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Abstract 

Common tasks in daily life are often accomplished by a 
sequence of actions that interleave information acquisition 
through the eyes and action execution by the hands. How are 
eye movements coordinated with the release of manual 
responses and how may their coordination be represented at 
the level of component mental operations? We have 
previously presented data from a typing-like task following 
Pashler (1994) requiring separate choice responses to a series 
of five stimuli (Wu & Remington, 2004; Wu, Remington, & 
Pashler, 2004). We found a consistent pattern of results in 
both motor and ocular timing, and hypothesized possible 
relationships among underlying components. Here we report a 
model of that task, which demonstrates how the observed 
timing of eye movements to successive stimuli could be 
accounted for by assuming two systems: an open-loop system 
generating saccades at a periodic rate, and a closed-loop 
system commanding a saccade based on stimulus processing. 
We relate this model to models of reading and discuss the 
motivation for dual control. 

Keywords: eye-hand coordination; eye movement control; 
perception and action; computational modeling.  
 

Introduction 
Human performance modeling entails reconstructing human 
behavior through composition of elementary cognitive and 
motor operations. The common assumption derives from 
traditional theories of cognition, which decompose human 
performance into a succession of stages representing a 
limited number of component mental operations, such as 
perceptual, cognitive, and motor processes. This approach 
has achieved success in modeling highly practiced, 
perceptual-motor behaviors, such as behaviors of telephone 
operators or ATM users (e.g., Gray et al., 1993; John et al., 
2002; Vera et al., 2005). However, these models rely on 
component estimates derived from discrete actions that 
often last less than a second. Real life tasks, such as typing 
or driving a car, generally require the performance of a 
series of actions integrated into a fluid behavior sequence. 
Features not observed in discrete performances emerge, 
such as planning, scheduling, coordination, and 

optimization. It is an empirical as well as practical question 
in human performance modeling whether models of single-
task performance, described at the level of elementary 
mental operations, are sufficient to characterize behavior in 
extended, continuous sequences with emergent features.  

In a series of papers we have investigated one particular 
aspect of continuous behavior, the coordination between eye 
movements and manual responses (Wu & Remington, 2004; 
Wu et al., 2004). In human interactions with technologies, 
sequences of discrete actions are executed by hands through 
keyboards, mice, touch pads, or joysticks based on 
information taken in from the eyes with decisions made 
centrally. How are eye movements coordinated with the 
release of manual responses in sequences of discrete actions 
that involve decisions? In this paper, we present the results 
of one extended task experiment that examined the 
characteristics of eye movements in performing sequences 
of discrete actions (previously reported in Wu, Remington, 
& Pashler, 2004) and a computational model to account for 
the results.  

Eye Movements in Extended Tasks 
Eye movements occur naturally in almost all daily activities. 
Efforts to characterize patterns of eye movements have 
focused on activities with a well-defined script, such as golf 
putting (Vickers, 1992), driving (Land & Lee, 1994), to tea 
making (Land & Hayhoe, 2001), and block-copying (Pelz et 
al., 2001). A common finding in such observations is that 
the eyes move in anticipation of upcoming actions during 
activities that involve scripted behavior.  

These anticipatory eye movements characterize the 
proactive nature of eye movement control in extended tasks. 
It seems intuitive that the eyes could move away prior to the 
response as soon as information acquisition is completed. 
But, what is the control structure underlying such 
anticipatory behavior? That is, when can the eyes move and 
what determines it? Answers to these questions are critical 
to understanding  the coordination between eye movements 
and other mental operations. Typical fixation durations 
generally range from 200 to 400 ms, exceeding the time 
needed for perceptual registration, which can be estimated at 
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around 100 to 150 ms (Salthouse & Ellis, 1980). This 
observation suggests either that the initiation of an eye 
movement is based on post-perceptual processing, or 
alternatively, that the timing of movements is driven by 
strategies of information acquisition.  

To study when the eyes move we need a task that 
incorporate eye movements in a natural fashion while 
sensitive to changes in underlying processes. We adopted a 
typing-like task developed by Pashler (1994). Participants 
viewed a row of five letters sequentially and responded to 
each individually in different preview conditions. By 
manipulating the amount of preview, whether information 
of the next letter is made available prior to the response to 
the current letter, Pashler examined how the mental 
processing of two or more stimuli were overlapped in time. 
He measured the reaction time (RT) to the first stimulus 
(RT1) and computed the inter-response intervals (IRIs) for 
subsequent responses. With no preview, RT1 and 
subsequent IRIs were roughly equivalent and constant 
across the stimulus sequence. With preview, RT1 was 
elevated, compare to no preview, while IRIs were constantly 
low. The same effects were observed regardless of whether 
one or all subsequent letters were available for preview. 
Pashler interpreted the constant IRIs as an indication of a 
bottleneck central processing stage of response selection, 
which would only allow the selection of one response at a 
time (see Figure 1 for a schematic diagram). The fact that 
IRIs reflected the duration of response selection is further 
supported by the findings that varying the duration of 
stimulus recognition and response production had little to 
modest effect on the durations of IRIs.  

Figure 1. Pashler’s (1994) model of the preview task 
 
Pashler’s model (1994) provides a clear theoretical 

account of how the coordination of three critical mental 
components (perception, response selection, and response 
production) might produce the emergent effect of IRI in a 
sequence of choice responses. In this case, characterization 
of a single task was sufficient to account for the IRI results 
without further assumptions. The experimental paradigm 
represents a good compromise between the simplicity of 
typical discrete trial experiments, and real-world behavior.  

To incorporate an eye movement component, we adopted 
Pashler’s complete preview condition and reduced the size 
of stimulus letters and increased the separation between 
them (Wu & Remington, 2004). Identification of stimulus 
letters thus required successive saccades and fixations. In 
two experiments we examined the effects of the level of 
difficulty in the perceptual and response selection stages of 

manual responses on eye movement patterns. Perceptual 
difficulty was manipulated by having two stimulus 
luminance conditions (Bright and Dim). Response selection 
difficulty was manipulated by having two response mapping 
conditions, one natural (Easy) and one arbitrary (Difficult). 
In addition to RT and IRIs, we computed three eye 
movement related measures: 1) eye-hand spans (EH-Span), 
which represent the elapsed time between the initial fixation 
on a particular stimulus to the moment when the 
corresponding manual response is generated; 2) dwell time, 
which represents the duration for which fixation is 
maintained on a particular stimulus; and 3) release-hand 
spans (RH-Span), which represent the elapsed time between 
the end of fixation on a particular stimulus to the moment 
when the manual response is generated. Dwell times and 
release-hand spans make up eye-hand spans.  

In both experiments we obtained patterns of manual RT 
results that resembled what Pashler (1994) found in 
conditions with preview (Wu & Remington, 2004); 
specifically, the elevation of RT1 and constantly short IRIs 
of subsequent responses. The effect of perceptual difficulty 
was minimal on RT1/IRIs and appeared to be restricted to 
S1. Dwell time was lengthened in the Dim condition, 
though the amount of increase was small. Response 
selection difficulty had a strong effect on manual as well as 
oculomotor responses. Difficult response mapping resulted 
in increases in IRIs as well as dwell times. Results from 
these two experiments suggest that fixations include 
perceptual as well as at least part of response selection 
related processes.   

In a follow-up study we examined the effects of response 
selection difficulty within a trial on extended task 
performance using a Go/No-Go procedure (Wu et al., 2004). 
On each trial, only 2 or 3 positions contained target 
characters mapped with a key response. The rest were filled 
with dummy characters and participants were asked to skip 
them. We compared dwell time on Go and No-Go stimuli, 
and RT1 and IRIs on Go stimuli that were preceded and/or 
followed by No-Go stimuli to evaluate the impact of central 
difficulty. Our goal of using a Go/No-Go procedure was 
twofold. First, real-world tasks do not require actions to 
each and every stimulus, yet for those stimuli with no motor 
response requirements some amount of processing still takes 
place. By intermixing No-Go stimuli with Go ones we were 
able to more closely imitate real-world conditions. Second, 
in our previous research (Wu & Remington, 2004) with all 
Go stimuli we found substantial RT1 elevation in sequences 
of responses. With the inclusion of No-Go stimuli we could 
test whether RT1 elevation was due to delayed early 
responses in order to be coordinated with subsequent ones. 
In the following we recap the empirical results and access 
the validity of our underlying process assumptions using a 
computational model for the results.  

Empirical Results 
We model data from Wu et al. (2004), which used a Go/No-
Go version of Pashler’s (1994) preview task. There were six 
experimental conditions, which differed in the number of 
required successive responses in a sequence (one, two, and 
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three), and in the stimulus position on which these 
sequences occurred (S1 and S2). The six conditions can be 
represented as the following: TXXTT, TTXXT, TTTXX, 
XTXXT, XTTXX, and XTTTX, with T denoting letter 
stimuli that required a key response (Go stimuli) and X 
denoting letter stimuli that required no response (No-Go 
stimuli). Go stimuli were randomly drawn from the letter set 
T, D, and Z, with the constraint that no letter was repeated 
in two adjacent positions. This constraint however does not 
prevent repetition of responses; the same letter could occur 
in two positions interposed by Xs. Each participants 
received either 40 or 60 trials of each condition.  

Each trial began with the presentation of a white fixation 
cross (0.3˚) in the center of the display. After the participant 
had maintained fixation within a 6˚ radius around the 
fixation for 500 ms, the fixation was erased and a small 
filled square (0.34˚) appeared at the leftmost stimulus 
position. Participants were instructed to move their eyes to 
fixate the small square when it appeared and maintain 
fixation at that location. The small square remained for 1 
sec, followed by a blank interval of 500 ms. The five 
stimulus characters then appeared simultaneously, the 
leftmost appearing where the subject had been fixating. 
Subjects fixated and responded to each in turn from left to 
right. The characters were erased after the participant had 
responded to the rightmost character. The next trial began 
following an inter-trial-interval of 250 ms. 

Eye movements were monitored and recorded using an 
infrared video-based eye tracking system (ISCAN), which 
outputs data at a temporal resolution of 120 Hz and a spatial 
resolution of approximately 0.5º visual angle. Fourteen 
undergraduate students recruited from local colleges near 
NASA Ames Research Center participated in the 
experiment for course credit.  

Figure 2 (left panel) presents mean manual RTs as a 
function of stimulus. Cases where RT1 occurred to S1 (S1-
RT1) are plotted separately from cases where RT1 occurred 
to S2 (S2-RT1). The general pattern of elevated RT1 
followed by rapid, flat IRIs is apparent in conditions with a 
contiguous sequence of responses (TTTXX and XTTTX). 
More importantly, RTs of the Go responses followed by No-
Go sequences (conditions TXXTT, TTXXT, XTXXT, and 
XTTXX) were closely aligned with the Go responses 
followed by Go sequences. The only significant effect of the 
arrangement of stimulus was that RT1 was significantly 
slower when made to S1 (S1-RT1) than to S2 (S2-RT1). 
The general elevation of RT1 for both S1-RT1 and S2-RT1 
suggests that cost is incurred for the first response in a 
sequence, not just to the first possible stimulus position. 
These similarities in patterns and magnitudes strongly 
suggest that the RT1/IRIs patterns are related closely to the 
production of sequences of responses.  

As in previous experiments, fixation durations remained 
relatively constant across stimuli. Not surprisingly, fixation 
durations on target (Go) stimuli were always longer than 
No-Go stimuli. More interesting comparisons arise when 
one regards fixation durations as a consequence of the 
previous stimulus (Figure 3). Here the dwell times suggest 
that the attempt to interleave the mental operations for 
successive stimuli pushes cost on to the subsequent 

stimulus. When the fixated stimulus is a target (a Go 
stimulus) dwell times were shorter by ~60 ms for targets 
that were preceded by dummy stimuli (i.e., XT) than by 
target stimuli (i.e., TT). When the fixated stimulus was a 
dummy stimulus this difference (TX compared to XX) was 
~30 ms.  

Model 
Previously we modeled a version of the preview task that 
consisted of trials with all Go stimuli (Remington, Lewis, & 
Wu, 2005). The model was developed under three key 
assumptions. First, it assumed that central processes are rate 
limiting (central bottleneck assumption). Second, an eye 
movement to the next stimulus in sequence can be initiated 
only after the completion of perceptual processing on the 
current stimulus. Third, the timing of the eye movement is 
strategically chosen so that perceptual processing of the next 
stimulus is completed at the same time as central processing 
on the current stimulus is completed. We refer to this as the 
“just-in-time” assumption, since it attempts to minimize 
wait states in central processing by assuring that perceptual 
processing is complete as close as possible to when it is 
needed – when the central processor becomes free. In the 
present paper we modeled the Go/No-Go results based on 
the same three key assumptions. In the following sections 
we describe the structure of the model (see Figure 4 for a 
schematic diagram) and detail assumptions specific to the 
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Figure 2. Left: RT1/IRIs and eye-hand span results 
from Wu et al. (2004); Right: Simulated results 

Figure 3. Dwell times for S1-S5 in all conditions
from Wu et al. (2004)
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present model. The model was implemented in the statistical 
package R.   

Assumptions 
1. Following Pashler (1994) manual responses consist 

of three basic stages: stimulus encoding (SE), 
response selection (RS), and response execution 
(RE). Here we postulate that RS consists of two sub-
stages, stimulus classification (RS.SC) and response 
preparation (RS.RP) to represent the differential 
processing need for Go and No-Go stimuli. RE is 
further broken down to two sequential components, 
an Init operator (IM) followed by a Motor Execution 
operator (M).  

2. We hypothesize that manual and oculomotor 
processes underlie each fixation. Specifically, each 
fixation begins with SE and ends with an Init 
component for the saccade (IS). For fixations on No-
Go stimuli, they include only the response 
clarification component (RS.SC). For fixations on 
Go stimuli, we introduce a variable called Saccade 
Lag that produces the constant delay required to 
achieve the just-in-time scheduling.  

3. RS (including RS.SC and RS.RP) is the bottleneck 
process, occurring in strict sequence for all stimuli. 
Hence the task is rate-limited by RS, not SE or RE.  

4. We assume that participants adopt an eye movement 
strategy that assures SE is completed just when RS is 
free to process the perceptual information. However 
with variability in processing times RS on a previous 
stimulus can be completed before or after SE. 
Stochastic durations in the model allow us to 
simulate both outcomes.   

5. The model does not have an explicit account of the 
RT1 elevation that would allow us to compute it 
from first principles. Our conjecture is that the RT1 
elevation results in part from preparation for the 
sequence of events to ensue. We insert an operation, 
Prep, into the sequence of RT1 after SE and prior to 
RS, and assume it is executed in series.   

6. There is noise associated with the timing of all of 
these processes. In the model we assume that the 
noise patterns follow normal distributions.  

Parameters 
Though the model assumptions determine the order in 
which operations will be scheduled, durations must be 
assigned or computed. Parameters were estimated in two 
ways: 1) architectural conventions; and 2) calculated from 
the data based on model assumptions.  
 
Architectural Conventions Numerical parameter estimates 
for several necessary parameters were assigned values 
consistent with existing literature (e.g., Vera et al., 2005). 
Stimulus Encoding (SE) was set to 100 ms, both manual and 
saccade Init (IM and IS) operators were set to 50 ms, and 
Response Execution (RE) was set to 150 ms. Saccade 
movement time (S) was set to 30 ms.  
 
Calculated from Data Although it would be desirable to 
set all parameters in advance, we have as yet no theoretical 
basis for assigning durations to some internal, unobservable 
states.  

RT1 elevation. To account for the elevated RT1 (on S1 
and S2) we assume a response-related preparation stage 
(Prep) is added to the normal model of a Go response. We 
estimate the duration of this stage (Prep.S1) by summing the 
mean values of the hypothesized components of RT1 then 
subtracting this from the observed RT1 as indicated here: 

Prep.S1 = RT1 – (SE + RS + I + RE) 

We estimated Prep.S2 by subtracting the observed 
difference in RT1 delay for S1 & S2. Thus, 
 

Prep.S2 = Prep.S1 - 96 
 
RS durations. The model assumptions dictate that for a 

sequence of Go trials, IRI duration should ideally be a direct 
measure of RS duration. Thus, mean observed IRI duration 
(416 ms) was used as the estimate. According to the model, 
No-Go trials have a shorter RS stage associated with 
Stimulus Classification (RS.SC). The RS.SC stage was 
estimated by constructing a model of final response time for 
the XTTTX sequence. This allowed RS.SC to be estimated 
from the data using the total response time and the delay of 
RT1 when it occurred on S2. Specifically,  
 

RS.SC = Total.RT.XTTTX - SE*2 - IS - S – Prep.S2 – 
RS*3 - IM - M 
 

Saccade measures. Following Remington et al. (2006) the 
model assumes that eye movements are delayed on Go trials 
in order to time the end of RS for the current stimulus with 
the end of SE on the subsequent stimulus. The delay 
parameter, Saccade Lag (Lag) is derived by first 
constructing a total dwell time on a sequence of n 
successive Go trials starting from S1, represented as: 

S1

IS

S P

Lag

S2 S3

IS

S P

Lag IS

S P

S4D

IS

S P

S5

IM M IM M IM M

Stimulus 
Classification
(SC)

Response
Preparation (RP)

RT1 Delay

Dwell

IRI

Eye-Hand Span

No-Go Central Processing = Stimulus classification

Dwell

Figure 4. A model of TTXXT and TXXTT conditions
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Total.Dwell = SE1 + Prep + RS*n - (SEn+1 + S) 
 
The last term subtracts off that portion of the final RS 

where the eyes have moved to Sn+1. Here we use the 
TTTXX condition with n = 3. Because the model is 
stochastic we cannot be certain which elements will emerge 
on the critical path every run. For this estimate we assumed 
that in the majority of cases the critical path would be 
determined by the completion of RS stages (though it is 
possible the an SE stage will be delayed putting it on the 
critical path). Therefore the total time fixated would be 
equal to the total time minus the eye movement to the last 
stimulus. Because fixation duration is relatively constant 
across items, dwell times could be estimated by dividing the 
total fixation time by 3. We can compute the average Lag 
required to complete SE(n+1) at approximately the same 
time as RS(n) by 

 
Saccade Lag = Total.Dwell / 3 – IS – SE. 

Simulation Results 
Each model parameter was assigned a Gaussian standard 
deviation roughly equal to 25% of the mean. In simulations 
the model drew random durations from a Gaussian 
distribution with the indicated mean and standard deviation. 
Comparison of model predictions with observed data are 
shown in Figures 2 and 5. Model means are based on Monte 
Carlo simulations of 1000 trials.  

The qualitative fits of the model are moderately good, 
accurately reflecting the main trends in the RT/IRI data, the 
decreasing trends in the EH-span and RH-span data, but 
failing to capture variances in dwell times. Although the 
model did yield different dwell times for Go and No-Go 
stimuli (465 ms versus 335 ms), it did not produce the 
pushback effects (not shown). To assess how well the model 
quantitatively follows the pattern of the data we ran 
correlations between simulated and observed values for 
RT/IRI, EHS, Dwell, and RHS. To assess overall precision, 
Root Mean Square Error was computed. For these analyses, 
mean times for all conditions were pooled for each 
dependent measure. For RT/IRI, R = 0.95, RMSE = 93 ms; 
for EHS, R = 0.74, RMSE = 68 ms; for Dwell, R= 0.36, 
RMSE = 36 ms; for RHS, R = 0.89, RMSE = 61 ms. 

General Discussion 
We have previously presented a stochastic model that 
described how manual and ocular responses are generated in 
performing a sequence of linearly arrayed choice response 
time tasks (Remington et al., 2006). That model assumed 
that participants were trying to maintain a steady rate of eye 
movements (minimize eye fixation variability) and achieve 
an efficient task completion rate (minimize waiting between 
central stages) by scheduling eye movements so that 
stimulus information would be available at the same time 
central processing resources became available. This just-in-
time assumption produced good approximations to data 
from trials where stimuli were of approximately equal 

difficulty. Here we extended that model to fit existing data 
where stimuli were of unequal difficulty. Specifically, data 
represented different response selection demands that arose 
from the presence of dummy, or No-Go characters within a 
sequence of 5 characters to which participants did not 
respond. The model for heterogeneous trials retains the core 
logic of the homogenous case. Participants are assumed to 
establish a program that generates saccades at regular 
intervals. On No-Go trials an override is issued to the 
saccade execution system, which commands a saccade at 
that time. Thus, the model assumes the just-in-time goal 
remains in effect but can only be achieved on Go trials. 

Moderately good qualitative fits to observed response 
time and oculomotor data were obtained. The model 
required four statistics from the empirical data to compute 
parameter estimates: RT1 for S1, RT1 for S2, IRI, and total 
response time for XTTTX trials. Thus, the model fits rather 
than predicts the data. Nonetheless, the success of such a 
simple model shows that in principle it is possible to 
construct the extended sequence from assumptions about the 
scheduling of underlying component operations, at least for 
regular, ordered sequences such as text. The model also 
suggests a dual-control approach where a succession of 
saccades is made by means of  an open-loop pathway that 
generates saccades at a periodic rate and a close-loop 
pathway that intervenes to command a saccade on the basis 
of processed information.  

 This construction is similar to the SWIFT model that 
Engbert et al. (2005) developed to account for eye 
movements in reading. There too the data are well fit by a 
dual-control assumption in which regular saccade execution 
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can be preempted by higher cognitive control. SWIFT 
differs from the present model in the explicit 
characterization of the commanded inhibitory signal, meant 
to delay the saccade for difficult words. They also derive 
movement parameters from assumptions about the 
underlying activation of words over space. Such a derivation 
has the desirable feature of providing a rigorous state 
representation from which decisions to move can be 
computed from a well-defined policy, such as speed-
accuracy criteria. Yet, it is unclear whether this formulation 
provides any significant constraint on the outcomes 
possible.  

What is the motivation for a dual-control model for 
saccade execution? An alternative would be to link saccade 
execution directly to the completion of some processing 
stage. However, the pattern of relatively constant IRI and 
Dwell along with a decreasing RHS suggest that saccade 
execution is decoupled to an extent from other underlying 
operators. Simply linking saccades to stage completion 
tends to prevent this decoupling leading to predicted RHSs 
which are flat. Matessa (2004) developed a model of the 
homogeneous difficulty version that was also modeled by 
Remington et al. (2006). Matessa’s model required an 
extension of the ACT-RPM architecture to include an 
additional preparation stage. The addition of this stage 
provided the needed degrees of freedom to decouple 
saccade execution from cognitive and motor operators. It 
produced qualitative fits to the data. It is unclear whether 
either the homogeneous or heterogeneous difficulty cases 
can be modeled in ACT-RPM without ancillary 
assumptions.  

The use of central bottleneck theory provides a set of 
constraints that directly determine the scheduling and 
coordination of resources. However, unlike Engbert et al. 
(2005) we have yet to develop a representation of the 
underlying state of information processing that would allow 
us to generate a policy for optimal scheduling of eye 
movements. That is, we do not have a treatment that deals 
with factors that would affect tradeoffs between accuracy 
and duration of central processing, or allow us to estimate 
how information accrues or how accrual affects eye 
movement times. This is a direction for future work. 

Conclusions 
We have demonstrated that the patterns of manual responses 
and eye movements observed in a linear sequence of choice 
RTs can be modeled using a small set of assumptions 
derived from central bottleneck theory. While manual 
response emerged directly from bottleneck theory, the 
pattern of eye movements was accounted for by assuming 
two systems: an open-loop system generating saccades at a 
periodic rate, and a closed-loop system commanding a 
saccade based on stimulus processing. Future work will 
focus on testing the generality of this approach across a 
wide range of scanning conditions.  
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