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Abstract of the Dissertation

Stochastic Image Grammars for Human Pose

Estimation

by

Brandon Rothrock

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Song-Chun Zhu, Chair

Robust human pose estimation is of particular interest to the computer vision

community, and can be applied to a broad range of applications such as au-

tomated surveillance, human-computer interaction, and human activity recog-

nition. In this dissertation, we present a framework for human pose estimation

based on stochastic image grammars. Humans in particular are difficult to model,

as their articulated geometry, camera viewpoint, and perspective, can produce

a very large number of distinct shapes in images. Furthermore, humans often

exhibit highly variant and amorphous part appearances, have self-occlusion, and

commonly appear in cluttered environments. Our approach capitalizes on the

reconfigurable and modular nature of grammatical models to cope with this vari-

ability in both geometry and appearance. We present a human body model as a

stochastic context-sensitive AND-OR graph grammar, which represents the body

as a hierarchical composition of primitive parts while maintaining the articulated

kinematics between parts. Each body instance can be composed from a different

set of parts and relations in order to explain the unique shape or appearance

of that instance. We present grammar models based on coarse-to-fine phrase-
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structured grammars as well as dependency grammars, and describe efficient

algorithms for learning and inference from both generative and discriminative

perspectives. Furthermore, we propose extensions to our model to provide ambi-

guity reasoning in crowded scenes through the use of composite cluster sampling,

and reasoning for self-occlusion and external occlusion of parts. We also present a

technique to incorporate image segmentation into the part appearance models to

improve localization performance on difficult to detect parts. Finally, we demon-

strate the effectiveness of our approach by showing state-of-art performance on

several recent public benchmark datasets.
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CHAPTER 1

Introduction

1.1 Motivation

According to the ImageNet1 database from Deng and Fei-Fei [DDS09], which has

currently labeled over 14 million images from the internet, the most frequent

image label is unsurprisingly “people” (Figure 1.1). Although methods for scene

classification have been quite successful to identify images that contain people,

there has been much less success in understanding their pose in the image. Ac-

curate pose estimation has broad and far-reaching applications, such as scene

understanding, automated surveillance, industrial safety, and human-computer

interaction. Humans are particularly well tuned to this task, and can often rec-

ognize body pose with near-perfect accuracy even when parts are completely

obscured or surrounded by confounders. Modern computer vision models, on the

other hand, still fall considerably short of matching human performance.

The challenges for pose estimation lies in appropriately modeling and recog-

nizing the large intra-class variabilities between people. These variabilities are

often referred to in terms of shape and appearance variability. The shape of the

human body is determined by the articulated configuration of the joints as well as

body proportion and clothing, which are then projected to the image plane. The

appearance consists of the edge structure of the shape boundary in the image,

1source: http://www.image-net.org.
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Figure 1.1: In the ImageNet [DDS09] database, which consists of over 14 million

annotated images collected from the internet, people is the most frequent label.

as well as the regions inside the shape corresponding to colors and texture of the

clothing or skin, as well as internal structure such as patterns or creases in cloth-

ing. Our work aims to provide a new perspective to modeling the human body in

images, motivated from two aspects: articulated models, and image grammars:

1.1.1 Articulated models

Articulated models are part-based models designed to capture the kinematic be-

havior of bones and joints. Each pair of articulated parts defines a relative lo-

cation between them for which they can pivot around. This type of model is

often referred to in the literature as a pictorial structures (PS) model, originally

introduced by Fischler and Elschlager [FE73] and popularized by Felzenszwalb

and Huttenlocher [FH05].

As shown in Figure 1.2, the original PS model uses a set of spring-like relations

to constrain the relative geometry between parts. Articulation is handled by

2



Figure 1.2: Pictorial structures model of Fischler and Elschlager [FE73], which

defines spring-like relations to constrain the relative geometries of parts.

placing additional springs on the angular displacement of parts. The model has

a canonical rest position for the full arrangement of parts, representing the most

typical configuration. To match the template to an image, each of the parts can

deform by stretching or compressing their springs to match features on the image.

The best location for the object therefore occurs at the position with minimum

deformation of the springs.

The PS model is still commonly used in current literature, but exhibits several

key limitations that we wish to overcome with our grammar model. We highlight

these limitations as follows:

• All observed examples are treated as a deformation from the canonical po-

sition. This is equivalent to assuming that the distribution of relative posi-

tions and orientations for each part is unimodal. This assumption is largely

unrealistic for humans in general position, as large angular deformations in

the limbs may be just as likely as the canonical pose yet the model must

pay a considerable spring penalty to represent these poses.

• Each part is always visible. Much of the early work in articulated pose esti-

mation focused only on frontal-view humans where this assumption mostly

3



holds. In the general case, however, self-occlusion is very prominent. In

these cases, the PS model cannot reason that the part is occluded, and

must find the best matching location in the image for a part that is not

visible.

• Each part has a common appearance across all examples. Clothing, in par-

ticular, violates this assumption. The same person wearing different types

of clothing can exhibit dramatically different appearances for the same part.

• The size and shape of each part is fixed, relative to the object scale. Due to

perspective and viewpoint, as well as differences in body proportion between

people, the size and shape of parts can vary dramatically in the image. The

use of fixed-sized shapes for the parts simply cannot accurately represent

humans in general position.

1.1.2 Image grammar

In David Marr’s seminal work [Mar82], objects are organized in a hierarchy ac-

cording to the specificity of information they carry, as shown in Figure 1.3. Each

composite part therefore has both a coarse and fine representation. The coarse

representation summarizes the composition as a whole, and does not explicitly

rely on its constituent parts. Conversely, the fine representation explicitly speci-

fies the subparts and their geometric relations. This decomposition is recursive,

providing progressively more detailed descriptions until the parts cannot be de-

composed further. This is motivated by the multi-scale nature of our own visual

system, where we can still identify humans from images in cases where there is

insufficient resolution to discern smaller parts.

The image grammar framework of Zhu and Mumford [ZM06], provide a math-

4



Figure 1.3: David Marr’s [Mar82] model for decomposing the human body in a

modular and hierarchical manner.

ematical formalism on Marr’s construction by formulating a stochastic AND-OR

graph grammar. The AND-OR graph is a generative model that represents the

image as a hierarchical composition of reconfigurable parts. The AND-nodes in

the graph specify a composition of parts, whereas the OR-nodes designates a

selection between alternative part variants.

The composite template model of Chen et al. [CXL06] uses an AND-OR

graph model applied to the modeling of clothing configurations. In this model,

several distinct types of clothing for each body part are identified to have distinct

appearance structure. The collar of the polo shirt, for example, has prominent

appearance differences between a formal shirt or t-shirt. Figure 1.4 illustrates

this decomposition, as well as a fragment of the AND-OR graph for arm. A

parse from this grammar is generated by selecting an AND-node for every OR-

node recursively, starting from the root node of the grammar. Each AND-node

selection generates a parse node, which possess state variables that describe its

location in the image, shape parameters, etc. The inference task is therefore to

search the space of all valid parses and their corresponding parse node states for

5
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Figure 1.4: Composite Templates for cloth modeling [CXL06]. An AND-OR

graph is used to specify the composition rules for selecting a set of part variants

to form a valid body configuration.

the configuration with highest probability.

One important limitation to this model is that it assumes the human is in

a predefined set of poses. In this sense, the model learns a probability on the

appearance and configuration of the body, but not the pose. Without explicit

understanding of the articulated kinematics of the body, the number of pose-

specific templates to represent the image appearance of all possible human poses

would be massive. Such a model would likely be intractable to compute, nor

would we have enough data to train it.

Our goal in this work is to integrate, in principle, the articulated nature of

the Pictorial Structures model, with the compositional and reconfigurable nature

of the AND-OR graph grammar model.

1.2 Grammar models for articulated objects

Our approach utilizes a stochastic grammar model to represent both the articu-

lated geometry of the human body, as well as the highly variant appearances of

the parts. This image grammar can be summarized by the following properties:

6



• Compositionality : Complex objects such as the human body often have

a natural decomposition into a hierarchy of parts that are semantically

meaningful.

• Modularity : Each part in the hierarchy is a sub-model in itself. This modu-

lar abstraction allows compositions, relations, and properties to be defined

recursively. This allows the model to reason about a composite part in the

exact same manner as a primitive part.

• Reconfigurability : A part may have multiple variants with different shape,

appearance, or even substructure. Reconfigurability allows the model to

substitute a part for any of its variants. Because these substitutions can

occur at any level of the hierarchy, a combinatorial number of compositions

can be created with a relatively small number of parts and rules. Noam

Chomsky, one of the founders of modern linguistics, describes this property

as “infinite generative capacity”, referring to our ability to generate an

infinite number of meaningful sentences using a compact set of language

rules.

• Shared parts : A composite part in the grammar can be composed from any

other parts. Multiple compositions can therefore use the same part, making

it a shared part. For the human body, parts such as the arms and legs have

a natural symmetry, and the model can be made more compact by sharing

these parts.

• Contextual relations : Similar to stochastic text grammars, probabilistic

relations determine how frequently each part variant is selected. Unlike text

grammars, however, image grammars must also reason about the geometric

configuration of the parts – that is, their position and shape in the image.

7



hierarchical articulated model�at articulated model

Figure 1.5: Conventional articulated models such as Pictorial Structures [FH05]

have a flat structure, connected by relations (green lines) that form the kine-

matic tree of the body. After incorporating a part hierarchy into this model,

additional kinematic constraints must be added to connect coarse-level parts to

their fine-level constituents.

For articulated bodies such as human, the most prominent contextual re-

lation between parts are the kinematic constraints that keeps articulated parts

connected at their joints. Conventional articulated models such as Pictorial Struc-

tures have a flat structure, in that they do not use composition or reconfigurabil-

ity. Each pair of articulated parts in the model are connected with a kinematic

constraint, shown as a green edge in Figure 1.5. These edges naturally form a

tree structure to mimic the articulated kinematics of the human body.

Our grammar model uses a compositional representation of parts, meaning

that there is a hierarchy of progressive decompositions from whole to part. Each

composite part, such as the upper body, is still an articulated part and must

be connected with a kinematic relation to either a part on the same level of

the hierarchy, or one level coarser. Due to the modularity of the grammar, the

composite part is still an articulated part even though it is an abstraction of

8



smaller parts, for which the joints at which it connects to its neighbors may no

longer be an anatomical joint of the body. For this reason, there are several

reasonable choices for how to connect the parts of the hierarchical model, one

such choice is illustrated on the right side of Figure 1.5.

1.3 Thesis outline

The chapters of this dissertation are organized as follows:

Chapter 2 presents a survey of literature and related work in image grammars

and human body modeling, and highlights the shortcomings of current methods.

Chapter 3 introduces our grammar model for articulated structures, and de-

fines all the state variables and probabilistic potential functions used in the fol-

lowing chapters. We also discuss the differences between modeling articulated

structures using a phrase-structured grammar and dependency grammar.

Chapter 4 describes generative approaches to learning the human body gram-

mar model. This includes an articulated geometry model learned by the maxi-

mum entropy principle, and an appearance model using Active Basis and Hybrid

Image Templates. We describe several inference algorithms, and demonstrate

experimental parsing and pose estimation results. We also explore ambiguity

reasoning of crowded scenes through the use of composite cluster sampling.

Chapter 5 describes a discriminative approach to learning the human body

grammar model. This includes a description of the part appearance representa-

tion, and training of the model using structured-output learning in an empirical

risk minimization framework. We also describe the integration of occlusion and

background reasoning into the model, and describe an exact and efficient infer-

ence algorithm. Finally, we demonstrate state-of-art performance by evaluating

9



on several public benchmark datasets for pose estimation.

Chapter 6 concludes the dissertation, and outlines our contributions.
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CHAPTER 2

Literature Review

2.1 Methods

2.1.1 Grammar methods

Grammar methods in computer vision have a surprisingly long history, dating at

least to the 1970’s with the work of Ohta and Kanade [OKS78] and Fu [Fu86].

This initial work was largely conceptual, as the computational tools were not

available at the time to adequately explore this topic and the field went dormant

for nearly twenty years. In the last decade, however, there has been a resurgence

of interest in grammar models in vision.

Beinenstock et al. [BGP97] describes a basic compositional model for object

recognition that is recursively composed. Ambiguity is propagated up the model

by maintaining multiple interpretations, and ultimately resolved by a minimum-

description-length criteria. Amit and Trouv [AT07] describe a “patchwork of

parts”, which is a edge-based deformable template model where each part is a

submodel. Classification is based on likelihood without learning discriminative

decision boundaries to achieve competitive performance on digit classification

and face detection. Jin and Geman [JG06] also focus on the problem of digit

recognition and license plate parsing by developing a “composition machine” to

assemble “bricks” that encode local edge structure in a generative probabilistic
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model using a Markov “backbone”. Zhu and Mumford [ZM06], and Han and

Zhu [HZ05] go beyond deformable templates and develop a probabilistic model

on the hierarchical decomposition of scenes using AND-OR rules. Aycinena et al.

[AKP08] proposed a semi-supervised method for generalizing the inside-outside

algorithm to the image grammar case for context-free grammars of semi-rigid

parts. AND-OR graph grammars for a wide range of objects including humans

were studied by Zhu et al. [ZM06], Chen et al. [CXL06], and Chen, Zhu et

al.[CZL07, ZCL08], which is largely the foundation of our own work. Girshick

and Felzenszwalb[GFM11] extends the popular discriminative deformable part

model of Felzenszwalb et al. [FMR08] into a grammar formalism used for human

detection, but not part localization. The hierarchical mixture model of Yang

and Ramanan [YR11] differs from our model by replacing articulation geometry

with keypoint mixtures, and does not allow reusable or reconfigurable parts. Sun

and Savarese [SS11] also uses hierarchical mixtures for modeling articulated bod-

ies, except with restricted coarse-to-fine appearance templates that progressively

include an additional articulated part at each level.

2.1.2 Human body models

We can categorize essentially all articulated pose recovery methods by how they

model part appearances, how geometries between parts are modeled, and the

methods used to compute inference on these models. The ability to compute

tractable inference typically dominates the tradeoffs between the complexity of

these components.

Appearance models of early techniques were quite simple, and limited to

clean images consisting of uncluttered backgrounds and human subjects that were

unclad or dressed wearing tight clothing to produce smooth outlines. Ioffe and
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Forsythe [IF01] represented body parts as the projection of cylinders onto the

image plane, which can be found bottom-up by grouping edges segments into

parallel lines, parallel lines into part pairs, and so forth. A similar approach

was employed by Ren et al. [RBM05] to find parallel lines through segmentation

followed by Delaunay triangulation. Such approaches in finding parallel lines typ-

ically fail in complex scenes, as clothing, complex backgrounds, and occlusions

cause too many false detections. Pixel-level appearances were also popular in

early techniques, using per-pixel color models [SB06], color histograms [EF09],

background subtraction [SIS03, FH05], and region-based CRFs [Ram06]. Other

region-based approaches such as from Mori and Malik [MRE04] and Srinivasan

and Shi [SS07] use super-pixel segmentation to combine small regions granules

into parts and body compositions. Most of these pixel and super-pixel models

have poor detection rates or do not generalize well, however. Discriminative ap-

pearance models using boosting with image features such as SIFT and shape

context has had some recent success, such as from Andriluka et al. [ARS09]. The

nonparametric kernel technique of Sapp et al. [SJT10] that uses exemplar ap-

pearances directly and performs competitively on recent benchmarks. Recently,

the Histogram of Oriented Gradient feature of Dalal and Triggs [DT05] have

been used with reasonable success in the discriminative compositional models of

Girshick et al. [GFM11], and Yang and Ramanan [YR11].

An alternative approach for appearance modeling, motivated primarily from

techniques used in full-body pedestrian detection, is to use a set of templates to

represent humans in typical poses in a sliding-window framework such as from

Mohan et al. [MPP01] and Viola et al. [VJS05]. Early techniques that used

this template driven approach could not explicitly recover pose geometry, or

generalize well to arbitrary poses. Despite lying dormant for many years, the

idea of using multiple templates has seen a resurgence recently with the advent of
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modern machine learning techniques. Many current techniques are incorporating

large template dictionaries into a pose recovery framework such as the Poselet

technique of Bourdev and Malik [BM09].

The use of image-specific background models to improve human pose esti-

mation is an idea that has been revisited many times in recent literature. An

iterative learning scheme for CRF appearance models was presented in [Ram06],

which incrementally refines a generic part model using image-specific appearance

evidence. The work of [FJZ08] utilizes a greedy search space reduction strategy

by computing GrabCut segmentations from the bounding boxes produced by a

generic upper body detector. Most similar to our approach is the work of [JE09],

which efficiently learns a local pixel-based color segmentation model for each pro-

posed part location. Our model, by comparison, uses a global image segmentation

as a reference distribution to compute part-based appearance features.

Geometry models controls the relative geometry between parts. The con-

stellation model of Fergus et al. [FPZ03] learns a full joint probability on all

parts, but at considerable computational expense. Such fully connected models,

as well as methods to improve the computing complexity, were also studied by

Bergtholdt et al. [BKS10]. These high-order models models often require large

amounts of training data, and are limited to a small number of parts to keep

the computation tractable. Factorizing the joint probability into a tree structure

imposes conditional independence assumptions between parts, but admits very

efficient inference, and was popularized largely by the Pictorial Structures work

of Felzenszwalb and Huttenlocher [FH05] and much of its derivative work such

as [SB06, EF09, ARS09]. While the tree model is efficient to compute, the in-

dependence assumptions can lead to a model that less constrained than the real

body. A class of “loopy” models attempts to strengthen the tree-model with non-
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tree constraints such that the impact on inference is not as great as the densely

connected models. The work in [RBM05] explores pairwise geometric constraints

between arbitrary parts using Gaussian relations. Similarly, [JM08] augments the

kinematic tree with logical exclusion relations to admit efficient inference. Tian

et al. Tran and Forsyth [TF10] explored using a conventional pictorial structures

model with fully connected relations at significant computational cost. [TZN12]

utilized mixtures of higher order geometries using a latent variable geometry

model to express more strongly constrained poses without adding considerable

computational cost.

Inference techniques are critical to the viability of any particular model,

as designing a model to capture a large number of constraints is relatively easy,

but learning and computing inference on that model is often very non-trivial.

As such, there is considerable variety in the techniques used within the litera-

ture of human pose recovery. The popularity of tree-models is largely due to the

efficiency of belief propagation [SIS03, ARS09] and distance transforms [FH05].

Data-driven Markov chain Monte Carlo was used in [LC04, ZLL06]. Many of

the techniques using loopy models were able to formulate inference in terms of

quadratic programming [RBM05], and dynamic programming [JM08]. The fully

connected model of [BKS10] employed A* heuristic search. Of the grammar tech-

niques, [AKP08, FM10] uses dynamic programming to search over the geometry

and productions, whereas [CZL07, CXL06] use a compositional bottom-up/top-

down search.

2.2 Datasets

UCLA pedestrian. We collect our own dataset of 400 high resolution pedes-

trians in walking and standing poses, from mostly frontal viewpoints (head not
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Figure 2.1: UCLA Pedestrian: our own dataset of 400 images of pedestrians in

walking and standing poses. The body geometry is annotated by 15 terminal

parts, and 7 nonterminal parts, for a total of 22 part annotations per body.

Figure 2.2: Buffy Stickmen: images from the television show Buffy the Vampire

Slayer in general pose. Annotations are for the upper body using 6 line segments.

turned backwards). Each image contains exactly one annotated body. Each of the

15 body parts are annotated with a truncated cone with high quality alignments.

Our model also uses 7 composite parts that have their geometries automatically

labeled by the annotation tool as a function of the constituent part geometries.

Each of the 22 total parts are also annotated by a label indicating its appearance

class, which is required by the grammar model. The dataset is illustrated in

figure 2.1.
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Figure 2.3: Pascal Stickmen: this data set contains images from the PASCAL

VOC 2008 of humans in general pose. Annotations are for the upper body using

6 line segments.

Buffy Stickmen. This dataset is collected from medium resolution still

frames of the television show Buffy the Vampire Slayer, and collected for the pose

recovery methods of Ferrari at al.[FJZ08] and Eichner et al.[EF09]. Each image

has exactly one human annotated for the upper body only, using 6 line segments

for the head, torso, upper and lower arms. The segments roughly correspond

to the lengths and centerlines of each part. The dataset consists of 748 images

containing a total of 4488 part annotations, illustrated in figure 2.2.

Pascal Stickmen. This dataset was collected as a supplement to “Buffy

Stickmen” by the same research group, and contains annotations of the same

format. The images are medium resolution and contain people in general pose

from the PASCAL VOC 2008 trainval release [EGW08]. The data set consists of

549 images containing a total of 3294 part annotations, illustrated in 2.3.

PARSE. This dataset was collected for the iterative image parsing method

of Ramanan[Ram06]. The dataset consists of low resolution images of the full

body, with poses predominantly involving athletic activity. Each image contains

exactly one annotation of the full body using 14 positions of the joints. There

are 305 images containing a total of 4270 joint annotations, illustrated in 2.4.
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Figure 2.4: PARSE: 305 full body images in general pose, annotated with 14

joint locations per body.

Figure 2.5: Leeds Sports Pose: 11,000 full body images in general pose, annotated

with 14 joint locations per body.
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Figure 2.6: H3D Poselets: full body images in general pose, annotated using a

3D model by matching the locations of 19 keypoints per body.

Leeds Sports Pose. This dataset was collecting using Amazon Mechanical

Turk by Johnson and Everingham [JE11]. The dataset is similar to PARSE, con-

taining low resolution images of the full body. Images in this dataset are closely

cropped, and collected from web search terms for “parkour”, “gymnastics”, and

“athletics”. Each image contains exactly one annotation of the full body using

14 positions of the joints, illustrated in 2.5.

Humans in 3D. This dataset was collected for the full body pose recovery

method of Bourdev and Malik[BM09]. Images are high resolution and contain full

body people in general pose. Annotations are performed using a tool to match

a 3D articulated model to the image using 19 keypoints for the joints and face.

There are 429 image containing a total of 8151 joint annotations, illustrated in

2.6.
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2.3 Evaluation

Throughout this work, the focus is on developing improved techniques for human

pose estimation. To estimate the quality of these techniques, there has been

several protocols adopted by the academic community in order to publish a fair

comparison between methods. In this section we review the motivations behind

these protocols, and describe the specific variants that are used in this work.

Many of the public human pose datasets are not consistent on which parts

to annotate, and how those annotations are represented. Some datasets only

annotate the upper-body, as opposed to the full-body. Some represent the body

as 14 parts to include the hands and feet, and some only use 10 parts. Given

one of these representations, we assume that each image is fully annotated with

every part, and there are no missing parts. Occluded or truncated, i.e. parts

that appear off the image frame, are still annotated using the best guess of the

annotator.

The part annotations are typically defined as a bone, parameterized by the

image coordinates of both endpoints. Parts that have multiple occurrences, such

as from the arms and legs, are designated left and right and annotated according

to some convention of left and right. Typically, the part on the right-most side of

the image is designated as the right part, as opposed to from the reference frame

of the subject in the image.

Any pose estimation algorithm must therefore output a set of bones that are

consistent with the body representation defined by the dataset. Each bone is

evaluated independently according to a localization criteria, and the localization

rate for each part is reported. This localization rate is coined as the Percentage

of Correctly estimate body Parts, or PCP by Eichner and Ferrari [EF09]. The
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overall performance of the algorithm is typically reported as the average PCP

across all parts.

This general approach leaves many ambiguities, however, that has spawned a

large number of variants that produce dramatically different performance num-

bers. Direct comparison with other techniques in the literature is therefore quite

difficult without a very specific specification of the protocol, or a common eval-

uation code base.

The main points of variation between evaluation protocols are summarized

below:

• Part detection criteria: typically the part is considered detected if the align-

ment of the bone endpoints are below a threshold. There are two main

variants for this, the first being that the average distance of the predicted

endpoints is less than some percentage of the ground-truth bone length, typ-

ically set to 0.5. The other common variant requires that both endpoints

are below the threshold by replacing the average with the max endpoint

distance.

• Human detection filtering : some test images may contain multiple people,

only one of which is annotated as the ground-truth. If the pose estimator

outputs the correct pose for the wrong person in this case, it will be counted

as a total failure. To address this, the pose estimator is asked to output a

large number of ranked poses. A bounding box of the full human is com-

puted as the envelope of all part boundaries, and the highest ranking pose

within some overlap criteria of the human boundary is selected to evaluate

against. A common overlap criteria is 50% intersection-over-union, com-

monly used by VOC [EGW08] for object detection. To further generalize

this, bounding boxes for all humans in the test images can be annotated, for
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which a detection rate can be computed from the ranked list of predicted

poses. The average PCP performance can then be scaled by the detection

rate to provide a measurement of both detection and localization.

• Short and zero-length parts : it is a common occurrence in human images for

a part to point directly into or away from the camera, effectively shortening

the bone length in the image to a very small length or even zero. In such a

case, in order to detect the part the predicted endpoints must be within half

of this length, forcing the prediction to nearly exactly match the ground-

truth. Conversely, for parts that are very long and narrow, such as an

arm parallel to the image plane, the prediction can be nowhere near the

ground-truth and will still be counted as correct. Part of this problem

lies in the omission of the part width to compute the localization quality.

Because only the centerlines of the bones are annotated, this remains an

outstanding problem for which an appreciable number of zero-length parts

are essentially undetectable according to this criteria.

• Object symmetry : each dataset chooses its own convention for how to an-

notate left and right parts, typically corresponding to the left and right

sides of the image. As such, if a prediction localizes the body correctly but

reverses left with right, then all the limb parts will be scored as failures.

This is particularly troubling given that roughly 80% of the total score

is composed from the limb scores. Furthermore, every public benchmark

dataset we have encountered exhibits an appreciable number of annotation

inconsistencies, where the left-right labeling of parts does not match their

own convention. Such inconsistencies arbitrarily corrupts whatever perfor-

mance measure being used, and remains an outstanding problem with these

datasets.
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• Occluded parts: parts that are occluded, or not visible because they appear

off the edge of the image are still annotated and evaluated against. This is

particularly problematic because the location of the non-visible part anno-

tations have been hallucinated by the annotator. The true part may be in

a number of viable locations, but it is obviously uncertain. Nevertheless,

the algorithm must still predict the precise locations of these human anno-

tations and is penalized if wrong. Many of the current benchmark datasets

include a binary flag to indicate if a part or a joint is occluded, but none of

the standard performance evaluations currently use them.

We define two variants of the part detection criteria. The first requires that

the average distance between the predicted and ground-truth endpoints are below

a threshold t, typically defined to be half the length of the ground-truth part.

Let dp and dd be the endpoint distance between the prediction and ground-truth

for the proximal and distal sides respectively. The part is therefore considered

correctly localized if dp+dd
2

< t. The second variant is stricter by requiring both

endpoint distances to be below the threshold, and is written max(dp, dd) < t.

Following the convention described in [YR11], all evaluations will be one of

the following four protocols:

• single-avg : selects the single best parse for the image, and compares each

part against the ground truth by thresholding the average endpoint dis-

tance.

• single-both: selects the single best parse for the image, and compares each

part against the ground truth by thresholding the maximum endpoint dis-

tance.

• match-avg : this is the most common case in the literature, and we assume
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this variant is used unless mentioned otherwise. This protocol uses the

maximal bounding rectangle of all the ground truth parts to select the

highest scoring parse from a list of n-best parses output by the inference

algorithm being evaluated. After selecting the parse, each part is evaluated

against the ground truth by thresholding the average endpoint distance.

• match-both: this protocol uses the same selection criteria as match-avg, but

compares each part using the maximum endpoint distance.
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CHAPTER 3

Grammar Models for Articulated Structures

3.1 Overview

Our articulated grammar model provides a unified probabilistic framework to de-

compose the body into modular parts while maintaining the articulated kinemat-

ics between parts. The grammar takes the form of an AND-OR graph, denoted

as

G = (S, P, s0) (3.1)

where S is a set of symbols (OR-nodes), P is a set of productions (AND-nodes),

and s0 is the root symbol. Each production p ∈ P is a rule that decomposes a

symbol into a set of constituent symbols, and takes the form (α→ β, t, R). The

symbol α ∈ S is referred to as the proximal symbol, whereas the set of constituent

symbols β ⊂ S is referred to as the distal symbols. t is an appearance template

for α. R is a set of probabilistic relations that control the spatial geometry and

compatibility between α and β, and thus expresses contextual information about

neighboring parts.

In cognitive neuroscience, the human visual cortex is largely treated as a

bottom-up process motivated by experimental observations of local spatial fil-

tering in V1, and grouping processes in V2 and onward to identify contours and

structures. Computational theories to emulate this process have been largely pop-

25



ularized by Marr [Mar82]. In contrast, there is also evidence for a large number

of backwards connections in the visual context, implying some form of top-down

process occurring in the brain before all the bottom-up signals have been fully

processed. Furthermore, experiments have shown that humans can still make

reasonable predictions for objects of such low resolution that any smaller parts

are indiscernible. Models for this top-down process, such as from Bar [Bar03]

provide a complementary explanation of both processes working simultaneously.

Conventional grammars, such as those used for text, only connect to the data

through the terminal symbols. The productions, in this case, only control the

arrangement of terminals in the sentence and have no direct representation in

the data. The nonterminal symbols in this case, such as a noun phrase or prepo-

sitional phrase, are abstractions in the sense that they can only be observed by

looking for their components in a bottom-up fashion. Images and the objects

within them, on the other hand, are subject to the phenomenon of scale where

certain parts are only observable above some corresponding level of resolution.

In this light, the grammar models we develop are intended to represent both

low-level/high-resolution features that can be combined using the compositional

machinery of the grammar, as well as high-level/low-resolution features that com-

plement these compositions. For this reason, our grammar makes no distinction

between terminal and nonterminal symbols, except for the fact that terminal sym-

bols have no productions to further decompose them. Instead, each production

p ∈ P represents a part at some resolution, and contains an appearance tem-

plate t that represents the features of that part. Terminal parts are effectively

represented as productions with no children, which take the form (α → ∅, t, R).

Therefore, every part in the grammar, both terminal and nonterminal, defines a

template to connect to the image data, as well as a set of contextual relations R

specific to that part and its children, if any.
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Part reconfigurability is naturally represented in the grammar by the presence

of multiple production rules that expand the same symbol. A part can also

behave both like a nonterminal and terminal by having productions with and

without children respectively. Similarly, productions can be defined with the

same set of child symbols, but different relations R that specify distinct geometric

configurations of the same child parts.

Part sharing occurs whenever two or more productions use the same distal

symbol. The advantages of part sharing are threefold: (i) sharing parts reduces

the total number of parts in the grammar, directly reducing the number of pa-

rameters that must be learned in the model, (ii) sharing inherently provides more

examples to train on for that part, and (iii) computation during learning and in-

ference are reduced. Furthermore, both terminal and nonterminal symbols can

be shared, resulting in a potentially large reduction in both model complexity

and computational time.

We represent the grammar as a graphical structure called an AND-OR graph,

an example of which is shown in Figure 3.1. At the root is the OR-node symbol

s0. Each OR-node is represented as a set of all productions (AND-nodes) that

expand it, in other words, each of these AND-node productions have the OR-node

symbol as the left-hand-side (α) symbol. The OR-nodes therefore enumerate all

the different variants that can be interchanged with that part. In the case of the

human body, it is common for the variants within an OR-node to have the same

child structure, but different appearance and contextual relations.

The language of the grammar is the set of all parses the grammar can generate.

A parse is derived by traversing the grammar G top-down from the root symbol

s0 and selecting a single AND-node production for every OR-node. This process

then continues to the children of the selected production. For each production
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Figure 3.1: AND-OR graph example for the upper-body. OR-nodes are the

symbols of the grammar, and represented as a collection of AND-nodes. The

AND-nodes are the productions of the grammar, and contain edges that connect

to their constituent child (OR-node) symbols. It is common for all the AND-nodes

within an OR-node to have the same child structure, in which case only a single

AND-node is expanded for clarity.

selected in this process, a parse node v is instantiated. Edges are then placed

between instantiated parse nodes according to the contextual relations R from

their corresponding production. The state of each parse node is parameterized

as

v = (ω, x, y, θ, `, s). (3.2)

The variable ω indexes the production used to instantiate the parse node. The

remaining variables are for position x, y, orientation θ, aspect ratio `, and scale

s.

Parses from the grammar are referred to as parse graphs due to the relation

edges between the nodes, and denoted as pg. Each production that gets selected

during a derivation instantiates a unique parse node into the parse graph. If the

grammar uses shared parts, and the productions for these parts are used multiple
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times in a derivation, a parse node with its own unique state variables is created

for each selection.

In this work, we use two different types of grammatical constructions to model

the human body, called phrase-structured grammars and dependency grammars.

These constructions relate to how parts are composed, and consequently how

their geometries are related. These grammars are described in Section 3.3.1 and

3.3.2 respectively.

3.2 Probability model

Let V (pg) be the set of parse nodes, and E(pg) be the set of edges for parse graph

pg. For each production (α → β, t, R) selected in the derivation, the relations

in R are constrained to be only between the parse nodes corresponding to the

α and β symbols. This locality of relations defines a neighborhood system of

the grammar, and each production can be viewed as a self-contained sub-model

between a part and its constituents.

The probability on parses is formulated in a Bayesian framework, which com-

putes the joint posterior as the product of a likelihood and prior probability, and

equivalently represented as the following Gibbs distribution

p(pg|I;λ) ∝ p(pg;λ)p(I|pg;λ) =
1

Z
exp{−E(pg;λ)− E(I|pg;λ)}. (3.3)

The model parameters are denoted as λ. The energy functions E are further de-

composed into a set of potential function. These potentials constrain all aspects

of the grammar, from the selection of productions during derivation, to the geo-

metric compatibility between parts, to the image appearance likelihood of parts.

The choice and particular forms for these potential functions vary on the design

and intention of the grammar, which we explore in the following chapters. In the
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Figure 3.2: Contextual relations are specific to each AND-node production, and

define constraints both on the selection frequency of the productions, as well as

the geometry of the parts.

following sections, we describe the role for each type of potential. An illustration

for many of these potential functions is shown in Figure 3.2.

3.2.1 Parse node geometric state representation

To simply computations over part states and avoid the complications of learning

probability distributions over continuous orientations, the full geometric state of

each parse node x, y, θ, `, s is discretized. Position x, y is typically subsampled

to 25% of the image dimensions. θ are discrete orientations, typically using 24

increments spanning all angles over 2π. The number of scales s and aspect ratios

` are typically limited to 5.

The image is computed on a pyramid of logarithmic scales such that there

are a predefined number of levels per octave, typically 6. Part scales all reference

these image level scales. To assess the scale of a parsed object, a reference symbol

(OR-node) is used as a representative part for which all other parts in the parse

are relative to. This is typically the root symbol of the grammar, and its width is

used as a normalizing factor for all other parts so as not to be affected by changes

in the aspect ratio of the root part.
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Each symbol (OR-node) in the grammar has a canonical width associated

with it, obtained from the training annotations. For a given ground truth parse

annotation, the width for all parts are measured as a percentage of the reference

parse node width. The canonical width of each symbol is then computed as the

mean relative width among all observations for that symbol. Similarly, a set of

discrete aspect ratios for each symbol are selected to span the range of observed

aspect ratios for that symbol. These aspect ratios are then stored in a table, and

indexed by the variable `.

3.2.2 Context-free potentials

A derivation from stochastic context-free grammars (SCFG), such as those used

for text language modeling, is a random branching process parameterized by

selection frequencies for each production. For example, in the trivial grammar

defined by the two productions:

0.7 V P → V NP

0.3 V P → V NP NP

The symbol V P is expanded using the first production with frequency 0.7, and the

second production with frequency 0.3. The production frequencies are normalized

to sum to one for all productions that expand the same symbol. They represent

the conditional probabilities that a production is used given the occurrence of

the symbol in a parse.

This context-free production frequency is incorporated into the image gram-

mar by adding a potential function on the variables ω for each parse node. In

the case of the text grammar above, the production frequency is now written

p(ω = 1) = 0.7, where ω = 1 indicates that the first production in the list was
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used to expand the symbol. The potential function is written with the convention

f c1, indicating that it is a unary contextual potential, and defined as

f c1(pg;λ) =
∑

v∈V (pg)

ψ(ω;λ). (3.4)

Where ψ(ω;λ) is a function that scores the production selection ω using model

parameters λ. The specific form of these potential functions will be described in

detail in the following chapters.

3.2.3 Context-sensitive potentials

The context-free assumption that all productions are selected independently is

overly naive, and doesn’t allow for correlations and compatibilities between the

productions of neighboring parts to be captured by the grammar. For exam-

ple, in the grammar illustrated in Figure 3.2, there are two torso productions

for side-view and front-view, and four productions for head corresponding to

left/right/front/back viewpoints. Any combination of these two parts is possi-

ble, as the body can often be facing one way and looking another. There is

likely strong correlation, however, that the side-view torso favors the left/right

head, and the front-view torso favors the front/back head. A SCFG grammar

will select the productions for these two symbols independently, however, without

taking into account their correlation.

The context-sensitive potential captures these dependencies by using pairwise

co-occurrence probabilities between parse node pairs:

f c2(pg;λ) =
∑

(vi,vj)∈E(pg)

ψ(ωi, ωj;λ). (3.5)
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distal partproximal part

distal joint proximal joint

Figure 3.3: Each part in an articulated pair are referred to as a proximal and

distal part, each defining a distal and proximal joint location between them where

they connect.

3.2.4 Kinematic potentials

The kinematic relations control the geometric arrangement of parts relative to

each other. Most prominently in the case of articulated bodies in the requirement

that connected parts revolve around a common hinge point. The human body

naturally forms a kinematic tree, for which we arbitrarily define the root part to

be the torso. We refer to a proximal joint as a connection point to a part closer

to the kinematic root of the body, and a distal joint as one that connects a part

further away from the kinematic root and toward the extremities.

The kinematic relation connecting a pair of articulated parts therefore defines

two joint locations, one for each part. Each joint location is defined in the relative

coordinate system of its corresponding part. When referencing an articulated

pair, the parts are identified as a proximal and distal part, each connected through

their distal and proximal joints respectively, as shown in Figure 3.3.

The locations of these joint positions are not specified in the annotations, and

must be inferred. Annotations are far from perfect, however, and will rarely be

consistent with a rigid articulated body such that the distal and proximal joint

locations between each articulated pair always coincide at the same location.
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Instead, parts must be “dislocated” slightly away from their joints to match the

annotations. The best joint locations are therefore computed such as to minimize

the amount of dislocation.

The articulated joints are defined in the relative coordinate system of their

part, and normalized by the length and width of that part. Let x, y, θ be the

center location and orientation of a part, J (l), J (w) be the relative joint location in

the length and width dimension of the part respectively, and l, w be the annotated

length and width of an oriented part. Under rigid articulation, the displacement

of the part locations can be computed purely from their orientations and relative

joint locations:

xj − xi = Jlili cos(θi)− Jwiwi sin(θi)− Jlj lj cos(θj) + Jwjwj sin(θj)

yj − yi = Jlili sin(θi) + Jwiwi cos(θi)− Jlj lj sin(θj)− Jwjwj cos(θj). (3.6)

The part displacements xj−xi and yj−yi are linear functions of the four unknown

relative joint parameters (Jli , Jwi , Jlj , Jwj). This is expressed as the linear system

d = XJ for displacements d, joint locations J , and factors X from equation 3.6.

With N training examples, the residuals d is a 2N ×1 column vector, J is a 4×1

column vector, and X is a 2N × 4 matrix. The joint locations that minimize the

square residuals can then be computed by least squares as J = (X>X)−1(X>d).

The kinematic relations between a pair of articulated parts has five com-

ponents: orientation, aspect ratio, relative orientation, relative scale, and joint

displacement. The orientation and aspect ratios are the prior probabilities for

each part independently, and written as

f g1(pg;λ) =
∑

v∈V (pg)

(ψ(θ;λ) + ψ(`;λ)) . (3.7)

Relative orientation over k discrete orientations between θi and θj is computed

as dθ := (θj − θi) mod k. Relative scale is similarly denoted ds := sj − si. To
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compute the joint displacement, we first define a coordinate transformation to

the joint locations of both proximal and distal parts:

Tdist(v) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 J
(l)
dist · l

J
(w)
dist · w


Tprox(v) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 J
(l)
prox · l

J
(w)
prox · w

 (3.8)

The length and width l, w of parse node v can be computed from the appropriate

table lookups using the aspect ratio and scale states `, s. The joint displacements

between a pair of articulated parts (vi, vj) can now be computed as the difference

of transformed locations from the perspective of both proximal and distal parts

dL := Tprox(vj)− Tdist(vi). The potential function for the relative states is then

f g2(pg;λ) =
∑

(vi,vj)∈E(pg)

(ψ(dθ;λ) + ψ(ds;λ) + ψ(dL;λ)) (3.9)

3.2.5 Appearance potentials

The appearance potentials represent the image likelihood of the parse. As in most

part-based models, this likelihood is decomposed into a product of conditionally

independent part likelihoods given their geometries.

fa1(I|pg;λ) =
∑

v∈V (pg)

ψ(I|v;λ) (3.10)

Multiple types of appearance models are used throughout this work, and the

specifics behind how each of them represent and compute the image likelihood will

be described in detail in the following chapters for generative and discriminative

models.
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3.3 Grammar relational structure

For a given production (α→ β, t, R), the symbol α is referred to as the root part,

and the set of symbols β as the child parts. For many types of text grammars,

the “geometry” of the root part of a production is the start and end position

of the part in the sentence, which is computed as a deterministic function of its

child parts. In the image grammar case, however, the geometry of each part is

represented as an oriented rectangle, for which there is typically not a meaningful

deterministic function to compute the root part geometry from its children. For

example, how should the geometry of the upper-body part in Figure 3.4(b) change

when the arms are outstretched? Instead, the same probabilistic relations that

are used to constrain the child parts are also used to constrain the root part to

one or more of its children.

When designing a grammar for articulated bodies, there are multiple strate-

gies for decomposing parts into subparts, and consequently placing relations be-

tween those parts. This must all be done while preserving the articulated kine-

matics of the body. We describe two approaches that have a direct analogy to

grammar types used in linguistics: phrase-structured grammars, and dependency

grammars.

3.3.1 Phrase-structured grammars

Phrase-structured grammars, also known as constituency grammars, use the

grammar productions to define phrase structure rules. In text grammars, these

phrases contain their constituents in that they explicitly represent a contiguous

fragment of the sentence consisting of the recursive union of all its children. This

type of decomposition naturally encodes a coarse-to-fine or whole-to-part nature
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this parse shows the constituency relation

D A N

NP

VP

S

NP

VD N

text phrase-structure parsea image phrase-structure parseb

Figure 3.4: Parses from a phrase-structured grammar for both text and im-

ages. Phrase-structured grammars represent a coarse-to-fine decomposition of

parts, unlike dependency grammars that organizes the data into a flat depen-

dency structure.

of the data.

As illustrated in Figure 3.4(a), the structure of the text sentence in a phrase-

structured grammar is composed from noun phrases and verb phrases. Similarly,

in Figure 3.4(b), the image regions of the upper body is composed from regions

containing the full arms, which are in turn composed from the regions of each

arm segment. Note that each parse node is represented with an appearance and

rectangular geometry, even for the non-terminal nodes in this case.

While the phrase-structure of the productions defines how a part decomposes

into child parts, we must also specify which parts to place relations between. We

first consider the case where all the relations are strictly between the root part and

a child part, commonly referred to as a star-structured part model, and illustrated

in Figure 3.5(a). This type of relation structure is the most popular among hierar-

chical part-based models in computer vision due to its simplicity, but problematic

for the case of articulated objects. By forcing the child parts to be articulated

with their coarser-level parent leads to a very unnatural motion of the body. For
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kinematic-tree full connectivitystar-structure

geometry of parts are constrained
only between articulated pairsto the production root between parts within a production

arbitrarily complex constraintsgeometry of parts are constrained

a b c

Figure 3.5: Comparison of relation structures for a production. In the

phrase-structure grammar, each child part is related to the production root re-

sulting in a star-model in the simplest case (a) and a fully connected model in

the most complex case (c).

example, consider the arm production (arm → {upper-arm, lower-arm, hand}).

In this case, a child part such as the hand would hinge off of the coarser-level

arm part, independent of where the upper or lower arm parts are, leading to a

very unnatural model that does not preserve the articulated motion of the arm.

Alternatively, as shown in Figure 3.5(b) relations can be placed among the

children according to their natural kinematics. In this case, the root part must

still be related to at least one child part. We usually choose to place this rela-

tion between the root part and the most proximal child part, as these two parts

typically have the strongest geometric coupling. For example, the root part in

the arm production is likely well aligned with the shoulder joint location, as is

the upper-arm child part. By placing a relation between these two parts enforces

that the articulated chain of child parts is essentially connected at the shoulder

with the coarse-level part that summarizes the whole arm as a single rectangle.

Another way to view this construction is that the production summarizes the
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ensemble of multiple articulated child parts into a single coarse-level articulated

part, for which they have a single joint location in common determined by which

child part this root-to-child relation is placed on. This relational structure is

guaranteed to form a tree, which has particular importance in keeping the com-

putational complexity of learning and inference tractable.

Using the kinematic-tree structure for the relations is the simplest viable

choice, in that it uses the fewest number of relations while preserving the body

kinematics. Lastly, we consider the most general case where relations are placed

between arbitrary pairs of part, leading to the fully-connected model in Fig-

ure 3.5(c). This model is the most expressive, but at a considerable cost to

inference and learning due to the cycles that are added in the relation graph.

3.3.2 Dependency grammars

Unlike phrase-structured grammars which use productions to define containment

of their children, dependency grammars use production rules to declare depen-

dency relations between parts. For text dependency grammars, the verb is typ-

ically the central element of the sentence and all other words are linked either

directly or indirectly to the verb, illustrated by the example parse in Figure 3.6(a).

One of the key differences between dependency grammars and phrase-structured

grammars is that there is no abstraction in the way that phrase-structured gram-

mars summarize a collection of parts into a single abstract non-terminal part. In

a dependency grammar, there is a one-to-one correspondence between the parse

nodes and the elements of the data. To illustrate this, every parse node of the

dependency parse in Figure 3.6(a) has a dotted line linking it directly to a word,

whereas only terminal parse nodes in the phrase-structure parse in Figure 3.4(a)

have such a link. In the image case, only one parse node can represent an im-
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this parse shows the dependency relation

D
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D A

N

text dependency parsea image dependency parseb

Figure 3.6: Parses from a dependency grammar for both text and images. The

dependency grammar does not summarize compositions into coarse-level parts

like phrase-structure grammars. Instead, each parse node directly links to an

element of the data.

age region corresponding to a part, whereas in the phrase-structure case multiple

parse nodes from different productions can represent the same image region at

multiple levels of resolutions.

A parse for an image dependency grammar is illustrated in Figure 3.6(b),

where the dependencies are consistent with the kinematic relations between parts.

One of the obvious differences between the phrase-structure grammar in the im-

age case is the lack of coarse-to-fine representation. Furthermore, the relational

structure of the dependency grammar always relates the child directly to the

production root (e.g. star-structured) simplifying the design over using a phrase-

structure grammar.
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CHAPTER 4

Generative Methods

In this chapter we explore learning the posterior distribution of the grammar

model as an explicit factorization of likelihood and prior models, and trained

via maximum likelihood. First we explore training the prior model inspired by

the minimax entropy principle of Zhu et al. [ZM06]. For the image appearance

models, we use a generative deformable template model based on the Active

Basis model of Wu et al. [WSF07] and Hybrid Image Template model of Si and

Zhu [SZ12]. We demonstrate the model through random sampling, as well with

parsing performance evaluation. We also explore discriminative re-estimation of

the model, ambiguity reasoning through cluster sampling, and an approximate

inference algorithm based on n-best reranking.

4.1 Learning the prior through maximum entropy

In a Bayesian framework where the posterior probability has been factorized into

a prior p(pg;λ) and likelihood p(I|pg;λ), the prior is often called the shape model

and represents the distribution over parse labels. The probability on parse labels

includes the probability of deriving the parse from the grammar, as well as the

probability on the geometric arrangement of the resulting parse nodes.

We assume we have a set of observed images and their corresponding ground-
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truth parses, drawn from an underlying target distribution f :

Dobs = {(Iobsi , pgobsi ) : i = 1, 2, . . . , N} ∼ f(I, pg) (4.1)

The language of the grammar, which is the set of every valid parse, is denoted

Ωpg, and the domain of all images is ΩI .

Motivated by the models described by Zhu et al. [ZWM98, ZM06], the gram-

mar probability model can be derived from the maximum entropy principle under

the constraints of matching relation statistics from the training data. Let φ(pg)

be a marginal statistic of a parse pg. These statistics measure properties of the

object for which we wish to constrain, which includes the selection frequency of

each production, and the geometric arrangements of the parse nodes.

We wish to learn the model such that the expectation of the statistics φ(pg)

match those from the underlying target distribution f . Let Ω be the set of all

probability distributions that match these constraints:

Ω = {p(pg;λ)|Ep[φi(pg)] = µobsi , i = 1, . . . , k} (4.2)

µobsi =
1

N

∑
pg∈Dobs

φi(pg) (4.3)

The maximum entropy (ME) principle embodies Occom’s razor, and states

that the best distribution to select from this family is the simplest one. In other

words, given that all distributions in the family match the constraints we are

interested in, the one with maximum entropy is the most unprejudiced among

them. The ME distribution is defined as:

p∗(pg;λ) = arg max

{
−
∫
p(pg) log p(pg)dpg

}
(4.4)

42



subject to

Ep[φi(pg)] =

∫
φi(pg)p(pg)dpg = µi, i = 1...k (4.5)∫

p(pg)dx = 1. (4.6)

The first constraint matches the relation statistics, the second ensures that the

probability distribution is well formed by summing to one. Solving for p∗(pg) by

the method of Lagrange multipliers leads to the following distribution

p(pg;λ) =
1

Z(λ)
exp

{
−

k∑
i=1

λ(i)(φi(pg))

}
. (4.7)

For the set of general relations, there is no closed form for the functions λ(i)(·).

As a result, we treat the potential functions non-parametrically and rewrite the

model as

p(pg;λ) =
1

Z(λ)
exp

{
−

k∑
i=1

〈λ(i), hi(pg)〉

}
. (4.8)

The parameter λ(i) is now a vector with an element for every bin in histogram

hi(pg) populated from the responses from φi(pg).

To estimate the parameters λ, we minimize the KL-divergence between our

model p and the underlying distribution f , across the domain of all parse graphs

Ωpg,

p∗ = arg minKL(f ||p) = arg min
∑

pg∈Ωpg

f(pg) log
f(pg)

p(pg;λ)
. (4.9)

This is equivalent to the maximum likelihood estimation for parameters λ:

λ∗ = arg max
λ

N∑
i=1

log p(pgi;λ). (4.10)

given a set of N observed parse graphs pgi. The parameters λ are optimized

using the stochastic gradient method of [ZWM98]. In maximizing the likelihood

function in equation 4.10 leads to the following implicit constraint:

Ep(pg;λ)[hi(pg)] = hobsi . (4.11)
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This constraint states that the expectations of the histograms for each marginal

statistic must match the histograms of the observed parses. For modeling ar-

ticulated structures, we introduce a set of these constraints into the model, cor-

responding to the potentials defined in Chapter 3. The log-likelihood of Equa-

tion 4.10 is then written to include these constraints:

L(λ) =
N∑
i=1

log p(pgi;λ) = −
k∑
i=1

〈λ(i), hi(pg)〉 − logZ(λ) (4.12)

=f c1(pg;λ) + f c2(pg;λ) + f g1(pg;λ) + f g2(pg;λ)− logZ(λ) (4.13)

f c1(pg;λ) =−
∑

v∈V (pg)

〈λ(c1), h(c1)(ω)〉 (4.14)

f c2(pg;λ) =−
∑

(vi,vj)∈V (pg)

〈λ(c2), h(c2)(ωi, ωj)〉 (4.15)

f g1(pg;λ) =−
∑

v∈V (pg)

〈λ(θ), h(θ)(θ)〉 (4.16)

f g2(pg;λ) =−
∑

(vi,vj)∈E(pg)

〈λ(dθ), h(dθ)(dθ)〉+ 〈λ(ds), h(ds)(sj − si)〉+ 〈λ(dL), h(dL)(dL)〉

(4.17)

λ∗ = arg max
λ
L(λ) (4.18)

To control the selection of productions when generating a parse from the

grammar, we wish to match the selection frequency, as well as the co-occurrence

frequency of the productions with the observed data. Each parse node in a parse

uses the state variable ω to indicate which production was used to generate the

node. In the AND-OR notation, the variable ω can be viewed as the index of

the AND-node contained within the OR-node being expanded. Let s(v) indicate

the OR-node symbol of parse node v, and n(v) indicate the total number of

AND-node choices to expand s(v). For each production z ∈ P , we compute the

frequency the production is selected within the parse, relative to the total number

of choices available from the enclosing OR-node symbol. This relative frequency
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is computed as

h(c1,obs)(z) =

∑
pg∈Dobs #(ω = z|pg)∑

p∈S(z)

∑
pg∈Dobs #(ω = p|pg)

, ∀z ∈ P. (4.19)

The function #(ω = i|pg) counts the number of occurrences where symbol v is

rewritten with production (ω = i) in the parse pg. The expression p ∈ S(z)

refers to the set of production choices from the OR-node symbol expanded by

production z. Similarly, we can measure the relative co-occurrence frequency of

production pairs as follows:

h(c2,obs)(zi, zj) =

∑
pg∈Dobs #(ωi = zi, ωj = zj|pg)∑

(pi,pj)∈(S(zi),S(zj))

∑
pg∈Dobs #(ωi = pi, ωj = pj|pg)

, ∀(zi, zj) ∈ P × P.

(4.20)

The productions zi and zj can be viewed as parent and child parse nodes in the

parse graph, respectively.

Next are the geometry statistics. Given that a parse has been derived from the

grammar, we wish to measure important properties about the geometric states

(x, y, θ, `, s) of all the parse nodes. For all relation edges in the parse graph

E(pg), we assume that the relative geometries dθ, ds, dL are computed as defined

in Section 3.2.4. The statistics we measure correspond to part orientation θ,

relative orientation between articulated pairs dθ, relative scale ds, and relative

joint displacement dL.

The structure of the geometric relations are not limited to a Markov-tree

structure, such as those illustrated in Figure 3.5(a,b). A Markov random field,

as illustrated in Figure 3.5(c), can be defined by introducing additional pairwise

relations into the geometry potential f g2 in Equation 4.18.

The parameters λ are obtained by maximum likelihood estimation by setting

dL(λ)
dλ

= 0 and solving for λ by Lagrange multipliers. As shown in Chi and

Geman [CG98] and Zhu et al. [ZM06], the maximum-likelihood solution for the
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Algorithm 1 Parameter estimation of the geometry model

1: procedure LearnMaxEnt(grammar G, dataset Dobs = {pgobsi , i =

1, . . . , N}, stopping condition ε)

2: Compute histograms hobsi from Dobs for each geometry relation.

3: Initialize each λi to a zero-vector.

4: repeat

5: Sample a collection of parse graphs Dsyn = {pgsynj , j = 1, . . . ,M} from

G using the current model parameters λ(t).

6: Compute histograms hsyni from Dsyn for each relation.

7: λ
(t+1)
i ← λ

(t)
i · η(hsyni − hobsi ) for each relation.

8: until maxi |hsyni − hobsi | < ε

9: return λ

10: end procedure

context-free parameters are very simply and intuitively the same as the observed

production frequencies:

λ(c1)(z) = − log h(c1,obs)(z). (4.21)

Similarly, the context-sensitive parameters are as follows:

λ(c2)(zi, zj) = − log

(
h(c2,obs)(zi, zj)

h(c1,obs)(zi)h(c1,obs)(zj)

)
. (4.22)

The context-sensitive terms encode the compatibility of neighboring produc-

tion variables. Incorporating the context-sensitive potentials in this form to the

context-free model effectively makes the production selection a first-order Markov

process.

The remaining parameters on the geometric relations have no analytical so-

lution, but can be estimated by stochastic gradients. The stochastic gradient

method requires random sampling of the model to generate a set of synthetic
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parses. Relation statistics are then measured on these synthesized samples and

compared with the observed statistics to incrementally update the λ parame-

ters. This process begins by sampling an ensemble of parse graphs Dsyn from the

grammar G using the context-free and context-sensitive parameters estimated

from the observed parses Dobs. The geometric configuration (x, y, θ, `, s) of the

parse nodes for each of these synthetic parses are then sampled from the model

using the current estimates of parameters λ. The marginal statistics of the syn-

thesized ensemble are then compared against the observed parses to compute a

stochastic gradient, which is used to update the model parameters. The algo-

rithm continues to sample and update until the statistics between Dsyn and Dobs

match sufficiently closely. This algorithm is outlined in Algorithm 1. An intuitive

explanation of this algorithm is analysis-by-synthesis, in which the model repeat-

edly makes predictions on what the data should look like, identifies any mistakes

from looking at actual observed data, and uses this information to improve the

model and make better predictions in the next iteration.

Sampling is performed using sequential Monte Carlo and Gibbs sampling.

First, a parse graph pg is derived from the grammar G by recursively selecting

a production for every OR-node symbol, starting from the root symbol s0. Pro-

ductions are selected with probability hc1,obs(z) for some production z among all

available choices from the OR-node. For each production chosen, the geometric

state (x, y, θ, `, s) for each of the production children are conditionally sampled

along the dimensions of dθ, ds and dL using Gibbs sampling. If the graph of ge-

ometric relations has cycles, the Gibbs sampling step is repeated multiple times

for each production. For the start symbol, the geometry is Gibbs sampled using

only the unary terms f g1. The sampling and maximum entropy learning is illus-

trated for the first 5 iterations in Figure 4.1. Lastly, the normalizing constant

Z(λ) is dependent only on the grammar and constant for all parse graphs, and is
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iteration samples histogram matching

Figure 4.1: The first 6 iterations of the parameter estimation algorithm used to

train the prior model. On the left are the first five poses from the synthesized

ensemble. On the right are marginal histograms from the first six relations. Black

bars in the histograms correspond to the observed frequencies in the training data.

Red bars correspond to the synthesized statistics from the sampled ensemble. The

green bars represent the parameter vector λ for each relation, locally normalized

to fit within the plot. After each iteration, the synthesized and observed statistics

match more closely, and the corresponding pose samples begin to look more

representative of the observed data.
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therefore omitted from the total energy because it does not affect the sampling,

learning, or minimization during inference.

4.2 Image likelihood models

The image likelihood term p(I|pg;λ), often called the appearance model, rep-

resents the conditional probability of the image pixels given a parse label. A

common assumption among part-based models is to assume that the appear-

ance of each part occurs independently of each other, given their geometry. This

assumption allows us to factorize the parse likelihood into individual part likeli-

hoods that are conditionally independent:

p(I|pg) = q(IΛpg
)
∏
v∈pg

p(IΛv |v). (4.23)

The image region occupied by parse node v is denoted IΛv , and the image region

not occupied by any of the parse nodes is IΛpg
and also called the background

region. Recall the productions of our grammar are defined as (α→ β, t, R). The

appearance template t defines the part appearance model for the α symbol of the

production.

In this section we explore part likelihood models based on the Active Basis

model of Wu et. al [WSF07] and Hybrid Image Template model of Si and Zhu

[SZ12].

4.2.1 Active Basis and Hybrid Image Templates

The Active Basis model [WSF07] is a generative image appearance model moti-

vated by sparse coding. The model takes the form of a deformable template of

basis elements that combine to reconstruct the image region in a linear-additive
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Figure 4.2: Gabor basis filters at various locations, orientations, and scales.

manner:

IΛ =
k∑
i=1

ciBi + U. (4.24)

The template consists of k basis elements Bi with weight coefficients ci. U is

the unexplained residual image. The basis elements consist of Gabor filters at

various locations, orientations, and scales, illustrated in Figure 4.2. One of the

distinguishing properties of the Active Basis model is that each basis elements

can perturb locally by shifting in position or orientation, allowing the template

to deform slightly to compensate for structural variabilities in the appearance of

parts.

Let {IΛm ,m = 1, . . . ,M} be the collection of aligned image regions corre-

sponding to all M observations of some production ω, and q(Im) be a refer-

ence background distribution. Active Basis learns the template by incrementally

adding basis elements using a shared sketch algorithm that combines matching

pursuit (Mallat and Zhang [MZ93]) with projection pursuit (Friedman [Fri87]).

The shared sketch algorithm incrementally adds a basis element to the model

and updates the density function. At each iteration, matching pursuit is used to
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select a Gabor basis element Bi that best explains the unexplained residual U .

The model is then updated using projection pursuit by applying the pooled den-

sity of the basis coefficient pi(c) from {cm,i,m = 1, . . . ,M} and using a density

substitution scheme. The resulting model after n iterations is:

p(IΛm|v) = q(Im)
n∏
i=1

pi(cm,i|v)

q(cm,i)
. (4.25)

The Hybrid Image Template (HIT) model of Si and Zhu [SZ12] generalizes

Active Basis by expanding the dictionary of basis elements to include arbitrary

image features, called prototypes. One of the limitations of Active Basis is that it

only focuses on the edge structure, or sketch, of objects and is unable to represent

or explain regions that are flat, textured, or colored. The HIT model explicitly

incorporates features to represent these heterogeneous image phenomena, and is

learned in a similar feature pursuit framework.

The dictionary of feature prototypes consists of each feature type (such as

edge, color, texture, etc.) at each location and orientation (if relevant) in the

part image patch IΛ. Let Bk be a given prototype from the dictionary, and

rk(IΛ) be a scalar response from the prototype applied to the image. The specific

prototypes used and their response calculations will be discussed further on.

By the maximum entropy principle, we wish to learn a distribution p(IΛm|v)

that approximates the underlying true part appearance distribution f(IΛ|v) by

minimizing the Kullback-Leibler divergence between the two distributionsKL(f ||p)

under the constraints that the model matches the observed statistics Ep[rk] =

Ef [rk]. A reference distribution q is used as the initial model, and each iteration

of adding a basis element brings the model closer to the underlying distribution

q = p0 → p1 → ... → pk ∼ f . This is a constrained optimization problem to

minimize the KL between each increment, while satisfying the constraints that
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the expectations of the prototype responses match:

p∗k = arg minKL(pk||pk−1), s.t. Epk [rk] = Ef [rk]. (4.26)

The solution of this optimization is the following log-linear model

pk(IΛ|v) = q(IΛ) exp

{
k∑
i=1

λiri(IΛi)− log zi

}
(4.27)

with Lagrange multipliers λi for each appearance prototype ri. zi is the nor-

malizing constant for each prototype, and can be computed empirically from

background image patches Ibg,Λ

zi ≈
1

N

N∑
j=1

exp{λiri(Ibg,Λj)} (4.28)

At each iteration, an appearance prototype is added to the model such that the

KL(pk||pk−1) is maximized between the model with and without the feature.

This is defined as the information gain of the appearance prototype, and can be

approximated from the positive examples:

IG(rk) = KL(pk||pk−1) = λkEf [rk]− log zk ≈ λk
1

M

M∑
i=1

rk(IΛi)− log zk (4.29)

To learn the template, a dictionary is populated to contain a large number

of candidate appearance prototypes at all positions in the template. At each

iteration, the prototype with maximum information gain is selected and added

to the template. The learning process terminates when the information gain

falls below a prescribed threshold. This framework assumes that each selected

prototype is uncorrelated with the prototypes already in the template. To enforce

this, once a prototype is selected from the dictionary, all correlated prototypes

in the dictionary are removed. The HIT learning algorithm is summarized in

Algorithm 2.
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Next, we describe how responses are computed for each of the prototypes used

in our model.

Sketch: sketch prototypes are represented by Gabor basis functions Bx,y,θ

at specific locations and orientations. The Gabor response is computed by con-

volving the basis with the image. The location and orientation of each basis

are also allowed to perturb over a local neighborhood to give some invariance to

small deformation. A sigmoid function S is used to saturate extreme responses,

and IΛi is a small image patch enclosing the basis and its deformation range.The

response is therefore calculated as a maximum over these deformations:

rskt(IΛi) = max
δx,δy,δθ

S(||〈IΛi , Bx+δx,y+δy,θ+δθ〉||2). (4.30)

Texture: regions of medium contrast are considered texture. Again using

Gabor filters at multiple orientations, we construct a texture prototype t by

transforming each bin of the response histogram with a normal distribution favor

a medium contrast response. The dictionary of texture prototypes is populated by

pooling the training data and computing a candidate prototype at every location.

Finally, the response is computed by taking the intersection of the transformed

histograms:

rtex(IΛi) =

|t|∑
i=1

min(ti, t
′
i(IΛi)). (4.31)

Flat: regions of essentially no contrast are considered flat. Similar to the

texture case, a bank of Gabor filters is used at multiple orientations. The response

is computed by taking the maximum response over all orientations and applying

a reverse sigmoid transformation to favor a near-zero contrast. This result is

averaged over a local neighborhood, and the local max is taken to produce the

final result. Using S ′ as the reverse sigmoid and avg() as the average over the
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local neighborhood:

rflt(IΛi) = max
δx,δy

avg
(

max
θ
S ′(||〈IΛi , Bx+δx,y+δy,θ〉||2)

)
. (4.32)

Color primitives: color prototypes consist of 2d histograms pooled from

a fixed patch location in the training images. The color space used for the his-

tograms is (h, s) from a HSV cylinder. We compute a pooled prototype histogram

h′i over all the training data, and compute the response of the prototype against

an observed image patch by using the histogram intersection:

rclr(IΛi) =

|h|∑
i=1

min(hi, h
′
i(IΛi)). (4.33)

The cumulative information gains are illustrated for all templates in our model

in figure 4.12. The colors represent the relative proportion each prototype con-

tributes for that part. All part templates in our model are trained with two

sketch prototypes, one at a fine scale (typically a 9x9 Gabor) and one at a course

scale (17x17).

4.2.2 Background features

Both Active Basis and HIT are designed around the pursuit and modeling of fea-

tures that occur more commonly in the foreground (e.g. the appearance of a part

or object), than the background of natural images. This can be problematic when

attempting to detect parts or objects in cluttered background, as is commonly

the case for human detection and pose estimation. For example, the template

for an arm segment predominantly contains sketch elements that form a pair of

parallel lines. Such parallel lines can be found commonly in natural images, such

as in images of brick walls or hatched fences. In these cases, the background

appearances contain additional features, notably in the form of edges orthogonal
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Algorithm 2 Learning the HIT appearance model

1: procedure LearnHIT(v, IΛi , i = 1..M, Ibg,Λj , j = 1..N)

2: Av ← ∅ . initialize template to empty set

3: Populate dictionary ∆ with appearance prototypes at all orientations and

locations

4: for each prototype r ∈ ∆ do

5: Compute information gain IG(r) using positive images

6: end for

7: repeat

8: Select rk with maximum information gain

9: Compute λk and zk using negative images

10: Av = Av ∪ rk . add feature rk to template

11: Inhibit all prototypes in ∆ correlated with rk

12: until IG(rk) < threshold

13: end procedure
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Figure 4.3: Some feature prototypes are more representative of the background

than the foreground. The distribution of edge responses over different levels of

orientation maxing is shown for a set of natural background images. dθ indicates

the range of orientations each of the edge features are maximized over. Features

at high maxing are informative at low means which correspond to a negative

lambda, making them features of the background. The use of these features

allows the model to better discriminate against the background by identifying

locations and orientations that should be absent of features. The information

gain map on the bottom is computed from the mean feature responses of all the

torso parts, the feature with the least maxing is in white, the most maxing is in

red. The template on the right is learned by sequentially selecting the location

and orientation of either the foreground or background feature corresponding to

the highest information gain.
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to the foreground edges that would occur rarely in a true foreground example.

These features are what we refer to as background features, in that their presence

should reduce the likelihood that an image patch belongs to a positive example.

An HIT template containing background features should therefore describe

what the part should look like, as well as what it should not look like. In that

light, we make the following two modifications to the HIT model. First, each

feature prototype can define its own local activity (e.g. deformation range). For

features such as the Gabor, multiple instances are placed in the dictionary, each

with a different local activity range in both orientation and location. Second,

the value of the λ parameter of the exponential model for a given prototype is

allowed to be negative.

To illustrate this, we consider the Gabor feature of Active Basis, and vary the

local activity in orientation only. Orientations are discretized to 24 increments, so

the first prototype is simply the Gabor response, the second prototype computes

the max response over ±1 orientation increment, the third prototype maxes over

±2 orientation increments and so forth. In Figure 4.3, the response histograms

for the resulting prototype responses over a large set of natural images. As

we max over a larger number of orientations, the mean response shifts higher.

Consequently, information gain occurs at a lower mean response for prototypes

with larger activity. At the bottom of Figure 4.3, for a collection of torso regions,

the information gain maps are for each orientation of the Gabor with no activity in

white, and the Gabor with activity over ±5 orientations in red. From these maps

we can see that the prototype with large activity has considerable information

in the orthogonal orientation from the prototype with no activity. After running

the pursuit algorithm, the resulting template is shown on the bottom-right of

Figure 4.3, where elements with negative λ’s are drawn in red.
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4.2.3 Discriminative parameter re-estimation

The parameters of the HIT template are learned under a generative framework

to minimize reconstruction error on image intensities. While this approach ac-

curately explains the image data, classification and detection performance tend

to fall behind discriminative models trained to minimize classification error. Mo-

tivated from the work in [Zha10], we use logistic regression to discriminatively

re-estimate the parameters of the HIT model. The logistic regression model takes

the form

p(y|x) =
1

1 + exp{−y(λTx + b)}
(4.34)

and is trained by minimizing the following regularized negative log-likelihood

C
l∑

i=1

log(1 + exp{−y(λTxi + b)}) +
1

2
λTλ. (4.35)

y represents the class ±1, l is the number of training examples, b is the bias, and

C is a penalty parameter. The feature vector x consist of the HIT responses for all

k prototypes in the template (ri,0, ri,1, ..., ri,k). Once λ and b are estimated using

this criteria, the λ’s can be substituted directly back into the HIT model, and

the bias can be distributed evenly across all k features by setting each z = b/k.

The improvement of this parameter reestimation on classification of test data

is shown in figure 4.4 for several parts that are particularly difficult to detect. This

approach allows us to learn a sparse representation through a generative model,

and then refine the parameters of the model to improve classification rate. The

optimizer from [FCH08] is used to estimate the logistic regression parameters

using the penalty parameter C = .001 for all parts.

The likelihood of the full parse is computed by substituting the HIT part
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Figure 4.4: HIT performance gain from parameter re-estimation by logistic re-

gression. ROC curves are shown for several selected part productions with MLE

estimation in blue and LR estimation in red.
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likelihood in Equation 4.27 into the parse likelihood in Equation 4.23 to get

p(I|pg) = q(IΛpg
)
∏

v∈V (pg)

q(IΛi) exp

{
k∑
j=1

λjrj(IΛj)− log zj

}

= q(I)
∏

v∈V (pg)

exp

{
k∑
j=1

λjrj(IΛj)− log zj

}
. (4.36)

Because q(I) is constant for any given image I, it does not affect the energy

minimization during inference and is dropped.

4.3 Parsing

The parsing task is to find the parse with the maximal posterior probability, also

called the Viterbi parse in linguistics:

pg∗ = arg max
pg

p(pg|I). (4.37)

In this section, we present several inference strategies for parsing images. The

problem can be equivalently stated as energy minimization, or score maximization

where a parse score is simply the negative energy.

We assume the grammar model is phrase-structured, with general relations

as illustrated in Figure 3.5. This is the most general case, which encompasses

phrase-structured articulated-tree grammars as well as dependency grammars.

Due to the hierarchical nature of the grammar, the score can be formulated

recursively. We then present a best-first search strategy, an approximation using

dynamic programming (DP), and finally an adjustment using a n-best reranking

approach.
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4.3.1 Recursive scoring of parses

We refer to the parse score as the negative energy, or equivalently the log-

probability. The model has a log-linear form, for which the score can be computed

as a sum of potential function responses. The grammar naturally encodes a mod-

ular structure of sub-models, for which we can compute the score recursively as

a function of smaller sub-parse scores. Let s(v, I) denote the cumulative score of

parse node v, which includes all parse nodes below v. Furthermore, let C(v) de-

note the set of children of v. In other words, given the production (α→ β) used

to rewrite some OR-node symbol α into parse node v, C(v) is the set of parse

nodes rewritten by some other productions corresponding to the set of OR-node

symbols β. We omit the normalization constant in the score, as it does not affect

the maximization in Equation 4.37. Let the the parse node v0 denote the root

part, corresponding to the start symbol s0 for some parse graph pg. The score of

the root part is therefore proportional to the log-probability

log p(pg|I) ∝ s(v0, I). (4.38)
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and can be decomposed as

s(pg|I) =fa(pg|I;λ) + f c1(pg;λ) + f c2(pg;λ) + f g1(pg;λ) + f g2(pg;λ) (4.39)

s(v, I) =g(v, I) +

child sub-score︷ ︸︸ ︷∑
vj∈C(v)

s(vj, I) (4.40)

g(v, I) =

appearance︷ ︸︸ ︷
sa(v, I) +

grammar︷ ︸︸ ︷
sc1(v) +

∑
vj∈C(v)

sc2(v, vj) +

geometry︷ ︸︸ ︷
sg1(v) +

∑
vj∈C(v)

+sg2(v, vj)

(4.41)

sc1(v) =〈λ(c1), h(c1)(ω)〉 (4.42)

sc2(v, vj) =〈λ(c2), h(c2)(ω, ωj)〉 (4.43)

sg1(v) =〈λ(θ), h(θ)(θ)〉 (4.44)

sg2(v, vj) =〈λ(dθ), h(dθ)(dθ)〉+ 〈λ(ds), h(ds)(sj − si)〉+ 〈λ(dL), h(dL)(dL)〉 (4.45)

(4.46)

The inference problem is to find the parse node v0 rooted at the start symbol

s0 for grammar G and parameters λ with maximal score given an image I,

v∗0 = arg max
v0

s(v0, I). (4.47)

To recover the full parse graph of the optimal parse v0, we can recursively back-

track through each local arg max to recover the child parse states for every parent.

4.3.2 Best-first parsing

This approach is motivated by heuristic search introduced by Pearl [Pea84], the

best-first chart parsing of natural language from Charniak et al.[CGJ98], as well

as the top-down/bottom-up image parsing framework of Wu and Zhu [WZ11].

The basic idea is to maintain a table, or chart, of the best scoring sub-solutions
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Algorithm 3 Greedy Best-First Inference

1: procedure ParseBFS(I,G, N) . Beam size N

2: Run detection for each production

3: Apply non-maximal suppression among all proposals, and populate beams

for each symbol with top N detections

4: repeat

5: Select the highest scoring proposal ρ among all beams

6: if ρ is missing parent then

7: Run Bottom-up(ρ)

8: end if

9: if ρ is missing children then

10: for each unexpanded child v of ρ do

11: Run Top-down(v)

12: end for

13: end if

14: if ρ is a complete parse graph then

15: Remove ρ from its beam and place into candidate solution list

16: Remove all parts overlapping with ρ from all beams

17: end if

18: until no further progress can be made

19: return candidate solution list for root part of G

20: end procedure
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and systematically update these records in a best-first manner. Instead of tables,

we use lists of the top scoring sub-solutions, one for each symbol. These proposal

lists are called the beams, and have length N . The best-first order is determined

by finding the locally optimal extension of a sub-solution by localizing its children

in a top-down manner, or by localizing its parent and siblings in a bottom-up

manner.

Each sub-solution in the list is a proposal, and represents a partial parse

graph. Once a proposal is fully expanded, meaning it contains a full parse tree,

it is placed in a list of candidate solutions, and all proposals in the beams that

overlap with the solution are removed. Proposals in each list are ordered by

descending score. Because each of the sub-solutions in a beam may be at multiple

levels of expansion, their scores are not directly comparable due to the exclusion

of terms from the missing parts. In combinatorial search such as A∗, this missing

parts would be estimated by an admissible heuristic. For the image parsing case,

no such heuristic is is readily computable, and instead a simple approximation is

made by replacing each missing term with the best observed response from the

training data. This generally causes the sub-solution scores to decrease as they

are expanded further, promoting the algorithm to expand the most promising

candidates until they are surpassed by alternate proposals in the beam.

The algorithm begins by running part detection for all parts in the model.

For each production appearance template, a sliding-window detector is run over

all relevant locations, orientations, and scales. The threshold used for detection

is determined such that there were no false negatives in the training data, or in

other words none of the true positives were missed. Non-maximal suppression is

run on the result, and the proposals are sorted by descending score. The top N

proposals are then placed into the beam for that part type. These are the best
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parse proposals without considering any context.

For each iteration of the algorithm, the top scoring proposal is selected among

all the beams. A top-down search is then performed on all unexpanded child

nodes, and a bottom-up search is performed on the root node. These two opera-

tions are described as follows, for a selected proposal ρ:

Top-down(ρ): during training, we record a maximum bounding area that

each child part can appear in, using the coordinate frame of the parent part.

For each non-terminal leaf node in ρ, the form of the node is already known,

and all combinations of child proposals to that node within these bounding areas

are searched from their corresponding beams. The composition with the highest

increase in score when added to ρ is kept and the score of ρ is updated. If no

composition could be found because either beams were either empty or no parts

were present in the bounding areas, then stochastic sampling is used to predict

the locations of the children. Using the same Gibbs sampler used to train the

geometry model, conditioned samples are drawn for the derivation and geometry

of the children with the parent geometry fixed. After a fixed number of iterations,

the best scoring sample is selected and added to ρ. Examples of conditioned

sampling is shown in figure 4.14, except in this case only the immediate children

of some leaf node of ρ is sampled.

Bottom-up(ρ): this operation involves identifying a parent and correspond-

ing siblings for ρ of compatible productions and geometries. The search along

the beams proceeds in exactly the same manner as the top-down search by iden-

tifying the maximal bounding area for each sibling and parent part and selecting

the composition with maximal score increase to ρ. The one difference in this case

is that ρ may appear in multiple locations within the parent production. For

example, an arm may appear at the left or right side of the body. When this is
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the case, compositions for ρ at all valid child positions of the parent production

must also be searched. Again, if no composition can be found, the best compo-

sition found through conditioned sampling is used. Once a parent and siblings

are found, the score for the new parent is computed and added to its respective

beam, and ρ is removed from its beam.

The major drawback to this best-first beam search approach to parsing is that

it is greedy by nature, and subject to getting stuck in local minima. This is true

particularly when the parts models are very ambiguous, causing a large number

of part candidates to be in the search beam. Secondly, the use of such large

beams will significantly impact the computational time needed by the algorithm.

To address some of these drawbacks, we explore an alternative approach using

dynamic programming, which is described in the following section.

4.3.3 Dynamic programming

The basis of any dynamic programming algorithm is to solve a complex problem

by breaking it down into a series of simple problems. The natural sub-problem

in the grammar case is finding the optimal configuration of parts for each pro-

duction. More specifically, given a production (α → β, t, R), and a parse node

for the α symbol, we must search of all possible productions to expand the β

symbols, as well as search over the full joint space of their geometries:

s∗(v, I) = max
v1,v2,...,v|β|

g(v, I) + s∗(v1, I) + s∗(v2, I) + · · ·+ s∗(v|β|, I) (4.48)

where g(v, I) are the local potentials within the production from Equation 4.41.

In the most general case of a phrase-structured grammar with general rela-

tions, finding the globally optimal parse involves searching over the product space

of |β| parse nodes for each production, which is immense. As an example, using
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a 100 × 100 image, with 10 part orientations, 5 aspect ratios, 5 scales, |β| = 3

children in the production, and 5 productions for each child symbol, the total

number of configurations to search over is (1002 · 10 · 5 · 5 · 5)3 ≈ 1021, for each

production.

To reduce this search space to a tractable number, we first restrict the relations

in the model to form a tree topology. This enforces conditional independence

between the children, and reduces the search space from being exponential in

the number of children to linear. These topologies can be either the star or

tree structures in Figure 3.5(a,b) for the phrase-structure grammar case, or the

dependency grammar case in Figure 3.6, which is always tree structured.

The most general of these cases is the phrase-structured articulated tree case,

which has two types of hierarchies. The first is the natural phrase decomposition

of the grammar, for which the production is the basic unit of computation of

finding the optimal children for every parent state. Within each production,

however, is a tree-structured sub-model, for which the children are connected in

their own articulated hierarchy. The dynamic programming algorithm, therefore,

has two nested operations – one for optimizing the parts within a production,

and one for assembling the optimal productions into an optimal parse.

To distinguish between these two hierarchies, for some production ω and parse

node v we define Rω(v) to be the relational children of the part, which are the

parts on the distal side of v that are connected to v by some relation. Fig-

ure 3.5(b), illustrates these relations. The set of relational children are not to

be confused by the set of production children C(v), which is the set of all parse

nodes formed by the production, except for the production root.

Each production in the grammar is essentially a self-contained sub-model, in

that it defines its own appearance model for the root part of the production, as
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well as all the contextual relations between the root and children. All of these

relations are therefore conditioned on the production. For example, assume we

have multiple full-body productions that decompose into upper-body and lower-

body. Furthermore, assume there are multiple productions that also expand the

upper-body and lower-body parts into smaller constituents. The co-occurrence

compatibility between the upper-body and lower-body production selections will

therefore be dependent on which full-body production is used, because that re-

lation is defined only for the full-body production. We therefore write the score

function with a subscript sω(v, I) to indicate the production that is providing

the relations from which the score is being computed on. This is important to

disambiguate because parts can participate in multiple productions, i.e. a child

part can be the root part of some other production.

The maximization over all parses can then be generally written

s∗ω(v, I) =
∑

vi∈Rω(v)

max
ωi,xi,yi,θi,si

[
h(vi, I) + h(v, vi, I) + s∗ωi(vi) + s∗ω(vi)

]
. (4.49)

where h(v, I) are the unary score terms, and h(v, vi, I) are the pairwise contextual

score terms. The term s∗ωi(vi) is the optimal score for the root part of production

ωi at state (xi, yi, θi, si, `i), whereas s∗ω(vi) is the optimal sub-tree score of parts

within the same production ω. We can think of s∗ωi(vi) as being the optimal

compositional appearance score, incorporating the optimal appearance and ge-

ometries of its constituents. s∗ω(vi) on the other hand is the articulated sub-tree

score, incorporating the optimal scores of all its distal parts into the score.

Like all dynamic programming algorithms, we maintain a score map for every

part state containing the optimal sub-scores over each relation being optimized

over. If we ensure that the maximization over one variable does not depend on

the remaining variables, the maximization can be simplified by optimizing over

each variable separately and updating the sub-score map. For example, let (x, y)
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be our state space, f(x, y) is the optimal sub-score map, and g(·) are the relations

we wish to optimize over:

f(xi, yi) = max
xj ,yj

(g(xi, xj) + g(yi, yj) + f(xj, yj)). (4.50)

We can max over each variable separately, and sum the incremental results into

the sub-score map:

f(xi, yi) = max
xj

(
g(xi, xj) + max

yj
(g(yi, yj) + f(xj, yj, zj))

)
(4.51)

= max
xj

(g(xi, xj) + fy(xi, yj)) (4.52)

where fy is the sub-score map with the optimal g(yi, yj) added in.

After substituting in all the potential functions, the maximization equation is

s∗ω(v, I) =
∑

vi∈Rω(v)

max
ωi,xi,yi,θi,si

[sa(v, I) + 〈λ(c1), h(c1)(ωi)〉+ 〈λ(θ), h(θ)(θi)〉 (4.53)

+ 〈λ(c2), h(c2)(ω, ωi)〉+ 〈λ(dθ), h(dθ)(dθ)〉 (4.54)

+ 〈λ(ds), h(ds)(si − s)〉+ 〈λ(dL), h(dL)(dL)〉 (4.55)

+ s∗ωi(vi) + s∗ω(vi)]. (4.56)

Note that these optimal sub-scores do not include any of the unary terms for their

root part. Therefore, to compute the globally optimal parse score, we maximize

over the unary terms plus the optimal sub-scores for each production of the root

grammar symbol. Let ωs01 , . . . , ω
s0
k be the set of all k productions that can rewrite

the start symbol s0. The globally optimal parse score can then be computed as

s∗(v, I) = max
ω=ω

s0
1 ...ω

s0
k

[
s∗ωi + 〈λ(c1), h(c1)(ωi)〉+ 〈λ(θ), h(θ)(θi)〉

]
. (4.57)

The primary concern in computing the maximization over relations is the po-

tential term for dL, which is the joint displacement between articulated parts.
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Maximizing this term requires searching over every image location of the dis-

tal part, for every image location of the proximal part. The number of image

locations can be quite large, and because this operation has O(n2) complexity,

the computation time for large images can easily become intractable. If we can

maximize over this relation more efficiently, then the remaining variables have

small enough cardinalities to be maximized in quadratic time without consider-

able impact on actual computing time.

To more efficiently compute the maximization over joint displacement, we

first make an approximation to the potential function. In its current form, this

potential function can be viewed as a piecewise-constant function mapping. In

order to exploit a more efficient computation, we first approximate this function

mapping with a Gaussian. The displacement should be zero-mean, as the most

common part configuration should articulate exactly around the joint, and has

the following form:

〈λ(dL), h(dL)(dL)〉 ≈ (dL)>Σ−1(dL) + b. (4.58)

The displacement dL := Tprox(vj)− Tdist(vi) is a 2-dimensional vector represent-

ing the difference of transformed joint coordinates computed from the proximal

and distal part states using Equation 3.8. Because the prior distribution is un-

normalized, there is an unknown normalization constant b contributed by the

factor. This quadratic function (dL)>Σ−1(dL) + b is simply fit to best match the

piecewise constant function mapping λ(dL) using least-squares. We further sim-

plify this approximation by assuming that the covariance Σ is diagonal, in which

case we can fit the distribution in the x and y dimensions independently. The

parameters λ(dL) are now just two numbers, representing the inverse variance in
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x and y, and denoted λ(dx2) and λ(dy2) respectively

Σ−1 =

 λ(dx2) 0

0 λ(dy2)

 . (4.59)

The maximization can now be written

s∗ω(v, I) =
∑

vi∈Rω(v)

max
ωi,xi,yi,θi,si

[sa(v, I) + 〈λ(c1), h(c1)(ωi)〉+ 〈λ(θ), h(θ)(θi)〉 (4.60)

+ 〈λ(c2), h(c2)(ω, ωi)〉+ 〈λ(dθ), h(dθ)(dθ)〉 (4.61)

+ 〈λ(ds), h(ds)(si − s)〉 (4.62)

+ (λ(dx2) · dx2) + (λ(dy2) · dy2) + s∗ωi(vi) + s∗ω(vi)].

(4.63)

The terms dx2 and dy2 are the squared x and y components of dL.

The generalized distance transform, introduced by Felzenszwalb and Hutten-

locher [FH04], is an algorithm for maximizing an expression of the form

f(xi, yi) = max
xj ,yj

[
(xj − xi)2 + (yj − yi)2 + h(xj, yj)

]
(4.64)

where h(xj, yj) is an arbitrary function. The simplified Gaussian joint displace-

ment terms in the score (Equation 4.63) has the same form, where the optimal

sub-score maps s∗ωi(vi) + s∗ω(vi) are rolled into h(xj, yj). These maps are over the

full set of variables, and not just x and y, but this doesn’t affect the optimization

due to the decomposition of max operations in Equation 4.52. The principal

advantage of using the generalized distance transform to compute this maximiza-

tion is that it produces the same solution as dynamic programming, but runs in

linear (O(n)) time as opposed to the quadratic complexity (O(n2)) of dynamic

programming. Computing exact solutions by maximizing over the relations can

now be computed with enough efficiency to be practical.
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Algorithm 4 Dynamic programming algorithm for finding maximal scoring

parse. Let x = (x, y, θ, s, `).

1: procedure ParseDP(grammar G, image I)

2: score← −∞

3: MaxOr(s0)

4: for each production ω that can rewrite the root symbol s0 do

5: score→ max(maxxMω, score)

6: end for

7: return score . replace max with arg max to compute pg∗

8: end procedure

The final dynamic programming algorithm can be viewed as a chart parser

similar to those used in natural language, as well as a message-passing architec-

ture used in graphical models. The chart parsing aspect handles the optimization

over production selection, which is the grammatical aspect of the model. The

message-passing component handles the optimization over the relations, which

is the geometric aspect of the model. Like any dynamic programming algo-

rithm, score maps are recursively computed to contain optimal scores of all sub-

configurations, using the optimal score maps of even smaller sub-configurations.

The algorithm maintains a score map for each production ω, denoted Mω.

These maps form the chart, and are used to find the optimal production for a

given geometric state. Similarly, Mr is the score map for some relation r defined

within a production. These maps are equivalent to a factor state map in a message

passing architecture. Both maps are 5-dimensional to represent the entire state

space (x, y, θ, s, `) of their respective parse nodes. For the production maps, these

maps store the optimal score for a sub-parse starting from that production for

each possible geometry. For the relations maps, the scores represent the optimal
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Algorithm 5 Dynamic programming algorithm for finding maximal scoring

parse. Let x = (x, y, θ, s, `).

1: procedure MaxAND(production ω)

2: if Mω already exists then

3: return

4: end if

5: Mω(x)← sa(x, I) ∀x . Appearance score

6: for each child symbol s do

7: MaxOR(s)

8: end for

9: for each child relation r of the root part of ω do

10: MaxRelation(r)

11: Mω(x)← T−1
dist(Tprox(Mr(x))) ∀x

12: end for

13: Mω(x)←Mω(x) + 〈λ(c1), h(c1)(ωi)〉 ∀x

14: Mω(x)←Mω(x) + 〈λ(θ), h(θ)(θi)〉 ∀x

15: end procedure

16: procedure MaxOR(symbol s)

17: for each production ω that can rewrite s do

18: MaxAND(ω)

19: end for

20: end procedure
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Algorithm 6 Dynamic programming algorithm for finding maximal scoring

parses from AND node relations. Let x = (x, y, θ, s, `).

1: procedure MaxRelation(relation r)

2: for each child relation ri do

3: MaxRelation(ri)

4: end for

5: Mr(x)← −∞ ∀x

6: for each proximal production ωp compatible with r do

7: for each distal production ωd compatible with r do

8: Mtemp(x)←Mωd(Tprox(x)) ∀x

9: Mtemp(x) ← maxx′,y′ [(λ
(dx2) · dx2) + (λ(dy2) · dy2) +

Mtemp(x
′, y′, θ, s, `)] ∀x . Distance transform

10: Mtemp(x)← maxθ′ [〈λ(dθ), h(dθ)(dθ)〉+Mtemp(x, y, θ
′, s, `)] ∀x

11: Mtemp(x) ← maxs′ [〈λ(ds), h(ds)(s′ − s)〉 +

Mtemp(x, y, θ, s
′, `)] ∀(x, y, θ, s, `)

12: Mtemp(x)←Mtemp(x) + 〈λ(c2), h(c2)(ωp, ωd)〉 ∀x

13: Mr(x)← max(Mr(x),Mtemp(x)) ∀x

14: end for

15: end for

16: end procedure
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scores of the proximal part in the coordinate frame of the joint defined by the

relation. The transforms Tprox converts from the distal part reference frame to

the joint reference frame, whereas the inverse transform T−1
dist converts from the

joint reference frame to the proximal part reference frame. These transforms are

defined in Equation 3.8. Pseudocode for the dynamic programming algorithm is

shown in Algorithm 4, 5, and 6.

The results of the dynamic programming algorithm are visualized in Fig-

ure 4.5. The grammar used for this figure is visualized in Figure 4.7, which has

4 levels of depth. We run the dynamic programming algorithm four times, each

time including an additional level of depth in the grammar. At the top level,

only the root part is present and the score map consists purely of the full-body

appearance score. In this case, black represents high score, and white is low

score. This result is essentially equivalent to running a sliding window detector

of a single object template. We visualize the scores by filling the entire boundary

of the part, instead of just the center point in the score map. At the second level,

two parts for the upper and lower body are included. All pose configurations and

productions are searched, and the root score map is updated to reflect the best

production and corresponding geometries found for each location. As more parts

are introduced into the search process, the high level parts tend to become more

strongly localized. Similarly, for parts with very weak appearance such as hands

and lower arms, the algorithm is able to largely localize the true arm locations.

To retrieve the optimal parse graph pg∗, all max operators are replaced with

an arg max. In practice, we maintain a second table for every optimal score map,

which contains the backtrack to the state that produced that score. After all

dynamic programming algorithm has finished, any state in optimal production

score maps (e.g. charts) can be backtracked to recover the full parse or sub-parse.
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original image

full body

full body
upper body lower body

lower body

lower body
pelvis leg

pelvis leg
upper body

head torso arm

head torso arm
upper arm lower arm hand upper leg lower leg foot

upper body

full body

full body

Figure 4.5: Optimal score maps from dynamic programming. The DP algorithm

is run four times on the top image, each run including one more level of depth

from the AND-OR graph. Dark regions represent high scoring part locations,

and light regions represent low scores. As more context is added, score maps

for the higher level parts begin to rule out much of the image where no valid

compositions of parts could be found.
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4.3.4 Tree reranking algorithm

This approach is motivated by the rerank parser of Collins [CK00] as well as

Charniak and Johnson [CJ05], used for parsing natural language. The basic

observation is that there are considerable contextual relationships that are crucial

in detecting the correct parse of a sentence, but cannot be captured with simple

generative grammars such as a context-free grammar. Because the grammar

can parse very efficiently, however, it can easily generate a top-N list of parses

ranked by their probability. If the true parse can be in this top-N list with high

probability without N being too large, then a discriminative classifier can be

trained to re-score each parse such that reranking the list moves the true parse to

the top rank. Because all the proposals are already syntactically valid by virtue

of the grammar, the discriminative classifier only needs to focus on long range

contextual features.

For the image grammar case, we assume the case with general relations within

each production, illustrated in Figure 3.5(c). For this model, exact inference

is completely intractable and approximate inference can be arbitrarily bad on

difficult images. Instead, the model is simplified by enforcing a tree topology in

the relations to enable exact inference using the dynamic programming algorithm

described in the previous section. The tree topology is enforced by simply cutting

all the relation edges that are not consistent with the articulated tree, as in

Figure 3.5(b).

After running the dynamic programming algorithm on the image, the optimal

parse can be generated by recursively backtracking from the state with maximal

score. To compute the top-N list of parses, a local neighborhood around the

maximal state is suppressed by setting the scores in the map to −∞. The next-

best maximal parse is then recovered using the same process until N parses are

77



Algorithm 7 Dynamic programming algorithm with reranking. Let x =

(x, y, θ, s, `).

1: procedure MaxANDRerank(production ω)

2: if Mω already exists then

3: return

4: end if

5: MaxAND(ω)

6: RerankMap(ω)

7: end procedure

8: procedure RerankMap(production ω)

9: for each state x in score map Mω do

10: vω,x ← Backtrack(Mω,x) . Root node of the backtracked

sub-parse graph

11: Mω(x)← s(full)(vω,x, I) . Rescore using full model

12: end for

13: end procedure
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Figure 4.6: The top-5 parses are extracted from the dynamic programming al-

gorithm for arms, legs, upper and lower body, and full body. For low-level parts

such as arms and legs, the top proposals are often incorrect. Many of these

ambiguities become resolved by the contextual relations at higher levels of the

grammar.

generated, or all root states have been suppressed. Examples of the top-5 parses

and sub-parses extracted in this manner are shown in Figure 4.6.

Instead of utilizing a secondary discriminative classifier to rerank the top-N

parses, we simply replace the relation edges that were cut and recompute the

score using the full model. Furthermore, sub-solutions can also be reranked in

this manner, and this reranking strategy can be applied recursively to each sub-

computation in the dynamic programming algorithm as opposed to only at the

final result.

The reranked variant of the DP algorithm is summarized in Algorithm 7.

Each time an optimal score map for a production (AND-node) is computed, the
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entire map is rescored using the full model before returning. Every state in the

score map must be rescored in this manner, because the full map is consumed by

the previous recursion level. For this reason, we simply call the algorithm tree

reranking instead of N -best reranking.

This algorithm is another form of approximate inference, and relies on the

true solution somewhere in the DP maps where it can hopefully be picked up by

the reranking. If the true solution does not appear anywhere in the DP maps,

then it is impossible for this algorithm to recover it. For this reason, the tree

reranking strategy is more suited to rejecting false positives than identifying true

positives.

4.4 Parsing experiments

4.4.1 Grammar design

In the following experiments, we represent the human body as a coarse-to-fine

composition of 22 parts, which include parts for the hands, feet, and face. The

grammar we design is a phrase-structure grammar that composes the parts using

14 OR-node symbols due to part sharing, and a total of 104 AND-node produc-

tions. Figure 4.7 illustrates the AND-OR grammar structure, and visualizes a

subset of AND-node productions with icons portraying the part appearances they

represent.

4.4.2 Justification of OR-nodes for appearance

One of the main motivations for using grammatical models is to treat distinct

appearance variabilities between part instances as a selection from a set of sub-

models, in the same spirit as modeling a complex multimodal distribution as
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Figure 4.7: AND-OR grammar design used for experiments. The model repre-

sents a body with 22 parts, composed from 14 OR-node symbols and 104 AND-n-

ode productions. The set of icons inside each OR-node symbol represents some

of the varieties in appearance the model represents. The numbers on the top-left

of each OR-node represents the total number of AND-node productions that can

rewrite that symbol.
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a mixture model. For example, an arm segment has a significantly different

appearance depending on if it is bare, or clothed in a t-shirt or sweatshirt. Each of

these distinct part appearances become AND-node productions in the grammar,

and each get their own appearance representation as well as geometric relations

to their children.

To justify using the OR-node to break parts into a mixture of prototypical

appearances, we conduct an experiment to evaluate the classification performance

of the mixture model compared to the performance of each individual appearance

model. Only primitive parts that have no further decomposition are used. For this

experiment, we designate the probability of each appearance model as pand, and

the probability of the mixture combining all appearances for the same part as por.

The trained appearance template for each AND-node production is designated as

t. Using only the appearance terms and context-free grammar terms described

in the previous sections, these models can be written:

p(and)(IΛ|v) = q(IΛ) exp

 ∑
(Λi,ri,zi)∈t

λiri(IΛi)− log zi

 (4.65)

p(or)(IΛ|v) =
k∑
i=1

exp
{
〈λ(c1), h(c1)(ωi)〉

}
p

(and)
i (IΛ|v). (4.66)

For this experiment we use the UCLA pedestrian dataset shown in Figure 2.1,

which is split into 250 training examples and 150 testing examples. This experi-

ment is evaluating detection and not parsing, so the positive examples are aligned

and rescaled crops from the ground truth parts, and negative examples are ran-

domly cropped from a large set of natural background images that contain no

people. The appearance templates in this experiment are trained from the pos-

itive examples using the Active Basis model with re-weighted parameters from

logistic regression.

82



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

upper arm upper leg head

handlower leglower arm

Figure 4.8: OR-node classification performance: the top-left quadrant of the ROC

curves for several OR-node models. Blue lines indicate the performance of each

AND-node production evaluated against all parts of the same OR-node symbol.

The red line is the performance of the OR-node mixture model that combines all

the AND-node models together.
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Figure 4.9: Parse graph derived from the AND-OR graph grammar in Figure 4.7.

The positive and negative test examples are classified by each AND-node

model p(and) in isolation, as well as the mixture model p(or) ROC curves for a

selection of parts are shown in Figure 4.8. The blue curves are the AND-node

models, and the red curve is the combined OR-node mixture model. On many

classes such as the legs and arms, there is a considerable amount of separation

between the AND-node models, suggesting that each of these specific appearance

models do not generalize particularly well to the remainder of the dataset. The

OR-node mixture model, however, typically dominates all the AND-node models.

Therefore, by structuring the model to have interchangeable appearance models,

we observe a performance improvement in essentially all cases.

4.4.3 Parsing performance using Active Basis appearances

In this experiment we assume a fully-connected relational structure for each pro-

duction, as illustrated in Figure 3.5(c). The grammar is also context-free in this

case, which omits the f c2 potential terms from the score function. Parse graphs

derived from this grammar are illustrated in Figure 4.9. Each parse graph will

have the same topology of parse nodes and relations by design, even though they
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Figure 4.10: Comparison of part localization performance on the UCLA pedes-

trian dataset using best-first parsing, DP-Tree, and DP-Rerank parsers.

can be instantiated through different compositions of productions. This is be-

cause we ultimately evaluate on the localization performance of each primitive

part, which is assumed to be present in every parse.

The UCLA pedestrian dataset is divided into 250 training examples, and

150 testing examples. The appearance templates for the AND-node productions

are again trained using Active Basis with re-weighted parameters from logistic

regression. These templates therefore represent the edge structure of the parts,

but do not use the color or background features of the HIT model. The prior

model is trained using the stochastic gradients described in Section 4.1, and the

articulation potentials are re-fit to Gaussian distributions from Equation 4.58.

All three inference algorithms describe above are evaluated. The first is the

best-first parser, using the full model with cyclical relations. Next, we evaluate

the dynamic programming algorithm (DP-Tree) by simplifying the model to a

tree topology by cutting all the non-articulated edges. Last is the dynamic pro-

gramming algorithm with reranking (DP-Rerank) to correct for some of the errors

caused by the tree approximation. Part localization performance from each of

these algorithms is measured using the PCP criterion described in Section 2.3,

and plotted in Figure 4.10.
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Successes

Failures

Figure 4.11: Selected parsing results on the UCLA pedestrian dataset using the

DP-Rerank parser. The bottom row illustrates some typical failures, which in-

clude matching parts to background, double-counting of arm or leg regions, or

matching parts on the wrong edge.
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Dataset Method torso head u.leg l.leg foot u.arm l.arm hand avg

UCLA

Best-first 92.1 73.4 85.6 78.1 43.5 64.4 53.6 25.2 61.9

DP-Tree 94.6 80.2 93.2 82.7 21.6 79.9 50.4 27.3 62.3

DP-Rerank 98.9 85.6 94.6 82.0 18.7 85.3 51.8 31.7 65.2

Table 4.1: Comparison of PCP results at threshold=0.5 on the UCLA pedestrian

dataset using context-free grammar and Active Basis model.

arm face foot fullbody hand head la ll ua ulleg pelvis torso ubodylbody

sketch1
sketch2
texture
�at
color

Figure 4.12: Breakdown of information gain for each prototype and part. Each

bar represents the cumulative information gain for each template normalized by

template size. The colors represent the relative contribution of each prototype.

Two sketch prototypes are used for all templates, sketch1 is fine scale while

sketch2 is coarse scale.

Selected examples of the top scoring parse from the DP-Rerank algorithm

are shown in Figure 4.11. Typical failure modes often include matching limbs

to strong edges in the background, or the aligning the wrong edge of a part.

Another common failure is the so-called double-counting problem, where the

parser matches both legs or arms to the same image region.

4.4.4 Parsing performance using HIT appearances

This experiment utilizes the same grammar structure in Figure 4.7, but uses

the HIT model to represent the appearance of all the AND-node productions.
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Figure 4.13: Learned HIT appearance templates for 25 of the 110 productions

in the model. Each production corresponds to a prototypical part configuration

which captures a particular perceptual aspect of the part’s appearance such as

clothing, color, geometry, pose, and lighting. The color features are rendered by

sampling pixels from their corresponding prototype histograms.

88



Each HIT template consists of prototypes for sketch, texture, flat, and color.

The prototype dictionary includes two types of sketch features at low and high

resolution, as well as two variants of the sketch features with a low and high

amount of deformation activity. The sketch prototype with high deformation

activity serves as a background feature, described in Section 4.2.2. Unlike the

grammar used in the previous experiment, this model uses the full set of potential

terms, including the context-sensitive potentials.

The relational structure within the AND-node productions follows the kine-

matic tree, as visualized in Figure 3.5(b). Because the dynamic programming

algorithm can compute exact inference on any model with tree-structured rela-

tions, the best-first and DP-Rerank algorithms provide no benefit in this case.

Therefore, only the DP-Tree algorithm is used for this experiment.

We again use the UCLA pedestrian dataset, with the same 250 training and

150 testing examples used in the previous experiment. Examples of the learned

HIT templates are shown in Figure 4.13. Furthermore, the information gain

breakdown for each of the prototypes are shown for each AND-node production

in Figure 4.12.

One of the advantages of generative models is that we can synthesize random

samples to validate whether they indeed match our expectation of what the model

represents. Such samples are shown in Figure 4.14. The same sampler used to

train the model in Section 4.1 is used to synthesize the geometry. To render the

appearance, a bar at the appropriate position and orientation is drawn for each

sketch element, with the darkness proportional to the corresponding λ weight.

The colors are sampled from their corresponding HIT color prototype histograms.

We can observe the influence of the context-sensitive potentials in these samples,

as the clothing types between adjacent parts are largely consistent, e.g. an upper
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constrained samples

unconstrained samples

Figure 4.14: Random samples from the prior model are synthesized by sampling a

random parse graph from prior model, then sampling the appearance template for

each part. To illustrate the flexibility of the model, samples can be conditioned

on any set of parts. Constrained samples conditioned on fixed hand positions are

shown in (a), and unconditioned samples are shown in (b).

leg with shorts is never adjacent to a lower leg with pants. We can also condition

on any variables we like during the sampling, which is shown in the top row where

the hands have been locked in place.

Part localization performance results are shown in Table 4.2 and Figure 4.15.

There is a significant improvement on essentially every part over the context-free

case with Active Basis appearance models. Furthermore, we train the current

published state-of-art technique of Yang and Ramanan [YR11] on the same data

and demonstrate a 1.5% gain in average part localization performance.

We also evaluate the production prediction accuracy using a smaller gram-
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Figure 4.15: Part localization performance using context-sensitive phrase-struc-

tured grammar with HIT appearance models on the UCLA pedestrian dataset.

Dataset Method torso head u.leg l.leg foot u.arm l.arm hand avg

UCLA
[YR11] (2011) 100.0 100.0 97.5 83.9 - 95.1 57.7 - 86.9

DP-Tree 100.0 100.0 93.3 85.7 33.9 91.5 71.9 42.0 88.4

Table 4.2: Comparison of PCP results at threshold=0.5 on the UCLA pedestrian

dataset using context-sensitive grammar with HIT appearance models.

PARSE
torso head u.body

79.5 63.0 69.3

Table 4.3: Production prediction accuracy on the PARSE dataset.

UCLA
torso head u.arm l.arm u.leg l.leg full-body

36.5 67.7 55.6 68.5 51.0 75.0 70.0

Table 4.4: Production prediction accuracy on the UCLA pedestrian dataset.
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Successes

Failures

Figure 4.16: Selected parse results from the DP-Tree algorithm using a contex-

t-sensitive grammar and HIT appearance models. Localization of the arms and

legs are much improved from the context-free Active Basis experiment. Fail-

ure modes are still similar, with parts matched to background structures and

double-counting being the most common.
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Figure 4.17: Confusion matrix of production prediction accuracy on the PARSE

and UCLA pedestrian datasets.

mar containing a subset of productions from Figure 4.7. This evaluation is run

on both the PARSE [Ram06] and UCLA pedestrian datasets, using grammar

productions designed to be appropriate for each dataset. The confusion matrix

for the production prediction accuracy is shown in Figure 4.17, along with the

list of productions used. The evaluation protocol utilizes the same selection cri-

teria from PCP for determining which parse to select for evaluation, for which

we compare the predicted production labels (columns) against the ground truth

annotated labels (rows). Accuracy is computed by summing the diagonal of the

confusion matrix for each part, and dividing by the number of production choices

for that part, and is shown in Table 4.4.4 and 4.4 for the PARSE and UCLA

pedestrian datasets respectively. To our knowledge, no other work has been

published to predict these types of attributes on PARSE for which to compare

against.
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Figure 4.18: Ambiguous images: in these scenes, occlusion causes an ambiguity

on parts, shown in red on the parse trees. In these cases, there is often no single

correct solution, but several competing alternative solutions.

4.5 Ambiguity reasoning

Crowd scenes contain dense arrangements of people. In addition to normal en-

vironmental confounders, the inter-occlusions between people cause full-body or

part based human detectors to frequently fail. This is due to the prevalence of

genuinely correct parts from different people that coincidentally form a favorable

geometry. To model this phenomenon, we introduce a latent structure and define

a network of constraints to reason about occlusion and ambiguity between parts.

We therefore seek to find parse solutions that also obey global consistency in

terms of these constraints.

These constraints are hierarchical in terms of part ambiguity at each level

of the AND-OR graph. A part is ambiguous if there is support in the image

for multiple adjoining parts to form a set of competitive hypotheses. These

ambiguities cannot be resolved locally, as a globally optimal solution may have

many sub-optimal local configurations. Nor do we wish to find a single globally

optimal solution, as there are potentially many different satisfying solutions to

these constraints that correspond to multiple valid interpretations of the image.
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Instead, we describe a method for efficiently exploring the solution space of this

problem to recover multiple and distinct solutions using statistical sampling.

4.5.1 Representation of ambiguity

When using a part-based model in a scene with multiple subjects, there is an

ambiguity for each part pertaining to which subject it is associated with. In the

single-body case we assume a single correct interpretation of the image. In the

multi-body case, however, there may be multiple reasonable interpretations of

the image due to some unresolvable ambiguities. This shifts the task away from

object detection and towards scene interpretation, which may have multiple valid

solutions depending on what aspect of the image we are interested in.

The posterior distribution for complex scenes such as this are often multi-

modal, where each mode corresponds to a reasonable interpretation of the image.

Instead of searching for maximal posterior parse, we instead wish to find as many

high probability modes as possible. Enumerating modes exhaustively is generally

not tractable, nor is it straightforward to find secondary modes from the majority

of inference algorithms used on these types of images. A notable exception is the

k-adventurers algorithm proposed by [TCY05].

Our approach addresses this problem from the prospective of cluster sampling

and simulated annealing. Part ambiguities are represented in a graphical model,

designed such that we can sample from the model efficiently. We first assume that

there is a set of candidate part proposals for each part in the AND-OR graph.

For each proposal, we construct a node for each possible interpretation of the

part. These interpretations correspond to the OR-nodes defined in the AND-OR

graph. For each node, an integer-valued latent variable is defined. A value of

zero indicates that this particular interpretation of the part is off, meaning that
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it does not belong to any solution. Non-zero values indicate that the proposal

interpretation participates in some solution.

Ambiguity constraints are defined as pairwise relations on these latent vari-

ables. There are two types of pairwise relations used: compatible and compet-

itive. Compatible parts are in a favorable geometric configuration, and should

participate in the same solution. An upper and lower arm proposal with good

joint alignment will likely belong to the same person, and should have a compat-

ible constraint between them. Competitive parts can never belong in the same

solution. A part proposal can’t have multiple interpretations simultaneously,

and each pair of interpretations for the same proposal will have competitive con-

straints. Similarly, occluding parts may each participate in a distinct solution,

but never the same solution, and a competitive edge is placed between them.

4.5.2 Candidacy graph model

The set of all proposal interpretations and their ambiguity constraints are ar-

ranged into a graph structure we call a candidacy graph, denoted as G = (V,E).

Each node v ∈ V represents a proposal interpretation, and can take a value of

x ∈ {0, 1, ..., k}. Each constraint between interpretations is represented by an

edge e ∈ E. The state of the graph is denoted X = {x1, x2, ..., x|V |}, and the

probability of a given state is defined as

p(X) ∝ exp

−∑
eij∈E

βij · cij(xi, xj)

 . (4.67)

The constraint function cij(xi, xj) evaluates to 1 when the constraint between

xi and xj is satisfied, and 0 otherwise. The model parameters are βij for each

edge eij. This is a generalization of the Potts model from statistical physics,
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which uses only the equality constraint c(xi, xj) = δ(xi, xj) = 1(xi = xj). Our

constraints are denoted as c+, c−, for compatible and competitive constraints

respectively. These constraints are defined as follows:

c+(xi, xj) =


1 : if xi = xj

0 : otherwise

c−(xi, xj) =


1 : if (xi 6= xj) ∨ ((xi = 0) ∧ (xj = 0))

0 : otherwise

Any part assigned a value of 0 is considered off and is not included in any solution.

Therefore, both compatible and competitive constraints are considered satisfied

when both parts are off.

4.5.3 Composite cluster sampling

Simulated annealing is a common strategy for finding the minimum energy con-

figuration of a probability distribution. The central idea is to draw samples from

the distribution under a schedule of decreasing temperature. Eventually the dis-

tribution will form a delta function around its global maxima, and all samples

will be drawn at this point. The probability distribution with a temperature term

T takes the following form:

p(X) ∝ exp

− 1

T

∑
eij∈E

βij · cij(xi, xj)

 . (4.68)

One of the key problems with this approach on Markov random fields, how-

ever, is that the available sampling techniques are often single-site samplers such
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as the Gibbs sampler. These samplers are very slow to converge, particularly

when the connectivity of constraints is high. Furthermore, because each step

of the sampler changes the state only at a single node in the graph, the likeli-

hood of the sampler escaping a local energy minima is often diminishingly small,

particularly when the temperature is low.

Our approach is motivated from the cluster sampling technique of Swendsen-

Wang cuts [BZ05] and an extension called the C4 algorithm [PZ10]. The moti-

vation behind this method is to allow the sampler to make large jumps in the

configuration space by updating multiple sites in the graph simultaneously, while

still drawing fair samples. This has two particularly desirable consequences of

faster convergence, and rapid exploration of modes in the distribution. We briefly

discuss some background on these techniques to elucidate the development of our

model.

The original Swendsen-Wang algorithm draws samples from the Ising model,

which has the form

Pising(X) ∝ exp

−β ∑
eij∈E

1(xi = xj)

 . (4.69)

where the values x ∈ X are limited to binary states {0, 1}. Auxiliary variable

uij ∈ U are introduced on the edges eij ∈ E that can take values uij ∈ {on, off}.

By designing a joint distribution p(X,U) such that the the original distribution

is obtained when marginalizing out U , samples can be drawn from p(X) by alter-

natingly drawing samples from the conditionals p(U |X) and p(X|U). The advan-

tage of this scheme is that sampling from these conditionals is extremely efficient.

p(U |X) is sampled by first turning off edges uij for all edges where xi 6= xj and

with probability 1−q0 otherwise, where q0 = 1−e−β. p(X|U) is sampled by group-

ing the remaining nodes into connected components CP = {Vi : i = 1, ..., n}. A
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connected component V0 is selected uniformly (with probability 1/|CP |), and the

nodes within V0 are assigned their complement value x = xc,∀x ∈ V0. Because

of the initial step of turning edges off between nodes of different value, all nodes

within a connected component must always have the same value. The Swendsen-

Wang algorithm can also draw samples from the Potts model, where x ∈ X can

take states {1, 2, ..., k}. The only modification from the Ising case is to assign

a state chosen uniformly from {1, 2, ..., k} to the nodes in V0 instead of flipping

their states.

The Swendsen-Wang cuts algorithm (SWC) [BZ05] generalizes the Swendsen-

Wang algorithm to arbitrary posterior distributions. By treating the Potts model

as a proposal probability to a more general posterior model, an MCMC chain can

be designed to draw samples from the posterior. First, a slightly more flexible

version of the Potts model is considered, which includes a parameter βij for each

edge instead of a single parameter for the whole model:

Pswc(X) ∝ exp

−∑
eij∈E

βij · 1(xi = xj)

 . (4.70)

Many problems in vision can be expressed in this form, and the degree of com-

patibility between specific nodes can be leaned from data. Sampling p(U |X) in

the SWC algorithm proceeds in the same manner as the original Swendsen-Wang

algorithm, except the edge probabilities qij are used instead of the generic q0. For

the p(X|U) step, connected components are formed as before and V0 is selected

uniformly among them. The nodes in V0 are then relabeled (or recolored) with

a new value x = `,∀x ∈ V0. The key difference with the SWC algorithm is that

this relabeling must be accepting according to a Metropolis-Hastings rejection

step α(A→ B), where A and B are the previous and proposed states of the full

graph respectively. This acceptance probability is
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α(A→ B) = min

(
1,

Πe∈C(V0,V`′\V0)(1− qe)
Πe∈C(V0,V`\V0)(1− qe)

· q(`|V0, B)

q(`′|V0, A)
· p(B|I)

p(A|I)

)
. (4.71)

C(V1, V2) refers to the cut between components V1 and V2 which consists of the

edges that separate V1 and V2, or more specifically {eij : xi ∈ V1, xj ∈ V2}.

q(`|V0, B) is the proposal probability of relabeling V0 to `, which is often uniform.

Finally, p(B|I) follows from equation 4.70.

Finally we return to our own case of the candidacy graph, defined by equation

4.73. The C4 algorithm [PZ10] is used in this case, which follows the same proce-

dure as SWC by drawing repeated samples from p(U |X) and p(X|U). For drawing

samples from p(U |X), we turn off all edges eij for which cij(xi, xj) = 0. These

are the the edges that violate their constraints. The remaining edges are turned

off with probability 1 − qij. To sample p(X|U), a set of composite connected

components CCP = {Vi : i = 1, ..., n} are formed. These are called composite

because they can be connected by a variety of different constraint types now, as

opposed to only compatible constraints in the previous cases. A component V0 is

selected from CCP , however, some care must be taken in relabeling the nodes.

If there are non-compatible constraints present in V0, assigning the same label

to all the nodes will cause a constraint violation. To account for this, we further

partition V0 into additional connected components CP = {Vi : i = 1, ...,m} such

that each component is connected only by compatible constraints.

Each component in CP must be assigned the same label, however, the labels

of different components must be selected such that all constraints within V0 are

satisfied. Denote L as the set of all possible satisfying assignments of V0. We

select an assignment l ∈ L to relabel V0 and accept the proposal with probability
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Figure 4.19: C4 algorithm on a Potts model: similar to other cluster sampling

algorithms, C4 is able to make large configuration changes by changing the state of

entire clusters simultaneously. C4 extends the conventional Swendsen-Wang and

Swendsen-Wang Cuts algorithms to allow additional pairwise constraint types,

shown here as competitive constraints that are only satisfied when nodes have

different labels.

α(A→ B) = min

(
1,

Πe∈C(V0,Vl′\V0)(1− qe)
Πe∈C(V0,Vl\V0)(1− qe)

· q(l|V0, B)

q(l′|V0, A)
· p(B|I)

p(A|I)

)
. (4.72)

This is exactly the same form as in the SWC case, except the cut consists of

multiple edge constraint types between two different labeling schemes l and l′.

The sampling process using the C4 algorithm is illustrated in figure 4.19.
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Algorithm 8 Sampling the candidacy graph

1: procedure SampleCandidacyGraph(proposals Π = {πi})

2: for each new part proposal πi do

3: Create nodes {π1
i , ..., π

n
i } for all n interpretations of proposal πi

4: Add competitive constraints between each of the interpretations of πi

with qe = 1

5: Add competitive constraints with any overlapping node already in the

candidacy graph with qe proportional to the amount of overlap

6: Add compatible constraints with all compatible nodes already in the

candidacy graph with qe proportional to their relation score

7: Insert nodes {π1
i , ..., π

n
i } into the candidacy graph

8: end for

9: repeat

10: Turn all edges on

11: Turn off all edges where s(ci) = 0

12: Turn off all remaining edges with probability 1− qe

13: Form composite connected components (CCP) from edges still on,

uniformly select one CCP V0

14: Further divide V0 into smaller connected components (CPs) using only

compatible edges

15: Relabel the CPs in V0 uniformly

16: Accept the new labeling of V0 with probability α(A→ B)

17: until the energy of the system stabilizes

18: end procedure
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4.5.4 Hierarchical candidacy graph

The above description of the candidacy graph only models local ambiguity be-

tween part interpretations, and does not take into consideration the hierarchical

part assemblies and their probabilities from the grammar. We begin by consid-

ering a subset of the AND-OR graph which consists of 3-layers: an OR-node

at the root, the children AND-nodes, and their immediate OR-node children.

We enumerate all the unique leaf-node parts of this sub-graph, and record the

AND-nodes from which they were derived. Any part with multiple derivations is

ambiguous, and we construct candidacy nodes for each of these interpretations.

Competitive constraints are placed between all interpretation node pairs of the

same part to enforce that only one interpretation can be active at a time. We

make this competitive constraint a hard constraint by assigning an edge proba-

bility of 1, or qij = 1,∀qij ∈ E−.

Occlusion constraints are handled by placing an exclusion edge between any

nodes that overlap in the image by more than some threshold. This overlap

is computed using intersection-over-union of the part regions IoU(xi, xj) > τ ,

and the probability placed on the edges are simply qij = IoU(xi, xj), ∀qij ∈ E−.

Compatibility between parts is dictated by the pairwise geometric relations in

the prior model, which we will write as qij = 1
Z
exp{−Egeom(xi, xj)},∀qij ∈ E+.

The normalization Z is computed locally such that Z =
∑

(i,j)∈E+ qij.

Next, we incorporate the part appearance likelihood into the model:

p(X|I) ∝ exp

 1

T

∑
eij∈E

βij · cij(xi, xj) +
N∑
i=1

log
p(IΛi |xi)
q(IΛi)

· 1(xi 6= 0)

 .

(4.73)

Nodes assigned a value of zero indicate that the part is not included in the

solution, and therefore its appearance does not contribute to the probability.
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Proposals for the candidacy graph are populated from running part detection

for each of the relevant appearance models. The value of k, relates to how many

competing solutions we wish to reason about simultaneously. Even when k = 1,

however, the sampler can often jump between valid solutions in a single iteration

to recover multiple solution by drawing repeated samples.

The result of the sampling is a set of proposal labelings with low energy. These

labels favor the grouping of compatible parts and exclusion of incompatible parts,

but does not enforce the composition rules of the grammar. To accomplish this,

the sampled solution of the candidacy graph is divided into layers, each layer

containing all nodes with the same label. Ignoring the layer with label 0 which

indicate nodes that are turned off, all valid parses are enumerated for each layer

to produce proposals of the root part.

This bottom-up process is applied recursively to the full AND-OR graph.

First, part detectors are run for all parts, and stored in a proposal list for each

part. For each OR-node encountered in the recursion, we populate a candidacy

graph from proposal lists of the children OR-nodes. These lists can contain

proposals found directly through detection, as well as proposals found through

cluster sampling. Any pair of proposals that overlap are given negative edges with

qij = 1 to indicate that only one can be chosen. Once the root node is reached,

the cluster sampler is run one last time with only competitive constraints among

parts of the root type. The result of this is a set of high probability scene parses.

After running the partitioning, we are not guaranteed that the resulting set of

parts forms a valid parse. This is because the C4 algorithm is only grouping mutu-

ally compatible parts, without adhering to any of the grammar production rules.

Therefore, after each partitioning step, a search is performed to find the highest

probability parse from the partition to add to the candidacy graph. Furthermore,
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elephant

head body trunk leg pair

leg

line

Figure 4.20: Elephant illusion AND-OR graph: this classic optical illusion forms

an inconsistent shape, yet has two reasonable interpretations. The elephant is

modeled hierarchically using the AND-OR graph shown on the right. For sim-

plicity, all OR-nodes have only a singe selection. This representation will be

used in our example for how the ambiguity model can recover these alternate

interpretations.

when we have noisy or unreliable detections, we can introduce a top-down phase

as described in Section 4.3.2 to help find missing proposals. The bottom-up, top-

down, and partitioning process are then repeated for several iterations for each

AND-node of the grammar.

4.5.5 Toy example: elephant illusion

To illustrate how cluster sampling provides ambiguity reasoning to the parsing

process, we demonstrate a simple toy example using the popular elephant illusion

shown in figure 4.20. For simplicity, we construct and an-or graph with only one

possible selection on each OR-node. The focus of the example is to provide

ambiguity reasoning about the legs and trunk, which can be formed from a front

edge and a rear edge. Each edge therefore has an ambiguous interpretation as
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either front or rear. Legs are composed into pairs, which again have ambiguous

interpretations as the front legs or hind legs.

Our assumptions are that there all detections are true positives, and that k =

2. We begin with a set of bottom-up ”detections”, which consist of only lines, the

head, and body. We assume there are no false detections although the algorithm

will still work in their presence. Compatible relations are placed between parts if

the distance between them lies within a defined range. Competitive relations are

placed between any competing interpretations, as well as any overlapping parts.

The initial state of the sampler is set to a reasonable solution for brevity. The

same results should still be obtained from a random initialization.

The algorithm begins bottom-up by composing line segments into leg parts,

which is illustrated in figure 4.21. Convergence can often occur in a very small

number of iterations due to the ability to make large configuration changes in a

single step. In this case, there are no compositions that compete for the same part

interpretation, and two distinct solutions can be extracted from a single labeling

of the sampler. Continued iterations of the sampler will likely generate the same

two solutions, but with potentially interchanged labels, which is shown between

iteration 2 and 3 in the figure. Finding trunk proposals from line segments is

sampled in exactly the same way.

Leg proposals are extracted from the sampling results, and the process is

repeated to form leg pairs. Finally, the root of the AND-OR graph is reached,

which composes the full elephant from proposals of leg pairs, head, body, and

trunk, which is illustrated in figure 4.22. In this case, there is more competition

between leg pair proposals to group with the body and head, which have only

a single proposal. In this case there are two alternative interpretations of the

elephant. In order for the sampler to jump between these interpretations it must
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iteration 1:

iteration 2:

iteration 3:

solution 1 solution 2

sample p(U|X) by turning o� edges
independently with probability 1-qe.

sample p(X|U) by forming composite connected
component and relabeling (see text). connected
components are shown in orange.

front edge

rear edge

o�

layer 1
layer 2
competitive edge
compatible edge

Figure 4.21: Finding legs from lines: composite cluster sampling is used to group

line interpretations together to form legs in a manner that encourages compatible

interpretations to be grouped, and discourages incompatible ones.
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trunk head body

front legs

hind legs

leg pairso�

layer 1
layer 2
competitive edge
compatible edge

iteration 1:

iteration 2:

Figure 4.22: Finding elephants from parts: when the algorithm finally reaches

the root node in the AND-OR graph, the cluster sampling output correspond to

scene interpretations. In this case, there is competition between the body part

for the two different leg interpretations, and the sampler will jump back and forth

between these interpretations on successive iterations. These two interpretations

are shown in iteration 1 and 2.

break the connections between the body and legs in the p(U |X) step, the legs

will then cluster and exchange labels and finally merge back with the body in the

p(X|U) step. This is illustrated in iteration 2 of figure 4.22

4.5.6 Human image experiments

For conducting experiments on images, we use a 6-part upper-body model consist-

ing of head, torso, and two arm segments for each arm. Arm appearance models

are learned using Active Basis templates, described in Section 4.2.1. Detecting

parts such as the arm segments are particularly unreliable, we employ a top-down
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detection bottom-up top-down

iteration 1 iteration 5 iteration 25 iteration 50

Figure 4.23: When populating the candidacy graph with unreliable part detec-

tors, some parts such as the arm segments will often be missing using bottom-up

proposals alone. This is addressed by adding a top-dow prediction step to help

find missing part proposals. Here, only the top scoring candidate is shown after

being composed bottom-up, after which the top-down Gibbs sampling is run for

50 iterations.
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bottom-up top-down + repartition bottom-up + top-down repartition + bottom-upa b c d

Figure 4.24: Intermediate results on an ambiguous image. The algorithm con-

verges to a state where each person is placed on different layers with the ambigu-

ous parts, being the arm segments between them, jumping between layers.

prediction step after the bottom-up detection to help find parts initially missed.

We illustrate one iteration of the bottom-up + top-down process in Figure 4.23,

which shows the highest scoring candidate being composed and sampled.

A running example on a multi-person image is shown in Figure 4.24, with

ambiguity in the arms. This example is run using a Potts model with 3 layers,

parts in layer 0 are not drawn, layer 1 is purple, and layer 2 is orange. Due to

poor detection results on the arm segments, the initial bottom-up proposals in

(a) are quite poor, but mostly corrected after top-down prediction in (b). After

repartitioning, some of the poorly matching parts are turned off and replaced

by new top-down predictions in (c). In this case, the sampler converges with

each person on different layers, and the ambiguous arm jumping between layers,

shown in (c) and (d).

In Figure 4.25, we show four iterations on a crowd example. One of the

individuals in this case has his arms occluded by his neighbors. Again, we use a

Potts model with 3 layers. The part colors in this case correspond to the 4 top

object proposals, and the bounding box around the proposals designates the layer

assignment. After the first iteration, the algorithm finds a stable localization of
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face head torso arm segment hand

BU+TD+C    iteration 1 iteration 2 iteration 3 iteration 44

interpretation 1 interpretation 2

Figure 4.25: Parsing ambiguous group images. The top rows contain the initial

bottom-up part detections. The bottom row contains results from four itera-

tions of bottom-up composition, top-down prediction, and C4 sampling. The

top 4 object candidates are drawn with different colors, and the color of their

bounding box indicates the assigned layer in the Potts model. After four itera-

tions, the algorithm moves the conflicting body to another layer thus resolving

the ambiguity.

most of the parts, and at the fourth iteration eventually moves the ambiguous

individual to its own layer and thus resolving the ambiguity.
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CHAPTER 5

Discriminative Methods

In this chapter we focus on learning the grammar from a discriminative perspec-

tive. The general approach is to learn the model by minimizing the empirical

risk of the posterior directly, as opposed to maximizing the data likelihood in the

generative case.

There are several differences in the construction of the discriminative gram-

mar from our generative approach. First, the appearance models are no longer

based on Active Basis or HIT, which are sparse template models learned individ-

ually through pursuit. Instead, the appearance templates are now dense and all

parts are learned jointly during training. Second, the grammar productions are

structured as a dependency grammar which instead links parts together into a

compositional chain or tree structure as described in Section 3.3.2. The choice of

using the dependency grammar over a coarse-to-fine phrase-structure grammar

is motivated by the datasets we intend to evaluate on. The PARSE (Figure 2.4)

and Leeds (Figure 2.5) datasets are prominent benchmark datasets in the liter-

ature, for which nearly all modern pose estimation techniques are compared on.

Both of these datasets are composed primarily of highly deformed poses that are

often crumpled or contorted, and not particularly suited towards coarse-to-fine

modeling. Furthermore, the dependency grammar is more efficient to compute,

which is significant in keeping the model training time within practical limits.

The parameterization of the model is otherwise identical to the generative case.
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Figure 5.1: Several common models for pose estimation are shown using our

and-or graph notation. And-nodes represent distinct part appearance models,

while or-nodes can be treated as a local mixtures of and-nodes. Edges represent

the contextual relations between parts, which are specified for each model using

the table on the right. Pictorial structures [FH05] (c) has a fixed structure with

no shared parts, and uses conventional articulation relations over relative posi-

tion and orientation. The flexible mixture-of-parts model [YR11] (d) emulates

articulation with a large number of orientation-specific parts and mixtures, using

relations only between mixture selections (types). Our baseline and-graph model

(a) has similar structure and relations with PS but shares parts between left and

right sides and uses relative scale relations. Our final and-or-graph model (b) ex-

tends (a) by utilizing several part variants, and compatibility relations between

variants (productions).
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For the following experiments, we define two models called AG (AND graph)

and AOG (AND-OR graph). The AG model is the baseline model that only

defines a single grammar production for each part, and therefore has no struc-

tural variability because the production selections are deterministic. We use this

model to define a baseline case for comparing more complicated grammars and

evaluating the difference in performance. The AG model is rooted at the torso,

which has dependency relations to head, arms, and legs, which further branch out

to the extremities. This model is very similar to the conventional pictorial struc-

tures (PS) [FH05] model, with the exception that we are still using shared parts

and have a richer geometric representation. The AOG model expands on the

baseline model by adding several productions to each of the parts. To illustrate

these models and compare against other common models used in the literature,

Figure 5.1 represents each model as an AND-OR structure. The table on the

right indicates the state space of each of the parts – effectively the continuous

nature of model, whereas the AND-OR structure describes the discrete nature.

5.1 Appearance features and region segmentation

The appearance templates for each AND-node production are based on the

Histogram of Oriented Gradient (HOG) feature descriptor of Dalal and Triggs

[DT05]. The conventional implementation of HOG divides the image into a grid

of cells, each cell typically being 8× 8 pixels. The image gradients of each pixel

in the cell are quantized into a fixed number of orientations, and pooled into a

histogram. Lastly, these histograms are locally normalized using the gradient

histograms of neighboring cells in a scheme they call block normalization. The

limitations of computing HOG in this manner is that the features can only be

evaluated on the cell boundaries, in this case every 8 pixels, and there is no sim-

114



image

orientation bin

HOG

Dense-HOG

Figure 5.2: Histogram of oriented gradients (HOG) vs. Dense-HOG feature re-

sponses. The conventional implementation of HOG pools gradients from fixed

cells in the image, resulting in the block structure shown in the top row. This

representation is not conducive to computing part responses at arbitrary loca-

tions or orientations. To overcome this, our Dense-HOG implementation performs

the same pooling, but centered around every pixel in the image to produce the

response maps on the bottom row.
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ple method to extract features for rotated parts. To address these limitations,

we utilize the same grid cell pooling and block normalization, but compute the

feature for a cell centered around every pixel in the image. To illustrate this,

Figure 5.2 visualizes the conventional HOG response on the top row by rendering

the value of each orientation bin in its own map. Note that the value of the

feature for a given orientation is fixed within each 8 × 8 cell. The Dense-HOG

feature we compute is visualized in the same manner on the bottom row, which

now has smooth transitions between cells.

Each production defines an appearance template that specifies where to ex-

tract features responses from the image for a given part state, as illustrated in

Fig.5.3. To keep the feature length reasonable, the Dense-HOG feature map is

subsampled within the part boundaries, typically every 6 pixels. To compute

part appearances responses at different scales, a fixed-sized template is applied

to different levels of the image pyramid. When parts are rotated, features are

extracted by rotating the template, then bin-shifting the gradient histograms to

compensate for the rotation.

The gradient features of HOG only capture local edge phenomena, however,

and cannot distinguish if those edges are on the boundary or interior of a region.

Furthermore, local normalization is necessary to gain robustness to varying light-

ing conditions, but will also amplify the edge strength in flat or textured regions

increasing the likelihood of a part spuriously scoring highly within these amplified

background edges. As an example, Figure 5.4(d) shows the response map of a

trained part template using only edge features, for which there is a considerable

number of local maxima in the background clutter. To compensate for this ef-

fect, we introduce a region feature to the part appearance template to measure

how strongly the interior region of the part stands out against its surrounding
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part

rotation-shifted HOG

region segment lookup

mean color       within part boundary

region distance feature

Figure 5.3: Part appearance template: The template utilizes features from

both foreground and background. Foreground features use a rotation-shifted

variant of HOG [DT05] collected along a uniform grid, as well as the mean color

within the part boundary. Background features consist of distance measures be-

tween the mean part color and adjoining external region segments. The template

defines multiple background sample points around the perimeter of the part, each

of which retrieves the region segment that contains the point and compares it with

the interior mean color.
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background.

First, we present a background segmentation model. The image background is

represented as a collection of large disjoint regions, where the appearance within

each region is well explained using a multivariate Gaussian in L∗u∗v∗ color space.

Furthermore, we assume that the background regions are large compared to the

size of the foreground parts and treat the background process as independent of

the foreground. This independence is chosen to avoid the intractable computation

of reestimating the background segments for every part state.

Let Λ denote the pixel lattice of image I, which is partitioned into K disjoint

regions
⋃K
i=1Ri = Λ,

⋂K
i=1Ri = ∅. The segmentation of the image is represented

as S = (K, {(Ri, µi,Σi); i = 1, 2, ...K}). Each region is assumed to be generated

independently and normally distributed, thus the image likelihood is p(I|S) =∏K
i=1N (µi,Σi). A prior model encourages the number of regions to be small,

region volumes to be large, and boundaries smooth:

p(S) ∝ p(K)
K∏
i=1

p(Ri) ∝ exp

{
−λ0K −

K∑
i=1

µ

∮
∂Ri

ds+ γ|Ri|c
}

(5.1)

where ∂Ri represents the boundary around region Ri. The prior on the region

volumes eγ|Ri|
c

is a scale factor motivated from [MG01] and [TZ02] and related

to how “busy” the image is. The optimal segmentation maximizes the posterior

p(S|I) ∝ p(I|S)p(S).

To learn the parameter for this model, we adopt data-driven MCMC approach

of [TZ02] to maximize the segmentation posterior using scale = 1.0, γ = 2.0, c =

0.9. Please refer to the original work for a full explanation of the algorithm.

The foreground region consists of the pixels contained within the rectangular

part boundaries of the part, and are modeled as a single mean color in L∗u∗v∗

and can be computed efficiently using integral images. The region contrast fea-
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ture can now be defined as a distance measure between the foreground region,

and the adjacent background region distributions. Because the background dis-

tribution are all modeled as a Gaussian distribution, the Mahalanobis distance is

used.Given a foreground mean µv and a background region (µi,Σi), the distance

is computed as

d(µv, µi,Σi) = (µv − µi)>Σ−1
i (µv − µi). (5.2)

This distance can be interpreted as the negative log-probability that the aver-

age pixel in the foreground region is generated by the background process. To

account for the possibility that multiple background region segments can adjoin

the part, the template defines multiple region features that are equally spaced

around the part periphery, as shown by the circles in Fig.5.3. The output of the

segmentation model is illustrated in Fig.5.4, as well as visualizations of template

scores separated into individual edge and region response maps. The final score

map would be the sum of these two maps.

The full appearance response vector φa(I, t, v) can now be computed as a

concatenation of responses from each rotation-shifted gradient histogram feature,

and region distance feature in the template. The appearance score is then

fa(v, I) = 〈λaω, φa(I, tω, v)〉. (5.3)

5.2 Occlusion reasoning

Humans in natural scenes and general position exhibit a substantial amount of

self-occlusion, typically of the arms and legs. Furthermore, humans often occur

in cluttered scenes with many potential occluding objects, such as other people,

cars, trees, etc. Without an explicit representation of occluded parts, the model

will attempt to train appearance models for all parts as if they were fully visible.
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Figure 5.4: Appearance response maps for edge and region portions of the tem-

plate. Segmented regions are shown in (b), and a resynthesized image sampled

from the region models is shown in (c) to illustrate the model fit. Score maps

from the trained model of the l.leg part in the vertical orientation are shown

using only HOG features in (d) and only region distance features in (e). Due to

local normalization, spurious foreground responses tend to appear particularly

around textured regions, whereas the background feature is far more stable in

these regions.

frontal

backvisible

front

visible occluded
self

occluded
self

occluded
externally

step side

left front right

sidetorso

headu.arm

l.arm

hand foot

l.leg

u.leg

or-node

and-node

Figure 5.5: Incorporating part occlusions into the AOG. To avoid training ap-

pearance models with occluded confounders, the grammar can naturally define

different productions for visible, self-occluded, and externally occuded parts.

120



This can be destructive, since we are effectively contaminating parts defined as

true positives with corrupted examples where the appearance is of the occluder,

and not the actual part.

Our grammar provides a natural representation for these parts by simply

defining a new production for the self-occluded and externally occluded variants

of these parts. This provides the occluded parts with their own geometries to

learn the distribution of local pose configurations that are are correlated with oc-

cluded parts, as well as their own appearance models. These occluded appearance

models are in actuality models of the occluder, however, and if the appearance

of the occluder is truly independent of the occluded part geometry then the dis-

criminative training will assign the part appearance weights to zero. We find

this is often not the case, and observe that the model can often learn appearance

features that can help localize occluded parts. In Figure 5.5, we illustrate an

example AND-OR grammar with productions to encode different appearances,

viewpoints, and both self-occlusion and external occlusion.

5.3 Inference

Exact inference of the model can be computed efficiently using a dynamic pro-

gramming algorithm. Because we are using a dependency grammar in this case,

the relation structure is more simplified than the phrase-structured case used in

our generative grammar. In particular, for every production (α→ β) the α part

is always the proximal part, and the β parts are always the distal parts. This

ensures a tree-structured model, for which the dynamic programming algorithm

described in Section 4.3.3 can be used.

Because the dependency grammar relations are always star-structured, the DP
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algorithm for this model can be further simplified from the algorithm described

in Section 4.3.3. In particular, the function MaxAND maximizes constituent part

states within the AND-node production, which previously contained a chain or

tree structure of parts, all conditioned on the AND-node selection itself. In the

dependency grammar case, there is exactly one relation that connects the root

part of the AND-node with any of the dependent parts. We therefore do not

need to recurse through the relational chain or tree of constituent nodes, and can

simply optimize out the relation for each dependent part in one step. As a conse-

quence, this avoids the repeated maximization over context-sensitive production

selections between AND-node constituents (lines 6 and 7 in Algorithm 6), which

are very costly to compute.

The basic unit of computation is computing a maximal score map for the prox-

imal part of a production. Each of the distal parts are conditionally independent

given the proximal part, and can be maximized individually. The maximal score

map for part state vi given production ωi can be expressed recursively as

M(vi|ωi) = faωi(vi, I) + f g1ωi (vi) + f c1ωi (5.4)

+
∑

(vi,vj)∈Rωi

max
vj

[
f g2ωi (vi, vj) + f c2ωi (vi, vj) +M(vj|ωj)

]
.

Although the production for part vi is fixed, we must maximize over the full

state of the distal parts vj, including the distal production. The maximization

over positions (xj, yj) can be computed very efficiently using distance transforms

[FH04] that have linear complexity in the number of positions. The maximiza-

tion over scale sj, orientation θj, and production ωj each require quadratic time

to compute. The state space for these remaining variables is still quite small,

however, and the computation is tractable.

To infer the maximal scoring parse, we recurse through the grammar start-
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ing from the root symbol s0. Terminal symbols have no distal parts, and their

maximal score maps consist of only the appearance and unary potentials. Once

the maximal score maps are computed for every production, the maximal parse

score can be obtained by maxing over all productions that have the root symbol

as the proximal part

max
pj∈P s.t. αj=s0

max
vi

M(vi|pj). (5.5)

The parse tree can be recovered by replacing the max operators with arg max

and backtracking through the optimal state maps.

5.4 Learning

The score of a parse can always be expressed as the inner product of the full model

weight vector and a response vector for the entire parse fG(pg, I) = 〈λ, φ(pg, I)〉.

The model weights λ parameterizes a family of parsers that output the maximal

scoring parse F Gλ (I) = arg maxpg f
G(pg, I) for a given grammar. We define the

learning task as the search for a weight vector such that the empirical risk of the

associated parser is minimized, which is computed as the expected loss on the

training dataset D. Let p̄g be the ground truth parse. The optimal weights are

λ∗ = arg min
λ
E(p̄g,I)∼D[L(F Gλ (I), p̄g)] (5.6)

The loss is defined on the structured output space of parses, and must measure

the quality of a predicted parse against the ground truth parse. In a general

grammar, these parses may have different structure or a different number of

parts, making the formulation of such a loss sometimes difficult. All parses from

the grammars we define here, however, have the same number of parts and the

same branching structure which allows us to compute loss as the sum of part-

wise terms. Our loss is motivated by the PCP evaluation metric [EF09], which
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computes a score based on the proximity of the part endpoints to the ground

truth endpoints. A part is typically considered detected when the PCP score is

under 0.5. The loss function is

L(pg, p̄g) =
1

|V (pg)|
∑

v∈V (pg)

min (2 · distpcp(v, v̄), 1) (5.7)

and is bounded between 0 and 1 taking the value 0 only when identical to the

ground truth.

To make the learning computationally tractable, we instead minimize a convex

upper bound to this loss using the so-called margin-scaled structural hinge loss

from [TGK03], resulting in the following max-margin structural SVM objective

function

min
λ

1

2
||λ||2 +

C

|D|

|D|∑
i=1

ξi (5.8)

s.t. λ> [φ(p̄gi, Ii)− φ(pg, Ii)] ≥ L(pg, p̄gi)− ξi

∀pg ∈ ΩG,∀i.

Due to the exponential number of constraints, it is intractable to minimize this

expression directly. Instead, it is still provably efficient to solve this minimization

incrementally by adding only the most violated constraints at each iteration, using

the following maximization as the so-called separation oracle

p̂gi = arg max
pg

λ>φ(pg, Ii) + L(pg, p̄gi). (5.9)

This maximization is commonly referred to as a loss-adjusted inference problem.

The complexity of this maximization depends on the formulation of the loss func-

tion. This is the primary reason we choose an additive loss function, which can be

incorporated into the existing inference algorithm in a relatively straightforward

manner without impacting the computational complexity.
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It can be more clearly seen that this objective is an upper bound for the

risk by rearranging the terms of the most violated constraints ξi ≥ L(pg, p̄gi) +

λ>φ(p̂gi, I) − λ>φ(p̄gi, I). Because the score of the parse λ>φ(p̄gi, I) can never

be greater than the score of the maximal parse λ>φ(p̂gi, I), the right-hand-side

of the expression can never be lower than the loss.

This minimization can be solved by a multitude of methods. A dual coordinate

descent solver was implemented for [YR11], and the cutting plane method of

[THJ04] is also commonly used. For our implementation, we maximize the dual

objective using the QP solver of Franc and Hlavac [FH06].

One practical consideration is that when using a Gaussian potential function

for the joint displacement, the learned parameters correspond to the inverse vari-

ance and must be positive. To prevent the optimizer from assigning negative

weights to these parameters, we can implicitly introduce positivity constraints

into the primal objective function in Equation 5.9. The primal constraints take

the form λ>zj ≥ bj − ξi where zj is the response difference from the separation

oracle φ(p̄gi, Ii)−φ(pg, Ii) and bj is the loss. Let k be the index of the parameter

we wish to impose a positivity constraint on. By initializing the optimizer with

a set of constraints such that zj is a unit vector selecting the k’th element of λ,

and setting bj = 0, we have the constraint λ[k] ≥ 0− ξi. This is a soft constraint,

however, because the optimizer can always compensate for a negative λ[k] by

increasing the slack variable ξi. To effectively make this a hard constraint, the

unit vector zj can be scaled by a large constant.
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FMP

AOG

AOG+BG

Figure 5.6: Influence of region features: A selection of results from the AOG

and AOG+BG models compared with FMP [YR11]. Textured regions are prob-

lematic for both FMP and AOG models, leading to frequent spurious limb detec-

tions in these regions. The AOG+BG model includes terms to favor part regions

that are distinct from their adjoining background process, and can correctly lo-

calize many of these parts.
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5.5 Evaluation

We train and evaluate our method using three different grammar models to il-

lustrate the impact on performance from the addition of reconfigurable parts as

well as the background model. For all cases, we discretize the state space of the

parts to be 25% of the image width and height, and use 24 part orientations.

AG: And-graph grammar is our baseline model, shown in Fig.4.7(a), and is

the simplest possible model in our framework to represent the full articulated

body. Each symbol has only one production, and all limb parts are shared be-

tween the left and right sides. This construction is equivalent to a pictorial

structures model (Fig.4.7(a)) with shared parts.

AOG: And-or-graph grammar, shown in Fig.4.7(b), using productions { front,

side } for torso, { left, front, right } for head, and { visible, occluded } for both

l.arm and l.leg. Separate symbols are used for left and right u.leg as well as

u.arm because side-specific features tend to be strong for these parts. The l.leg

and l.arm symbols are still shared between sides.

AOG+BG: This is the same grammar as AOG, but with the addition of

the background terms. These terms are only included on the the productions

for l.arm and l.leg. To illustrate the influence of these features, Fig.5.6 shows

several examples where the top scoring pose erroneously matches to a strong edge

with poor region support, but is corrected when retraining with the background

feature.

5.5.1 Protocol

Evaluation follows the PCP protocol described in Section 2.3. Although this is

largely the standardized protocol, we point out two notable consistencies that can
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significantly affect the calculated performance results. First is the existence of

zero-length parts in the annotations, which are impossible to detect according to

this metric. Second is the inconsistency or genuine ambiguity of labeling a limb

as left or right. Both datasets that we evaluate on have multiple cases where

the left/right annotations are inconsistent with the rest of the dataset. Even

perfect results on these examples will still get the limb parts counted as wrong

because the left limb is being evaluated against the right side and vice versa. To

compensate for this, for each selected skeleton we exchange the left and right

labels for arm and leg separately, and take the configuration that has the highest

number of correctly localized parts. We mark results evaluated in this way with

a † symbol, all other results are evaluated such that the performance results are

comparable to published methods to the best of our knowledge.

5.5.2 Results on PARSE

Introduced by Ramanan [Ram06], and described in Section 2.2, this dataset con-

tains 305 images from which the model is trained on the first 100, and evaluated

on the remaining 205. For each part, we provide an additional annotation to in-

dicate a production label. Performance on this dataset is tabulated in Table 5.1

along with all known recent published results. We observe a performance gain

of 2.5% between the AOG and baseline AG model, and a 4.0% gain between

AOG+BG and AG. Furthermore, the AOG+BG model outperforms the current

published state-of-art for all parts individually, with an average improvement of

1.6%. Selected results with both successes and failures are shown in Figure 5.7.

Common failure modes primarily consist of matching limbs to background and

double-counting of limb appearances.
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Dataset Method torso head u.leg l.leg u.arm l.arm avg

PARSE

[Ram06] (2006) 52.1 37.5 31.0 29.0 17.5 13.6 27.2

[ARS09] (2009) 81.4 75.6 63.2 55.1 47.6 31.7 55.2

[JE09] (2009) 77.6 68.8 61.5 54.9 53.2 39.3 56.4

[SNH10] (2010) 91.2 76.6 71.5 64.9 50.0 34.2 60.9

[JE10] (2010) 85.4 76.1 73.4 65.4 64.7 46.9 66.2

[JE11] (2011) 87.6 76.8 74.7 67.1 67.4 45.9 67.4

[TZN12] (2012) 97.1 92.2 85.1 76.1 71.0 45.1 74.4

[YR11] (2011) 97.6 93.2 83.9 75.1 72.0 48.3 74.9

[DR12] (2012) - - - - - - 77.4

Ours (AG) 99.5 95.6 81.8 67.0 74.3 54.6 75.0

Ours (AOG) 100.0 96.2 87.0 75.3 73.2 53.9 77.5

Ours (AOG+BG) 99.5 97.4 88.4 78.0 74.1 56.1 79.0

Ours (AOG+BG)† 99.5 97.4 89.2 78.3 74.6 56.9 79.5

Table 5.1: Benchmark evaluation results on the PARSE dataset. We evaluate our

baseline model (AG), grammar model (AOG), and grammar model with back-

ground features (AOG+BG) against all known published results on this dataset.

The † symbol indicates the use of a modified evaluation protocol, see text for

details.
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5.5.3 Results on Leeds

Introduced by Johnson and Everingham [JE10], and described in Section 2.2,

this dataset consists of 1000 images each for training and testing. An additional

10,000 training images are also provided by [JE11] as an extension to the dataset,

which we do not use. In the same manner as PARSE, we provide an additional

production label to each part. Our AOG+BG model also outperforms the pub-

lished state-of-art for all parts on this dataset, by an average gain of 9.2%. Our

results are tabulated with performance results of recently published work in Ta-

ble 5.2.

The contribution of the background feature is minimal on this dataset, how-

ever, which we believe may be attributed to the narrow crop margins and general

lack of large background regions. Selected results with both successes and failures

are shown in Figure 5.7. Common failure modes primarily consist of matching

limbs to background and double-counting of limb appearances, similar to what

we observe in the PARSE evaluation, but we also struggle to parse many of the

extreme perspective examples.

Much of the published work on this dataset has been ambiguous on the exact

evaluation protocol. In particular, whether the part detection criteria uses the

average endpoint distance or the maximum endpoint distance, and whether the

ground truth object bounding box was used as a filter to select the parse to

evaluate as opposed to taking the globally highest scoring parse. We post results

for each non-standard variant, shown in red on Table 5.2. These variations are

described in detail in Section 2.3.
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Dataset Method torso head u.leg l.leg u.arm l.arm avg

Leeds

[JE10] (2010) 78.1 62.9 65.8 58.8 47.4 32.9 55.1

[TZN12] (2012) 95.8 87.8 69.9 60.0 51.9 32.9 61.3

[JE11] (2011) 88.1 74.6 74.5 66.5 53.7 37.5 62.7

Ours (AG) 98.4 92.8 81.2 69.8 61.9 38.2 69.3

Ours (AOG) 98.8 92.7 83.9 74.4 64.0 41.1 71.8

Ours (AOG+BG) 98.3 92.7 83.7 73.1 66.0 41.4 71.9

Ours (AOG single-avg) 89.0 77.6 76.1 68.4 57.8 37.9 64.7

Ours (AOG single-both) 86.1 71.8 70.9 64.8 49.6 32.3 59.5

Ours (AOG match-both) 97.0 85.0 78.1 70.1 55.0 35.8 66.0

Ours (AOG+BG)† 98.3 92.7 86.8 78.2 70.2 45.1 75.2

Table 5.2: Benchmark evaluation results on the Leeds dataset. We evaluate

our baseline model (AG), grammar model (AOG), and grammar model with

background features (AOG+BG) against recent published results on this dataset.

The † symbol indicates the use of a modified evaluation protocol, see text for

details.
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PARSE failures Leeds failures

Leeds

PARSE

Figure 5.7: Selected parsing results for PARSE and Leeds. Bounding boxes are

drawn for each of the 10 parts considered for evaluation. Parts localized cor-

rectly are shown in red, and incorrectly in blue. The top two rows are examples

of challenging poses with perfect localization scores from the PARSE and Leeds

datasets respectively. The bottom row illustrates some of the failure modes on

both datasets. Common failures are due to double counting, occlusion, and back-

ground confounders, which is compounded by extreme perspective, foreshorten-

ing, and crumpled poses.
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CHAPTER 6

Conclusions

6.1 Summary

In this work we develop a framework for constructing and learning stochastic

image grammar models for articulated objects. These models can compactly rep-

resent many of the complex geometric deformations and appearance variabilities

seen in the human body using a semantically meaningful hierarchy. We propose

two types of grammars, namely phrase-structured grammars and dependency

grammars, that can decompose the body into sub-models while still preserving

the articulated kinematics. The phrase-structure grammar represents the body

as a coarse-to-fine decomposition, whereas the dependency grammar represents

the body as a dependency tree of simple parts. We also provide two approaches to

learning a probability distribution on the parses of these grammars, from a gen-

erative perspective using maximizing likelihood, and a discriminative perspective

using empirical risk minimization. The central unit to both of these grammar

models is the production, which represents a part of the body whether it be a

primitive or composite part. The geometries of these parts are represented as

an oriented bounding box, parameterized by its location, orientation, scale, and

aspect ratio. Each production specifies an appearance model that describes the

image structure within the part geometry. The productions also define the re-

lations that control the geometry of its parts relative to each other, as well as
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which productions can co-occur together. Both primitive and composite parts

can appear in dramatically different modes due to clothing, viewpoint, or many

other factors. The grammar productions are specifically designed to capture and

represent these modes, which have their own distinct appearances and part ge-

ometries associated with them. We present several approximate and optimal

parsing algorithms, and demonstrate superior pose estimation performance on

several challenging datasets. Furthermore, we believe this framework can be

taken beyond pose estimation, such as for modeling semantically meaningful at-

tributes of the parts to infer object properties such as gender, or similarly encode

local geometric cues into the grammar to infer human activity.

6.2 Contributions

We summarize our contributions to part-based modeling and human pose esti-

mation from the following aspects:

1. The contextual hierarchy of the stochastic grammar model represents artic-

ulated pose, as well as semantically meaningful compositional information

such as the type of clothing people are wearing, or what orientation they

are facing.

2. We present learning strategies for a context-sensitive stochastic image gram-

mar model from a generative MLE perspective, as well as a discriminative

perspective using a structured-output SVM.

3. The dynamic programming algorithm we present can compute the globally

optimal parse in under a second on modern computing hardware for the

dependency grammar case.
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4. We experimentally justify the use of multiple productions in the form of

OR-nodes to represent and detect parts that are highly variant in either

appearance or geometry by showing performance gains from detection ex-

periments using appearance models of each part individually, as well as full

parsing experiments.

5. Our human body grammar model significantly outperforms all known meth-

ods for human pose estimation on multiple modern and highly competitive

benchmarks.
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