
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
New Techniques for Continuous Optimization and Fast Algorithms for Flow

Permalink
https://escholarship.org/uc/item/4vw7j5pj

Author
Sherman, Jonah

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vw7j5pj
https://escholarship.org
http://www.cdlib.org/

New Techniques for Continuous Optimization and Fast Algorithms for Flow

By

Jonah Sherman

A thesis submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Umesh Vazirani, Chair
Professor Satish Rao
Professor Ilan Adler

Fall 2017

Abstract

New Techniques for Continuous Optimization and Fast Algorithms for Flow

by

Jonah Sherman

Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor Umesh Vazirani, Chair

Spielman and Teng’s nearly linear time algorithm for solving Laplacian systems was
a breakthrough in combining techniques from discrete and continuous optimization. In
this dissertation we adapt their approach to solve more general flow problems, overcom-
ing long-standing barriers in continuous optimization. As a result we solve longstanding
open questions in optimization by presenting nearly-linear time approximation algorithms
for the undirected versions of several network flow problems, including maximum flow, opti-
mal transportation, maximum concurrent multi-commodity flow, and sparsest cut problems.

Our contributions include two general tools. The first is a scheme for boosting the
performance of iterative solvers for continuous optimization problems. These boosters use
recursive composition to achieve residual error that decreases exponentially in the number
of iterations of the solver.

The second is a technique for designing iterative solvers that bypasses the infamous `∞
barrier for strongly convex regularization. Instead we introduce the notion of an area convex
regularizer, and show that such regularizers suffice in designing good iterative solvers. More-
over, we show how to design regularizers satisfying this weaker property for the problem of
approximately solving AX ≤ B over right stochastic X, which in turn implies the algorithm
for maximum concurrent multi-commodity flow.

1

Contents

1 Introduction 1
1.1 Solver Algorithm and Interpretation . 3

2 Minimum Norm Problems 6
2.1 Recursive Composition and Generalized Condition Numbers 6

2.1.1 Proof of lemma 2.1.3 . 8
2.2 Example Solvers . 8

3 Preconditioning Network Flow 10
3.1 Related Work . 11
3.2 Preconditioning Maximum Flow . 11
3.3 Preconditioning Min-Cost Flow . 15

3.3.1 Lattice Algorithm . 17
3.3.2 Proof of Lemma 3.3.7 . 18

4 Area-Convexity and Multicommodity Flow 20
4.1 Introduction . 20

4.1.1 Area Convexity . 22
4.1.2 Right-Stochastic Matrix Problems . 25
4.1.3 Multicommodity Flow . 25

4.2 Area Convexity . 26
4.2.1 Proof of Theorem 4.1.3 . 27
4.2.2 Proof of Theorem 4.1.6 . 28
4.2.3 Hamiltonian Systems . 29

4.3 Stochastic Matrix Problems . 30
4.3.1 Proof of Lemma 4.1.2 . 32
4.3.2 Block Maximization . 33
4.3.3 Convergence of AMO . 33

4.4 Multicommodity Flow . 36
4.5 Area-Convexity of Quadratics . 37
4.6 Three Port Gadget . 38

i

5 Sparsest Cut 39
5.1 Introduction . 39

5.1.1 Contribution . 40
5.2 Expander Flows . 41

5.2.1 Using Single-Commodity Flows . 42
5.2.2 Using Multi-Commodity Flows . 43
5.2.3 Results . 44

5.3 The Algorithm . 45
5.3.1 Finding a Flow . 46

5.4 Proof of Theorem 5.2.3 . 49
5.4.1 Chaining and Measure Concentration 49
5.4.2 Definitions . 50
5.4.3 Cover Lemmas . 51
5.4.4 Using ±1 Coins . 53

5.5 Lower-bound for the Cut-Matching Game 54
5.6 Proof of Lemma 5.4.2 . 57
5.7 Proof of Lemma 5.4.9 . 57
5.8 Proof of Lemma 5.5.6 . 59

ii

Chapter 1

Introduction

The evolution of the fields of continuous optimization and combinatorial optimization have
been largely disjoint, using a very different set of tools and techniques, until the seminal
work of Spielman and Teng[47], leading to a flurry of activity[30, 18, 33, 17, 44, 26, 45, 41].
This dissertation makes the connection between these two fields even deeper, in the process
resolving long standing open questions in combinatorial optimization by presenting nearly-
linear time approximation algorithms for the undirected versions of several network flow
problems, including maximum concurrent multi-commodity flow, optimal transportation, and
sparsest cut.

Fixed-demand network flow problems are a special case of the following kind of contin-
uous optimization problem: find x of minimum norm ‖x‖ satisfying a given linear system
Ax = b. The norm depends on the particular problem of interest. Continuous optimization
algorithms such as fast classical iterative solvers use dual methods and relax the equality
constraints to instead yield x with ‖x‖ ≤ ‖xopt‖ satisfying Ax − b ≤ δ‖A‖‖xopt‖. For flow
problems the equality constraints represent flow conservation and must be satisfied exactly
— an approximate solutions means finding x : ‖x‖ ≤ (1 + ε)‖xopt‖. Our overall approach to
using continuous methods for flow problems is inspired by Spielman and Teng[47]’s nearly-
linear time algorithm for solving Laplacian systems, equivalent to the Euclidean norm case.
Euclidean minimum-norm problems are well-understood; classical iterative solvers such as
steepest descent and conjugate gradient methods produce approximately optimal solutions
with residual error δ = ‖Ax− b‖ exponentially small in iteration count, with the exact rate
depending strongly on the condition number of the square matrix AA∗ 1. Preconditioning
transforms the problem to have better condition number. Spielman and Teng’s main con-
tribution is a nearly-linear time algorithm for constructing good preconditioners for graph
Laplacians. Our algorithms are obtained by attempting to “port” their algorithm from `2
to `1, `∞, and other norms.

The first obstacle to doing so is that existing solvers for non-Euclidean problems ei-
ther require t = nΩ(1) iterations (e.g. interior point) or converge much more slowly, with
residual error δ = t−O(1). Our first contribution, in chapter 2, is a scheme for boosting

1solutions with polynomially small error can be rounded to achieve exact equality, and therefore require
only logarithmic number of iterations

1

the convergence of such weak iterative solvers via composition to get the desired residual
error exponentially small in iteration count. This leads to a framework for designing fast
combinatorial algorithms, using three parts:

1. Preconditioner

2. Weak iterative solver

3. Boosting via composition

Max-flow and optimal transportation correspond to `∞ and `1 norms, for which the multi-
plicative weights method[42, 23, 5] achieves residual error ‖Ax − b‖ polynomially small in
the iteration count. By stopping such solvers once the error is small enough and recursively
composing, the error may be instead reduced to be exponentially small. The remaining
miniscule error is then eliminated by routing it naively through a spanning tree.

The remaining obstacle for nearly linear time algorithms for max-flow and min-cost
flow/transportation problems is the design of suitable combinatorial problem-specific precon-
ditioner constructions. A preconditioner may be viewed as a κ-factor approximation to the
value of a minimum-norm problem. Following Spielman and Teng[47], the main paradigm is
to combine two ideas: approximation, and hierarchical routing. Approximation replaces G
with a simpler G′ ≈ G; hierarchical routing recursively reduces flow problems on G to flow
problems on smaller subgraphs of G. To precondition max-flow, we estimate the congestion
required to route some demands in a capacitated graph by checking the congestion across
a specific family of cuts. The cuts come from recursively applying decompositions due to
Madry[33] utilizing techniques from Spielman and Teng[47]. To precondition transporta-
tion, we embed the cost metric into `1, and then design a simple hierarchical routing scheme
inspired by the multigrid algorithm for grid Laplacians, and the Barnes-Hut algorithm for
n-body simulation[8]. We present the preconditioner constructions in chapter 3.

Maximum-flow is used as a subroutine in other graph algorithms, including the Spars-
est Cut problem. Prior work on that problem follows two lines. The first[7, 4] concerns
the best approximation-factor achievable in polynomial time. The second[28, 40] concerns
fast, practical algorithms that compute sparse cuts using a small number of max-flows. In
chapter 5, we tie those two lines together, presenting an algorithm achieving the best-known
approximation factor of the former while using only a small number of max-flows, as in the
latter. Using our nearly-linear time maximum flow algorithm yields a nearly-linear time
approximation to sparsest cut achieving the best known asymptotic approximation factor.

For multicommodity maximum concurrent flow, the relevant norm is a `∞-operator norm,
for which nearly-linear time solvers are not known, even with small constant error. This is the
infamous `∞ barrier for the strongly-convex regularization approach of Nesterov [37]. That
barrier is responsible for stalled progress on algorithms for several important optimization
problems. For single-commodity flow and transportation, this is a barrier towards achieving
an ε−1 dependance of running time on the error. For multi-commodity flow, the consequences
are even more severe, preventing nearly-linear time altogether. In chapter 4, we show how
to break that barrier by using regularizers satisfying a dramatically weaker property we call

2

area-convexity. Using area-convex regularization, we obtain a nearly-linear time approxima-
tion algorithm for maximum concurrent multicommodity flow, and more generally, a fast
algorithm for approximately solving AX ≤ B over right-stochastic X.

1.1 Solver Algorithm and Interpretation

The algorithm proceeds by approximately solving a saddle point problem

min
x∈X

max
y∈Y

y · (b− Ax)

over two compact-convex sets X ,Y .
By a standard reduction, we may reduce our attention to canonical problems of the form,

max
q∈Q

min
p∈P

q · p

Nesterov’s smoothing approximates a non-differentiable objective function

η(p) = max
q∈Q

q · p

using a strictly convex regularizer φ : Q → R, and considering,

η̃(p) = max
q∈Q

q · p− φ(q)

The regularizer φ is chosen to balance two tradeoffs. First, it should be small, so η̃ ≈
η. Simultaneously, it should be strongly convex, so that η̃ is smooth, allowing first-order
optimization (e.g. steepest descent) to be applied. Thus, applicability of the method depends
significantly on whether such small strongly convex regularizers exist for the set of interest.

Saddle point problems may be viewed as a two-player zero-sum game, and regularization-
based algorithms may be viewed as simulating repeated play of that game using adaptive
policies. For t = 0, 1, . . ., the Q player chooses q′(t) ∈ Q, the P player chooses p′(t) ∈ P ,
and the Q player receives payoff q′(t) · p′(t). The algorithms maintain cumulative history,

(q, p)(t) =
t−1∑
s=0

(q′, p′)(s)

Players use a regularized best-response:

q′(t) = arg max
q′∈Q

q′ · p(t)− φ1(q
′)

p′(t) = arg min
p′∈P

p′ · q(t) + φ2(p
′)

After T steps, the algorithm outputs average history: 1
T
(q, p)(T).

3

More concisely, the sequence z(t) = (q(t), p(t)) is defined by z(0) = 0 and

z(t+ 1)− z(t) = F (z(t))

where F is response function

F (q, p) = arg max
q′∈Q,p′∈P

q′ · p− p′ · q − φ1(q
′)− φ2(p

′)

A large family of algorithms follow this paradigm, using variations of the update rule.

• The naive algorithm just described follows

z(t+ 1)− z(t) = F (z(t))

• Nemirovski’s algorithm[36] uses the response to the future state, instead of the present
state.

z(t+ 1)− z(t) = F (z(t+ 1))

Assuming F is a contraction, the step may be computed by fixed-point iteration.

• Nesterov’s algorithm responds to the future state that would occur if the naive algo-
rithm was used.

z(t+ 1)− z(t) = F (z(t) + F (z(t)))

• We modify Nesterov’s algorithm slightly, scaling up the predictor step:

z(t+ 1)− z(t) = F (z(t) + 2F (z(t))

Prior work shows convergence assuming φ1, φ2 are strongly convex with respect to dual norms.
A function φ is strongly convex with respect to ‖ · ‖ if,

φ

(
1

2
(x+ y)

)
≤ 1

2
(φ(x) + φ(y))− 1

8
‖x− y‖2

The existence of such regularizers depends strongly on the sets and norms. For the simplex,
the negative entropy function has range log n and is strongly-convex with respect to ‖ · ‖1.
On the other hand, simple induction shows any φ strongly convex with respect to ‖ · ‖∞ on
its unit ball has range at least n/2. This is the infamous `∞ barrier.

We overcome that barrier by jointly regularizing with a single function φ(q′, p′) satisfying
a property we call area-convexity.

φ

(
1

3
(x+ y + z)

)
) ≤ 1

3
(φ(x) + φ(y) + φ(z))− Area(4xyz)

Here, area is defined with respect to the canonical 2-form,

ω =
∑

i

dqi ∧ dpi

4

We remark that our algorithm and the area convexity condition were initially obtained via
an alternative perspective, that we now outline.

The various update rules may be viewed as numerical integration rules to evolve the
system,

d

dt
z = F (z(t))

Strong-convexity of the regularizer implies z 7→ F (z) is globally Lipschitz. Area-convexity
implies the map is locally Lipschitz.

The dynamics may be alternatively defined via a single real-valued Hamiltonian function,

H(q, p) = max
q′∈Q,p′∈P

q′ · p− p′ · q − φ(q′, p′)

The dynamics are completely determined by H by Hamilton’s equations,

d

dt
q =

d

dp
H(q, p)

d

dt
p = − d

dq
H(q, p)

By construction, dH
dt

= 0. Such systems are extensively studied in physics, engineering, and
economics. In our context, H is the cumulative error, and q, p are the cumulative primal-dual
pairs. In mechanics, H is Energy, q is position, and p is momentum. Flow problems on a
graph G = (V,E) with demands b ∈ RV tie the two contexts together, as the Hamiltonian
function corresponding to the continuous version of the algorithm encodes a physical model of
a spring network that transports momentum. That is, the instantaneous flow f ′(e) through
an edge e is interpreted as a force (i.e., flow rate of momentum.

5

Chapter 2

Minimum Norm Problems

Let X ,Y be finite dimensional vector spaces, where X is also a Banach space, and let
A ∈ Lin(X ,Y) be fixed throughout this section. We consider the problem of finding a
minimal norm pre-image of a specified b in the image of A; that is, finding x ∈ X with
Ax = b and ‖x‖X minimal.

Let xopt be an exact solution, with Axopt = b, and ‖xopt‖X minimal. There are multiple
notions of approximate solutions for this problem. The most immediate is x ∈ X with
Ax = b and

‖x‖
‖xopt‖

≤ α (2.1)

. We call such x an (α, 0)-solution; we shall be interested in finding (1 + ε, 0)-solutions
for small ε. A weaker notion of approximation is obtained by further relaxing Ax = b to
Ax u b. Quantifying that requires more structure on Y , so let us further assume Y to also
be a Banach space. In that case, we say x is an (α, β)-solution if equation 2.1 holds and

‖Ax− b‖
‖A‖‖xopt‖

≤ β (2.2)

The practical utility of such solutions depends on the application. However, the weaker
notion has the distinct advantage of being approachable by a larger family of algorithms,
such as penalty and dual methods, by avoiding equality constraints. We discuss such existing
algorithms in section 2.2, but mention that they typically yield (1, ε)-solutions after some
number of iterations. For `2, the iteration dependency on ε is O(log(1/ε)), while for some
more general norms it is ε−O(1).

2.1 Recursive Composition and Generalized Condition

Numbers

We now consider how to trade an increase in α for a decrease in β. Residual recursion
suggests a natural strategy: after finding an (α, β)-solution, recurse on b̃ = b − Ax. More
precisely, we define the composition of two algorithms as follows.

6

Definition 2.1.1. Let F1, F2 : Rn → Rm. The composition F2 � F1 is defined by,

(F2 � F1)(b) = F1(b) + F2(b− AF1(b))

Success of composition depends on ‖b̃‖ being small implying b̃ has a small-norm pre-
image. That is, it depends on the relation between ‖b̃‖ and ‖b̃‖opt. The extent to which that
is true is quantified by the condition number of A. The condition number in `2 may be defined
several ways, resulting in the same quantity. When generalized to arbitrary norms, those
definitions differ. We recall two natural definitions, following Demko[20]. Our definitions
differ slightly in not requiring A to be surjective.

Definition 2.1.2. The linear condition number is defined by

κX→Y(A) = min {‖A‖‖G‖ : G ∈ Lin(Y ,X), AGA = A}

The non-linear condition number of A : X → Y is defined similarly, but does not require
G to be linear. That is,

κ̃X→Y(A) = min {‖A‖‖G‖ : G : Y → X , A ◦G ◦ A = A}

where ‖G‖ = sup{‖Gb‖X/‖b‖Y : b ∈ Y}.

Of course, κ̃ ≤ κ. Having defined the condition number, we may now state how compo-
sition affects the approximation parameters.

Lemma 2.1.3 (Composition). Let Fi be an (αi, βi/κ̃)-algorithm for A : X → Y, where A
has non-linear condition number κ̃ Then, the composition F2 ◦F1 is an (α1 +α2β1, β1β2/κ̃)-
algorithm for the same problem.

Before proving lemma 2.1.3, we state two useful corollaries. The first concerns the result
of recursively composing a (α, β/κ̃)-algorithm with itself.

Corollary 2.1.4. Let F be a (α, β/κ̃)-algorithm for β < 1. Let F t be the sequence formed by
iterated composition, with F 1 = F , F t+1 = F t◦F . Then, F t is a (α/(1−β), βt/κ̃)-algorithm.

Proof. By induction on t. To start, an (α, β/κ̃)-algorithm is trivially a (α/(1 − β), β/κ̃)-
algorithm. Assuming the claim holds for F t, lemma 2.1.3 implies F t+1 is a (α + αβ/(1 −
β), βt+1/κ̃)-algorithm.

We observe that to obtain (1 + O(ε), δ)-solution, only the first solver in the chain need
be very accurate.

Corollary 2.1.5. Let F be a (1 + ε, ε/2κ̃-solver and G be a (2, 1/2κ̃)-solver. Then, Gt ◦ F
is a (1 + 5ε, ε2−t−1/κ̃)-solver.

For some problems, there is a very simple (M, 0)-solver known. A final composition with
that solver serves to eliminate the error.

Corollary 2.1.6. Let F be a (1 + ε, εδ/κ̃)-solver and G be a (M, 0)-solver. Then G ◦F is a
(1 + ε(1 + δM), 0)-solver.

7

2.1.1 Proof of lemma 2.1.3

Since F1 is an (α1, β1/κ̃)-algorithm, we have

‖x‖ ≤ α1‖xopt‖
‖b̃‖
‖A‖

≤ β1

κ̃
‖xopt‖

By the definition of κ̃,

‖x̃opt‖ ≤ κ̃
‖b̃‖
‖A‖

≤ β1‖xopt‖

Since F2 is an (α2, β2/κ̃)-algorithm,

‖x̃‖ ≤ α2‖x̃opt‖ ≤ α2β1‖x‖opt

‖Ax̃− b̃‖
‖A‖

≤ β2

κ̃
‖x̃opt‖ ≤

β1β2

κ̃

The conclusion follows from ‖x+ x̃‖ ≤ ‖x‖+ ‖x̃‖.

2.2 Example Solvers

The recursive composition technique takes existing (α, β)-approximation algorithms and
yields new algorithms with different approximation parameters. In this section, we discuss
the parameters of existing well-known base solvers.

Let A : Rm → Rn be linear and fixed throughout this section. To concisely describe
results and ease comparison, for a norm ‖ · ‖X on Rm and a norm ‖ · ‖Y in Rn, we write
(α, β)X→Y to denote an (α, β) solution with respect to A : X → Y . We quantify complexity
in terms of simple iterations. A simple iteration consists of operations taking O(n+m) time,
plus O(1) applications of A and A∗.

Classical iterative methods for Euclidean problems provide a useful goalpost for compar-
ison.

Theorem 2.2.1 ([15]).

The steepest-descent algorithm produces a (1, δ)2→2-solution after O(κ2→2(A)2 log(1/δ)) sim-
ple iterations

The conjugate gradient algorithm produces a (1, δ)2→2-solution after O(κ2→2(A) log(1/δ))
simple iterations.

For non-Euclidean problems, existing nearly-linear time algorithms use the multiplicative
weights method[42, 23], or more generally Nesterov’s smoothing technique[37]. There are
many existing algorithms for p-norm minimization. For lack of space, we simply state the
results for `1 and `∞ versions sufficient for the max-flow and min-cost-flow results. We remark
that these solvers may be obtained using either the more general framework of Nesterov[37],
or with slightly worse parameters via the multiplicative weights method[23]. In the full
version, we state results for a much larger family of norms.

8

Theorem 2.2.2 ([37]). There is a (1, δ)1→1-solver using O(log(m)δ−2) simple iterations.

Theorem 2.2.3 ([37]). There is a (1, δ)∞→∞-solver using O(log(n)δ−2) simple iterations.

9

Chapter 3

Preconditioning Network Flow

In this chapter we discuss network flow problems. Let G = (V,E, c) be an undirected graph
with n vertices and m edges, and edge weights c ∈ RE. While undirected, we assume the
edges are oriented arbitrarily. A single-commodity flow f ∈ RE specifies a quantity f(e)
to be transported along each edge f(e). The divergence of a flow f at vertex x is the net
quantity transported out of x by f . We write D : RE → RV for the divergence operator.

A single-commodity flow problem is specified by a demands b ∈ RV , and requires finding
a flow f ∈ RE satisfying Df = b, minimizing some cost function. We assume G connected
and

∑
x b(x) = 0, so the problem is feasible.

The cost notion determines the flow problem. In the maximum-flow problem, the objec-
tive is to minimize the congestion

max
e

|f(e)|
c(e)

In the transportation problem, the objective is to minimize the total cost,∑
e

c(e)|f(e)|

Let C ∈ RE×E be diagonal, with c along that diagonal. Then, max-flow and transportation
respectively seek to minimize ‖C−1f‖∞ and ‖Cf‖1.

Our main results are nearly-linear time algorithms for those problems.

Theorem 3.0.4. There are (1 + ε)-approximation algorithms for maximum flow and trans-
portation in undirected graphs running in m1+o(1)ε−2 time.

To obtain fast algorithms, we construct preconditioners. For maximum-flow, we prove
the following theorem in section 3.2.

Theorem 3.0.5. There is an algorithm that given G, takes m1+o(1) time and outputs a data
structure of size n1+o(1) that efficiently represents a preconditioner P with κ∞→∞(PDC) ≤
no(1). Given the data structure, P and P ∗ can be applied in n1+o(1) time.

For transportation, we prove the following theorem in section 3.3.

10

Theorem 3.0.6. There is a randomized algorithm that, given a length-graph G = (V,E, c),
takes O(m log2 n+ n1+o(1)) time and outputs a n1+o(1) × n matrix P such that every column
of P has no(1) non-zero entries and κ1→1(PDC

−1) ≤ no(1).

Having constructed the preconditioners, we use corollary 2.1.6 to chain together solvers.
For maximum-flow, we use the theorem 2.2.3; for transportation, we use theorem 2.2.2.
To terminate the chain, we need (α, 0) solvers with large alpha. For maximum-flow, rout-
ing through a maximum-capacity spanning tree yields a (m, 0)-solver. For transportation,
routing through a minimum-cost spanning tree yields a (n− 1, 0)-solver.

3.1 Related Work

Much of the early work on flow considers the general, directed edge case. Goldberg and
Rao[24] solve directed maximum flow in Õ(mmin(m1/2, n2/3) log(ε−1)) time. Ahuja, Gold-
berg, Orlin, and Tarjan[2] solve directed minimum-cost flow in Õ(nm log(ε−1)) time.

In a breakthrough, Spielman and Teng[47] solve Laplacian linear systems Õ(m) time,
initiating a flurry of new algorithmic results achieved by using the solver as a black box.
Daitch and Spielman[18] show how to use the Laplacian solver with interior-point methods
to obtain an Õ(m3/2 log2 ε−1)-time algorithm for minimum-cost flow. Christiano, Kelner,
Madry, Spielman, and Teng approximate maximum flows in Õ(m4/3ε−2) time[17]. Their
approach uses the nearly linear-time Laplacian solver of Spielman and Teng[47] to take
steps in the minimization of a softmax approximation of the edge congestions. Each step
involves minimizing a weighted `2-norm of the congestions. While a naive analysis yields
immediately yields a method that makes Õ(

√
m) such iterations (because ‖·‖2 approximates

‖ · ‖∞ by a
√
m factor), they present a surprising and insightful analysis showing in fact only

Õ(m1/3) such `2 iterations suffice. The maximum-flow-specific parts of [17] are quite simple,
needing only to maintain the weights W and then using the Spielman-Teng solver as a black
box. Hui Han, Madry, Miller, and Peng[16] adapt those ideas to approximate undirected
transportation in Õ(m4/3ε−2) time.

A second flurry of algorithmic results followed by opening the Laplacian solver box and
leveraging its ideas more directly. Madry[33] approximates a large family of cut problems
to within no(1) in m1+o(1) time. The present author[44] and Kelner et. al.[26] independently
approximate maximum flow in m1+o(1)ε−2 time. Both approaches combine Madry’s cut
approximator with boosting via multiplicative weights. The main distinction is Kelner et.
al. explicitly construct a no(1)-approximate flow algorithm (i.e., oblivious routing scheme)
and then boost that, while we boost the cut algorithm directly. Generalizing and isolating
the problem-specific boosting and approximation parts of our earlier work[44] leads to our
general framework[45]. Our presentation in this chapter combines those two works.

3.2 Preconditioning Maximum Flow

In this section we prove theorem 3.0.5, using a construction of Madry[33], itself based on a
construction of Spielman and Teng[47].

11

Definition 3.2.1 (Madry[33]). A j-tree is a graph formed by the union of a forest with j
components, together with a graph H on j vertices, one from each component. The graph H
is called the core.

Theorem 3.2.2 (Madry[33]). For any graph G and t ≥ 1, we can find in time Õ(tm) a
distribution of t graphs (λi, Gi) such that,

• Each Gi is a O(m logm/t)-tree, with a core containing at most m edges.

• Gi dominates G on all cuts.

•
∑

i λiGi can be routed in G with congestion Õ(log n).

We briefly remark that while the statement of theorem 3.2.2 in [33] contains an additional
logarithmic dependence on the capacity-ratio of G, that dependence is easily eliminated[44].
Our construction will simply apply theorem 3.2.2 recursively, sparsifying the core on each
iteration. To accomplish that, we use an algorithm of Benczúr and Karger[11].

Theorem 3.2.3 (Benczúr, Karger[11]). There is an algorithm Sparsify(G, ε) that, given
a graph G with m edges, takes Õ(m) time and returns a graph G′ with m′ = O(nε−2 log n)
edges such that the capacity of cuts in the respective graphs satisfy

G ≤ G′ ≤ (1 + ε)G

Further, the edges of G′ are scaled versions of a subset of edges in G.

We now present the algorithm for computing the data structure representing a congestion-
approximator. The algorithm ComputeTrees assumes its input is sparse; our top-level data-
structure is constructed by invoking ComputeTrees(Sparsify(G, 1), n1/k), where k is the
parameter of theorem 3.0.5.

ComputeTrees(G, t):

• If n = 1, return.

• Using theorem 3.2.2, compute distribution (λi, Gi)
t′
i of max(1, n/t)-trees.

• Pick the t graphs of largest λi, throw away the rest, and scale the kept λi to sum to
1.

• For i = 1, . . . , t:

– H ′
i ← Sparsify(Hi, 1), where Hi is the core of Gi

– Li ← ComputeTrees(H ′
i, t)

• Return the list L = (λi, Fi, Li)
t
i=1 where Fi is the forest of Gi.

The analysis of ComputeTrees correctness will make use of another algorithm for sampling
trees. The SampleTree procedure is only used for analysis, and is not part of our flow
algorithm.

12

SampleTree(L = (λi, Fi, Li)
t
i):

• Pick i with probability λi.

• Output Fi + SampleTree(Li)

Lemma 3.2.4. Let G have Õ(n) edges, and set L← ComputeTrees(G, t). Then, every tree
in the sample space of SampleTree(L) dominates G on all cuts, and E[SampleTree(L)] is
routable in G with congestion log(n)log(n)/log(t). Further, the computation of L takes Õ(tn)
time.

Proof. By induction on n. For n = 1 the claim is vacuous, so suppose n = tk+1. Since G has
O(n log n) edges, the distribution output by theorem 3.2.2 will have O(t log2 n) entries. We
have H ′

i ≥ Hi and Hi + Fi ≥ G. Furthermore, the inductive hypothesis implies that every
tree Ti in SampleTree(Li) dominates H ′

i. Then,

Ti + Fi ≥ H ′
i + Fi ≥ Hi + Fi = Gi ≥ G

Sparsifying the distribution from O(t log2 n) to t scales λi by at most O(log2 n), so that∑t
i=1 λiGi is routable inG with congestion at most log2 n larger than the original distribution.

Since H ′
i ≤ 2Hi, by the multicommodity max-flow/min-cut theorem[32] H ′

i is routable in Hi

with congestion O(log n). By the inductive hypothesis, E[SampleTree(Li)] is routable in
H ′

i with congestion logO(k)(n). It follows then that E[SampleTree(L)] is routable in G with
congestion at most logO(k+1)(n).

Finally, ComputeTrees requires Õ(tn) time to compute the distribution, another Õ(tn)
time to sparsify the cores, and then makes t recursive calls on sparse graphs with n/t vertices.
It follows that the running time of ComputeTrees is Õ(tn).

Lemma 3.2.5. Let R be the matrix that has a row for each forest edge in our data structure,
and (Rb)e is the congestion on that edge when routing b. If E[SampleTree(L)] is routable in
G with congestion κ, then κ∞→∞(RDC) ≤ κ. Further, R has Õ(tn) rows.

Proof. Since the capacity of each tree-edge dominates the capacity of the corresponding cut in
G, ‖b‖opt ≥ ‖Rb‖∞. On the other hand, b can be routed in every tree with congestion ‖Rb‖∞.
By routing a Pr[T] fraction of the flow through tree T , we route b in E[SampleTree(L)] with
congestion ‖Rb‖∞. But then b can be routed in G while congesting by at most an κ factor
larger.

The total number of edges in R satisfies the recurrence E(n) ≤ nt+ tE(n/t) as each edge
is either in one of the t toplevel forests, or in one of the t subgraphs.

Having constructed our representation of R, it remains only to show how to multiply by
R and R>. We use the following lemmas as subroutines, which are simple applications of
leaf-elimination on trees.

Lemma 3.2.6. There is an algorithm TreeFlow that, given a tree T and a demand vector
b, takes O(n) time and outputs for each tree edge, the flow along that edge when routing b in
T .

13

Lemma 3.2.7. There is an algorithm TreePotential that, given a tree T annotated with a
price pe for each edge, takes O(n) time and outputs a vector of vertex potentials v such that,
for any i, j, the sum of the prices on the path from j to i in T is vi − vj.

We begin with computing R. We take as input the demand vector b, and then annotate
each forest edge e with the congestion re induced by routing b through a tree containing e.

ComputeR(b, L = (λi, Fi, Ti)
t
i):

• For i = 1, . . . , t:

– Let T be the tree formed by taking Fi, adding a new vertex s, and an edge from
s to each core-vertex of Fi. Augment b with demand zero to the new vertex.

– f ← TreeFlow(b, T).

– Set re ← fe/ce for each forest edge in Fi.

– Set b′ to a vector indexed by core-vertices, with b′j equal to the flow on the edge
from s to core-vertex j.

– ComputeR(b′, Ti).

Lemma 3.2.8. The procedure ComputeR(b, L) correctly annotates each edge e with re =
(Rb)e, and takes Õ(tn) time.

Proof. Let L = (λi, Fi, Ti)
t
i. We argue by induction on the depth of recursion. Fix a level and

index i. Observe that the cut in G induced by cutting a forest edge is the same regardless
of what tree T lies on the core: it is the cut that separates the part of Fi not containing the
core from the rest of the vertices. It follows that we may place any tree on the core vertices,
invoke TreeFlow, and obtain the flow on each forest edge. Next, for each component S of
Fi, the total excess bS must enter S via the core vertex. It follows that in a flow routing b
on Fi + T ′, for any tree T ′, the restriction of that flow to T ′ must have excess bS on the core
vertex of S, so it suffices to find a flow in the core with demands b′j = bSj

. But routing b in
Fi + T will place exactly bSj

units of flow on the edge from s to core-vertex j.
The running time consists of t invocations of TreeFlow each taking O(n) time, plus t

recursive calls on graphs of size n/t, for a total running time of Õ(tn).

To compute R>, we assume each forest edge e has been annotated with a price pe that
must be paid by any flow per unit of congestion on that edge, and output potentials v such
that vi − vj is the total price to be paid for routing a unit of flow from j to i.

14

ComputeR>(L = (λi, Fi, Ti)
t
i):

• v ← 0

• For i = 1, . . . , t:

– v′ ← ComputeR>(Ti).

– Let T be the tree formed by taking Fi, adding a vertex s, and an edge from s
to each core-vertex of Fi. Set qe = pe/ce for each forest edge, and qe = v′j for
edge e from s to core-vertex j.

– v′′ ← TreePotential(T, q)

– Add v′′ to v after removing the entry for s.

• Return v

Lemma 3.2.9. Given edges annotated with per-congestion prices, the procedure ComputeR>(L)
correctly returns potentials v such that vk− vj is the cost per unit of flow from vertex j to k.

Proof. Let L = (λi, Fi, Ti)
t
i. We argue by induction on the depth of recursion. Fix a level; a

flow must pay its toll to each Gi, so the resulting potential equals the sum of the potentials
for each i. Fix an index i. A unit of flow from j to k is first routed from j to the core-vertex
of the component of Fi containing j, then to the core-vertex of the component containing
k, and then finally to k. By induction, we assume that v′ yields potentials that give the
per-unit costs of routing between core-vertices. Placing a star on the core with the edge
from s to core-vertex j having per-unit cost v′j preserves those costs. If pe is the price of
an edge per unit of congestion, then qe = pe/ce is the price of an edge per unit of flow. It
follows that the total toll paid is the same as the toll paid in T ; thus, the potentials output
by TreePotential(T, q) are correct.

The running time consists of t recursive calls to ComputeR> on graphs of size n/t, plus t
invocations of TreePotential each taking O(n) time, for a total running time of Õ(tn).

3.3 Preconditioning Min-Cost Flow

A cost function c ∈ RE induces an intrinsic metric d : V ×V → R, with distances determined
by shortest (i.e., minimum cost) paths. We say a function φ ∈ V is L-Lipschitz iff |φ(x) −
φ(y)| ≤ Ld(x, y). The value of the minimum-cost flow depends only on the metric, not on
the cost graph inducing that metric. Thus, we may forget about the costs c, and restrict our
attention to the metric d.

Lemma 3.3.1. If d(x, y) ≤ d̃(x, y) for all x, y ∈ V , then for all b ∈ RV ,

‖b‖opt(d) ≤ ‖b‖opt(d̃)

15

We recall that in some cases, the identity operator is a good preconditioner; for max-flow,
such is the case in constant-degree expanders. For min-cost flow, the analagous case is a
metric where distances between any pair of points differ relatively by small factors.

Definition 3.3.2. Let U ⊆ V . We say U is r-separated if d(x, y) ≥ r for all x, y ∈ U with
x 6= y. We say U is R-bounded if d(x, y) ≤ R for all x, y ∈ U .

Lemma 3.3.3. Let U ⊂ V be R-bounded and r-separated with respect to d. Let b ∈ RV be
demands supported on U . Then,

r

2
‖b‖1 ≤ ‖b‖opt(d) ≤

R

2
‖b‖1

Proof. Note r
2
‖b‖1 is exactly the min-cost of routing b in the metric where all distances are

exactly r (consider the star graph with edge lengths r/2, with a leaf for each x ∈ U). The
inequalities follow by monotonicity.

A basic concept in metric spaces is that of an embedding : ψ : V → Ṽ , with respective
metrics d, d̃. An embedding has distortion L if for some µ > 0,

1 ≤ µ
d̃(ψ(x), ψ(y))

d(x, y)
≤ L

Metric embeddings are quite useful for preconditioning; if d embeds into d̃ with distortion
L, then the monotonicity lemma implies the relative costs of flow problems differ by a factor
L. It follows that if we can construct a preconditioner P for the min-cost flow problem on
d̃, the same P may be used to precondition min-cost flow on d, with condition number at
most L-factor worse.

Our preconditioner uses embeddings in two ways. The preconditioner itself is based on a
certain hierarchical routing scheme. Hierarchical routing schemes based on embeddings into
tree-metrics have been studied extensively(see e.g. [21]), and immediately yield precondi-
tioners with polylogarithmic condition number. However, we are unable to efficiently imple-
ment those schemes in nearly-linear time. Instead, we apply Bourgain’s O(log n)-distortion
embedding[14] into `1. That is, by paying an O(log n) factor in condition number, we may
completely restrict our attention to approximating min-cost flow in `1 space.

Theorem 3.3.4 (Bourgain’s Embedding[14]). Any n-point metric space embeds into `p space
with distortion O(log n). If d is the intrinsic metric of a length-graph G = (V,E) with m
edges, there is a randomized algorithm that takes O(m log2 n) time and w.h.p. outputs such
an embedding, with dimension O(log2 n).

The complexity of constructing and evaluating our preconditioner is exponential in the
embedding’s dimension. Therefore, we reduce the dimension to Θ(

√
log n), incuring another

distortion factor of exp(O(
√

log n)).

16

Theorem 3.3.5 (Johnson-Lindenstrauss[25, 19]). Any n points in Euclidean space embed
into k-dimensional Euclidean space with distortion nO(1/k), for k ≤ Ω(log n). In particular,
k = O(log n) yields O(1) distortion, and k = O(

√
log n) yields exp(O(

√
log n)) distortion.

If the original points are in d > k dimensions, there is a randomized algorithm that w.h.p
outputs such an embedding in O(nd) time.

Our reduction consists of first embedding the vertices into `2 via theorem 3.3.4, reducing
the dimension to k = O(

√
log n) using lemma 3.3.5, and then using the identity embedding

of `2 into `1, for a total distortion of exp(O(
√

log n)).
To estimate routing costs in `1, we propose an extremely simple hierarchical routing

algorithm in `1, and show it achieves a certain competetive ratio. The routing scheme
applies to the exponentially large graph corresponding to a lattice discretization of the k-
dimensional cube in `1; after describing such a scheme, we show that if the demands in
that graph are supported on n vertices, the distributed routing algorithm finds no demand
to route in most of the graph, and the same routing algorithm may be carried out in a
k − d-tree instead of the entire lattice.

On the lattice, the routing algorithm consists of sequentially reducing the support set
of the demands from a lattice with spacing 2−t−1 to a lattice with spacing 2−t, until all
demand is supported on the corners of a cube containing the original demand points. On
each level, the demand on a vertex not appearing in the coarser level is eliminated by pushing
its demand to a distribution over the aligned points nearby.

3.3.1 Lattice Algorithm

For t ∈ Z, let Vt = (2−tZ)k be the lattice with spacing 2−t. We design a routing scheme
and preconditioner for min-cost flow in `1, with initial input demands bT supported on a
bounded subset of VT . For t = T, T − 1, . . ., the routing scheme recursively reduces a min-
cost flow problem with demands supported on Vt to a min-cost flow problem with demands
supported on the sparser lattice Vt−1. Given demands bt supported on Vt, the scheme consists
of each vertex x ∈ Vt pulling its demand bt(x) uniformly from the closest points to x in Vt−1

along any shortest path, the lengths of which are at most k2−t. For example, a point
x = (x1, . . . , xk) ∈ V1 with j ≤ k non-integer coordinates and demand b1(x) pulls b1(x)2

−j

units of flow from each of the 2j points in V0 corresponding to rounding those j coordinates
in any way. By construction, all points in Vt \ Vt−1 have their demands met exactly, and
we are left with a reduced problem residual demands bt−1 supported on Vt−1. As we show,
eventually the demands are supported entirely on the 2k corners of a hypercube forming a
bounding box of the original support set, at which point the the simple scheme of distributing
the remaining demand uniformly to all corners is a k-factor approximation.

We do not actually carry out the routing; rather, we state a crude upper-bound on its
cost, and then show that bound itself exceeds the true min-cost by a factor of some κ. For
the preconditioner, we shall only require the sequence of reduced demands bt, bt−1, . . ., and
not the flow actually routing them.

17

Theorem 3.3.6.

‖bt‖opt ≤
t∑

s=0

k2−s‖bs‖1 ≤ 2k(t+ 1)‖bt‖opt

Assuming theorem 3.3.6 holds, we take our preconditioner to be a matrix P such that,

‖PbT‖1 =
T∑

t=0

k2−t‖bt‖1

The proof of theorem 3.3.6 uses two essential properties of the routing scheme described.
The first is that the cost incurred in the reduction from bt to bt−1 is not much larger than
the min-cost of routing bt. The second is the reduction does not increase costs. That is, the
true min-cost for routing the reduced problem bt−1 is at most that of routing the original
demands bt.

Lemma 3.3.7. Let bt−1 be the reduced demands produced when the routing scheme is given
bt. Then,

1. The cost incurred by that level of the scheme is at most k2−t‖bt‖1 ≤ 2k‖bt‖opt

2. The reduction is non-increasing with respect to min-cost: ‖bt−1‖opt ≤ ‖bt‖opt

Assuming lemma 3.3.7, we now prove 3.3.6. We argue the sum is an upper bound on the
total cost incurred by the routing scheme, when applied to bt. The left inequality follows
immediately, as the true min-cost is no larger.

The total cost of the scheme is at most the cost incurred on each level, plus the cost of
the final routing of b0. Lemma 3.3.7(a) accounts for all terms above s = 0. For the final
routing, the demands b0 are supported in {0, 1}k, so the cost of routing all demand to a
random corner is at most 1

2
k‖b0‖1.

For the right inequality, we observe

t∑
s=0

k2−t‖bt‖1 ≤
t∑

s=0

2k‖bs‖opt

The inequality follows termwise, using lemma 3.3.7(a) for s ≥ 1; the s = 0 case follows from
lemma 3.3.3 because V0 is 1-separated.

3.3.2 Proof of Lemma 3.3.7

For the first part, each vertex x ∈ Vt routes its demand bt(x) to the closest points in Vt−1

any shortest path. As such paths have length at most k2−t, each point x contributes at most
k2−t|bt(x)|.

For the second part, by scale-invariance it suffices to consider t = 1. Moreover, it suffices
to consider the case where b1 consists of a unit demand from between two points x, y ∈ V1

with ‖x − y‖1 = 1
2
. To see this, we observe any flow routing arbitrary demands b1 consists

18

of a sum of such single-edge flows. As the reduction is linear, if the cost of each single-edge
demand-pair is not increased, then the cost their sum is not increased. By symmetry, it
suffices to consider x, y with x = (0, z) and y = (1

2
, z). Then, the reduction distributes x’s

demand to a distribution over (0, z′) where z′ ∼ Z ′; y’s demand is split over (0, z′) and (1, z′)
where z′ ∼ Z ′. Therefore, half of the demand at (0, z′) is cancelled, leaving the residual
problem of routing 1/2 unit from (0, z′) to (1, z′). That problem has cost 1/2, by routing
each fraction directly from (0, z′) to (1, z′).

19

Chapter 4

Area-Convexity and Multicommodity
Flow

4.1 Introduction

Biaffine saddle point problems are fundamental in optimization, generalizing linear program-
ming in a way that explicitly introduces duality. The problem is to compute

min
x∈X

max
y∈Y

A(x, y) (4.1)

where X ,Y are compact-convex subsets of real finite dimensional vector spaces, and A is
biaffine. The problem of deciding if there is an x ∈ X satisfying a linear system Ax = b
reduces to (4.1) by taking A(x, y) = y · (Ax − b), and choosing Y according to a desired
measure of error. In single-commodity network flow problems on a graph G = (V,E),
X ⊂ RE represents feasible flows, while Ax = b ∈ RV specifies the outflux demands at each
vertex; in k-commodity problems, x, b are expanded to k-column matrices X,B, and the
outflux constraints become AX = B.

Conjugate regularization is one of the most powerful existing tools for solving the general
problem (4.1). The technique, implicitly used by the multiplicative weights method[42, 23]
for the unit simplex case, is developed more generally by Nesterov[37]. A non-differentiable
objective function

η(x) = max
y∈Y

A(x, y)

is approximated by choosing a strictly convex function φ : Y → R, and considering

η̃(x) = max
y∈Y

A(x, y)− φ(y)

Strict convexity of φ ensures η̃ is differentiable, allowing first-order optimization methods
(e.g. steepest descent) to be applied. For first-order methods to work well, the first-order
approximation to η̃ should be a good one; that is, η̃ should be smooth. Nesterov[37] shows
that strong convexity of φ implies a corresponding smoothness property of η̃. Roughly, φ is
strongly-convex if for any two points x, y, 1

2
(φ(x) + φ(y)) exceeds φ(1

2
(x+ y)) by an amount

20

proportional to ‖x − y‖2. Nesterov[38] presents two different algorithms. The first, we call
half-regularized, regularizes only one of the two sets, and takes roughly |φ|ε−2 iterations,
where |φ| denotes the size of φ’s range. The second, we call fully regularized, uses two
regularizers φX , φY , one for each set X ,Y , and takes roughly

√
|φX ||φY |ε−1 iterations.

Therefore, designing fast algorithms using Nesterov’s framework requires choosing φ to
carefully balance two requirements. On the one hand, φ should be small so that η u η̃. On
the other hand, it should be strongly convex for first-order techniques to work well. Unfor-
tunately, for some sets, most notably `∞ balls, those two properties are irreconcilable; any φ
that is strongly-convex with respect to ‖·‖∞ on [−1, 1]n has |φ| ≥ n

2
. The latter `∞ barrier is

responsible for stalled progress on algorithms for several important optimization problems.
For single-commodity flow, the barrier prevents use of fully-regularized methods with faster
ε−1 dependance. For multicommodity flow, the consequences are even more severe. In that
case, X is the set of m × k right-stochastic matrices (i.e., m simplices), and Y is a corre-
sponding polar. There, X contains a m-dimensional `∞ ball as before, but Y also includes
a k-dimensional `∞ ball, so nontrivial approximation requires Ω(min(m, k)) iterations. The
fastest current algorithm for undirected multicommodity flow, due to Kelner et al.[26], re-
quires Ω(mk2) time for m edges and k commodities, with one factor of k attributable to the
`∞ barrier.

In this paper, we show how to break that barrier by using regularizers satisfying a dra-
matically weaker property we call area-convexity. Roughly, φ is area-convex if for any three
points x, y, z, 1

3
(φ(x)+φ(y)+φ(z)) exceeds φ(1

3
(x+y+z)) by an amount proportional to the

area of the triangle defined by the convex hull of x, y, z. Further, the notion of area used is
intrinsic to the problem, obtained by first reducing (4.1) to a case where A is antisymmetric,
and then interpreting it as a two-form. In 4.1.1, we define area-convexity more precisely and
present a modified version of Nesterov’s algorithm[38] that requires only area-convexity for
convergence. We also show that for twice-differentiable φ, area-convexity is approximately
equivalent to purely local property of φ’s Hessian, much like the case of regular convexity.

Area-convexity is weaker than strong-convexity; three points on a common line have zero
area, so it does not even imply strict convexity. Roughly, area-convexity permits φ to be
only slightly convex along a line u, if it is very convex along lines v where the uv plane has
large area. To exploit that, we jointly regularize X ⊕ Y with a single function φ(x, y) that
does not separate into φ1(x) + φ2(y).

The “outer” iteration steps taken by many different algorithms[29, 37, 36, 38], including
our own, are quite similar. In 4.2.3, we observe that when the step size is taken to zero,
they all reduce to a single common continuous algorithm that integrates a simple Hamil-
tonian System. Each algorithm effectively uses a different numerical integration rule to
discretize the system. The weaker properties of our regularizers, namely non-separability
and area-convexity, translate to continuous algorithms belonging to more general classes of
such dynamical systems. In particular, joint regularization yields non-separable Hamiltonian
systems.

Having developed the more general framework, we obtain faster algorithms for funda-
mental optimization problems by constructing small area-convex regularizers for sets where
small strongly-convex regularizers do not exist. Our main technical result, stated in 4.1.2,

21

is a nearly-linear time algorithm for approximately solving inequalities AX ≤ B over right-
stochastic matrices X; if such an X exists, the algorithm outputs X̃ with AX̃ ≤ B+ ε‖A‖R
for some right-stochastic R. Several important problems including `1/`∞-regression[16], opti-
mal transportation[45], and maximum concurrent flow easily reduce to the stochastic matrix
problem, so we obtain faster algorithms for those problems. In particular, by using existing
work on preconditioning single-commodity maximum flow[44, 26, 45, 41], we immediately
obtain a nearly linear time approximation algorithm for maximum concurrent flow.

Applying general optimization algorithms to network flow problems often results in nu-
merical update rules that have intuitive interpretations as simulating physical models of flow
networks (e.g. mass-spring or capacitor-inductor systems), and our algorithm is no exception.
Combining that interpretation with the continuous Hamiltonian view allows the area-convex
regularizer to be understood as a dynamically self-tuning network element. Roughly, to have
a discrete step of time t approximate continuous evolution for time t, the system’s oscillation
modes should have frequency O(1/t). The separable Hamiltonian systems resulting from
separate regularization of primal and dual spaces yield network models containing separate
elements (e.g, springs, masses) for the primal (position) and dual (momentum) parts of the
phase space, with total energy being the sum of both. In contrast, our system consists of
joint elements that dynamically tune their impedances with respect to both parts jointly
to guarantee low frequency oscillation. We remark our algorithmic results were actually
obtained via that approach, namely attempting to design physical models of systems that
solve flow problems and have bounded frequency response. We have reformulated it via
regularization for sake of familiarity to optimization researchers.

4.1.1 Area Convexity

We consider a general bi-affine saddle point problem of the form

min
x∈X

max
y∈Y

A(x, y) (4.2)

where
A(x, y) = y · Ax− b · y − c · x

Here, X ,Y are compact-convex in real finite dimensional vector spaces, A is a linear
operator, and b, c are linear functionals. Throughout this paper, boldface is used to denote
problem inputs or other objects that remain fixed throughout the course of an algorithm,
while non-boldface is used for outputs or other objects that vary. A pair (x, y) ∈ X ⊕ Y is
said to be ε-optimal for (4.2) iff,

ε ≥ max
x′∈X ,y′∈Y

A(x, y′)− A(x′, y) (4.3)

Our goal in approximately solving 4.2 is to find an ε-optimal pair for small ε.
We begin by applying a standard but useful reduction of (4.2) to a purely bilinear, self-

dual form that will be more concise and convenient. By increasing the dimension by one

22

and augmenting X ,Y with a constant coordinate, we may move the purely linear terms b, c
into A, leaving the purely bilinear problem

min
x∈X

max
y∈Y

y · Ax (4.4)

In a self-dual problem, X = Y and A is alternating (i.e., A∗ = −A). We reduce (4.4) to
self-dual form by setting C := X ⊕ Y and J(x, y) = (A∗y,−Ax), leaving

min
z∈C

max
z′∈C

z′ · Jz (4.5)

The value of a self-dual problem is zero. Having reduced (4.2) to (4.5), we now take (4.5) to
be the general problem under consideration. That is, for a real finite dimensional linear space
Z, we are given an alternating linear operator J : Z → Z∗ together with compact-convex
C ⊂ Z, and we seek approximate solutions to (4.5).

We assume the set C to be represented by an oracle minimizing a regularizer φ. Note
that even if C = X ⊕ Y , such a function may generally depend jointly on both blocks.

Definition 4.1.1. A δ-approximate minimization oracle(δ-AMO) for φ : C → R takes input
a ∈ Z∗, and outputs z ∈ C such that,

a · z − φ(z) + δ ≥ sup
z′∈C

a · z′ − φ(z′) =: φ∗(a)

We assume φ has an additional property that we call area convexity. A function φ is
area-convex if for any three points x, y, z, the value of φ at their mean lies below the mean
of their values by an amount proportional to the area of the triangle defined by their convex
hull. We view J as a two-form to intrinsically define the oriented area of such a triangle as
1
2
(z − y) · J(x− y).

Definition 4.1.2. φ is area-convex with respect to J on a convex set C, iff, for all x, y, z ∈ C,

φ

(
x+ y + z

3

)
≤ 1

3
(φ(x) + φ(y) + φ(z))− 1

3
√

3
(z − y)J(y − x)

Our main general result is that area-convex regularization suffices for fast saddle-point
algorithms.

Theorem 4.1.3. Let J be alternating, C compact-convex, and φ : C → [−ρ, 0]. Suppose φ
is area-convex with respect to 2

√
3J on C, and Φ is a δ-AMO for φ. Define a sequence by

z(0) = 0,
z(t+ 1) = z(t) + Φ̃(Jz(t))

where
Φ̃(a) = Φ(a+ 2JΦ(a))

Then, for all t > 0, we have 1
t
z(t) ∈ C and,

δ + ρ/t ≥ max
z′∈C

z′ · J(z(t)/t)

In particular, for t = ρε−1, a δ + ε-approximate solution is obtained in ρε−1 iterations,
each requiring O(1) calls to Φ, O(1) applications of J , and O(1) vector additions.

23

We prove theorem 4.1.3 in 4.2.1, remarking that both the sequence defined and the (quite
short) proof of its convergence closely follows Nesterov[38].

The definition of area-convexity is simplest to state and use. However, it is not the
simplest to satisfy. Like convexity, we may alternatively characterize the notion locally for
e.g. twice-differentiable φ; first, we must consider quadratic φ. We recall an operator Q is
positive semidefinite(PSD), and write Q � 0, if z · Qz ≥ 0 for all z; we write Q � P to
denote Q−P � 0.

We state two simple but useful lemmas about quadratic functions. Proofs follow directly
from the definition of area-convexity; we include them in appendix 4.5. We also remark the
constant in definition 4.1.1 is chosen to eliminate constants from lemma 4.1.4.

Lemma 4.1.4. The function z 7→ 1
2
z ·Qz is area-convex with respect to J if and only if,[

Q −J
J Q

]
� 0 (4.6)

We use the condition (4.6) of lemma 4.1.4 frequently enough to introduce the more concise
notation

Q � ıJ :⇐⇒
[
Q −J
J Q

]
� 0 (4.7)

We work only with real vector spaces, so the notation is unambiguous, but we remark the
notation is consistent with and motivated by the complex operator Q− ıJ being PSD.

Lemma 4.1.5. Let Q ∈ R2×2 be symmetric. Then,

Q � ı

[
0 1
−1 0

]
if and only if Q � 0 and det(Q) ≥ 1

If φ is twice-differentiable on a set K, we let dφ : K → Z∗ denote the derivative, and
d2φ : K → (Z→ Z∗) denote the Hessian. We may approximately characterize area-convexity
locally.

Theorem 4.1.6. Let φ be twice differentiable on a convex set K.

1. If φ is area-convex w.r.t J on the interior of K, then d2φ(z) � ıJ for all z in the
interior of K.

2. If d2φ(z) � ıJ for all z ∈ K, then φ is area-convex w.r.t 1
3
J on K.

If, further, φ is continuous on the closure of K, then φ is area-convex w.r.t 1
3
J on the

closure of K.

We prove theorem 4.1.6 in 4.2.2; we remark that while the factor of three is not tight,
the factor is not one either.

24

4.1.2 Right-Stochastic Matrix Problems

We consider saddle point problems between right-stochastic matrices 4m
k and a correspond-

ing polar (4n
k)⊕.

4m
k = {X ∈ Rm×k : X ≥ 0,∀e

∑
j

Xej = 1}

(4m
k)⊕ = {Y ∈ Rm×k : Y ≥ 0,

∑
e

max
j
Yej ≤ 1}

Note we identify X ∈ (Rk)m with X ∈ Rm×k, so that Xe ∈ Rk is the eth row of X and
(Xej) = (Xe)j.

Our main technical result is a nearly-linear time algorithm for solving saddle point prob-
lems between such sets.

Theorem 4.1.7. There is an algorithm that given B ∈ Rn×k, C ∈ Rm×k, and A ∈ Rn×m

with ‖A‖∞→∞ ≤ 1, takes Õ(knnz(A)ε−1) time and outputs X ∈ 4m
k , Y ∈ (4n

k)⊕ such that,

ε ≥ max
X′∈4m

k ,Y ′∈(4n
k)⊕

A(Y ′, X)− A(Y,X ′)

where,
A(Y,X) = tr[Y ∗AX]− tr[C∗X]− tr[B∗Y]

Here, nnz(A) is the number of nonzero entries in A; we assume A has no all-zero rows
or columns, so nnz(A) ≥ maxm,n. We prove theorem 4.1.7 in section 4.3, by constructing
area-convex regularizers for 4m

k ⊕ (4n
k)⊕. We remark that using existing strongly-convex

regularization frameworks, a half-regularized approach yields Õ(min(k,m) knnz(A)ε−2) time
while the fully-regularized approach yields Õ(

√
mkknnz(A)ε−1) time.

Theorem 4.1.7 is useful for approximately solving inequality systems over right-stochastic
matrices; we state an immediate corollary.

Corollary 4.1.8. There is an algorithm that given B ∈ Rn×k, and A ∈ Rn×m with ‖A‖∞→∞ ≤
1, takes Õ(knnz(A)ε−1) time and outputs either,

1. X ∈ 4m
k such that AX ≤ B + εR where R ∈ 4n

k .

2. Y ≥ 0 such that tr[Y (AX −B)] > 0 for all X ∈ 4k
m.

4.1.3 Multicommodity Flow

Let G = (V,E) be directed graph, and let D ∈ RV×E be the discrete divergence operator
for G. A single-commodity flow f ∈ RE specifies a quantity fe ≥ 0 be transported along
edge e, while (Df)v is the net quantity transported out of vertex v. A k-commodity flow
F ∈ (Rk)E specifies quantities Fej ≥ 0 for each commodity j and edge e. Then, (DF)vj is
the net quantity of commodity j transported out of v by F ; if DF = B, we say F routes
B. A flow F is said to be feasible with respect to capacities c ∈ RE if ce ≥

∑
j Fej for each

25

edge e. Letting C ∈ RE×E be diagonal with Cee = ce, a feasible flow F may be written as
F = CX for right-sub-stochastic X.

In the maximum-concurrent flow problem, we are given G = (V,E) with capacities
c ∈ RE, demands B ∈ (Rk)V , and we must feasibly route λB for λ > 0 as large as possible.
If λopt is the true such maximum, then a flow F is a (1 − ε)-approximation to maximum-
concurrent flow if it is feasible and DF = λB where λ ≥ (1− ε)λopt.

In an undirected graph, there are actually two notions of feasibility, corresponding to
whether edges are half-duplex (i.e., share capacity in each direction) or full-duplex (i.e., have
full capacity in each direction). The full-duplex version represents an undirected edge e of
capacity ce as two directed edges of opposite orientation, each of capacity ce. In the half-
duplex case, the condition F ≥ 0 is dropped, the sign of Fej specifies direction of flow, and
feasibility becomes

ce ≥
∑

j

|Fej|

We distinguish the two because existing work on the undirected case we are aware of[27, 26]
uses the half-duplex definition, while the full-duplex variant is more clearly related to the
stochastic matrix problem.

Our main result concerning multicommodity flow is that the undirected variants may be
approximately solved in nearly-linear time. The algorithms also output dual solutions.

Theorem 4.1.9. There are (1 − ε)-approximation algorithms for both duplex variants of
undirected maximum concurrent flow that run in Õ(mkε−1) time. Both algorithms also
output dual solutions certifying (1− ε)-optimality.

We sketch the algorithm in section 4.4, but remark no new flow-specific work is actu-
ally required; theorem 4.1.9 follows by substituting the algorithm of theorem 4.1.7 for the
alternatives used by existing work[26, 44, 45] in a straightforward way.

Those works leverage ideas introduced by Spielman and Teng[47] to solve Laplacian
systems in nearly-linear time. Kelner, Miller, and Peng[27] present an algorithm requiring
Õ(m4/3poly(k, ε−1)) time using the Laplacian Solver as a black-box. Kelner et al.[26] reduce
that to m1+o(1)k2ε−2 time. In that bound, one factor of k comes from the need for at least
k iterations due to the infamous `∞ regularization barrier.

4.2 Area Convexity

In this section, we prove the claims stated in 4.1.1, and also observe the saddle point algo-
rithm may be viewed as discretizing a continuous algorithm that solves the problem. The
analysis we present closely follows a simplified version of Nesterov’s[38] dual extrapolation
method for variational inequalities, as applied to the case of self-dual bilinear saddle point
problems.

26

4.2.1 Proof of Theorem 4.1.3

Define,
η(a) = sup

z′∈C
z′a

Our goal is to find z ∈ C with η(Jz) ≤ ε. Recall,

φ∗(a) = sup
z′∈C

z′a− φ(z′)

Since φ ≤ 0, we observe,
η(a) ≤ φ∗(a)

Additionally, because η is positive homogeneous (i.e, η(ta) = tη(a)), we actually have the
following lemma.

Lemma 4.2.1. For t > 0, and a ∈ Z∗,

η
(a
t

)
≤ φ∗(a)

t

The proof of theorem 4.1.3 proceeds by observing the sequence has the property that
z(t) ∈ tC, yet φ∗(Jz(t)) does not increase by much. The latter is claimed by the following
lemma.

Lemma 4.2.2 (Stepping Lemma). Let J, φ, Φ̃, δ be as in theorem 4.1.3. Then, for any a,

φ∗(a+ JΦ̃(a)) ≤ φ∗(a) + δ

Before proving the stepping lemma, let us observe it proves the theorem. First, φ∗(Jz(0)) =
φ∗(0) ≤ ρ. By the stepping lemma, we have,

φ∗(Jz(t+ 1)) = φ∗(Jz(t) + JΦ̃(Jz(t))) ≤ φ∗(Jz(t)) + δ

By induction, φ∗(Jz(t)) ≤ ρ+ δt. By lemma 4.2.1, η(J(z(t)/t)) ≤ δ + ρ/t.
We now prove the stepping lemma. Without loss of generality, we may assume a = 0,

or else consider φ̂(x) = φ(x) − a · x. Let x = Φ(0), and y = Φ̃(0) = Φ(2Jx). Let z ∈ C be
arbitrary. Our goal is to show,

z · Jy − φ(z) ≤ φ∗(0) + δ

We have three points x, y, z ∈ C. Since φ is area-convex w.r.t 2
√

3J on C,

(z − y) · J(y − x) ≤ 1

2
(φ(z) + φ(y) + φ(x)− 3φ((x+ y + z)/3))

Certainly, −φ((x+ y + z)/3) ≤ φ∗(0), while our assumption of Φ is that −φ(x) ≥ φ∗(0)− δ,
so we have,

(z − y) · J(y − x) ≤ φ∗(0) +
1

2
(φ(z) + φ(y) + δ) (4.8)

27

Applied to y, our assumption of Φ implies,

2(z − y) · Jx− φ(z) + φ(y) ≤ δ

Equivalently,

(z − y) · Jx− φ(z) ≤ 1

2
(δ − φ(y)− φ(z)) (4.9)

Combining (4.8) and (4.9) yields,

z · Jy − φ(z) = (z − y) · J(y − x) + (z − y) · Jx− φ(z) ≤ φ∗(0) + δ

4.2.2 Proof of Theorem 4.1.6

Without loss of generality let 0 be in the interior of C, and d2φ(0) = Q. Let x, y ∈ Z. Then,
for sufficiently small t, by area-convexity,

1

3t2
(φ(tx) + φ(ty) + φ(−ty − tx))− φ(0)) ≥ 1√

3
y · Jx

Taking the limit of the left side, the function 1
2
x · Qx must be area-convex, and the first

direction follows by lemma 4.1.4.
For the other direction, we begin with a convenient lemma.

Lemma 4.2.3. Let C be an equilateral triangle of unit height in R2, and suppose ψ : C →
(−∞, 0] is convex with det(d2ψ) ≥ 1 on the interior of C. Then, ψ(x) ≤ − 2

27
where x is the

midpoint of the triangle.

Assuming lemma 4.2.3, we prove theorem 4.1.6. Suppose d2φ � ıJ on K, and let u, v, w ∈
K.

If (u − v) · J(v − w) = 0, the result is trivial, as d2φ � ıJ implies d2φ � 0. Otherwise,
without loss of generality we assume u = −v and φ(u) = φ(v) = φ(w) = 0; the former may
be assumed by translating K, and the latter by observing

1

3
(φ(u) + φ(v) + φ(w))− φ

(
1

3
(u+ v + w)

)
is invariant under adding any affine term to φ. Then, (u − v) · J(w − v) = 2u · Jw, so our
goal is to show φ

(
1
3
(u+ v + w)

)
≤ − 2

9
√

3
u · Jw.

Define A : R2 → Z by A(x, y) = yw +
√

3xu, so that A maps an equilateral triangle of
unit height to the convex hull of u, v, w. Let ψ(x, y) = φ(A(x, y)). Then,

d2ψ(x, y) = A∗(d2φ)(A(x, y))A � ıA∗JA = αı

[
0 1
−1 0

]
where α =

√
3u · Jw. By lemma 4.1.4, we have det(d2ψ) ≥ α2. By lemma 4.2.3, we have,

ψ(0, 1/3) ≤ − 2

27
α = − 2

9
√

3
u · Jw

28

For the second part, suppose φ is continuous on the closure of K, and let u, v, w be in
that closure. Then there is a sequence of triples (un, vn, wn) ∈ K3 converging to (u, v, w).
Then, as we have just established,

1

3
(φ(un) + φ(vn) + φ(wn))− φ

(
1

3
(un + vn + wn)

)
≥ 1

9
√

3
(un − vn) · J(wn − un)

The result follows by continuity of φ and J .
We now prove lemma 4.2.3. Without loss of generality, let C be centered at (0, 1/3). Let

4ψ be the Laplacian of ψ. Then, using lemma 4.1.5, and the fact that tr[Q] ≥ 2
√

detQ for
0 � Q ∈ R2×2,

4ψ = tr[d2ψ] ≥ 2
√

det d2ψ ≥ 2

The function η defined by,

η(x, y) =
1

2
y(y − 1−

√
3x)(y − 1 +

√
3x)

is the solution to the Poisson equation 4η = 2 on the interior and η = 0 on the boundary for
an equilateral triangle, and η(0, 1/3) = −2/27. Then ψ − η is subharmonic on the interior
of C and non-positive on the boundary, so it is non-positive on the interior too.

We remark a tight bound would be obtained by using a solution to the Monge-Ampère
equation, rather than the Poisson equation.

4.2.3 Hamiltonian Systems

Suppose φ is strictly convex, and suppose Φ is a 0-approximator for φ∗; that is,

Φ(a) = arg max
z′∈C

a · z′ − φ(z′)

Then, φ∗ is strictly convex with (dφ∗)(a) = Φ(a). A naive version of the algorithm might
perform the step,

z(t+ 1) = z(t) + Φ(Jz(t))

Consider now a continuous dynamical system defined by z(0) = 0, and

(dz)(t) = Φ(Jz(t))dt (4.10)

Assuming a solution to the system exists, we have,

d(φ∗(Jz(t))) = (dφ∗)(Jz(t)) · J(dz)(t) = (dz)(t) · J(dz)(t)dt = 0

That is, the quantity φ∗(Jz) is conserved. Indeed, if we define, H(z) = φ∗(Jz), we recover
the generalized Hamilton equations,

J(dz) = (dH)(z(t))dt

We may view various algorithms[36, 38], including that of theorem 4.1.3 as effectively
discretizing (4.10) using various numerical integration rules.

29

We now examine a certain sense in which area-convexity is tight. Suppose z′ = Φ(Jz) is
in the interior of C, and φ is twice differentiable at z′. Then, second-order duality theory[43]
implies (d2φ∗)(Jz) = (d2φ(z′))−1. That is, (d(Φ ◦ J))(z) = (d2φ(z′))−1J . For higher-order
stepping rules that involve iterating a map of the form z′ 7→ Φ(z + hJz′), we may expect
convergence only if the spectral radius of h(d2φ(z′))−1J is below unity; in particular, for
h = 1, convergence requires (d2φ(z′))−1J be a contraction. That is,

J∗(d2φ(z′)−1)J � d2φ(z′)

On the other hand, J∗Q−1J � Q is exactly equivalent to Q � ıJ for invertible Q. Therefore,
by theorem 4.1.6, strict area-convexity is, equivalent to local Lipschitz continuity of the time
evolution operator. In contrast, strong convexity is equivalent to global Lipschitz continuity
with respect to a fixed norm.

4.3 Stochastic Matrix Problems

We prove theorem 4.1.7 by constructing small area-convex regularizers, together with a
fast δ-AMO. We take A to be fixed throughout the rest of the section, and define Ā by
Āve = |Ave|. We represent the domain by explicitly incorporating an extra w ∈ 4n bounding
row-maximums for Y .

C := C1 ⊕4m
k

C1 := {(w, Y) : w ∈ 4n, Y ≥ 0, Yvj ≤ wv}

Following the reduction in 4.1.1, we let J(w, Y,X) = (0, AX,−A∗Y). Note we have ignored
the linear terms C,B; as stated in 4.1.1, they may be incorporated by augmenting C, J with
an additional dimension.

Our regularizer repeatedly uses a gadget function port(w, y, x) of three scalar variables,
defined for x ≥ 0, 0 ≤ y ≤ w, by

port(w, y, x) = x
y2

2w
+ 3wx log x (4.11)

Note that if w = 0, we must have y = 0, and setting port(0, 0, x) = 0 yields continuity at
0, 0, x.

Using port, we define φ as,

φ(w, Y,X) = α
∑
e,v,j

Āevport(wv, Yvj, Xej) + αβ
∑

v

wv logwv (4.12)

We set α := 18, β := 27(2 + log k)2.
To use theorem 4.1.3 we must show three things. First, φ must not be too large.

Lemma 4.3.1. |φ(z)| ≤ O(log(n) log2(k)) for all z ∈ C.

We remark the massive β factor causes the second sum in φ to dominate.
Second, φ must have the required area-convexity property.

30

Lemma 4.3.2. φ is area-convex with respect to 2
√

3J on C

We prove lemma 4.3.2 in 4.3.1. Roughly, after defining some useful notation, we are able
to write expressions such as,

d2port(w, y, x) ≈ w

x
(dx)2 +

x

w
(dy)2 � ıdy ∧ dx

and then, substituting wv, Yvj, Xej, simply sum over e, v, j. The actual proof differs only in
more precisely specifying “≈”, and defining notation.

Finally, we must implement an approximate minimization oracle for φ; given a ∈ Rn, B ∈
Rn×k, C ∈ Rm×k, we must find (w, Y,X) ∈ C with,

a · w + tr[B∗Y] + T[C∗X]− φ(w, Y,X) ≥ φ∗(a,B,C)− δ (4.13)

We remark that a is not actually required because the w-block of J is zero, so the saddle
point algorithm will only ever call the AMO with a = 0; we include it to formally satisfy the
definition of an AMO.

To implement an AMO, we observe that maximizing over (w, Y) or X separately is easy,
and then alternate between maximizing over each block. That is, we define an AMO by
algorithm 1.

Algorithm 1: Approximate Minimizer for φ

Input: a ∈ Rn, B ∈ Rn×k, C ∈ Rm×k, δ > 0
Output: (w, Y,X) ∈ C such that

a · w + tr[B∗Y] + tr[C∗X]− φ(w, Y,X) ≥ φ∗(0, B, C)− δ
Initialize X ∈ 4m

k arbitrarily
repeat O(log δ−1) times

(w, Y)← arg max(w,Y)∈C1 w · a+ tr[B∗Y]− φ(w, Y,X)
X ← arg maxX∈4m

k
tr[C∗X]− φ(w, Y,X)

end

Lemma 4.3.3. For δ > 0, algorithm 1 is a δ-AMO for φ and runs in O(knnz(A) log(δ−1))
time.

We prove lemma 4.3.3 in 4.3.3. We also give formulas to implement the block maximiza-
tion in 4.3.2, but remark they follow immediately by computing dφ, and we shall not discuss
them in detail. In particular, for fixed w, Y , maximizing X reduces to maximizing entropy
plus a linear term as it does for the common entropy-regularizer; for fixed X, after Y is
eliminated, the same is true of w.

We now prove theorem 4.1.7 using those lemmas. Given ε, choose δ = ε/2, and set
Φ to be algorithm 1 for that choice of δ. Then, the algorithm of theorem 4.1.3 requires
O(log(n) log2(k)ε−1) iterations to find an ε-approximate solution (w, Y,X) ∈ C. Each re-
quires applying J and calling Φ twice, which takes O(knnz(A) log(δ−1)) time by theorem
4.3.3. Therefore, the overall running time is Õ(knnz(A)ε−1).

31

4.3.1 Proof of Lemma 4.1.2

For two vectors a, b, we write a ∧ b := a ⊗ b − b ⊗ a, and we write a2 = a ⊗ a. Note that
a2 � 0. By identifying {Yvj, wv, Xej} with functions from C to R that return the respective
coordinates, we write dYvj, dXej, dwv to denote the standard basis of the dual space Z∗.

Define,
C+ := {(w, Y,X) ∈ C : w > 0, X > 0}

We define a tensor field Q on C+ via,

Q(w, Y,X) = α
∑
e,v,j

Āve

(
Xej

wv

(dYvj)
2 + 3

wv

Xej

(dXej)
2

)
+ αβ

∑
v

(dwv)
2

wv
(4.14)

While diagonal in the standard basis, Q approximates d2φ quite well.

Lemma 4.3.4. For z ∈ C+,
1

3
Q(z) � d2φ(z) � 2Q(z)

Before proving lemma 4.3.4, we use it to complete the proof of lemma 4.3.2.
For (w, Y,X) ∈ C+, using lemma 4.1.5 yields,

d2φ(w, Y,X) � 1

3
Q(w, Y,X)

� α
∑
e,v,j

Āve

(
Xej

3wv

(dYvj)
2 +

wv

Xej

(dXej)
2

)
� α√

3

∑
e,v,j

AveıdYej ∧ dXej

=
α√
3
ıJ

Since the closure of C+ is C, and α = 18, lemma 4.3.2 follows from theorem 4.1.6.
We now prove lemma 4.3.4. Let φ = φ1 + φ2, and Q = Q1 + Q2, where φ2 contains all

wv logwv terms and Q2 contains all (dwv)
2 terms. Note that d2φ2 = Q2.

We use a useful lemma about the gadget. Note the gadget is just a function on R3 (note
w, y, x are scalars in lemma 4.3.5), so the lemma follows by computing the components of
the 3× 3 matrix d2port; for convenience we give the components in appendix 4.6.

Lemma 4.3.5 (Gadget Lemma). Let w > 0, |y| ≤ w and 0 < x ≤ 1. Then,

1

3
M(w, y, x)− E(w, x) � d2port(w, y, x) � 2M(w, y, z) + E(w, x)

where,

M(w, y, x) =
x

w
(dy)2 +

3w

x
(dx)2

E(w, x) = 18x(2− log x)2 (dw)2

w

32

The gadget lemma makes the argument described in the beginning of the section rigorous.
In particular, if not for the E terms, we would have d2port(w, y, x) � Ω(1)dy∧dx. The extra
terms in φ have been added precisely to counter that problem.

Define,

R(w,X) = 18α
∑
e,v,j

ĀveXej(2− logXej)
2 (dwv)

2

wv

Applying the gadget lemma 4.3.5 to each term of φ1 yields,

1

3
Q1(w, Y,X)−R(w,X) � d2φ1(w, Y,X) � 2Q1(w, Y,X) +R(w,X)

AddingQ2(w, Y,X), and notingQ2 = d2φ2, it suffices to showR(w, Y,X) � 2
3
Q2(w, Y,X).

Since the function t 7→ t(2− log t)2 is concave on [0, 1], every e satisfies,∑
j

Xej(2− logXej)
2 ≤ (2 + log k)2

Therefore,

R(w,X) � 18(2 + log k)2α
∑
e,v

Āve
(dwv)

2

wv

Recalling ‖Ā‖∞→∞ ≤ 1, the choice β = 27(2 + log k)2 yields the lemma.

4.3.2 Block Maximization

The block-maximizers use some common functions, defined here.

chop(t) = max(0,min(1, t))

srect(b, x) = max
t∈[0,1]

tb− x

2
t2 =


0, if b ≤ 0
b2

2x
, if 0 < b < x

b− 1
2
x else

expwts(x)i =
exp(xi)∑
j exp(xj)

4.3.3 Convergence of AMO

Let a ∈ Rn, B ∈ Rn×k, C ∈ Rm×k be fixed throughout this subsection, and define,

η(w, Y,X) := φ∗(a,B,C)− a · w − tr[B∗Y]− tr[C∗X] + φ(w, Y,X)

Our goal is to show the AMO approximately minimizes η(z) over z ∈ C.

33

Algorithm 2: Maximizing X

Input: C ∈ Rm×k, (w, Y) ∈ C1
Output: X ∈ 4m

k maximizing tr[C∗X]− φ(w, Y,X)

w̄ ← Ā∗w

Zvj ← α
Y 2

vj

2wv

Z̄ ← Ā∗Z

Xe ← expwts
(

Ce−Z̄e

3αw̄e

)
Algorithm 3: Maximizing w, Y

Input: a ∈ Rn, B ∈ Rn×k, X ∈ 4m
k

Output: (w, Y) ∈ C1 maximizing a · w + tr[B∗Y]− φ(w, Y,X)
X̄ ← ĀX
se ←

∑
j Xej logXej

s̄← Ās
bv ←

∑
j srect(Bvj, αX̄vj)

w ← expwts
(

a+b−3αs̄
αβ

)
Yvj ← wv chop(Bvj/αX̄vj)

For the convergence proof, we use the fact that w does not change much over the course
of the algorithm. To see that, we consider the formula given in algorithm 3. Since − log k ≤
se ≤ 0, and ‖Ā‖∞→∞ ≤ 1, we also have − log k ≤ s̄v ≤ 0. Noting

srect(t, 0)− x

2
≤ srect(t, x) ≤ srect(t, 0)

we have,

−1

2
≤
∑

j

srect(Bvj, X̄vj)−
∑

j

srect(Bvj, 0) ≤ 0

where we used, ∑
j

X̄vj ≤ ‖X̄‖∞→∞ ≤ ‖Ā‖∞→∞‖X‖∞→∞ ≤ 1

Since each coordinate s̄v, bv varies by at most O(log k), and β = Ω(log2 k), it follows that
each logwv varies by at most O(1/ log(k)). That is, we have established the following lemma.

Lemma 4.3.6. Let X,X ′ ∈ 4m
k . Let (w, Y) minimize η(w, Y,X) and (w′, Y ′) minimize

η(w′, Y ′, X ′). Then, (1− γ)w ≤ w′ ≤ (1 + γ)w for γ = O(1/ log k).

We establish convergence of alternating minimization using analysis of Beck[9]. We state
a simpler form using only quadratic norms, and using twice-differentiability, as that is all we
require..

34

Theorem 4.3.7 (Beck[9]). Let C1, C2 be compact-convex, and ψ : C1 ⊕ C2 → R. Let q ∈ C1
be given, let p ∈ C2 minimize ψ(q, p), and let q′ ∈ C1 minimize ψ(q′, p). Let Π(q, p) = (q, 0)
project onto the first block. Suppose there is a quadratic form M , and κ > 0 such that, for
all q′′ ∈ C1, p′′ ∈ C2,

d2ψ(q′′, p′′) �M � Πd2ψ(q′′, p)Π

Then, for any q′′ ∈ C1, p′′ ∈ C2,

ψ(q, p)− ψ(q′, p) ≥ 1

κ
(ψ(q, p)− ψ(q′′, p′′))

Let w, Y be given and fixed for the rest of the subsection, let X minimize η(w, Y,X),
and let w′, Y ′ minimize η(w′, Y ′, X). Define,

Π(w′′, Y ′′, X ′′) := (w′′, Y ′′, 0)

C̃1 := {(w′′, Y ′′) ∈ C1 :
1

2
w ≤ w′′ ≤ 2w}

C̃2 := {X ′′ ∈ 4m
k : X ′′ ≥ 1

2
X}

M :=
1

12
ΠQ(w, Y,X)Π

Note the definition of Q in (4.14), together with C̃i imply that for (w′′, Y ′′) ∈ C̃1, X ′′ ∈ C̃2,
we have,

ΠQ(w′′, Y ′′, X ′′)Π � 1

4
ΠQ(w, Y,X)Π � 1

8
ΠQ(w′′, Y ′′, X)Π

Then, by lemma 4.3.4,

d2η(w′′, Y ′′, X ′′) � 1

3
Q(w′′, Y ′′, X ′′)

� 1

3
ΠQ(w′′, Y ′′, X ′′)Π

� M

� 1

24
ΠQ(w′′, Y ′′, X)Π

� 1

48
Πd2η(w′′, Y ′′, X)Π

Lemma 4.3.6 establishes that (wopt, Yopt) ∈ C̃1, but have no guarantee about Xopt. How-
ever, we do have 1

2
(Xopt + X) ∈ C̃2. Thus, for the convex combination (w′′, Y ′′, X ′′) =

1
2
(wopt + w, Yopt + Y,Xopt + X), we have η(w′′, Y ′′, X ′′) ≤ 1

2
η(w, Y,X), and Beck’s theorem

yields,

η(w, Y,X)− min
(w′,Y ′)∈C1

η(w′, Y ′, X) ≥ 1

96
η(w, Y,X)

That is, each (w, Y) block-minimization reduces η by a constant factor.

35

4.4 Multicommodity Flow

In this section, we sketch a proof of theorem 4.1.9. We remark the algorithm to solve multi-
commodity flow using the approximate inequality solver of theorem 4.1.7 is essentially iden-
tical to our earlier algorithms[44, 45] that solve single-commodity flow using multiplicative
weights.

We first observe the half-duplex variant with demands B easily reduces to the full-duplex
version by doubling the number of commodities and considering demands [B| − B] (i.e.,
the n × 2k matrix formed by concatenating the columns of −B to the columns of B). A
full-duplex flow routing those demands has the form [F+|F−], where both F+,−F− route
B. Furthermore recall that each undirected edge e is replaced with two directed edges in the
full-duplex variant, so we now have four quantities F+

+ej, F
+
−ej, F

−
−ej, F

−
+ej. We may define a

flow on the undirected edges by setting,

F̃ej =
1

2

(
F+

+ej − F+
−ej − F−+ej + F−−ej

)
Lemma 4.4.1. Suppose [F+|F−] is (1− ε)-optimal for the full-duplex problem with demands
[B| −B]. Then, F̃ is (1− ε)-optimal for the half-duplex problems with demands B.

We shall instead prefer to work with a feasibility version closer to our stochastic matrix
problem; given λ,B, we either feasibly route (1− ε)λB or else output a certificate showing
λopt < λ. An approximate maximum-concurrent flow is easily found by binary search over
λ. Furthermore, λ is redundant in the feasibility version: our task given λ,B is the same
as when given 1, λB. Therefore, our task is reduced to the following: given B, either route
(1− ε)B or else show B is infeasible.

Recall a feasible flow F may be expressed as F = CX for right-sub-stochastic X; we
would like to consider right-stochastic matrices instead. Let b = Dc − B1, where 1 is the
all-1 vector, and add an extra commodity with demands b, to obtain a new problem with
demands [B|b]. We argue the original demands are feasible iff the new demands are routable
by a flow where all edges use full capacity. Clearly, if [F |f] is feasible and routes [B|b], then
F is feasible and routes B. On the other hand, if F feasibly routes B, then f = c− F1 has
Df = D(c− F1) = Dc−B1 = b. That is, [F |f] has [F |f]1 = c and routes [B|b].

Thus, our task is reduced to deciding if there is right-stochastic X satisfying DCX = B.
The latter implies RDCX = RB for any R. We may use corollary 4.1.8 to approximate such
equality problems by doubling the rows to have two RDCX ≤ RB and −RDCX ≤ −RB,
to obtain lemma 4.4.2.

Lemma 4.4.2. Let R be any matrix with ‖RDC‖∞→∞ ≤ 1. Then, there is an algorithm
that takes Õ(knnz(RDC)ε−1) time and outputs either,

1. A feasible flow F such that ‖R(DF −B)‖∞→∞ ≤ ε

2. A dual solution Y showing B is infeasible to route.

The conclusion is not quite what we want, due to the nonzero error DF − B. To elimi-
nate that error, we follow the same paradigm we introduced originally for single-commodity

36

flow[44]. The idea is to observe that if we could guarantee the residual demands B̃ = B−DF
are small in the sense that they are routable in G with capacities εc, we could recurse on
the problem with demands B̃; after O(logm) recursions, anything left is so tiny that even
routing through e.g. a maximal spanning tree contributes at most O(ε) congestion. On the
other hand, the conclusion we have is that |R(DF − B)‖∞→∞ ≤ ε. The main object we
introduced in earlier max-flow work[44] is the congestion-approximator. The definition may
be extended to multicommodity problems as follows. Let opt(B) be the maximum λ such
that λB is feasible. Then,

Definition 4.4.3. A κ-congestion-approximator is a matrix R such that, for any demands
B,

‖RB‖∞ ≤ opt(B)−1 ≤ κ‖RB‖∞→∞
The first part implies ‖RDC‖∞→∞ ≤ 2, while the second implies that if we apply lemma

4.4.2 with ε′ = Ω(ε/κ), any residual error may be feasibly routed with capacities εc/3.
Our original approximator construction[44] was not sparse; fortunately Peng[41] shows

how to construct sparse approximators, with even better parameters.

Theorem 4.4.4 (Peng[41]). There is an algorithm that, given a capacitated graph G with n
vertices and m edges, takes Õ(m) time and outputs a logO(1)(n)-congestion-approximator R
for G with O(n) rows, each nonzero in O(log n) columns.

Thus, for Peng’s approximator, RDC has Õ(m) nonzero entries.

4.5 Area-Convexity of Quadratics

To prove lemma 4.1.4, we may take a triangle centered at the origin without loss of generality.
For x, y, if z = −y − x, then,

(y − z) · J(x− z) = 3y · Jx

Thus, φ is area-convex w.r.t J iff for all x, y,

1

6
(x ·Qx+ y ·Qy + (x+ y) ·Q(x+ y)) ≥ 1√

3
yJx

That is,

0 �
[

2Q Q−
√

3J

Q+
√

3J 2Q

]
=: M

On the other hand, we defined Q � ıJ by,

0 �
[
Q −J
J Q

]
:= M̃

We now observe the latter two conditions are equivalent, because,

M = A∗M̃A where A =

[√
2 1√

2

0
√

3
2

]
To prove lemma 4.1.5, it suffices to observe it holds for diagonal Q.

37

4.6 Three Port Gadget

Recall,

port(w, y, x) = x
y2

2w
+ 3wx log x

Then,

d2port(w, y, x) =

 xy2

w3 − xy
w2 3 log(x)− y2

2w2 + 3
− xy

w2
x
w

y
w

3 log(x)− y2

2w2 + 3 y
w

3w
x



38

Chapter 5

Sparsest Cut

5.1 Introduction

We consider the problem of partitioning a graph into relatively independent pieces in the
sense that not too many edges cross between them. Two concrete optimization problems
arising in that context are the sparsest cut and balanced separator problems. We
are given an undirected weighted graph G on n vertices, where each edge xy has capacity
Gxy (we identify a graph with its adjacency matrix). The edge expansion of a cut (S, S) is

h(S) =
P

x∈S,y∈S Gxy

min{|S|,|S|} . The sparsest cut problem is to find a cut (S, S) minimizing h(S);

we write h(G) to denote the value of such a cut. The balanced separator problem has
the same objective but the additional constraint that min{|S|, |S|} ≥ Ω(n). Both problems
are NP-hard, so we settle for approximation algorithms.

Most of the original work on graph partitioning focused on achieving the best approxi-
mation factor and falls into one of two themes. The first is based on multicommodity flow,
using the fact that if a graph H of known expansion can be routed in G via a feasible flow,
then h(H) ≤ h(G). If H is some fixed graph, finding the best possible lower bound is equiv-
alent to solving the maximum concurrent flow problem; i.e., maximizing α such that F ≤ G
and D ≥ αH where Dxy =

∑
p:x↔y fp is the demand graph and Fxy =

∑
p3xy fp is the flow

graph of the underlying flow. By taking H to be the complete graph, Leighton and Rao
showed an upper bound of h(G) ≤ O(log n)α∗h(H) for the optimal α∗, yielding an O(log n)
approximation. The other theme is the discrete Cheeger’s inequality of Alon and Milman[3]
characterizing the relationship between cuts and the spectrum of a graph’s Laplacian ma-
trix. In particular, if G has maximum degree d, then λ2(LG)/2 ≤ h(G) ≤

√
2dλ2(LG), where

λ2(LG) is second smallest eigenvalue of G’s Laplacian. The two themes are incomparable,
as the latter is a better approximation when G is an expander (i.e., h(G)/d is large) while
the former is better when G has sparse cuts.

Arora, Rao, and Vazirani naturally combined the two themes. Rather than embedding a
fixed graphH of known expansion, they embed an arbitraryH and then certifyH’s expansion
via λ2(LH)[7]. Since λ2(LH) ≥ α is equivalent to LH � α

n
LK , where K is the complete graph,

39

the problem of finding the best such lower-bound can be cast as a semidefinite program:

maxα s.t.
α

n
LK � LD, F ≤ G (5.1)

They showed that for the optimal α∗, one has an upper bound of h(G) ≤ O(
√

log n)α∗,
yielding the currently best known approximation factor. Shortly thereafter, Arora, Hazan,
and Kale designed a primal-dual algorithm to approximately solve (5.1) in Õ(n2) time using
multicommodity flows[4].

More recently, researchers have focused on designing efficient algorithms for graph par-
titioning that beat the quadratic multicommodity flow barrier. Khandekar, Rao, and Vazi-
rani designed a simple primal-dual framework for constructing such algorithms based on
the cut-matching game and showed one could achieve an O(log2 n) approximation in that
framework using polylog max-flows[28]. Arora and Kale designed a very general primal-
dual framework for approximately solving SDPs[6] using the matrix multiplicative weights
method. They showed efficient algorithms for several problems could be designed in their
framework, including an O(log n)-approximation to sparsest cut using polylog max-flows.
They also showed one could achieve an O(

√
log n)-approximation in their framework using

multicommodity flows, simplifying the previous algorithm of [4]. Orecchia et al. extended
the cut-matching game framework of [28] to achieve an O(log n) approximation[40]. They
present two slightly different algorithms, and remarkably, their second algorithm is the same
as Arora and Kale’s, even though they never explicitly mention any SDP. They also showed a
lower bound of Ω(

√
log n) on the approximation factor achievable in the cut-matching frame-

work, suggesting the framework might precisely capture the limits of current approximation
algorithms and posed the question of whether O(

√
log n) could be efficiently achieved in that

framework.

5.1.1 Contribution

We tie those two lines of work together by simultaneously achieving the O(
√

log n) approxi-
mation factors of the former with the nearly max-flow running time of the latter.

Theorem 5.1.1. For any ε ∈ [O(1/ log(n)),Ω(1)], there is an algorithm to approximate the
sparsest cut and balanced separator problems to within a factor of O(

√
log(n)/ε)

using only O
(
nε logO(1)(n)

)
max-flows.

Theorem 5.1.1 effectively subsumes the results of [4, 28, 6, 40], as taking ε = Θ(1/ log(n))
yields an O(log(n)) approximation using polylog max-flows, while any constant ε < 1/2
achieves an O(

√
log(n)) approximation in sub-quadratic O(m1+ε) time using the max-flow

algorithm of chapter 3. We also show the cut-matching game framework of [28] can not
achieve an approximation better than Ω(log(n)/ log log(n)) without re-routing flow.

We build heavily on Arora and Kale’s work, achieving our improvement by replacing
their use of a black-box multicommodity flow solver with a specialized one that makes use of
the additional structure present in the flow instances that arise. We begin in section 5.2 by
reviewing the nature of those flow problems, as well as the main ideas behind the algorithms

40

of [4, 6, 40]. Having clarified the connection to partitioning, we also state our main technical
result, theorem 5.2.3. In section 5.3 we describe the details of our algorithm, the correctness
of which follows immediately from theorem 5.2.3. The proof of theorem 5.2.3 appears in
section 5.4. Our lower-bound for the cut-matching game is then discussed in 5.5.

5.2 Expander Flows

Expander-flow based algorithms all work by approximately solving (5.1), either explicitly
as in [4, 6], or implicitly as in [28, 40], by iteratively simulating play of its corresponding
two-player zero-sum game. The game has two players: the embedding player and the flow
player. The embedding player chooses a non-trivial embedding V = (v1, . . . ,vn) ∈ (Rd)n of
the vertices of G. The flow player chooses a feasible flow F ≤ G supporting demands D with
the goal of routing flow between points that are far away in the embedding. More precisely,
the payoff to the flow player is:

Φ(V , D) =

∑
x<y Dxy‖vx − vy‖2

1
n

∑
x<y ‖vx − vy‖2

For given demands D, the best response for the embedding player is the one-dimensional
embedding given by an eigenvector of LD of eigenvalue λ2(LD), yielding a value of λ2(LD).
On the other hand, for a given embedding, the best response for the flow player is a solution
to the weighted maximum multicommodity flow problem given by

max
∑
x<y

Dxy‖vx − vy‖2 s.t. F ≤ G (5.2)

The frameworks of [28, 6, 40] start with an initial embedding V1, such as all points
roughly equidistant. On a given iteration t, the algorithm presents V t to the flow player,
who must either respond with demands Dt of value Φ(V t, Dt) ≥ 1, or a cut Ct of expansion
at most κ, where κ is the desired approximation factor. In the latter case the algorithm
terminates; in the former case, the demands are used to update the embedding for the next
iteration. The precise update differs among each algorithm, but essentially vertices x, y with
large Dt

xy will be squeezed together in the embedding. The analysis of [28, 6, 40] show that
after T iterations, for sufficiently large T , their adaptive strategies actually played nearly as
well as they could have in hindsight, in that

λ2

(
LD1 + · · ·+ LDT

T

)
≥ Ω(1)

Since averaging T feasible flows yields a feasible flow, after T iterations the graph D =
(D1 + · · ·+DT)/T with λ2(LD) ≥ Ω(1) has been routed in G. Thus, for a given graph, the
algorithm either routes an Ω(1)-expander-flow in G or else finds a cut of expansion κ. Using
a binary search and scaling the edge capacities appropriately yields an O(κ) approximation
algorithm.

41

The embedding can be updated in nearly linear time, and T = O(logO(1)(n)), so the
running time of such algorithms is dominated by the running time of the flow player. By
sparsifying G (using e.g. [10]), we can and shall assume it has m = O(n log n) edges.
Using Fleischer’s multicommodity flow algorithm[22] as a black box, a nearly optimal pair of
primal/dual solutions to (5.2) can be computed in Õ(n2) time. Note that (5.2) has demand
weights for every pair of vertices, so Ω(n2) space is required to even explicitly write it down.
On the other hand, each vx ∈ RO(log n), so the weights ‖vx − vy‖2 are all implicitly stored
in only O(n log n) space. Therefore, making use of the additional geometric structure of
these instances is crucial to achieving sub-quadratic time. Implicit in all of [28, 6, 40] is a
specialized algorithm to approximately solve (5.2). The actual algorithm used is the same
in all three, and those algorithms differ only in their strategy for the embedding player.

In the next two subsections, we briefly sketch the single-commodity and multicommodity
flow based algorithms of [6], and then describe how we tie the two together. In particular,
our algorithm is essentially an “algorithmetization” of the multicommodity flow algorithm’s
analysis. For the rest of the section, suppose we have an embedding V with

∑
x<y ‖vx−vy‖2 =

n2, and let us further assume that the points are unique and ‖vx‖ ≤ 1 for all x; i.e., the
diameter is not much more than the average distance.

5.2.1 Using Single-Commodity Flows

Consider first the absolute simplest case, where d = 1 and the points are simply numbers
in [−1, 1]. It is easy to see that since the points are in [−1, 1], unique, and have average
squared-distance Ω(1), there must be some interval [a, b], where b − a = Ω(1) =: σ and the
set of points to the left of a, A = {x : vx ≤ a} and to the right of b, B = {y : vy ≥ b} have
|A| = |B| = Ω(n) =: 2cn. A natural way to try to push flow far along this line would be to
shrink A and B down to single vertices and then compute a max-flow from A to B.

FlowAndCut(κ, c, w1, . . . , wn ∈ R):

• Sort {wx}, let A be the 2cn nodes x with least wx and B be those with greatest wy.

• Add two vertices s, t. Connect s to each x ∈ A and t to each y ∈ B with edges of
capacity κ.

• Output the max-flow/min-cut for s− t.

Consider invoking FlowAndCut(κ, c,v1, . . . ,vn) with κ = c−1σ−2. If the max-flow is at
least κcn, then since all flow must cross the gap [a, b], we have pushed κcn units of flow across
a squared-distance of σ2, achieving a solution D with Φ(V , D) ≥ (κcnσ2)/n = 1. Otherwise,
if the min-cut is at most κcn, then at most cn of the added κ-capacity edges are cut, so at
least cn vertices must remain on each side and the cut has expansion at most κ. That is, for
dimension one a κ = O(1) approximation is obtained.

The approach of [6, 40] is to reduce the general case to the one-dimensional case by
picking a random standard normal vector u and projecting each vx along u, yielding the
1-dimensional embedding wx = vx · u. The fact that the points are in the unit ball and have

42

average distance Ω(1) implies that with probability Ω(1), there is a gap [a, b] with b − a =
Ω(1) = σ as before. Applying the previous analysis, we either find a cut of expansion O(1) or
a flow with

∑
x<y Dxy(wx − wy)

2 ≥ n. Then, the Gaussian tail ensures that distances could

not have been stretched too much along u: with high probability (wx−wy)
2 ≤ O(log n)‖vx−

vy‖2 for every pair x, y. Thus, Φ(V , D) ≥ Ω(1/ log(n)), yielding an O(log n) approximation.

5.2.2 Using Multi-Commodity Flows

Arora, Rao, and Vazirani showed that, if a best response D∗ to V has Φ(V , D∗) ≤ 1, one
can find a cut of expansion O(

√
log n). Supposing the optimal solution to (5.2) has value at

most n, there must be a solution to the dual problem of value at most n. The dual assigns
lengths {we} to the edges of G, aiming to minimize

∑
eGewe subject to the constraints that

the shortest-path distances between each x, y under {we} are at least ‖vx−vy‖2. Arora and
Kale show the existence of such a dual solution implies that projecting the points along a
random u and running FlowAndCutwith κ = Θ(

√
log n) must yield a cut of capacity at most

κcn with probability Ω(1).
If not, then a flow of value at least κcn is returned for Ω(1) of the directions u along

which A and B are σ-separated. For simplicity, assume that the flows actually correspond
to a matching between A and B. That is, each x has either zero flow leaving, or else has
exactly κ flow going to a unique y along a single path. On the one hand, that matching is
routed in G along cn flowpaths, each carrying flow κ. On the other hand, the total volume
of G is only

∑
eGewe = n, so Ω(n) of those flowpaths must have length at most O(1/κ)

under {we}.
For each u, let M(u) be the matching consisting of those demand pairs routed along such

short paths. Then, according to the following definition, M is an (Ω(1),Ω(1))-matching-
cover.

Definition 5.2.1. A (σ, δ)-matching-cover for an embedding {vx} is a collection {M(u)}u∈Rd

of directed matchings satisfying the following conditions.

• Stretch: (vy − vx) · u ≥ σ for all (x, y) ∈M(u)

• Skew-symmetry: (x, y) ∈M(u) iff (y, x) ∈M(−u)

• Largeness: Eu [|M(u)|] ≥ δn

For a list of vectors u1, . . . , uR, let M(u1, . . . , uR) denote the graph that contains edge (x, y)
iff there exist x0, . . . , xR with x0 = x, xR = y and (xr−1, xr) ∈ M(ur) for all r ≤ R. For the
empty list, let M() denote the graph where each vertex has a directed self-loop. Note that
M(u1, . . . , uR) is not a matching, but rather a graph with maximum in-degree and out-degree
one.

Furthermore, M has the property that for each edge (x, y) ∈M(u), the distance between
x and y under {we} is at most O(1/κ). The following theorem holds for M .

43

Theorem 5.2.2 ([31], refining [7]). Let M be a (Ω(1),Ω(1))-matching-cover for {vx}. Then,
there are vertices x, y and u1, . . . , uR where R ≤ O(

√
log n) such that (x, y) ∈M(u1, . . . , uR)

and ‖vx − vy‖2 ≥ L.

In other words, there are vertices x, y with ‖vx − vy‖2 ≥ L that are only R matching
hops away in M . Applying theorem 5.2.2, there are vertices x, y with ‖vx − vy‖2 ≥ L
but of distance only RO(1/κ) under {we}. Choosing κ = O(R/L) = O(

√
log n) yields a

contradiction to the assumption that {we} is dual feasible.

5.2.3 Results

Our improvement comes from being able to achieve an O(
√

log n) gap between cut and
flow solutions, as in the latter case, while still only using single-commodity flows, as in the
former case. Recall the case of d > 1 was reduced to the d = 1 case by projecting along a
random vector and bounding the squared-stretch by O(log n). Indeed, the stretch could be
nearly that much, so simply pushing flow along a single direction will not allow us to achieve
anything better; in fact, that is the main idea behind our lower bound for the cut-matching
game.

To do better, we need to do something more sophisticated than simply push flow along
a single direction. A natural idea is to try to pick several directions u1, . . . , uR, push flow
along each of them, and then try to glue the flows together to actually push flow far away
globally. One motivation for such an approach is that it seems to be the next simplest
thing to do, following that of using only a single direction. The second and most crucial
motivation is to observe that such an approach is strongly suggested by the analysis for
the multicommodity flow algorithm just sketched. To see that, suppose the typical flowpath
along a random u routes between points of squared-distance ∆. Theorem 5.2.2 says we can
always augment R = O(

√
log n) such flowpaths to route demand between points of squared-

distance L = Ω(1), at the cost of possibly raising congestion by a factor of R. Thus, either
∆ ≥ L/R = Ω(1/

√
log n), or else augmenting together R typical flowpaths and scaling down

by R maintains feasibility and increases the objective of (5.2).
Unfortunately, theorem 5.2.2 doesn’t say anything at all about finding such directions u,

or whether the same u1, . . . , uR will simultaneously work for many vertices. To analyze such
an algorithm, we need a stronger, algorithmic version of theorem 5.2.2. Our main technical
contribution is such a theorem.

Theorem 5.2.3. For any 1 ≤ R ≤ Θ(
√

log(n)), there is L ≥ Θ(R2/ log(n)) and an (effi-
ciently sample-able) distribution D over (Rd)≤R with the following property.

If M is an (Ω(1),Ω(1))-matching-cover for {vx}, then the expected number of edges (x, y)
with (x, y) ∈M(D) and ‖vx − vy‖2 ≥ L is at least e−O(R2)n.

Using theorem 5.2.3 and choosing R = Θ(
√
ε log(n)), L = Θ(ε), we simply sample

u1, . . . , uR from D, and let our final flowpaths be the concatenation of those along u1, . . . , uR.
On average, we get n1−ε such paths, and thus have simultaneously routed n1−ε paths be-
tween points of squared distance L using only R single-commodity flows. Using an iterative

44

re-weighing scheme and repeating O(nε logO(1) n) times, we achieve a feasible flow and an
approximation ratio of O(R/L) = O(

√
log(n)/ε).

That is, to push flow far away, we sample u1, . . . , uR from D and then iteratively push
flow along each direction. The distribution D will essentially consist of picking a random
direction u1, and then choosing ur+1 to be a 1 − 1/R-correlated copy of ur; i.e., a vector
extremely close to ur. Because ur+1 and ur are so close, it is intuitively clear and easy
to argue that if flow gets pushed along at each step, it must be pushed far away, as the
projections along each ur will essentially add together. The somewhat counterintuitive fact
is that flow actually does get pushed further along in this manner. Even though ur and
ur+1 are extremely close together, a significant fraction of vertices that were in the “sink
set” along ur will be in the “source set” along ur+1. That phenomenon is a consequence of
measure concentration.

5.3 The Algorithm

While we found it most convenient to discuss expander flows and the corresponding game in
the context of the sparsest cut problem, our algorithm applies most directly to balanced
separator, which has a similar SDP relaxation and game. Roughly, the difference is that
in the balanced separator case the embedding player must choose an embedding for
which the maximum squared distance between points is not much larger than the average.
When the average distance is Θ(1), this is equivalent to the requirement that ‖vx‖ ≤ O(1)
assumed earlier in section 5.2. The reduction from sparsest cut to balanced separator
is well-known, and in fact, the unbalanced case is “easy” in the sense that if the cut found
is unbalanced, it will be an O(1) approximation to the sparsest cut[7]. In particular, Arora
and Kale show that one can either obtain an O(1) cut/flow gap with a single max-flow, or
else reduce the problem to the balanced case by finding Ω(n) points in a ball of radius O(1)
that are still spread-out within that ball; for details, we refer the reader to [6].

The precise statement of the results sketched in section 5.2 is the following main lemma
of [6].

Lemma 5.3.1 ([6]). Let U ⊆ [n] be a set of nodes. Suppose we are given vectors V = {vx}x∈U

of length at most O(1) such that
∑

x,y∈U ‖vx − vy‖2 = n2.

• There is an algorithm that uses O(1) expected max-flow computations and outputs
either a demand graph D on U of max-degree O(log(n)) that is routable in G with
Φ(V , D) ≥ 1 or a balanced cut of expansion O(log n).

• There is an algorithm that uses a single multicommodity flow computation and O(1)
expected max-flow computations and outputs either a demand graph D on U of max-
degree O(1) that is routable in G with Φ(V , D) ≥ 1 or a balanced cut of expansion
O(
√

log n).

The importance of the degree is for the running time; if each Dt has max-degree β, then
the total number of iterations needed is O(β log(n))[6]. To prove theorem 5.1.1, we replace
lemma 5.3.1 with the following.

45

Lemma 5.3.2. Let U , V be as in lemma 5.3.1. For any ε ∈ [O(1/ log(n)),Ω(1)], there is
an algorithm that uses O(nε logO(1)(n)) expected max-flow computations and outputs either
a demand graph D on U of max-degree O(1/ε) routable in G with Φ(V , D) ≥ 1 or a balanced
cut of expansion O(

√
log(n)/ε).

For the rest of this section, we prove lemma 5.3.2. We first immediately try to find a cut,
using FlowAndCut. The parameters c, σ are set by the following lemma.

Lemma 5.3.3 ([7]). Let U , V be as in lemma 5.3.1. Then, there exist c, σ, γ = Ω(1) so for
a random u, with probability at least γ the sets A,B in FlowAndCut(·, c, {vx · u}x∈U) have
(vy − vx) · u ≥ σ for all x ∈ A, y ∈ B.

Let us call the u described by lemma 5.3.3 good, and set δ = γc/16. Let ε ∈ [O(1/ log(n)),Ω(1)]
be given so that R = O(

√
ε log n) yields an expected size bound of n1−ε in theorem 5.2.3.

Set L = Ω(ε) as in theorem 5.2.3, κ = 24R/cL, and β = 12/cL. The following easy lemma
was sketched in section 5.2.

Lemma 5.3.4 ([28, 6]). If FlowAndCut(κ, c, . . .) returns a cut of capacity at most κcn, then
the cut is cn-balanced and has expansion at most κ.

We sample O(log(n)) independent u, and run FlowAndCut(κ, c, {vx · u}). If we ever find
a cut of capacity at most κcn, we immediately output it and stop, yielding a balanced cut of
expansion κ = O(

√
log(n)/ε). Otherwise, with very high probability, we are in the situation

where there are at least γ/2 good u for which a flow of value at least κcn is returned. In the
latter scenario, we will find a flow D with Φ(V , D) ≥ 1.

5.3.1 Finding a Flow

We efficiently find a solution to the maximum multicommodity flow problem

max
∑
x<y

Dxy‖vx − vy‖2

s.t. F ≤ G, max
x

degD(x) ≤ β
(5.3)

of value at least n. The dual assigns lengths {we} to edges and {wx} to the vertices, with
the constraint that the shortest path distance from x to y under these lengths dominate
‖vx − vy‖2.

min
∑

e

Gewe +
∑

x

βwx

s.t. ∀p : x↔ y wx + wy +
∑
e∈p

we ≥ ‖vx − vy‖2

We use the multiplicative weights framework to approximately solve (5.3).

46

Theorem 5.3.5 ([42, 23, 5]). Let A ∈ Rm×n, b ∈ Rm with b > 0, and consider the following
iterative procedure to find an approximate solution to Ax ≤ b.

Initialize y1 ∈ Rm to the all-1s vector. On iteration t, query an oracle that returns xt

such that 0 ≤ Axt ≤ ρb and yt · Axt ≤ yt · b, and then update

yt+1
j ←

(
1 + η

(Axt)j

ρbj

)
yt

j

If 0 < η < 1/2, then after T = ρη−2 log(n) iterations, A
(

x1+···+xT

T

)
≤ (1 + 4η)b.

We use theorem 5.3.5 with η = 1/4, initializing the dual variables {we}, {wx} and up-
dating them accordingly. On iteration t, we find a flow (F t, Dt) of objective value 2n that
violates the constraints by at most a factor of ρ = O(n2ε log n) and∑

e

weF
t
e +

∑
x

wx degDt(x) ≤
∑

e

weGe +
∑

x

wxβ (5.4)

After T = O(n2ε log2(n)) rounds, scaling the average flow down by 2 yields a feasible flow
of objective value n. Noting that (5.4) and the algorithm of theorem 5.3.5 are invariant to
scaling of the dual variables, for convenience we will also scale them on each iteration so
that

∑
eweGe +

∑
xwxβ = 2n. In that case, any flow of objective value 2n that only routes

along violated or tight paths (those p : x ↔ y for which
∑

e∈pwe + wx + wx ≤ ‖vx − vy‖2)
satisfies (5.4). In our algorithm, we will only route flow along paths p : x ↔ y for which
‖vx − vy‖2 ≥ L, and wx, wy,

∑
e∈pwe ≤ L/3.

All flows will come from augmenting flows returned by FlowAndCut, where we identify
single-commodity flows in G ∪ {s, t} with multicommodity flows in G in the obvious way.
If F is an acyclic s − t flow in G ∪ {s, t}, it is well-known that F can be decomposed into
at most m flowpaths. While computing such a decomposition could require Ω(nm) time,
fortunately we need only pseudo-decompose flows in the following sense.

Definition 5.3.6. If F is an acyclic s − t flow in G ∪ {s, t} with a flow decomposition
((fi, pi))i≤m, then a list P = ((fi, si, ti, `i))i≤m where pi = s, si, . . . , ti, t and

∑
e∈pi

we = `i is
a pseudo-decomposition of F . That is, a pseudo-decomposition is a list containing the
amount of flow, second vertex, second-to-last vertex, and length of each flowpath.

The following two lemmas are easy applications of dynamic trees(see [46]).

Lemma 5.3.7. Given a flow F on G ∪ {s, t}, a pseudo-decomposition can be computed in
O(m log n) time.

Lemma 5.3.8. Given a flow F on G ∪ {s, t}, and a desired scaling vector (α1, . . . , αm), we
can compute the flow F ′ with decomposition {(αkfk, pk)} in O(m log n) time.

Lemma 5.3.8 allows us to efficiently cherry-pick “good” flowpaths from the flows returned
by FlowAndCut.

47

In their analysis, Arora and Kale round the flows returned by FlowAndCut to matchings.
We do the same, with a small change to ensure doing so does not raise congestion by too
much.

Matching(u)

• Call FlowAndCut(κ, c, {vx · u}) and pseudo-decompose the resulting flow into P . Set
M = ∅.

• Throw away any (fi, si, ti, `i) ∈ P with (vti − vsi
) · u < σ, fi < κcn/4m, wsi

> L/3,
wti > L/3, or `i > L/3R.

• Greedily match the remaining pairs: iteratively pick (fi, si, ti, `i) ∈ P , add (si, ti) to
M , and remove any (fj, sj, tj, `j) ∈ with {si, ti} ∩ {sj, tj} 6= ∅.

• Output M .

The following lemma is essentially the same as one used in [6], and follows by the choice of
parameters. The congestion bound, which was not needed for their analysis but is needed for
our algorithm, comes from the fact that Matching discards any flowpath with fi ≤ κcn/4m
before scaling any remaining flows to 1.

Lemma 5.3.9. Matching is a (σ, δ)-matching-cover. Furthermore, for each u, the (unit-
weighted) demands Matching(u) are simultaneously routable in G with congestion at most
4m/κcn along flowpaths of length at most L/3R under {we}.

Proof. The symmetry and stretched properties hold by construction, so we need only estab-
lish the largeness property. Let u be a good direction for which the returned flow has value
at least κcn, and let D be the corresponding demands. Since u is good, every demand pair is
σ-separated along u. Each x ∈ U has degree at most κ and the total degree is at least 2κcn.
Deleting each path with fi ≤ κcn/4m removes at most κcn/4 total flow. Since

∑
xwxβ ≤ 2n

and β = 12/cL, at most cn/4 vertices can have wx > L/3; deleting them removes at most
κcn/4 units of flow. Finally, since the original flow was feasible in the original graph,∑

p

fp`p =
∑

e

we

∑
p3e

fp ≤
∑

e

weGe ≤ 2n

Since κ = 24R/cL, at most κcn/4 units can flow along paths longer than L/3R.
In total, the second step of Matching removes at most 3κcn/4 units of flow, so at least

κcn/2 total degree survives. Each greedy matching step decreases the total degree by at
most 4κ, so at least cn/8 pairs must get matched. Thus, the expected size of Matching(u)
is at least (γ/2)(cn/8) = δ.

For the congestion bound, we threw away all paths with flow less than κcn/4m, so scaling
the remaining paths to 1 yields a flow with congestion at most 4m/κcn.

On each iteration, we sample u1, . . . , uR from the distribution D of theorem 5.2.3 and
call Matching(ur). Let D′ be the unit-weighted graph with an edge (x, y) for each (x, y) ∈

48

Matching(u1, . . . , uR) with ‖vx − vy‖2 ≥ L. By theorem 5.2.3, the expected size of D′ is
at least n1−ε, so after nε/2 expected trials, we have |D′| ≥ n1−ε/2. Applying lemma 5.3.8
again R times, we can compute a flow F ′ that routes D′ in G with congestion R(4m/κcn) =
O(log(n)/L), since m = O(n log n) by assumption. Note also that D′ has max-degree 2.

Then, D′ achieves an objective value of at least |D′|L, so scaling up by 2n/|D′|L yields a
solution of value 2n that satisfies (5.4) and congests edges by at most an O(nε log n) factor.
Since β = 12/cL = Ω(1/ε), the degree constraints are also violated by at most an O(nε)
factor. The running time is dominated by flow computations, of which there are an expected
O(Rnε) in each of O(nε log2(n)) iterations, for a total of O(n2ε log5/2(n)) expected max-flows.

5.4 Proof of Theorem 5.2.3

Let M be a (σ, δ)-matching cover. We identify M with a weighted directed graph, where
edge (x, y) is has weight Pru[(x, y) ∈ M(u)]. The skew-symmetry condition ensures the
weights of (x, y) and (y, x) are the same, as are the in-degree and out-degree of each x. The
total out-degree of M is at least δn by assumption. Following [7], we first prune M to a
more uniform version by iteratively removing any vertex of out-degree less than δ/4. Doing
so preserves skew-symmetry, and at least δn/2 out-degree remains. It follows that we are
left with a matching cover on vertices X, with |X| ≥ δn/2 and every x ∈ X has out-degree
at least δ/4. The pruned M is a (σ, δ/4)-uniform-matching-cover.

Definition 5.4.1. A (σ, δ)-uniform-matching-cover of X ⊆ [n] is a (σ, 0)-matching-
cover where every x ∈ X has in-degree at least δ in M .

5.4.1 Chaining and Measure Concentration

Let y ∈ X, and let A be the set of u for which y has an out-edge in M(u). The main idea
behind the proof of theorem 5.2.2 is the following. Since A and −A are two sets of measure
Ω(1), the isoperimetric profile of Gaussian space implies there must be many u ∈ A, û ∈ −A
that are very close: ‖u − û‖ ≤ O(1) (we remark that [7] uses the uniform measure on the
sphere, but the same analysis holds for Gaussians after scaling various quantities by

√
d).

Choose x, z with (x, y) ∈M(û), (y, z) ∈M(u) and observe that

(vy − vx) · u = (vy − vx) · û− (vy − vx) · (û− u)
≥ σ − ‖vx − vy‖‖û− u‖

Thus, either ‖vx − vy‖ ≥ Ω(σ), or else (vy − vx) · u ≥ σ/2. In the former case, a matching
edge joins two points of distance Ω(1). In the latter case, replacing the edge (y, z) ∈ M(u)
with (x, z) yields an edge with (vz − vx) · u ≥ (3/2)σ. By an inductive argument, the
chaining case can be repeated until an edge connects two points of distance Ω(1). On the
one hand, after R chaining steps, we have pairs of points that are R matching-hops apart,
O(1) distance apart, and have projection Θ(R). On the other hand, with high probability,
no pair of distance Θ(1) has projection Θ(

√
log n), so the process must end after Θ(

√
log n)

steps.

49

To turn the argument into an algorithm, we choose a sequence of highly correlated direc-
tions u1, . . . , uR. For R ≥ 1 and 0 ≤ ρ ≤ 1, let NR

ρ be the distribution of u1, . . . , uR defined
by choosing a standard normal u1, and then choosing each ur+1 ∼ρ ur to be a ρ-correlated
copy of ur. That is, each of the d coordinate vectors (u1,i, . . . , uR,i) are independently dis-
tributed as multivariate normals with covariance matrix Σr,r′ = ρ|r−r′|. In fact, simply

setting D = NR
1−1/R achieves theorem 5.2.3 for R ≤ O(log1/3(n)) and size bound of e−O(R3)n.

The barrier is essentially the same as the one that limited the original analysis of [7] to
R = O(log(n)1/3). To overcome that barrier, we algorithmetize Lee’s improvement[31] by
independently sampling uncorrelated w1, . . . ,wR, and then shuffling the two lists together.
The idea is that the highly correlated ur will give us long stretch, while the wr will greatly
increase the probability of forming a long chain, at the cost of losing some stretch. The
sampling algorithm is:

Sample(R, ρ)

• Pick u1, . . . , uR ∼ NR
ρ , w1, . . . ,wR ∼ NR

0 .

• Pick a random shuffling of the two lists, pick a random r ≤ R, and output the first
r elements of the shuffled list.

The reason for the randomness is to keep the algorithm trivial, leaving the work to our
analysis. We show that there exists a particular shuffling and r ≤ R for which Sample is
good; by randomly guessing, we lose at most a 2R+1 factor in our final expectation bound,
which is negligible relative to the e−O(R2)n bound we are aiming for.

Our proof of theorem 5.2.3 closely follows Lee’s proof of theorem 5.2.2, the main difference
being the use of a stronger isoperimetric inequality. The the standard isoperimetric inequality
says that if A is a set of large measure, then for almost points u, a small ball around u has
non-empty intersection with A. We use a stronger version, saying that if A is a set of
large measure, then for almost all points u, a small ball around u has a significantly large
intersection with A.

Lemma 5.4.2. Let A ⊆ Rd have Gaussian measure δ > 0. If u, û are ρ-correlated with
0 ≤ ρ < 1, then

Pru

[
Prû [û ∈ A] < (εδ)1/(1−ρ)

]
< ε

Lemma 5.4.2 is an easy corollary of Borell’s reverse hypercontractive inequality [12]; we
include a short proof in appendix 5.6. Applications of Borell’s result to strong isoperimetric
inequalities appear in [35], and we follow the proofs of similar lemmas there.

5.4.2 Definitions

For a matching-cover M and a distribution D over R∗, let M(D) be the random graph
M(u1, . . . , ur) where u1, . . . , ur ∼ D. For a random graph G and sets S, T ⊆ [n], let µG(S, T)
be the expected number of edges from S to T in G. We say S is γ-connected to T in G if
µG(S, T) ≥ γ. For singleton sets, we omit braces and write µG(x, y) for the probability that
the edge (x, y) is in G.

50

Two sets that will be useful are,

Ball[x; `] = {y : ‖vx − vy‖ ≤ `}
Stretch[x, σ, u] = {y : (vy − vx) · u ≥ σ}

We will also work with collections of distributions D = {D(u)} over R∗ parameterized by u.
Such a collection is itself associated with the distribution induced by sampling a standard
normal u and then sampling from D(u).

Definition 5.4.3. Let D be a distribution collection. We say a vertex x is (σ, δ, γ, `)-covered
in M(D) if for least δ of u, x is γ-connected to Stretch[x, σ, u] ∩ Ball[x; `] in M(D(u)).

5.4.3 Cover Lemmas

Our goal is to exhibit a distribution D such that many vertices x are well-connected to
X\Ball[x;

√
L] inM(D). To do so, we inductively construct particular distribution collections

Dr such that many vertices x are either e−O(Rr)-connected to X \ Ball[x;
√
L] in M(Dr), or

else are (Ω(r),Ω(1), e−O(rR),
√
L)-covered by M(Dr).

We begin with a trivial bound on how much points can be covered.

Lemma 5.4.4. For `, γ, δ > 0 and arbitrary M,D, no vertex is (`
√

2 log(n/δ), δ, γ, `)-covered
by M(D).

Proof. For any y ∈ Ball[x; `], the probability that (vy−vx)·u ≥ β is at most exp(−β2/2`2) ≤
δ/n for β = `

√
2 log(n/δ). It follows that the probability that Stretch[x, `

√
2 log(n/δ), u] ∩

Ball[x; `] is non-empty is at most (n− 1)δ/n < δ.

The next lemma says that if a vertex x is connected by D′ to a set S of vertices that are
covered by D, then x is covered by the concatenation of D′ and D.

Lemma 5.4.5. Let S be a set of vertices such that each y ∈ S is (σ, δ, γ, `)-covered by M(D).
Let x be a vertex with µM(D′)(x, S∩Ball[x; `′]) ≥ γ′. Then, x is (σ−

√
2`′ log(2/δ), δ/4, γγ′δ/4, `+

`′)-covered by D′′(u) = D′, D(u).

Proof. Let Γ be the distribution of x’s out-neighbor in M(D′), conditioned on S ∩Ball[x; `′].
For each y ∈ S, let Ay be the set of u for which y is γ-connected to Stretch[y, σ, u]∩Ball[y; `]
in M(D(u)).

For any fixed y ∈ Γ, the quantity (vx − vy) · u is normal with mean zero and variance
‖vy − vx‖2 ≤ `′2, so the probability (over u) that y ∈ Stretch[x,−β, u] is at least 1 −
exp(−β2/2`′2) ≥ 1 − δ/2 for β =

√
2`′ log(2/δ). Then, for at least δ/2 of u, we have

y ∈ Stretch[x,−β, u] and u ∈ Ay. By averaging, for at least δ/4 of u, at least δ/4 of y ∼ Γ
have y ∈ Stretch[x,−β, u] and u ∈ Ay. It follows that x is (σ− β, δ/4, γγ′δ/4, `+ `′)-covered
by D′′.

Our next lemma is the main chaining step.

51

Lemma 5.4.6. Let M be a (σ0, ·)-matching-cover, T be a set of vertices that are (σ, 1 −
δ/2, γ,∞)-covered in M(D), and S a set of vertices that is δ|T |-connected to T in M . Then,
at least δ|T |/2 vertices x ∈ S are (σ + σ0, δ|T |/4|S|, γ,∞)-covered by D′(u) = u,D(u).

Proof. Let M ′ be the subgraph of M consisting only of edges from S to T ; by assumption
the total degree in M ′ is at least δ|T |. Further remove any edge (x, y) ∈ M ′(u) where
µM(D(u))(y, Stretch[y, σ, u]) < γ. The total in-degree remaining is at least δ|T |/2, so there is
a set S ′ ⊆ S of at least δ|T |/2 vertices that have out-degree at least δ|T |/4|S|. Finally, note
that if (x, y) ∈ M ′(u), then Stretch[y, σ, u,∞] ⊆ Stretch[x, σ + σ0, u,∞], so each x ∈ S ′ is
(σ + σ0, δ|T |/4|S|, γ,∞)-covered by D′.

To apply lemma 5.4.6, we need to establish covers with δ very close to 1. Consider taking
a collection D and then smoothing it by replacing D(u) with the average of D(û) for nearby
û. The next lemma shows that doing so boosts δ to nearly 1, in exchange for a loss in σ and
γ.

Lemma 5.4.7. Let x be (σ, δ, γ, `)-covered by D. Then, x is (ρσ − 4`
√

log(2/δ), 1 −
2δ, δ2/(1−ρ)γ/4, `)-covered by D′(u) = D(û) where û ∼ρ u.

Proof. Let A be the set of û for which x is γ-connected to Stretch[x, σ, û] ∩ Ball[x; `] in
M(D(û)). For each û, let Γ(û) be the distribution of x’s out-neighbor in M(D(û)), condi-
tioned on Stretch[x, σ, û] ∩ Ball[x; `].

For any û and y ∈ Γ(û), the quantity (vy−vx) ·u is normal with mean ρ(vy−vx) · û ≥ ρσ
and variance (1 − ρ2)‖vy − vx‖2 ≤ 2(1 − ρ)`2; it follows that y ∈ Stretch[x, ρσ − β, u] with

probability at least 1 − exp(−β2/4(1 − ρ)`2) ≥ 1 − (δ/2)4/(1−ρ) for β = 4`
√

log(2/δ) over
u. By averaging, for at least 1 − δ u, for at least 1 − (2/δ)(δ/2)4/(1−ρ) û ∼ρ u, we have
Pr [Γ(û) ∈ Stretch[x, ρσ − β, u]] ≥ 1/2. Call such pairs (u, û) good.

Applying lemma 5.4.2 to A, for at least 1 − δ u, we have Pr[û ∈ A] ≥ δ2/(1−ρ). All
together, for at least 1− 2δ u, with probability at least δ2/(1−ρ) − (2/δ)(δ/2)4/(1−ρ) we have
both û ∈ A and (u, û) good. In that case, µM(D(û)(x, Stretch[x, ρσ− β, u]∩ Ball[x; `]) ≥ γ/2.
The lemma follows by noting (2/δ)(δ/2)4/(1−ρ) ≤ δ2/(1−ρ)/2.

Combining the previous results, we prove the main inductive lemma.

Lemma 5.4.8. Let M be a (σ, δ)-uniform-matching-cover of X where δ ≤ 1/4. Let ` ≤
σ/27

√
log(1/δ) and K ≥ 1. Then, one of the following must occur.

1. There are distribution collections D0, . . . , DK, such that for every k ≤ K, at least
δ6k|X| vertices are (kσ/4, δ8, δ59Kk, `)-covered in M(Dk).

2. There is a distribution D∗ such that at least δ6K |X| vertices x are δ59K2
-connected to

X \ B[x; `] in M(D∗). Furthermore, D∗ is a shuffling of N k
1−1/K with N k′

0 for some
k ≤ K and k′ ≤ 6K.

Proof. For k = 0, every x ∈ X is (0, 1, 1, 0)-covered by D0(u) = (), the empty list.
Assuming case 1 holds for some 0 ≤ k < K, let T0 be those vertices that are (kσ/4, δ8, γ, `)-

covered by Dk. We begin by finding a set S that is well-connected to T0. Since at least δ|T0|

52

in-degree enters T0 in M , by averaging either at least δ−1|T0| vertices have at least δ2|T0|/|X|
out-degree into T0 or else at least δ|T0| vertices have at least δ3 out-degree into T0. In the
former case, call that set T1 and repeat, yielding sets T0, T1, . . . , Tt where each y ∈ Ts has at
least δ2|Ts−1|/|X| out-degree into Ts−1. Let S be those vertices with out-degree at least δ3

into Tt, so that δ|Tt| ≤ |S| ≤ δ−1|Tt|. Let D′ = N t
0 ; by construction, each y ∈ Tt has

µM(D′)(y, T0) ≥
t−1∏
s=0

δ2|Ts|/|X|

≥ δ2t−t(t−1)/2(|T0|/|X|)t

≥ δ3+6kt

Assuming case 2 does not hold by setting D∗ = D′, there is a set T ⊆ Tt of size at least
(1 − δ5)|Tt| such that each y ∈ T has µM(D′)(y, T0 ∩ Ball[y; `]) ≥ δ3+6kt/2 =: γ′. It follows
that at least δ3|S| − δ5|Tt| ≥ δ5|Tt| out-degree from S enters T .

Lemma 5.4.5 implies each y ∈ T is ((k − 1)σ/4, δ9, γ′′, 2`)-covered by D′′(u) = D′, Dk(u)
where γ′′ = γγ′δ9 (we replace factors of 1/4 with δ). Setting ρ = 1 − 1/K, lemma 5.4.7
implies each y ∈ T is ((k − 3)σ/4, 1− 2δ9, γ′′′, 2`)-covered by D′′′(u) = D(û) for û ∼1−1/K u
where γ′′′ = δ18K+1γ′′. Finally, since δ5|Tt|/4|S| ≥ δ7, lemma 5.4.6 implies at least δ5|Tt|/2
vertices in S are ((k + 1)σ/4, δ7, γ′′′,∞)-covered by Dk+1(u) = u,D′′′(u), where

γ′′′ = δ18K+1+3+6ktγ/2 ≥ 2δ23K+6Ktγ

Assuming case 2 does not hold for D∗ = Dk+1, at least δ5|Tt|/4 ≥ δ6(k+1)−t|X| vertices in S
are ((k + 1)σ/4, δ8, δ23K+6Ktγ, `)-covered by Dk+1.

Observe that at step k, this argument yields γ = δ23Kk+6Ktk , where tk is the total number
of expanding steps taken by step k. Since tk ≤ 6k, we have γ ≥ δ59Kk. Furthermore, Dk is
a shuffling of N k

1−1/K with N tk
0 .

To complete the proof of theorem 5.2.3, recall M is a (σ, δ/4)-uniform-matching-cover of
X. Let 1 ≤ R ≤ log(n)/ log(1/δ)). For R < 7, lemma 5.4.8 implies a typical edge in M has
length Ω(σ/

√
log(n/δ)) = Ω(Rσ/

√
log n) since log(n ≥ log(1/δ)) by assumption. That is,

setting D = Sample(1, 0) suffices.
For R ≥ 7, set K = bR/7c and ` = Rσ/212

√
log(n), so that ` satisfies lemma 5.4.8.

Lemma 5.4.4 implies case 1 of lemma 5.4.8 can not hold for K, so case 2 must hold. That
is, setting D = Sample(R, 1− 1/K) suffices.

5.4.4 Using ±1 Coins

One might be concerned with issues of precision required for sampling Gaussians. Fortu-
nately, it suffices to approximate them by sampling w ∈ {±1}k and returning 1√

k

∑k
i=1 wi

for k = O(log n).

Lemma 5.4.9. Suppose that instead of a random Gaussian u, we sample a uniform random
±1 matrix U ∈ Rd×k and set u = U1, where 1 ∈ Rk has 1j = 1/

√
k for all j ≤ k. To

53

sample a ρ-correlated copy û, we sample Û ∈ Rd×k as a ρ-correlated copy of U (i.e., each
Ûij = Uij with probability ρ or a random ±1 with probability 1− ρ) and set û = Û1. Then,
for k = O(R2 log(1/δ)) = O(log n), theorem 5.2.3 still holds.

The proof of lemma 5.4.9 is straightforward. Lemmas 5.3.3, 5.4.4, 5.4.5 all still hold with
similar constants even for k = 1 (see e.g. [1]), so the only issue is lemma 5.4.7. For the
latter, lemma 5.4.2 also holds for ρ-correlated ±1 variables, so the only change needed is in
bounding (vx − vy) · (u− û), which is easily done for k = O(R2 log(1/δ)) = O(log(n)) using
Bernstein’s inequality(see e.g. [13]). For completeness, we include the details in appendix
5.7.

5.5 Lower-bound for the Cut-Matching Game

Khandekar, Rao, and Vazirani proposed a primal-dual framework based on the following
two-player game game, which proceeds for T rounds[28]. On each round, the cut player
chooses a bisection (St, St) of the vertices, and the matching player responds with a perfect
matching M t pairing each x ∈ St with some y ∈ St The payoff to the cut player is h(HT),
where H t = M1 + · · · + M t. Thus on round t, the cut player aims to choose a cut so that
any matching response M t will increase the expansion of H t.

To see the connection to sparsest cut, suppose the cut player has a strategy that
guarantees h(HT) ≥ T/κ, and consider a matching player that plays as follows. When given
a bisection (S, S), the matching player connects a source s to all x ∈ S with edges of unit
capacity and a sink t to all y ∈ S. A simple lemma similar to lemma 5.3.4 implies that
if the min-cut is at most n/2, then it has expansion at most one. Otherwise, the added
edges are saturated, and assuming all edges have integral capacities, the flow can be pseudo-
decomposed into a matching; the matching player responds with that matching. Then, after
T rounds, we have either found a cut of expansion one or else routed HT in G with congestion
T . Assuming the cut-player forced h(HT) ≥ T/κ, scaling down by T yields a feasible flow
routing a graph of expansion 1/κ, yielding a κ-approximation.

The following theorems appear in [40].

Theorem 5.5.1 ([40]). The cut player has an (efficient) strategy to ensure,

exp (−λ2(LHt)) ≤ n exp

(
−t

O(log n)

)
In particular, after T = O(log2(n)), the cut player can ensure λ2(LHT) ≥ Ω(log n), yielding
an O(log n) factor approximation using O(log2 n) max-flows.

Theorem 5.5.2 ([40]). The matching player can ensure

h(H t) ≤ O

(
1√

log n

)
· t

We prove the following.

54

Theorem 5.5.3. The matching player can ensure

λ2(LHt) ≤ O

(
log log n

log n

)
· t

Theorem 5.5.3 does not entirely eliminate the possibility of achieving a better approxi-
mation in the cut-matching game, and indeed it is known among experts that there exists an
(inefficient) strategy for the cut-player to ensure exp(−h(H t)) ≤ n exp(−t/O(

√
log(n))[39].

However, theorem 5.5.3 says that doing so will require certifying expansion via something
stronger than λ2(LHt). For example, one could route another expander flow H ′ in HT and
certify h(HT) ≥ λ2(LH′)/2. Such an approach seems somewhat awkward though, as any
such flow might as well have been routed in G directly.

In theorem 5.5.2, the matching player arbitrarily identifies the vertices of G with a hy-
percube, and tries to keep the dimension cuts sparse. In particular, it is shown that for any
bisection (S, S), there must always exist a matching that raises the expansion of the average
dimension cut by at most O(1/

√
d).

To prove theorem 5.5.3, we identify the vertices of G arbitrarily with a dense set of points
v1, . . . ,vn ∈ Rd on the sphere Sd−1, where d = Ω(log(n)/ log log(n)). Letting w1, . . . ,wd ∈
Rn be the column vectors of the n× d matrix with row vectors {vx}, we show that for any

bisection (S, S) there must be a matching that raises the average Rayleigh quotient
wT

i LHwi

wT
i wi

by at most O(1/d).
The following lemma is an easy generalization of one in [40].

Lemma 5.5.4. Let v1, . . . ,v
n ∈ Rd, and let w1, . . . ,wd ∈ Rn be defined by wi,x = vx,i.

Define,

ψ(t) =
1

d

d∑
i=1

wT
i LHtwi

wT
i wi

If all ‖wi‖2 ≥ L > 0, then,

ψ(t)− ψ(t− 1) ≤ 1

dL

∑
xy∈Mt

‖vx − vy‖2

Proof.

ψ(t)− ψ(t− 1) =
1

d

d∑
i=1

wT
i LMtwi

wT
i wi

≤ 1

dL

d∑
i=1

∑
xy∈Mt

(wi,x −wi,y)
2

=
1

dL

∑
xy∈Mt

‖vx − vy‖2

55

If w1, . . . ,wd are as in lemma 5.5.4 and all orthogonal to the all-1s vector, then λ2(LHt) ≤
ψ(t); the orthogonality condition is equivalent to

∑
x vx = 0. Having fixed such an embed-

ding, when presented with a bisection (S, S), the matching player aims to match points so as
to minimize the average distance between matched points. The analysis of [40] shows that
for the hypercube embedding {−1, 1}d, one can obtain ψ(t) − ψ(t − 1) ≤ O(1/

√
d). The

analysis is not constructive; rather, they use the vertex isoperimetry of the hypercube to es-
tablish an upper bound on the value of the matching problem’s dual LP, and then conclude
a matching achieving that bound exists by strong duality. Their argument also depends on
the fact that for the hypercube embedding, the squared distances ‖vx− vy‖2 form a metric.

In fact, the metric assumption is not needed, and there is also no need to apply LP
duality. We give a simple proof that large vertex isoperimetry of the embedding implies the
simple greedy strategy of iteratively matching closest points works.

Lemma 5.5.5. Let v1, . . . ,vn ∈ Rd be a set of points such that, for any S ⊆ {v1, . . . ,vn}
with |S| ≤ n/2, |Ball[S;

√
r]| ≥ (1 + Ω(1))|S|, Then, the greedy strategy produces M with,∑

xy∈M

‖vx − vy‖2 ≤ O(nr)

Proof. Starting with S, S, we pick x ∈ S, y ∈ S minimizing ‖vx − vy|2, match them, and
then remove them. Repeated application of the the isoperimetric condition implies that,
for all S with |S| ≤ n/2, |Ball[S; t

√
r]| ≥ min{1 + n/2, (1 + Ω(1))t|S|}. It follows that

if two sets A,B have size s, there must be x ∈ A, y ∈ B with ‖vx − vy‖ ≤ 2t
√
r for

t = dlog(1+Ω(1))(n/2s)e+ 1 ≤ 2 +O(1) log(n/2s). Then, the total cost of the greedy solution
is at most,

∑
xy∈M

‖vx − vy‖2 ≤ O

 n/2∑
s=1

(1 + log(n/2s))2 · r


≤ O

(
n+

∫ n/2

0

log2(n/2s) ds

)
r

≤ O(nr)

For the case of theorem 5.5.2, let vx ∈ {−1/
√
d, 1/
√
d}d be the hypercube embedding and

take L = n/d in lemma 5.5.4. The vertex isoperimetry of the hypercube implies r = O(1/
√
d)

in lemma 5.5.5, yielding a strategy to ensure ψ(t) ≤ O(nr/dL) · t = O(1/
√
d) · t.

To prove theorem 5.5.3, we choose vx as per the following lemma, and take L = Ω(n/d),
r = O(1/d), yielding a strategy to ensure ψ(t) ≤ O(nr/dL) · t = O(1/d) · t.

Lemma 5.5.6. For every d, there exists a set of n = O(
√
d)d points v1, . . . ,vn ∈ Sd−1 such

that
∑n

i=1 vi = 0, every i ≤ d has
∑n

x=1 v2
x,i = Ω(n/d), and for every S ⊆ [n] with |S| ≤ n/2,

|Ball[S;O(1/
√
d)]| ≥ (1 + Ω(1))|S|.

The proof of lemma 5.5.6 is a straightforward application of a construction of Feige and
Schechtman[23], which we include in appendix 5.8

56

5.6 Proof of Lemma 5.4.2

For f : Rd → R≥0, let ‖f‖p = E[fp]1/p, where the expectation is over the multivariate
standard normal distribution. For x ∈ Rd, we write y ∼ρ x for a ρ-correlated copy of u. The
Ornstein-Uhlenback operator is defined by,

Tρf(x) = Ey∼ρx[f(y)]

Theorem 5.6.1 (Borell[12]). Let f : Rd → R≥0 and −∞ < q ≤ p ≤ 1. If 0 ≤ ρ2 ≤
(1− p)/(1− q), then

‖Tρf‖q ≥ ‖f‖p for 0 ≤ ρ2 ≤ (1− p)/(1− q)

By a change of variables, lemma 5.4.2 is equivalent to,

Pru[Prû[û ∈ A] < τ] <
τ 1−ρ

δ

Let f indicate A, and set p = 1− ρ, q = 1− 1/ρ. Note q < 0 < p ≤ 1 satisfy theorem 5.6.1,
so

‖Tρf‖q ≥ ‖f‖p = δ1/p

Then, Prû∼ρu[û ∈ A] = Tρf(u), and we have,

Pr[Tρf < τ] = Pr[(Tρf)q > τ q]

< ‖(Tρf)‖qqτ−q

≤ δq/pτ−q

=

(
τ 1−ρ

δ

)1/ρ

For τ 1−ρ/δ ≤ 1, raising the last line to ρ can’t decrease its value. In the other case, the
result is trivial.

5.7 Proof of Lemma 5.4.9

Lemma 5.3.3 only uses the fact that for a vector v and standard normal u, (u ·v)2 ≥ Ω(‖v‖2)
with probability Ω(1). That property still holds.

Lemma 5.7.1. Let U ∈ Rd×k be a uniform random ±1 matrix, and let v ∈ Rd be a vector.
Then,

Pr
[
(v · U1)2 ≥ ‖v‖2/4

]
≥ 1/5

Proof. It suffices to consider a unit vector v. Let Z = v · U1. Then,

E[Z2] = E

(∑
i≤d,j≤k

vi
Uij√
k

)2
 =

∑
i1,i2,j1,j2

vi1vi2

E [Ui1j1Ui2j2]

k
=
∑
i,j

v2
i /k = ‖v‖2 = 1

57

E[Z4] =
∑

i1,...,i4,j1,...,j4

vi1 · · ·vi4

E [Ui1j1 · · ·Ui4j4]

k2
≤ 3

∑
i1,j1,i2,j2

v2
i1
v2

i2
/k2 = 3‖v‖4 = 3

Then, for any t ≤ 1/λ, we have,

Pr
[
Z2 < λ

]
≤ Pr

[(
1− tZ2

)2
> (1− tλ)2

]
<

E
[
(1− tZ2)

2
]

(1− tλ)2 =
1− 2tE[Z2] + t2E[Z4]

(1− tλ)2

Taking t = λ = 1/4 yields,

Pr
[
Z2 < 1/4

]
<

1− 1/2 + 3/16

(15/16)2
< 1/5

The remaining lemmas require a Gaussian-like bound on stretch; for that, we’ll use the
following theorem.

Theorem 5.7.2 (Bernstein’s Inequality). Let X1, . . . , Xn be independent random variables
with E[Xi] = 0 and Xi ≤ 1. Let σ2 =

∑n
i=1 E[X2

i]. Then, for any t > 0,

Pr

[
n∑

i=1

Xi > tσ

]
≤ exp

(
−t2

2 + t/3σ

)
The next lemma says that if k is large enough, we can obtain Gaussian-like bounds on

stretch. Note that when ρ = 0 much better bounds are possible, in that even k = 1 works
(see [1]).

Lemma 5.7.3. Let U ∈ Rd×k be an arbitrary ±1 matrix, and let Û ∼ρ U be a ρ-correlated

copy of U . Then, for any vector v, and any 0 < t ≤
√
k(1− ρ2),

Pr
[
v · Û1 > ρ(v · U1) + t

√
1− ρ2‖v‖

]
≤ e−t2/3

Pr
[
v · Û1 < ρ(v · U1)− t

√
1− ρ2‖v‖

]
≤ e−t2/3

Proof. It suffices to consider a unit vector v. For each i ≤ d, j ≤ k, let Zij = vi(ûij−ρUij)/2,
so that we have E[Zij] = 0, |Zij| ≤ 1, and E[Z2

ij] = (1− ρ2)v2
i /4. Note that,

v · Û1 = ρ(v · Û1) +
2√
k

∑
i≤d,j≤k

Zij

Applying theorem 5.7.2 with σ2 = k(1− ρ2)‖v‖2/4 = k(1− ρ2)/4, we have

Pr

[∑
i,j

Zij > tσ

]
≤ exp

(
−t2

2 + t/3σ

)
≤ e−t2/3

proving the first part. The second part follows by applying the same argument to −Zij.

For lemmas 5.4.4 and 5.4.5, we use ρ = 0 and t = O(
√

log(1/δ)), so k = O(log(1/δ)) suf-

fices. For lemma 5.4.7, we use ρ = 1−1/K and t = O(
√
K log(1/δ)), so k = O(K2 log(1/δ))

suffices. Also, lemma 5.4.2 holds for the uniform measure on the hypercube, as Borell’s
theorem also holds for f : {−1,+1}n → R≥0.

58

5.8 Proof of Lemma 5.5.6

Lemma 5.8.1 (Feige, Schechtman [23]). For each 0 < γ < π/2, the sphere Sd−1 can be
partitioned into n = (O(1)/γ)d equal volume cells, each of diameter at most γ.

Apply lemma 5.8.1 with γ = 1/
√
d, yielding cells C1, . . . , Cn with n = exp(O(d log d)).

Let V be a set of n arbitrary points, each from a distinct cell; for convenience, let us choose
V so that V ∩ (−V) = ∅.

Claim 5.8.2. If A ⊆ Sd−1 has µ(A) ≥ α, then |Ball(A; γ)∩V | ≥ αn; if A ⊆ V has |A| ≥ αn,
then µ(Ball(A; γ)) ≥ α.

Proof. For the first direction, if µ(A) ≥ α, A intersects at least αn of the cells, so Ball[A; γ]
contains at least αn cells, and hence at least αn elements of V . For the second, if A ⊆ V
has size at least αn, then Ball[A; γ] contains at least αn cells, so µ(Ball[A; γ]) ≥ α.

Claim 5.8.3. For every i ≤ d,
∑

v∈V v2
i ≥ Ω(n/d).

Proof. Let A = {x ∈ Sd−1 : xi ≥
√

2/d}. By bounds on the measure of spherical caps (see
e.g. [34]), µ(A) ≥ 1/12. Using claim 5.8.2, |Ball(A; γ) ∩ V | ≥ (1/12)n. Then, since xi ≥√

2/d− γ ≥
√

1/8d for all x ∈ Ball(A; γ), we have
∑

v∈V v2
i ≥ (1/12)n(1/8d) ≥ Ω(n/d).

Claim 5.8.4. For every A ⊆ V with |A| ≤ n/2, |Ball[A;O(1/
√
d)] ∩X| ≥ (1 + 1/12)|A|.

Proof. Let A ⊆ V have |A| ≤ n/2, and set A1 = Ball[A; γ], A2 = Ball[A1; 4/
√
d], A3 =

Ball[A2; γ]; the goal is to show |A3 ∩ V | ≥ (1 + 1/12)|A|. Note claim 5.8.2 ensures µ(A1) ≥
|A|/n. If µ(A1) ≥ (1 + 1/12)/2, then µ(A2) ≥ (1 + 1/12)|A|/n. Otherwise, by the isoperi-
metric inequality on the sphere (see e.g. [34]), µ(A2) ≥ (1 + 1/12)µ(A1) ≥ (1 + 1/12)|A|/n.
By by claim 5.8.2, |A3 ∩ V | ≥ (1 + 1/12)|A|.

Now to prove lemma 5.5.6, we let V ′ = V ∪ −V . Clearly
∑

v∈V ′ v = 0, and claim
5.8.3 still applies to V ′, so it remains only to argue claim 5.8.4 still holds for V ′. Let
A ⊆ V ′ have |A| ≤ |V ′|/2 = n. Let A = A+ ∪ A− where A+ ⊆ V and A− ⊆ −V , and
suppose |A+| ≤ |A−| (in the other case, an analogous argument applies). We consider two
cases. First, if |A+| ≤ |A−|/2, then µ(Ball[A−; γ]) ≥ |A−|/n, implying |Ball[A−; 2γ] ∩ V | ≥
|A−|/n. Therefore, |Ball[A; 2γ] ∩ V ′| ≥ 2|A−| ≥ (4/3)|A|. Otherwise, |A+| ≤ n/2 and
|A+| ≥ |A|/3, so claim 5.8.4 implies |Ball[A+;O(1/

√
d)] ∩ V | ≥ (1 + 1/12)|A+|. Therefore,

|Ball[A;O(1/
√
d)] ∩ V ′| ≥ (1 + 1/12)|A+|+ |A−| ≥ (1 + 1/36)|A|.

59

Bibliography

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with
binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.

[2] Ravindra K Ahuja, Andrew V Goldberg, James B Orlin, and Robert E Tarjan. Finding
minimum-cost flows by double scaling. Mathematical programming, 53(1-3):243–266,
1992.

[3] Noga Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and supercon-
centrators. J. Comb. Theory, Ser. B, 38(1):73–88, 1985.

[4] Sanjeev Arora, Elad Hazan, and Satyen Kale. O(
√

log n) approximation to sparsest
cut in Õ(n2) time. In FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 238–247, Washington, DC, USA, 2004. IEEE
Computer Society.

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta algorithm and applications. Technical report, Princeton University,
2005.

[6] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. In STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 227–236, New York, NY, USA, 2007. ACM.

[7] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings
and graph partitioning. In STOC ’04: Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 222–231, New York, NY, USA, 2004. ACM.

[8] Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm. nature,
324(6096):446–449, 1986.

[9] Amir Beck. On the convergence of alternating minimization for convex programming
with applications to iteratively reweighted least squares and decomposition schemes.
SIAM Journal on Optimization, 25(1):185–209, 2015.

[10] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in O(n2)
time. In STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 47–55, New York, NY, USA, 1996. ACM.

60

[11] András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts
and flows in capacitated graphs. CoRR, cs.DS/0207078, 2002.

[12] Christer Borell. Positivity improving operators and hypercontractivity. Mathematische
Zeitschrift, 180:225–234, 1982.

[13] Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities.
In Advanced Lectures on Machine Learning, pages 208–240. Springer, 2003.

[14] J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel
Journal of Mathematics, 52(1):46–52, 1985.

[15] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

[16] Hui Han Chin, Aleksander Madry, Gary L Miller, and Richard Peng. Runtime guar-
antees for regression problems. In Proceedings of the 4th conference on Innovations in
Theoretical Computer Science, pages 269–282. ACM, 2013.

[17] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and
Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation of maxi-
mum flow in undirected graphs. In Lance Fortnow and Salil P. Vadhan, editors, STOC,
pages 273–282. ACM, 2011.

[18] Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via
interior point algorithms. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 451–460. ACM, 2008.

[19] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson
and lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

[20] Stephen Demko. Condition numbers of rectangular systems and bounds for generalized
inverses. Linear Algebra and its Applications, 78:199–206, 1986.

[21] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximat-
ing arbitrary metrics by tree metrics. In Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pages 448–455. ACM, 2003.

[22] Lisa K. Fleischer. Approximating fractional multicommodity flow independent of the
number of commodities. SIAM Journal on Discrete Mathematics, 13:505–520, 2000.

[23] Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 29(1):79–103, 1999.

[24] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM,
45(5):783–797, 1998.

61

[25] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[26] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its multi-
commodity generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 217–226. Society for Industrial and Applied
Mathematics, 2014.

[27] Jonathan A Kelner, Gary L Miller, and Richard Peng. Faster approximate multicom-
modity flow using quadratically coupled flows. In Proceedings of the forty-fourth annual
ACM symposium on Theory of computing, pages 1–18. ACM, 2012.

[28] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single
commodity flows. In STOC ’06: Proceedings of the thirty-eighth annual ACM sympo-
sium on Theory of computing, pages 385–390, New York, NY, USA, 2006. ACM.

[29] GM Korpelevich. Extragradient method for finding saddle points and other problems.
Matekon, 13(4):35–49, 1977.

[30] Ioannis Koutis, Gary L. Miller, and Richard Peng. A fast solver for a class of linear
systems. Commun. ACM, 55(10):99–107, 2012.

[31] James R. Lee. On distance scales, embeddings, and efficient relaxations of the cut
cone. In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 92–101, Philadelphia, PA, USA, 2005. Society for Industrial
and Applied Mathematics.

[32] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

[33] Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected
graphs. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Sympo-
sium on, pages 245–254. IEEE, 2010.

[34] Jiri Matousek. Lectures on Discrete Geometry. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2002.

[35] Elchanan Mossel, Oded Regev, Jeffrey E. Steif, and Benny Sudakov. Non-interactive
correlation distillation, inhomogeneous markov chains, and the reverse bonami-beckner
inequality. Israel Journal of Mathematics, 154, 2006.

[36] Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational in-
equalities with lipschitz continuous monotone operators and smooth convex-concave
saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[37] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical program-
ming, 103(1):127–152, 2005.

62

[38] Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities
and related problems. Mathematical Programming, 109(2-3):319–344, 2007.

[39] Lorenzo Orecchia. personal communication, 2009.

[40] Lorenzo Orecchia, Leonard J. Schulman, Umesh V. Vazirani, and Nisheeth K. Vishnoi.
On partitioning graphs via single commodity flows. In STOC ’08: Proceedings of the
40th annual ACM symposium on Theory of computing, pages 461–470, New York, NY,
USA, 2008. ACM.

[41] Richard Peng. Approximate undirected maximum flows in o (m polylog (n)) time. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1862–1867. SIAM, 2016.

[42] Serge A. Plotkin, David B. Shmoys, and Eva Tardos. Fast approximation algorithms
for fractional packing and covering problems. Mathematics of Operations Research,
20:257–301, 1995.

[43] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.

[44] Jonah Sherman. Nearly maximum flows in nearly linear time. In Foundations of Com-
puter Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 263–269. IEEE,
2013.

[45] Jonah Sherman. Generalized preconditioning and network flow. In Proceedings of the
Twenty-Eigth Annual ACM-SIAM Symposium on Discrete Algorithms, page to appear.
Society for Industrial and Applied Mathematics, 2017.

[46] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983.

[47] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for pre-
conditioning and solving symmetric, diagonally dominant linear systems. CoRR,
abs/cs/0607105, 2006.

63

