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Abstract 

Absolute identification exposes a fundamental limit in human 
information processing. Recent studies have shown that this limit 
might be extended if participants are given sufficient opportunity 
to practice. An alternative explanation is that the stimuli used – 
which vary on only one physical dimension – may elicit 
psychological representations that vary on two (or more) 
dimensions. Participants may learn to take advantage of this 
characteristic during practice, thus improving performance. We use 
multi-dimensional scaling to examine this question, and conclude 
that despite some evidence towards the existence of two 
dimensions, a one dimensional account cannot be excluded. 

Keywords: absolute identification; unidimensional stimuli; 
multidimensional scaling; MDS; learning 

 

A typical Absolute Identification (AI) task uses stimuli 

that vary on only one physical dimension, such as loudness, 

brightness, or length. These stimuli are first presented to the 

participant one at a time, each uniquely labeled (e.g. #1 

through to n). The participant is then presented with random 

stimuli from the set, without the label, and asked to try and 

remember the label given to it previously.  

This seemingly simple task exhibits many interesting 

benchmark phenomena. The one of most concern for the 

current paper is the apparent limitation in performance. The 

maximum number of stimuli that people were previously 

thought to be able to perfectly identify was only 7±2 

(Miller, 1956). Performance was thought to improve slightly 

with practice and then reach a low asymptote (Pollack, 

1952; Garner 1953).  

This finding was particularly surprising given that this 

limit appeared to be resistant to practice (Garner, 1953; 

Weber, Green & Luce, 1977), and was generally consistent 

across a range of modalities (e.g. line length: Lacouture, Li 

& Marley, 1998; tone frequency: Pollack, 1952; Hartman, 

1954; tone loudness: Garner, 1953; Weber, Green & Luce, 

1977). In addition, this limitation appears to be unique to 

unidimensional stimuli. For example, people are able to 

remember hundreds of faces and names, and dozens of 

alphabet shapes. It is generally accepted that this is because 

objects such as faces, names, and letters vary on multiple 

dimensions. Performance generally increases as the number 

of dimensions increase (Eriksen & Hake, 1955). This makes 

intuitive sense when one considers the individual 

dimensions on a multidimensional object. For example, if 

people are able to learn to perfectly identify 7 lengths, and 7 

widths, they could potentially learn to identify 49 rectangles 

formed by a combination of lengths and widths.  

Despite decades of research confirming this limit in 

performance for unidimensional stimuli, more recent 

research has suggested that we may be able to significantly 

increase this limit through practice (Rouder, Morey, Cowan 

and Pfaltz, 2004; Dodds, Donkin, Brown & Heathcote, 

submitted). For example, given approximately 10 hours of 

practice over 10 days, Dodds et al.’s participants learned to 

perfectly identify a maximum of 17.5 stimuli (out of a 

possible 36), a level significantly beyond the 7±2 limit 

suggested by Miller (1956). From 58 participants that took 

part in a series of AI tasks, 22 exceeded the upper end of 

Miller’s limit range (nine stimuli).  

Other Stimulus Dimensions 

The results from Dodds et al. (submitted) were not limited 

to the identification of lines varying in length. Dodds et al. 

also used a wide range of other stimuli, and found similar 

learning effects. For example, dots varying in separation, 

lines varying in angle and tones varying in pitch all 

demonstrated similar results. Participants learned to 

perfectly identify a maximum of 12.6 stimuli using dots 

varying in separation, 10.4 using lines varying in angle and 

17.5 using tones varying in frequency, all exceeding 

Miller’s (1956) upper limit of 9 stimuli.  

The learning effects from Rouder et al. (2004) and Dodds 

et al. (submitted) may be attributed to the type of stimuli 

employed. The existence of severe limitations in 
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performance is unique to unidimensional stimuli, and since 

multiple dimensions are commonly associated with 

improved performance (Eriksen & Hake, 1955) it may be 

argued that the stimuli vary on multiple dimensions. Tones 

varying in frequency for example, are generally viewed as 

multidimensional. While Dodds et al. employed pure tones, 

leaving the stimuli to vary on only one physical dimension 

(wavelength), our perception of loudness increases as a 

function of increasing frequency.  Therefore as frequency 

increased, participants would perceive the tones as being of 

different loudness, creating a greater number of perceived 

dimensions. This is not an uncommon phenomenon, as a 

similar effect is found in colour perception.  Different 

colours are generated by a manipulation which is physically 

unidimensional (wavelength change), but the psychological 

representation of colour is generally considered to consist of 

three dimensions (e.g., MacLeod, 2003). Therefore it may 

be possible that the internal psychological representation of 

different line lengths used in both Rouder et al. (2004) and 

Dodds et al. (submitted) varied on more than one 

dimension. 

In order to examine this theory using the same stimuli 

employed by Dodds et al. (submitted), we use 

Multidimensional Scaling (MDS) methods to examine the 

structure of similarity ratings generated using these stimuli. 

MDS refers to a broadly used range of statistical techniques, 

designed to allow the examination of relationships between 

objects of interest. Given a matrix of proximity data, MDS 

uncovers a spatial arrangement of objects in a manner that 

best reconstructs the original proximity data. For example, 

given a matrix of data with the distances between n cities, 

MDS analysis would present a spatial ‘map’ that would 

arrange the cities in the most likely location, given the 

distances provided by the data. Because we use subjective 

“similarity ratings”, rather than actual measured distances, 

we employ non-metric MDS, which does not assume a 

linear mapping between similarity ratings and distances. 

Typically, MDS is employed after one has already 

assumed the number of dimensions on which the stimuli 

might vary. In the current experiment however, we use 

MDS to determine the number of dimensions that best 

describe Dodds et al.’s (submitted) stimuli.  

Method 

Participants 

The 27 participants, recruited from an introductory 

psychology course at the University of Newcastle, 

Australia, took part in exchange for course credit. 

Stimuli 

Stimuli were 16 lines varying in length (Figure 1). See 

Table 1 for pixel lengths. Lines were 11 pixels in width and 

were black, presented on a white background. Stimuli were 

log spaced, and were separated by a distance substantially 

greater than the Weber fraction for length (2%; Laming, 

1986; Teghtsoonian, 1971). 
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Figure 1. Unidimensional stimuli (line lengths) used in the 

Experiment. On any single trial, two of these stimuli were 

presented consecutively. All possible pairs of stimuli, 

including identical stimuli, were presented twice during the 

Experiment. 

 

Table 1. Pixel lengths of the 16 lines used as stimuli 

 

Pixel Lengths 

15 18 22 27 33 41 50 61 

74 90 110 134 164 200 244 298 

 

Procedure 

Participants were instructed to rate the similarity of two 

stimuli that appeared on a computer monitor, on a scale of 1 

to 100. On each trial, a single line would appear on the 

screen for 1 sec, followed by another line for 1 sec. The 

position of each line was jittered randomly on every 

presentation. After the two stimuli had been removed from 

the screen, a slider panel appeared at the bottom of the 

screen, allowing the participant to move a scrolling bar 

along a scale of 1 to 100 (where 1 = dissimilar and 100 = 

similar). Every possible pair of stimuli from the set, 

including identical pairs were presented twice. This resulted 

in 8 blocks of 64 trials, or a total of 512 trials (i.e., where 

n=16 stimuli and r=2 replications, number of trials = rn
2
). A 

mandatory 30 sec break was taken between each block. 

Each participant was given five practice trials at the 

beginning of the experiment, where they were asked to 

complete an identical task to the one above, with the 

exception that the stimuli were circles varying in diameter. 

The purpose of the practice trials was only to familiarize the 

participant with the response method. Different stimuli were 

used to prevent additional exposure to experimental stimuli. 
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Results 

The main objective of our analysis is to determine 

whether the stimuli used by Dodds et al. (submitted) are 

represented internally by one or multiple dimensions. Initial 

descriptive analysis suggested that the data were consistent 

with a one-dimensional explanation: Figure 2 shows the 

average similarity ratings across participants, plotted as 

function of stimulus magnitude for each stimulus in the 

rating pair. Note that identical stimuli are rated as very 

similar (along the central diagonal), and rated similarity 

decreases monotonically with the rank-distance between the 

stimuli (at the left and right corners).  

 
 

Figure 2. 3D structure of similarity ratings of all 16 stimuli. 

 

Although Figure 2 indicates that the similarity ratings are 

consistent with a 1D psychological representation, they 

could nevertheless hide very subtle effects in the data, or 

large effects for individuals that average out in the group. In 

order to test this, we calculated non-metric MDS analyses 

for individual data. Each participant’s data were 

transformed into a single symmetric dissimilarity matrix by 

subtracting the average similarity rating for each pair of 

items from 100 and averaging across reversed presentations 

(e.g., stimulus pair #1-#7 with stimulus pair #7-#1). This 

matrix was submitted for MDS analyses using both 1D and 

2D representations for the data. 

Deciding which of the 1D and 2D MDS analyses provides 

the best account of the data is not trivial. Various ad hoc 

methods have been used, including examining a goodness of 

fit measure, or examining the spatial arrangement the points 

in proximity plots. We applied both methods to our data. In 

MDS, goodness of fit between the reconstructed and 

observed dissimilarity matrices is typically measured by 

sum-squared error, which is called the stress value. Smaller 

stress indicates a better fit; however the MDS models are 

nested meaning that stress must always decrease as more 

dimensions are included. This means that stress must always 

be smaller for the 2D than the 1D model. Statistical tests on 

the magnitude of decrease in stress are not easily 

constructed, because the key properties of non-metric MDS 

make it difficult to assume a distributional model for the 

data. Figure 3 graphs the average stress value, across 

participants, for MDS fits with dimensions from 1 to 10 (a 

scree plot).  

 

 
 

Figure 3. Scree plot showing the decrease in stress value as 

the number of dimensions increase. 

 

Some authors recommend determining the number of 

dimensions from a scree plot by finding its “elbow”; a sharp 

drop in stress value, followed by a relatively flat 

continuation. Such a pattern could suggest that the latter 

dimensions fail to provide sufficiently better fit to warrant 

adding more dimensions to the model. Unfortunately, this 

method fails to provide any insight into the number of 

dimensions that best describe the stimuli, as there is no 

obvious elbow in the scree plot. This is a common problem 

(e.g., Grau & Nelson, 1988; Lee, 2001). In addition, the use 

of such methods has been criticized as placing unreasonable 

emphasis on a numerical measurement. Such methods to 

determine dimensionality are often used to the exclusion of 

other, more meaningful aspects of analysis, such as simply 

the interpretability of results (Shepard, 1974).  

A more appropriate method to determine whether a two 

dimensional model provides a sensible description of the 

stimuli might be to examine the spatial relationship between 

objects in the purported 2D psychological space. This can 

be investigated with a “proximity plot”, where each of the 

points provided in the similarity matrix are physically 

arranged in a manner that best satisfies the distances (or 

similarities) provided in the original data. Figure 4 shows 

two examples of these proximity plots, for two participants, 

from MDS analyses with two dimensions.  

The philosophy of using MDS to recover internal 

structure relies on the assumption that, if the psychological 

representation of the stimuli was truly two dimensional, 

these 2D MDS proximity plots should reconstruct the 

internal representation. Because of the nature of the models 

under consideration (e.g. of categorization and absolute 

identification), this internal representation should have some 

relatively smooth and systematic shape. On the contrary, if 

the internal representation of the stimuli is truly one 

dimensional, these 2D MDS proximity plots should  
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Figure 4. Two proximity plots of individual fits of a two 

dimensional model. Each of these graphs is the resulting 

proximity plot from a single participant in the Experiment. 

Each point represents a single stimulus in 2D space. Lines 

connect adjacent stimuli in the set. The value at the top of 

each graph is the stress value, a goodness of fit measure. 

 

illustrate the 1D structure (a straight line) possibly along 

with some meaningless noise. 

However, these interpretations of the proximity graphs are 

only appropriate when examining the results of metric MDS 

analyses (using true, quantitative distances). In the current 

case, where non-metric MDS analyses must be used, 

patterns that may normally suggest a two dimensional 

internal representation, might actually arise from data that 

are truly one dimensional. This problem stems from the 

monotone transformations allowed by non-metric MDS, 

between the observed similarity data and the internal 

psychological distances (as noted originally by Shepard, 

1974). Since non-metric MDS analyses only preserve the 

rank order of the similarity ratings, leaving the exact 

similarity values to vary in systematic ways that best suit the 

data, there is considerable flexibility in the spatial 

arrangements that might arise from a single underlying 

dimension. Therefore both Figure 4a and Figure 4b could be 

construed as evidence favouring a single underlying 

dimension. Whilst the two proximity plots demonstrate 

distinctly different patterns, both provide evidence to 

suggest that our stimuli vary on only a single dimension. 

Even though smooth C- or U-shaped proximity plots are 

consistent with one dimensional internal representations, 

they are also consistent with two dimensional internal 

representations – that is, truly C- or U-shaped underlying 

structures. We attempt to resolve this ambiguity using a 

simulation study comparing MDS outputs from 1D and 2D 

fits to truly 1D data, in the presence of noise. These 

simulations provide a metric for interpreting the stress 

values from our fits to data. 

Simulation Study 

We investigated this problem of dimensionality with a 

simulation study. We generated synthetic data from a 

similarity matrix that was truly one dimensional (the rated 

distance between each stimulus was a linear function of 

their ranked difference in the set). We scaled this generating 

similarity matrix to be as similar to the observed data as 

possible; we used 16 stimuli, with maximum and minimum 

similarity ratings of 95.91 and 6.88, respectively. Similarity 

between stimuli i and j could then be set as: 

 

simmax – (simmax - simmin)*(abs(i-j)/15) 

 

From this true similarity matrix, we generated synthetic 

data sets that matched the characteristics of the real data. 

Noise was added to the matrix using a normal distribution 

with standard deviation 12.18, and sampled similarity 

values outside [0,100] were truncated. These settings 

resulted in synthetic similarity matrices that were nearly 

identical to the human data, on average, for the range and 

variance of similarities, and also for the variance of 

similarity values across participants, conditioned on each 

stimulus pair.  

We generated 1000 such matrices, and fit each with MDS 

using both 1D and 2D settings. The lower panel of Figure 5 

shows the difference in stress values between these two fits 

for each simulated data set (negative values indicate a better 

fit for 2D than 1D). 

 

 
Figure 5. Difference in stress values for between 2D and 1D 

fits of the original data (top panel) and the true 1D data 

(bottom panel) 

  

The upper panel of Figure 5 shows the difference between 

2D and 1D stress values for the fits to our human data. The 

important thing to take from these graphs is that the 

decrease in stress generated by moving from a 1D to a 2D 

fit is about the same for our human data as it is for our 

synthetic data. Since the synthetic data were generated by a 

truly 1D process, this means that the stress values calculated 

for our human data are entirely consistent with a 1D 
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account. This provides further support to the evidence 

provided by the MDS analysis of our own data – that our 

stimuli may vary on only a single dimension. 

Discussion 

The purpose of the current experiment was test line-length 

stimuli commonly used in AI and always assumed to be 

unidimensional (e.g., Dodds et al., submitted; Rouder et al., 

2004; Lacouture & Marley, 1995; Lacouture, 1997). Dodds 

et al. found that contrary to previous research, their 

participants were able to substantially improve their 

performance at the task when given significant practice. 

Although the stimuli used in their experiment varied on only 

one physical dimension, the results were more reminiscent 

of experiments using multiple dimensions, where it is more 

common to find substantial improvement with practice. 

Although the stimuli used in Dodds et al. (submitted) 

varied on only one physical dimension, it is possible that 

they may vary on multiple psychological dimensions. In 

order to examine how many psychological dimensions 

underpin these stimuli, we used two methods; 1) using MDS 

techniques we examined similarity data taken using these 

same stimuli and 2) compared the structure of our data to 

simulated one dimensional data. MDS proximity graphs 

suggested that the stimuli may vary on a single dimension, 

and our simulation study provided further support for this, 

showing that these fits could be consistent with a one 

dimensional data generating process, when noise is added.  

When examining individual proximity graphs taken from 

MDS analysis assuming two dimensions, a C (or U) shaped 

pattern often emerged, which is commonly assumed to 

provide evidence towards a 2D solution (Shepard, 1974). 

While this may be appropriate for a metric MDS analysis, 

the monotonic transformations unique to non-metric MDS 

allow some flexibility in the position of the objects in the 

final proximity graph. Despite this difference required in 

interpretation of metric vs. non-metric proximity graphs, it 

is possible that the two types of proximity graphs generated 

by our data (Figure 4) were genuinely representative of one 

vs. multiple dimensions, and that the action of specifying 

the number of dimensions to examine, forces the model to 

fit, sporadically producing evidence for and against a two 

dimensional solution. In support of a one dimensional 

solution however, our simulated data demonstrate a similar 

structure to our original similarity data, suggesting that the 

stimuli used in Dodds et al. (submitted) vary on only a 

single dimension.  

Therefore it appears that the interpretation of MDS output 

for the number of underlying dimensions in the data is 

difficult. While we were able to gather evidence using a 

variety of techniques to suggest that our data were 

consistent with a single dimension, MDS could not provide 

a definitive answer. Lee (2001) showed that it is possible to 

reliably determine dimensionality from MDS analysis, but 

only when the determination is between larger numbers of 

dimensions. Like us, he found much poorer reliability when 

the choice was between lower numbers of dimensions. 

Hence, the task of choosing between a low number of 

dimensions remains very subjective, and users should take 

care not be misled by “overfitting”, where a complex model 

imitates data from a simpler underlying data generating 

process. Furthermore, in the case of determining 

dimensionality, one should take care not to focus solely on 

quantitative results such as the stress value, but also take 

into consideration the pattern of data in the original 

similarity matrix (such as in Figure 2) or even simply the 

interpretability of results (Shepard, 1974). 

Both the MDS analysis of the similarity data for Dodds et 

al.’s (submitted) lines of varying length and our simulation 

study were consistent with a 1D psychological 

representation. This finding makes it less likely that the 

substantial improvement with practice observed by Rouder 

et al. (2004) and Dodds et al. (submitted) in absolute 

identification of line lengths was due to participants learning 

to take advantage of a multi-dimensional psychological 

representation. This finding may also extend to the other 

stimuli that Dodds et al. employed. Similar learning effects 

to that of lines varying in length suggest that modality, or 

specifically, the number of dimensions that stimuli vary 

within, cannot be the sole cause of the improvement in 

performance.  Hence, investigation of alternative 

explanations for the improvement they observed seems 

warranted.     
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