modality of computing could have a

parsed nature, data-driven presentation abstractions, and interactive computation.

In the next chapter, we present Infra, our medium that is simultaneously suitable

for use as a high-efficiency binary metaformat, a human-readable markup language, a

programming language, and as plain text - positioned to play any role that UTF8 cur-

rently plays. Infra aims to make data more powerful and easier to deal with. We start by

describing how Infra can be used to replace existing human-readable data formats even

though Infra is binary encoded. We show that this approach has a number of benefits

over text-based formats. Following that, we describe one of these benefits, Patch, in

detail. Patch is a non-textual programming language that targets the domain of data

metaprogramming. In fact, Infra’s structured approach to data representation is what

makes Patch viable. The major contributions in this work include the design and imple-

mentation of Infra’s universal metaformat, a runtime system for Patch, and a universal

structured editor to bring direct editing and human readability to Infra.

2

Introduction [top] Chapter 1

1.1 Revolutions in End-User Media

By our accounting, there have been roughly three major revolutions in the nature of

common end-user media throughout computing history thus far. We identify them as

the following:

1. Text: The modalities of computer operators transitioned from direct physical ma-

nipulation of a computer’s patch board, dials, and lights, to reading programmati-

cally formatted output and typing in human-readable command languages.

Text brought with it the concepts of character encodings, line editors, text editors,

transcript-based user interfaces, parsers, and interpreters. Streams and arrays of

character codes have formed the common medium between humans and software

ever since computers started leveraging electromechanical typewriters as command

consoles in the 1950s.

Once interactive graphics started to become commonplace, this situation evolved

in a significant but isolated way. The history of encoding text in an enumerated

form dates back to the optical telegraph semaphore-line of 1792. This influenced

the electrical telegraph Morse code of 1837, the Baudot Code of 1870, the Extended

Binary Coded Decimal Interchange Code (EBCDIC) in the 1950s, and the Ameri-

can Standard Code for Information Interchange (ASCII) character encoding in the

3

Introduction [top] Chapter 1

1960s [2]. The physical human-interface portion of early-computing’s infrastruc-

ture is a direct adaptation of the existing typewriter culture and electromechanical

teletypes, which were designed around EBCDIC and ASCII.

2. GUI: The Graphical User Interface revolution brought richer ways to communi-

cate information hierarchy to users and modeless interaction to navigate it. GUI’s

brought with them bit-mapped displays, spatial syntax, and recognition over re-

call. Its influences include Jean Piaget’s Constructivism’37 [3], Ivan Sutherland’s

Sketchpad’64 [4], the Simula 67 programming language [5], the GRaIL graphical

input language [6], Jerome Bruner’s perspective on developmental psychology [7],

Seymour Papert’s LOGO [8], the interaction hardware and bootstrapping approach

of Douglas Engelbart’s augmented human intellect project [9], and their culmina-

tion in the Smalltalk system [10].

This allowed for high-level abstractions and domain-tailored visualizations within

4

Introduction [top] Chapter 1

graphical applications, but these are imposed from the top down by the specific

application’s logic. If and when data is exported and interacted with directly from

outside of the application, those abstractions do not have a means to ‘travel’ along

with it.

3. DOM: (World-Wide-Web Document Object Model). More recently, computing

has entered an era where a majority of cross-platform content is consumed through

a web browser. The DOM brought with it, a simplified form of hypermedia,

document-based user interfaces, data-driven presentation and behavior, platform-

independent standardized semantics, direct reference to/from any document in a

global address space, and cache-as-needed web-surfing (no installation). Its influ-

ences include Vannevar Bush’s Memex [11], Theodore Nelson’s Xanadu project [12],

Douglas Engelbart’s oN-Line System [9], and Tim Berners-Lee’s ENQUIRE System

[13].

The web browser acts as an outsourced user-interface framework, factoring the

overarching business logic into ‘back ends’ and the tight-loop interaction logic into

portable ‘front ends’. A major component of this is the wide-spread standardization

of flexible semantics for presentation (CSS), content structure (HTML), and sand-

boxed scripting of behavior (ECMAScript). However, web browsers are designed

5

Introduction [top] Chapter 1

around the display and consumption of web page documents only, not around au-

thorship, editing, or publishing of those documents. While sophisticated web-page

authoring tools have existed all along, the trend lines do not point towards HTML

eventually becoming the backing format for all information authored by end-users.

In other words, the web stack is not poised to bring its revolutionary properties to

the lowest-level medium of computing by replacing plain text. After all, it is itself

made of a set of UTF8 encoded formats.

Looking forward: Notice that these three media revolutions have all been additive,

i.e. each new media has supplemented the previous and all continued to have their unique

place in parallel. We see a path forward to a fourth end-user common-media revolution

that closes the gap between the properties of high-level domain-tailored user interfaces

and low-level manipulation of individual printable characters in strings. By this we

mean putting those two layers on the same continuum by bringing the text medium’s

transparency to user interfaces, and imbuing the text medium with an application’s

capacity for data structures and abstraction. These maneuvers are one in the same, but

require two general technical artifacts: a self-describing universal binary metaformat, and

free-form structure editors to make it human-readable. This could have the capacity to

unify the previous three into a single media.

1.2 Why Another Revolution is Needed

This work is motivated by many trains of thought and frustrations with computing

both from a developer perspective and from an end-user perspective. Hopefully a rough

gestalt can be communicated through a brief discussion of the following two themes - one

from academia, and one from industry:

6

Introduction [top] Chapter 1

• “The computer revolution has not happened yet” –Alan Kay 1997 [14]

• “Everyone should learn to code” –The general zeitgeist of the 2010s [15]

1.2.1 “The computer revolution has not happened yet”

On many occasions, Alan Kay (of Xerox PARC fame) has decried the trajectory of

personal computing for not evolving itself beyond the paper-centric metaphors to continue

becoming its own thing. Computers are still used mostly to simulate ‘old media’. This

is devastating in the sense that it takes a general-purpose machine and assembles it

into less powerful building blocks. He advises us to “take the powerful thing you’re

working on and not loose it by partitioning up your design space”. On a computer,

computational capacity should be ubiquitous, and development (writing source code)

does not have to happen outside the language itself. This way, computation can help

itself scale by “allowing objects to make experiments with other objects in a safe way to

see how they respond to various messages”. By moving from a protocol approach to a

universal interface language approach, we can move from a clockwork-like paradigm to a

biology-like paradigm for ‘growing’ systems.

Our takeaway from this is that computing should be self-similar, all the way down to

its rawest form of media. None of the forms of media that came out of the revolutions

outlined above have this property. Each medium is incomplete on its own; each counts

on being propped up by another.

7

Introduction [top] Chapter 1

In the above figure, the items listed in the missing wedges represent the concepts

missing from that medium. The arrows between media indicate critical roles one media

plays for another.

1.2.2 “Everyone should learn to code”

In 2016, former president Barack Obama announced a ‘Computer Science for All’

initiative stating that “computer science (CS) is a ‘new basic’ skill necessary for economic

opportunity and social mobility”, mobilizing K-12 teachers to be trained in CS curricula,

and enlisting the help of state governments. Several mayors ended up publicly announcing

that they will be learning to code. Computer Science curriculum should certainly be

available to anyone with an interested in it, but should everyone learn to code?

Alan Kay named Smalltalk after the prediction that in the not-too-distant future,

programming and computational metaphors would become such an everyday form of

literacy that it would be a thing of small talk. Smalltalk has had its name for over

45 years now, and that vision has not yet come to fruition. We believe that this is

because computational literacy does not earn proportional utility, yet. By this

we mean that having a casual or cursory engagement with computer science or software

development buys you nothing in the other verticals of your interactions with software

8

Introduction [top] Chapter 1

throughout your day. An average smartphone app does not have any inlet for a user

to apply their computational fluency to bridge correspondingly-sized gulfs of execution

[16]. Unlike physical artifacts, user-interfaces cannot be broken open as they are running

to reveal their live material and witness their inner choreography. User interfaces are

opaque and routinely leave existing useful functionality unexposed. The reader may be

thinking that source code is the analog of this, but we find source code akin to only being

able to see an organism’s DNA strands in an X-ray, and source code does not capture

the dimension of memory or live state. Also, unlike tangible human-scale phenomenon,

such as dance, there is no obvious way or immediately intuitive place to mimic, as an

inspired amateur, the interesting fragments of what was just seen performed so expertly

by one’s favorite software. It is not unheard of for curious mechanically inclined children

who grow up with an abundance of access to cars, to become a decent self-taught auto-

mechanic. On the other hand, it cannot be expected that a child who grows up with

an iPad with an abundance of access to apps, to become a decent self-taught software

developer. The media of computing, from an end-user perspective, is just not conducive

to its own curriculum.

Once a user has an end-to-end level of computer science fluency, they are highly em-

powered to make their own software from scratch or modify existing open source tools,

9

Introduction [top] Chapter 1

but this jump in personal utility for their daily lives comes all at once after prolonged

investment (depicted by the curve on the left). We believe there is potential for a differ-

ent computing landscape that would naturally support more incremental empowerment

(more like the hypothetical curve on the right). This would mean that partial fluencies

would stand on their own dividends, and any further investment toward developer-level

skill could be stopped without it all being for naught.

1.3 The Opportunity

1.3.1 Observation 1: There are two paradigms of syntax

Software uses binary quantities to structure information and to jump around in a

fragmented memory model (runtime heap). This is important for mechanical speed

and simplicity. But of course, that does not resemble the paradigm of written natural

language, which humans find important for speed and simplicity. An ecosystem of parsers

and renderers are employed to continuously convert between the two so that humans and

computers can each use the paradigm most intuitive to them. Though all CPUs and

runtime data-structures rely on binary-encoded quantities to structure information for

random access, formats that need to be able to have a direct relationship with users

are stuck with essentially one option - encoding their structure indirectly via contrived

patterns of character codes. This is unfortunate because, text, as a UI paradigm, comes

not only with compromises to efficiency, but functionality in general.

Textual formats have a serialized nature, and each language grammar designates

particular character sequences to signal mode changes in its parsers. This is necessary

to encode any semblance of structure or type variation, but punches holes in the content

space because control characters (meta-characters) can occur at any position.

10

Introduction [top] Chapter 1

These two different natures for encoding information have a set of mutually exclusive

properties. The above figure outlines their major properties in the form of a life-cycle.

On the left is the territory of computation (runtimes), and on the right is the territory

of human readability and writability (communication). Though it is often swept under

the table, it is important to acknowledge that the output of a parser is indeed also

an encoding with a syntax, there is just never a direct awareness of it outside of very

low-level debugging. Parsed data takes on the internal encoding conventions of the

11

Introduction [top] Chapter 1

programming languages own runtime. While there is some variety in runtime structures

between languages, the outlined properties hold universally.

In a parsed encoding, there is no need for data to remain continuous. It can be

fragmented throughout a large memory space without having to be moved around as

other data comes and goes. Items can be reached with jump access and offsets. The

fundamental building block for this structure is quantities. Computing hardware is built

for handling binary quantities, and programs are compiled to solve problems in numerical

machine-readable representations. When exporting information out of a runtime, it is

rendered to some stand-alone and serialized form. If there is any anticipation that it will,

or could, be for human consumption / communication, that renderer will need to target a

human-readable encoding. As discussed earlier, this means that printable characters will

be the sole building blocks in the representation and will be structured by tokens in some

higher-level grammar. When reading text, every character must be scanned because any

one of them has equal opportunity to be a control character from the grammar, which

alters the meaning of the characters to follow. Thus, seek access must be employed (no

skipping over anything). A direct consequence is that text is contiguous with no gaps.

Quantitative Syntax Now that these two paradigms have been identified, they should

be given names for later reference. Since the computation-anchored paradigm is most

characterized by its use of quantities, we refer to it as quantitative syntax. In quantitative

syntax, the run-lengths for units of structure are provided upfront in one form or another.

In other words, the amount of addressing to skip in order to reach the end of that

item. At its simplest, this directly encodes a tokenization. Here is a contrived example

assuming a simple textual single-character length preamble preceding each ‘segmented’

element: 3www2w33org would encode the domain name for the W3C (“www.w3.org”)

without the need to ever have chosen a particular character to act as the domain name

12

Introduction [top] Chapter 1

delimiter. Note that this keeps the structural part of syntax from being content or

grammar sensitive. This paradigm requires some degree of mechanical logic to author

because there are invariants that need to be upheld. If edited directly, length values in

the headers must be updated to match any changes in content size. Thus, this paradigm

tends not to exist outside the context of digital automation - i.e. a passive piece of paper

does not coordinate the updating of previous ink strokes in lockstep with the addition of

new ones.

Qualitative Syntax Qualitative syntax is characterized by its use of predesignated

symbols/tokens (a finite lexicon) reserved to represent both structure and type control

signals. Most anything textual is this flavor, including source code, and thus it is usually

what is implied when referring to the concept of ‘syntax’ in general. Units of structure

extend until encountering a symbol designated as its terminator. e.g. A sentence con-

tinues until a period, a C string continues until a null byte, a file in DOS continues until

character 26 (EOF). In many cases a token continues until a value that is not in the

alphabet for that type. In order to nest hierarchies of data, a different token is used to

distinguish each end. e.g. In C-based languages, code blocks deepen with and shallow

with . Comment blocks use /* and */ but sadly do not nest. The nature of context

specific delimiters cause local lexical analysis to be married to overarching grammar.

1.3.2 Observation 2: Human-readability is about ubiquity

The closer one analyzes the criteria for a format to be considered human-readable,

the more it seems to be a misnomer. A romanticized notion might expect a quality

reminiscent of ink on paper - that the information exists in such a way that it is ‘directly’

intelligible in its passive physical form. Obviously, a spatial analog encoding is not

amenable (efficiently) to digital computers, and as a result, the convention is to map

13

Introduction [top] Chapter 1

binary quantities to abstract enumerations of characters. This is very compact and has

the benefit of being semantically precise and decouples presentation from content.

The technical definition of a human-readable format, is a bit-stream consisting solely

of these character codes. Due to evolving byte-widths, the arbitrarity of character order-

ings, and the many written languages used around the world, many character encodings

have come and gone over the years. To make a long story short, it can be said that

Unicode and its ASCII backwards-compatible form, UTF8, represent a major success in

satisfying most parties in a unified extensible way. UTF8 is the official character encoding

of the Web and is quickly becoming the standard across all of computing.

As a result, the working definition of a human-readable format is a string of ASCII or

UTF8 that can be displayed by a text console or text editor. The caveat of having to be

displayable in a text editor is to address the details of non-printable characters (control

codes / modifiers) and languages that are supported by few fonts. The first 32 ASCII

values were originally allocated as abstract control signals with no printable characters

associated with them.

As stated in The Art of Unix Programming, “the transparency and interoperability

benefits of textual formats are sufficiently strong that most designers have resisted the

temptation to optimize for performance at the cost of readability” [6]. When a specific

language is built out of characters, a text editor can render it to the point of legibility

without an awareness of the higher-level meanings. Some examples of human-readable

formats include: TXT (text), CSV (comma separated values), RTF (rich text format),

SGML (standard generalized markup language), HTTP (hypertext transfer protocol),

HTML (hypertext markup language), JSON (javascript object notation), XML (exten-

sible markup language), TeX (the typesetting system).

The critical observation is that software infrastructure is heavily involved in support-

ing the human-readability of text. It is not the case that the bit sequences of UTF8

14

Introduction [top] Chapter 1

or any other text encodings are somehow intrinsically understandable to a human. An

application interprets the bytes as character codes as per a known standard, which are

mapped to glyphs in a font, and rendered to a grid of pixels. This chain of interpretation

and transformation starts with clusters of electrons and ends with clusters of photons be-

fore the human nervous system takes over. The point being that there is still a necessary

software layer performing a transformation in the middle.

e- =⇒ bits =⇒ charactercodes =⇒ glyphs =⇒ pixels =⇒ photons

“Human readability” just colloquially implies that it is a standard encoding under-

stood by most text editors. The sense of inherent readability merely comes from the

ready availability of tools that render ASCII and Unicode. One can assume that a text

editor or some text rendering infrastructure exists in the target system. Therefore, any

encoding could technically achieve the same ‘human readable’ status as ASCII if it and

its editors were general-purpose enough to warrant an equally ubiquitous install base.

Thus, there is an opportunity to expand or upgrade the realm of what can be considered

human readable.

The following sections introduce a candidate encoding beleived to be worth of such

a pursuit. The graphical user interface revolution of the 70s and 80s made bitmapped

displays common. Flat-text infrastructure is the most entrenched aspect of computing,

and it did not undergo the revolution it could have along with the GUI. Computing is

no longer technologically constrained by purely textual typewriters and teletypes as the

common denominator for input/output convenient to human users.

15

Chapter 2

Infra: A New Infrastructure

Infra aims to make data more powerful and easier to deal with for both humans and

computers. All types of data can be viewed, edited, processed, transferred, and stored

entirely in Infra. Therefore, developers, runtimes, and end-users could theoretically share

a common foundational medium across the computing landscape.

Infra is composed of a novel encoding and a novel type of editor/browser. These two

components are intended to supplant the use cases of text encodings and text editors

respectively, and since the encoding is compact binary, it also addresses the needs of

transfer formats. Infra editors make reading and writing Infra’s binary metaformat simple

for end-users, and can even style the presentation and taylor editing in response to

metadata, resembling a Web Browser or IDE. Beyond the common metaformat features,

16

Infra: A New Infrastructure [top] Chapter 2

Infra’s encoding includes three critical primitives: Metadata, Free, and Patch.

Metadata allows any data element, including other metadata, to be decorated with

arbitrary Infra information to add context. For example, metadata is useful for providing

IDs to support referencing values by name, style markup to assist presentation in an

editor, or schema/type info to constrain or validate data.

Free allows encoded information to contain unallocated memory regions. This can be

useful for aligning data to fixed-widths or improving the efficiency of localized edits to

large structures on disk.

Patch elements are programs that can inline another Infra object and optionally mod-

ify the shallow copy, forming a generalization of graphs. This primitive turns out to be

a powerful building block toward general computation in the domain of data metapro-

gramming. In many situations, Patches and the Infra-encoded statements within them,

can be conveniently authored indirectly via programming by demonstration.

The Infra encoding is designed to be an end-user-authorable universal metaformat. It

is schemaless like text, yet binary like RPC formats. Currently, plaintext is used as a

medium for indirectly supporting the building blocks that computing needs, rather than

using one that offers those essential building blocks directly. Infra is about providing

a new higher-level baseline medium to simplify the infrastructure of computing. This

is based on the above observation that the quantitative nature of encoding structure

in software for a processor, and the qualitative nature of encoding structure through a

teletype for humans, can actually be unified now that typewriters have been out of the

picture - as they have been for several decades.

As a preliminary introduction to our alternative infrastructure, the following is a

17

Infra: A New Infrastructure [top] Chapter 2

side-by-side comparison of some structured data expressed equivalently in four different

languages - three textual and one Infra. This data is a toy example engineered to exercise

a range of element types. On the left is the abstract syntax tree of the structure.

Infra provides structured scaffolding for holding data, but it does not attempt to

invent a new character encoding, so ‘fish’ and ‘red’ are encoded as UTF8 strings. On

the other hand, ‘True’ is directly encoded as a boolean value, and is shown in blue.

Typical formats communicate structure passively using characters such as ‘[’ and ‘(’. Infra

communicates the abstract syntax present in the data actively, using general graphical

elements. For example, the span of lists is indicated by a blue line above the items it

contains.

Before we dive into the details, here is the byte encoding for the Infra representation

(shown in hexadecimal). A critical component of Infra is its feasibility to be authored

straight into this representation intuitively through an editor. Other binary formats can

only be rendered procedurally and often require pre-existing schema.

18

Infra: A New Infrastructure [top] Chapter 2

2.1 The Metaformat

Infra’s metaformat encoding consists of a nestable sequence of ‘segments’, each made

of a header byte and a body of variable length. The header byte indicates the type of

the segment and the length of its body. This pattern is sometimes called type-length-

value, tag-length-value, or key-length-value. Due in part to its simplicity and processing

efficiency, type-length-value is a common paradigm, used by many binary file formats

such as Portable Network Graphics (PNG) [17], Audio Video Interleave (AVI), Matlab’s

MAT, Protocol Buffers [18], MessagePack [19], and most modes of the complex ASN.1

[20] format. The finer details vary among these formats, but the most significant decision

that differentiates the utility of these formats is the set of first-order primitives, or base

types, that they define.

After a wide survey of primitives appearing in programming languages and metafor-

mats, we carefully define 13 base types, which support a flexible combination of direct

authoring, processing efficiency, and extensibility. Each of these will be defined in detail

in the next chapter. The most disruptive of these base types are Metadata and Patch.

They will come up throughout the various sections, and Patch has its own chapter in

this document.

19

Infra: A New Infrastructure [top] Chapter 2

2.1.1 Header Format

Only half a byte is needed to account for 13 base types (plus 3 unallocated). Segment

headers can be a single byte when body lengths are no longer than 14 bytes. When

a body length is greater than 14 bytes, additional bytes must be used to indicate the

length.

Body length 15 is reserved to signal a multi-byte header mode where the length is

instead encoded using a variable length unsigned integer encoding. We find Dluglosz’

encoding [21] to be efficient and well designed for this purpose. This is the encoding used

for VLIs in the ZIP2 format.

20

Infra: A New Infrastructure [top] Chapter 2

2.2 The Editor

With Infra, our first priority is supporting interactive authoring by end users. An

Infra editor aims to fill at least the same breadth of role in computing that text editors and

text-field widgets currently play, ultimately superseding them. Like a text editor, which

tries to be as adept and general-purpose as possible when it comes to enabling users to

view and manipulate a buffer of character codes, an Infra editor tries to make authoring

structured data easy. This includes having mechanisms to facilitate the authoring of

spans/hierarchy, quantities, references, metadata, and padding.

Using an Infra editor feels like using a text editor. Unlike text editors, however, Infra

editors have the opportunity to add useful structure as users type. Users can type their

intended structure along with their content. For example, pressing ‘spacebar’ between

words defaults to tokenizing the text into lists of strings. Furthermore, recognizable

fields such as numbers can be parsed on-the-spot and converted into the appropriate

Infra element type (such as Floating-point, which is binary-encoded).

21

Infra: A New Infrastructure [top] Chapter 2

2.2.1 Editor Demo

This brief demonstration will introduce the general idea of using a free-form paradigm

of editing to author structured information of any kind. It is not meant to explain

everything upfront, but just to provide some intuition for going into the later sections.

Here is an editor window open to an empty document.

Let us type “The quick brown fox jumped over the lazy dog”

We have just authored a list of nine UTF8 encoded strings. The spacebar naturally

tokenized our sentence as we typed it, rather than writing a space character like it

normally would in a text editor. Since the cursor is at the word level, pressing delete will

delete an entire word. We will press it nine times to get back to an empty document.

Now, let us paste in the text from the human-readable-format comparison example

we used before. These three strings all represent the same (equivalent) data structure as

represented in JSON, Lisp, and Python respectively. (Note: The frame of the application

window will be omitted from screen shots from this point on.)

This toy data structure is designed to densely cover a range of syntactic elements: Strings,

numbers, lists, key-values, and a boolean value. However, in their current (and typical)

22

Infra: A New Infrastructure [top] Chapter 2

form, they are only made up of character codes. For all of the similarity in their structure,

they are far from being interchangeable between parsers because each of these languages

makes different choices in how to encode abstract syntax indirectly through character

codes.

Now we will type a fourth instance of this data, this time using more than just a

string element:

In this case, the values, ‘1’ and ‘2’, are not being encoded as text characters. They are

binary encoded integers. And this True has been authored explicitly as Infra’s boolean

symbol for true. With Infra, data can stay parsed in this way right from the time of

authoring. This means that editor UIs can have richer, more precise, interactive dialog

with the author about the content, its parts, metadata associated with its parts, inter-

relationships, and its presentation.

Here you can see that the editor is able to layout any subtree as a table:

Now we will add metadata to the first line to give the editor more confidence that this

string is in-fact representing JSON.

23

Infra: A New Infrastructure [top] Chapter 2

This editor happens to have a JSON parser and supports metadata labeled as “for-

mat“ metadata, so here we can see the editor now offering to parse it as JSON.

And now it is in parsed form:

Next, to demonstrate more editing, we will manually parse the next one of these string-

based representations. But first, we can rig up a side-by-side view of the byte encoding

for this object so we can see how the representation changes with each keystroke.

24

Infra: A New Infrastructure [top] Chapter 2

We can drop the cursor down to character-editing level and start chopping the string

up into data components.

From Infra’s perspective, a traditional text editor is just an editor whose cursor is

locked down at the character-level, only edits String objects, and has tunnel vision on

one string at a time.

Just like raw UTF8, Infra’s encoding is easy to make human friendly in editors, and

usable by user-interface widgets and libraries everywhere. All while rivaling the machine-

readability of binary metaformats such as ASN.1 or Protocol Buffers.

25

Infra: A New Infrastructure [top] Chapter 2

2.2.2 Visualizing Primitives

An Infra editor conveys information structure by displaying Infra’s abstract syntax

with some sort of visual convention. Each editor can vary in the details, but should at

minimum cover basic editing of a hierarchical information structure that can be recur-

sively interleaved with metadata and computed transclusions. (A transclusion is a refer-

entially transparent inlining of content from another location. In the case of Infra, these

are combined with a model for computation called ‘Patch’.) In the UI for the editor, this

amounts to displaying a handful of primitive types in a way that is distinguishable from

each other. These include: empty strings, strings with spaces (as opposed to padding

between segmented words), integer and floating-point binary encoded quantities, regu-

lar List containers, Patch containers, Keyed-list containers, the built-in Symbols, and

the Side-Effect objects returned by Patches. (A definition of each is given in the next

chapter.)

The following table outlines our prototype editor’s approach to visualizing these types.

The specific values are just for the purposes of demonstration. The first column of the

first six rows exemplifies ‘empty’ versions of the respective types.

26

Infra: A New Infrastructure [top] Chapter 2

Having an explicit difference in base type between numbers and number-like strings

also allows for quantity specific pretty-printing such as dynamic localized digit-grouping.

Similar to how spreadsheet programs have a convention of left justifying text within a

cell and right justifying numeric types within a cell, our prototype editor, renders text

and quantities in different font families. Quantities default to a monospaced font, while

strings do not.

The span of a List can be conveyed in a human-readable way with a simple overline.

When contents are displayed vertically, or must line-wrap, a more complete outline is

drawn around the items.

Byte arrays can be displayed in many creative ways. Since a user is rarely inspecting

long binary values digit-by-digit, compact views are often most useful. Projects such as

Data Matrix [22], Chroma-Hash [23], Mnemonic Encoder [24], and PGPfone [25] provide

a number of useful lenses that an Infra editor could support for a user to toggle between,

27

Infra: A New Infrastructure [top] Chapter 2

each with different use cases and advantages. The figure above depicts hexadecimal, a

variant of Chroma-Hash, and Data Matrix as the main options in our prototype editor.

The Chroma-Hash type approach is useful for making binary sequences quick to compare

visually. The Data Matrix approach is highly compact with a consistent form factor,

playing the useful role of signaling the type of primitive all while abstracting the details

of the value from a human user and staying technically readable.

Patches can evaluate to three additional types of first-class value: self reference,

side effect, and choice point. These values only occur at runtime and are only encoded

indirectly through Patch instructions, but they still must be accounted for in the editor

user-interface.

When a Patch node has no value due to a circular self-reference situation, a simplified

depiction of Ouroboros (an ancient symbol for cyclical interconnection), resembling a

circular arrow is displayed as a place-holder. Its ideal to display Side-Effect objects

(returned by Patches that attempt mutation) as interactive buttons because they require

some form of synchronous event to trigger them. These buttons can display the label

provided by the Patch to elucidate the nature of its side-effect to the user. See the chapter

on Patch for details on Patch, Self-Reference, Side-Effect, and Choice-Point semantics.

Additional niceties for an editor to support include things like a CSS implementa-

tion for reacting to CSS-labeled metadata to style the document, a suite of abstrac-

tions for common high-level type descriptors, a library of uniquely identifiable objects

28

Infra: A New Infrastructure [top] Chapter 2

that can be referenced for things like operating system integration, or Programming-By-

Demonstration and Programming-By-Example engines to help a user intuitively author

computed transclusions. Our prototype implementation includes each of these to a de-

gree. They allow the Infra medium to scale up to the roles of Web Browsers, application

user-interfaces, and integrated development environments (IDEs).

29

Chapter 3

Base Semantics and Interaction

The table above is a comprehensive listing of Infra’s base types. This chapter will

define the details of each as well as their unique relationship with human readability in

30

Base Semantics and Interaction [top] Chapter 3

an Infra editor.

The order in which they are covered in the following sections follows a progression

that ensures examples only build on types that have been covered up to that point. The

Patch base type is covered in its own chapter due to the number of subtopics it elicits.

These base types are what can appear at the encoding layer of the interpretation

hierarchy, but four of these types are strictly for controlling degrees-of-freedom in the

encoding and no not appear as literal data elements in the logical data tree.

Since Patches are referentially transparent, they do not appear at the evaluated /

31

Base Semantics and Interaction [top] Chapter 3

graph layer of interpretation. As a result, Patches are also the gateway for otherwise

non-encodable types.

3.1 Base type: UTF-8

The UTF-8 base type marks a string of UTF8-encoded text. These strings can have

any length, including zero. A series of UTF-8 segments naturally forms a tokenized

sequence of text. In an Infra editor, the default margin between items in a layout is the

width of a would-be space character. This results in a parity between the display of a

traditional text buffer in a text editor, and the display of tokenized text in Infra.

As you can see above, a side-by-side comparison can be identical though the byte

encoding is of a parsed paradigm. In an Infra editor, a UTF-8 segment is authored simply

by typing characters as usual. The characters are appended to the selected element and

its size field is updated accordingly. Note that this kind of editing technically requires

coordinated changes in multiple places in the buffer with each insertion/deletion to keep

element sizes in sync. This is not something that was viable with typewriter-based

input/output. Pressing the spacebar key creates a new segment, such that normal typing

naturally results in tokenized sentences. Our prototype used shift+space to type a literal

space character (without creating a new segment).

32

Base Semantics and Interaction [top] Chapter 3

The byte overhead of per-token headers is made up for in most cases by the freedom

to forgo most delimiters and whitespace characters that would normally be necessary

between tokens. In the case of strings less than 15 bytes long, the single-byte preamble

overhead is exactly equivalent to that of a C-style string with a trailing zero-byte termi-

nator, but Infra strings are unambiguous to parse or skip because the length is known

up front.

This means that Infra can be used to encode language expressions in tokenized form,

which bypasses the typical parsing constraints that are imposed on identifiers and the like.

For example, variable names in various programming languages cannot usually contain

spaces or symbols due to the parsing ambiguities they would cause, but these limitations

are endemic to flat text. Infra, as an infrastructure, can shift most parsing steps to the

time of authoring. Not only does this lift character constraints on things like identifiers

(including spaces), but it also allows user interfaces and rich assisted interaction to take

place within the task of communicating structured information.

Rich-text styling can be supported via metadata. We will visit this topic in the

section on Metadata.

33

Base Semantics and Interaction [top] Chapter 3

3.2 Base type: List

A list is a container to group zero or more data structures together. Lists can contain

elements of any type, including other lists. General trees can be built using lists of lists.

Unlike text editors, which edit flat character arrays, Infra editors are designed to work

well with hierarchical data. In our prototype editor, lists are represented simply as a line

spanning over the items it contains.

In the above example, ‘quick’, ‘brown’, and ‘fox’ are grouped together in a List. ‘lazy’

and ‘dog’ are within another List. ‘The’, ‘jumped’, ‘over’, and ‘the’ are at the root level.

The selection cursor can also be hierarchical in order to edit at any level of granularity

present in the data’s structure. In addition to moving the cursor between siblings, a

central user-interface action is to move the selection down to a child or up to a parent

container.

In the above figure, the top row depicts selection of the second element as a whole.

Moving the cursor down or in results in the second row, where ‘quick’ is selected, and

34

Base Semantics and Interaction [top] Chapter 3

moving the cursor to the right would now select siblings of ‘quick’ as opposed to siblings

of the List (i.e. ‘jumped’). As seen in the third row, the cursor can be moved in again

to operate at the character level in the familiar way.

It is worth noting that any tree / sub-tree can be displayed using a grid-like layout,

forming a column-aligned table. (See section ?? - Alternate View Faces: table-view)

3.3 Base type: Keyed List

Keyed List is a variant of List that associates the first child with the container

itself. This is similar to the concept of a key-value pair where the first child is taken as

the key, except Keyed Lists can have any number of values, like an n-tuple. Keyed nodes

are also similar to Lisp’s S-Expressions and are used to encode Patch instructions, which

we describe further in the chapter on Patch. Infra’s Keyed Lists are different than the

concept of “Keyed Lists” in the Tcl programming language, which are lists containing

key-value pairs.

Our prototype editor displays Keyed Lists in either of two visual styles: a parentheses-

like style or a colon-like style. Since it is only a presentation layer decision, a user can

spontaneously switch at any time. The following figure compares the visual differences

between Lists and Keyed Lists of zero through three items respectively.

We find that the colon-like style is the more appealing for when there are exactly two

items in the Keyed List (including the key), i.e. A:B. But we find that the parentheses-

35

Base Semantics and Interaction [top] Chapter 3

like style is generally less visually ambiguous for cases of fewer or greater than two items

total. (To be clear, such ambiguities would be strictly user-interface-level issues, not

encoding-level ambiguity.) In our figures, you will find that we mix the use of the two

styles for best readability on a case-by-case basis.

3.4 Base type: Free

Free segments are placeholders that span unallocated bytes. They do not contribute

data to the data tree, they merely allow the serialized encoding to have padded gaps.

This is analogous to the function of a free list in dynamic memory allocation, which

tracks the unallocated byte ranges of a runtime heap. It was deliberately chosen to be

the type value zero so that any zeroed byte buffers parse as valid Infra. A header value of

0x00 means a Free segment of length 0. As a result, one way to delete a segment entirely

is to simply zero out its binary representation. To our knowledge, no other metaformat

natively supports this concept at the byte level. Byte-level support is critical in order to

manage single byte gaps.

Files storing Infra encoded data do not have to be streamed in and parsed like textual

formats do. The element headers allow jumping through the tree. If only one element

of a large file needs to be updated or read, only the segments on the path to that node

would have to be examined. They do not even have to be kept in memory. Then, the

element can be changed by writing directly into the file in the correct location. If its

byte-size is the same, the update is trivial. If the size is shorter, the gap between it and

the rest of what was in the file can be filled with a Free segment. If the change results

in a size increase, hopefully there is an immediately adjacent Free segment to pull from.

Nearby Free segments can be strategically inserted and maintained by the file writer or

heap manager in advance, based on predicted usage. When Free segments are nearby,

36

Base Semantics and Interaction [top] Chapter 3

but not quite adjacent to an expanding write location, they can be pre-shifted into place

with a number of writes proportional to the tree depth of the segment. Clever use of the

Free segment allows enough efficiency to support a live file editing mode where the Data

Editor continuously saves edits as they are made, including to very large files. If the

serialized encoding were held in RAM rather than disk, it would be immediately on-hand

for writing to a file or sending over a network.

Furthermore, free segments can be used on an in-memory representation to improve

runtime efficiency. Segments can be padded to ensure that they always align to regular

intervals. Or the elements of a particular list can be padded to a homogeneous length to

enable calculating its direct offset with multiplication.

Metadata can be used to specify the ideal pre-allocations of free space that should be

included in the serialization. See section 6.2 for more on this.

The following is an example of making a modification to the encoding that requires

extending the value of a leaf node while rigorously maintaining parsability between every

atomic mutation. Certain steps of the following algorithm can be skipped if there is no

concern over critical interruptions such as a power outage or system crash. We assume

that overwriting a single byte is atomic. Allocating and shifting memory can be done in

fewer steps when not requiring this level of rigor.

37

Base Semantics and Interaction [top] Chapter 3

Currently encoding: Hi World

Goal encoding: Hello World

1. Extend the buffer with free space. This can always be done easily at the end of a file.

We only need to allocate three more bytes for our target, but we allocate more for the

purpose of demonstration.

2. Prepare to slice the needed amount from the free pool.

3. Slice. The encoding is valid before and after updating header byte value.

38

Base Semantics and Interaction [top] Chapter 3

4. Move allocation into the scope of the adjacent list by changing its span.

5. Prepare to shift ‘World’ down. This minimizes the amount of time spent in step 7.

6. Temporarily disable this region. This allows the encoding to stay parsable during

modification, but does risk a string being dropped from the tree if the process gets

interrupted at this point.

39

Base Semantics and Interaction [top] Chapter 3

7. Perform the remainder of the shift while the region is disabled.

8. Re-enable region. The three allocated bytes are now swapped over to its left side.

9. Prepare for the extension of our target string to ‘Hello’.

40

Base Semantics and Interaction [top] Chapter 3

10. Disable region for string update.

11. Re-enable string at new length.

3.5 Base type: Metadata

In Infra, metadata can be associated with any element, including other metadata.

Metadata can be any data, but should describe or expound upon the data to which it

is associated. The Metadata base-type provides a capacity to carry information that is

not necessarily accounted for in the data’s schema. The addition of metadata will never

41

Base Semantics and Interaction [top] Chapter 3

disrupt or confuse a parser that only looks at the data, since metadata is unambiguously

peripheral.

Metadata elements are keyed with a language identifier. This not only provides a

means to anchor interpretation of the metadata to some recognizable semantics, but also

to allow any number of different kinds of markup to coexist on the same data node.

The language and statement branches of a metadata tree can of course be any data

structure. Therefore, the language name can be a flat string or an elaborate structure, but

should be qualified enough as to be globally uniquely. We expect a common convention

to be using a list containing the segments of a namespace hierarchy, i.e. what a parsed

version of a domain name or Java package name would look like after being split on the

period character. See section 7.1 to see this kind of pre-parsed freedom applied to domain

names in the context of URLs.

When it comes to display in the editor, metadata can be laid out in various ways or

selectively hidden. In our prototype editor, metadata is shown in a smaller font over the

element it is associated with. Another option is to display the metadata for the currently

selected element in a side panel.

In the following example, metadata has been authored onto the strings ‘fox’ and ‘dog’.

The metadata values are keyed as ‘adj’ markup using Keyed Lists.

42

Base Semantics and Interaction [top] Chapter 3

This particular example is equivalent to viewing / authoring the following HTML in a

text editor (with HTML-specific syntax highlighting):

However, this HTML is malformed because repeated attribute tags are not supported.

In practice, “quick” and “brown” would have to be combined into one value using a

one-off syntax scheme to indirectly retain their boundaries. At that point, the HTML

parser, syntax highlighting, and editor assistance stop helping, and custom parsing must

be added wherever the values are used. Note that in HTML, attributes cannot themselves

also have attributes (no recursive metadata).

Metadata can be used for an endless variety of purposes. These include providing

context, self-description, or provenance to data to coordinate its processing across ap-

plications. Metadata allows data to accumulate augmentations when they are available,

and transport them intact through stages of processing that may not even understand

them. Information is generally better able to be kept in one place, such as storing the

history of accesses made to a piece of data along side that data, without having to alter

its format in the process. Metadata can even be used to enable stateless processing, in

the same way that web servers have users store their own cookies so that load-balancing

servers can be stateless. Metadata is altogether critical for general extensibility.

See section 7.2 for an example using metadata for CSS (Cascading Style Sheets)

support in an editor.

3.5.1 Matadata Segment Association Rules

Metadata segments associate with the segment immediately following it in the stream

(skipping any segments of type Free).

43

Base Semantics and Interaction [top] Chapter 3

Note that if no metadata exists on a node, then the entire container is simply absent

from the encoding. The capacity to have metadata costs nothing if it is not used.

Metadata can be associated with other metadata with no issue (meta-metadata).

If the last segment in a span is metadata, it associates with its container.

If it is in the top level, it is metadata for the tree itself.

3.5.2 Standard Metadata Language Channels

There are a number of simple metadata languages we define and support out-of-the-

box as part of a ‘standard library implementation’ of the editor. Their language semantics

enrich the system on a number of levels, from low-level control over the encoding to high-

level presentation and adaptability. For the sake of this document, the names (identifiers)

of the languages appear without being qualified with namespaces. Currently, the standard

library defines:

• ID(): for specifying the name of a node (can be any Infra tree). Used by Patch’s

cursor navigation instructions for referencing nodes by name (using lexical scoping

rules).

44

Base Semantics and Interaction [top] Chapter 3

• UID(): for registering a node as a global with a name that is unique within the

tree.

• encoding(): marking numeric types as fixed-width, hierarchically declaring little-

endian and big-endian byte-order modes, managing the use of Free segments for

padding.

• schema(): specifying a node’s type. Type descriptions are prototype-based and

are literally a structure of the default values. This information can be used to

reason about and enforce strong type safety. They can inform an editor how to

validate a structure and guide edits towards valid configurations. Type schemas

can be given to byte arrays for headerless data packing. Schema metadata on a

Patch node pertains to the structure of its result.

• format(): specifying list display-mode: orientation (vertical/horizontal), table

view. Number display modes: digit grouping, significant figures. Node spac-

ing/margins.

• CSS(): an Infra dialect of CSS - the style sheet language of choice for the web.

Support for CSS blurs the lines between Infra editors and web browsers, and posi-

tion Infra as more efficient and author-friendly alternative to the Document Object

Model (DOM). Out prototype currently only supports a subset of CSS semantics.

• markup markup(): to mark other metadata as transient (i.e. do not serialize it

persistently), or to mark another metadata entry as being critical to understand.

Critical to understand means that the library should not proceed with confidence

if it knows it does not support this particular markup.

• comment(): for general comments - just like code comments, yet these are explic-

itly associated with the node being commented on.

45

Base Semantics and Interaction [top] Chapter 3

• closet(): for housing data just for the sake of referring to it from some other

location. We inherit the name from Boxer’s similar concept [26].

• inbound references(): a log of external references to this data. This can be used

to help keep system-wide inter-references between information in sync.

3.5.3 Shorthand for ID and UID metadata

There are two exceptions to the rule of metadata items being Keyed Lists:

• a UTF8 String element found as a direct child of a Metadata node is taken implicitly

to be ‘ID’ metadata, i.e. shorthand for the Keyed List ID:string.

• an Integer element found as a direct child of a Metadata node is taken implicitly

to be ‘UID’ metadata, i.e. shorthand for the Keyed List UID:number.

This is nice because using metadata to give a node a name (an ID) is common, and using

UIDs to de-duplicate elements for efficient storage is assisted further by this compact

form. Thus, the following two Metadata trees are equivalent in terms of meaning:

46

Base Semantics and Interaction [top] Chapter 3

3.6 Base type: Continuation

The purpose of this container type is to enable partitioning of long-length segments

into portions that can each remain valid Infra trees. This is useful when storing or

transmitting a tree that is being generated slowly over time or has unbounded length.

Using continuation containers, portions of known size can be associated together into a

tree whose total size is not known in advance. Continuation is like a concatenation

command, concatenating its children to the previous top-level container. If a child of the

continuation is itself a Continuation segment, then it concatenates its contents to the

existing second-level container (whatever its type), and so on. This mechanism allows

for any Infra segment to be continued.

47

Base Semantics and Interaction [top] Chapter 3

The Continuation base type allows an Infra tree to be segmented into smaller portions

for streaming while allowing each chunk to be valid stand-alone trees that could be parsed

on their own. A Continuation is just the same as a List except its children get merged into

the container immediately previous to it in the byte stream. Here is a simple scenario:

The square represents a List, and the plus represents a Continuation. In this example,

the stream contains a List with two items A and B, followed by a Continuation list with

two items C and D. On the receiving end, the Continuations’s two items get appended

to the List, making one list with four items. Here is a multi-tiered scenario:

This use of Continuations is contrived for the sake of example. We have the first tree

as our base and the second tree ‘continues’ it, so let us focus on the second tree for now.

Within the second tree, there is a Continuation continuing a Continuation. This would

be the first to merge as it is parses, so now imagine that D is merged into the list with C.

As a result of this property in general, the only Continuation nodes that will remain in

a parsed tree are going to be along the ‘left edge’. The continuations along the left edge

of the second tree line up with the continers on the right edge of the first tree. Merging

them hierarchically and then doing the same with the third tree, we get the result on

the right. Note that there would be no way to continue the List that contains item A.

48

Base Semantics and Interaction [top] Chapter 3

It is permanently ‘shadowed’ by its right sibling, but its okay, the tree has moved on to

newer things.

Since Infra’s encoding is essentially a pre-order traversal, splitting an encoding at an

arbitrary point looks like splitting a tree diagram along a vertical axis. To visualize this,

we give every node its own column, in prefix order.

Now we can say that the tree can be split vertically at any point. The split operation

just requires adding a Continuation header for each tier being cut. Here is an example

involving just the top level:

Here is another example involving the first two tiers:

49

Base Semantics and Interaction [top] Chapter 3

We have been speaking about the role of Continuations in terms of splitting pre-

existing trees, but the expected main use case is when a real-time application is repeatedly

waiting on further items to be processed/generated and it wants to submit the partial

batches as they are available. This is useful for debugging, real-time visualizing, and for

interactively editing partial states.

3.7 Base types: Integer and Floating-Point

The most fundamental contrast between binary and textual data formats is whether

the bytes are meant to represent quantities or character codes. Nearly all hardware

and programming language primitives have long since settled on two genres of number

encoding: two’s complement integer and IEEE-754 floating-point. The major source of

variety in programming language primitives stems from the various byte widths. Since

the Integer and Floating-Point segment headers have a size field, a single segment type

for integer can cover all byte-widths, going beyond the commonly named widths: byte,

short, int, long, int64, octaword, etc. Likewise, Floating-Point covers all byte-widths

defined by the IEEE-754 standard: half, single, float, double, quadruple, etc.

Byte endian-ness comes into play when encoding binary quantities. The encoding

50

Base Semantics and Interaction [top] Chapter 3

defaults to little-endian since that has become most common, but the endian mode

can be overriden using metadata. The mode setting cascades in a hierarchical manner,

so placing a single little-endian declaration at the root of the tree (in metadata) will

apply to all quantities. The nature of this metadata is described in section 3.5.2 on

metadata language channels. If fine control is specified, any subtree can override the

mode. This allows each platform to use whatever byte order is more efficient for it, and

to unambiguously convert data received from an architecture with an opposite byte order,

and only to the extent needed.

3.7.1 Quantity Types in the Editor

Unlike plaintext, Infra can be sophisticated in how it deals with numbers. Numeric

elements are displayed in a monospaced font to help line up decimal points in tabular

data as well as to distinguish them from string elements. An editor can make author-

ing quantities seamless by automatically parsing to the shortest binary encoding when

possible.

As a demonstration, we will demonstrate by typing negative-one-thousand-point-five.

There will be a figure to show a snapshot after each keystroke. The right side of the

figures will show the current byte encoding.

At this point, this is a one character string.

Now, infra recognizes ‘dash one’ as a number and encodes it efficiently. Its header byte

signifies that the following byte be interpreted as an integer.

51

Base Semantics and Interaction [top] Chapter 3

By simply pressing zero, negative one became negative ten while remaining binary en-

coded.

Now it is negative 100. Any typing a third zero...

Negative one thousand. Because this is explicitly a number in the encoding, the editor

can show digit grouping based on the user’s localization settings. Text formats often

cannot tolerate commas in numbers because they use them as delimiters to separate list

items.

Because the string representation of “-1000” does not contain a decimal point, Infra must

revert to encoding this as a string. In general, numbers are tested for round-trip stability

before being converted to a binary encoded number.

Now that the character 5 has been added, converting the string to a float and back to

a string again results in the original string. Thus Infra can safely encode -1000.5 as a

floating point number.

The widely-used Grisu3 and Dragon4 [27] shortest-decimal-representation algorithms

are used to reverse decimal-to-binary rounding loss when performing the round-trip test.

3.8 Base type: Byte Array

Byte Arrays are generally for opaque binary data, such as embedding a non-human-

readable format within Infra. There are many ways to display a byte array in an editor

52

Base Semantics and Interaction [top] Chapter 3

however. A traditional way to view and edit raw bytes is in hexadecimal.

But when manual editing is not necessary, it can be convenient to use a more visually-

compact form. The forms included in our prototype are hexadecimal, chroma hash, and

data matrix.

Byte Arrays can also be used as more compact encoding for an Infra List, if its

elements are all of the same structure and footprint. If the data type is described in the

Byte Array’s ‘schema’ metadata, then the headers can be omitted from the data in the

array while still allowing a parser to understand the structure of the bytes. (See section:

Type System.)

3.9 Special Leaf Types: Bits, Nibble, Symbol

Special leaves differ from the other primitives by using the length field portion of the

header byte in a different way.

Bit Array In the case of Bit Array, the length is not specified in bytes, it is specified

in bits. This allows for encoding a block of opaque data that is not a multiple of eight

bits long. (Extra bits are encoded as zeros at the end of the segment so that the next

segment starts on a whole-byte boundary.)

53

Base Semantics and Interaction [top] Chapter 3

Nibble In the case of Nibble and Symbol, the length field is used as immediate

data. Nibble uses the immediate to encode a 4-bit unsigned integer, allowing 0-15 to be

encoded without any bytes in the body of the segment.

Symbol Symbol uses the immediate to define 16 special enumeration constants. We

currently only allocate 6 of them as the following: False, True, Void, Null, Parameter,

Problem. This list should contain reasonably common data constants that can offer useful

special meaning to program logic.

Parameter is used as a placeholder for a value that is waiting to be specified. It

can be used to invite the user to fill in a value. Mathematical constant stands in for a

named literal value. See the mathematical constant language in the Metadata Language

Channels Section for how the name of the constant is specified. This is especially useful

for representing irrational numbers that cannot be encoded precisely. A system can

substitute a best-effort finite-value only when needed. Problem is returned by a patch

when an undefined operation or type-error is encountered. Metadata on the problem node

can be used to identify the issue. Otherwise legal operations with some error parameters

concatenate the metadata of their error parameters and return the conjoined error. This

mechanism can take the place of syntax error reporting.

54

Base Semantics and Interaction [top] Chapter 3

3.10 Singleton Unwrapping

When writing an Infra tree to a file, it is always possible to append yet another

element. For this reason, the file buffer itself is taken as a root List element, housing

whatever series of elements happen to appear in its body. This implies that a completely

empty file is encoding an empty List as opposed to non-representable nothingness. If

this was not the case, then any data encoded after the first Infra element read from a file

would have to be ignored. This issue comes up in the design of metaformats like XML,

where there is no meaning past the point of the closing of the root tag, and an empty

string is malformed, causing a parse error.

A benefit of treating the file itself as a root List container is that is avoids an otherwise

redundant size field that would have to be written for the root of an Infra tree. The

disadvantage, however, is that there is a potential ambiguity regarding trees that do not

have a List element as its root. For example, if the ‘tree’ being encoded is just an Integer,

it will appear to the parser as a List containing an Integer. Thus, a convention has to be

established to enable disambiguation of these cases.

The rule is that once parsing completes, if the tree is a List of exactly one element,

and the root list was never associated with a metadata segment (not even an empty one),

then the single item should be ‘unwrapped’ and returned as the tree root. So, on the

flip side, if the tree being encoded is in fact a List containing exactly one element, the

presence of a trailing metadata segment in the encoding (even if there are no metadata

values in it) can be used to suppress the notion that the lone item was never meant to be

wrapped in a List in the first place. The logic behind this is that trailing metadata ends

up being associated with the root (List), and if the lone item was meant to be the root all

along, then there would have been nothing for such metadata to have been coming from.

Note that the lone item can optionally have its own metadata, because that metadata

55

Base Semantics and Interaction [top] Chapter 3

segment would precede it in the encoding and not confuse matters.

3.11 Delayed Loading and Incremental Decoding

In order for Infra to function as a general purpose media, it is critical that some

portions of data be loaded only on demand, and that data streams be asynchronous.

Delayed Loading When loading large Infra trees, it can be sluggish for the system

and overwhelming for the user to load or display the whole thing right away. Loading

subtrees as they are needed, and unloading least-frequently-used subtrees, can bring

efficiencies and the possibility of exploring trees that do not fit in memory. Also, not

all Infra nodes are representing data from a byte stream loaded from a file. There are

native-service objects that, for example, represent the file system tree as Infra nodes. It

would be detrimental if generating an outline of the entire file system had to be a natural

side-effect of viewing a individual directory.

Incremental Decoding Even though the Infra encoding format has explicitly-sized

nested segments, it can still be parsed in a manner that allows arbitrarily few bytes at a

time to be ingested. This is critical for the subtrees completed so far to be immediately

usable while waiting for the rest to stream in.

This is possible using a stack, where each stack element represents a segment in

progress. To enable safe asynchronous use of a partially assembled tree, our library and

editor implementation support an interface for detecting partially loaded and on-demand-

loaded containers.

When reading the next available chunk of bytes from a stream, it is known in advance

which subtrees will load completely within that number of bytes. This can be used to

56

Base Semantics and Interaction [top] Chapter 3

avoid the overhead of incremental loading for elements that do not need it. The following

is a partial sample of our source code for incremental decoding.

57

Chapter 4

Patch: Reference and Modify

A Patch is a program that evaluates to a data structure. The simplest type of Patch

simply references another node in the tree, returning a shallow copy; this expands the

domain of infra from trees to fully-general graph structures by providing cross-links.

Patch programs can also make modifications to what they return (without modifying

the original); this enables pure-functional programming at the encoding layer. In the

encoding, Patch nodes are containers like List nodes, except their children are interpreted

as instructions for assembling a return value. Thus, a Patch’s program statements are

made up of the exact entities that Patches manipulate, not merely a one-to-one conversion

between them. This qualifies Infra as having a stronger sense of homoiconicity than is

enjoyed by Lisp-like languages.

Like a formula in a cell of a spreadsheet, a Patch always has an implicit return

value, has no explicit input parameters, has no need of a name (anonymous function

/ lambda), can reference its surrounding data environment (closure), can perform no

visible side-effects (pure-function), and is therefore referentially transparent. Unlike a

formula in a cell, Patch instructions form a chain of object-oriented commands, and can

make edits to their subjective view of data (like a ‘lens’ in functional programming [28]).

58

Patch: Reference and Modify [top] Chapter 4

A Patch’s edits operate on a private overlay of the structure so that edits are reflected

only in its return value and not in the original source material, such as in immutable or

persistent data structures. Later, we will see that Patches can return Side-Effect objects

which can, in turn, perform controlled side effects.

The basic role of a Patch is to reference data at some other location in the tree.

In a spreadsheet, the uniform grid provides cells with an implicit name for formulas to

leverage. In hierarchical structures like XML, a language such as XPath [29] is used to

query elements matching structural patterns. In Infra, Patches are a bit of a hybrid of

those two models. Being one of the first-class base-types, Patches are containers just

like List nodes, and as such, contain further Infra nodes as its children. These children

form an ordered sequence of commands that operate much like the individual segments

of an XPath expression - performing iterative tree navigation through parent and child

relationships. Patch commands can also behave similarly to spreadsheet formulae - op-

erating from within the reference frame of the data environment and being able to jump

discontinuously to nodes tagged with unique identifiers.

The Patch execution model is centered around the metaphor of a virtual cursor,

equivalent in nature to the cursor in an Infra editor. A Patch’s virtual cursor begins

execution at the Patch’s own location in the data tree. Starting at that point, Patch

instructions navigate to the desired node, and then describe the modifications that should

be made to the returned version of the referenced node. Each Patch instruction is a Keyed

List made up of an opcode (key) and a set of arguments (values). The set of available

opcodes is the same as the set of edit operations available in the Infra editor. Not only

is this set of opcodes general enough to make any modification to a return value, but it

allows for a user-friendly way to author simple Patch programs. A modified reference

can be authored by demonstration without ever needing to see or write Patch code. A

user’s modifications to the Patch output are appended to the Patch’s instructions like a

59

Patch: Reference and Modify [top] Chapter 4

macro recording.

Here is what an empty Patch looks like in the prototype; it is characterized by a

dashed outline, distinct from the solid lines of Lists:

Since a Patch’s virtual cursor initializes to its own location in the structure, an empty

Patch naturally evaluates to itself. In this way, an empty Patch node in the encoding is

the symbol for the concept of self reference. It is simultaneously, fully evaluated, and an

infinite recursion. We will return to the topic of self-reference in the section on circular

reference.

Let us add some other content. Here, a list with the strings ‘Hello’ and ‘World’ have

been added before the Patch:

Now let us add an instruction to the Patch:

Note that this instruction is a Keyed List node. The key (first child) is ‘left’ and

the value (second child) is 1. Keyed Lists are a natural fit for modelling the familiar

function call syntax, where all children after the first are the function arguments. It

turns out that the key of a Keyed-List Patch instruction will be substituted for a binary

encoded integer representing the cardinal value for the opcode of that name. This is

essentially an author-time compilation step for runtime efficiency and also allows for

60

Patch: Reference and Modify [top] Chapter 4

very straightforward internationalization of the opcode names. This can also be done in

a way that provides a drop-down widget for the user to be able to discover the available

opcode values.

Once this Patch is ‘closed’ in the editor (by moving the selection focus up off the

children), it evaluates, looking like the following:

The instruction we added was the ‘left’ instruction, which moves the Patch’s virtual

cursor to a sibling of a lower index - in this case ‘1’ lower. This moves the focus to the

List [Hello World]. Since that is the only instruction, the Patch evaluation is over and

the return value is whatever the cursor ended on. In this rendering, the second view of

[Hello World] has a drop-shadow as an indication that it is a Patched-in value. It is best

for the differentiation between a literal value and an Patched value to be subtle because,

for all intents and purposes, Patches are referentially transparent. An editor can have

various means for indicating underlying Patches to the user and for ‘opening’ them back

up. In our prototype, a result’s source-Patch code can be opened through a right-click

context menu or keyboard shortcut.

Before we introduce the other opcodes, we would like to foreshadow a few things and

address some potential concerns. Patch’s semantics are carefully designed to allow Patch

programs to be authored indirectly in most cases. With basic editor support, common

use cases of Patch do not require manually writing Patch instructions. For example, the

Patch in the Hello World example above could instead be assembled from scratch using

Copy/Paste: select target, hit Copy, select location, hit Paste. The reference instructions

are calculated relative to the location automatically behind the scenes, never to be seen,

but always available for inspection. In that case the copy would be a second live-view of

61

Patch: Reference and Modify [top] Chapter 4

the first rather than a forked clone as it would have to be in plaintext encodings. The

following screenshot shows us replacing Hello with Goodbye; note that both views reflect

this change.

As we will cover later, references can also leverage ID metadata to refer to named

nodes directly, or schema metadata to provide typing information for stongly-typed sce-

narios. No matter how a Patch reference is constructed, editor infrastructure should

maintain correct paths whenever the relationship between a Patch and target changes in

the course of general editing (just as spreadsheets do when moving cells around).

Infra’s user-centric philosophy aligns its core abstraction primitives with those of

user-interface interaction. Patch opcodes are a procedural mirror of the actions a user

performs in a text editor, or rather, a tree-oriented editor. The central metaphor is a

cursor to navigate and make edits through. From this perspective, a Patch program

is like a recorded macro of user activity, and a Patch’s modified return values are like

the transient unsaved changes of an open document. The name ‘Patch’ refers both to

patch cords, which form connections by patching in signals, and to patches in the sense

of updating documents via diffing operations.

4.1 Opcodes for Navigation

62

Patch: Reference and Modify [top] Chapter 4

parent(n) shifts the focus cursor up the tree by n tiers. If the argument is omitted,

the behavior is equivalent to parent(1). If there is no nth parent, the Patch instead

evaluates to the Problem symbol with metadata describing the issue and execution is

halted.

child(i) shifts the focus cursor to its ith child. Or if the argument is a Keyed List, the

focus will shift to the first child Keyed-List with a matching key (the same key as in the

argument). If the argument is omitted, the behavior is equivalent to child(0). If multiple

arguments are provided, each will be considered an index for successive applications of

child(i). In other words, child(2 0 1) would be equivalent to the sequence: child(2)

child(0) child(1).

previous(n) shift focus to the sibling with the index n less than the focus’ own index

in its parent.

next(n) shift focus to the sibling with the index n more than the focus’ own index in

its parent.

metadata(channel) shifts the focus to its associated metadata container, and then

to a Keyed List within it whose key matches channel. If the argument is omitted, focus

just moves to the metadata container in general. Focus shifts to the Problem symbol if

no Keyed List matches the given channel value.

ID(id) jumps the focus cursor to the ‘nearest node’ with an ID-metadata value match-

ing id. The search order resembles classical scoping rules for identifiers in most program-

ming languages. To start, the first level of children of the focus are searched. If none

have ID metadata that matches, siblings are searched. And then, the search resorts to

63

Patch: Reference and Modify [top] Chapter 4

siblings of the parent, grandparent, etc.

UID(uid) jumps the focus cursor to the unique node with a UID-metadata value

matching uid. UID-labeled data have their own namespace and do not have to avoid

name collisions with ID-labeled data.

info() shift focus to a synthetic tree populated with information about the element that

was currently in focus, such as its number of children, its index position in its parent

container, and its encoding type.

4.2 Circular Reference

A Patch can end up involved in its own result. We break this down in to three cases:

1. A Patch refers directly to itself. This can occur when a Patch never moves the cursor

(no operations), or if it moves the cursor off itself and back on. During evaluation,

the Patch result is temporarily set to the self-reference symbol (a canonical instance

of an empty Patch), so that there is something for the cursor to interact against if

it to attempt an operation other than navigating away.

2. A Patch’s result contains itself. If a Patch ends up as a descendant of its own result,

the output value is still clearly defined, albeit an infinite tree. Of the three cases,

this is the only one where the output value of the Patch is not the self-reference

64

Patch: Reference and Modify [top] Chapter 4

symbol. Only the editor/view layer needs to detect these scenarios and detection

is straight forward.

3. A Patch refers to itself through a chain of one or more other Patches that form a

chain that eventually refer back to the first, forming a cycle.

Indirect self reference can be detected through the use of the dual-pointer or “tor-

toise and the hare algorithm” for detecting cycles. The following is a code sample

of such an algorithm from our Java implementation.

65

Patch: Reference and Modify [top] Chapter 4

4.3 Opcodes for Modification

The secondary role of Patch instructions is to perform edits, modifying the value

being referenced, but only from that Patch’s perspective. This is akin to concepts such

as: copy-on-write, persistent data structures, and ‘modifiable references’ in [30]. Since

the original reference material is guaranteed not to be modified, and that material is the

Patch’s only input source, Patches behave like ‘pure functions’.

insert(v) modifies the focus’ parent to contain v at the same index as the focus cursor.

If multiple arguments are provided, all will be inserted at successive index positions.

66

Patch: Reference and Modify [top] Chapter 4

remove(n) removes the next n items starting at the position of the focus cursor. In

the argument is omitted, the behavior is equivalent to remove(1).

write(v) overwrites the value at the current focus with the value v. A critical detail

is that any metadata on the old value is retained. If metadata exists at the target v is

cloned. If v also includes metadata, a metadata container is also cloned to perform a

merge. If no metadata is involved, this acts like a remove() followed by an insert(v).

append(v) inserts value v as a new last child of the list in focus.

sync(label) halts execution and causes the Patch to evaluate to a Side-Effect object

(See section 4.8 on Infra’s Effect System).

In our prototype editor, we represent a Side-Effect object as a clickable button labeled

with the value of the label argument. A good label describes concisely to the user what

the goal of the particular mutation is. If the argument is omitted, we default to using

the value being saved as a label. When the user clicks the button, the Patch is resumed

in a context where it is safe to mutate the subtree it references.

4.4 Nesting Statements and Shorthand

Normally, Patch instructions are Keyed List nodes; the first element is the operation

and the rest are the parameters. We have the opportunity to define meaning to the use of

other base types as a direct child of a Patch. Thus far, we only found the need to define

special meaning for four other types, three of which are merely constrained shorthand

for existing opcodes.

67

Patch: Reference and Modify [top] Chapter 4

List elements are treated as a group of nested instructions. Each child element in the

List is executed as a normal instruction. When execution completed within the block,

the focus cursor is restored to its location before the block was executed.

In the scenario where a Patch wishes to modify a subtree of the result in progress,

the general idea would be to move the cursor down to the subtree, perform the edits, and

walk the cursor back up through parent nodes. Nesting instructions in a List makes this

easier and eliminates instruction clutter by automatically performing the ‘walk back up’.

68

Patch: Reference and Modify [top] Chapter 4

As a consequence of these semantics, nested instructions have no net effect if not

performing any modification, and nesting is extraneous if not performing any navigation.

UTF-8 elements are treated as a shorthand for ID(string). This shorthand is conve-

nient for the common case of using a string as an ID value.

Integer elements are treated as shorthand for UID(number). This shorthand is con-

venient for the common case of using string table lookups to de-duplicate string storage

across an entire document.

4.5 Persistent Data Structure

The role of a persistent data structure is to allow mutation to occur in such a way

that the previous state is left intact from the perspective of those still referencing it. A

trivial means to achieve this is to create a new deep-copy of the structure before every

edit, but this is prohibitively expensive in both time and memory for large structures.

69

Patch: Reference and Modify [top] Chapter 4

More commonly, immutable data structures perform shallow copies along the spine of the

structure, from the point of the edit up to the root. This copying occurs each time the

structure is returned, i.e. with each individual edit. Because of the semantics of Patch,

we can avoid performing any shallow copies above the highest point in the tree that will

end up in the Patch’s result. All edits can be batched into a lazily-expanded truncated-

subtree overlay. It is a subtree because it does not have to be rooted any higher in the

tree than is relevant to the final result value. It is ‘truncated’ because it can share/reuse

any values that remain below the region of mutations.

Each Patch execution context has one of these overlays. The overlay is empty until

the first edit operation occurs. With each successive edit, or navigation after an edit,

it expands just enough to include that location. Any value that is already part of the

overlay can be mutated over and over with amortized cost, such as when inserting and

removing a series of items in a list.

This batched-overlay approach assumes that a Patch’s edits tend to have high locality

with respect to each other and to the final resting point of the cursor. However, if they

do not, the performance only degrades to that of a typical non-batched immutable data

70

Patch: Reference and Modify [top] Chapter 4

structure.

An overlay data structure need only contain a Parents List and a Cloning Map. The

Parents List is a stack for remembering the previous focus when navigating to a child.

The Cloning Map is a tree that remembers the extents of the overlay. Its role is essentially

to remember which children have been cloned (shallow-copied) so far.

Let us walk through an example using specific data. The following tree contains some

tabular data and a Patch that references and modifies one entry in that table. In each

figure, eight in total, the data will be depicted in two forms: a typical editor view, and an

abstract directed graph. This particular Patch example results in a view of the table with

the name changed in the second entry and the number (age) changed in the third. Note

that the opcodes are encoded at integers in the encoding tree, using their enumerated

values.

As described before, a Patch starts out focused on itself in the tree, as depicted by

the location of the smiley-face in the figure above. Value Monitors are detailed in section

6.1.

71

Patch: Reference and Modify [top] Chapter 4

After the instruction to move the cursor to the previous sibling comes an instruction

to move to child index 1 and then child index 0 after that.

At this point, the Patch execution is at a write instruction. This will cause the parent

to be cloned, since it is not already.

72

Patch: Reference and Modify [top] Chapter 4

After the write, this virtual tree is technically a directed-acyclic graph because the

value written is only referenced from its place in the Patch code.

Since the last two statements were nested, and the end of the inner list has been

reached in the execution, the cursor is ‘popped’ back to were it was when that list

started. This has caused an additional node to be cloned so that the cursor does not end

up outside of the cloned region.

73

Patch: Reference and Modify [top] Chapter 4

Now cloning to expand the overlay has happened in the other direction - to prevent

the focus from moving too deep below the bottom edge of the cloned region.

When this write occurs, no additional cloning need occur since the parent being

changed is already part of the overlay.

74

Patch: Reference and Modify [top] Chapter 4

Again, reaching the end of a nested list returns the cursor to its prior position. The

instruction pointer has also reached the end of the Patch program and thus, the overlay

root is the Patch’s return value.

4.6 Parent Pointers / Closures

In order for a Patch’s virtual cursor to navigate around the tree, it must rely on a

node’s pointer to its parent container. This is not a completely trivial concept because,

due to Patches, a node can be considered to have multiple parents, depending on the

definition. This is because any node can be patched into another part of the tree many

times over by Patches in those locations. However, Patch semantics for parent navigation

are defined along the lines of a lexical closure. We define parent pointers from an encoding

perspective. At the encoding level, the structure is only ever a tree, even though it can

express an arbitrary graph at a logical level. To reflect this, we call these pointers

Encoding Parents.

As it turns out, only container types need an Encoding Parent, not leaf types. This is

75

Patch: Reference and Modify [top] Chapter 4

because only Patches need to use these pointers to access the surrounding tree, and only

containers, by definition, can contain a Patch. So, from an implementation standpoint,

in-memory representations of Infra structures with long arrays of strings or numbers do

not incur any significant overhead from the general support of Patch semantics.

The marriage between the multi-parent aspect and the Encoding Parent aspect hap-

pens in the semantics of a Patch cursor. Navigation down to a child and back up to its

parent must result in the same focus as if neither operation occurred.

(The ellipses is the following figure represent an arbitrary set of Patch commands.)

This has to be true no matter whether that child happened to be the output of a

Patch or not. If the child is a Patch that evaluates to some distant node, that result’s

Encoding Parent is not going to be the node we approached it from. Thus, expressed as

an implementation, the full semantics are:

• each Patch execution cursor has its own stack that starts empty

• push the focus to a stack when/before moving to a child

• pop the focus to move to a parent if the stack is not empty

• use the Encoding Parent to move to a parent if the stack is empty

The implication is that even when a Patch is referenced by another, its evaluation still

takes place relative to its static lexical context. This is essentially an implementation for

closures, and enables Patch source codes to be written from a stable predictable frame

of reference.

76

Patch: Reference and Modify [top] Chapter 4

4.7 Patch as Function Application

Infra has no need for a native concept of a function or a function call. Since Patches

can be defined inline, Patch semantics act simultaneously in the role of a function and a

call site. Conceptually, function application is the process of taking an instance of a func-

tion and substituting argument values in for parameter placeholders. That very process

can be performed by a Patch using the building blocks we have already introduced.

The convention for mimicking a traditional function is to have a list of default pa-

rameter values followed by a result value that is composed of one or more Patches that

reference those parameter values. Instead of providing a default value for any particu-

lar parameter, Infra’s Parameter symbol can be used as a valueless placeholder. ID or

schema metadata can optionally provide names and type constraints and on any or all

parameters.

Let us look at a concrete example function. To do this, we are going to have to

get slightly ahead of ourselves and use an arithmetic object for multiplication, which is

not introduced until the section on Native-Service Objects. The following example is a

function that converts an angle and radius to an x-y pair.

The top row shows the Patch tree without any evaluation, and the bottom row is

the reduced (semi-evaluated) form that would appear in the editor (see the discussion on

77

Patch: Reference and Modify [top] Chapter 4

Native-Service Objects for clarification). The pale blue boxes labeled ‘theta’ and ‘radius’

are Parameter symbol elements, which are meant to be used as placeholders for a future

value - perfect to play to role of an input parameter.

Next let us look at two different elements that each call this ‘polar to Cartesian’

function with their own arguments.

And here is what these Patches evaluate to:

There is an air of machine-code level programming to this use of Patch, but note

that users will be viewing the evaluated output of Patches most of the time and author

them indirectly through direct manipulation of their result value. Taking advantage of

live interaction and iterative authoring of input values can enable a Patch to dispense

its own documentation dynamically in response to the partial values as they are being

assembled.

A general benefit of leaving function application as an emergent ability of Patch

semantics, is that it itself is programmable. A variety of function-application semantics

can be supported while keeping the number of first-class concepts in the Infra specification

minimal.

• default arguments are achieved simply by not overwriting some of the hard-coded

values in a function interface.

78

Patch: Reference and Modify [top] Chapter 4

• call by value is achieved when writing literal values as input arguments.

• call by name / need is achieved when writing Patched values as input arguments.

(lazily evaluated arguments)

• currying is achieved when writing values to only a subset of locations and leaving

the rest to be referred to and written by other Patches.

• named arguments are achieved when using ID metadata on arguments to locate

them.

4.8 Effect System

As described above, a Patch’s edits normally only effect the result value of the Patch,

leaving the referenced source material unchanged. On the occasions that it is useful for

a Patch execution to have a stateful effect on the world, an effect system helps this to

happen while keeping side effects explicit and controllable.

Infra has an effect system made up of three components: the Side-Effect object-

type that can be returned as the result of a Patch, the sync() opcode that exports

a Patch’s attempted mutations as a Side-Effect object, and a permissions system to

regulate automatic execution of the side-effects described by a Side-Effect object.

A Side-Effect object is analogous to a Pull Request in the popular Git version control

system. They are inert return values until they are accepted/triggered. They encapsulate

the edits that a Patch has made to the data it was referencing, such that those edits can

be applied to the original (a destructive change) at the discretion of the runtime system.

Because Side-Effect objects are represented as an interactive button in our prototype,

they also resemble and behave like toolbar or drop-down-menu buttons in a graphical

user interface, which trigger specific useful state changes on demand. An Infra editor UI

79

Patch: Reference and Modify [top] Chapter 4

allows users to trigger Side-Effect objects directly. Any Patches that have a dependency

on a value being mutated are invalidated, and will be re-evaulated as needed. This same

mechanism already has to be in place for normal edits made directly by the user.

This tree evaluates to the following:

After the first button is activated, the addition of ‘structured’ occurs on the actual tree,

persistently:

After the second button is activated:

When a Patch contains within it a Patch that returns a Side-Effect object, the top-

level Patch will also evaluate to an Effect as well. Logically, this is because it is not

only roadblocked waiting for its side effects to occur before proceeding, but it also needs

to have a context for synchronizing mutations for the nested one to inherit. If schema

metadata appears on a Patch that evaluates to an Effect, the schema value itself needs to

be an Effect object in order to be consistent. This is akin to a print function in Haskell

80

Patch: Reference and Modify [top] Chapter 4

including “->IO ()” at the end of its type declaration to indicate that it returns an action

in the form of the input/output monad.

4.9 Extended Opcodes

patch(n) shift focus to the Patch ‘behind’ the current focus. If the value at the current

focus is not a Patch result, this operation halts evaluation with a Problem symbol.

data(v...) does nothing as an instruction besides ensure that the values v have a safe

place to exist without being interpreted as instructions. This allows Patches to contain

internal data in an aggregated place that is more clearly for reuse throughout the Patch.

choice(i) is identical in behavior to child(), however use of this code is meant to signal

that any sibling would be equally valid. If the focus cursor is not moved again, the

Patch’s resulting value will be the value of that child, but flagged as a Choice Point. In

our prototype editor, we represent Choice Points with interactive drop-down list widgets.

When used in schema metadata, Choice Points capture the concept of a disjoint union or

sum type. Adding strong-typing via schema metadata is discussed in the Type System

section.

fill(v...) replaces occurrences of the parameter symbol with the values of the arguments

v. The parameter symbols are searched for in the source code of the Patch in focus. The

search occurs in the depth first order.

write patch(p) replaces the current focus with the literal (un-evaluated) value p. It

is assumed that p is a Patch, ready to be re-rooted in the new position. This results in

‘dynamic scoping’ for the references occurring within Patch p.

81

Patch: Reference and Modify [top] Chapter 4

move to(i) moves the current focus to index i within its same parent.

move by(n) moves the current focus to its own index plus n.

case(match result) shift focus to result if the value at the focus cursor matches

match. In general, wild cards can be used to influence value comparison (see chapter:

Native Service Objects). The case() opcode is meant to assist programming-by-example

by capturing the conditions of end-user edits that replace the entirety of a Patch’s output

value (see section on programming-by-example).

value(v) shifts focus to v itself. This allows Patches to originate the value of their

output entirely from within.

registry(i...) shifts focus to a tree of pre-populated values. These values are intended

to provide byte-efficient access to verbose fully-qualified names for metadata languages.

Reminder: the opcodes themselves are encoded as integers using a standard enumera-

tion (to be finalized at a future date). This also offers a tree form of ‘string interning’

for constant-time equality checking at runtime. The exact order and structure of the

standardized portion of the registry are left as future work.

82

Chapter 5

Native-Service Objects

As mentioned above, Patches can refer to in-scope named data using the ID opcode.

Patches can also refer to native services by using their unique ID as if it were an opcode

value. When a Patch interpreter does a lookup for an opcode value, it references a library

of registered objects. This library contains at least the standard native service objects

which extend Infra into a full programming language.

As we have seen thus far, Patch opcodes just perform tree navigation, insertions, and

83

Native-Service Objects [top] Chapter 5

deletions. On their own, those operations can not perform computation that is sensitive

to the values they operate on, which is to say, they are not Turing complete. However,

those operations are sufficient for performing ‘function application’. The right primitive

functions just need to be available in order to bootstrap a capacity for computation. This

is where the native service objects in the standard library come in.

Since their logic cannot be expressed in terms of virtual cursor manipulations, these

built in functions must be built in to the standard just like the primitive operations

in other programming languages are. They are loaded by name, just like any other

named entity, but they each override Patch evaluation or mutation semantics with their

own native logic rather than execute their contents as standard Patch cursor instructions.

This allows them to use their contents merely as a presentation layer for their parameters

- free to act like a domain-specific language.

We have explored Native Service Objects for performing logic and arithmetic, for

performing operating system input/output (with the help of Infra’s effect system), and

for inspecting and manipulating Java runtime objects and methods.

5.1 Logic and Arithmetic

The logic and arithmetic entries in the standard library include boolean operators such

as conjunction and disjunction, mathematical operators such as addition and subtraction,

and control flow structures such as if-then-else.

84

Native-Service Objects [top] Chapter 5

In the table above, the first column contains four example Patches. The second

column displays their corresponding evaluations, all of which are native-service objects.

In our prototype editor, subclassed types are given a yellow background tint to remind the

user that they evaluate according to overridden semantics. These native-service values

cannot be serialized directly in the Infra encoding. This means that they are always

a result value of a Patch that references their a-priori existence in a way that can be

serialized.

Native-service Patches act like native functions by assembling their interface out of

Parameter symbols. By replacing the parameters with values, the Patch performs its

native logic on custom data. Note that the text elements in these objects are purely

decorative for the sake of their user interface. They are not necessary for the object to

perform its function, but would be nondescript without them. In the case of the math

operators, the interface is able to resemble a familiar infix notation without the need for

any explicit support or syntax for distinctions between prefix, infix, and postfix operators.

Also note that, in the case of the multiplication example, the decorative elements can

help expressions to use more appropriate Unicode characters without requiring the user

to deal with the round-about ways to type them manually.

As usual, the parameter values can be written in with Path’s modification opcodes,

85

Native-Service Objects [top] Chapter 5

or the shorthand notation can be used if it is sufficient to fill parameters in depth-first

order. The following table depicts the shorthand notation of listing argument values in

the body of the instruction.

The first column is the directly encodable form of a call to a native object with

argument values. The second column shows the values after one evaluation. The third

column shows the values after a second evaluation.

In the prototype editor, Patches are displayed only as evaluated as they can be without

error. In other words, the editor automatically evaluates Patches up to a point. This

refers to Patches that evaluate to a Patch, that in turn evaluate potentially to a Patch.

Once an evaluation chain results in a Problem symbol, the previous stage is the one

displayed. Therefore, the example in the fifth row would be displayed in the form of the

second column, while the others would be displayed in the form of the third column. This

assists the user in filling in missing values or addressing errors. The lazy evaluation of

Patches means that even deeply-nested issues could be easily addressed on the surface,

one at a time, without the rest of the clutter.

86

Native-Service Objects [top] Chapter 5

5.2 Operating System Integration

Native-service objects can provide external forms of input and output. Operating

System integration is addressed by four categories of native-service object: standard in-

put/output console streams, a file system tree, executable process interface, and socket

binding interface. All instances of these services all grouped under a single object regis-

tered as “OS”.

On the left is a Patch that jumps to the OS tree and stops. On the right is its

evaluated value. These five items look the way they do because they have ID metadata

values and our prototype defaults to displaying named elements as their ID value. To

help avoid confusing the ID as the actual value at that location, it is rendered to look

like a luggage tag. This is an example of a View Face (See Alternate View Faces). With

the default Face we can see the actual values, and the tree would look like:

Each of these items are Lists that keep their contents in sync with the external reality

of their corresponding data model in the operating system. Each are a special Native-

Service Objects instantiated as singletons inside the OS Service Object.

87

Native-Service Objects [top] Chapter 5

Standard I/O If an element is inserted into ‘output’, the element is also written to the

process’ standard output stream. Bytes written to the process’ standard input stream

get interpreted as Infra elements and appear in the ‘input’ list. If input bytes do not

successfully parse as Infra, they appear in an additional child named ‘raw input’ (not

shown), which is a byte array. Input is ‘consumed’ by actually removing elements it from

their input container.

Now we have the building blocks we need to write a true “Hello, World!” program

in Infra. The following Patch results in a button that, when clicked, prints the string to

the standard output stream. (Reminder: printing to standard out is a state mutation

and therefore requires the use of the save opcode.)

Here is is again without comments and using the shorthand form for ID lookup:

File System Tree In the OS figure, ‘C’ and ‘D’ represent drive letters (the root file

system objects on our machine). These are actually List elements with ID metadata and,

just as before, they are being displayed in a mode where their ID represents their whole.

88

Native-Service Objects [top] Chapter 5

In the UI, the actual children of a directory will be rendered when selecting or drilling

down into that element. To avoid implicitly rendering the whole file system tree at once,

it is important that Infra editors delay the loading of sub-trees until they are expanded.

File Loading File loading can be as simple as navigating the file tree through the

‘files’ OS child, but opening a file technically causes side effects, such as changing its ‘last

accessed’ time-stamp and taking a read lock from the operating system. Thus, the native

service object representing a file is also a Side-Effect Object (displayed as a button).

An example, regarding a file named ‘my numbers.infra’, containing a list of numbers

might look like:

And once opened:

Editing the values in a file can function exactly like editing the result of a Patch. The

red ‘recording light’ has the same semantics - namely batched editing, resembling that of

the classical document load-edit-save paradigm. Similarly, when disabling the recording

light, edits become direct to the live file buffer (continuously saved). As discussed in

section 3.4, Free segments support opportunity for constant-time file updates.

89

Native-Service Objects [top] Chapter 5

Executable-Process Interface Infra-encoded files can by definition be loaded as Infra

trees. Plantext files can be loaded as single long strings. Generic binary data can be

loaded as a single long byte array. But when it comes to an executable, it may best

be loaded as a Patch. This is to provide a place to provide input arguments - on the

un-evaluated Patch.

The following example figure shows five snapshots along the path of interacting with

an external process.

The first two steps are just partial paths to the file. The fourth is execution with no

input arguments, resulting in a usage string. The fifth step shows ‘survey’ as an input

argument and the second sub-step is the user typing ‘Chris’ and submitting the value

using the save key.

90

Native-Service Objects [top] Chapter 5

Socket Binding Interface The following figure is an example of what the ‘sockets’

tree might looks like after inserting two children, which spawns individual socket native-

service objects, and giving them appropriate ‘address’ and ‘port’ metadata for the socket

to actually bind. (No actual data has yet been send or received.) The acquisition of

the necessary metadata for objects like this can be form-driven to help the user know

what metadata is relevant. Valid forms for any subtree can be described using ‘schema’

metadata (not shown), and the editor can use a schema to direct/assist a user’s editing.

From this point on, the input and output lists behave the same as the standard IO

streams.

5.3 Runtime Language Reflection

Since Infra is an infrastructure based around directly authoring and editing structured

data, there is a natural mapping between the internal data structures of a programming

language runtime and human-readable Infra data structures. For programming languages

that feature runtime reflection, these mappings can be automatically supported without

having to prepare an adapter for each data type in advance. Reflection makes it possible

for the library to dynamically assemble representations for any object without the need

to run pre-processors on source code or be involved at compile-time. Runtime objects

can be visualized on demand, by the Infra medium. The Infra medium also naturally

brings with it the interactions necessary to manually assemble argument values into and

91

Native-Service Objects [top] Chapter 5

invocation of native functions/methods. This essentially allows Infra to act as a visual

debugger for the runtime environment that the editor implementation is running in.

We leave the details of these Native-Service Objects for future work.

92

Chapter 6

Second-Order Infrastructure

6.1 Monitoring Edits for Smart Patch Recalculation

When a user causes mutations to the tree, Patch output values may need to be

recalculated. Changes made to the source values appearing in an output value do not

need to trigger recalculation (those are handled by regular model-view updates). Only

changes that influence which value a Patch outputs need to trigger recalculation. Without

any kind of smart filtering, all Patches would have to be marked for recalculation with

every edit occurring anywhere in the tree. It is especially important to only recalculate

Patches when necessary because Patches can depend on the results of other Patches,

causing cascading recalculations. This problem is similar to formula recalculation in

spreadsheets, but expanded to a hierarchical tree structure.

Since Patches have to have been evaluated for there to be a value to refresh in the first

place, dependencies can be gathered empirically during execution. As navigation com-

mands move a virtual cursor around the tree, each potentially introduces an additional

dependency.

93

Second-Order Infrastructure [top] Chapter 6

Navigation Codes: Dependency Description

• parent(): depends on the continued presence of a specific child in a specific con-

tainer.

• count(): depends on the total number of children in a container.

• index()/child(i): depends on the index position of a specific child.

• previous()/next(): depends on the spacing between two children in a container.

• UID(v): depends on the continued presence of UID metadata, and its specific

value.

• child(key()): depends on the continued presence of the matching child, that its

key does not change, and watch for the introduction of new left-siblings with a

matching key.

• ID(v): depends on the continued presence of ID metadata on the target, that

its value does not change, and that no closer descendants introduce matching ID

metadata.

• metadata(): No monitoring necessary

Event subscriptions can be registered with each node as the are encountered during

navigation. There are four events that occur when committing edits to the tree, any

subset of which can be subscribed to on any node. These events are also leveraged by

the user interface to refresh views. The goal will be to combine these in a manner to

address the dependency categories above.

94

Second-Order Infrastructure [top] Chapter 6

Subscribe-able Edit Events:

• Child Replaced - This event is always followed by a Child Removed event and

then a Child Inserted event for the same index. Thus, it allows a deletion and

insertion to be treated as atomic in update logic. Removal and insertion events are

always issued in addition, so that update logic can safely ignore this event type while

handling insertions and removals individually. Events are batched in a global event

queue so that events can be delivered in a breadth-first type manner guaranteeing

that Child Removed and Child Inserted do always appear back to back. A

direct and immediate delivery scheme would potentially allow other events to be

inserted between them, when an edit event just as immediately triggers further edit

events.

• Child Removed - contains the index and reference of the removed child

• Child Inserted - contains the index and reference of the inserted child

• Descendant Changed - the only event that bubbles up the tree from an edit site,

firing in each encoding-parent up to the root. As it travels up, it increments the

relative tree-depth of the edit, and the number of ascensions from metadata along

the way. This informs the receiver of how far away (data depth) and how many

layers of metadata (metadata depth) the change was from it. See the following

diagram for details of depth counting.

95

Second-Order Infrastructure [top] Chapter 6

A Patch execution can build higher-level observers out of combinations of subscrip-

tions to these basic events. We call these higher-level observers monitors. We identify six

classes of monitor that precisely cover the conditions that can cause a change in Patch

result.

• Monitor Index(parent, i) - subscribes to Child Inserted and Child Removed

events from parent. It triggers only if the inserted/removed child has an index less

than or equal to i.

• Monitor Presence(parent, i) - subscribes to Child Removed and Child In-

serted events from target. It triggers when the child at index i is removed. In the

mean time, removal events for an index less than i decrement the value of i being

monitored, and insertion events for an index less than or equal to i increment it.

• Monitor Index Spacing(parent, i1, i2) - subscribes to Child Inserted and

Child Removed events from parent. It triggers only if an insertion/removal occurs

96

Second-Order Infrastructure [top] Chapter 6

at an index value in the range between i1 and i2 (inclusive). Also, each value i1

and i2 are incremented or decremented respectively in response to insertion and

removal events taking place at an index value below their own.

• Monitor Count(target) - subscribes to Child Replaced, Child Inserted, and

Child Removed events from target. It triggers if insertions or deletions happen

without having been preceded by a Child Replaced event.

• Monitor Value(target) - subscribes only to Descendant Changed events from

target.

• Monitor Descendant Metadata(root, metadata entry, depth cap) - subscribes

only to Descendant Changed events from root. It triggers only if the event

occurred above the relative tree-depth of depth cap, and if the metadata depth of

the change is exactly 1, and if the changed metadata value at that depth matches

the value of metadata entry.

Now we will outline the mapping between navigation commands and monitor objects.

In the following listing, src refers to the tree node being navigated from, and dst refers

to the tree node being navigated to.

Navigation Commands: Subscribes to Monitor

• parent(): Monitor Presence(dst, src.index)

• count(): Monitor Count(src)

• index(): Monitor Index(src.parent, src.index)

• child(i): Monitor Index(src, i)

• previous()/next(): Monitor Index Spacing(src.parent, src.index, dst.index)

97

Second-Order Infrastructure [top] Chapter 6

• UID(v): Monitor Presence(dst.metadata, i), and Monitor Value(dst.meta.child[i]),

where i is the index of the matching UID(v) in dst.metadata.

• child(key()): Monitor Key Query(src, dst.index, key)

• ID(v): Monitor Presence(dst.metadata, i), and Monitor Value(dst.metadata.child[i]),

where i is the index of the matching ID(v) in dst.metadata. Also, to detect

shadowing, Monitor Descendant Metadata(dst.parent, ID(v), dst.parent.depth

- src.depth).

• metadata(): No monitor necessary

By the time a Patch completes evaluation, it has built up a collection of monitors.

Once any of these monitors trigger, the Patch will be notified. It will then mark itself as

needing recalculation, and clear all of its monitors and have them cancel their respective

subscriptions.

Instruction Pointer As a Patch executes, its internal instruction pointer moves through

its own tree to track which command to execute next. If edits were to occur to this tree,

they could also obsolete the Patch’s result. It is easiest to handle detecting this with a

single subscription to Descendant Changed events from the Patch’s root. However,

if tighter precision were required, specific monitors could be analogously placed on the

instructions themselves as they are executed, following the empirical control flow of that

execution.

6.2 Encoding Plan Models

An Infra encoding in a byte buffer can be updated incrementally, or lazily all at once.

When writing out an encoding from scratch, the byte lengths of the various segments

98

Second-Order Infrastructure [top] Chapter 6

have to be tabulated first since the segment headers must be specified up front. Lengths

can be influenced by metadata - encoding metadata can request certain kinds of Free

segment padding. Such padding values may even be informed by past editing statistics

and expected reallocation sizes that will avoid the need to shift data in the future. (See

Base type: Free)

We refer to structures of pre-calculated headers as Encoding Plans. Once built, a

Plan is used in tandem with the in-memory tree to output the tree’s byte encoding.

6.3 Authoring Patches By Demonstration

The commands within a Patch can of course be authored manually like any other

data, but more conveniently, an editor can automatically synthesize them in response

to a user’s attempted edits to the Patch’s output value. This is similar to the concept

of recording a macro to automate tasks in applications such as Microsoft Excel, except

modeless and local to a specific subtree. A Patch can be initially created using the

familiar Copy and Paste commands. This seeds the Patch with a path to the node that

was copied.

but the design of Patch semantics is such that the opcodes mimic a similar set of

discrete operations that the editor user-interface provides to users. This means that

editors can allow users to edit the output value of a Patch directly, and trivially generate

corresponding commands. However, Patch models can be built up without ever having

to directly write or see their internal instructions. By ‘recording’ the modifications users

make to a Patch’s output value, the necessary Patch commands to make those same

changes can be synthesized programmatically.

99

Second-Order Infrastructure [top] Chapter 6

Edit Capture When a direct edit is attempted in the UI, the edit event is passed up

the tree. If it makes it out the top of the root node, the edit event is applied. If the

event encounters a Patch that is in ‘record mode’, the edit will be transformed before it

continues on its way up the tree. The transformation is a conversion from a direct edit,

to the appending of Patch code.

6.4 Authoring Function Calls by Example

When a user edits a Patch result, they are effectively providing input/output map-

pings of some potentially more general transformation. This forms the basis for natural

programming-by-example features in an Infra editor. We have implemented a toy version

of automatically generalizing individual operations made by the user.

As an example, we will go through how a user can author a program to multiply a

100

Second-Order Infrastructure [top] Chapter 6

list of numbers together without writing any ‘code’. First, let us just walk through what

a user might see, then go through it again from the perspective of the editor.

1. Type a list of numbers, say 2 and 3, then reference them with a Patch (using

copy/paste).

2. Edit the pasted value to be a ‘6’ instead of the list.

3. Modify the source list to exhibit new input data. See the updated product imme-

diately.

Now let us go through that sequence again with behind-the-scenes detail. In the

following figures, the left side will reiterate the evaluated view, and the side side will

show its un-evaluated view.

1. After the copy and paste.

2. Changing the patched view of the list may consist of several incremental changes,

such as deleting each of the two children before typing the ‘6’ to replace the now-

empty list. Reminder: the remove command’s argument is the quantity of sequen-

tial elements to remove (defaulting to one if omitted).

101

Second-Order Infrastructure [top] Chapter 6

Note that the refactoring engine is attempting to keep the code simple by catching

opportunities to merge or eliminate statements. The second ‘remove’ was able to

be merged in with the first, and ultimately the ‘remove’ commands are rendered

irrelevant by a write that replaces their root.

When the cursor is moved off the Patch, the engine detects that the material

being referenced (the list of ‘2’ and ‘3’) is discarded entirely by the modifications

assembling the output value - the ‘write(6)’. The logic of explicitly referencing a

value that you deliberately do not use is the basis for the opportunity to record

a ‘case’ statement to capture the input-output pair as a training example. The

situation would be entirely different had the navigation instructions never been

there - the ‘left(1)’.

Reminder: the second argument of a case statement is the value that is returned by

102

Second-Order Infrastructure [top] Chapter 6

the Patch if the Patch’s current focus matches the case’s first argument. Therefore,

it reads as, if the virtual cursor is currently pointing to a list with ‘2’ and ‘3’, then

halt and return ‘6’.

If the user came back to edit ‘6’ further while the input list was still ‘2 3’, this same

case statement’s second argument would be updated directly. If the input list was

not ‘2 3’ and the output value were edited, an additional case statement would be

generated for the new input-output pairing.

The collection of case statements form a suite of constraints that must be adhered to

by any attempt at automatically generalizing the user’s algorithm. A background

thread opportunistically runs through the library of known functions, looking for

one that returns each case’s second argument when fed each case’s first argument

respectively. (Because of the Effect System, these functions can be treated safely

as pure functions.) All functions that pass all case statements are recorded in the

Patch as the arguments of a ‘generalization()’ instruction.

When a generalization statement has more than one argument, there is a definite

need for more constraints to narrow things down. The editor could also draw

the user’s attention to the list of found options for their insight on which was

intended. Such a dialog can even be posed in terms of having the user provide

one or more ‘answers’ to intelligently synthesized hypothetical inputs detected to

resolve the ambiguities in as few trials as possible. We leave this kind of high-level

functionality for future work.

103

Second-Order Infrastructure [top] Chapter 6

In this particular case however, the system will find only one library function that

returns a ‘6’ when given a list with ‘2’ and ‘3’. When there is only one option in a

generalization, the editor can apply it confidently and transparently.

3. When the original list is modified, dependent Patches are updated. When this

Patch’s code runs, the case statement will not match and execution will pass

through to the generalization command. It applies a multiplication to the value in

focus, and since that is the last statement in the Patch, its focus ends on ‘42’ and

is the final output.

This same sequence applies equally well to a range of useful interactions such as

sorting a small list to establish sorting for a big list, and even string manipulations such

as auto-capitalization of the first word in a sentence (and therefore auto de-capitalized

when moved out of first position), as long as the editors function library is creative enough

to include useful word-processing functions.

6.5 Type System

A type system for Infra can be homoiconic (looks like the thing it describes) because

the Infra encoding is self describing. Since each Infra segment already includes a type

header, having a static type description is just a matter of isolating the tree of headers

from a prototypical instance. In other words, an Infra tree can be used directly as

a description of a structural contract for another. There is no need to define a new

104

Second-Order Infrastructure [top] Chapter 6

language specifically for defining types. The standard way to associate such descriptions

with an element is through ‘schema’ metadata.

For example, to assert that an element consists of a string followed by an integer, its

metadata would include:

Like any value, the schema value can exist in a shared part of the tree and get

patched in (referred to) for every occurrence. If the type-checking engine were to use

object identity for type compatibility testing, the behavior would match that of static-

typing rules. On the other hand, if the type-checking engine were to use equality, the

behavior would match duck-typing rules.

Disjoint union types (or sum types) can be expressed with Choice-Point objects (gen-

erated by Patches with the ‘choose’ opcode). A good example of this is a definition for

boolean.

6.6 Schema-Guided Editing

If an element has schema metadata associated with it, an Infra editor can use that

information to help the user during editing. This can be as simple as pointing out

when the shape of the data is not compliant with its schema, or as heavy handed as

constraining invalid edits completely. Integrated development environments (IDEs) often

limit themselves to the former, using red underlining to indicate compilation errors. At

105

Second-Order Infrastructure [top] Chapter 6

the other extreme, graphical user interfaces often aim for the latter, aiming to guide

interaction as much as possible to prevent inconsistent states from occurring in the first

place.

See section Related Work: Structured Editors.

6.7 Suite of Converters (Parsers and Renderers)

Converters transform an Infra tree into a different Infra tree. This can be as simple as

reversing the order of items in a list, or as elaborate as recognizing/parsing the structure

of a binary file format and generating its representation as an Infra graph. Having a suite

of converters on hand in an editor helps Infra interface with the existing landscape of

text-based and non-human-readable binary formats. Converters also include renderers,

which specialize in the opposite process - taking a labeled structure and flattening them

to a text or byte array using the syntax of a specific external format. A best practice for a

parser would be to include a format tag in metadata on its output so that a corresponding

renderer can later bring the data full circle, targeting the original syntax.

We found it useful to interface converters to the editor with a two-phase pipeline. A

converter can be asked to provide an assessment of its ability and confidence to perform

its conversion on any given Infra tree. These assessments can be aggregated and ranked

by confidence, then applied at the discretion of the user interface design. The confidence

rankings are useful on two fronts: for applying certain conversions automatically, for

filtering irrelevant conversions when the user right clicks for a list of actions pertaining

to their current selection.

106

Chapter 7

Applications

The purpose of Infra is to be a better lowest-level building block for computing. By

nature, it is applicable to any scenario involving encoded information, which is to say

that it is technically relevant to any computing task. Infra’s unique angle is in bringing

the properties for human readability and direct authorability to the realm of machine-

friendly binary encoding. The common encodings used across computing do not always

worry about having general properties beyond those necessary for their specific role,

and are stuck making compromising choices between prioritizing efficiency or human

readability. Infra is best used as a unifier and equalizer - reducing the need for as many

varieties of encoding and, most importantly, raising the common denominator of how

they can be interacted with.

As a baseline, Infra can absorb significant portions of traditional application scenarios

and modalities across personal computing. What would normally be a unique software

stack for each, can now be mostly or entirely overlapped. Infra is designed as a cohe-

sive mutually-reinforcing whole, but can be seen as roughly four component layers: the

encoding (trees with metadata), Patch evaluation (runtime and effect system), the exten-

sible library of native-service objects (computation and I/O), and Infra editors (human

107

Applications [top] Chapter 7

readability, direct authoring of the encoding, and data-driven presentation). The follow-

ing two diagrams break down fifteen traditional application types in terms of what Infra

components are most salient in superseding their characteristic functionality.

108

Applications [top] Chapter 7

Beyond emulating a spectrum of traditional personal computing modalities, the fact

that Infra unifies their fundamental ingredients into a single medium enables novel com-

binations of their expression (leading to a much higher bar of consistency and amortized

learning curves for interaction) - such as hierarchical spreadsheets containing structured

data, or a file explorer with inline editing of files, or a user interface that can be ex-

tended on the fly, or a command-line shell with syntax-directed editing and high-level

abstractions.

7.1 Case Study 1: URL Syntax

Let us explore a hypothetical alternative reality where computing’s text infrastructure

never consisted of only characters codes, and was built up around a parametrized syntax

such as Infra. The UI widgets used for everyday tokens of input/output (such as Text

Fields) would be Infra editor widgets and literacy around using keyboards would think in

terms of authoring structure along with values. In this section, we explore the effect this

would have on the nature of computing by focusing on an everyday unit of structured

information - a URL.

The following URL is a link provided by a Google search result. It is the link to

the Wikipedia article on Uniform Resource Locator, but the actual URL is a redirect

through Google’s servers for accounting purposes. This kind of URL is chosen because

it is representative of complex stateful URLs as well as the fact that it contains a URL

inside itself.

109

Applications [top] Chapter 7

Note that this URL is not very readable, and that the embedded URL is escaped and

does not work if copied to a browser address bar as is. The bulk of the characters in

URLs like this are Base64-encoded bit strings. Base64 encoding is born out of the fact

that human-readable formats are unfriendly to binary data, and in the web world, there

is even further need for compromises to encoding in URLs, to avoid having to escape

plus and forward slash characters.

Now let us jump to looking at how URLs could have formed differently if Infra boxes

existed before text boxes did.

• The elements of a domain name do not have to be separated by punctuation. It

can simply be a list.

• This applies the same way to the path component of a URL.

• The query fields are key-value pairs and can be grouped together.

• Numbers stay binary encoded. (As they were in the memory of the computer that

constructed the URL.)

110

Applications [top] Chapter 7

• Bit strings can stay bit strings without the need to use indirect representations

such as Base64. These bit strings are displayed as a Data Matrix (one of many

possible visualizations at the disposal of the editor UI such as Chroma Hash). The

use of a data matrix allows for a compact display of a binary value that does not

necessarily need to be readily deciphered by a human, while giving some ability to

judge equality. In this case of reverse engineering Google’s URL, It is not obvious if

the values ‘t’, ‘j’, ‘s’, and ‘rja’ are also meant to be treated as Base64. With Infra,

such an ambiguity would not have to exist.

• The nested URL does not have to be escaped, in fact, it is also parsed, and even

labeled as being a URL with ‘format’ metadata.

• Underscores do not have to be used as a substitute for spaces.

• The ‘bvm’ value can have the substructure it seems to want. In this case it was

parsed into two values separated by comma, and then sub-split into key-vals by

period. The ‘90491159’ portion is numeric and is encoded more usefully as a binary

integer - able to be displayed according to the user’s preference for localized digit-

grouping.

Since the query fields are grouped together, they can conveniently be displayed in

a tabular arrangement at the request of the user. From this layout, the information

structure is quite clear, and it is easy to notice that ‘bvm’ is the only field to have more

than one associated value.

111

Applications [top] Chapter 7

This particular example case up in real life when we were trying to extract the for-

warding address, by hand, from a URL like this. Not only is unescaping an escaped

URL by hand tedious and cryptic, but it also requires using an ASCII table for reference.

However, in the hypothetical case of Infra-based URL syntax, extracting the forwarding

address is trivial. As would quickly performing surgery on a URL before sending it to

someone. We find ourselves often manually tweaking video links (such as YouTube) to

either remove the playlist portion (so it only takes them to the specific video) or to nudge

the timecode it will take them to (because we hit pause a little late before copying the

generated link). In the text world, doing these simple kinds of things requires familiarity

with URL’s specific meta-characters, rather than just being the same kind of structured

editing across all user interfaces.

7.2 Case Study 2: Data-Driven Presentation

One of the many uses for metadata is to hint to Infra editors/browsers what abstrac-

tions are appropriate when displaying a particular piece of data.

112

Applications [top] Chapter 7

On the left side of the figure above is a byte array of size three displayed in hexadecimal

by the editor. On the right side is the same element after the user added ‘format’

metadata. As it happens, this editor recognizes ‘format’ markup, and the value ‘RGB’

gives the editor confidence to instead display the byte array as a color swatch, which can

even be interacted with as a color picker, making editing the value much more intuitive.

Our prototype editor also supports a subset of the CSS standard, which makes use

of color values, so let us combine this example with the previous one. In this scenario,

the same metadata exists on the color value in the “background color” property, which

happens to itself be metadata. (The ‘format’ metadata is not shown here because it is

at least two levels removed from the current position of the selection cursor. Moving the

cursor to the first metadata level will expand it.)

There are several noteworthy aspects to this structure. Several grammatical con-

straints are relaxed relative to typical CSS due to Infra circumventing the bottlenecks of

a tokenizer. The style property names can have spaces in them, rather than being forced

to use hyphens to separate words. The byte encoding of the color value is in binary,

which is more compact than “#ff9212” by a factor of three and moves the parsing to

author time rather than render time. As we will explore later, Infra encodings can also

use its Patch base type and metadata layers to bring string de-duplication and value

computations to CSS or any other application.

113

Applications [top] Chapter 7

If an editor displays metadata layers off in a side panel or the user toggles their

display, this rendering in the editor will resemble the browser output for the following

HTML. This is powerful because the true direct comparison of human-readable directly-

authorable encodings is between Infra and raw HTML, not between Infra and rendered

Web pages.

7.3 Case Study 3: Plain Text at Scale

This section briefly explores the cost of storing abstract structure within content in

the way that Infra proposes all data be authored and stored. There are varying degrees

of structural breakdown, hierarchy, and interconnection possible with any kind of data.

For starters, we will look at just a basic first pass of sub-structure that can be given to

most plain-text content - tokenization.

We have tokenized a sample of English texts and source code files within Infra to

measure an average byte overhead introduced by Infra’s element headers, which segment

each word. Infra editors display whitespace padding between elements, so actual space

characters are not needed between words. Elements of fewer than 15 bytes only require

a 1-byte header, and so most of the time, the presence of the header byte is made up for

with the lack of need for a space character. However, newlines are a common occurrence

in text and are not usually paired with adjacent whitespace. In all cases tried, the byte

114

Applications [top] Chapter 7

overhead was less than 4%.

For the full text of Lewis Carroll’s “Alice’s Adventures in Wonderland”, the byte

size increased from 163,815 bytes to 169,096 bytes when tokenized simply by splitting on

space characters. This is an Infra overhead of 3.2% to have structure at the word level.

But, now that there is word-level structure, Patch can be used to de-duplicate strings

by encoding a common word once and referring to them from the locations where they

are used. As long as the byte size of the Patches themselves is smaller than the word

they reference (minus the one-time cost of metadata to number the word), memory will

be saved. In the case of Alice in Wonderland, the storage size can be reduced by 44,206

bytes (26.1%) through basic string de-duplication.

For an example of what this kind of Patch usage looks like, let us take the famous

quote from JFK:

The second row shows ‘UID’ metadata and Patches unevaluated. (Reminder: Meta-

data and Patch both have shorthand for ID and UID when using strings and numbers

respectively, which is why the metadata does not appear as “UID:4” and why the Patch

commands do not appear as “UID(4)”.)

String de-duplication is a simple form of data compression, but importantly, this is

not a compression scheme that obfuscates the data format. Patches are referentially

transparent, and so substituting an element for a reference to the same value is a non-

disruptive transformation.

115

Applications [top] Chapter 7

7.4 Case Study 4: Protocol Buffers Replacement

Infra can be leveraged as a transfer format - a library for marshaling and unmarshaling

data in the traditional metaformat sense. It has an efficient binary encoding on par with

the RPC-oriented metaformats, yet always comes with the option to view and edit data

in serialized form.

As far as compact high-efficiency serialization formats go, Google’s Protocol Buffers

[18] are, by our estimation, the most widely known, used, and supported in a modern

setting. In this section, we will refer to it simply as ‘Proto’. Overall, Infra has roughly

the same byte efficiency as Proto. Both Infra and Proto precede elements with a one-byte

header split into a type enumeration portion, and a scalar quantity portion. Also in both

cases, the header is conditionally followed by a variable-length unsigned-integer encoding

to allow the scalar quantity to overflow into more bits.

116

Applications [top] Chapter 7

The performance of Infra and Proto are tricky to compare directly because they

are designed for nearly opposite circumstances. Proto was designed to be manipulated

procedurally by pre-compiled code, and to eliminate as much unnecessary exposition of

the data on the wire as possible. Infra was designed to be viewed and authored directly

in its encoded form, and to allow for as much exposition of the data on the wire as the

user wishes to include. That being said, Infra can still be used in a constrained way as

not to embed any more than the bare minimum necessary for Proto-like use cases.

7.4.1 Integer Encoding

In this comparison, we focus on the efficiency of encoding integer values, since that

is where bit widths are the most dynamic, and where the bulk of the design complexity

resides in Proto. Infra has two integer base types (Integer and Nibble), while Proto

has ten (int32, int64, uint32, uint64, sint32, sint64, fixed64, sfixed64, fixed32, sfixed32).

Infra can get away with effectively one integral base type because Infra’s headers are

parametrized by byte length, whereas Proto’s headers are parametrized by field number.

For the following measurements, various trials of encoding a list of ten thousand

integers in each encoding were performed. The integers were randomly chosen from

a flat distribution. Trials vary in the range of random integer values chosen (small,

large, negative) in order to exercise various phase changes in the encodings. The list is

serialized using each encoding, and the total byte length of the serialization is divided

by the number of elements (ten thousand) to arrive at an average number of bytes per

integer. This averaging amortises away the one-time-cost portions of their byte overhead.

117

Applications [top] Chapter 7

Value Ranges: Proto has unsigned integer types, signed integer type, and sign-

unspecified integer types. Proto’s variable-length integer encoding ends up being highly

inefficient for negative values (two’s complement) if a signed type is not specified ex-

plicitly. It falls on the user defining the .proto file to make a judgement call regarding

the frequency of negative values that will appear in future data. This is the issue re-

sponsible for the measured spikes of inefficiency for Proto in the second and sixth value

ranges. Those two ranges are run again with ‘sint32’ and ‘sint64’ specified in the .proto

file respectively.

‘Packed’ Mode (Second Chart): Proto has a ‘packed’ option for repeated fields,

in which it forgoes repeating the same tag header for every element in a list. ‘Packed’

can be specified in the definition of each repeated field of a scalar type or by declaring

“proto3” syntax mode. Infra can do something analogous using the Bytes base type.

Infra is able to have schema metadata associated with the byte array to inform how to

decode it, but since Proto is built to only assume that any reader of the data also has

the corresponding schema on hand, we make the same assumption during this phase of

118

Applications [top] Chapter 7

our comparison.

7.4.2 Schema Encoding

Infra defines one encoding while Proto defines three: its C-like .proto definition lan-

guage, its wire encoding, and its JSON-like ‘debug’ strings. The .proto definitions and

debug strings are human readable, the former is meant to be authored directly, and the

latter is meant only for reading. The following diagram outlines how various formats

layer their encoding semantics. The three Protocol Buffer encodings are grouped on the

right. Other familiar formats are included for context and comparison.

The second row describes a kind of alternate reality, where Infra is the encoding foun-

dation of these formats instead of UTF-8 or a one-off binary scheme. In this arrangement,

formats such as HTML and CSS are simply metadata channels on Infra encoded data

119

Applications [top] Chapter 7

structures. Metaformats such as JSON, XML, and Protocol Buffers would have much

less reason to exist if Infra were an existing baseline offering both the high performance

of binary encodings and even greater human-readability than textual encodings. Thus,

vanilla Infra is shown as equivalent rather than imagining JSON, XML, and Protocol

Buffers semantics on top of Infra. Infra can mimic any one of the three encodings defined

by Proto simply by virtue of what layer(s) of information is included in a structure.

• Infra instead of PB’s .proto: a data structure acting as a prototypical data in-

stance (data that can later be used as schema metadata)

• Infra instead of PB’s wire: a stream of data instances containing no copy or

reference to a prototypical instance (data without schema metadata)

• Infra instead of PB’s debug: a stream of data instances with a copy or reference

to a prototypical instance as schema metadata

7.5 Runtime-Heap Encoding

Application Transparency: If it became common for applications to use Infra for

internal objects and data structures, then the internals of applications could be inspected

on demand. Any data missing or un-selectable in the user interface, could be manually

obtained and processed by end-users. Users would have a much higher-level ‘hood to

lift’ like they do with physical artifacts. A similar thing has happened with the web.

Browsers now offer developer consoles so users can inspect and modify the DOM.

120

Applications [top] Chapter 7

7.6 Infra Dialects of Existing Languages

Programming language grammars could be re-designed to use Infra rather than text

to store their syntax. Such Infra dialects would not have to be parsed in the conventional

sense since they could already qualify as abstract syntax trees, and their grammar could

take advantage of encoding-level graph structure and meta-programming. Version control

and merging could be done at the node level rather than at the line level, leading to fewer

merge steps and fewer merge related bugs. Patches could even be used to communicate

change lists.

The concrete syntax for a language like Java could have manifested many different

ways, but had a long history of languages with C-like syntax to leverage. When it comes

121

Applications [top] Chapter 7

to Infra, which provides even more degrees of freedom for grammar design and encoding-

level semantics, there is no obvious preferred way to express the equivalent structure

of a Java program while taking advantage of Infra’s benefits - yet. In other words,

questions like: ‘what aspects of the grammar should be relegated to metadata?’, and

‘should semantics like variable reference and behavior inheritance be relegated to Patches

at the encoding-level?’ have no objective answer. It must be left to usage patterns and

natural evolution to establish a canonical, but uniquely Infra, way to formulate highly

usable ASTs.

Imagine Infra encoding a language with identifiers. Each identifier could be a reference

to the canonical reference name. Then the identifier could be renamed globally from one

location without the editor having to understand any aspect of the language. The name

of another identifier could even be defined in terms of the first, using Patch. If the first

identifier were to change, all instances of the second identifier would change, as well as

all instances of the first.

Patch can even be used to improve efficiency. When a user copies and pastes a node,

the system keeps track of a shallow copy, saving memory. If the user makes a change to

the copy or to the original, the system can choose to make a deep copy (copy-on-write), or

even just “patch out” the change. The system could even be instructed to let the change

propagate, if the user intends for the copy to be kept in sync. Furthermore, encoding

size could be reduced by running a compression step that looks for similar or duplicated

data in the stream and replaces it with an equivalent patch. No decompression algorithm

would have to be written because the compressed representation remains valid Infra.

122

Applications [top] Chapter 7

7.7 Designed User-Interfaces

Reconstructible UIs Once all data has metadata capacity, markup languages can

be mixed-in to augment any data at any time with high-level types and presentation

descriptions. Object-oriented agents can then be automatically attached to individual

subtrees to provide various layouts, abstractions, visualizations, or interactive APIs that

uphold invariants across operations. This can include enforcing a particular grammar

and guiding edits toward only valid expressions. Agent implementations live on the

client and take care of mapping to platform specific modalities. This paradigm is about

feeding a multitude of micro applications and user interfaces to data as opposed to the

other way around. These data-driven layers can themselves remain hierarchical because

the metaformat/data-editor pair solve a fractal problem of structured interaction in a

fractal way. They can be combined and layered recursively, maintaining the provenance

of each model and view’s inputs. One can imagine incrementally approximating a full-

fledged traditional graphical user interface, which can then, by construction, be peeled

back apart on the fly for any number of reasons.

Alternate Web Stack This is along the lines of a browser DOM that is more lay-

ered, persistent, directly authorable, suitable to any encoding, not tied to any one

markup/computation language, does not represent just one fixed chunk of document at

a time, and whose selective presentation, loading, collapse, and expansion of subsections

does not rely on a designer’s script.

7.8 Synthetic User-Interfaces

Ad-hoc UIs: Developing highly user friendly, aesthetic, and simple UIs is an important

aspect of an application’s usability. But for many applications and many application

123

Applications [top] Chapter 7

features, this level of polish is cost-prohibitive in terms of developer effort. Infra editors

can provide the interaction and presentation of internal data, acting as a fallback user

interface for portions of an application. This requires very little code and almost no

design work.

Development UIs: To a developer, there is value in prototyping and testing each layer

in an application’s architecture incrementally. Being able to have interactive displays for

structured data assists nearly every development task. Thus, there is an incentive to

approach development as structural data modelling with adaptable views and APIs for

each milestone, starting very general and finishing very specialized. This approach not

only results in applications that are technically usable even before top level GUIs are

designed for them, but also the user benefits from having a cascade of surfaces to fall

back on in exceptional circumstances by no perception of additional effort on the part of

the developers to provide. In fact, it may often result in less work since more of the pieces

are likely to be reusable across communities. This gives applications a spreadsheet-like

quality. Suitable for many gradations of end-user programming.

7.9 Backwards Compatibility and Adoption

Though the ultimate goal of Infra is to be a better alternative to the classical plaintext

infrastructure rather than a supplement to it, Infra can still provide value along side

exiting technology. The following paragraphs each outline progressively deeper adoption

scenarios.

Infra-Agnostic Use An Infra library can offer a suite of parsers (and renderers) to

convert existing flat text data to structured dialects for easier manipulation and to render

them back out in the original encoding. This category includes using Infra merely as an

124

Applications [top] Chapter 7

alternative to JSON, XML, YAML, and Protocol Buffers, for encoding and transferring

data.

Stand-Alone Use A fully isolated use case is to use Infra as a generalization of spread-

sheets. Beyond the usual grid of flat (unstructured) values, its semantics offer trees of

any depth. Infra’s Patch references function much like cell formulae do.

Semi-Integrated Use Using Infra as an alternative to XML or YAML, Infra can serve

as a beneficial format for directly-editable configuration files. Also, since metadata can be

used to include CSS markup, Infra can bring richer web-like presentation and interaction

to textual system reports, such as in console logs.

Transparent Adoption If Infra widgets replaced text field UI widgets, but continued

to be used only for plaintext uses, Infra could be made to be ‘invisible’ while its extra

capacities were available on an optional basis. The widget API only needs to offer

automatic ‘flattening’ to plaintext strings (perhaps dropping metadata and concatenating

list items using spaces) for applications that must use the entered data in a strictly

character-array form. This would allow Infra to be leveraged more and more over time

with a pre-existing install base.

Social-Media Adoption If a user-centric team-communication app (e.g. Google

Hangouts, Slack, FlowDock, Twitter) were to adopt Infra as its medium, the situation

would be similar to the ‘transparent adoption’ above, but would take place within the

context of a community that is accustomed to authoring and exchanging constructive

elements beyond text on a regular basis.

125

Applications [top] Chapter 7

Neo HTML Infra itself is a more presentable markup language than HTML, and could

be used as an always-binary-encoded alternative. Either, Infra editors can be used in the

role of a web browser, or Infra extensions could be written for existing web browsers. This

would unify the concepts of viewing the source and viewing the rendered page. Parsed

dialects of CSS and Javascript content can exist in metadata. HTTP headers can also be

switched to be Infra-based. Since the majority of an HTTP header consists of numerical

values, this would save an especially appealing amount of parsing and byte overhead.

Post-Web Web Stack Since Infra editors are already similar to web browsers, and

Infra’s encoding comprises a markup language, binary transfer format, and dynamically

allocated heap memory (using the ‘Free’ element type), it is a small leap to use Infra for

every layer of a typical web stack, including database storage.

Patch semantics lend themselves well to mimicking an HTTP request. With the

addition of a new opcode for ‘navigating’ the virtual cursor to a remote host, a Patch

can continue executing on the remote host, acting exactly like a URL as it specifies the

rest of the path with the rest of its instructions to name a resource. The Patch result is

the reply from the host, performing the equivalent of a GET request. And a Patch that

performs modifications would be the equivalent of a PUT, POST, or DELETE request.

To complete Infra’s ability to act as a back-end database, an additional native service

object can be added to act as a database driver.

Full Adoption With full adoption we envision a compiled programming language de-

signed with infra at its core. Infra would make up the code, the data structures, and

possibly the heap. New programming language semantics would be invented that leverage

Infra and Patch.

126

Chapter 8

Related Work

The problems that Infra aims to solve require expanding the notion of human-readability

beyond only character codes by generalizing it on two levels: encoding and editing. As a

result, our contributions touch several domains. Existing metaformats are related work

because we provide a general-purpose data encoding upon which higher-level formats

can be built. Structured Editors are related work because we provide structure-informed

display and editing tools. Software systems that merge programmable presentation with

computational elements are related work because our goal is to scale seamlessly from raw

data to high-level user interfaces within the same medium. We have organized related

work by domain.

8.1 Textual Metaformats

Human-readable metaformats such as XML [31], JSON [32], Comma-Separated Val-

ues (CSV) [33], and Lisp’s S-Expressions [34], are the most popular and supported formats

for structured information. Yet, it would be a far cry to imagine any one of them ever be-

coming the universal default for all text written by all end-users. In other words, it would

127

Related Work [top] Chapter 8

be overly dysfunctional if every form field, search query, and command-line expected all

users to type only valid XML structures. Even in the case of wide standardization, pro-

viding structured editors to abstract away the syntax would not really be worth doing

since the encoding is not machine-friendly to begin with.

8.2 Binary Metaformats

Binary metaformats such as Abstract Syntax Notation One (ASN.1) [20], Thrift [35],

Google’s Protocol Buffers [18], Cap’n Proto, MessagePack [19], Binary JSON [36], and

Extensible Binary Markup Language (EBML) [37], swing so far in the other direction that

they forgo the ability to be easily edited at all. The vast majority are explicitly designed

as RPC frameworks, prioritize only byte-efficiency, and require predefined schemata or

at least formal field names before any data can be encoded. Even if one of these formats

had editors that would help them mimic freeform editing, few of them are designed to

encode graphs and none of them support recursive metadata or fragmenting a block of

memory with unallocated byte-gaps between elements. The former is critical for data-

driven processing and the latter is a critical part of all programming language runtime

heaps for tracking dynamically allocated memory.

8.3 Structured Editors

Structured editors have a long history of repeated attempts to assist users in the

syntactic tasks of editing formal languages. Systems from the 70s and 80s, such as Emily

[38], Gandalf [39], Centaur [40], as well as contemporary systems such as Subtext [41],

TouchDevelop [42], and Prune [43], are billed solely as source code editors specializing

in a particular language. JetBrains’ Meta Programming System (MPS) [44], has gener-

128

Related Work [top] Chapter 8

alized this by using meta grammars to allow the same system to be used to program in

additional languages. However, structured editors end up limiting themselves by being

so high-level. They constrain edits to prevent data from ever entering grammatically

invalid states. In these systems, source code must be modified such that it is compil-

able before and after each atomic edit. This is cited as the main cause of the usability

problems that have historically plagued structured editors [45]. Programmers’ editing

habits routinely find that the path of least resistance for compound edits passes through

grammatically invalid intermediate states. This issue is amplified further in Source Code

in Database (SCID) systems that customize even their storage representation to a par-

ticular language. Syntactically invalid programs do not have a way of being represented.

Intentional Programming [46] utilizes such a system. In contrast, our goal with Infra is to

apply the concept of structured editing to a general-purpose metaformat that languages

can be built upon.

8.4 Programmable User-Environments

Programmable user-Environments such as The On-Line System (NLS) [9], the Smalltalk

and Squeak User Environments [47], Berkeley’s Boxer Project [26], and Wolfram’s Com-

putable Document Format (CDF), all empower end-users with authorship of and access

to the descriptions responsible for the entities and abstractions present in front of them.

However, each still use text characters as their only fundamental building blocks within

those descriptions. This means that their ‘liveness’ and helpful abstractions bottom out

at the source code level. This is unfortunate for users and developers alike because both

programming learning curves and API documentation could benefit from those proper-

ties - recursively. A partial exception to this is Boxer, the spiritual successor to Logo

129

Related Work [top] Chapter 8

[48], which includes ‘boxes’ of three varieties1 as distinct primitives in addition to text to

give structure to raw data and source code statements. This still leaves out basic types

like binary-encoded quantities, which are critical to the internal representations in all

software systems.

1‘Data’, ‘Doit’ (code), ‘Port’ (transparent reference)

130

Chapter 9

Conclusions and Further Work

Infra is designed to make working with data more direct, consistent, and efficient for both

humans and computers. Before Infra, developers had to either choose a human-readable

format for their data and forgo processing simplicity and efficiency, or choose a binary

format and forgo human readability. With Infra, developers can have both. Furthermore

the organization Infra brings to data makes Patch viable as a new type of programming

language targeting the domain of in-stream data metaprogramming.

In summary, Infra defines a dozen base types, a handful of Patch opcodes, a range of

native-service interfaces, and an effect system to mediate side effects so that untrusted

data can at least perform computation while trusted data can be useful for general-

purpose programming. It provides the components needed to provide modest free-form

data input widgets that can scale into a user environment and programming environment

on a whim (since Patches can exist anywhere and metadata can embellish any data with

appropriate editor abstractions). A capacity for structure, metadata, and computation

can become an ambient part of everyday computer usage.

Infra, as a single lightweight tech stack, can be leveraged to various degrees to perform

in a wide variety of critical roles across the computing landscape. To highlight a few,

131

Conclusions and Further Work [top] Chapter 9

Infra can provide:

• text-editor-like availability for users to quickly read, write, and manipulate Infra-

encoded information

• a spreadsheet-like experience: by displaying hierarchical data in a tabular layout,

Patch’s data-flow-like programming model functions like cell formulae

• a rich-text document-like experience: data-driven styling and presentation (via

‘CSS’ metadata)

• an IDE-like experience: data-driven structure and type checking (via ‘schema’

metadata)

• a GUI application-like experience: high-level interfaces and abstractions of specific

data models (via ‘format’ metadata)

• a suite of parsers (and renderers) to assist in migrating existing flat text data to

structured dialects

• a Web-browser-like experience (via ‘HTML’ metadata): Infra naturally provides

the opportunity for a binary-HTML based Web (and binary-HTTP headers), but

in the meantime, a traditional parsing step can be used to interface with the existing

Web.

• a command-shell-like experience: the Native-Service Objects for operating system

integration allow inline browsing of the file system, invocation of executable files

with input arguments, and standard I/O streams (mediated by the effect system).

We find that Infra, as a medium, enables myriad opportunities to bring richer direct-

manipulation and user-interface support to much lower-level layers of computing than

132

are normally available. Because a structured encoding opens the door to explicitly-

demarcated metadata, and structured metadata opens the door to new heights of exten-

sibility, we believe Infra is the best kind of root-striking evolution computing can make

right now. In an ever more connected world with accelerating trends towards ubiquitous

computing, Internet of things, semantic web[49], and an active push for broader cultural

reach in Computer Science education, Infra is well poised to make the needed kind of

impact. Infra raises computing’s currently-low bar for what is expected from the rawest-

of-the-raw tokens of encoding, in terms of their ability to standardize the building blocks

of information and computation, as well as the richness of the means for interacting with

them.

133

Bibliography

[1] J. Patterson, Coded character sets, history and development, IEE Proceedings
E-Computers and Digital Techniques 128 (1981), no. 4 173.

[2] C. E. Mackenzie, Coded-Character Sets: History and Development.
Addison-Wesley Longman Publishing Co., Inc., 1980.

[3] J. Piaget, La construction du réel chez l’enfant., .

[4] I. E. Sutherland, Sketchpad a man-machine graphical communication system,
Transactions of the Society for Computer Simulation 2 (1964), no. 5 R–3.

[5] O.-J. Dahl, B. Myhrhaug, and K. Nygaard, Some features of the simula 67
language, in Proceedings of the second conference on Applications of simulations,
pp. 29–31, Winter Simulation Conference, 1968.

[6] T. O. Ellis, J. F. Heafner, and W. Sibley, The grail language and operations, tech.
rep., DTIC Document, 1969.

[7] J. S. Bruner, Toward a theory of instruction, vol. 59. Harvard University Press,
1966.

[8] S. Papert and C. Solomon, Twenty things to do with a computer, .

[9] D. C. Engelbart and W. K. English, A research center for augmenting human
intellect, in Proceedings of the December 9-11, 1968, Fall Joint Computer
Conference, Part I, AFIPS ’68 (Fall, part I), (New York, NY, USA), pp. 395–410,
ACM, 1968.

[10] A. Goldberg, SMALLTALK-80: the interactive programming environment.
Addison-Wesley Longman Publishing Co., Inc., 1984.

[11] V. Bush et. al., As we may think, The atlantic monthly 176 (1945), no. 1 101–108.

[12] T. Nelson, On the xanadu project, BYTE Magazine 15 (1990), no. 9 298–299.

[13] T. Berners-Lee, The enquire system–short description (1.1), tech. rep., Technical
report, European Organisation for Nuclear Research. Available at http://www. w3.
org/History/1980/Enquire/manual, 1980.

134

[14] A. C. Kay, The computer revolution hasn’t happened yet (keynote session), in
Proceedings of the eighth ACM international conference on Multimedia, p. 1, ACM,
2000.

[15] E. Shein, Should everybody learn to code?, Communications of the ACM 57 (2014),
no. 2 16–18.

[16] D. A. Norman, Cognitive engineering, User centered system design: New
perspectives on human-computer interaction 3161 (1986).

[17] T. Boutell, Png (portable network graphics) specification version 1.0, .

[18] J. Dean and S. Ghemawat, Mapreduce: a flexible data processing tool,
Communications of the ACM 53 (2010), no. 1 72–77.

[19] S. Furuhashi, Messagepack: Its like json. but fast and small, 2014, .

[20] I. ITU-T, Iec: Abstract syntax notation one (asn. 1) specification of basic notation,
Report no. ITU-T Rec. X 680 (2002) 8824–1.

[21] “Dlugosz’ Variable-Length Integer Encoding - Revision 2.”
http://www.dlugosz.com/ZIP2/VLI.html.

[22] D. G. Priddy and R. S. Cymbalski, Dynamically variable machine readable binary
code and method for reading and producing thereof, July 3, 1990. US Patent
4,939,354.

[23] N. Gruschka and L. L. Iacono, Password visualization beyond password masking.,
in INC, pp. 179–188, 2010.

[24] G. P. Kusnick, Method and system for mnemonic encoding of numbers, Apr. 6,
1999. US Patent 5,892,470.

[25] P. Juola, Whole-word phonetic distances and the pgpfone alphabet, in Spoken
Language, 1996. ICSLP 96. Proceedings., Fourth International Conference on,
vol. 1, pp. 98–101, IEEE, 1996.

[26] A. A. diSessa and H. Abelson, Boxer: a reconstructible computational medium,
Communications of the ACM 29 (1986), no. 9 859–868.

[27] F. Loitsch, Printing floating-point numbers quickly and accurately with integers,
ACM Sigplan Notices 45 (2010), no. 6 233–243.

[28] A. Steckermeier, Lenses in functional programming, .

[29] J. Clark, S. DeRose, et. al., Xml path language (xpath) version 1.0, 1999.

135

http://www.dlugosz.com/ZIP2/VLI.html

[30] U. A. Acar, G. E. Blelloch, and R. Harper, Adaptive functional programming,
vol. 37. ACM, 2002.

[31] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, Extensible
markup language (xml), World Wide Web Consortium Recommendation
REC-xml-19980210. http://www. w3. org/TR/1998/REC-xml-19980210 16 (1998).

[32] T. Bray, The javascript object notation (json) data interchange format, .

[33] Y. Shafranovich, Common format and mime type for comma-separated values (csv)
files, .

[34] J. McCarthy, Recursive functions of symbolic expressions and their computation by
machine, part i, Communications of the ACM 3 (1960), no. 4 184–195.

[35] M. Slee, A. Agarwal, and M. Kwiatkowski, Thrift: Scalable cross-language services
implementation, Facebook White Paper 5 (2007), no. 8.

[36] cc, “Binary json.”

[37] M. Nilsson, Extensible binary markup language, Draft specification, Matroska
(2004).

[38] W. J. Hansen, Creation of hierarchic text with a computer display, .

[39] A. N. Habermann and D. Notkin, Gandalf: Software development environments,
Software Engineering, IEEE Transactions on (1986), no. 12 1117–1127.

[40] P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual, Centaur: the system, vol. 13. ACM, 1989.

[41] J. Edwards, Subtext: uncovering the simplicity of programming, in ACM SIGPLAN
Notices, vol. 40, pp. 505–518, ACM, 2005.

[42] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich, Touchdevelop:
programming cloud-connected mobile devices via touchscreen, in Proceedings of the
10th SIGPLAN symposium on New ideas, new paradigms, and reflections on
programming and software, pp. 49–60, ACM, 2011.

[43] “Prune: A Code Editor that is Not a Text Editor.”
https://www.facebook.com/notes/kent-beck/

prune-a-code-editor-that-is-not-a-text-editor/1012061842160013.

[44] M. JetBrains, Meta programming system, 2014.

[45] A. J. Ko, H. H. Aung, and B. A. Myers, Design requirements for more flexible
structured editors from a study of programmers’ text editing, in CHI’05 extended
abstracts on human factors in computing systems, pp. 1557–1560, ACM, 2005.

136

https://www.facebook.com/notes/kent-beck/prune-a-code-editor-that-is-not-a-text-editor/1012061842160013
https://www.facebook.com/notes/kent-beck/prune-a-code-editor-that-is-not-a-text-editor/1012061842160013

[46] C. Simonyi, The death of computer languages, the birth of intentional
programming, in NATO Science Committee Conference, pp. 17–18, 1995.

[47] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, Back to the future: the
story of squeak, a practical smalltalk written in itself, in ACM SIGPLAN Notices,
vol. 32, pp. 318–326, ACM, 1997.

[48] S. Papert, Mindstorms: Children, computers, and powerful ideas. Basic Books,
Inc., 1980.

[49] T. Berners-Lee, J. Hendler, O. Lassila, et. al., The semantic web, Scientific
american 284 (2001), no. 5 28–37.

137

	Curriculum Vitae
	Abstract
	Introduction
	Revolutions in End-User Media
	Why Another Revolution is Needed
	The Opportunity

	Infra: A New Infrastructure
	The Metaformat
	The Editor

	Base Semantics and Interaction
	Base type: UTF-8
	Base type: List
	Base type: Keyed List
	Base type: Free
	Base type: Metadata
	Base type: Continuation
	Base types: Integer and Floating-Point
	Base type: Byte Array
	Special Leaf Types: Bits, Nibble, Symbol
	Singleton Unwrapping
	Delayed Loading and Incremental Decoding

	Patch: Reference and Modify
	Opcodes for Navigation
	Circular Reference
	Opcodes for Modification
	Nesting Statements and Shorthand
	Persistent Data Structure
	Parent Pointers / Closures
	Patch as Function Application
	Effect System
	Extended Opcodes

	Native-Service Objects
	Logic and Arithmetic
	Operating System Integration
	Runtime Language Reflection

	Second-Order Infrastructure
	Monitoring Edits for Smart Patch Recalculation
	Encoding Plan Models
	Authoring Patches By Demonstration
	Authoring Function Calls by Example
	Type System
	Schema-Guided Editing
	Suite of Converters (Parsers and Renderers)

	Applications
	Case Study 1: URL Syntax
	Case Study 2: Data-Driven Presentation
	Case Study 3: Plain Text at Scale
	Case Study 4: Protocol Buffers Replacement
	Runtime-Heap Encoding
	Infra Dialects of Existing Languages
	Designed User-Interfaces
	Synthetic User-Interfaces
	Backwards Compatibility and Adoption

	Related Work
	Textual Metaformats
	Binary Metaformats
	Structured Editors
	Programmable User-Environments

	Conclusions and Further Work
	Bibliography

