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Original Research Article
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Nuclear factor kappa B (NFjB) is an essential regulator of

gene transcription for hundreds of genes, including many

critically involved in apoptosis. NFjB complexes containing

cRel generally activate pro-apoptotic genes, while those with

RelA activate anti-apoptotic genes. We have previously shown

that NFjB binding by RelA is constitutively elevated in human

metastatic melanoma cultures relative to normal melanocytes.

Here we extended our investigation to immunohistochemical

analysis of human tissue biopsies. We found that RelA

expression is significantly elevated in melanocytes of human

naevi and melanomas relative to normal skin, but expression of

its inhibitor IjB-a is significantly lower in metastatic melan-

omas than in intradermal naevi. Antibodies specific for the

nuclear localization signal of RelA also showed significantly

increased staining in metastatic melanoma biopsies. Notably,

in melanomas and in naevi, we also found that RelA is

phosphorylated at serine 529, and this activated form accumu-

lates in the nuclei of melanomas. This suggests that increased

expression and phosphorylation of RelA occurs at the stage of

the benign naevus, but IjB-a is able to sequester RelA in the

cytoplasm and regulate RelA transcriptional transactivation.

We also found that antibodies against cRel show a progressive

increase in staining from naevi to melanoma. However, staining

for IjB-e, which primarily inhibits the nuclear localization of

cRel was also progressively increased, and cRel expression was

predominantly cytoplasmic in melanomas. These results con-

firm that the altered expression of RelA found in metastatic

melanoma cells in tissue culture is relevant to human tumors

and offer new insights into the deregulation of NFjB signaling.

Key words: nuclear factor kappa B, RelA, cRel, inhibitor of

kappa B-a, inhibitor of kappa B-b, inhibitor of kappa B-e

INTRODUCTION

The incidence of melanoma is increasing at the second highest

rate of all human cancers, and metastatic disease is generally
fatal (1, 2). Metastatic melanomas are typically resistant to
radiation and chemotherapy (1, 3), suggesting that some

melanomas maintain an anti-apoptotic phenotype. Currently,
there is a critical need for the development of therapeutic
agents that could target aberrant survival pathways in

metastatic melanomas. Recently, the role of the transcription
factor nuclear factor kappa B (NFjB) in protectingmelanoma
cells from apoptosis has received considerable interest. We (4,

5) and others (6, 7) have shown that NFjB is constitutively
activated in metastatic melanoma cells in culture.

The mammalianNFjB family contains fivemembers; p105/

p50, p100/p52, RelA, RelB and cRel that share a highly
conserved 300 amino acid Rel homology domain with dime-
rization, nuclear localization and DNA binding regions (8).

RelA, RelB and cRel also contain transcriptional transactiva-
tion domains that directly activate expression of over 100
genes, including many critical in apoptosis. RelA, cRel, p105/

p50 andp100/p52 can formmultiple homo- andhetero-dimers,
each of which has distinct DNA binding site specificities and
affinities (9–13). Upon activation, these dimers translocate to

the nucleuswhere they bindDNAatNFjB sequences found in
the promoters of target genes (8, 13–15).

Abbreviations – cIAP, cellular inhibitor of apoptosis; CK2, formerly known as casein kinase II; DR, death receptor; HDAC-1, histone deacetylase-1; IjB,
inhibitor of kappa B; IKK, inhibitor of kappa kinase; NFjB, nuclear factor kappa B; NLS, nuclear localization signal; TRAIL, TNF-related apoptosis-
inducing ligand
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The dimeric composition of NFjB is critical to the
specificity of gene transactivation. cRel containing NFjB
dimers can transactivate different genes than those dimers

containing RelA (15, 16). For example, RelA inhibits
expression of the TNF-related apoptosis-inducing ligand
(TRAIL) receptors DR4/DR5 and up-regulates cIAP1,
cIAP2 and caspase-8. Conversely, c-Rel enhances expression

of DR4/DR5, Bcl-X and inhibits cIAP1, cIAP2, and survivin
after TRAIL treatment. Whether NFjB functions as an
inhibitor or activator of apoptosis depends on the relative

levels of RelA and c-Rel subunits (15). Transcriptionally
inactive nuclear NFjB in resting cells consists of homodi-
mers of either RelA or p50 complexed with the histone

deacetylase-1 (HDAC-1). RelA homodimers complexed with
HDAC-1 have low DNA binding affinity, but p50 homodi-
mers lacking transactivation domains bind DNA with high

affinity and are transcriptionally repressive (17).
NFjB regulation is mediated through multiple kinase

pathways that phosphorylate precursors (p105, p100), inhib-
itory proteins (IjB) and RelA (17–19). The three major IjB
proteins have distinct binding affinities for the various homo-
and hetero-dimeric NFjB complexes (8). IjB-a preferentially
inhibits p50 heterodimers containing RelA and to a lesser

extent those with cRel. Unphosphorylated IjB-b preferen-
tially inhibits RelA homo- and hetero-dimers but phosphor-
ylated IjB-b preferentially binds cRel dimers. IjB-e is

associated with cRel and RelA, but not with p50 (8, 14, 16,
20, 21).
In general, IjB-a is more effective in inhibition of nuclear

NFjB complexes than IjB-b, but is rapidly degraded by the

proteasome in response to stimuli (22). IjB-b is less sensitive
to stimulus dependent degradation (13). Upon activation,
IjB-e protein is also degraded with slow kinetics by a

proteasome-dependent mechanism that appears to regulate a
late, transient activation of a subset of genes, regulated by
RelA/cRel complexes (16).

Activation of NFjB leads to the immediate transcriptional
transactivation of its inhibitors p100, p105 and IjB-a.
Induction of newly synthesized inhibitors by NFjB functions

as an immediate negative feedback mechanism that leads to
sequestration of the transactivating NFjB as inactive cyto-
plasmic complexes. Induction of IjB-a in particular facili-
tates export of activated RelA-p50 heterodimeric complexes

from the nucleus thereby terminating NFjB function (8, 16,
20, 23–26).
The specificity of NFjB signaling is not only fine tuned by

its homo- and hetero-dimeric composition. There are mul-
tiple levels of regulation of NFjB activation, including
phosphorylation and acetylation of NFjB proteins, phos-

phorylation and acetylation dependent recruitment of tran-
scriptional coactivators and subsequent modification of
nucleosomal histones (13).

The expression, localization and signaling of specific
NFjB subunits and inhibitors has been studied in detail in
immune cells and in malignancies (13). NFjB expression
and signaling in normal melanocytes, benign naevi and

malignant melanoma however is not well detailed. Elevated
inhibitor of kappa kinase (IKK) activity, enhanced degra-
dation of IjB-a and constitutive activation of NFjB have

been shown in Hs294T melanoma cells (6, 7, 27) and NFjB

activity was shown to correlate with angiogenesis and
metastasis of human melanoma in a nude mouse model
(28). We have shown that NFjB DNA binding mediated by

RelA-p50 dimers is constitutively elevated in human met-
astatic melanoma cell cultures and that nuclear and
cytoplasmic levels of RelA protein are elevated in melan-
oma cells (4). RelA RNA expression is also elevated in

metastatic melanoma relative to normal human melanocyte
cultures (4, 5).
To investigate the expression pattern of NFjB family

members in human melanocytic cells of normal skin, benign
intradermal naevus and metastatic melanoma tissues, we
analyzed 60 human biopsies (20 normal skin, 20 benign

naevus and 20 metastatic melanoma) for expression of RelA,
cRel, p105/p50, and the inhibitory proteins IjB-a, IjB-b and
IjB-e. We also examined the expression of an activated form

of RelA, serine 529-phosphorylated RelA.

MATERIALS AND METHODS

Immunohistochemistry

All metastatic melanoma and benign intradermal naevus

diagnoses on tissues used in these studies were made
independently by pathologists not involved in this study.
Normal skin biopsies were obtained from amputations. All

of the naevi were classified as benign, no junctional or
dysplastic naevi were included in this analysis. Formalin-
fixed, paraffin-embedded sections from normal skin, benign
naevus and metastatic melanoma biopsies were placed on

capillary gap slides, deparaffinized with Histoclear and
rehydrated through decreasing concentrations of isopropyl
alcohol. Mounted tissues were immersed in 0.25% KMnO4

for 10 min, rinsed in water, immersed in 5% oxalic acid until
cleared (<1 min) and rinsed in water prior to staining to
bleach melanin (29). All antibodies used were determined to

be compatible with the bleaching process. Avidin-biotin
complex (ABC) immunoperoxidase reactions were per-
formed using an Immunotech 500 automated immunostainer

(Ventana Systems Inc., Tucson, AZ, USA) according to the
manufacturer’s instructions. Briefly, the automated steps
included antigen retrieval by steam, blockage of endogenous
peroxidase with 3% hydrogen peroxide and incubation with

the primary antibody. The reaction was followed by a
biotinylated goat-antimouse IgG secondary antibody and
then an avidin–biotin peroxidase complex. The chromogen

was diaminobenzidine for all reactions. Negative controls, in
which slides were treated as above, with the exception of the
addition of the primary antibody, were run simultaneously.

Identification of melanocytic cells in human skin, naevus and
melanoma sections was done by use of initial hematoxylin–
eosin stain (30). Melanocytes are recognizable as randomly

dispersed cells, wedged between the basal cells within the
epidermis. Melanocytes have dark-staining nuclei and largely
as a result of retraction or shrinkage, clear cytoplasm. Not all
clear cells in the sections examined were melanocytes.

Occasionally, basal keratinocytes show some shrinkage
artifact, in these cases intercellular bridges were used to
differentiate basal keratinocytes with cytoplasmic clearing

from melanocytes. In instances, where it was not possible to
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differentiate between keratinocytes and melanocytes, the cells
in question were not scored. Only melanocytic cells, as
determined by the dermatopathologist involved in this study,

were included in the analysis.

Statistical Analysis

Cells were scored by intensity of immunoperoxidase staining
as negative (0), or positive with a grade of 1+, 2+ or 3+.

Cells of melanocytic origin scored as 2+ or 3+ were rated
with high positivity and the mean ± SD was calculated
using Prism GraphPad for each group: skin, naevus or

metastatic melanoma. Student’s t-test and one-way analysis
of variance with the Bonferroni Multiple Comparison Test
and were performed to determine significant differences
(defined as P < 0.05).

Antibodies

Antibodies directed against specific NFjB proteins were
obtained from Nancy Rice (NIH Bethesda, MD, USA),

p105/p50 (PAb-1157, 1:5000); Rockland Immunochemicals
(Gibertsville, PA, USA), serine 529-phosphorylated RelA
(PAb-200-3165, 1:500); Chemicon International (Temecula,

CA, USA), nuclear localization specific RelA (Mab-3026,
1:2000); Santa Cruz Biotech (Santa Cruz, CA, USA), RelA
(MAb-sc-8008, 1:10 000), cRel (MAb-sc-6955, 1:250) IjB-a
(PAb-sc-371, 1:2000) Ij-b (PAb-sc-945, 1:500), Ij-e (PAb-sc

7155, 1:500).

RESULTS

RelA Expression is Elevated in Naevus and Melanoma

Biopsies

The percentages of melanocytic cells with high positive
staining for each group; normal skin melanocytes, benign

intradermal naevi and metastatic melanoma are shown in
Fig. 1. Representative sections of each group are shown in
Figs 2 and 3. Using primary antibodies specific for RelA, we
found that melanocytes in normal skin had low expression of

RelA [Figs 1A and 2 (1A)]. Although the melanomas showed

Fig. 1. Relative expression of NFjB proteins in melanocytes of normal skin, benign naevus and metastatic melanoma biopsies. The percentage (±SD)
of melanocytic cells in normal skin (MC), benign intradermal naevus (IDN) and metastatic melanoma (MM) biopsies staining with high positivity for
each antibody directed against: (A) RelA, (B) phosphoserine-529 RelA (pRelA), (C) nuclear localization signal specific RelA (NLS RelA), (D) IjB-a, (E)
IjB-b (F) IjB-e, (G) cRel.
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greater heterogeneity both within and among biopsies,
significantly higher percentages of melanocytic cells from

naevus and metastatic melanoma biopsies had high positivity
for RelA compared with melanocytes in normal skin biopsies
(P < 0.05), as shown in Figs 1A and 2 (1A, 1B, 1C).

Phosphoserine-529 RelA is Elevated in Naevus and Melanoma

Biopsies and is Both Cytoplasmic and Nuclear in Metastatic

Melanomas

Using primary antibodies specific for phosphoserine-529

RelA (pRelA), we found that significantly higher percent-
ages of melanocytic cells from naevus and metastatic
melanoma biopsies had high positivity for pRelA com-

pared with melanocytes in normal skin biopsies
(P < 0.05), as shown in Fig. 1B. One hundred percent of
the naevus and 80% of the melanoma biopsies expressed

high levels of phosphoserine-529 RelA, as shown in
Figs 1B and 2 (2B, 2C). In contrast, only 10% of the

normal skin biopsies had melanocytes that expressed high
(2+) levels of this phosphorylated form of RelA [Figs 1B
and 2 (2A)].

Nuclear expression of phosphoserine-529 RelA was signi-
ficantly higher in melanoma than in naevi (P < 0.001). As
shown in Fig. 2 (2B), expression of phosphoserine-529 RelA

was almost exclusively cytoplasmic in naevi. However, 40%
of the melanoma biopsies also expressed high nuclear levels
of phosphoserine-529 RelA [Fig. 2 (2C)].

The Nuclear Localization Signal of RelA is Unmasked

in Melanomas

As shown in Figs 1C and 2 (3A, 3B, 3C), the percentage of
cells with high positivity for the unmasked nuclear localization

A

B

C

Fig. 2. Expression of RelA and IjB-a. Paraffin embedded sections from (A) normal skin, (B) benign naevus and (C) metastatic melanoma biopsies were
stained as described in Materials and methods. Positive immunoperoxidase staining appears as brown regions of the cells. Unstained nuclei appear as
central blue regions, positive nuclei are seen as central brown regions and are indicated by yellow arrows. In the normal skin biopsies, melanocytes at the
dermal border are indicated by black arrows. In the skin biopsies, keratinocytes and dendritic cells in the upper epidermal layer are also visible. In the
melanoma biopsies, infiltrating lymphocytes are visible. However, only cells of melanocytic origin were included in the analysis. The primary antibodies
used were panels (1) Anti-RelA antibody, (2) Anti-phosphoserine-529 specific RelA antibody, (3) Anti-nuclear localization signal specific RelA antibody
(NLS RelA), (4) Anti-IjB-alpha antibody, 40· magnification.
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signal (NLS) domain of RelA was significantly higher in
melanoma cells than in melanocytes from either skin or
naevus biopsies (P < 0.001). Furthermore, 3+ levels of this

form were detected exclusively in metastatic melanomas
(data not shown).

Expression of IjB Proteins is Increased in Both Naevi and

Melanomas; IjB-b Expression is Raised to Equivalent Levels,

But IjB-a is Higher While IjB-e is Lower in Naevi than in

Melanomas

As shown in Figs 1D and 2 (4A, 4B, 4C), both naevus and

melanoma biopsies had a greater percentage of melanocytic
cells that showed high positivity for the inhibitory protein
IjB-a than melanocytes in normal skin biopsies (P < 0.001
and P < 0.05, respectively). However, the percentage of cells

with high positive staining with IjB-a antibodies was
significantly reduced (P < 0.05) in melanomas relative to
naevi and there was also a loss in the intensity of

immunostaining in melanomas compared with naevi (data
not shown). Furthermore, all of the melanoma biopsies that
showed high nuclear expression of phosphoserine 529-RelA

also expressed low levels of the inhibitor IjB-a. As seen in
Fig. 1E, IjB-b was elevated equally in naevi and in melano-
mas. However, as shown in Fig. 1F, IjB-e was elevated to a

greater extent in melanomas than in naevi.

cRel is Increased in Melanomas and Correlates

with Increased IjB-e Expression

As shown in Fig. 1G, the percentage of melanoma cells
showing high positivity for cRel was significantly higher in

melanomas than the percentage of melanocytes either from
naevus or from normal skin biopsies (P < 0.001). About
60% of the melanoma biopsies exhibited high levels of cRel
in comparison with 0% of normal skin biopsies and 15% of

naevus biopsies [Fig. 3 (1A, 1B, 1C)]. There was also a shift
in the percentage of cells with 2+ to those with 3+ in the
intensity of cRel immunostaining in melanomas compared

with naevi (data not shown). Of the melanoma biopsies with
cells that showed high positivity for cRel, 80% also expressed
high levels of IjB-b, 50% expressed high levels of Ij-Be, 90%
expressed high levels of either IjB-b or Ij-Be and 50%
expressed high levels of both of these inhibitory proteins.
While 90% of the melanoma biopsies were negative for
nuclear cRel, one had less than 1% of cells with nuclear cRel

expression, but one had 30% nuclear cRel staining. In this
biopsy, 90% of the cells had low expression of IjB-b and
70% had low IjB-e.
p50 was highly expressed in all cells in normal skin, benign

naevus and metastatic melanoma biopsies. Because inter-
cellular bridges could not be unambiguously determined in

the normal skin tissues stained with p50 antibodies, statistical

A

B

C

Fig. 3. Expression of cRel, IjB-b, IjB-e, and p105/p50. Paraffin embedded sections from (A) normal skin, (B) benign naevus and (C) metastatic
melanoma biopsies are as described in Fig. 2. Panels (1) anti-cRel antibody, (2) anti-IjB-b antibody, (3) anti-IjB-e antibody, (4) anti-p105/p50 antibody,
(5) negative controls, 40· magnification.
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analysis was not performed and p50 data were presented
qualitatively. Cytoplasmic p50 was also highly expressed in
the metastatic melanoma biopsies, but the nuclear p50

appeared to be less intense, as shown in Fig. 3 (4A, 4B, 4C).
Negative controls, which lacked the relevant primary anti-
body, were run simultaneously, and as shown in Fig. 3 (5A,
5B, 5C), cells were negative for immunoperoxidase staining.

DISCUSSION

Studies previously conducted in tissue culture showed that
RelA expression and DNA binding was higher in metastatic
melanoma cells than in melanocytes (4). In this study, we

found that the melanoma cells in the majority of patient
biopsies also had significantly higher expression of RelA than
melanocytes found in normal epidermal tissues. Surprisingly,

we also found that RelA expression was significantly higher
in the melanocytes found in benign intradermal naevus
biopsies compared with melanocytes found in normal
epidermal skin tissues.

It is interesting to note that in two of the melanoma
biopsies, the melanoma cells had a distinctly spindled
morphology and expressed low levels of RelA (0/+1) in

contrast to the other melanoma biopsies. Desmoplastic
malignant melanoma (DMM) is a rare variant of malignant
melanoma histologically distinguishable by its spindle cells.

Although distant metastases do develop, DMM typically
presents with nodal metastasis less frequently than other
forms of melanoma, and has a better prognosis. DMM has a
tendency for local recurrence after apparently complete

surgical excision, but this can be dramatically reduced by
adjuvant radiation therapy (31).
We could speculate that alterations in RelA expression

may be correlated with melanomas that arise in a naevus, but
perhaps not those that arise independently. Future analyses
of primary melanomas by depth, association with a naevus

and classification (superficial spreading, nodular, desmoplas-
tic, lentiginous, accral) may help to clarify this. Because RelA
is known to protect cells against apoptosis from radiation

and chemotherapy (32–36), RelA expression levels may help
in predicting whether a particular melanoma will respond to
radiation therapy. These observations warrant further inves-
tigation.

We also found that serine-529 phosphorylated RelA is
elevated in melanoma and naevus biopsies relative to
melanocytes from normal skin. However, significantly more

of this activated form of RelA accumulated in the nuclear
compartment of melanomas than naevi. In addition, we
found a significant increase in expression of RelA with an

unmasked NLS in melanoma biopsies relative to melanocytes
in both normal skin and naevus biopsies. Dhawan et al. also
reported that NFjB activation, which they measured as

expression of the unmasked NLS, was associated with Akt/
PKB in melanoma and dysplastic naevus (37). They further
reported that inhibition of PI3 kinase and Akt corresponded
with a decrease in NFjB-luciferase reporter assays but

showed no effect on IKK activity (37). Akt has been shown
by others to activate the transactivation potential of RelA
without increasing IjB-a degradation or nuclear localization

of RelA (38–40). Recent studies have shown that Akt is a

downstream target of NFjB and that nuclear translocation
of RelA and increased NFjB DNA binding activity precede
Akt phosphorylation (38). Furthermore, over-expression of

RelA causes an increase in Akt mRNA and protein and
stimulates phosphorylation of Akt (38, 41).
Multiple kinase pathways phosphorylate NFjB inhibitory

proteins and precursors as well as RelA. The catalytic

subunit of protein kinase A phosphorylates RelA at serine-
276 (19, 42) and PKCf phosphorylates RelA at serine 311
(43). These phosphorylation events stimulate the transacti-

vation potential of RelA by facilitating recruitment of the
coactivators CBP/p300 (17, 19, 38, 41, 43). It has been
proposed that Akt also stimulates the transactivation poten-

tial of RelA by CBP/p300 interactions (44, 45). The IKK
complex controls stimulus dependant degradation of IjB-a
(18, 46–48) and RelA is simultaneously phosphorylated at

Serine-536 (42). IjB-a is constitutively phosphorylated in
vivo by casein kinase II (CK2) at serine-293, which alters its
intrinsic stability, plays a role in its constitutive turnover and
mediates rapid degradation of free IjBa (48–54). RelA is also

phosphorylated at serine-529 by CK2 (55).
It is well-established that one of the first genes to be

transcriptionally transactivated by NFjB is its inhibitor IjBa
(13, 14, 32, 34). This induction functions as a negative
feedback mechanism to down-regulate NFjB activity (13, 14,
32, 34). We found that expression of the inhibitory protein

IjB-a is elevated in naevus and melanoma biopsies compared
with normal skin melanocytes. We postulate that this may
reflect enhanced NFjB transcriptional activity in both naevi
and melanomas. However, we also found that IjB-a expres-

sion was significantly reduced in melanoma relative to naevus
biopsies.
These results suggest that increased expression and phos-

phorylation of RelA occur at the stage of the benign
intradermal naevus, but that there may be sufficient levels
of the inhibitory protein IjB-a to sequester RelA in the

cytoplasm. In contrast, the melanomas also have high RelA
expression and high activation to the phosphoserine-529
form of RelA, but have reduced IjB-a expression. The

increased nuclear levels of phosphoserine-529 RelA in
metastatic melanomas is biologically consistent with both
the observed loss in IjB-a expression and the increase in
expression of RelA with the unmasked NLS.

NFjB activation has also been reported to transactivate
cRel (8). In the current study, we found that expression of
cRel is also elevated in melanoma cells of metastatic biopsies

in comparison with melanocytes of both naevus and skin
biopsies. However, the cRel was retained in the cytoplasmic
compartment in the melanomas. In addition to decreased

IjB-a expression in melanomas, we also found significantly
elevated IjB-e expression in melanoma compared to naevus
biopsies. IjB-e primarily regulates cRel nuclear translocation

(8, 13, 16) and its increased expression in melanomas may
explain in part, the predominantly cytoplasmic pattern of
cRel expression in melanomas. We also found an equivalent
increase in IjB-b expression in melanocytic cells of both

naevus and metastatic melanoma biopsies.
In sharp contrast to IjB-a, the inhibitory activity of IjB-b

is enhanced by phosphorylation of its C-terminal PEST

domain. Basal phosphorylation at consensus CK2 sites of
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IjB-b converts it to a strong inhibitor of DNA binding and is
required for the efficient formation of IjB-b-cRel complexes
(56–58). This may also contribute to the cytoplasmic retent-

ion of cRel in melanomas. Therefore we propose that in
addition to other kinases such as IKK and Akt, CK2 may
also play a contributory role in deregulation of NFjB
activity in some melanomas.

Over-expression of RelA may be an early transitional event
between melanocytes at the dermal–epidermal junction and
those forming a benign intradermal naevus. Under normal

circumstances, NFjB nuclear localization is regulated by
IjB-a. Signaling mediated by RelA can also be balanced by
activation of cRel containing dimers. Generally RelA

promotes anti-apoptotic and cRel promotes pro-apoptotic
signals. In melanomas however, loss of IjB-a, accumulation
of nuclear RelA and absence of nuclear cRel suggest that the

NFjB balance in some melanomas may be tipped in favor of
constitutive NFjB signaling mediated by RelA. While other
pathways including INK4a/ARF (2, 59), PKC (43, 60), PKA
(19, 61), Ras (62) and FGF (63, 64) may be involved in the

transition to a malignant melanoma, RelA signaling could
establish a corps of anti-apoptotic proteins that protect
melanomas from death signals as well as radiation and

chemotherapy. Recent advances in the development of drugs
that down-regulate NFjB signaling may therefore provide
potential adjuvants to conventional therapies in some mel-

anomas.
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