
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Bounds on the Energy Consumption of Computational Kernels

Permalink
https://escholarship.org/uc/item/4v32d7hh

Author
Gearhart, Andrew Scott

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4v32d7hh
https://escholarship.org
http://www.cdlib.org/

Bounds on the Energy Consumption of Computational Kernels

by

Andrew Scott Gearhart

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Computational Science and Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James W. Demmel, Chair
Professor Katherine A. Yelick

Professor Tarek I. Zohdi

Fall 2014

Bounds on the Energy Consumption of Computational Kernels

Copyright 2014
by

Andrew Scott Gearhart

1

Abstract

Bounds on the Energy Consumption of Computational Kernels

by

Andrew Scott Gearhart

Doctor of Philosophy in Computer Science
and the Designated Emphasis

in
Computational Science and Engineering

University of California, Berkeley

Professor James W. Demmel, Chair

As computing devices evolve with successive technology generations, many machines target
either the mobile or high-performance computing/datacenter environments. In both of these form
factors, energy consumption often represents the limiting factor on hardware and software effi-
ciency. On mobile devices, limitations in battery technology may reduce possible hardware ca-
pability due to a tight energy budget. On the other hand, large machines such as datacenters and
supercomputers have budgets directly related to energy consumption and small improvements in
energy efficiency can significantly reduce operating costs. Such challenges have influenced re-
search upon the impact of applications, operating and runtime systems upon energy consumption.
Until recently, little consideration was given to the potential energy efficiency of algorithms them-
selves.

A dominant idea within the high-performance computing (HPC) community is that applications
can be decomposed into a set of key computational problems, called kernels. Via automatic perfor-
mance tuning and new algorithms for many kernels, researchers have successfully demonstrated
performance improvements on a wide variety of machines. Motivated by the large and increas-
ingly growing dominant cost (in time and energy) of moving data, algorithmic improvements have
been attained by proving lower bounds on the data movement required to solve a computational
problem, and then developing communication-optimal algorithms that attain these bounds.

This thesis extends previous research on communication bounds and computational kernels by
presenting bounds on the energy consumption of a large class of algorithms. These bounds apply
to sequential, distributed parallel and heterogeneous machine models and we detail methods to
further extend these models to larger classes of machines. We argue that the energy consumption of
computational kernels is usually predictable and can be modeled via linear models with a handful
of terms. Thus, these energy models (and the accompanying bounds) may apply to many HPC
applications when used in composition.

2

Given energy bounds, we analyze the implications of such results under additional constraints,
such as an upper bound on runtime, and also suggest directions for future research that may aid
future development of a hardware/software co-tuning process. Further, we present a new model of
energy efficiency, Cityscape, that allows hardware designers to quickly target areas for improve-
ment in hardware attributes. We believe that combining our bounds with other models of energy
consumption may provide a useful method for such co-tuning; i.e. to enable algorithm and hard-
ware architects to develop provably energy-optimal algorithms on customized hardware platforms.

i

Now this is not the end.
It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

- Sir Winston Churchill, 1942

ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Communication Now Dominates Performance Costs 1
1.2 Energy Efficiency at the Algorithm Level . 2
1.3 Thesis Goals and Contributions . 2
1.4 Thesis Organization . 3

2 Energy Consumption and Computing 5
2.1 Power vs. Energy . 6
2.2 Phase-based Execution of Applications . 7
2.3 Key Consumers of Energy on Desktops and Server Nodes 9

Energy Consumption in CMOS Logic . 10
Other Hardware Components . 14

2.4 Network Energy Consumption on Distributed Parallel Machines 15

3 Machine Models for Runtime and Energy 17
3.1 Problems, Algorithms, and Implementations . 17
3.2 Machine Models . 18

Sequential Machine Model (S) . 19
Distributed Parallel Machine Model 1 (DP1) . 21
Model Compositions and Distributed Parallel Model 2 (DP2) 21
Heterogeneous Machine Model (H) . 23

3.3 Problems of Particular Focus . 25
Matrix-vector multiplication . 26
Matrix-matrix Multiplication . 29
O(n2) n-body problem . 35

3.4 Model Validation . 37

iii

Performance Counter Measurement . 37
Measuring Power and Energy . 40
Sequential Model (S) . 40

Fitting the Model via Least Squares . 42
Distributed Parallel Models . 53
Heterogeneous Model . 53

3.5 Parameter Estimation for Machines and Implementations and Related Work 58

4 Bounds on Communication, Runtime and Energy for Specific Algorithms 61
4.1 Communication Lower Bounds for Sequential and Distributed Parallel Machines . 61

Lower Bounds on the DP Models that Include Link Contention 64
4.2 Energy Lower Bounds for Specific Algorithms . 69

O(n3) Classical Matrix Multiplication . 69
Strassen and Strassen-like Matrix Multiplication 72
Matrix-vector multiplication . 74
O(n2) n-body problem . 75

4.3 Bounds on Heterogeneous Machines . 78
Input/Output Dominated Lower Bounds . 80
Loomis-Whitney Dominated Lower Bound . 82

4.4 Optimal Heterogeneous Algorithms . 84
Heterogeneous Matrix-Vector Multiplication . 84
Heterogeneous O(n3) Matrix-Matrix Multiplication 86

5 Bounds on Communication, Runtime and Energy for Programs that Access Arrays 90
5.1 Bounds on Programs that Reference Arrays . 90

Sequential Model . 95
Distributed Parallel Model 1 . 95
Distributed Parallel Model 2 . 96
Heterogeneous Model . 97

Example: Energy Lower Bound for Matrix-matrix Multiplication 98
5.2 Perfect Strong Scaling in the Distributed Machine Model 99

6 Applications of Bounds on Specific Machine Models 105
6.1 Overview . 105
6.2 Example Machines for Analysis . 108
6.3 Classical O(n3) Matrix-matrix Multiplication . 111
6.4 O(n2) n-body problem . 117
6.5 Programs that access arrays with subsets of the iteration variables 122

7 Implications for Hardware Designs 130
7.1 Introduction . 130
7.2 Cityscape Model of Energy Efficiency . 132

iv

7.3 Financial cost/Job (Cjob) . 136
7.4 Further Directions . 141

8 Conclusions 147

Bibliography 150

v

List of Figures

2.1 Tradeoff between minimizing energy or power . 6
2.2 Typical Scientific Code Power Trace . 8
2.3 Power phases of matmul benchmark on Sandy Bridge-EP 8
2.4 Power phases of heterogeneous matmul on Sandy Bridge-EP and Nvidia K20 9
2.5 CMOS inverter with n-type (nMOS) and p-type (pMOS) transistors indicated 11
2.6 Input/Output wattage curves for a Dell DH350E-S0 power supply for 2U servers [1] . . 15

3.1 Relationship between hardware, algorithm and implementation 18
3.2 Serial (S) and Distributed Parallel (DP) machine models 19
3.3 Composition of Sequential (S) and Distributed Parallel (DP) Machine Models 22
3.4 Heterogeneous machine model . 24
3.5 Compressed Sparse Row (CSR) storage format . 28
3.6 Two-dimensional block cyclic distribution of a matrix on a 2-by-2 processor grid . . . 31
3.7 Processor grids for 3D and 2.5D matrix-matrix multiplication [126] 32
3.8 Breadth-First or Depth-First traversals of recursion tree [98] 35
3.9 Data layouts for 1D, 1.5D and 2D n-body algorithms 36
3.10 O(n2) n-body algorithm with and without a cutoff distance 37
3.11 Counting cache misses during array copy on Sandy Bridge-EP 39
3.12 Inaccurate floating point operation counts on Sandy Bridge-EP 39
3.13 Typical wall power sample windows for several sparse matrix-vector multiplication

problems . 41
3.14 Sandy Bridge-EP: Flop/Word ratios for double-precision sparse matrix-vector multi-

plication (DSPMV) . 45
3.15 Sandy Bridge-EP: Modeled (no row scaling) double-precision matrix-matrix multipli-

cation (DGEMM) . 49
3.16 Sandy Bridge-EP: Modeled (no row scaling) double-precision dense matrix-vector

multiplication (DGEMV) . 50
3.17 Sandy Bridge-EP: Modeled (no row scaling) double-precision sparse matrix-vector

multiplication (DSPMV) . 51
3.18 Heterogeneous machine for validation . 53
3.19 Runtime impact of scaling either Host or GPU SGEMM size 54
3.20 Runtime impact of scaling either Host or GPU SGEMV size 56

vi

4.1 Communication bounds for Strassen’s algorithm on d-dimensional tori. The lower plot
is log-log, while the upper is linear on the y-axis. Horizontal lines in the lower plot
correspond to perfect strong scaling. 67

4.2 Example of heterogeneous matrix-vector data partitioning with 4 processors 85
4.3 Heterogeneous matrix-matrix computation example execution on 4 processors 89

5.1 Relationship between the per-processor and contention communication lower bounds,
with labels on each region indicating lower bound dominance. F and M are constants. 93

6.1 Energy costs as node count and memory are scaled 106
6.2 Effect of constraints on energy efficiency . 107
6.3 2.5D O(n3) Matrix-matrix Multiplication: Effect of replicating memory on energy

efficiency . 117
6.4 CA O(n2) n-body: Effect of replicating memory on energy efficiency 123
6.5 3-Body Problem: Effect of replicating memory on energy efficiency 129

7.1 Example Cityscape Model for O(n3) Matrix-matrix multiplication 135
7.2 Cjob with various parameter sets for Algorithm 11 . 142
7.3 Sequential Machine with 3 levels of fast memory . 143

vii

List of Tables

3.1 Computational motifs as described in [9] . 26
3.2 Measuring Data Movement on Sandy Bridge-EP . 38
3.3 Sandy Bridge-EP: Arithmetic intensity (flop/word) for naive matrix-matrix multiplication 44
3.4 Sandy Bridge-EP: Average runtime and energy % error (no row scaling) 46
3.5 Xeon 7560: Average runtime and energy % error (no row scaling) 46
3.6 Sandy Bridge-EP: Average runtime and energy % error (1/F row scaling) 46
3.7 Sandy Bridge-EP: Fitted sequential machine parameters without row scaling 47
3.8 Sandy Bridge-EP: Modeled vs. Measured Runtime Throughputs 47
3.9 Xeon 7560: Fitted sequential machine parameters without row scaling 48
3.10 Xeon 7560: Modeled vs. Measured Runtime Throughputs 48
3.11 Sandy Bridge-EP: Average runtime and energy % error when non-dominant terms are

dropped from model (with row scaling) . 52
3.12 Sandy Bridge-EP: Fitted sequential machine parameters when non-dominant terms are

dropped from model (with row scaling) . 52
3.13 Sandy Bridge-EP: Modeled vs. measured runtime throughputs when non-dominant

terms are dropped from model (with row scaling) . 52
3.14 Fitted heterogeneous machine parameters without row scaling 57

4.1 Per-processor bounds (WDP) ([84, 15, 21, 20, 61]) vs. the new contention bounds
(W link

DP) on a d-dimensional torus for classical linear algebra, fast matrix multiplication,
and the O(n2) n-body problem. 66

4.2 Torus dimensions so that communication cost is either always contention bound (d ≤
D1) or never contention bound (d ≥ D2) for a selection of matrix multiplication al-
gorithms. The assertions regarding the last three algorithms are under some technical
assumptions / conjecture, see [20]. 68

5.1 Per-processor bounds (WHBL
DP) ([45]) vs. the new contention bounds (W linkHBL

DP) on a
d-dimensional torus for programs that reference arrays. 92

6.1 Description of Xeon 2650-based and future distributed parallel machines 109
6.2 Parameters derived from machine descriptions . 110

7.1 Intel Xeon-based distributed parallel baseline machine 133

viii

7.2 Energy efficiency terms for several problems (all are measured in the same units,
namely joules/flop) . 134

7.3 Additional model values . 138
7.4 Processor parameters . 138
7.5 Network adaptor and cable parameters . 139
7.6 DRAM parameters . 140
7.7 Parameters for minimal Cjob . 141

ix

Acknowledgments

Thanks to my advisor, Jim Demmel, for his support and mentorship over the past six years. Jim’s
experience and creativity have been extremely helpful in the development of my own research
process and I look forward to his continued insight into mathematical problems in the years to
come. Also thanks to my co-adviser, Tarek Zohdi. Tarek has been an excellent technical reference,
as well as a point of stability and perspective regarding the graduate school experience. Example:
“Thesis? Once you have a topic, just start writing something up...the process of producing tends to
fill in the rest”. Without Tarek’s support, I would have probably gone a bit squirrely several years
ago. Thanks Jim and Tarek!

Many thanks to Grey Ballard and Oded Schwartz for their insight and support on several
projects. Both Grey and Oded are brilliant, patient researchers and always willing to carefully
walk through a technical challenge. I wish them the best of luck in their burgeoning academic ca-
reers, and I’m excited to hear of great things from their continuing research. Thanks also to other
Parlab/ASPIRE students that have been extremely helpful: Michael Anderson, Vasily Volkov, Ben-
jamin Lipshitz, among many others.

I’d also like to extend my thanks to Kathy Yelick and Sam Williams of UC Berkeley and
Lawrence Berkeley National Laboratory for their technical insight and support. Kathy is an amaz-
ing resource regarding the state of high-performance computing technology and I’ve yet to find a
computer architecture that Sam is unable to tune. Also thanks to Harsha Simhadri for his insight
into different theoretical approaches to modeling machine communication.

As this thesis has required a bit of hardware knowledge, I’d like to thank David Sheffield,
Yunsup Lee, Andrew Waterman, Scott Beamer, Brian Zimmer and Ben Keller for putting up with
my novice questions regarding various architectural and device-level concepts. David, Brian and
Ben have also been willing to spend a significant amount of time making my life a bit easier, from
tweaking build infrastructures to soldering leads.

I’ve been continually amazed by the quality of the support staff in the UC Berkeley EECS de-
partment and Parlab/ASPIRE. Kostadin Ilov has spent many hours moving, rebooting, reinstalling
and hacking various machines on my behalf, all with a joke and a smile. Thanks also to Roxana
Infante and Tamille Johnson for tirelessly handling my various “crises”: from ordering parts, to
missing registration deadlines, to supplying Advil. The CS graduate student advisors, La Shana
Porlaris and Xuan Quach, also deserve thanks for their support in wading through the morass of
paperwork required to update schedules, add a designated emphasis, or change a grade.

My friends at Intel Corporation have been exceptional resources and mentors as I’ve developed
as a student and researcher. Special thanks to Mark Rowland and Gans Srinivasa for their men-
torship, Ian Steiner for his prowess of all things IA and Hugh Caffey for his insight into Intel’s
performance counter infrastructure. Also, thanks to the other Intel employees that helped make my
two summers interning in Hillsboro productive and insightful.

Thanks to my parents, sister Rachel, and other family members that have supported me through-
out classes, exams, prelims, quals, etc. Special thanks to my boyfriend, Jade Donigan, for also
putting up with my regular neurotic moments over the last several years. Finally, thanks to all the

x

friends and colleagues that have provided support and wisdom over the years. I’m flattered and
humbled to have had the chance to interact with such amazing people during my time at Berkeley.

Research partially funded by DARPA Award Number HR0011-12-2-0016, the Center for Fu-
ture Architecture Research, a member of STARnet, a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA, and ASPIRE Lab industrial sponsors and affiliates Intel,
Google, Nokia, NVIDIA, Oracle, and Samsung. Any opinions, findings, conclusions, or recom-
mendations in this paper are solely those of the authors and does not necessarily reflect the position
or the policy of the sponsors.

1

Chapter 1

Introduction

1.1 Communication Now Dominates Performance Costs
Historically, algorithm developers have focused on asymptotically minimizing the number of float-
ing point operations (flops) required to execute a computational problem. If floating point costs
dominate the computation, this is a viable approach to increase performance. However, many cur-
rent computational kernels only attain a small fraction of the peak floating point capability of the
machine and are constrained by the bandwidth and latency characteristics of the memory subsys-
tem [9]. We refer to the traffic between levels of the memory hierarchy as communication, and note
that reducing communication traffic allows for an algorithm to potentially attain a higher fraction
of the machine’s peak floating point rate (see the Roofline model [148] for more details). Unfor-
tunately, the performance gap between off-chip communication bandwidth and latency currently
exceeds the cost of a floating point operation by an order of magnitude or more, and the disparity
is increasing with time [121]. This communication bottleneck exists across the entire spectrum of
computing, from datacenters to embedded devices, and suggests a need for new classes of algo-
rithms that focus on minimizing communication costs (which may also include synchronizations
in parallel codes), as opposed to floating point operations.

Indeed, a rapidly-evolving field of algorithm research addresses the problem of communication
costs. Prior to the development of optimal algorithms, attainable lower bounds on the amount of
communication required to solve a computational problem must be considered. Starting with foun-
dational work by Hong, Kung and others, there are known lower bounds on the amount of com-
munication required for specific algorithms [86, 84]. More recently, Ballard et al.[15] presented
generalized communication lower bounds for many problems in dense and sparse linear algebra
(as well as a few graph problems). These communication lower bounds were then expanded to
Strassen and Strassen-like algorithms [20, 98] as well as an even larger class of problems [45]
via a generalization of the argument presented within [15]. From these lower bounds, it was dis-
covered that many existing algorithms were not communication-optimal and many new optimal
algorithms were created. For example, new communication-optimal algorithms have been devel-
oped for matrix-matrix multiplication [126], LU [126], QR [15] and Cholesky [14] factorizations,

CHAPTER 1. INTRODUCTION 2

matrix-powers computations [76, 111], tensor contractions [127] and the O(n2) n-body problem
[61], among others. This communication optimality may come at the cost of additional flops, as in
the case of certain Krylov subspace computations [76], or via the use of additional memory as in
2.5D matrix-matrix multiplication [126]. Implementations of many of these algorithms have been
able to attain speedups on various machines. An introduction and overview of these results for
linear algebra can be found in [13].

1.2 Energy Efficiency at the Algorithm Level
While the bandwidth and latency constraints may result in decreased floating point throughput
(measured in Gflop/s), off-socket communication also costs a significant amount of energy relative
to the energy cost of a floating point operation. Akin to the runtime gap between flops and com-
munication, the energy gap between performing a floating point operation and moving a word of
memory off-socket is at least an order of magnitude [43]. This issue has been addressed by device
engineers and hardware architects extensively (see [89] for a review of architectural techniques
to reduce energy consumption), but until recently has not received significant interest from the
algorithm and application development community. Previous research into energy-efficient algo-
rithms was mostly focused on maximizing battery life within distributed sensor networks [153,
42, 154]. More recently, researchers have begun efforts to extend the throughput roofline model of
[148] to energy [44] and develop benchmarks to characterize the energy/operations characteristics
of machines running various workloads [43, 28, 91]. Additional research has attempted to develop
approaches to co-tuning new hardware and software implementations for increased efficiency [110,
49, 136, 119], and such research is gaining traction in both industry and government.

1.3 Thesis Goals and Contributions
This thesis adds to the growing body of work on energy efficiency by considering the impact
of algorithmic changes to runtime and energy consumption. This is accomplished by combining
communication bounds with models of machine behavior to construct lower bounds on the runtime
and energy required to compute a problem of a given size. Such lower bounds are then used to
analyze the impact of improvements in processor hardware parameters and the amount of extra
memory utilized by certain algorithms. We also present new communication lower bounds for
a heterogeneous machine model, and also describe communication-optimal algorithms for dense
matrix-matrix and matrix-vector multiplication within heterogeneous processors.

In this thesis, we explicitly focus on desktop and server platforms, as these are easier to measure
with low-cost equipment and often have relatively homogeneous hardware designs when compared
to handheld and embedded devices. Also, these classes of machines tend to have a relatively
small and consistent set of key energy-consuming components and lend themselves to theoretical
analysis. We will argue that on the timescale of seconds, the runtime and energy characteristics
of these classes of machines can be reasonably described via simple linear models that consider

CHAPTER 1. INTRODUCTION 3

processor, memory and static costs. Furthermore, we argue that most scientific applications can
be decomposed into regions of constant arithmetic intensity and power that correspond to the
execution of computational kernels. While not within the scope this this document, we believe
that this approach is applicable to other classes of machines, such as mobile devices, with different
model constructions.

The key contributions of this thesis are as follows:

• We present empirical evidence that at the application level and within a given level of the
memory hierarchy, the energy consumption of computational kernels is predicable with lin-
ear models that comprise a handful of terms (Chapter 3).

• Via such models, we present non-trivial lower bounds on the runtime and energy required
to execute algorithms on sequential and distributed parallel machine models. These bounds
build upon recent developments in communication lower bounds and communication-optimal
algorithms. In particular, we focus upon the problems of dense classical O(n3) and Strassen
matrix-matrix multiplication, dense and sparse matrix-vector multiplication, and the O(n2)
n-body problem (Chapter 4).

• We present runtime and energy bounds on a model of heterogeneous processing, as well as
new algorithms for heterogeneous dense matrix-matrix and matrix-vector multiplication that
have energy and runtime costs that are provably optimal (Chapter 4).

• We extend energy bounds for individual algorithms to a large class of programs that access
arrays via affine expressions of the iteration variables (Chapter 5).

• We describe an algorithm that is provably optimal for a subset of such problems on dis-
tributed parallel machines, and show that a region of perfect strong scaling with constant
energy exists as the algorithm utilized additional memory to reduce communication volume
(Chapter 5).

• We use these bounds to explore the potential runtime and energy efficiency tradeoffs that
occur by using additional memory to reduce communication in the presence of various con-
straints, such as runtime or energy limits (Chapter 6).

• Via our new Cityscape model, we propose a method to generate constraints on hardware
parameters so as to attain a target level of energy efficiency for a large class of algorithms
(Chapter 7).

• We show that energy and runtime bounds can be used to approximate the financial cost per
job, and also optimize machine hardware according to that metric (Chapter 7).

1.4 Thesis Organization
The content of this thesis is divided into a number of chapters. In Chapter 2, we provide an
overview of power and energy consumption on modern desktop and server platforms, and argue

CHAPTER 1. INTRODUCTION 4

that the energy consumption of such machines is due to the activity of a small number of key
hardware components. We also argue that certain characteristics of many scientific applications
aid an attempt to model energy consumption and runtime via linear models to a level of granularity
sufficient for algorithm developers.

Chapter 3 describes the computational problems specifically targeted for analysis within this
work, and also presents models for the runtime and energy of sequential, distributed parallel, and
heterogeneous machines. Chapter 3 then describes the use of performance counters to measure
memory traffic and includes evidence that linear models for runtime and energy are adequate for
algorithm and hardware developers to gain a high-level idea of the runtime and energy efficiency of
an algorithm. Chapter 4 presents energy bounds for specific algorithms on sequential, distributed
parallel, and heterogeneous classes of machines, and Chapter 5 extends these algorithm-specific
results to generalized energy bounds on a much larger class of computational problems. Chapter 5
also shows that a communication-optimal algorithm for a subset of this larger class of problems is
able to halve runtime by doubling the number of processors on a fixed problem size. This perfect
strong scaling in runtime is attained with constant energy by utilizing additional memory to offset
communication volume.

In Chapter 6, we apply the energy and runtime bounds of Chapters 4 and 5 to a set of questions
that are potentially useful to algorithm developers. In particular, we demonstrate how the use of
additional memory to offset communication affects energy efficiency in the presence of various
constraints on total runtime and energy, among others. Chapter 7 extends this concept by describ-
ing ranges of hardware parameters that attain a target level of energy efficiency or the optimal
financial cost per job. Finally, in Chapter 8 we conclude and discuss directions for potential future
research. Code, data and analysis for the results presented within this dissertation can be found at
https://github.com/agearh/dissertation.git.

5

Chapter 2

Energy Consumption and Computing

As mentioned previously, this document utilizes machine models to bound the amount of energy
consumed during the execution of an algorithm. These bounds are then used to provide insights
into algorithm performance and future hardware design. To assist in doing this, we make four
assumptions about the behavior of scientific applications, which will be justified via a combination
of original and existing research:

• Assumption 1: Scientific applications can be divided into regions of execution that corre-
spond to key computational kernels of the application. We refer to these regions of execution
as phases in this document.

• Assumption 2: At the timescale of seconds, power consumption is relatively constant during
execution of a phase.

• Assumption 3: The primary energy consumers on desktop and server nodes are processor
execution units, static random-access memory (SRAM) caches and dynamic random-access
memory (DRAM) when considering problem sizes that fit within main memory.

• Assumption 4: When discussing distributed machines, the energy of current internode net-
works may not scale with utilization and is thus another static term. We will derive a second
distributed parallel machine model to reflect this situation in Chapter 3.

In this chapter, we argue for the applicability of these assumptions to many scientific applica-
tions by both citing previous research and presenting our own evidence. We begin by discussing
tradeoffs between power and energy (Section 2.1) and then argue that many scientific applications
demonstrate phase-based power behavior that corresponds to the execution of computational ker-
nels (Section 2.2). Finally, we discuss key consumers of energy on desktops and server nodes
(Section 2.3) as well as distributed parallel machines (Section 2.4).

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 6

Figure 2.1: Tradeoff between minimizing energy or power

2.1 Power vs. Energy
Before discussing the assumptions presented earlier, a brief discussion of the relationship between
power and energy is warranted. First and perhaps foremost in this discussion, digital circuits can
be considered as devices that convert electrical energy into an application-specific output with
some loss which is represented as dissipated heat. The issues of reducing energy consumption and
power within computing devices are clearly linked as energy is the integral of power with respect
to time, often represented simply as E = HT where H is the average power over the time period
T . In this document, we primarily limit our discussion (unless otherwise noted) to the problem
of minimizing overall energy consumption during the execution of an algorithm. This is a useful
problem for both handheld devices as well as datacenters, where the goals are to extend battery life
and reduce operating costs, respectively. As a common example, the most energy-efficient means
of computation may be to use a large amount of power to finish quickly and go to idle. Such an idea
is called “race-to-halt”, and will be discussed in greater detail later in this document. On the other
hand, minimizing power consumption may involve solving the same problem at the slowest rate
possible. In this situation, the power is minimized while the overall energy required to complete
the computation may be suboptimal. Figure 2.1 illustrates this situation as two runs of the same
problem at different processor performance settings. Note that in Figure 2.1, the first run of the
algorithm consumes 10J of energy and 5W of power for two seconds. The other run (perhaps at
a lower clock frequency and processor voltage) consumes 12J of energy and 3W of power over
four seconds. From the standpoint of minimizing energy, the first run is superior as the workload-
dependent energy consumption (the dynamic energy) dominates the workload-independent energy
consumption (static energy). We will expand upon the concepts of static and dynamic energy later
in this chapter, and will use this distinction to define models of energy in Chapter 3.

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 7

2.2 Phase-based Execution of Applications
In this thesis, we assume that most scientific applications are composed of a set of key compu-
tational kernels that are required for the problem to be solved in a specific order along a critical
path. Each kernel may then be optimized independently of the other kernels in the application.
This application structure roughly corresponds to the Bulk-Synchronous Parallel (BSP) model of
parallel execution first proposed by Valiant [139], but is more general as no assumptions are made
about hardware or synchronization between phases. We believe that by improving the efficiency
(both in throughput and energy) of a small set of application kernels, such benefits can be applied
to a large number of scientific codes. This view of scientific computing echoes the conclusions
of the Berkeley View on Parallelism [9] which surveyed a large number of scientific application
domains.

This work focuses on the energy and runtime costs of application kernels that execute at time
scales that range from tenths of a second to minutes. At this coarse level of granularity (many
thousands of clock cycles), we are not concerned with the ability to estimate or measure power
to an extremely high level of fidelity (unlike chip designers or architects). At this time scale, we
observe that many applications demonstrate phase-based power consumption behavior. By this,
we mean that the power for an algorithm tends to stay relatively constant during different portions
of its execution timeline and note that power phases typically occur during the execution of a
kernel within the application. In Figure 2.2, we depict the wall power1 trace of a machine running a
generic application with three phases of execution. Note that Figure 2.2 shows a common, constant
level of static power that does not depend on application behavior. The red portions of the figure
depict the dynamic energy of the algorithm in three phases, each of which represents a region of
constant wall power during its runtime. Later in this chapter, we will also show evidence that the
key consumers of energy on desktops and server nodes are processor execution units, caches, and
main memory. In Chapter 3 we will present empirical evidence suggesting that multiplying this
phase-constant power by the runtime of a phase is an accurate way of approximating the energy
consumption of a kernel for many applications.

To support the diagram of a generic wall power trace shown in Figure 2.2, we recorded the
power of a dual-socket Sandy Bridge-EP server running a benchmark that allocates and initializes
three square matrices prior to running the parallel double-precision dense matrix-matrix multipli-
cation (DGEMM) implementation found in Intel’s Math Kernel Library (MKL) version 11.1. This
wall power trace is shown in Figure 2.3 and has a time axis that ranges to approximately 330 sec-
onds. In the power trace, we see the benchmark executed twice for different matrix sizes selected to
fit within the machine’s main memory (thus, little disk access occurs and the problems are unable
to fit within last level cache). To correlate phase and kernel behavior, we annotated the initializa-
tion and computation phases of the benchmarks with timestamps that were then aligned with the
sample times from a meter that measures wall power. For clarity, the Linux sleep command was
used to impose 10 second intervals between the execution of each of the different-sizes problems.

In Figure 2.3, we note that the current static power of the machine is approximately 140W and
1Wall power is the total power consumed by the machine, including power supply inefficiency.

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 8

Figure 2.2: Typical Scientific Code Power Trace

(a) Wall power for two runs of DGEMM benchmark (b) Wall power with phase annotations

Figure 2.3: Power phases of matmul benchmark on Sandy Bridge-EP

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 9

(a) Wall power for a run of heterogenous SGEMM
benchmark

(b) Wall power with phase annotations

Figure 2.4: Power phases of heterogeneous matmul on Sandy Bridge-EP and Nvidia K20

that the machine while running sleep consumes approximately 150W. Between these idle periods,
four power phases can be clearly seen: 3 of an identical length between approximately 210-220W,
and one phase between approximately 290-300W. Via the timestamps, we observe that these four
power phases correspond exactly to the three parallel initialization phases of the benchmark fol-
lowed by the actual matrix-matrix multiplication operation itself. This result supports the structure
of the generic wall power trace in Figure 2.2. Further, we also note that power appears to be
relatively constant across problem sizes within a given level of memory.

This concept of power phases can be extended further when multiple heterogeneous devices are
executing during an application run. In Figure 2.4, we see an example of an annotated wall trace
of a benchmark that performs single-precision dense matrix-matrix multiplications (SGEMMs) on
both a host machine (CPU) and a graphics processing unit (GPU). This wall power trace was gener-
ated by running Algorithm 7 of Section 3.4 with gpuInner = 50, gpuOuter = 5, hostInner = 2
and square problem sizes of ncpu = 19000 on the host and ngnu = 6400 on the GPU. Note that
with two devices executing, the constant power phase of the GPU overlaps with the power phase
of the host/CPU. In Chapter 3, we discuss the implications for modeling energy consumption with
multiple devices.

2.3 Key Consumers of Energy on Desktops and Server Nodes
As mentioned earlier in the chapter, we argue that the key hardware components that dominate
dynamic energy consumption on desktops and servers are:

• Processor execution units (eg. floating point units, branch predictors, or reorder buffers)

• Static random-access memory (SRAM)

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 10

• Dynamic random-access memory (DRAM)

The dominance of these few components is supported by research that directly instruments hard-
ware components for power, and then considers energy consumption while running benchmarks.
Other researchers have devoted significant effort toward direct measurement of desktop and server
components via specialized instrumentation devices, in particular PowerPack [66] and PowerMon
[26]. Both projects involve inserting current sense resistors (CSRs) into wires between the power
supply and machine devices to measure current (and thus power, as wires are of a known voltage
and power = current ∗ voltage). Thus, PowerPack and PowerMon avoid measurement of power
supply losses while creating the new problem of differentiating component power from various
supply wires (e.g. the ATX power supply specification defines a 20-wire input from the power
supply to motherboard on desktop machines [10]). Both PowerPack and PowerMon address this
issue via a set of benchmarks that attempt to isolate component power. PowerPack, originating
from Virginia Tech, uses a commodity National Instruments data acquisition (NI-DAQ) device
to measure voltage drops across sense resistors. This device has the advantage of being widely
available with a stable software stack, but has a high per-unit cost. To address this limitation, the
PowerMon project utilizes a custom monitoring breadboard to collect data samples. The design
for this board is freely available, and it was designed to allow for cheap instrumentation of dis-
tributed systems. PowerPack [66] and PowerMon [26] both argue for the dominance of processor
and DRAM energies on desktop and server nodes, and this is further supported by the data reported
in studies that use PowerPack [101, 145, 103] for related research. The dominance of processors
and main memory (DRAM) over components such as disks is also argued by Brown and Reams
[37]. The authors of [27] take this argument further, and argue for an increasing fraction of total
distributed machine energy consumed by node DRAM with successive reductions in device feature
sizes.

Processor execution units, SRAMs and DRAMs each share a common underlying technology,
that of complementary metal-oxide semiconductor (CMOS) logic. We have argued that research
supports the dominance of these components with regard to dynamic energy, but also acknowledge
that the static power of other machine components (such as power supply inefficiency, mother-
boards, and hard drives) may contribute a large portion of overall static energy consumption. We
consider these devices later in this chapter. In the next section, we discuss dominant sources of
energy consumption in CMOS and provide references for readers interested in further details.

Energy Consumption in CMOS Logic
Manufacturers utilize CMOS technology to implement digital circuits due to additional noise re-
sistance and reduced energy consumption over other logic classes such as N-type metal-oxide-
semiconductor (NMOS) or Transistor-transistor logic (TTL) (see classic text by Glasser and Dub-
berpuhl [68] for more details). CMOS utilizes paired p-type and n-type MOS transistors (pMOS
and nMOS transistors, respectively) in a manner such that current does not flow from supply (Vdd)
to ground (Vss) once the output signal has stabilized. pMOS and nMOS transistors are both exam-
ples of field effect transistors (FETs), and as such can be considered to have 4 terminals: source,

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 11

Figure 2.5: CMOS inverter with n-type (nMOS) and p-type (pMOS) transistors indicated

drain, gate and body. In this discussion, we ignore the body terminal as it is typically connected to
the source.

In pMOS transistors, current flows from source to drain when there is a negative potential
difference between gate and source. Inversely, current flows within nMOS transistors when there
exists a positive potential difference between source and drain. Charge begins to flow from source
to drain once the potential difference reaches a specific threshold voltage (Vth). CMOS logic builds
logical gates, which implement simple binary functions from paired nMOS and pMOS transistors.
As a simple example of a common CMOS gate, an inverter circuit is shown in Figure 2.5.

Figure 2.5 shows an nMOS and a pMOS transistor. When the input signal is HIGH, the pMOS
is OFF and the nMOS is ON. This allows the nMOS transistor to pull down the output signal
toward Vss. On the other hand, if the input signal is LOW, the nMOS is OFF and the pMOS pulls
the output up toward Vdd.

The energy consumption of CMOS circuits, Elogic, can be defined as the summation of three
classes of terms: dynamic gate energy, static gate leakage, and interconnect energy. Dynamically,
Elogic is composed of two terms: the switching energy Eswitch and the short energy Eshort. Static
energy consumption can be approximated via a single term: leakage, or Eleak, and we express
interconnect energies as a single term (Ewire). We express Elogic as the sum of these terms in
Equation (2.1).

Elogic = Eswitch + Eshort + Eleak + Ewire (2.1)

Dynamic Transistor Energy (Eswitch + Eshort) Because transistors can be regarded as parallel-
plate capacitors, a state transition charges or discharges electrical energy. This process is one of
the key components of energy consumption within CMOS circuits, and is represented by Eswitch
in Equation 2.1. Due to its relationship with capacitor charge/discharge cycles, Eswitch can be
represented via a capacitance expression

Eswitch =

Ng∑
i=1

niciV
2
dd (2.2)

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 12

whereNg is the number of gates, ni is the number of times gate i toggles during computation, ci and
Vdd describe the capacitance of gate i and the circuit supply voltage, respectively [69]. Note that
this discussion treats gates in the same manner as transistors. We do this as gates are collections
of transistors, and at a coarse level are larger capacitors themselves. From Equation (2.2), we see
that reducing Vdd has a quadratic impact upon energy consumption. Furthermore, capacitance ci is
proportional to the size of the gate and can be represented by

ci = ĉiWiLi (2.3)

where ĉi is the capacitance/area of the gate oxide, Wi is the gate width and Li is the gate length.
In addition to Eswitch, dynamic energy in CMOS logic is also consumed by the momentary

connection between Vss and Vdd as the paired nMOS and pMOS transistors shift between states.
This is called the short-circuit current, and is represented by Eshort in Equation 2.1. According to
Veendrick [141], Eshort can be minimized (to ≤ 20% of Elogic) by matching input and output rise
and fall times. Further, as noted in [114], decreasing the ratio of Vth to Vdd can also result in a 20%
contribution of Eshort to Elogic. As Eshort does not directly impact the following analysis and is
primarily of concern to logic designers, we do not discuss its contribution further.

Leakage Energy (Eleak) The static power dissipation, or leakage, of CMOS gates is represented
by the Eleak term of Equation 2.1. While Eleak can be partitioned into at least eight different
components [90], we will be primarily concerned with sub-threshold leakage (or weak inversion
leakage). Sub-threshold currents often dominate amongst leakage components [90, 113]. There-
fore, in this work the term ”leakage” refers to the sub-threshold component of the overall leakage
current of a device. For a more detailed analyses of leakage, we refer readers to [113] and [117].

In an ideal world, the dynamic switching component (Eswitch) of a CMOS circuit would be
the only consumer of energy. For many years, reductions in Vdd were combined with feature size
reductions to maintain a relatively constant power density and increased clock frequency (which
translates to greater potential instruction throughout). Called “Dennard Scaling” after Robert Den-
nard’s observation in 1974 [57], this practice is no longer utilized as reductions in Vdd require
corresponding reductions in Vth to maintain clock frequency increases via reductions in circuit de-
lay[69]. To see how this has become problematic, we must first define the sub-threshold current,
Ileak. According to Helms, Schmidt and Nebel [72], this current is

Ileak = KV 2
th(W/L)e(Vgs−Vth/(nVT)(1− e−Vds/VT)

where n and K are technology parameters, W and L and the width and length of the gate, Vds
is the drain-source voltage and Vgs is the gate-source voltage. VT is the thermal voltage, which
is proportional to temperature. Note that due to the exponential relationship between threshold
voltage and leakage current, a small decrease in Vth results in large increase in Ileak. It is this
relationship that has effectively eliminated Dennard scaling, and contributed to the development
of multicore processors that substitute increases in clock frequency with parallelism, essentially
pushing the onus of performance onto algorithm, software and compiler engineers.

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 13

At the level of an entire CMOS circuit, the total leakage energy Eleak is the sum of each gate’s
leakage energy

Eleak =

Ng∑
i=1

IleakiVddTc

where Ileaki is the leakage current of gate i and Tc is the cycle time. In the energy models we
define in Chapter 3, Eleak is merged into a single term with other static energy sources, such as
disks. More-detailed models could be used to explicitly expose this term for analysis (see Section
7.4 for ideas on how to construct such models).

Interconnect Energy (Ewire) Similar to gate energy, interconnects consume energy via two com-
ponents: switching energies and leakage. That is,

Ewire = EwireSwitch + EwireLeak.

The expression for switching energy of wires, EwireSwitch, can be represented as a capacitance
expression in an analogous manner to Eswitch. Like Eswitch, EwireSwitch is proportional to wire size
and and quadratically dependent on voltage. On the other hand, wire static losses are inversely
proportional to wire size as EwireLeak is dominated by resistance losses.

In CMOS circuits, pMOS and nMOS transistors are connected to form gates, gates are con-
nected to form circuit blocks, and blocks are connected to build larger components, such as floating
point units, or caches. These larger components are then linked to build processors and systems.
As blocks are combined into larger components and structures, interconnect lengths increase, but
the overall number of such wires decreases. The relationship between wire length and frequency
can be approximated via the power-law relation described by Rent’s rule [95] and the work of
Donath [59, 60]. Furthermore, Sylvestor and Keutzer [135] observed that interconnects occur in
two classes: local wires that scale with technology generations, and global wires that do not. This
relationship between wire and technology scaling was further described in the seminal work by
Ho, Mai and Horowitz [75]. Local wires can be modeled effectively via Rent’s rule, but global
interconnects may use different approaches that are dependent on implementation [100]. Global
wires (typically clock trees or buses) present a timing bottleneck (as delay increases quadratically
with wire length), which can be mitigated via such techniques as larger wires or the use of inverter
chains as repeaters, but such techniques trade delay for increased dynamic and static wire energy
consumption [8].

As they do not scale with process technology, global interconnects represent a significant and
probably increasing fraction of system energy. Nir et al.[105] note that processor interconnect
power is approximately 50% of total dynamic power, with this half split evenly between local and
global wires on a testbed processor. In 2002, Basu et al.[25] observed that the off-chip bus of an
embedded processor consumed 9.8-23.2% of system power, and argue that energy could be saved
via fewer wire activations and then reducing the number of bit transitions within these active wires.
This idea of energy-efficient global wire behavior has been further explored for both on-chip [99]
and off-chip [134, 133] interconnects. Much of the existing work to reduce the time and energy

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 14

costs of long wires has been focused at the level of hardware design and architecture. While this
approach is certainly insightful, it begs the question of any communication reduction to be gained at
the algorithm and application level. As we will discuss in Chapter 3, the development of algorithms
that perform a provably minimal amount of communication has resulted in runtime improvements
on both shared and distributed-memory machines (see [13] for a survey). We hypothesize that
such algorithms also reduce energy consumption, but the verification of this conjecture remains
the subject of ongoing and future research. In Chapter 3, we will define energy models that include
the energy and runtime cost of data movement as a combination of wire and memory energies.

Other Hardware Components
In the previous sections, we argued that the dynamic energy on modern server and desktop plat-
forms is predominately consumed by processor packages, SRAMs (primarily caches) and DRAM
and discussed the primary sources of energy consumption in CMOS logic. We here cite previ-
ous work arguing that other hardware components (such as storage drives, motherboards, fans and
power supplies) represent either static or negligible dynamic contributions to total system energy
consumption.

Inefficiencies in power supplies for servers and desktops can represent a reasonable portion of
the wall energy consumption, typically from 5-20% percent depending on the efficiency rating of
the supply and the machine load. Higher efficiency is typically correlated with an intermediate
level of load, with the largest amount of energy loss occurring at high or low machine loads.
For example, the input/output wattage curves for a Dell server power supply are shown in Figure
2.6. This power supply attains an average efficiency of 87.38% across all loads, with a visible
inflection point at around 50% load [1]. As our power measurements are taken at the wall, power
supply losses are included in results. We do not regard this as a significant problem, as we focus
on modeling specific implementations of algorithms for a given computational problem; i.e. the
arithmetic intensity (and thus the power supply load) is nearly constant between runs in a given
level of memory (also fixed for our models). Thus, power supply losses can be regarded as a
portion of static energy consumption.

Both the PowerMon and PowerPack research teams report motherboard and network interface
card (NIC) power to be constant across a series of benchmarks. It is not known if these analyses
only involved NICs integrated into the motherboard, but this conclusion is supported by the results
of Sohan et al. [124]. Furthermore, both the PowerMon and PowerPack teams reported hard drive
power to be negligible (< 10W). With PowerMon, these results held even for benchmarks designed
to target NICs and disks. These results for disks contradict older results by Carrera, Pinheiro
and Bianchini [39], who note that arrays of disks on certain types of servers (web and proxy, in
particular) can represent a significant fraction of overall node energy consumption if using high-
performance SCSI disks. NAND-based flash memory disks (SSDs) consume even smaller amounts
of power than hard disks [118]. To mitigate any potential problems with storage drive and NIC
energies, our experiments for sequential and heterogeneous machines perform no network accesses
and are sized to be DRAM-resident.

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 15

Figure 2.6: Input/Output wattage curves for a Dell DH350E-S0 power supply for 2U servers [1]

The PowerPack results also observe fan power to be constant across applications. This supports
our informal observations on a 1U server of low fan idle power and relatively small increases in
wall power over long, intensive benchmark runs (i.e. fans do not appear to consume a large amount
of power even on a high-temperature machine). We assume that the machines being modeled do
not have any other significant sources of energy consumption, such as a graphics processing unit
(GPU) attached to the PCIe bus, unless otherwise noted.

2.4 Network Energy Consumption on Distributed Parallel
Machines

Despite the problem of energy and power constraints on distributed supercomputers and datacen-
ters performance, measurement equipment for such machines has yet to catch up with demand,
making direct node or component-based measurement of distributed machines extremely difficult.
Kamil, Shalf and Strohmaier [88] observed this difficulty in 2008, and were forced to use data
from power distribution units (PDUs) to measure entire system power without further specificity.
They note, however, that Cray systems have management features that allow access to power con-
sumption information at the rack level. Unfortunately, unless the user has access to dedicated racks
(difficult on large, job-scheduled systems), this information is of limited utility.

More recent attempts toward instrumentation of distributed machines appear to be focused
on node-level instrumentation, such as the custom monitoring equipment of the PowerMon project
[26] or use of integrated firmware energy models such as Intel’s power meter for monitoring socket
and DRAM energies [47]. The PowerPack [66] monitoring device and software stack has also

CHAPTER 2. ENERGY CONSUMPTION AND COMPUTING 16

been applied to the largest known supercomputer instrumented for per-component power at time
of writing, System G [41]. In general, integrated power monitors are most likely more scalable,
as they may not require additional equipment or significant software development. The limitation
of these models (which are performance-counter based, and linear) is that certain workloads may
result in inaccuracy if they do not conform to the workloads used to generate model parameters.
Due to the challenges in collecting accurate data from entire distributed machines, we argue that
validating the sequential model for single machines is sufficient to capture node energy behavior
in the distributed environment, assuming homogeneous nodes and asymptotically equivalent data
and workload distribution across nodes. Further details about this validation process can be found
in Chapter 3.

While some progress has been made with regard to node energy and power consumption, little
attention has been paid to measuring internode network costs. Due to this problem, we were unable
to directly calculate the network parameters used for distributed parallel machines in Chapters 6
and 7. Instead, we use parameter values from manufacturer specifications, industry reports (such
as the Exascale computing study [27]) and modeled parameters from other researchers [44, 43, 91].
Future work may overcome this limitation, as new measurement technologies become available.

As a final point regarding distributed parallel machines, many routers and switches clearly
do not demonstrate energy consumption that scales with load (energy-proportional behavior, e.g.
when a 50% bandwidth load across a switch consumes 50% of the device’s peak power) [106].
This observation of constant network energy is supported by measured evidence of constant NIC
energy as discussed in the previous section. While currently a small fraction of overall system
power, network energy may eventually become the efficiency bottleneck for future systems as the
energy-proportionality of nodes increases with successive hardware generations [2]. To address
this observation, we will derive two different models for distributed parallel machines in Chapter 3:
one in which communication energy is proportional to bandwidth and message load, and another
in which node DRAM accesses are assumed to be the dominant communication component of
energy. In this second model, we will model network energy as a constant function of the number
of network links.

An underlying idea throughout this chapter is that energy consumption of desktops and dis-
tributed servers is dominated by the behavior of a small set of devices; processors, SRAM caches,
DRAM memory and (on distributed machines) the internode network infrastructure. These de-
vices themselves are based on two common hardware objects: CMOS logic and communication
interconnects. Both CMOS logic and interconnects can be modeled via dynamic and static energy
terms, which supports the argument that the larger devices can be modeled in a similar manner.
This is the approach that we will use explicitly in Chapter 3 to define energy models for sequential,
distributed parallel and heterogeneous machines.

Further, we cited related work that argued for the increasing impact of global interconnects and
DRAM on the energy consumption of machines. This argues for the development of communica-
tion and energy-optimal algorithms that minimize data movement. In later chapters, we will derive
bounds on the amount of energy required to compute a computational kernel, and in certain present
optimal algorithms that attain these bounds.

17

Chapter 3

Machine Models for Runtime and Energy

In this chapter, we describe energy and runtime models for three types of abstract machines: se-
quential, distributed parallel, and heterogeneous (Section 3.2). Further, we provide introductions to
several computational problems, such as dense matrix-matrix multiplication and the O(n2) n-body
problem, that will be used throughout this work to exemplify our approach to bounding energy and
considering the application of those bounds (Section 3.3).

Finally, this chapter presents empirical evidence to support our runtime and energy models on
sequential and heterogeneous machines. We demonstrate that simple linear models can be fitted
accurately (< 21% relative error vs. direct measurement for dense matrix-matrix and matrix-vector
multiplication) for runtime and energy, and argue that such results are applicable to distributed
parallel machines (Section 3.4). Finally, we discuss recent related work that attempts to estimate
parameters for runtime and energy models via targeted microbenchmarks (Section 3.5).

3.1 Problems, Algorithms, and Implementations
We believe that flexible, abstract models of machine runtime and energy consumption are useful to
both software and hardware developers, especially combined with lower bounds on the amount of
memory traffic required to solve a computational problem with a given algorithm. Before defining
models, we must make some preliminary definitions. First, we define a computational problem as
a set of questions that may be solved computationally. An example of a computational problem
may be dense matrix-matrix multiplication. Further, we describe a method to solve a given com-
putational problem as an algorithm. There may be any number of known algorithms for a problem.
In the case of matrix-matrix multiplication, examples could be (but not limited to!) the classical
O(n3) approach, Strassen’s method [129] or Coppersmith-Winograd [46]. Each of these different
algorithms require different asymptotic numbers of floating point operations, and differ greatly in
structure.

Once an algorithm is chosen, an implementation must be generated for a given piece of hard-
ware. This implementation may be produced manually by a programmer, or automatically via an
autotuning framework such as ATLAS [146] for linear algebra. We then measure this implementa-

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 18

method for

generated for
generated for

influenced by

Figure 3.1: Relationship between hardware, algorithm and implementation

tion to determine the throughput or energy efficiency of the code, and improve performance via a
tuning process if needed. The general relation between these concepts is illustrated in Figure 3.1.
In it, we see that a problem determines a set of possible algorithms that attempt to solve it. Simi-
larly, a set of implementations is determined both by the algorithm and the hardware upon which
it runs. Finally, a target set of algorithms influences hardware design. In many cases, this set of
algorithms may be very large (i.e. any computable sequence of instructions within the physical
limits of storage). In the future, increasingly heterogeneous processors may significantly constrain
the space of efficiently-computable algorithms for the sake of efficiency.

High-level machine models of runtime and energy that relate software and hardware have the
benefit of providing useful information to both software developers and hardware designers. This
approach is not new, and is used commonly in both hardware and software-oriented tasks. How-
ever, this work differs in that the development of energy bounds on algorithms allows for a non-
trivial “optimal” level of energy consumption to be stated. We believe that this has two main usage
models:

• Using measured or fitted hardware parameters to give software experts an indication of how
well their code runs on a given machine or machine design.

• Using known optimal algorithm computation and communication relationships to describe
sets of hardware parameters that attain specific throughput and energy efficiency goals

3.2 Machine Models
Before one can begin discussing bounds on runtime and energy, a set of abstract machine mod-
els must be defined. Such models are simple representations of common computer architectures
and allow algorithm designers to describe machine structures and functions via analytic represen-
tations. In this work, we will consider three types of machines: serial (S), distributed parallel
(DP) and shared-memory heterogeneous (H). In the serial (S) model (left side of Figure 3.2), we

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 19

consider a single processing core connected to a fast cache. This cache then has access to an un-
bounded slow memory and we define communication as the data traffic between the fast and slow
memories. For example, this models a single core on a multiprocessor with private L1 (“fast”)
and L2 (“slow”) caches. Furthermore, the distributed parallel (DP) machine on the right side of
Figure 3.2 represents a set of homogeneous processing nodes connected via a homogeneous net-
work. Each processing node may access local memory (“fast”) or obtain data from the memory of
a remote node (“slow”). To avoid having to consider network effects, one could assume that the
machine possesses a fully-connected network topology where each link is identical. This is over-
conservative, and in this work we show that a torus or a mesh network topology of an algorithm-
specific degree is sufficient to avoid communication being bounded by link traffic volume. We
discuss these results in Section 4.1 and 5.1. For simplicity, we assume that words are packed into
contiguous messages before being communicated and represent the time cost of a single message
between memories as:

Tmsg = αt + βtw

where w is the number of words transferred, βt is the time cost per word (or inverse bandwidth)
and αt is the time cost per message. A more detailed description of the serial and distributed
parallel machine models may be found in [15], and it is worth noting that these three models may
be composed (e.g. hierarchically) to represent machines of increased complexity. Once abstract
machine models are specified, one can define models of runtime and energy upon which to derive
bounds on energy.

Figure 3.2: Serial (S) and Distributed Parallel (DP) machine models

Sequential Machine Model (S)
The above expression for Tmsg can be generalized to represent the runtime of an algorithm if we
consider all messages that must be transmitted, as well as including a term to describe the work
operations of the algorithm. In our models, such operations are used as a metric of algorithmic
process. A common example is a floating point operation, or flop. Throughout this document,
we refer to work operations as flops, but other metrics of progress exist, such as operations over a
semi-ring. Thus, we define the runtime of the sequential machine model as

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 20

TS = γtF +
S∑
i=1

(βtwi + αt) = γtF + βtW + αtS. (3.1)

The three terms in Equation (3.1) are the time to compute “work” operations (γtF), the total time to
transmit words of data (βtW) and the total time for sending those words in packed messages (αtS).
Thus, γt is the seconds/work operation, F is the number of “work” operations on data that is stored
in fast memory, with the answer being stored in fast memory, βt is the seconds per read/write of a
memory word, W is the total number of words read or written, αt is the overhead when a number
of words are read/written in one operation1, and S is the total number of read/write operations
performed. One can consider γt,βt and αt to be machine-specific parameters that are derived via
microbenchmarking of existing machines or firmware performance counter-based models on new
architectures. Note that this definition of runtime assumes that no overlapping of communication
and computation occurs. If we were to consider the case of overlapping, runtime would be rep-
resented with a max operation as opposed to a summation in Equation (3.1). Practically, this is
a concern. However, communication/computation overlapping would only result in a maximum
runtime improvement of 2 or 3 which does not affect any asymptotic conclusions.

Considering the model of runtime defined in Equation (3.1), we can similarly represent the
amount of energy ES consumed by a sequential machine during the course of program execution:

ES = γeF + βeW + αeS + δeM̂TS + εeTS. (3.2)

where γe is the joules per operation, βe is the joules per word transferred, αe is the joules per
message, δe is the joules per second per word of memory and εe is the joules per second of idle
components on the machine. The first three terms of the equation (γeF + βeW + αeS) are anal-
ogous to the three terms of the runtime equation, and represent the dynamic energy component of
the execution. This dynamic energy has two components: the energy to actually perform compute
operations (γeF) and the energy to move data (βeW + αeS). Optimally, the machine would con-
sume no energy aside from the joules required for the dynamic component, but this is not the case.
The additional idle energy of the machine is represented by the δeM̂TS + εeTS terms of Equation
(3.2) with δeM̂TS being the idle energy of utilized slow memory and εeTS being the combined cost
of other machine components (such as fans, disks, etc) and logic leakage power. In Equation (3.2),
M̂ is the amount of slow memory utilized during the calculation. We include the energy of idle
slow memory (as opposed to cache idle energy) as this conforms with intuition that a larger slow
memory consumes more idle energy than a smaller cache. On current hardware, this idle memory
cost may not scale with the amount of DRAM actually utilized by the algorithm, but may be the
case on certain machines or specialized hardware. As we will see in Chapter 6, this idle memory
cost may become large on distributed machines where the amount of utilized memory increases
rapidly with the size of the problem (e.g. matrix-matrix multiplication, where the memory foot-
print of the algorithm grows quadratically with problem size). If desired, the idle energy of cache
can be exposed by recursively defining a model with multiple levels, as will be discussed in Section

1For example, this could be a cache line transfer.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 21

3.2. We will see later that the bounds on W and S may include another parameter, M , the size of
fast memory .

Distributed Parallel Machine Model 1 (DP1)
In the distributed parallel machine model (right side of Figure 3.2) we use an analogous expression
for runtime as in the sequential case. As the P processing nodes and communication links are
assumed to be homogeneous in capability, a uniform partition of work is theoretically optimal
and allows all processors to finish simultaneously in parallel. The assumption of a uniform work
partition is appropriate for a lower bound, and is attained by many algorithms, though not all.
In other words, we assume that each processor on the machine is asymptotically allocated the
same number of work operations F and communication traffic (W and S). This is a significant
assumption, but is appropriate for the algorithms discussed within this work. There may be many
other problems in which F , W , and S cannot be evenly divided. Note that in the distributed
parallel machine, W and S are described on a per-processor basis. Unlike the sequential model,
the communication terms now describe interprocessor communication generated or received by a
node as opposed to communication between levels of the cache hierarchy.

One other aspect of a distributed machine model that should be addressed is the topological
nature of the interconnect. If the network is fully-connected, machine performance may only
be constrained by the volume of data moved by each of the processing nodes (the per-processor
word and message counts). On the other hand, if the network topology is such that the amount of
data transferred over the worst-case network link (the link contention word and message counts)
dominates the per-processor volume, the algorithm’s performance may be adversely affected. In
this work, we limit discussion of link contention exclusively to toroidal and mesh networks. This
excludes indirect networks (i.e. networks with switches that do not perform computation) such as
butterflies, fat trees and others.

We present an intuitive formulation of the runtime model, which is analogous to the sequential
model of Equation (3.2):

TDP1 = γtF + βtW + αtS. (3.3)

If all homogeneous nodes compute in parallel and have identical runtime, the total energy required
in the parallel distributed case is the energy consumed by one processor multiplied by the number
of processors P :

EDP1 = P (γeF + βeW + αeS + δeMTDP1 + εeTDP1). (3.4)

Model Compositions and Distributed Parallel Model 2 (DP2)
The machine models discussed in the previous sections represent runtime and energy at a very
high level of abstraction and are suitable for analysis by hand. This level of abstraction considers
communication solely between two levels of a memory hierarchy. As a result of this, the behavior
of other levels of the memory hierarchy and machine components (such as branch predictors) are
lumped into two parameters (γt and γe). These parameters may then vary significantly between

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 22

Figure 3.3: Composition of Sequential (S) and Distributed Parallel (DP) Machine Models

implementations of the same algorithm as a new implementation may be more efficient in levels of
memory that have been abstracted out of the model. To some extent, this problem may be mitigated
by composing models recursively and exposing more parameters. In Figure 3.3, we depict a 2-level
composition of the distributed parallel (DP1) and modified sequential (S) machine models wherein
a distributed machine contains nodes composed of multiple processing cores linked to DRAM via
private caches. We now explicitly derive a model for this abstract machine. First, we begin with
an expression for runtime (identical to the DP1 model):

TDP2 = γt0F0 + βt0W0 + αt0S0

with the modification that we now represent parameters that pertain to the entire distributed ma-
chine as being on ”level 0” and have annotated the equation accordingly (e.g. W0 is the number
of words sent from one node to another over the green links indicated in Figure 3.3). Similarly,
parameters that relate to node performance will be referred to as at ”level 1”. To define level 1
behavior, we first replace γt0F0 by Tcore where

Tcore = γt1F1 + βt1W1 + αt1S1

where F1 = F0/P1 where P1 is the number of homogeneous processing cores with identical fast
memories. Note that we assume that all on-node processors will finish simultaneously due to
perfect load balancing. This assumption can be removed by taking the maximum runtime over the
nodes and cores. For the moment, we assume identical runtimes to reduce notational complexity.
We can now substitute the expression for Tcore into that of TDP2 to complete the runtime model of
this abstract machine:

TDP2 = (γt1F1 + βt1W1 + αt1S1) + βt0W0 + αt0S0. (3.5)

Regarding energy, we begin with an expression for energy identical to the DP1 model with P0

nodes:

EDP2 = P0(γe0F0 + βe0W0 + αe0S0 + δe0MTDP2 + εe0TDP2)

and replace γe0F0 by P1Ecore where the per-core energy, Ecore, is

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 23

Ecore = γe1F1 + βe1W1 + αe1S1 + εe1TDP2.

For simplicity, we omit a term to explicitly account for cache idle energy as caches typically have
high utilization and assume it to be a component of εe1 . Thus, the total energy for a generic 2-level
model is

EDP2 = P0(P1(γe1F1 + βe1W1 + αe1S1 + εe1TDP2)

+ βe0W0 + αe0S0 + δe0MTDP2 + εe0TDP2).

According to Google researchers [2], modern datacenter interconnects do not scale energy con-
sumption with load and thus typically represent a constant fraction of the machine’s energy bud-
get. To address this situation, we may modify energy expression for the above two-level distributed
model to represent the assumption that network energy scales only with the number of links, and
not the amount of actual communication:

EDP2 = P0(γe1F1 + βe1W1 + αe1S1 + δe0MTDP2 + εe0TDP2) + ζ|Ê(GNet)| (3.6)

where we also model the nodes as sequential machines (P1 = 1) for simplicity, ζ is the energy cost
per link and |Ê(GNet)| is the number of links in the internode network graphGNet. To simplify the
model, we have also assumed that εe1TDP2 is encompassed within εe0TDP2. We define the runtime
and energy models within Equations (3.5) and (3.6) as the DP2 model of a distributed parallel
machine.

Heterogeneous Machine Model (H)
A model for heterogeneous machines is shown in Figure 3.4. This model is first described in
[17] and extended here to allow for a discussion of energy. To capture the non-uniform nature of
a heterogenous computing environment, we model the machine to be a set of compute elements
proci (1 ≤ i ≤ P) with varying characteristics connected via independent links to a shared global
memory. Each proci can be defined very abstractly; for example, one compute element may be a
single processor, GPU, or a shared-memory multiprocessor itself. Each proci is associated with a
set of element-specific parameters:

• βti: seconds per word of proci’s communication link to global shared memory

• αti: seconds per message of proci’s communication link to global shared memory

• γti: seconds per operation of proci on data that resides in local memory

• βei: joules per word of proci’s communication link to global shared memory

• αei: joules per message of proci’s communication link to global shared memory

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 24

Figure 3.4: Heterogeneous machine model

• γei: joules per operation of proci operating on data that resides in local memory

• δei: joules per word per second to store data in the local memory of proci

• Mi: Size of the local memory of proci

In addition, we define several other parameters:

• δ̂: joules per word per second to store data in the global memory

• εH : joules per second leakage term for the entire heterogeneous machine

• M̂ : the amount of global memory utilized by the execution

We assume that the initial data for the problem is stored within the machine’s global memory.
For the purposes of this work, global memory is assumed to be always able to fit the data required
by the given problem and algorithm. Thus, the layout of data in global memory becomes a fac-
tor for performance: in order to read/write a set of words in one message, those words must be
contiguously stored in global memory. We also assume that the output of the algorithm will be
transferred to global memory. By assuming that the problem begins and ends in global memory,
the size of the input and output data represent one lower bound on communication. Note that
when i = 1, this model reduces to the sequential two-level memory model. However, in the case
that all the element-specific parameters are equivalent across compute elements (e.g., βti = βt for
1 ≤ i ≤ P), this heterogeneous model does not reduce to the parallel distributed-memory model
shown in Figure 1(b) as it is based on a global shared memory.

We use a similar notation for the runtime and energy expressions in the previous models, but
must annotate the hardware parameters for each element as described above. Hence the runtime
for proci is

THi
= γtiFi + βtiWi + αtiSi.

As in the models described previously, we assume that no communication/computation overlap-
ping occurs. Assuming that the total number of operations F is partitioned amongst the processors,
we represent the total runtime TH of the heterogeneous machine as

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 25

TH = max
1≤i≤P

THi
= max

1≤i≤P
(γtiFi + βtiWi + αtiSi) (3.7)

because the time to complete the execution is limited by the runtime of the slowest processing
element. Note that the model implicitly assumes that no program dependencies create idle time on
some processors. To model the energy of a heterogeneous machine, we first represent the energy
of a single processing element as

EHi
= γeiFi + βeiWi + αeiSi.

In bounds on Wi and Si, Mi will equal the physical size of processor i’s fast memory. We also
omit a leakage term for the individual processors. For simplicity, we represent the leakage energy
for the entire machine with a single term (εHTH) and the idle global memory power with another
term (δ̂M̂TH). Thus, we model the total execution energy of the heterogeneous machine as

EH =

p∑
i=1

EHi
+ δ̂M̂TH + εHTH . (3.8)

Depending on the future application of the model in Equation (3.8), δ̂M̂TH and εHTH may be
decomposed into the individual contributions of constituent processing elements. One may also
note that each word of global memory contributes an energy penalty for the entire duration of TH ,
and not for its specific duration of usage. By this, we implicitly assume that the amount of global
memory is constant for the duration of the algorithm. This applies to each of the Mi-sized fast
memories as well. Thus, we assume the energy to use a word in global memory is δ̂TH even if
the actual time of usage, is much smaller than TH . The heterogeneous model can be extended in
a hierarchical manner to more-closely relate to actual hardware. In the case that proci represents
multiple computational units (heterogeneous or not) with a shared memory, one could apply this
model to the element individually to obtain a more accurate representation of γti and γei .

3.3 Problems of Particular Focus
In this work, we focus our analysis on a small set of computational kernels that are similar to
a wide class of problems within the scientific computing community. In addition to wide ap-
plicability, this set of problems can be solved via several well-researched algorithms as well as
representing a range in potential arithmetic intensity, or the ratio of the number of floating point
operations to words of memory loaded or stored (i.e. the flop/word ratio of an implementation).
In the language of computational motifs (where motifs are general classes of computational prob-
lems, see Table 3.1 or “The Berkeley View on Parallel Computing” [9] for more details), these
problems represent dense linear algebra (matrix-matrix and matrix-vector multiplication), sparse
linear algebra (matrix-vector multiplication) and n-body methods (the O(n2) n-body problem). In
this section, we provide an overview of this set of problems as well as any associated algorithms
pertinent to this work. Later in this document, we will use models of runtime and energy to derive

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 26

Dense Linear Algebra Sparse Linear Algebra
Spectral Methods N-Body Methods
Structured Grids Unstructured Grids
MapReduce Combinatorial Logic
Graph Traversal Dynamic Programming
Back-track & Branch and Bound Graphical Models
Finite State Machines

Table 3.1: Computational motifs as described in [9]

lower bounds on these algorithms. With lower bounds, we will then explore the impact of runtime,
energy and power constraints on energy efficiency. Finally, we will describe the implications for
hardware parameters if attempting to attain a target level of energy efficiency. For simplicity, we
will assume that the problems and associated algorithms are operating on double-precision floating
point values with a size of 8 bytes.

Matrix-vector multiplication
The first computational problem we consider is that of matrix-vector multiplication. This prob-
lem is a common component of many dense and sparse linear algebra problems as well as several
other computational motifs such as spectral and grid problems. In particular, operations that re-
quire O(n3) flops when computed directly can be accomplished in O(n) or O(nlog(n)) flops with
iterative methods that involve multiple matrix-vector multiplications (e.g. multilevel and conju-
gate gradient methods for solutions of differential equations, see [152] and [122] for more de-
tails). These iterative methods often involve repeated matrix-vector multiplications to converge to
a solution, and as such this operation is a critical computational kernel for scientific computing.
Mathematically, the matrix-vector problem is defined as

yi =
n−1∑
j=0

Aijxj

for all i = 0..m − 1 where A is an m-by-n matrix and x and y are vectors of length n and m,
respectively. We use 0-based indexing of matrices and vectors for the remainder of this work. If A
has a ratio of non-zero to total entries that approaches 1, it is often considered to be a dense matrix,
i.e. an implementation would make no distinction between zero and nonzero values. If dense,
the matrix is commonly stored in memory as a contiguous array and a naive implementation of
dense matrix-vector multiplication (GEMV) is described in Algorithm 1. Note that Algorithm 1
performs 2 floating point operations on each word of Aij . Thus, in many cases the theoretical
upper bound on arithmetic intensity of dense matrix-vector multiplication is 2. If the vectors are
unable to fit in cache, this value is reduced somewhat due to the additional memory traffic. Dense
matrix-vector multiplication is easily parallelized by dividing the rows of A across the processors

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 27

and replicating the input vector x. In Chapter 4, we use this approach to describe a communication
and energy-optimal algorithm on a heterogeneous machine model.

Algorithm 1 naiveMatrixVector(A,x,y,n)
Input: n-by-n matrix A and vector x of length n
Output: vector y of length m
Initialize yi = 0
for i = 0..m− 1, j = 0..n− 1 do
yi += Aij · xj

end for

If the input matrixA is mostly composed of zeros, we may wish to treat it as a sparse matrix and
store the fewest zero values as possible. Such goals require a data structure to store A that is a bit
more complex than the dense data structure. In this work, we assume that the input matrix is stored
in Compressed Sparse Row (CSR) format [23], which stores only non-zeros. This data format
assures contiguous access of non-zero values along rows, and requires three arrays to represent the
matrix: an integer row offset array r of size m + 1, a floating point value array v that stores the
non-zero entries of A, and an integer column index array indx that indicates the column location
of a non-zero entry.2 Thus, the CSR format requires a memory footprint of 3 ∗nnz/2 + (m+ 1)/2
8-byte words where nnz is the number of non-zero entries in sparse m-by-n matrix A. We assume
8-byte data words (elements of v) and 4-byte row offsets and column indices. An example of a
5-by-5 sparse matrix stored in CSR format is illustrated in Figure 3.5. The dense representation of
the matrix is shown on the left, and the CSR representation on the right of the figure. Note that the
row offset array indicates the beginning and end of each row, and is usually more memory-efficient
than a format that stores both the row and column indices for each non-zero (a coordinate storage
format). Many other types of storage formats for sparse matrices have been proposed such as block
CSR, Skyline Storage (SKS), and compressed diagonal storage (CDS)[23]. In practice, the optimal
choice of storage format depends on the sparsity structure of the matrix and the computational
problem to be solved. An overview of such tradeoffs can be found in [23].

A naive implementation of sparse matrix-vector multiplication (SpMV) with the CSR storage
format is shown in Figure 2. Note that like the dense case of Algorithm 1, the i loop iterates
over all m rows of the matrix. A key difference, however, is that the column index (j) only
operates on non-zero entries stored in the array v. Along each row, this access to the values of A is
continuous in memory and is efficient. The problem lies with vector x as it is indirectly accessed
via the column array indx. This irregular memory access pattern represents a significant challenge
when attempting to develop an efficient implementation of SpMV, and results in an arithmetic
intensity that varies throughout the execution of the algorithm. In this work, we assume that a
single average intensity per matrix is sufficient to describe an SpMV execution. This assumes a
level of regularity in the input sparse matrix so that relatively constant cache miss behavior during
algorithm execution is attained. One could imagine a counterexample to this assumption in a sparse

2By convention, the final element equals nnz with zero-based indexing.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 28

Figure 3.5: Compressed Sparse Row (CSR) storage format

matrix that has one structure for the first m/2 rows, and a completely different structure for the last
m/2 rows.

Due to their low arithmetic intensity, both dense and sparse matrix-vector multiplication are
often performance-limited by the bandwidth and latency parameters of the machine, and not the
peak floating point rate. Thus, matrix-vector implementations typically achieve a small fraction
of machine’s potential floating point throughput even when expertly (or automatically) tuned. The
difficulty of optimizing SpMV is such that several software tools have been developed to automat-
ically generate optimized serial [142] and shared-memory parallel SpMV [85] operations.

Algorithm 2 sparseMatrixVector(r,v,indx,n)
/* m-by-n matrix A in CSR format
Input: row array r of length m + 1, value array v of size nnz and column index array indx of
length nnz
Input: array x of length m
Output: vector y of length n
Initialize y[i] = 0
for i = 0..m− 1 do

for j = r[i]..r[i+ 1]− 1 do
y[i] += v[j] · x[indx[j]]

end for
end for

As mentioned earlier, many iterative methods repeatedly apply a matrix to a vector via matrix-
vector multiplication (Krylov subspace methods, such as conjugate gradients, Lanczos, etc.). While
both Algorithm 1 and Algorithm 2 only consider a single matrix-vector multiplication, some algo-
rithms are able to implement Krylov subspace methods with provably minimal data traffic (loading
A into memory only a constant number of times, as opposed to a function of the number of SpMV
operations) by applying multiple matrix-vector operations simultaneously. Such algorithms have
shown significant speedup over previous approaches, and may also trade extra flops for reduced
communication volume by replicating intermediate values of the computation. While we only con-

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 29

sider runtime and energy lower bounds on single matrix-vector multiplications (see Chapter 4), the
reader is referred to Mohiyuddin et al.[111] for a floating point and communication analysis of
these algorithms. We believe our bounds could be extended to these algorithms in future work.

Computation of a matrix-vector multiplication problem on distributed parallel machines is ac-
complished by blocking the input data across the processor local memories, and communicating
slices of the x vector between nodes. Blocks of the input matrix are not communicated. Each
processor has enough data to multiply by its own on-diagonal blocks, but must obtain values of x
from other processors to multiply by its off-diagonal blocks. Traditionally, optimizing the com-
munication pattern for this algorithm was approached via minimization of the edge cut between
matrix vertices on different processors. However, as noted by Hendrickson [73], communication
is actually proportional to the number of vertices that must send or receive data from another pro-
cessor, and not the edge cut (which overestimates the required communication). This issue can be
resolved via the use of hypergraph partitioning [74, 40] to attain a better decomposition of the in-
put matrix onto processors. We suspect that communication lower bounds for parallel distributed
matrix-vector multiplication could be represented as a function of the minimal hypergraph cut,
but place such a problem beyond the scope of this thesis. Thus, we only consider matrix-vector
multiplication on sequential and heterogeneous machines.

Matrix-matrix Multiplication
The next computational problem is dense matrix-matrix multiplication (GEMM) on square matri-
ces. In this work, we limit our discussion to dense matrices, but communication bounds on sparse
matrix-matrix multiplication can be found within [18]. Mathematically, given three dense matrices
A,B and C of size n× n, we wish to compute

Cij =
n−1∑
k=0

AikBkj

for all i, j = 0...n − 1 and where Cij is the element at the ith row and jth column of matrix
C. As we wish to iterate over all values of i, j, k, the operation as defined requires 2n3 floating
point operations, or flops, to compute. We note that this operation theoretically performs O(n3)
flops on O(n2) data words (the three matrices with n2 elements), and thus has a flop/word ratio
of O(n). While not indicative of performance when run on actual machines, this computational
intensity seems to imply that the problem has the potential to have throughput (Gflop/s) limited
by the peak floating point capability of the machine, and not the much more constrained main
memory bandwidth. Indeed, tuned implementations of algorithms that solve dense matrix-matrix
multiplication are able to attain a significant fraction of the peak floating point rate of the machine.

In other dense matrix operations, we note that matrix-matrix multiplication often represents the
most computationally-intensive component. For example, various types of matrix factorizations,
such as LU, QR and the SVD, update trailing submatrices via matrix-matrix multiplications (see
[56] for a detailed overview of these factorizations). For example, the LU factorization is typically
used to solve linear systems of equations. It factorizes A = LU where L is a matrix with zero

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 30

values above the diagonal (a lower triangular matrix) and U is a matrix with zero values below the
diagonal (an upper triangular matrix). During the execution of the common algorithm to compute
L and U , a subset of columns is factorized and the remainder (or trailing portion) of the matrix is
updated via a matrix-matrix multiplication prior to factorization of the next set of columns. As this
operation requires a significant amount of computation, optimizing matrix-matrix multiplication
can significantly improve the performance of an algorithm that performs LU factorization. Thus,
the study of dense matrix-matrix multiplication has significant import to the larger linear algebra
community [7].

ClassicalO(n3) Matrix-matrix Multiplication Algorithm A direct implementation of the math-
ematical definition of matrix-matrix multiplication as three nested loops (see Algorithm 3) is inef-
ficient due to the limited arithmetic intensity that it is able to achieve. Such an implementation is
commonly called naive. In other words, the machine spends a much larger amount of time moving
data as opposed to computing the required floating point arithmetic. The naive implementation of
matrix-matrix multiplication can be trivially parallelized on shared memory machines via a parallel
loop construct on the i or j loops (the k loop creates a write dependency on values of C).

Algorithm 3 naiveMatrixMultiplication(A,B,C,n)
Input: n-by-n matrices A and B
Output: n-by-n matrix C
for i = 0..n− 1, j = 0..n− 1, k = 0..n− 1 do
Cij += Aik ·Bkj

end for

Algorithm 4 blockedMatrixMultiplication(A,B,C,n)
Input: n-by-n matrices A and B
Output: n-by-n matrix C
for i = 0..n/b− 1, j = 0..n/b− 1, k = 0..n/b− 1 do

/* Perform block multiplication */
naiveMatrixMultiplication(A(i ∗ b : i ∗ (b + 1) − 1, k ∗ b : k ∗ (b + 1) − 1, B(k ∗ b :

k ∗ (b+ 1)− 1, j ∗ b : j ∗ (b+ 1)− 1), C(i ∗ b : i ∗ (b+ 1)− 1, j ∗ b : j ∗ (b+ 1)− 1), n/b)
end for

Efficient (or tuned) implementations of classical O(n3) dense matrix-matrix multiplication uti-
lize a number of techniques to increase the intensity and throughput, such as loop unrolling or
various levels of cache and register blocking (see Algorithm 4 for an example of blocking and [70]
for an overview of such techniques). In particular, it can be shown that a sequential blocked imple-
mentation is able to achieve the asymptotically maximal arithmetic intensity across levels of the
memory hierarchy with b ≈ M1/2 to attain the communication lower bound [86]. Such tuned im-
plementations can be found in linear algebra libraries such as Intel’s Math Kernel Library (MKL)

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 31

Figure 3.6: Two-dimensional block cyclic distribution of a matrix on a 2-by-2 processor grid

[138] or the AMD Core Math Library (ACML)[5], and can also be generated automatically via
autotuning frameworks such as ATLAS [146].

On distributed parallel machines, matrix classical matrix-matrix multiplication can be imple-
mented with the optimal level of arithmetic intensity via Cannon’s algorithm [38]. In practice,
however, classical matrix multiplication in a distributed environment is often implemented via
Scalable Universal Matrix Multiplication Algorithm (SUMMA) [67]. This algorithm relies on a
2-dimensional block-cyclic data decomposition (see Figure 3.6) to map blocks of input data onto
a P 1/2 × P 1/2 processor grid. With such a data layout, interprocessor communication becomes
a series of row and column data broadcasts as each processor obtains required data from neigh-
bors. SUMMA is easier to implement for general matrices than Cannon’s algorithm, and the
most-common implementation can be found in the ScaLAPACK library [32].

2.5D O(n3) Algorithm Matrix-matrix Multiplication Algorithm While SUMMA is a com-
mon algorithm to compute classical matrix-matrix multiplication, in this work we choose to model
the energy and runtime characteristics of matrix-matrix multiplication on distributed parallel ma-
chines via the 2.5D algorithm [126]. This algorithm is able to replicate the input data to reduce
communication volume, and thus lends itself to consideration of interesting optimization problems
such as those explored in Chapter 6. Replicating data to reduce the communication volume of
matrix-matrix multiplication is not a new idea, as so-called 3D matrix-matrix multiplication al-
gorithms have been presented by a number of researchers and proven to attain theoretical lower
bounds on the amount of required communication [52, 3, 4, 87]. These algorithms map data blocks
onto a P 1/3 × P 1/3 × P 1/3 processor grid and replicate input data along one processor axes. A 3D
matrix-matrix multiplication algorithm is described in Algorithm 5. Note that once the replicated
blocks of A and B have been broadcast, the entire 3D processor grid can compute block Cijk in
parallel without further communication aside from a final reduction to form C along the ik face of
the processor grid.

The 2.5D algorithm differs from 3D matrix-matrix multiplication algorithms in that the amount
of data replication is parameterized. Thus, the input matrices are now mapped onto a (P/c)1/2 ×
(P/c)1/2 × c processor grid, where c is the number of replications of the input data. If c = 1,
the 2.5D algorithm runs identically to SUMMA (a 2D algorithm, as it maps data blocks on a 2D

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 32

Algorithm 5 3D dense matrix-matrix multiplication (A,B,C,n,P)
Input: n-by-n matrix A distributed so that Pij0 owns n

P 1/3 -by- n
P 1/3 block Aij for each i,j

Input: n-by-n matrix B distributed so that P0jk owns n
P 1/3 -by- n

P 1/3 block Bjk for each j,k
Output: n-by-n matrix C distributed so that Pi0k owns n

P 1/3 -by- n
P 1/3 block Cik for each i,k

for all i, j, k ∈ {0, ..., P 1/3 − 1} do
Pij0 broadcasts Aij to all Pijk /* Replicate A on each ij processor layer */
P0jk broadcasts Bjk to all Pijk /* Replicate B on each jk processor layer */
Cijk := Aij ·Bjk

Pijk contributes Cijk to a sum-reduction to Pi0k
end for

Figure 3.7: Processor grids for 3D and 2.5D matrix-matrix multiplication [126]

processor grid). At the maximal replication value of c = P 1/3, the algorithm runs identically to
3D matrix-matrix multiplication algorithms [52, 3, 4, 87].

At a certain amount of replication, the overhead of replicating data exceeds that of the com-
munication benefits. For 2.5D matrix multiplication, this point occurs at c = P 1/3 [126]. We will
later refer to this limit on data replication as a memory-independent per-processor communication
lower bound[21]. By replicating data to reduce communication, the 2.5D algorithm is able to per-
fectly strong scale in runtime [126] with constant energy [55]. That is, for a fixed problem size the
runtime halves with every doubling of processors while using the same amount of energy. We will
further explore these scaling properties in Chapters 4, 5 and 6.

RecursiveO(n3) Matrix-matrix Multiplication Algorithm In Chapter 4, we present a communication-
optimal algorithm for O(n3) matrix-matrix multiplication on a heterogeneous machine model. In
particular, this algorithm differs from the naive implementation in that the problem is decomposed
recursively, as opposed to iteratively. Suppose we are given three matrices, A,B and C of size
2n × 2n. We can then consider the problem as the matrices each being composed of submatrices

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 33

Aik,Bkj and Cij . I.e.

AB =

[
A00 A01

A10 A11

] [
B00 B01

B10 B11

]
=

[
C00 C01

C10 C11

]
= C (3.9)

where

C00 = A00B00 + A01B10

C01 = A00B01 + A01B11

C10 = A10B00 + A11B10

C11 = A10B01 + A11B11 (3.10)

and the matrix-matrix multiplication problem of size 2n × 2n has been decomposed into eight
subproblems of size 2n−1 × 2n−1 [34]. In practice, the recursion continues until the subproblems
are small enough to fit in cache, and then a tuned classical algorithm is used to compute the base
case problems. If the original input matrices are not of size 2n × 2n, they can be zero-padded
to the proper size for the recursion. In Chapter 4, we will see how such a recursive decompo-
sition provides the means to allocate an asymptotically-optimal amount of work across a set of
heterogeneous processors.

O(nω) Fast Matrix Multiplication Algorithms In the previous discussion, we consider several
algorithms for dense matrix-matrix multiplication that require O(n3) floating point operations to
compute C = A · B with three n-by-n matrices. This amount of work is by no means required
to compute the problem, and a number of algorithms are able to compute the problem with O(nω)
flops where ω < 3 [129, 120, 128, 149, 46]. Trivially, ω ≥ 2 as each element of the O(n2) input
data must be touched at least once and the current best algorithm is able to attain ω = 2.3728639
[97]. Matrix-matrix multiplication algorithms that require O(nω) flops for ω < 3 are collectively
called fast matrix multiplication algorithms.

While fast matrix multiplication algorithms asymptotically improve upon the performance of
the classical algorithms, very few are practical to implement due to large constant factors. One
such practical fast matrix multiplication algorithm is that of Volker Strassen[129], which computes
matrix multiplication with ω = log27 ≈ 2.8074. This recursive algorithm realizes its asymptotic
improvement by reducing the number of required recursive calls to seven, as opposed to the eight
required by the recursive classical algorithm discussed earlier. In particular, Strassen realized that
the seven multiplications of submatrices shown via Equations (3.11) can be used to compute to four
output submatrices of C without additional multiplications (Equations (3.12)). In practice, once
the problem has been reduced to a sufficient size, a tuned classical algorithm is used to compute
the base case of the recursion. Note that the reduced number of multiplications comes at the cost
of additional addition operations and memory space for intermediate values. Due to this overhead,
an optimized implementation of Strassen’s algorithm is less-efficient than tuned classical O(n3)

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 34

implementations for small problem sizes.

T0 = (A00 + A11)(B00 +B11)

T1 = (A10 + A11)B00

T2 = A00(B01 −B11)

T3 = A11(B10 −B00)

T4 = (A00 + A01)B11

T5 = (A10 − A00)(B00 +B01)

T6 = (A01 − A11)(B10 +B11) (3.11)

C00 = T0 + T3 − T4 + T6

C01 = T2 + T4

C01 = T1 + T3

C11 = T0 − T1 + T2 + T5 (3.12)

Implementing Strassen’s algorithm on a distributed parallel machine is challenging due to the
problem of efficiently distributing the subproblems of the recursion tree across the processors.
However, a handful of implementations have demonstrated performance improvements over classi-
cal implementations for large enough problem sizes (see [98] for a list). In particular, Communication-
Avoiding Parallel Strassen (CAPS) [98] implements Strassen’s algorithm on distributed parallel
machines and was able to attain speedups over several classical (and other Strassen-based) imple-
mentations [98].

CAPS is unique among parallel implementations of Strassen’s algorithm in that it is able to
trade additional memory usage for reduced interprocessor communication. While it also parame-
terizes its use of additional memory to reduce communication, CAPS does not achieve this tradeoff
via input data replication like the classical O(n3) 2.5D algorithm. Instead, CAPS computes the
required recursive subproblems via two different type of recursion steps: Breadth-First and Depth-
First searches (BFS and DFS, respectively). Figure 3.8 illustrates the distinction between BFS and
DFS steps. In a BFS recursion, the initial matrix-matrix problemA·B is divided into seven smaller
recursive problems (see Equations (3.11)) and the work is divided between all processors. In the
DFS case, all processors work in parallel to solve single subproblems in sequence. BFS steps use
1/7 of the available processors on each subproblem, but require additional memory, in order to re-
duce the overall communication volume. Ballard et al.[20] demonstrate that a sufficient number of
DFS steps followed by all BFS steps is sufficient to prove that CAPS is a communication-optimal
fast matrix multiplication algorithm. In addition, Lipshitz et al.[98], considers the performance
implications of more-complicated interweavings of BFS and DFS steps. We derive runtime and
energy lower bounds on fast matrix multiplication algorithms in Chapter 4.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 35

Figure 3.8: Breadth-First or Depth-First traversals of recursion tree [98]

O(n2) n-body problem
The final class of problems that we consider is that of n-body problems. These problems can be
qualitatively described as a set of objects moving in space and interacting with each other (and
perhaps the environment) according to some force definition. N-body problems commonly occur
in physics and material simulations, and in other scientific domains. A naive algorithm for this
problem is shown in Algorithm 6. Note that this version of the problem requires O(n2) executions
of the ApplyForce() function for each time step as each body interacts with every other. More com-
plicated algorithms to solve the n-body problem, such as Barnes-Hut [22] and the Fast Multipole
Method (FMM)[71], decompose the environment into tree-based data structures (quad or octtrees
[94]) and calculate the desired forces with O(nlog(n)) or O(n) force function call, respectively.
For ease of analysis, we only consider the situation where O(n2) executions of applyForce() must
occur.

Algorithm 6 naiveNbody(p,n,nsteps)
Input: Array of bodies p of length n
Input: Number of time steps to simulate: nsteps
for step = 0..nsteps− 1 do

for i = 0..n− 1, j = i+ 1..n− 1 do
ApplyForce(pi,pj ,fi,fj) // calculate force on particles pi and pj , and store in fi and fj

end for
for i = 0..n− 1 do

move(pi,fi) // update particle position and velocity according to the forces calculated in
ApplyForce()

end for
end for

Specifically, we will lower bound and analyze the runtime and energy performance of the 1.5D
O(n2) n-body algorithm proposed by [61]. This algorithm is similar to the 2.5D matrix-matrix
multiplication algorithm in that it replicates data c times across the processor grid to reduce the re-
quired amount of communication. Also like the 2.5D case, the maximal amount of data replication

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 36

Figure 3.9: Data layouts for 1D, 1.5D and 2D n-body algorithms

is bounded by the replication overhead via a memory-independent per-processor communication
lower bound (see [61] and Chapter 4 for details). The 1.5D algorithm is able to obtain speedups
with a reduction in communication time, and parameterizes a spectrum of data replication between
two existing approaches to solving the problem.

If there is no data replication (i.e. c = 1), each processor is allocated n/P particles and
communication is between neighbors on a processor ring (see ”1D case” in Figure 3.9). At the
upper bound on replication (c = P 1/2), each group of P 1/2 can compute independently on a
complete set of the input data. This requires no communication between processor groups. When
1 < c < P 1/2, the processors are considered to be a (P/c)-by-c mesh wherein each group of P/c
processors has an complete copy of the input data. The 1.5D n-body algorithm has been proven
to asymptotically attain communication lower bounds and we will reiterate the results of Driscoll
et al.[61] to argue that it is energy-optimal as well. As with the 2.5D matrix-matrix multiplication
algorithm, this algorithm’s ability to parameterize the tradeoff between additional memory and
communication will allow us to analyze the impact of various constraints on the optimal amount
of replication. Similarly to 2.5D matrix-matrix multiplication, the 1.5D n-body algorithm is able
to strong scale perfectly in runtime with constant energy for a range of processors by replicating
data.

In closing, we note that focusing on an O(n2) n-body is still insightful despite the existence
of faster approaches. In practice, the all-to-all interaction of the bodies can often be approximated
by only considering the interactions of bodies within some cutoff distance. Figure 3.10 illustrates
the potential benefit of a cutoff distance. In the left portion of the figure, the grey body (pi) must
interact with each of the other four bodies in the system. On the right of the figure, pi now only
interacts with the bodies within its cutoff distance resulting in only two calls to applyForce(). This
approximation is a simple modification to the O(n2) algorithm and can result in significant per-
formance improvement without the overhead of implementing a tuned version of a more-efficient
algorithm, such as FMM. Note that this calculation with cutoff is in fact the base of the FMM

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 37

Figure 3.10: O(n2) n-body algorithm with and without a cutoff distance

divide-and-conquer algorithm: nearly particles are calculated via the direct n-body method. As
noted within [61], the communication properties of the 1.5D algorithm are extensible to the use
of a cutoff value and we believe that our lower bounds and analysis can be easily adapted to this
situation.

3.4 Model Validation
In this section, we present evidence that the time and energy behavior of several computational
kernels is accurately captured via the machine models described earlier in this chapter. In par-
ticular, we focus on the sequential and heterogeneous models and argue that modeling individ-
ual node behavior is a reasonable approach to extrapolating the efficiency of distributed par-
allel machines. As noted in earlier chapters, data and code for this section can be found at:
https://github.com/agearh/dissertation.git.

Performance Counter Measurement
To validate our machine models, we wish to show that the models can reasonably fit energy and
runtime. To do this on certain machines, we use a custom library named CounterHomeBrew
(CHB) to measure the number of cache lines transferred between levels of cache on Intel ma-
chines. This library is designed to allow access to hardware performance counters that have not
been implemented in production performance counter libraries, such as the Performance Applica-
tion Programming Interface (PAPI)[112], perfmon2 [64] or Intel’s Performance Counter Monitor
(PCM) [147]. We note that this functionality is also exposed via the likwid suite [137], a set of
tools that allow for access to performance counters on many Intel and AMD machines with very
little modification to the benchmark source. We discovered problems with likwid when measuring
cache misses on Sandy Bridge-EP, and thus used CHB in this work. As currently implemented,
CHB is limited in functionality to Intel 7500 series and Sandy Bridge-EP servers, but may be ex-
tended in the future. To capture total machine data traffic at the various levels of cache, we enable

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 38

To Be Measured Event Mask Comments
L1 to L2 Misses 0x51 0x01 Core Event, L1D replacement
L2 to L3 Misses 0xF1 0x07 Core Event, L2 lines in all

L3 to DRAM Misses 0x37 0xF Cbo Event, filter=0x1F, LLC VICTIMS

Table 3.2: Measuring Data Movement on Sandy Bridge-EP

counters on each core and last level Cache Box (CBo) and then sum the individual counters at the
end of execution. We obtained counter information from the Intel 64 and IA-32 Architecture Soft-
ware Developer Manuals [78] and the uncore programming guides for the Xeon 7500, E5-2600
and E7 families of processors [80, 81, 83].

Last-level cache misses on Intel 7500 series processors were successfully measured by Simhadri,
Blelloch, Fineman, Gibbons and Kyrola [123] in their analysis of space-bounded schedulers. For
data collected with our Xeon 7560 machine, we used CHB in a similar method to that used by
Simhadri et al. As counting data traffic on Sandy Bridge-EP machines has not been validated via
previous work, Table 3.2 shows the specific counters and events used to measure data traffic on
these machines.

To evaluate the validity of the counters on Sandy Bridge-EP, we measured cache misses be-
tween each level of the device under test (DUT) and checked for correlation with a predicable
benchmark, such as an array copy (i.e. A[i] = B[i] for all i = 0..m − 1). For example, Figure
3.11 shows a Sandy Bridge-EP machine running a benchmark that performs 10 copies of one ar-
ray of doubles (8-bytes each) into another array using unit stride. The code was compiled using
Intel’s C compiler (ICC) with compiler flags set to forbid generation of streaming store instruc-
tions that bypass cache. In the figure, vertical lines delimit the sizes of the L1 Data, L2 and L3
caches on a single socket of this machine and the purple ”Expected Misses” line indicates the ex-
pected number of misses for problems that do not obtain reuse in cache. For the 64-byte cache
line sizes used on current Intel machines, this would entail a miss every eighth iteration per array
(i.e. Expected Misses = m/4 for array copy, assuming no streaming stores). As expected, each of
the three counters converges to the number of expected misses once the problem size has exceeded
the given cache level being measured. Figure 3.11b also demonstrates that the counters preserve
expected behavior in the presence of HW prefetcher activity. While the results of Figure 3.11 are
for serial code, the same trend holds for the parallel situation wherein each core runs a sequential
version of the benchmark.

We also noted that the floating point counters on Intel Sandy Bridge machines do not provide
accurate measurements, even when running serial code. Figure 3.12 illustrates this problem for
the various possible loop orderings of naive matrix-matrix multiplication without compiler op-
timizations (i.e. the ’-O0’ compiler flag). In the figure, we can see that four of the possible 6
loop orderings result in a large deviation from the expected (i.e. 2n3 for a dense, square classical
matrix-matrix multiplication) number of measured flops. Due to the issues highlighted by Figure
3.12, results that require flop counts use theoretical values. This problem of counting floating point

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 39

(a) Array copy, no HW prefetchers (b) Array copy, with HW prefetchers

Figure 3.11: Counting cache misses during array copy on Sandy Bridge-EP

Figure 3.12: Inaccurate floating point operation counts on Sandy Bridge-EP

operations on Intel Sandy Bridge and Ivy Bridge processors has also been documented using PAPI
[48].

Our Xeon 7560 machine is quad-socket (for 32 total physical cores) and has 128GB of installed
DDR3-1660 DRAM. We used the Intel compiler v.14.0.2 and MKL v.11.1.2 for high-performance
linear algebra functions (e.g. DGEMM or DGEMV), and the machine runs Ubuntu 12.04 with the
3.2.0-26 version of the linux kernel. Our dual-socket Sandy Bridge-EP testbed machine has two
Xeon 2650 processors and 128GB of installed DDR3-1600 DRAM. On this machine, we used Intel
compiler v.14.0.1.106 and MKL v.11.1.1 for tuned linear algebra functions. The Sandy Bridge-EP
machine runs Ubuntu 12.04 with the 3.2.0-30 version of the linux kernel and GPU routines were
accessed via version 5.5.0 of the CUDA Toolkit.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 40

Measuring Power and Energy
In this work, we use direct measurement to obtain energy consumption data. In Section 2.2, we
observed that wall power during execution of an application kernel remains relatively constant.
With this in mind, may approximate kernel energy consumption by multiplying runtime and aver-
age power. We use one instrument for direct measurement of wall power data: a Wattsup Pro meter
[144]. This meter is interposed between the test machine and the wall power outlet. The Wattsup
Pro meter samples at a rate of 1Hz, and feeds these samples into a text file on the test machine for
later analysis. Collecting wall power samples on the test machine itself does not appear to affect
floating point throughput, and we assume that energy consumption is likewise unaffected. The
advantage of this meter is that it is easy to move between machines, is low-cost and provides a
simple interface for data collection. Unfortunately, measuring power at the wall includes power
supply inefficiency (see Section 2.3) and the low sample rate of the Wattsup Pro meter requires
experiments to be repeated many times for a reasonable power measurement to be obtained. In this
work, we assume power supply inefficiency to be a small constant component of the machine’s
static power as described in Section 2.2. To obtain an average power measurement for the instruc-
tion mix representing a kernel, we use a script to align kernel timestamps and timestamps within
the wall power output data3. Several examples of these alignments are shown in Figure 3.13. In the
figure, we show (in blue) wall power traces for the repeated double precision sparse matrix vector
multiplication (DSPMV) of 4 different sparse matrices from the University of Florida collection
[50]. The names of the matrices are shown on each of the runs, and the data used for collection
of average wall power is between the red intervals which delineate the start of a set of DSPMVs
on the same input data. Note that as argued in Section 2.2, sparse matrix-vector multiplication
shows relatively constant power during a run but power depends on the input data (i.e. for sparse
problems, the flop/word ratio of the kernel depends on the structure of the input matrix).

Sequential Model (S)
We validate the sequential model (S) of time and energy, in Equations (3.1) and (3.2), respectively,
by running several algorithms on the Intel Xeon 7560 and Sandy Bridge-EP machines and consider
goodness of the fit obtained via a non-negative least squares solver. In the experiments that follow,
we choose problem sizes that fit entirely in DRAM but are too large for the last-level cache (LLC).
Thus, we model communication as traffic between a fast LLC and slow DRAM. Due to the low
sample rate (1Hz) and precision (1/10W) of our wall power meter, we run benchmarks in parallel
on all physical cores when attempting to fit node runtime and energy performance. Thus, we model
the multicore testbed machines as if they were sequential and combine the performance of multiple

3When calculating the average power for a kernel, we drop the first three power meter samples from the time
interval reported by the benchmark as we are attempting to capture a steady-state approximation of power consumed
during the kernel. Benchmark and wall power timestamps were typically correlated to within 1-2 seconds (based
on the alignment of an increase in wall power with the start of a series of kernels). This alignment uncertainly was
significantly reduced by dropping the first few wall power samples in the timestamped interval.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 41

Figure 3.13: Typical wall power sample windows for several sparse matrix-vector multiplication
problems

cores into a single abstract processor.4 As we consider DRAM to be slow memory in this section,
the size of fast memory (M) is the sum of LLCs on each socket of the testbed machines (e.g. the
dual-socket Sandy Bridge-EP has a 20MB LLC per socket, for M = 40MB). Wall power data for
all benchmarks was collected for at least 10 seconds, and all runs used double-precision arithmetic.

In the sequential model (S), we simplify the expressions for energy ES in Equation (3.2) and
runtime TS in Equation (3.1) in two ways. First, on server nodes and desktops, “messages” are
cache lines which are the number of words divided by some small constant, so we eliminate terms
pertaining to messages (that include αt and αe). Second, as idle energy for the total installed
amount of DRAM is included in wall power on current machines, we assume that the term repre-
senting idle memory energy (δeMT) is part of the εeT . The sequential runtime and energy models
now become

TS = γtF + βtW (3.13)

ES = γeF + βeW + εeTS (3.14)

We note that ES can also be considered in terms of the total power consumption, HS:

ES = TSHS = TS(HSdyn
+HSstatic

) ≡ TS

(
γeF + βeW

TS
+ εe

)
whereHSdyn

andHSstatic
are the dynamic and static power components of wall power, respectively.

Some additional observations about kernel power consumption make validation easier:
4This means that γt represents the time to perform 1/#cores actual flops. This detail does not affect the following

analysis.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 42

1. As argued in Chapter 2, the literature suggests that energy consumption on server and desk-
top machines is dominated by three components: the processor package (execution units and
SRAM-based caches), DRAM and static energies (e.g. disk, motherboard, etc.).

2. Arithmetic intensity also does not significantly vary with problem size within a given level
of memory, unless the memory access pattern of the data structure is dependent on the input
data, such as for sparse matrix computations (see Figure 3.14b).

3. The power required to compute an application phase does not vary significantly during ex-
ecution (see Figures 2.3, 2.4, and Figure 3.14b). For theoretical intuition, consider the dy-
namic power of classical O(n3) matrix-matrix multiplication:

Hdyn =
γeF + βeW

TS
=
γeF + βeW

γtF + βtW
=
γeF + βe

F
M1/2

γtF + βt
F

M1/2

=
γe + βe

M1/2

γt + βt
M1/2

where we substitute F = 2n3 (recall that F is the number of flops required to compute the
matrix-matrix multiplication) and a lower bound on communication volume (W = F/M1/2,
see Chapter 4 for details). Note that F cancels out of the expression, leaving dynamic power
equal to a ratio depending on γe,βe,γt,βe andM . As the amount of local memoryM becomes
larger, the dynamic power becomes increasingly close to the power γe/γe needed to compute
a flop, assuming n2 > M .

Fitting the Model via Least Squares

An intuitive approach to fitting the runtime and energy models of Equations (3.13) and (3.14) is to
formulate it as a nonnegative linear least squares (NNLS) problem5, and use a black box solver to
fit the parameters (Matlab’s lsqnonneg()). In detail, the NNLS problem is defined as

argmin
x≥0

||Ax− b||22

where A is an k × l matrix, b is a vector of length k and x is the solution vector of length l. We
note that lsqnonneg() solves NNLS problems via a variant of the classic algorithm by Lawson
and Hanson [96]. A so-called active-set method, this algorithm maintains two sets of variables:
an active set of variables that violate the non-negativity constraint and a passive set of those that
do not. The algorithm is iterative, with elements of the active set (the largest components of the
negative gradient AT (b−Ax)) selectively added to the passive set in an outermost loop. The thus-
augmented passive set is then used to solve an unconstrained least squares problem. If the solution
vector z to this unconstrained problem is nonnegative, the algorithm selects another member of
the active set to include in the solution and repeats until the active set is empty or all components
of the negative gradient are non-positive. However, if z includes non-positive values, we improve

5We use NNLS as negative values of runtime and energy parameters do not conform to physical intuition, e.g. a
negative joule/flop (γe) cost is non-sensical.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 43

solution vector x by η(z − x) where 0 < η ≤ 1 is chosen to ensure the non-negativity of x.
For further details, and a proof of convergence, see [96]. Several other researchers have suggested
improvements to this algorithm [140, 36], including the addition of parallelism [104].

Regarding the problem at hand, we write the runtime and energy expressions of Equations
(3.13) and (3.14) as NNLS problems in the following manner

argmin
xt≥0

||Atxt − bt||22 = argmin
xt≥0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

F1 W ∗

1

F2 W ∗
2

...
...

Fk W ∗
k

[
γt
βt

]
−

T ∗1
T ∗2
...
T ∗k

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

2

(3.15)

argmin
xe≥0

||Aexe − be||22 = argmin
xe≥0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

F1 W ∗

1 T ∗1
F2 W ∗

2 T ∗2
...

...
...

Fk W ∗
k T ∗k

 γe
βe
εe

−

H∗1T

∗
1

H∗2T
∗
2

...
H∗kT

∗
k

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

2

(3.16)

where nonnegativity constraints (xt ≥ 0 and xe ≥ 0) are imposed. Each row of the matrices
represents measurements from an individual trial run of the implementation to be fitted (or a set
of suitable microbenchmarks that approximate the instruction mix of the targeted kernel, as will
be discussed in Section 3.5). Further, variables with an asterisk in Equations (3.15) and (3.16)
represent experimentally-determined values. We approximate the energy consumption of a run
by multiplying the measured runtime T ∗i by the average wall power H∗i , implicitly assuming that
the deviation of wall power within a run is small. This assumption appears to be supported by
the data, as discussed in Section 2.2. Using wall power to estimate energy allows for the use of
cost-effective monitoring equipment, and as we argued in Section 2.2, this represents a reasonable
approximation of energy consumption due to the phase-based behavior of kernels. Further, due
to the limitations of counting flops on recent Intel machines (see Section 3.4 for details) we used
theoretical values for the number of executed flops instead of measured values, e.g. F = 2n3 for
dense matrix-matrix multiplication on n-by-n matrices.

We solve the NNLS problems of Equations (3.15) and (3.16) by running the target kernel
implementation for various problem sizes that fit within a targeted level of the memory hierarchy
(DRAM, in this instance). For example, one may run successively larger dense matrix-matrix
multiplication problems and measure the runtime, amount of transferred data and average wall
power to generate At, Ae, bt and be. Table 3.3 shows such data on a dual socket Sandy Bridge-EP
server for a naive implementation of dense double-precision O(n3) matrix-matrix multiplication
(see Algorithm 3) with matrix dimensions varying from n = 1400 to n = 3000. This range of
problem sizes occupies between approximately 45 and 206 MB of main memory, where the total
size of the last level caches on this machine is 40MB. Note that after n = 2000, the flop/word ratio
of the computation becomes relatively constant.6 This supports our hypothesis of program phase

6A minimal flop/word ratio for sequential naive matrix-matrix multiplication would be 1 assuming reads of Aik

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 44

behavior, with the observation that larger problem sizes (beyond the fast memory size) are needed
to eliminate residual caching effects. This latter observation is also observed in the behavior of
sparse matrix-vector computations. In Figure 3.14, we see F/W ∗ ratios for a set of several hundred
sparse matrices ordered by the memory footprint of the CSR representation of the problem. Note
that the optimal F/W ∗ ratio of 4/3 is exceeded for many smaller problems, despite the matrix
technically being larger than cache.7 In the results that follow, we use problems with memory
footprints larger than 50MB to generate reasonable NNLS fits. The data in Table 3.3 and Figure
3.14 suggest that further accuracy may be attained with footprints larger than 60-70MB on this
particular machine.

n F W ∗ F/W ∗ T ∗ H∗T ∗

1400 5.49E+009 5.07E+006 1081.80 22.89 5587.3
1600 8.19E+009 3.11E+008 26.35 44.86 10979.1
1800 1.17E+010 9.60E+008 12.15 74.16 20944.2
2000 1.60E+010 1.80E+009 8.88 110.78 28257.1
2200 2.13E+010 2.61E+009 8.17 154.72 39304.6
2400 2.76E+010 3.35E+009 8.25 179.14 46189.1
2600 3.52E+010 4.08E+009 8.62 212.10 54717.0
2800 4.39E+010 4.80E+009 9.12 245.06 63244.9
3000 5.40E+010 5.53E+009 9.77 278.02 71772.8

Table 3.3: Sandy Bridge-EP: Arithmetic intensity (flop/word) for naive matrix-matrix multiplica-
tion

With proper scaling of the columns of At and Ae to reduce the condition numbers, this method
is effective at generating quality fits of runtime and energy. Average percent error values for NNLS
fits across a range of problem sizes8 with only column scaling are shown for a Sandy Bridge-EP
machine in Table 3.4 and for a Xeon 7560 machine in Table 3.5. Error was calculated as the
average relative difference in percent between the models and measured runtime and energy data.
Models used fitted parameters, theoretical values of F , measured counts of last-level cache misses
converted to words for W ∗, and measured average power H∗. For the energy model, measured
runtime was used as opposed to the runtime model. In the case of double-precision sparse matrix-
vector multiplication (DSPMV), a number of matrices from the University of Florida Sparse Matrix
Collection [50] were run for a number of iterations sufficient to obtain useful power measurements
(> 10 seconds). We suspect that larger sizes than 50MB would result in a substantially better fit on
this machine. The higher runtime error error value for naive DGEMM on the Xeon 7560 machine

and Bkj and use of a register to accumulate Cij , but this code attains around 9 due to parallelism (OpenMP) and
compiler optimizations (Intel C compiler, ”-O3” optimization flag).

7Assuming the two vectors fit completely in cache, we only need to load one word of the matrix and the index
array (with 4-byte integer elements, so 1/2 a word) each iteration.

8See spreadsheets in the git repo for this dissertation, https://github.com/agearh/dissertation.
git, for details.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 45

(a) Naive DSPMV (b) MKL DSPMV

Figure 3.14: Sandy Bridge-EP: Flop/Word ratios for double-precision sparse matrix-vector multi-
plication (DSPMV)

is due to a single run (N=3900) that required 103 seconds to run (for comparison, running N=4000
required 55 seconds). This effect persisted even when averaged over five iterations. The similarly
large error with naive DGEMM on the Sandy Bridge-EP machine was likely due to performance
variability at smaller problem sizes. For all benchmarks on the Sandy Bridge-EP machine, the
NNLS formulation of Equations (3.15) and (3.16) resulted in average errors of less than 25%.
The Xeon 7560 machine obtained similar results, with the exception of DSPMV. We believe that
runtime is much more sensitive to matrix structure than energy for sparse problems, perhaps due
to the large static energy component on this this machine. If we attempted to fit repeated runs of a
single class of matrix structure (e.g. a set of diagonal matrices of increasing size), this issue may
be mitigated.

As a side note, scaling the rows ofAt andAe (i.e. weighted least squares) on the Sandy Bridge-
EP machine by functions of F (see Table 3.6 for results when rows are scaled by 1/F) resulted in
little improvement in accuracy and often significantly worse performance (e.g. naive DSPMV).9

We also attempted to fit parameters for the Sandy Bridge-EP machine using combined data from
multiple benchmarks as well as with a least-squares solver without non negativity constraints.
These alternate fits did not result in accuracy improvements, and in many cases significantly de-
creased accuracy (see the git repo for this dissertation for more details). Note that these results
evaluate the quality of fit to the training data, and not the predictive capability of the model. One
would expect the error to increase if compared with non-training data, especially if the set of train-
ing data does not capture the variability of machine behavior.

The fitted parameters for the NNLS problems without row scaling are shown in Tables 3.7
(Sandy Bridge-EP) and 3.9 (Xeon 7560). While the overall fit of runtime and energy data is

9Evaluated row scaling functions of F included 1/F for all kernels. Other functions were also evaluated:
DGEMM, 1/F 2/3; DGEMV, 1/F 1/2; DSPMV, 2/F and 1/memSize where memSize is the size of the CSR ma-
trix in words.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 46

Runtime % Error Energy % Error
MKL DGEMM 1.82 0.54
Naive DGEMM 13.29 1.82
MKL DGEMV 1.00 2.00
Naive DGEMV 4.53 2.42
MKL DSPMV 22.59 1.39
Naive DSPMV 24.33 1.58

Table 3.4: Sandy Bridge-EP: Average runtime and energy % error (no row scaling)

Runtime % Error Energy % Error
MKL DGEMM 2.68 0.60
Naive DGEMM 20.41 0.79
MKL DGEMV 0.99 0.19
Naive DGEMV 12.50 0.15
MKL DSPMV 35.15 1.71
Naive DSPMV 40.42 2.52

Table 3.5: Xeon 7560: Average runtime and energy % error (no row scaling)

Runtime % Error Energy % Error
MKL DGEMM 1.94 0.30
Naive DGEMM 7.16 1.75
MKL DGEMV 0.82 2.38
Naive DGEMV 5.36 0.96
MKL DSPMV 31.61 1.75
Naive DSPMV 43.67 2.26

Table 3.6: Sandy Bridge-EP: Average runtime and energy % error (1/F row scaling)

reasonably accurate, these benchmarks are not an effective way to approximate model parameters
for a given problem implementation. This is evidenced by several parameters fitting to zero. We
believe this to be due to the fact that At and Ae are often low rank due to the relatively constant
ratio of F to W ∗ when the NNLS problems are formulated by running multiple problem sizes of
the same code implementation. We discuss this issue further later in the section. In Tables 3.8 and
3.10, we compare modeled floating point (Gflop/s, via γt) and runtime (GB/s, via βt) throughputs
with the average of measured values for the range of problem sizes used to fit the model. For
each of the benchmarks, one would expect parameters for the benchmark’s dominant throughput-
limiting operation (floating point operations or memory traffic) to be fitted more accurately. Of the
benchmarks, only MKL DGEMM is bounded by the machine’s floating point capability, while the
other codes are limited by DRAM bandwidth. Indeed, on the Sandy Bridge-EP test machine (Table

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 47

3.8), we observe that the modeled floating point throughput (1e-9/γt, Gflop/s) is significantly
closer to the measured value than the modeled bandwidth (8e-9/βt, GB/s). A similar trend can
be observed with naive DGEMM and both implementations of DGEMV and DSPMV. In Figures
3.15, 3.16 and 3.17, we explore the relationship between components of the fitted models and
highlight points of intersection and divergence from expected behavior with regard to benchmark
characteristics on the Sandy Bridge-EP experimental machine. We define Tcomp = γtF , Tcomm =
βtW

∗, Ecomp = γeF , Ecomm = βeW
∗ and Eidle = εeT

∗. Note that these are modeled values. We
further define Tactual and Eactual represent measured values of runtime and energy (with energy
based on multiplying runtime by a measured average power, as discussed previously). Thus, is
the model were error-free, Tactual = Tcomp + Tcomm and Eactual = Ecomp + Ecomm + Eidle. Later,
in Section 3.5, we discuss related work that attempts to construct benchmarks to calculate these
parameters accurately.

Parameter γt βt γe βe εe
MKL DGEMM 3.03E-12 4.48E-10 4.57E-11 4.81E-09 277.16
Naive DGEMM 2.23E-09 3.24E-08 1.16E-08 1.89E-07 252.32
MKL DGEMV 1.47E-11 2.03E-10 0 0 250.50
Naive DGEMV 9.51E-11 1.43E-10 1.75E-08 2.68E-08 97.77
MKL DSPMV 3.32E-11 1.68E-10 0 1.33E-08 220.04
Naive DSPMV 0 2.03E-10 0 1.30E-08 223.55

Table 3.7: Sandy Bridge-EP: Fitted sequential machine parameters without row scaling

Modeled Gflop/s Measured Gflop/s Modeled GB/s Measured GB/s
MKL DGEMM 330.05 228.91 17.84 5.46
Naive DGEMM 0.45 0.17 0.25 0.12
MKL DGEMV 68.07 8.17 39.41 34.53
Naive DGEMV 10.51 5.91 56.10 25.72
MKL DSPMV 30.11 3.84 47.69 39.99
Naive DSPMV undefined 5.81 39.43 39.37

Table 3.8: Sandy Bridge-EP: Modeled vs. Measured Runtime Throughputs

In Figure 3.15, we visualize the relationships between modeled computation and communica-
tion in runtime and energy for DGEMM on the Sandy Bridge-EP machine. The energy model also
includes idle energy, and the model parameters are from Table 3.7. The vertical axes are logarith-
mic, and the horizontal axis is linear in problem size. The optimized implementation of DGEMM
(Intel’s MKL library) is represented in the upper subplots, and demonstrates a clear dominance
of computation over communication. Idle energy dominates overall, which is interesting due to

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 48

Parameter γt βt γe βe εe
MKL DGEMM 2.28E-12 5.14E-10 7.49E-10 3.79E-08 872.67
Naive DGEMM 0 2.82E-10 3.69E-08 5.34E-09 871.96
MKL DGEMV 2.74E-10 0 6.86E-09 0 810.00
Naive DGEMV 0 2.67E-10 5.51E-09 2.91E-08 806.41
MKL DSPMV 4.10E-11 1.72E-10 0 1.22E-08 895.98
Naive DSPMV 0 2.83E-10 3.91E-09 6.84E-09 893.33

Table 3.9: Xeon 7560: Fitted sequential machine parameters without row scaling

Modeled Gflop/s Measured Gflop/s Modeled GB/s Measured GB/s
MKL DGEMM 438.29 254.83 15.57 6.4
Naive DGEMM undefined 2.63 28.35 31.34
MKL DGEMV 3.65 3.66 undefined 15
Naive DGEMV undefined 7.73 29.91 33.24
MKL DSPMV 24.37 6.27 46.43 40.04
Naive DSPMV undefined 5.16 28.23 31.73

Table 3.10: Xeon 7560: Modeled vs. Measured Runtime Throughputs

the high intensity of the implementation. This is expected from a highly-optimized algorithm that
attains a high fraction of peak machine performance. The lower two subplots represent the naive
implementation of DGEMM. With runtime, communication dominates to the point of the γt being
fitted to zero.10 In the energy case, communication dominates computation (as expected from a
naive algorithm), but to a lesser extent than expected. Again, idle energy (εeT , or Eidle), domi-
nates. Note that modeled data Tcomm and Ecomm drop quickly for small problem sizes. We believe
this is due to cache effects causing a significantly reduced number of cache misses for smaller
problems.

Dense double-precision matrix-vector multiplication (DGEMV, Figure 3.16) shows a clear
dominance of communication runtime and idle energy. The former is to be expected from an ex-
tremely communication-bound algorithm. The lack of a dynamic energy component of the MKL
implementation’s energy model is surprising, especially as the model fits the data well (with 2%
average error). The naive implementation shows a nearly identical relationship between the model
components, with regards to both runtime and energy. One suspects that more-targeted benchmarks
are needed to tease apart the relationships between model parameters in this situation.

Finally, Figure 3.17 displays runtime and energy components for both tuned and naive imple-
mentations of DSPMV. For these plots, the horizontal axis represents the memory footprint of the
CSR representation of the matrix-vector multiplication problem, as opposed to the matrix size as

10We include zero-value runtime or energy components in the legend to highlight their absence.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 49

(a) MKL DGEMM Modeled Runtime (b) MKL DGEMM Modeled Energy

(c) Naive DGEMM Modeled Runtime (d) Naive DGEMM Modeled Energy

Figure 3.15: Sandy Bridge-EP: Modeled (no row scaling) double-precision matrix-matrix multi-
plication (DGEMM)

used in the previous two sets of figures. In both naive and tuned DSPMV, communication costs
dominate the runtime models. This is to be expected for an algorithm that is performance limited
by communication. Idle energy dominates for both the MKL and naive implementations, with a
smaller communication component. Computation energy fits to zero, not unexpected for such a
communication-dominated algorithm.

The fitted runtime parameters on the Xeon 7560 machine strongly support the hypothesis that
parameters related to the underlying thoughput-limiting operation (flops or memory operations)
will be fitted more accurately, with one notable aberration. In Table 3.9, we see that the modeled
floating point throughput for MKL DGEMM (438.29 Gflop/s) compares reasonably well with the
average measured value of 254.83 Gflop/s. Similarly, modeled bandwidth for Naive DGEMM,
Naive DGEMV, and both implementations of DSPMV compare well with the measured values.
Interestingly, MKL DGEMV fits the measured floating point rate nearly exactly (3.65 Gflop/s

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 50

(a) MKL DGEMV Modeled Runtime (b) MKL DGEMV Modeled Energy

(c) Naive DGEMV Modeled Runtime (d) Naive DGEMV Modeled Energy

Figure 3.16: Sandy Bridge-EP: Modeled (no row scaling) double-precision dense matrix-vector
multiplication (DGEMV)

vs. 3.66 Gflop/s), but fits the bandwidth parameter (βt) to zero. This code is intuitively limited
by communication bandwidth, so this result is unexpected. While we don’t provide a detailed
discussion of the fitted parameters on this machine (unlike the Sandy Bridge machine, above), we
note that the fitted values of εe are relatively consistent across benchmarks, which is a positive sign.

As noted earlier, a probable reason for our inability to accurately fit parameters is likely due
to the relatively constant ratio of F/W ∗ in our construction of the NNLS problems. This results
in At and Ae matrices that are low rank, and the NNLS solver is unable to properly differentiate
γ and β terms. Indeed, when we only attempt to fit γt, γe and εe (dropping βt and βe) with MKL
DGEMM and βt, βe, and εe with naive DGEMM, DGEMV and DSPMV, quality of fit for all
implementations decreases little (with the exception of naive DGEMM, see Tables 3.11 and 3.12).
In Table 3.13, we note that the runtime throughputs (Gflop/s and GB/s) agree almost exactly with

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 51

(a) MKL DSPMV Modeled Runtime (b) MKL DSPMV Modeled Energy

(c) Naive DSPMV Modeled Runtime (d) Naive DSPMV Modeled Energy

Figure 3.17: Sandy Bridge-EP: Modeled (no row scaling) double-precision sparse matrix-vector
multiplication (DSPMV)

measured values (again with the exception of naive DGEMM).11 The problem with naive DGEMM
may be due to cache effects for small problems, as noted previously. Carefully constructing At
and Ae as combinations of implementations (with proper row and column scaling) may be the
correct approach to mitigate this issue, but our limited exploration of such fits did not yield better
parameters (see analysis in the git repository associated with this work).

The NNLS fit results for DGEMM, DGEMV and DSPMV suggest that the runtime and energy
behavior of these benchmarks can be accurately encapsulated via models with only a handful of
parameters. However, we demonstrate that running implementations of these benchmarks for dif-
ferent problem sizes is not sufficient to attain accurate values of the model parameters themselves.
This suggests a need for specialized benchmarks to isolate these performance parameters, as will
be discussed in Section 3.5.

11We row scale MKL DGEMM by 1/F and the other implementations by 1/W ∗.

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 52

Runtime % Error Energy % Error
MKL DGEMM 2.11 0.30
Naive DGEMM 167.74 1.66
MKL DGEMV 1.25 2.30
Naive DGEMV 6.19 0.97
MKL DSPMV 32.35 1.58
Naive DSPMV 32.84 1.86

Table 3.11: Sandy Bridge-EP: Average runtime and energy % error when non-dominant terms are
dropped from model (with row scaling)

Parameter γt βt γe βe εe
MKL DGEMM 4.37E-12 N/A 3.34E-10 N/A 213.23
Naive DGEMM N/A 1.60E-07 N/A 7.10E-07 245.45
MKL DGEMV N/A 2.32E-10 N/A 3.32E-10 244.80
Naive DGEMV N/A 3.14E-10 N/A 1.12E-08 246.62
MKL DSPMV N/A 2.34E-10 N/A 1.40E-08 218.61
Naive DSPMV N/A 2.34E-10 N/A 1.42E-08 219.03

Table 3.12: Sandy Bridge-EP: Fitted sequential machine parameters when non-dominant terms are
dropped from model (with row scaling)

Modeled Gflop/s Measured Gflop/s Modeled GB/s Measured GB/s
MKL DGEMM 228.75 228.91 N/A N/A
Naive DGEMM N/A N/A 0.05 0.12
MKL DGEMV N/A N/A 34.51 34.53
Naive DGEMV N/A N/A 25.45 25.72
MKL DSPMV N/A N/A 34.25 39.99
Naive DSPMV N/A N/A 34.13 39.37

Table 3.13: Sandy Bridge-EP: Modeled vs. measured runtime throughputs when non-dominant
terms are dropped from model (with row scaling)

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 53

Figure 3.18: Heterogeneous machine for validation

Distributed Parallel Models
Due to limitations of our current measurement equipment, we were unable to validate the dis-
tributed parallel machine models in a manner similar to the sequential analysis discussed in the
previous section. In the case of the DP2 model, a validated sequential model (with the reasonable
assumption that network energy scales with the number of links) is most likely sufficient to extend
our analysis to a distributed parallel machine. Due to the construction of DP1, we assume that
communication energy scales proportionally with load and could calculate communication param-
eters from industry sources and the research of others. For the validated sequential model to be
useful, we must also assume an asymptotically equal distribution of work (and input/output data)
between the processing nodes. Within these assumptions, we believe that it is reasonable to make
arguments about larger distributed machines. Further, as discussed in Chapter 2, the dominant
communication energy on distributed machines may be due to intranode cache to DRAM transfers
and not internode communication. This would make the inclusion of DP2 especially relevant to
current network interconnect technologies.

Heterogeneous Model
In this section, we demonstrate that the heterogeneous model proposed earlier in this chapter is ca-
pable of representing the runtime and energy costs of a pair of heterogeneous benchmarks. These
benchmarks target a specific subset of heterogeneous platforms: host desktops or servers with an
NVIDIA GPU (Graphics Processing Unit) attached via a PCIe bus.12 Figure 3.18 depicts our val-
idation platform; two heterogeneous processors (a Sandy Bridge-EP multi-socket host server, and
an attached GPU), with host DRAM as global memory. On the host, as with the sequential model
analyzed earlier, we model communication between last-level caches and DRAM. Communication
between the GPU and global memory is modeled to be over a PCIe bus.

The benchmarks themselves are of form similar to Algorithm 7, and complete a series of dense
single-precision matrix-matrix (SGEMM) or matrix-vector multiplications (SGEMV) in parallel

12We are limited to NVIDIA devices due to the benchmark’s use of NVIDIA’s CUDA library, version 5.5. An
OpenCL implementation would allow for wider portability, with tuned BLAS functions via AMDs clMath library [6]

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 54

(a) Scaling Host communication and computation (b) Scaling GPU communication and computation

Figure 3.19: Runtime impact of scaling either Host or GPU SGEMM size

on the host machine and the GPU (also referred to as the device). Two threads are initially allo-
cated for this task, with the first pinned to core 0 and dedicated to submitting work to the GPU.
The second thread handles host work, and starts a parallel matrix multiplication that runs on all
cores except core 0 (i.e. 15 cores of the 16-core host perform repeated multithreaded SGEMM or
SGEMV operations). The structure for Algorithm 7 allows for ab initio knowledge of the commu-
nication volume across the PCIe link, avoiding limitations of Intel’s performance counter infras-
tructure with regard to measuring PCIe traffic. In Figure 3.19, we can see that increasing the host’s
problem size while fixing the GPU workload does not increase the runtime of the other processor.
In the right-hand subfigure, we can see the opposite is also true: increasing the amount of GPU
work does not affect the runtime of a fixed amount of host computation. As both share a common
set of memory controllers to access host DRAM, this may be due to the fact that an efficient matrix-
matrix multiplication implementation does not saturate the available bandwidth. Surprisingly, in
the case of matrix-vector multiplication (Figure 3.20) we see a similar performance independence
between host and GPU, despite a communication-intensive algorithm. This may be due to archi-
tectural features, such as direct-memory access (DMA) copies between host and device that bypass
the cache hierarchy. The results in Figures 3.19 and 3.20 support the assumption of independent
communication links that is inherent to our heterogeneous machine model.

As in validation of the sequential model, we assume that communication latency is zero and
eliminate terms that include αti and αei from the model. Similarly, we assume that DRAM idle
power does not vary with the amount of memory used by the problem and thus the δ̂M̂TH term in
the heterogeneous energy model is merged with the static energy term, εHTH . The heterogenous
runtime and energy expressions of Equations (3.7) and (3.8) now become

TH = max (γt1F1 + βt1W1, γt2F2 + βt2W2) (3.17)

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 55

Algorithm 7 Benchmark for validation of heterogeneous model
Require: Host machine with NVIDIA GPGPU, supporting CUDA 5.5+
Require: gpuInner, gpuOuter, hostInner and problem sizes for host (ncpu) and GPU (ngpu)

devices
1: Begin Parallel Section with 2 threads
2: if THREAD == 0 then
3: Allocate device memory (Ad,Bd,Cd) and pinned host memory (Ah,Bh,Ch)
4: Initialize Ah and Bh
5: for i < gpuOuter do
6: Asynchronously copy Ah, Bh into Ad and Bd
7: for j < gpuInner do
8: Compute MULTIPLY (Ad,Bd, Cd) on device
9: end for

10: Asynchronously copy Cd into Ch
11: end for
12: Synchronize host thread 0 with device
13: Deallocate Ad,Bd,Cd,Ah,Bh,Ch
14: else
15: Allocate host memory (A,B,C)
16: Initialize A and B
17: for i < hostInner do
18: Compute MULTIPLY (A,B,C) on host with NCORES-1 threads
19: end for
20: Deallocate A,B,C
21: end if
22: End Parallel Section

EH = γe1F1 + βe1W1 + γe2F2 + βe2W2 + εHTH . (3.18)

To validate the heterogeneous model for these benchmarks, we first write the runtime and
energy expressions as NNLS problems in a similar manner to the sequential model:

argmin
xt1≥0

||At1xt1 − bt1||22 = argmin
xt1≥0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

F11 W ∗

11

F12 W ∗
12

...
...

F1k W ∗
1k

[
γt1
βt1

]
−

T ∗11

T ∗12
...
T ∗1k

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

2

(3.19)

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 56

(a) Scaling Host communication and computation (b) Scaling GPU communication and computation

Figure 3.20: Runtime impact of scaling either Host or GPU SGEMV size

argmin
xe≥0

||Aexe − be||22 = argmin
xe≥0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

F11 W ∗

11 F21 W21 T ∗H0

F12 W ∗
12 F22 W22 T ∗H1

...
...

...
...

...
F1k W ∗

1k F2k W2k T ∗Hk

γe1
βe1
γe2
βe2
εH

−

E∗1
E∗2
...
E∗k

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

2
(3.20)

where nonnegativity constraints are imposed on each element of xt1 and xe. Double subscripts
represent the processor number and the experimental run (e.g. F12 is the number of flops performed
by the first processor on during the second experimental run). We also fit runtime parameters
for both processors independently (as the model assumes independent communication links), and
only show the NNLS problem to calculate parameters of T ∗H1

= max(T ∗1i, T
∗
2i) in Equation (3.19),

above. The matrix expression of the problem for xt2 is similar. As in Section 3.4, we use theoretical
values to calculate the values of Fij due to limitations of the performance counting infastructure.
As Algorithm 7 explicitly copies data to the GPU, we use this known value for W2i.

The calculation of energy values for the experiments, E∗i , differ from the sequential model as
we may have multiple power phases with which to contend (particularly due to the 1Hz sampling
rate of our wall power meter). Looking back to Figure 2.4, we note that the non-initialization
portion of the benchmark has two power phases: the GPU and CPU running together and the CPU
running alone while it completes its workload. As with the sequential validation, we drop the first
several samples from the trace so that we may capture the steady state of a phase. This may result
in smaller phases being dropped from the data, and when this happened an average of about 2% of
the runtime of the benchmark was dropped. We assume this is not a significant issue as the longer
phases of the computation are indeed captured. As we fit parameters for both processors together
in Equation (3.20), we use a script to align benchmark timestamps with power phases and then

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 57

compute the energy for each phase. The total energy for the benchmark is then the sum of these
phase energies (i.e. E∗ =

∑c
i=1H

∗
i T
∗
i where c is the number of power phases in the wall power

trace).
Table 3.14 shows parameter fits and average percent error for models generated via the NNLS

problems of Equations (3.19) and (3.20). As with the sequential machine model, column scaling
was used to reduce the condition number of the matrices (At1 , At2 and Ae). Unsurprisingly, we
also noticed that better fits were obtained when multiple combinations of host/GPU behavior were
included within the NNLS problem: scaling the host problem size and scaling the GPU problem
size. Perhaps due to this greater amount of variability within the regression, average error of the
models was less than 5% and fitted parameter values appeared to be closer to reasonable values
than with the sequential NNLS results despite several parameters still fitted as zero.

Recall that the the heterogeneous benchmarks for SGEMM and SGEMV both use optimized
implementations from either Intel’s MKL library or NVIDIA’s CUBLAS. Thus, we would ex-
pect SGEMM computation to dominate runtime in Table 3.14. On the other hand, SGEMV is
communication-bound and we expect communication to dominate runtime. This is again sup-
ported by the fitted parameter values. Surprisingly, the energy cost of moving data (βe1) is still
large in the case of SGEMM on the host. Due to the low bandwidth of the PCIe link, it is unsur-
prising to see GPU energy dominated by communication costs. The idle power term εH fits to a
value of approximately 182W for both kernels.

SGEMM SGEMV
γt1 (sec/flop) 2.46E-12 0
βt1 (sec/word) 0 1.76E-10
γt2 (sec/flop) 4.15E-13 1.39E-11
βt2 (sec/word) 0 1.50E-09
γe1 (joule/flop) 2.44E-10 0
βe1 (joule/word) 1.08E-08 1.73e-08
γe2 (joule/flop) 5.51e-11 1.14e-09
βe2 (joule/word) 1.21E-06 3.56e-08
εH (joule/sec) 182.92 182.11
Runtime % error 1.28 4.52
Energy % error 1.10 1.43

Table 3.14: Fitted heterogeneous machine parameters without row scaling

As with the solutions to the sequential NNLS problems, the runtime and energy models appear
to accurately capture the behavior of a simple heterogeneous machine. Our approach to validation
would be difficult to scale onto more devices, as isolating the power phases of each device becomes
significantly more difficult. Thus, power monitoring equipment for each device would be required
in addition to wall power. Even though the fitted parameters for the heterogeneous benchmarks ap-
pear closer to reality than on the sequential machine, it is once again clear that a more-sophisticated

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 58

benchmarking framework is required if the objective of modeling is to calculate individual param-
eters accurately. As noted in the previous section for the sequential machine, the NNLS prob-
lems may be low rank, contributing to the difficulty in fitting the parameters themselves. We also
attempted to combine the SGEMM and SGEMV into a single fit, but with no improvement in
fit quality. See the git repository (https://github.com/agearh/dissertation.git)
associated with this work for further details.

3.5 Parameter Estimation for Machines and Implementations
and Related Work

As we noted in previous sections, the models of runtime and energy developed within this work are
able to reproduce the runtime and energy consumption behavior of several computational kernels
with a reasonable degree of accuracy. This supports our claim from Chapter 2, which argues that
the behavior of such kernels is often predicable within a given execution phase. We suspect that
combining models of individual phases is a good approach to modeling multi-phase applications,
as hinted by the heterogeneous results, but we delegate such analysis to future work. One ob-
servation, however, is that our approach to model fitting results in parameters that are reasonably
accurate with regard to overall machine behavior, but that may result in a zero-value or values
that do not coincide with physical intuition (i.e. static power (εe) fitted to 0.33W on a dual-socket
Sandy Bridge-EP server).

Resolving the problem of accurately calculating machine parameters via regression is a difficult
problem, especially in the case of energy-based parameters. As manufacturers typically do not
report energy efficiency details (beyond thermal design power, or TDP), calculating parameters
that describe hardware behavior requires a set of specialized benchmarks that are able to obtain
significant coverage and explore the entire power range of the targeted set of components (or at
least a sufficient faction of this range). Power data from this suite of benchmarks can then be
used to fit model parameters, in a similar manner to the approach described earlier in this chapter.
We regard parameter calculation to be related but orthogonal to the work presented in this thesis,
as we outline an approach to bounding energy that is extensible to new models and increases in
applicability as methods of parameter calculation improve. This section summarizes several key
developments by other researchers on this problem.

In [148], Williams et al. describe Roofline, a model that describes potential floating point
throughput as a function of arithmetic intensity (we present a generalized version of Roofline,
Cityscape, in Chapter 7). The Roofline model utilizes two hardware parameters: peak floating
point throughput and bandwidth, and provides algorithm developers with a rapid means of deter-
mining if an implementation is limited by communication bandwidth or floating point capability
(i.e. Roofline provides an upper bound on floating point throughput). As described in Chapter 1,
most programs are communication-limited. One benefit of the Roofline model is that both hard-
ware parameters can be easily calculated from manufacturer data sheets or benchmarks (such as
the STREAM benchmark for communication bandwidth [108]). The Roofline model can also be

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 59

used to explore the benefit of specific code optimizations on potential throughput, as the hardware-
determined upper bound on throughput is often not attainable due to limitations of the given soft-
ware implementation. For example, a code that does not use vectorization on a machine capable of
computing four operations simultaneously will never attain more than 25% of the machine’s peak
floating point rate, even if the implementation is not limited by communication bandwidth.

The Roofline model for floating point throughput has recently been extended to energy [44]
via models for runtime and energy similar to those described for our sequential machine model
(Equations (3.1) and (3.2)). The authors of [44] describe a microbenchmark with the flexibility to
vary arithmetic intensity, and argue that it is able to quantitatively approximate the upper bound on
energy efficiency described by the roofline model for energy. Results from power-aware desktops
and mobile processors are used as evidence to support this claim, and the results are extended to
further machine architectures in [43]. Both publications present fitted model parameters obtained
via these intensity-variable benchmarks. One criticism of this work lies in the construction of these
benchmarks themselves: they perform a constant amount of data movement, and then parameterize
intensity by replicating a vectorized block of arithmetic operations (balanced for fused multiply-
add units). At high arithmetic intensities, these benchmarks predominantly only stress floating
point units and registers without much impact upon the cache hierarchy. This is problematic,
as several algorithms (e.g. optimized matrix-matrix multiplication) attain high intensities while
continually stressing caches. In [44], this limitation is noted during a discussion of a benchmark
constructed to reproduce the instruction mix of a Fast Multipole Method (FMM) algorithm for the
n-body problem.

In related work, Kestor et al. [91] use a hand-coded microbenchmark suite designed to target
various caches and other functional units on a dual-socket AMD Opteron system. Performance
counters and on-die power meters were used to characterize the energy required to execute specific
instructions, and validation was performed via compositions of the microbenchmarks used to fit the
instruction energies. Kestor et al. then describe the primary energy consumers for the NAS Parallel
Benchmarks [12], and find that L1 data movement typically dominates energy consumption (as all
data must be moved through L1 into registers).

The complexity of modern processor designs as well as the level of specialized knowledge
required to produce an effective microbenchmark suite suggests the need for microbenchmark
generators similar to autotuning frameworks for code optimization. An initial step toward such
generators can be found in the work of Bertran et al. [28], and the introduction to this paper
serves as an excellent reference for previous work on generating benchmarks for individual per-
formance metrics. The work of Bertran et al., however, extends this previous corpus and describes
MicroProbe, a micro benchmark generation framework. MicroProbe was then used to calculate
energy/instruction parameters for IBM’s Power 7 processor, and the authors highlight its ability to
flexibly generate code and explore design spaces. MicroProbe currently has two major limitations:
it requires detailed architectural knowledge to create hardware description files for benchmark
generation, and it is not currently available to the public.

The above work suggests a growing awareness for the need to calculate energy-related metrics
to describe hardware components or instructions at the algorithm level. Furthermore, researchers
have begun to investigate best practices for generating benchmarks that target desired hardware

CHAPTER 3. MACHINE MODELS FOR RUNTIME AND ENERGY 60

components or instructions, even to the point of contracting a framework for microbenchmark gen-
eration (MicroProbe). In the future, a MicroProbe-style approach to generating tuned benchmarks
appears promising, especially if the method for generating such benchmarks can be combined with
existing work dedicated to architectural probing (e.g. automatic cache way or core frequency deter-
mination) to circumvent the need for expert creation of hardware description files. New hardware
designs that utilize simpler, in-order pipelines (e.g. the Rocket core running the RISC-V ISA from
UC Berkeley [143]) may make this process easier due to lower hardware design complexity.

61

Chapter 4

Bounds on Communication, Runtime and
Energy for Specific Algorithms

In this chapter, we review related work on communication lower bounds for sequential and dis-
tributed parallel machines as well as new results in collaboration with Ballard et al. [19] that
bound from below the maximum number of words transferred over a single internode link (Sec-
tion 4.1). We then apply these communication lower bounds to the models of runtime and en-
ergy introduced in Chapter 3 to derive lower bounds on runtime and energy for a set of com-
putational problems (Section 4.2). These energy lower bounds build upon previous work with
Demmel, Schwartz and Lipshitz [55]. We also note that specific algorithms for these problems
(2.5D O(n3) matrix-matrix multiplication [126], Communication-Avoiding Parallel Strassen [98]
and a communication-avoiding O(n2) n-body algorithm [61]) are able to perfectly strong scale in
runtime with constant energy for a range of processors. Finally, extending work with Ballard and
Demmel [17], we derive lower bounds on the runtime and energy consumption of heterogeneous
machines (Section 4.3) and present algorithms for dense matrix-vector and O(n3) matrix-matrix
multiplication that attain these bounds (Section 4.4).

4.1 Communication Lower Bounds for Sequential and
Distributed Parallel Machines

In the sequential and distributed parallel machine models, Ballard et al. [15] proved communica-
tion lower bounds (with some technical assumptions, see [15] for details) on programs of form

for all (i1, i2, i3) ∈ Z ⊂ Z3, in some order,
C(i1, i2) = C(i1, i2) +i1,i2 A(i1, i3) ∗i1,i2,i3 B(i3, i2)

where Z3 is the 3-dimensional lattice of integers, M is the utilized amount of fast memory, Z
is the iteration space and +i1,i2/∗i1,i2,i3 are binary operations (e.g. addition and multiplication,

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 62

in many cases). Ballard et al. noted that this model is general enough to include not just matrix
multiplication, but many direct linear algebra algorithms, such as LU factorization. The cardinality
of the iteration space, F = |Z|, can be thought of as the number of “useful” work operations
required to complete the algorithm and in this chapter, we will assume that the elements of Z
represent sets of floating point operations of constant size. In the sequential machine model, the
number of reads/writes between slow and fast memory is bounded below by

WDLA
S (M,N,F) = Ω

(
max

(
N,

F

M1/2

))
(4.1)

where problem size N = I + O is the sum of the number of input (I) and output (O) words,
respectively. DLA stands for “Direct Linear Algebra”. Similarly, a lower bound on the number of
transferred messages can be obtained by dividing Equation (4.1) by the largest possible message
size, m:1

SDLAS (M,N,F) = Ω

(
max

(
N

m
,

F

mM1/2

))
. (4.2)

On parallel distributed machines, Ballard et al. assume a workload distributed so that every
processor performs Ω(1/P) of the computation, and that the input and output data is distributed
such that every processor stores O(1/P) of the data. On this machine, a single copy of the data
is already distributed across the local node memories, so the N = I + O bound of the sequential
model does not apply. In its place, Ballard et al. [21] observed that a memory-independent lower
bound applies for distributed machines assuming there is just one copy of the data at the start of the
computation (see [21] for more details). Therefore, the number of work operations is assumed to
be roughly equally distributed amongst the various processing elements and the parallel distributed
communication lower bounds are:

WDLA
DP (M,P, F) = Ω

(
max

((
F

P

)2/3

,
F

PM1/2

))
(4.3)

and

SDLADP (M,P, F) = Ω

(
max

(
1

m

(
F

P

)2/3

,
F

mPM1/2

))
. (4.4)

Ballard et al. also picked the iteration space Z , arrays A,B,C, and binary operations +i1,i2 and
∗i1,i2,i3 to represent many (dense or sparse) linear algebra algorithms. More details regarding the
theoretical basis of these communication bounds and their derivation can be found in [15]. At a
high level, the bounds are derived by bounding the maximal number of “useful” (defined within
[15]) compute operations (e.g. flops) that can be performed upon the working set that can fit within
the fast memory of size M . This bound is obtained for all direct problems by a generalization of
the parallel matrix-matrix multiplication bound proven by Irony, Toledo and Tiskin [84] which

1For the remainder of this work, we abuse the Ω-notation a bit by including constants when they are known or
necessary.

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 63

mapped matrix-matrix multiplication onto a construction that allowed the result of Loomis and
Whitney [102] to bound the number of useful operations on a given amount of data. In Section
4.3, we extend the sequential communication lower bounds to a heterogeneous machine model
as discussed in [17] along with optimal algorithms that attain the lower bound for dense classical
matrix-matrix and matrix-vector multiplication.

In [20], Ballard et al. use graph expansion2 to derive communication bounds on fast matrix
multiplication algorithms of the type discussed within Section 3.3. In the sequential machine
model, the word volume and latency bounds are

W FMM
S (M,n) = Ω

(
max

(
n2,

nω0

Mω0/2−1

))
(4.5)

and

SFMM
S (M,n) = Ω

(
max

(
n2

m
,

nω0

mMω0/2−1

))
. (4.6)

where ω0 is the exponent of the asymptotic floating point complexity of the algorithm (e.g. for
Strassen’s 1969 algorithm [129], ω0 ≈ 2.81) and FMM stands for “Fast Matrix Multiplication”.
The first term of the max() in the lower bounds is the I +O = 3n2 bound for dense matrix matrix
multiplication with 3 matrices of size n-by-n. In the parallel model and combined with memory
independent bounds derived in [21] 3, we obtain lower bounds on word volume

W FMM
DP (M,P, n) = Ω

(
max

(
n2

P 2/ω0
,

nω0

PMω0/2−1

))
(4.7)

and latency

SFMM
DP (M,P, n) = Ω

(
max

(
n2

mP 2/ω0
,

nω0

mPMω0/2−1

))
. (4.8)

As reviewed in Section 3.3, the O(n2) n-body problem (and its variants with a cutoff parameter)
represent a common computational problem in scientific computing. In [61], Driscoll et al. derive
memory-dependent and memory-independent communication lower bounds for this problem. In
the sequential model, the communication bounds are

WNB
S (M,n) = Ω

(
max

(
n,
n2

M

))
(4.9)

and

SNBS (M,n) = Ω

(
max

(
n

m
,
n2

mM

))
. (4.10)

2Informally, the ratio of outgoing edges (or dependencies) from a subset of vertices (or compute operations) to the
total number of dependencies with an endpoint in the set. See Section 4.1 for more details.

3The memory-independent bounds in [21] are only derived for Strassen’s 1969 algorithm, but are readily extensi-
ble to a general class of fast matrix multiplication algorithms.

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 64

where the first term of the max() in the lower bounds is the I + O = O(n) bound and NB stands
for “N-Body”. In the distributed parallel model, the lower bounds on word volume

WNB
DP (M,P, n) = Ω

(
max

(
n

P 1/2
,
n2

PM

))
(4.11)

and latency are

SNBDP (M,P, n) = Ω

(
max

(
n

mP 1/2
,

n2

mPM

))
. (4.12)

Several algorithms are able to asymptotically attain these communication lower bounds. We
refer to such algorithms as communication-optimal. In the case of dense O(n3) matrix-matrix
multiplication, we focus on one optimal algorithm in particular: 2.5D matrix-matrix multiplication
[126]. This algorithm has the property of using data replication to attain a range of perfect strong
scaling with constant energy (see Section 3.3 and [126] for more details). In Chapters 6 and 7, this
property will allow us to compute the amount of memory and parameter values required to attain
various energy, runtime and power bounds under constraints on the distributed parallel model.
Similarity, we will use the communication-optimal O(n2) n-body (see [61], and Section 3.3) and
parallel Strassen (see [98], and Section 3.3) algorithms due to their ability to trade additional
memory usage for communication and perfectly strong scale.

The communication lower bounds and optimal algorithms analyzed within this work represent
a small portion of the existing research into minimizing communication traffic for different types
of computational kernels. Interested readers are referred to the survey Ballard et al. [13], as well
as Ballard’s [16] and Hoemmen’s [76] PhD dissertations for more details.

Lower Bounds on the DP Models that Include Link Contention
As an extension of the distributed parallel (DP) model, recent work by Ballard, Demmel, Gearhart,
Lipshitz, Schwartz and Toledo[19] lower bounds contention, i.e. the maximum number of words
transferred over a single network link within a given network topology. In particular, Ballard et al.
prove lower bounds on contention for algorithms running on machines with d-dimensional tori and
mesh topologies. Borrowing from [19], we define the contention cost for an algorithm running a
problem of size N with P processors in the distributed homogeneous model to be

W link
DP (M,P, n, d) = Ω

(
max
r∈R

WDP (M · r, P/r, n)

d · r · hr(GNet)

)
(4.13)

where

hr(GNet) = min
K⊆V,|K|≤r

|Ê(K,V \K)|
|Ê(K)|

(4.14)

is the small set expansion4 of the network graph GNet, Ê(K) is the edge set of vertex set K,
Ê(K,K ′) is the set of edges with one endpoint in vertex set K and another endpoint in vertex set

4Informally, the minimum number of edges leaving a set of vertices of size at most r. See [19] for more details.

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 65

K ′,

R = {r : 1 ≤ r ≤ P/2,∃K ⊆ V s.t.|K| = r and hr(GNet) = |Ê(K,V \K)|/|Ê(K)|},

M is the size of each processor’s local memory and WDP is the per-processor communication
bound. The intuition behind set R is that we only wish to maximize over all sets K that asymp-
totically attain the bounds on hr, which is a much smaller set of candidates than if one considered
all sets of cardinality less than P/2. If we assume GNet to be a d-dimensional torus, Ballard et al.
prove (via a simplification of an earlier proof by Bollobás and Leader [35]) that

hr(GNet) = Θ
(
r−1/d

)
. (4.15)

If we assume that the memory-dependent term of Equation (4.3) dominates, and substitute this
and Equation (4.15) in Equation (4.13), a memory-dependent contention bound for direct linear
algebra (where F = O(n3)) can be derived:

W linkDLA
DP (M,P, n, d) = Ω

(
max
r∈R

WDLA
DP (M · r, P/r, n)

d · r · hr(GNet)

)
= Ω

(
max
r∈R

n3

(P/r)(Mr)1/2

r · hr(GNet)

)

= Ω

(
max
r∈R

n3

(P/r)(Mr)1/2

r1−(1/d)

)
= Ω

(
max
r∈R

(
n3

PM1/2

)
r−(1/2)+(1/d)

)
.

Maximal values of r in the above expression can be shown to be some fraction of P (see Ballard
et al. [19] for details). So, we assume the function to be maximized when r is P divided by some
constant, and for asymptotic analysis set r = P . Then,

W linkDLA
DP (M,P, n, d) = Ω

(
n3

M1/2P (3/2)−1/d

)
.

With this and the result of substituting the memory-independent term of Equation (4.3) and Equa-
tion (4.15) into Equation (4.13), we produce the direct linear algebra bounds shown in Table 4.1.
This table includes both the older per-processor word bounds [84, 15, 21, 20, 61] as well as the new
lower bounds on link contention for toroidal and mesh networks for several classes of algorithms.
The expressions in Table 4.1 beg the question: “How large does d have to be for W link

DP to be no
larger than WDP ?” with regard to network topology.

To address this question, we first consider the case of the Communication-Avoiding Parallel
Strassen (CAPS) algorithm [98]. As noted in Section 3.3, this algorithm is able to trade memory
usage for communication and is able to perfectly strong scale in runtime with constant energy for
a range of processors. The size of this strong scaling range is limited by either the contention
or memory-independent communication bounds, depending on the torus dimension. Consider
Figure 4.1. In the upper portion of the figure, we highlight which of the four lower bounds in
the middle of Table 4.1 is largest for a range of processors (x-axis) while considering several
torus dimensions (y-axis). The black lines in Figure 4.1 delineate regions of bound dominance,

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 66

Memory Dependent Memory Independent.

Direct WDLA
DP Ω

(
n3

PM1/2

)
Ω
(

n2

P 2/3

)
Linear

Algebra W linkDLA
DP Ω

(
n3

P 3/2−1/dM1/2

)
Ω
(

n2

P 1−1/d

)
Strassen

W FMM
DP Ω

(
nω0

PMω0/2−1

)
Ω
(

n2

P 2/ω0

)
and

Strassen
W linkFMM
DP Ω

(
nω0

Pω0/2−1/dMω0/2−1

)
Ω
(

n2

P 1−1/d

)
-like

O(n2) WNB
DP Ω

(
n2

PM

)
Ω
(

n
P 1/2

)
n-body

W linkNB
DP Ω

(
n2

P 2−1/dM

)
Ω
(

n
P 1−1/d

)
Table 4.1: Per-processor bounds (WDP) ([84, 15, 21, 20, 61]) vs. the new contention bounds
(W link

DP) on a d-dimensional torus for classical linear algebra, fast matrix multiplication, and the
O(n2) n-body problem.

and are plotted as continuous functions of the torus dimension (d) for illustrative purposes. We
find that CAPS is completely limited by the memory-independent contention bound Ω(n2/P 1−1/d)
for tori of dimension 2 and as such does not perfectly strong scale for any number of processors
(see lower portion of Figure 4.1, which plots the increase in communication volume with number
of processors). The memory-dependent contention bound Ω(nω0/(P ω0/2−1/dMω0/2−1) is always
dominated by the memory-independent contention bound, and is thus not visible in the figure.
To see this, we set the memory-dependent and memory-independent contention bounds equal and
solve for P . From this, we observe that the memory-dependent contention bound dominates the
memory-independent contention bound when P ≤ n2/M . As we assume that the entire problem
fits in the node local memories, the minimal number of processors for Strassen and Strassen-
like problems is asymptotically P = n2/M . Thus, the memory-independent contention bound
dominates the memory-dependent contention bound for all viable numbers of processors. This
argument also holds for the cases of direct linear algebra and the O(n2) n-body problem, as well
as programs that access arrays with affine expressions (see Chapter 5 for details). If d = 3 (the
blue dashed line in Figure 4.1), the memory-dependent per-processor bound dominates until P =

P
3(ω0−2)/2
min where Pmin is the minimal number of processors necessary to hold the problem (i.e.
Pmin = n2/M). While Pmin ≤ P ≤ P

3(ω0−2)/2
min , CAPS is able to use additional memory to offset

the additional communication volume incurred by adding additional processors to the computation.
Once contention-dominated, however, this perfect scaling ends and the communication volume
increases with additional processors. This is shown in the lower portion of Figure 4.1 with a blue
dashed line. Finally, for tori (or meshes) of dimension 4 or greater, the range of perfect strong
scaling in runtime is limited by the memory-independent per-processor bound. This allows for a

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 67

wider range of perfect scaling than if contention dominated (dashed magenta line in lower portion
of Figure 4.1).

Figure 4.1: Communication bounds for Strassen’s algorithm on d-dimensional tori. The lower plot
is log-log, while the upper is linear on the y-axis. Horizontal lines in the lower plot correspond to
perfect strong scaling.

In general, we must calculate the values of d for which the contention bounds dominate the
per-processor bounds. This is accomplished by setting both memory-dependent and both memory-
independent bounds equal to each other, and solving for d. In the cases of direct linear algebra,
Strassen and Strassen-like algorithms and the O(n2) n-body problem, these expressions are

D1 =

⌊
1

s− 1

⌋
and D2 =

⌈
s

s− 1

⌉
(4.16)

where s = ω0/2 for classical O(n3) and Strassen-like matrix-matrix multiplication and s = 2 for
the O(n2) n-body problem. We define ω0 as the exponent of the floating point complexity of the
algorithm, e.g. ω0 = 3 for classical O(n3) matrix-matrix multiplication. If d ≤ D1, the algorithm
is always contention bound and if d ≥ D2 the algorithm is never contention bound. If the torus or
mesh dimension lies between D1 and D2, a smaller range of perfect strong scaling exists before

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 68

Algorithm ω0 D1 D2

Classical 3 2 3
Strassen [129] ≈ 2.81 2 4
Schönhage [120] ≈ 2.55 3 5
Strassen [128] ≈ 2.48 4 6
Williams [149] ≈ 2.3727 5 7

Table 4.2: Torus dimensions so that communication cost is either always contention bound (d ≤
D1) or never contention bound (d ≥ D2) for a selection of matrix multiplication algorithms. The
assertions regarding the last three algorithms are under some technical assumptions / conjecture,
see [20].

the algorithm is dominated by contention. Table 4.2 (reproduced from [19]) presents values of D1

and D2 for several matrix-matrix multiplication algorithms.
While discussing runtime and energy bounds for specific algorithms in Section 4.2 we will

mention the specific values of d pertinent to the algorithms under discussion, and often assume
that the network is ”good enough” such that it is not contention-dominated (i.e. d ≥ D2 for
tori/meshes or the network topology is of another type that is not contention dominated for the
problem at hand). Considering runtime, we realize that the program must wait for all communi-
cation traffic to finish prior to completion. Thus, bounds on maximum link contention do have an
impact on runtime and can be constructed from the per-processor and memory-independent con-
tention bounds. In the case of direct linear algebra, we define the communication lower bounds
that we will use for runtime within the DP model to be

WDLA
DPt

(M,P, n, d) = Ω

(
max

(
n2

P 2/3
,

n2

P 1−1/d
,

n3

PM1/2

))
(4.17)

and

SDLADPt
(M,P, n, d) = Ω

(
max

(
n2

mP 2/3
,

n2

mP 1−1/d
,

n3

mPM1/2

))
. (4.18)

Runtime bounds for the other classes of problems considered within this work can be derived in a
similar manner. For Strassen and Strassen-like algorithms, we obtain

W FMM
DPt

(M,P, n, d) = Ω

(
max

(
n2

P 2/ω0
,

n2

P 1−1/d
,

nω0

PMω0/2−1

))
(4.19)

and

SFMM
DPt

(M,P, n, d) = Ω

(
max

(
n2

mP 2/ω0
,

n2

mP 1−1/d
,

nω0

mPMω0/2−1

))
. (4.20)

For the lower bounds on the O(n2) n-body problem we obtain

WNB
DPt

(M,P, n, d) = Ω

(
max

(
n

P 1/2
,

n

P 1−1/d
,
n2

PM

))
(4.21)

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 69

and

SNBDPt
(M,P, n, d) = Ω

(
max

(
n

mP 1/2
,

n

mP 1−1/d
,

n2

mPM

))
. (4.22)

When considering energy, however, Equation (3.4) accounts for dynamic communication energy
via a per-word term. Thus, the dynamic component of the energy model is agnostic to communi-
cation path and the link contention bounds do not apply (future work may address this limitation
of the model). Longer runtime does require more energy, so the contention bound does indirectly
affect the energy bound via the terms that are dependent on runtime. The direct linear algebra
lower bounds for communication volume that we use for the dynamic portion of the energy model
are

WDLA
DPe

(M,P, n) = Ω

(
max

(
n2

P 2/3
,

n3

PM1/2

))
(4.23)

and

SDLADPe
(M,P, n) = Ω

(
max

(
n2

mP 2/3
,

n3

mPM1/2

))
. (4.24)

which are equivalent to Equations (4.3) and (4.4), respectively, if we assume F = n3. For Strassen
and Strassen-like algorithms, the expressions for W FMM

DPe
and SFMM

DPe
are identical to Equations

(4.7) and (4.8) and similarly for the O(n2) n-body problem (WNB
DPe

and SNBDPe
) via Equations (4.11)

and (4.11).
In the case of indirect networks the energy model may have to be extended to include the cost

of switching nodes if the energy of routing is dependent on network load (otherwise, the energy
cost of switching nodes can be added to the idle energy term of the model). Also, future work may
attempt to capture the impact of path length on energy consumption and runtime by including terms
that allow for per-link accounting. However, in this work we do not consider indirect networks
when deriving bounds on energy and runtime.

4.2 Energy Lower Bounds for Specific Algorithms

O(n3) Classical Matrix Multiplication
Sequential (S) Model In the case of classical matrix-matrix multiplication that performs O(n3)
flops, we know the following expressions for F , WS and SS in Equations (3.1) and (3.2) by spe-
cializing the direct linear algebra bounds in Equations (4.1) and (4.2):

F = Θ(n3), N = Θ(n2) (4.25)

WCMM
S (M,n) = Ω

(
max

(
n2,

n3

M1/2

))
, SCMM

S (M,n) = Ω

(
max

(
n2

m
,

n3

mM1/2

))
(4.26)

where M is the size of fast memory, m is the size of the largest message we can send (m ≤ M).
CMM stand for “Classical Matrix-matrix Multiplication”. From these expressions and Equation
(3.1) the runtime lower bound for O(n3) matrix-matrix multiplication, TCMM

S , becomes:

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 70

TCMM
S (M,n) = Ω

(
γtn

3 + βt max

(
n2,

n3

M1/2

)
+ αt max

(
n2

m
,

n3

mM1/2

))
(4.27)

as we realize that the O(n) flop/byte ratio for matrix-matrix multiplication implies that the second
term of the bounds on WCMM

S and SCMM
S will dominate for all but small problems. This runtime

bound is attained by blocked implementations of sequential matrix-matrix multiplication [54]. We
now bound energy by utilizing Equation (3.2) to express:

ECMM
S (M, M̂, n) = Ω

(
γen

3 + βe max

(
n2,

n3

M1/2

)
+ αe max

(
n2

m
,

n3

mM1/2

)
+(δeM̂ + εe)

(
γtn

3 + βt max

(
n2,

n3

M1/2

)
+ αt max

(
n2

m
,

n3

mM1/2

)))
.

(4.28)

where we recall that M̂ is the amount of slow memory utilized during the calculation.

Distributed Parallel Model (DP1) In model DP1, M is the memory used per processor (which
cannot exceed the physical memory per processor) and we assume that the machine is connected
via a mesh or toroidal network of dimension d. We also assume that we use at least enough memory
to store one copy of the data across all the processors, so M = Ω(n2/P) (we again omit constant
factors for simplicity). Also, this machine model assumes an asymptotically equal distribution
of work between the processors (i.e. each processor has O(n3/P) of the work to compute). By
substituting Equations (4.17) and (4.18) into the DP1 runtime model of Equation (3.3), we obtain
a runtime lower bound for classical matrix-matrix multiplication on DP1:

TCMM
DP1 (M,P, n, d) = Ω

(
γt
n3

P
+ βt max

(
n2

P 2/3
,

n2

P 1−1/d
,

n3

PM1/2

)
+αt max

(
n2

mP 2/3
,

n2

mP 1−1/d
,

n3

mPM1/2

))
. (4.29)

Regarding energy consumption, we similarly apply Equations (4.23) and (4.24) into the DP1
runtime model of Equation (3.4) and obtain

ECMM
DP1 (M,P, n, d) = Ω

(
P

(
γe
n3

P
+ βe max

(
n2

P 2/3
,

n3

PM1/2

)
+ αe max

(
n2

mP 2/3
,

n3

mPM1/2

)

+ (δeM + εe)

(
γt
n3

P
+ βt max

(
n2

P 2/3
,

n2

P 1−1/d
,

n3

PM1/2

)
+αt max

(
n2

mP 2/3
,

n2

mP 1−1/d
,

n3

mPM1/2

))))
(4.30)

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 71

as a lower bound on energy consumption for a O(n3) matrix-matrix multiplication algorithm.
From prior work on 2.5D matrix-matrix multiplication [126], we know that redundant copies of

matrices (by increasingM) can be used to decrease the amount of required communication (i.e. de-
crease WCMM

DP1 and SCMM
DP1). In standard ”2D” algorithms for matrix multiplication, each processor

is given a local of problem of size M = n2/P on which to work, i.e. one copy of the data is evenly
spread across the processors. In our above discussion of 2.5D matrix multiplication, we observed
that for Pmin = n2/M ≤ P ≤ n3/M

3
2 , communication costs scale perfectly with increasing P

assuming that we can use all the memory, M , that is part of each processor. Thus, each term of the
runtime bound in Equation (4.29) decreases proportionately to P in this range depending on the
torus dimension d. Because each term of the energy bound of Equation (4.30) is proportional to
some term of the runtime bound, the energy stays constant as we increase the number of processors
with a constant amount of memory per processor. At the 3D limit where M = n2/P 2/3 and the
memory-independent per-processor (MIP) bound dominates, the total energy lower is bounded by

ECMM
DP1 MIP (M,P, n) = Ω

(
(γe + γtεe)n

3 +

(
(βe + βtεe) +

(αe + αtεe)

m

)
n2P 1/3

+δeγtn
5 1

P 2/3
+

(
δeβt +

δeαt
m

)
n4 1

P 1/3

)
(4.31)

assuming that the network dimension d is sufficient such that the contention bound is also domi-
nated by the per-processor bound. Increasing P in the 3D case decreases the energy costs due to
memory usage, but increases the energy costs due to communication.

What values of d are needed on a torus or mesh to ensure a region of perfect strong scaling?
As noted in Section 4.1, a 3D torus network is a perfect match to this algorithm [125], and scales
in total size proportionally to P , so the PεeTCMM

DP1 term in ECMM
DP1 should capture its energy usage.

To see this, note that a value of d = 3 in the link contention bound results in an expression identical
to the memory-independent per-processor bound.

Distributed Parallel Model (DP2) Runtime and energy bounds for the DP2 model can be de-
rived in a similar manner to DP1, albeit with the realization that the parameters at level 1 are
derived from a sequential model for the nodes. So, from the DP2 runtime model in Equation (3.5)
we can obtain this lower bound on runtime for O(n3) matrix-matrix multiplication:

TCMM
DP2 (M0,M1, P, n, d) = Ω

(
γt1
n3

P
+ βt1 max

(
n2

P
,

n3

PM
1/2
1

)
+ αt1 max

(
n2

mP
,

n3

mPM
1/2
1

))

+βt0 max

(
n2

P 2/3
,

n2

P 1−1/d
,

n3

PM
1/2
0

)
+ αt0 max

(
n2

mP 2/3
,

n2

mP 1−1/d
,

n3

mPM
1/2
0

))
(4.32)

where we must now distinguish between the size of each node’s cache (M1) and main memory
(M0), the latter of which is M in the DP1 model. Further, as all processors start with n2/P data

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 72

in M0, this represents the input/output bound on the node itself between M1 and M0. True to
the definition of DP2, this bound accounts for communication on the individual nodes as well as
internode communication that is potentially dominated by link contention. Along the same lines,
we obtain a lower bound on DP2 energy by substituting the communication bounds into the model
in Equation (3.6):

ECMM
DP2 (M0,M1, P, n, d) = Ω

(
P

(
γe1

n3

P
+ βe1 max

(
n2

P
,

n3

PM
1/2
1

)
+ αe1 max

(
n2

mP
,

n3

mPM
1/2
1

)

+(δe0M0 + εe0)T
CMM
DP2

)
+ ζ|Ê(GNet)|

)
. (4.33)

Strassen and Strassen-like Matrix Multiplication
As introduced in Section 3.3, fast matrix multiplication (FMM) algorithms multiply two n × n
matrices in O(nω0) time, for some 2 < ω0 < 3. For example, Strassen’s algorithm [129] has
exponent ω0 = log2 7 ≈ 2.81.

Sequential Model (S) Via substitution of Equations (4.5) and (4.6) into the sequential runtime
and energy expressions of Equations (3.1) and (3.2), the sequential runtime and energy lower
bounds for Strassen and Strassen-like matrix-matrix multiplication algorithms are:

T FMM
S (M,n) = Ω

(
γtn

ω0 + βt max

(
n2,

nω0

Mω0/2−1

)
+ αt max

(
n2

m
,

nω0

mMω0/2−1

))
(4.34)

and

EFMM
S (M, M̂, n) = Ω

(
γen

ω0 + βe max

(
n2,

nω0

Mω0/2−1

)
+ αe max

(
n2

m
,

nω0

mMω0/2−1

)

+(δeM̂ + εe)

(
γtn

ω0 + βt max

(
n2,

nω0

Mω0/2−1

)
+ αt max

(
n2

m
,

nω0

mMω0/2−1

)))
. (4.35)

As with the classical algorithm, we will often assume that the computation is not dominated by the
input/output bound (admittedly a stronger assumption as ω0 approaches 2).

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 73

Distributed Parallel Model (DP1) In model DP1, the bounds on runtime and energy are also de-
rived in an identical fashion to that of O(n3) classical matrix-matrix multiplication. We substitute
Equations (4.19) and (4.20) into the DP1 runtime model of Equation (3.3) to obtain

T FMM
DP1 (M,P, n, d) ≥ γt

nω0

P
+ βt max

(
n2

P 2/ω0
,

n2

P 1−1/d
,

nω0

PMω0/2−1

)

+αt max

(
n2

mP 2/ω0
,

n2

mP 1−1/d
,

nω0

mPMω0/2−1

)
(4.36)

and

EFMM
DP1 (M,P, n, d) = Ω

(
P

(
γe
nω0

P
+ βe max

(
n2

P 2/ω0
,

nω0

PMω0/2−1

)
+αe max

(
n2

mP 2/ω0
,

nω0

mPMω0/2−1

)
+(δeM + εe)

(
γt
nω0

P
+ βt max

(
n2

P 2/ω0
,

n2

P 1−1/d
,

nω0

PMω0/2−1

)
+αt max

(
n2

mP 2/ω0
,

n2

mP 1−1/d
,

n3

mPMω0/2−1

))))
(4.37)

are lower bounds on runtime and energy consumption for a generic O(nω0) Strassen-like matrix-
matrix multiplication algorithm.

As mentioned in Section 3.3, via the Communication-Avoiding Parallel Strassen (CAPS) al-
gorithm [98] it is possible to perform fast matrix multiplication with less communication than
classical O(n3) matrix-matrix multiplication. Repeating the analysis from above where we as-
sume that the memory-dependent per-processor (MDP) bound dominates, we find that the total
energy is bounded by:

EFMM
DP1 MDP (M,P, n) = Ω

(
(γe + γtεe)n

ω0 +

(
(βe + βtεe) +

(αe + αtεe)

m

)
nω0

Mω0/2−1

+δeγtMnω0 +

(
δeβt +

δeαt
m

)
M2−ω0/2nω0

)
(4.38)

in the case that n2/P ≤ M ≤ n2/P 2/ω0 (i.e. running fast matrix multiplication using limited
memory). When M = n2/P 2/ω0

EFMM
DP1 MIP (M,P, n) = Ω

(
(γe + γtεe)n

ω0 +

(
(βe + βtεe) +

(αe + αtεe)

m

)
n2P 1−2/ω0

+δeγtn
5 1

P 2/ω0
+

(
δeβt +

δeαt
m

)
n4 1

P 4/ω0−1

)
, (4.39)

where we are essentially running fast matrix multiplication using the maximal amount of usable
memory and the memory-independent per-processor bound (MIP) dominates. As in the case of
O(n3) classical matrix multiplication, the energy does not depend on P inside a perfect strong

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 74

scaling range (Equation (4.38)), so scaling P by some factor while holding M constant reduces
the execution time by that factor without affecting the total energy. By setting the contention and
per processor bounds equal to each other and solving for d, we find that link contention is a factor
with Strassen-like algorithms when running on tori or meshes with dimension d ≤ 3. A smaller
region of perfect scaling exists on tori and meshes of dimension d = 3, but is still limited by
contention.

Distributed Parallel Model (DP2) Runtime and energy bounds for the DP2 model can be de-
rived in a similar manner to DP1, albeit with the realization that the parameters at level 1 are
derived from a sequential model for the nodes. So, from the DP2 runtime model in Equation (3.5),
and the communication bounds of Equations (4.19), (4.20), (4.7) and (4.8), we can obtain this
lower bound on runtime for Strassen-like matrix-matrix multiplication:

T FMM
DP2 (M0,M1, P, n, d) = Ω

(
γt1
nω0

P
+ βt1 max

(
n2

P
,

nω0

PM
ω0/2−1
1

)

+αt1 max

(
n2

mP
,

nω0

mPM
ω0/2−1
1

)
+ βt0 max

(
n2

P 2/ω0
,

n2

P 1−1/d
,

nω0

PM
ω0/2−1
0

)

+αt0 max

(
n2

mP 2/ω0
,

n2

mP 1−1/d
,

nω0

mPM
ω0/2−1
0

))
. (4.40)

where, as with the O(n3) matrix-matrix multiplication DP2 lower bound, we distinguish between
the size of each node’s cache (M1) and main memory (M0), the latter of which is M in the DP1
model. True to the definition of DP2, this bound accounts for communication on the individual
nodes as well as internode communication that is potentially dominated by link contention. Along
the same lines, we obtain a lower bound on DP2 energy by substituting the communication bounds
of (4.7) and (4.8) into the model in Equation (3.6):

EFMM
DP2 (M0,M1, P, n, d) = Ω

(
P

(
γe1

nω0

P
+ βe1 max

(
n2

P
,

nω0

PM
ω0/2−1
1

)

+αe1 max

(
n2

mP
,

nω0

mPM
ω0/2−1
1

)

+ (δe0M0 + εe0)T
FMM
DP2

)
+ ζ|Ê(GNet)|

)
. (4.41)

Matrix-vector multiplication
As mentioned in Section 3.3, we may compute a matrix-vector multiplication using either a dense
or sparse input matrix. In the sparse situation, the algorithm becomes more difficult to implement

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 75

efficiently due to irregular memory access patterns. To describe energy bounds for this problem
(and for simplicity), we assume that the input matrix is stored in compressed sparse row (CSR)
format and the matrix is not stored in a symmetric format. We also only derive bounds for the
sequential machine model, to avoid the challenge of partitioning the matrix across a distributed
machine (see Section 3.3 for more details and references).

Sequential Model (S) In the sequential machine model, matrix-vector multiplication requires

F = 2n2,WDMV
S (n) = Ω

(
n2
)
, SDMV

S (n) = Ω

(
n2

m

)
and

F = 2nnz,W SMV
S (nnz) = Ω

(
3

2
nnz

)
, SSMV

S (nnz) = Ω

(
3nnz

2m

)
operations for the dense and sparse situations, respectively, where nnz is the number of non zero
values in the input sparse matrix. DMV and SMV stand for “Dense Matrix-Vector multiplication”
and “Sparse Matrix-Vector multiplication”, respectively. We assume that both input and output
vectors are of size small enough to fit in cache. The runtime and energy bounds for the dense
situation then become:

TDMV
S (n) = Ω

(
n2
(
γt + βt +

αt
m

))
EDMV
S (M̂, n) = Ω

(
n2
(
γe + βe +

αe
m

+ (δeM̂ + εe)
(
γt + βt +

αt
m

)))
.

where M̂ is the amount of utilized slow memory. For the sparse case:

T SMV
S (nnz) = Ω

(
nnz

(
γt + βt +

αt
m

))
ESMV
S (M̂, nnz) = Ω

(
nnz

(
γe + βe +

αe
m

+ (δeM̂ + εe)
(
γt + βt +

αt
m

)))
.

O(n2) n-body problem
Another example where perfect strong scaling is possible is the direct (O(n2)) implementation of
the n-body algorithm, where each particle (or “object”) has to directly interact with every other
particle (this is not limited to gravity or electrostatics, any interaction where we can basically just
“sum” the results of individual interactions works). See Section 3.3 for a more detailed overview.
Analogous to the case of 2.5D matrix-matrix multiplication, we can replicate data upon processors
to reduce the amount of required communication. In the ”1D” version of the direct n-body problem
there is no replication and we move n words. In the ”2D” version, we map the processors onto a
P 1/2-by-P 1/2 grid and replicate the input data

√
P times to reduce the number of words moved by

a factor of
√
P . Based on these descriptions, one can imagine a ”1.5D” variant of the direct n-body

problem that utilizes memory in the range n/P ≤ M ≤ n/P 1/2. More details can be found in
[61]. To address the number of flops performed in the algorithm, we add an additional parameter
f that represents the number of flops necessary to compute the interaction of a pair of particles;
although f is a constant, it may be quite large.

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 76

Sequential Model (S) From the communication lower bounds from Equations (4.9) and (4.10)
and Equation (3.1), the runtime lower bound for the O(n2) n-body problem, TNBS , becomes:

TNBS (M,n) = Ω

(
γtfn

2 + βt max

(
n,
n2

M

)
+ αt

(
n

m
,
n2

mM

))
(4.42)

as F = Θ(fn2). We realize that the O(n) flop/byte ratio for the problem implies that the second
term of the bounds on WNB

S and SNBS will dominate for all but small problems. We now bound
energy by substituting Equations (4.9),(4.10) and (4.42) Equation (3.2) to attain:

ENB
S (M, M̂, n) = Ω

(
γefn

2 + βe

(
n,
n2

M

)
+ αe

(
n

m
,
n2

mM

)
+(δeM̂ + εe)

(
γtfn

2 + βt

(
n,
n2

M

)
+ αt

(
n

m
,
n2

mM

)))
. (4.43)

Distributed Parallel Model (DP1) In model DP1, M is the memory used per processor (which
cannot exceed the physical memory per processor) and we assume that the machine is connected
via a mesh or toroidal network. We also assume that we use at least enough memory to store
one copy of the data across all the processors, so M = Ω(n/P) (we again omit constant factors
for simplicity). Also, this machine model assumes an asymptotically equal distribution of work
between the processors (i.e. F = O(n2/P)). By substituting this value of F and Equations (4.21)
and (4.22) into the DP1 runtime model of Equation (3.3), we obtain a runtime lower bound for the
O(n2) n-body problem on DP1:

TNBDP1(M,P, n, d) = Ω

(
γt
fn2

P
+ βt max

(
n

P 1/2
,

n

P 1−1/d
,
n2

PM

)
+αt max

(
n

mP 1/2
,

n

mP 1−1/d
,

n2

mPM

))
. (4.44)

Regarding energy consumption, we similarly apply Equations (4.11) and (4.12) (as we recall
that WNB

DPe
= WNB

DP and SNBDPe
= SNBDP) into the DP1 runtime model of Equation (3.4) and obtain

ENB
DP1(M,P, n, d) = Ω

(
P

(
γe
fn2

P
+ βe max

(
n

P 1/2
,
n2

PM

)
+ αe max

(
n

mP 1/2
,

n2

mPM

)

+ (δeM + εe)

(
γt
fn2

P
+ βt max

(
n

P 1/2
,

n

P 1−1/d
,
n2

PM

)
+αt max

(
n

mP 1/2
,

n

mP 1−1/d
,

n2

mPM

))))
(4.45)

as a lower bound on energy consumption for a generic O(n2) n-body problem.

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 77

From prior work on the 1.5D n-body algorithm [61], we know that redundant copies of the
input data (by increasing M) can be used to decrease the amount of required communication (i.e.
decrease W and S). In standard ”1D” algorithms for matrix multiplication, each processor is given
a local of problem of size M = n/P) on which to work, i.e. one copy of the data is evenly
spread across the processors. In our above discussion of the 1.5D algorithm, we observed that for
Pmin = n/M ≤ P ≤ (n/M)2, communication costs scale perfectly with increasing P . Thus,
each term of the runtime bound in Equation (4.44) decreases proportionately to P in this range
depending on torus dimension d. Because each term of the energy bound of Equation (4.45) is
proportional to some term of the runtime bound, the energy stays constant as we increase the
number of processors with a constant amount of memory per processor. At the ”2D” limit where
P = (n/M)2 and the memory-independent per-processor (MIP) bound dominates (assuming the
network is not dominated by contention), the total energy lower bounded by

ENB
DP1 MIP (M,P, n) = Ω

(
(γe + γtεe)fn

2 +

(
(βe + βtεe) +

(αe + αtεe)

m

)
nP 1/2

+δeγtfn
3 1

P 1/2
+

(
δeβt +

δeαt
m

)
n2

)
(4.46)

assuming that the network dimension d is sufficient such that the contention bound is also domi-
nated by the per-processor bound. Increasing P in the 2D case decreases the energy costs due to
memory usage, but increases the energy costs due to communication.

What values of d are needed on a torus or mesh to ensure a region of perfect strong scaling?
By substituting ω0 = 2 into the expressions for D1 and D2 (Equation (4.16)) in Section 4.1, a 2D
torus network is a perfect match to this algorithm and scales in total size proportionally to P , so the
PεeT term in ENB

DP1 should capture its energy usage. To see this, note that a value of d = 2 in the
link contention bound results in an expression identical to the memory-independent per-processor
bound (i.e. n/P 1−1/d = n/P 1/2 when d = 2).

Distributed Parallel Model (DP2) Runtime and energy bounds for the DP2 model can be de-
rived in a similar manner to DP1, albeit with the realization that the parameters at level 1 are
derived from a sequential model for the nodes. By substituting this value of F = fn2/P and
Equations (4.21), (4.22), (4.9) and (4.10) into the DP2 runtime model of Equation (3.5), we obtain
a runtime lower bound for the O(n2) n-body problem on DP2:

TNBDP2(M0,M1, P, n, d) = Ω

(
γt1
fn2

P
+ βt1 max

(
n

P
,
n2

PM1

)
+ αt1 max

(
n

mP
,

n2

mPM1

)

+βt0 max

(
n

P 1/2
,

n

P 1−1/d
,
n2

PM0

)
+ αt0 max

(
n

mP 1/2
,

n

mP 1−1/d
,

n2

mPM0

))
. (4.47)

where we distinguish between the size of each node’s cache (M1) and main memory (M0), the
latter of which is M in the DP1 model. True to the definition of DP2, this bound accounts for

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 78

communication on the individual nodes as well as internode communication that is potentially
dominated by link contention. Along the same lines, we obtain a lower bound on DP2 energy by
substituting the communication bounds of Equations (4.11), (4.12), (4.9) and (4.10) into the model
in Equation (3.6):

ENB
DP2(M0,M1, P, n, d) = Ω

(
P

(
γe1

fn2

P
+ βe1 max

(
n

P
,
n2

PM1

)
+ αe1 max

(
n

mP
,

n2

mPM1

)

+δe0M0TDP2 + εe0TDP2

)
+ ζ|Ê(GNet)|

)
. (4.48)

4.3 Bounds on Heterogeneous Machines
Suppose we run an algorithm which executes F flops on the heterogeneous (H) machine model,
and suppose the algorithm assigns Fi flops to proci for 1 ≤ i ≤ P , such that

∑
Fi = F . Then

we can focus our attention on one compute element proci and model the communication between
the local memory of proci and machine global memory as two levels of a sequential machine.
In this way we obtain a lower bound on the number of words WHi

transferred to/from proci by
applying Equation (4.1) and, similarly, a lower bound on the number of messages SHi

by applying
Equation (4.2). Although we can obtain separate lower bounds for each compute element, the
bounds apply only to a particular partitioning of the total flops. We would like a lower bound which
applies to any assignment of the F flops to the different compute elements. Toward this end, we
broaden our focus from the individual communication costs of each compute element to the total
parallel runtime. As we’ve noted previously, this runtime model ignores any potential overlap of
computation and communication, though we note that completely overlapping computation and
communication will decrease the runtime by perhaps a factor of 2 or 3.

In the heterogeneous model, the parallel runtime is determined by the last compute element to
finish its computation. Thus, given partition {Fi} of the F flops (i.e.,

∑
Fi = F), partition {Ni}

of the input/output data of total size N , and the fast memory sizes {Mi}, we have

TH({Mi}, {Ni}, {Fi}) = max
1≤i≤P

(γtiFi + βtiWHi
+ αtiSHi

)

where Fi, WHi
, and SHi

are the number of flops executed, words communicated, and messages
communicated, respectively, by proci during the course of the algorithm. In order to obtain a more
general lower bound, we can find the minimum over all possible partitions {Fi} with

∑
Fi = F ,

yielding

TH∗({Mi}, N, F) = min∑
Fi=F

(
max

1≤i≤P
(γtiFi + βtiWHi

+ αtiSHi
)

)
.

assuming that the optimal partition of flops will imply the partition of theN input and output words
into a block Ni for each processor. Assuming that Equations (4.1) and (4.2) hold, we can apply
them to obtain our heterogeneous lower bound on parallel runtime:

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 79

TDLAH∗ ({Mi}, N, F) = Ω

(
min∑
Fi=F

[
max

1≤i≤P
(γtiFi + βti max

(
Ni,

Fi

M
1/2
i

)
(4.49)

+αti max

(
Ni

mi

,
Fi

miM
1/2
i

))])
.

where again we assume the partition of flops ({Fi}) implies a partition of the input and output data
({Ni}) and DLA stands for “Direct Linear Algebra”.

We obtain a general lower bound on energy for heterogeneous machine in a similar manner.
Given partition {Fi} of the F flops (i.e.,

∑
Fi = F), partition {Ni} of the input/output data of

total size N , and the fast memory sizes {Mi}, we have

EH({Mi}, M̂ , {Ni}, {Fi}) =
P∑
i=1

EHi
+ δ̂M̂TH + εHTH

=
P∑
i=1

(γeiFi + βeiWHi
+ αeiSHi

) + (δ̂M̂ + εH)TH

where we assume that energy is consumed by all global memory during the entire runtime of the
algorithm (e.g. if the algorithm touches a word of global memory once, we account an idle memory
cost for that word for the entire runtime. If we minimize over all the possible partitions of F :

EH∗({Mi}, M̂ , N, F) = min∑
Fi=F

[
P∑
i=1

(γeiFi + βeiWHi
+ αeiSHi

) + (δ̂M̂ + εH)TH

]

As with the bound on TH , we can substitute Equations (4.1) and (4.2) for Wi and Si to obtain
a lower bound on energy consumption for the heterogeneous machine:

EDLA
H∗ ({Mi}, M̂ , N, F) =Ω

(
min∑
Fi=F

(
p∑
i=1

[
γeiFi + βei max

(
Ni,

Fi

M
1/2
i

)

+αei max

(
Ni

mi

,
Fi

miM
1/2
i

)]

+
(
δ̂M̂ + εH

)
max

1≤i≤P

(
γtiFi + βti max

(
Ni,

Fi

M
1/2
i

)

+αti max

(
Ni

mi

,
Fi

miM
1/2
i

))))
(4.50)

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 80

where again we assume the partition of flops ({Fi}) implies a partition of the input and output data
({Ni}). In the following two subsections, we will identify two circumstances where these lower
bounds may be greatly simplified. In each case, the simplifications will suggest algorithms which
can attain the bounds to within constant factors. In this way, we will argue that the lower bounds
given in (4.49) and (4.50) are asymptotically tight for the problems solved by these algorithms.

Input/Output Dominated Lower Bounds
In this section, we focus on the lower bound based on original inputs and final outputs for each
proci. That is, if we ignore the lower bound guaranteed by the result based on Loomis-Whitney,
we obtain other valid lower bounds which may be lower than the one in (4.49). These input/output
dominated lower bounds, given by

T IOH∗ (N,F) = Ω

(
min∑
Fi=F

[
max

1≤i≤P

(
γtiFi + βti(Ni) + αti

(
Ni

mi

))])
(4.51)

EIO
H∗(N,F) = Ω

(
min∑
Fi=F

(
P∑
i=1

[γeiFi + βeiNi

+αei

(
Ni

mi

)]
+
(
δ̂M̂ + εH

)
max

1≤i≤P

(
γtiFi + βtiNi + αti

(
Ni

mi

))))
(4.52)

are valid for any algorithm where the original inputs and final outputs must reside in global mem-
ory. IO stands for “Input/Output”. We may simplify these bounds for an algorithm with a direct
relationship between flops and input and output data.

For example, in the case of BLAS2 [31] operations like n-by-n dense-matrix-vector-multiplication,
F = O(n2) and N = O(n2). Thus, the number of inputs and outputs in BLAS2 functions are re-
lated to the number of flops via some constant g.

Runtime-Optimal Partition of Work Suppose that we would like to determine the runtime-
optimal partition of the floating point operations required to compute dense matrix-vector multi-
plication. To do this, we first substitute the known values of F and N as mentioned previously.
Thus, we can represent inequality (4.51) as

T IOH∗ (N,F) = Ω

(
min∑
Fi=n2

[
max

1≤i≤P

(
γtiFi + βti(gFi) + αti

(
gFi
mi

))])
or

T IOH∗ (N,F) = Ω

(
min∑
Fi=n2

(
max

1≤i≤P
µtiFi

))
,

where
µti = γti + gβti +

gαti
mi

(4.53)

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 81

and g is a constant determined by the specific number of words per flop for a given BLAS2 algo-
rithm.

We can simplify this min-max expression for optimal runtime by solving the associated linear
program. Observe that the minimum is attained when µtiFi is constant for 1 ≤ i ≤ P (i.e., the
compute elements finish simultaneously), and we discover that a partition attaining the minimum
satisfies

Fi =

1
µti∑
j

1
µtj

n2 (4.54)

for 1 ≤ i ≤ P . Thus, for BLAS2 operations, we obtain the partition-independent, input/output
dominated lower bound

T IOH∗ (N,F) = Ω

(
max

1≤i≤P
µtiFi

)
= Ω

(
n2∑
j

1
µtj

)
. (4.55)

Again, inequality (4.55) may not be as tight a bound as (4.49) in general, but we will argue in
Section 4.4 that it can be attained in the case of matrix-vector multiplication. This will imply that
in that case, both bounds are equivalent and tight.

Energy-Optimal Partition of Work Similarly, we can determine the energy-optimal parti-
tion of the flops across the processors. In the case of dense matrix-vector multiplication, the
input/output-dominated energy bound of Equation (4.52) becomes

EIO
H∗(M̂,N, F) = Ω

(
min∑
Fi=n2

(
P∑
i=1

[
γeiFi + βei (gFi) + αei

(
gFi
mi

)]

+
(
δ̂M̂ + εH

)
max

1≤i≤P

(
γtiFi + βti (gFi) + αti

(
gFi
mi

))))
or

EIO
H∗(M̂,N, F) = Ω

(
min∑
Fi=n2

(
p∑
i=1

µeiFi +
(
δ̂M̂ + εH

)
max

1≤i≤P
(µtiFi)

))
(4.56)

where g and µti were defined previously and

µei = γei + βeig +
αeig

mi

.

Unfortunately, the extra parameters of the energy bound result in a linear program that does not
lend itself to a closed-form solution and a numerical approach to solving the linear program is
required. In standard form, the linear program becomes

max yTx

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 82

subject to Ax ≤ b

and x ≥ 0

where
yT = [−µe0 , ...,−µeP ,−(δ̂M̂ + εH)]

xT = [F0, ..., FP , z]

and the rows of A and entries of b are formed from the constraints

P∑
i=1

Fi ≤ n2

−
P∑
i=1

Fi ≤ −n2

µtiFi − z ≤ 0 for all 1 ≤ i ≤ P.

Note that we require two constraints to enforce the equality that
∑

i Fi = F = n2 and that we
replace the maximum over processor runtimes with a dummy variable, z, and constrain it with P
additional expressions to produce the desired behavior.

Loomis-Whitney Dominated Lower Bound
In this section, on the other hand, we focus on the lower bounds based on Loomis-Whitney [102].
This time, ignoring the lower bound guaranteed by having to read the original inputs and write
the final outputs, we obtain another lower bound which may be lower than the ones in (4.49) and
(4.50). These Loomis-Whitney dominated lower bounds for runtime and energy are given by

TDLAH∗ ({Mi}, F) = Ω

(
min∑
Fi=F

[
max

1≤i≤P

(
γtiFi + βti

(
Fi

M
1/2
i

)
+ αti

(
Fi

miM
1/2
i

))])
. (4.57)

EDLA
H∗ ({Mi}, M̂ , F) = Ω

(
min∑
Fi=F

(
P∑
i=1

[
γeiFi + βei

(
Fi

M
1/2
i

)
+ αei

(
Fi

miM
1/2
i

)]

+
(
δ̂M̂ + εH

)
max

1≤i≤P

(
γtiFi + βti

(
Fi

M
1/2
i

)
+ αti

(
Fi

miM
1/2
i

))))
where DLA stands for “Direct Linear Algebra”. For example, these lower bounds often apply to
BLAS3 [31] operations such as n-by-n dense-matrix-matrix-multiplication as well as most direct
linear algebra algorithms where F = O(n3).

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 83

Runtime-Optimal Partition of Work Suppose that we would like to determine the runtime-
optimal partition of the floating point operations required to computeO(n3) classical matrix-matrix
multiplication on dense matrices. To do this, we first substitute the known values of F , W and S
as mentioned previously. Thus, we can represent inequality (4.57) as

TDLAH∗ ({Mi}, F) = Ω

(
min∑
Fi=n3

(
max

1≤i≤P
νtiFi

))
where

νti = γti +
βti

M
1/2
i

+
αi

miM
3/2
i

(4.58)

is a constant.
As before, we can simplify the min-max expression above by solving the associated linear

program. This implies that the partitioning {Fi} that attains the minimum satisfies

Fi =

1
νti∑
j

1
νtj

n3 (4.59)

for 1 ≤ i ≤ P . Thus, we obtain a partition-independent Loomis-Whitney dominated lower bound

TDLAH∗ ({Mi}, F) = Ω

(
max

1≤i≤P
νtiFi

)
= Ω

(
n3∑
j

1
νtj

)
. (4.60)

While inequality (4.60) may not be as tight a bound as (4.49) in general, we will argue in
Section 4.4 that it can be attained in the case of O(n3) matrix-matrix multiplication. This will
imply that in that case, both bounds are equivalent and tight.

Energy-Optimal Partition of Work Similarly, we can explore a desire to determine the energy-
optimal partition of the flops across the processors. In the case of dense O(n3) matrix-matrix
multiplication, the input/output-dominated energy bound of Equation (4.3) becomes

EDLA
H∗ ({Mi}, M̂ , F) = Ω

(
min∑
Fi=n3

(
P∑
i=1

νeiFi +
(
δ̂M̂ + εH

)
max

1≤i≤P
(νtiFi)

))
(4.61)

where νti was defined previously and

νei = γei +
βei

M
1/2
i

+
αei

miM
1/2
i

.

Like the input/output-dominated situation discussed previously, the extra parameters of the energy
bound result in a linear program that does not lend itself to a closed-form solution and a numerical
approach to solving the linear program is required. The standard form of this linear program
is nearly identical to the input/output-dominated energy-optimal partition, with the exception of
using the constants ν instead of µ.

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 84

4.4 Optimal Heterogeneous Algorithms

Heterogeneous Matrix-Vector Multiplication
In this section we present an algorithm to compute square matrix-vector multiplication (GEMV)
that is able to attain the lower bounds presented in Section 4.3. In the discussion that follows, we
will assume that the objective is to attain the lower bound on runtime. A similar argument can
be used to show that the algorithm attains the energy lower bound of Equation (4.56). While the
cost of calculating an energy-optimal work partition requires the use of a linear program solver,
the number of variables is dependent on the number of processors, P << n, and not the problem
size N = n2. Thus, the overhead of a solver is a lower-order term and we can still claim that the
algorithm is also optimal if one wishes to minimize communication with respect to energy.

As a BLAS2 operation, square GEMV performs F = 2n2 flops upon N = n2 + 2n data. Thus,
we do two flops per word of data transferred and the value of g in Equation (4.53) is 1

2
. With this

definition of g, we can rewrite the runtime lower bound of (4.55) as

T IOH∗ (N,F) = Ω

(
F∑
j

1
µtj

)
= Ω (µtiFi) = Ω

(
γtiFi + βti

(
1

2
Fi

)
+ αti

(
1

2

Fi
mi

))
(4.62)

where Fi is defined as in equation (4.54) and we note that the runtime of processor i, µtiFi, is
constant for 1 ≤ i ≤ P .

An runtime-optimal algorithm for square GEMV on a heterogeneous machine is presented as
Algorithm 8.5 This algorithm divides the work among the processors by partitioning the rows of
the matrixA as shown in Figure 4.2. In this way, each processor computes a subset of the entries of
the output vector and there are no write contentions (though each compute element must access the
entire input vector). We assume GEMVi to be a sequential version of matrix-vector multiplication
that is optimized to run efficiently on proci.

Algorithm 8 Heterogeneous matrix-vector multiplication

Require: Matrix A ∈n×n, stored in row-wise order, vector x ∈n,
1: Measure αti , βti , γti ,Mi for each 1 ≤ i ≤ P and set µti according to Equation (4.53) with
c = 1/2

2: for i = 1 to P do
3: Set Fi according to Equation (4.54) where F = 2n2

4: Choose splitting rows ri (1 ≤ i ≤ P , with r0 = 0) in matrix A such that ri − ri−1 ≈ Fi

2n

5: end for
6: for all proci (1 ≤ i ≤ P) parallel do
7: Compute GEMVi(A(ri−1 : ri − 1, :), x)
8: end for

5To modify Algorithm 8 to minimize energy, one must also measure µei and set Fi according to the linear pro-
gramming solution of Equation (4.56), as opposed to Equation (4.54).

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 85

Figure 4.2: Example of heterogeneous matrix-vector data partitioning with 4 processors

For simplicity, we assume the matrix A is stored in row-wise order so that each GEMVi is
performed on a contiguous block of memory. Further, we assume that each GEMVi accesses
matrix entries contiguously (along rows). This implies that if the input vector does not fit in fast
memory (n > Mi), then each input vector entry must be read from slow memory for each row
of the matrix. While a blocked algorithm (with a blocked data structure) is more communication-
efficient, the difference in the the number of words and messages transferred from slow memory is
less than a constant factor (2×).

To see that the parallel running time of this algorithm is within a constant factor of the lower
bound given in equation (4.62), consider proci. It computes a matrix-vector product with a matrix
of size ki × n where ki = ri − ri−1 ≈ Fi/2n. Thus, it performs 2kin ≈ Fi flops. Because the
division of work is done by rows, even if Fi/2n is not an integer, the processor is assigned no more
than one row of extra work (2n flops). Assuming each compute element is assigned at least one
row of work, this implies that the number of flops done on the compute element is no more than
2× that of the lower bound.

We now consider the communication costs. As mentioned above, if the flops are performed in
row-wise order and the input vector x does not fit in fast memory, then two reads are required for
each scalar multiplication. Since the cost of writing the output vector entries is a lower order term,
the number of words transferred by proci is also 2kin. Since 2kin is within 2× of Fi, the number
of words transferred is within 4× of the lower bound. Since we are accessing the matrix and input
vector entries in contiguous order, we can read the data in blocks of size about Mi/2 (in order to fit
both blocks in fast memory at the same time). Thus, the number of messages is about 4kin

Mi
which

is within 8× of the lower bound.
Since each term (flop cost, bandwidth cost, latency cost) of the running time of proci is within

a constant factor of the lower bound, the sum of the three terms is also within a constant factor.
This argument holds for each compute element individually, so the maximum runtime over all
compute elements (i.e., the parallel runtime) is within a constant factor of the lower bound given
in equation (4.62). Thus, Algorithm 8 is asymptotically optimal within a factor of 8 of the lower

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 86

bound. Note that by using a blocked data structure for the matrix and corresponding algorithm, one
could obtain a runtime within 4× of the lower bound. Note that in practice, since our model can
only approximate the true costs of complex hardware, it gives a design space for a fast algorithm,
not a unique characterization of the optimal algorithm, and that autotuning, i.e. measuring the
actual quantity being optimized, is needed for true optimality.

Heterogeneous O(n3) Matrix-Matrix Multiplication
In this section we present an algorithm to compute square matrix-matrix multiplication (GEMM)
that attains the lower bounds presented in Section 4.3. As in the case of matrix-vector multiplica-
tion, we assume that the objective is to produce a runtime-optimal partition of work. With small
modifications to the algorithm, it is able to attain the energy lower bound from Equation (4.61) as
the cost of running a linear program solver scales with the number of processors, P .

For comparison to the upper bound analysis of runtime, we re-write inequality (4.60) in terms
of three summands. Letting Fi be defined as in equation (4.59), and noting that νtiFi is constant
for 1 ≤ i ≤ P , we have the lower bound

TLWH∗ ({Mi}, N, F) = Ω

(
F∑
j

1
νtj

)
= Ω (νtiFi) = Ω

(
γtiFi + βti

(
Fi

M
1/2
i

)
+ αti

(
Fi

miM
1/2
i

))
.

(4.63)
We will base the algorithm on the square recursive matrix multiplication algorithm (see [33]

for example). In this algorithm, each of the matrices are divided into four n
2
× n

2
submatrices and

the blocked multiplication of these submatrices yields eight subproblems of 2(n/2)3 flops each,
which can be solved recursively. We assume that n is a power of two in this section.

We require that the n × n input matrices A and B are stored in a block-recursive format.
The block-recursive format [11, 63, 151] (also known as the bit interleaved layout, space-filling
curve storage, or Morton ordering format) stores each of the four n

2
× n

2
submatrices contiguously,

and the elements of each submatrix are ordered so that the smaller submatrices are each stored
contiguously, and so on recursively. In this way, every subproblem within square recursive GEMM
will be associated with contiguous data.

At a high level, the algorithm assigns subproblems of various sizes to each processor in a
manner consistent with the runtime-optimal flop distribution as suggested by the lower bound.6

It assigns as many subproblems at one level of recursion as possible before recursing to smaller
subproblems. The flop assignments are represented as octal fractions in order to determine the
number and size of subproblems to assign to each processor.

We will assume that for a given heterogeneous machine, the problem size is large enough such
that the distribution of flops to compute elements according to equation (4.59) satisfies

Fi ≥ (Mi/3)3/2 (4.64)
6To modify Algorithm 9 to minimize energy, one must also measure νei and set Fi according to the linear pro-

gramming solution of Equation (4.61), as opposed to Equation (4.59).

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 87

Algorithm 9 Heterogeneous O(n3) matrix-matrix multiplication
Require: n× n matrices A,B, stored in block-recursive order, n is a power of two

1: Measure αti , βti , γti ,Mi and set νti according to Equation (4.58) for each 1 ≤ i ≤ P
2: for i = 1 to P do
3: Set Fi according to Equation (4.59) where F = n3

4: Set ki to be the largest integer such that 3(n/2ki)2 ≥Mi

5: Convert Fi/F into octal and round1 to kthi digit: 0.d
(i)
1 d

(i)
2 · · · d

(i)
ki

6: end for
7: Initialize S = {A ·B}
8: for j = 1 to max ki do
9: Subdivide all problems in S into 8 subproblems according to square recursive GEMM

10: Assign d(i)
j subproblems to proci and remove subproblems from S

11: end for
12: for all proci parallel do
13: Compute assigned subproblems using square recursive GEMM
14: proci contributes its computed subproblems to a sum-reduction forming C
15: end for
Ensure: Matrix C = AB, stored in block-recursive order

for each 1 ≤ i ≤ P . Note that on a sequential machine, this degenerates to 3n2 ≥ M , where the
matrix multiplication problem (two input matrices and one output matrix) is too large to fit entirely
in fast memory. This assumption may be violated for a small problem on a heterogeneous machine
where one compute element is relatively slow (i.e., large νti) but has a large fast memory (i.e., large
Mi).

To see that the parallel runtime is within a constant factor of the lower bound given in equa-
tion (4.63), consider proci. As with heterogeneous matrix-vector multiplication, we will argue that
each of the three terms contributing to proci’s runtime are within constant factors of the corre-
sponding terms in the lower bound.

Algorithm 9 does not assign exactly Fi flops to the proci. Instead, in line 5, Fi/F is rounded to a
fraction with ki octal digits.7 Thus, the actual number of flops assigned isUi =

(
0.d

(i)
1 d

(i)
2 · · · d

(i)
ki

)
8
·

F , yielding
Ui
F
− Fi
F
≤ 1

8ki
.

Further, ki is chosen in line 4 so that 3
(

n
2ki+1

)2 ≤ Mi which implies n3

8ki
≤
(

4
3
Mi

)3/2. Since
F = n3, we have

Ui − Fi ≤
n3

8ki
≤
(

4

3
Mi

)3/2

.

7Rounding each of these fractions to a finite-digit octal representation such that the sum of octal fractions is exactly
one is a nontrivial problem. For the purposes of this upper bound, we may assume that the rounding scheme always
rounds up to the next kth

i digit, in which case the sum will be slightly greater than one.

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 88

By our assumption in inequality (4.64), we have

Ui − Fi
Fi

≤ 8
(Mi/3)3/2

Fi
≤ 8

and so the number of flops assigned to proci in Algorithm 9 is within a constant factor of the flops
given in the lower bound.

We now consider the communication costs for proci. By construction, the octal fraction rep-
resenting the work assigned to proci has no more than ki digits. This implies that the smallest
subproblem assigned to the compute element involves submatrices of size at least n/2ki × n/2ki .
Since 3(n/2ki)2 ≥ Mi, the smallest subproblem is too large to fit into fast memory. In this case,
from [14], the number of words transferred by the square recursive GEMM on a sequential machine
for each subproblem is O(#flops/M1/2

i), and with a block recursive data structure, the number of
messages is O(#flops/miM

1/2
i).8 Thus, the total number of words transferred between proci and

slow memory isO(Ui/M
1/2
i), and the number of messages transferred isO(Ui/miM

1/2
i). Since Ui

is within a constant factor of Fi, the number of words and messages transferred is within a constant
factor of the lower bound.

We also note that for matrix multiplication, all subproblems are independent (ignoring the
O(n2) work to sum the results of pairs of subproblems to form C), so there is no idle time on pro-
cessors due to data dependencies. Thus, the running time of each compute element is the sum of
the three terms of arithmetic and communication costs. Since each of these terms is within a con-
stant factor of the lower bound for each compute element, the maximum runtime over all compute
elements is no more than a constant factor larger than the lower bound given in inequality (4.63).
Thus, Algorithm 9 is runtime-optimal.

An example execution of Algorithm 9 is demonstrated in Figure 4.3. In it, we have four hetero-
geneous processors {P1,P2,P3,P4} working in parallel on a problem. Before the execution of the
problem, the hardware parameters of the processors were measured and the runtime was found to
be minimized via the scheme in the first table. For example, the work partitioning scheme suggests
that 1/4 of the work should be allocated to processor P1 (0.25). When converted to octal, these
decimal representations of the work partition indicate a recursion scheme for the execution of the
problem. This is shown in the smaller table. Thus, as processor P3 has an octal workload repre-
sentation of .328 it executes three subproblems at the first level of recursion and two subproblems
at the second level. This work allocation is shown graphically via the purple regions of the figure.

As a potential future extension, we note that a similar argument could show that any recursive
matrix-matrix multiplication can be used to approximate the optimal partition of work within a
constant factor. In particular, this applies to Strassen-like fast matrix multiplication algorithms that
require F = O(nω0) floating point operations and each processor to move at least

W FMM
Hi

(Mi, Ni, Fi) = Ω

(
max

(
Ni,

Fi

M
ω0/2−1
i

))
8The analysis of recursive GEMM in [14] is for a more general algorithm which handles rectangular matrices. In

the case of square matrices, the algorithm reduces to square recursive GEMM.

CHAPTER 4. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
SPECIFIC ALGORITHMS 89

Figure 4.3: Heterogeneous matrix-matrix computation example execution on 4 processors

and

SFMM
Hi

(Mi, Ni, Fi) = Ω

(
max

(
Ni

mi

,
Fi

miM
ω0/2−1
i

))
words and messages, respectively. Recall that FMM stands for “Fast Matrix Multiplication”.
Strassen’s method [129], in particular, decomposes the problem into 7 recursive subproblems as
opposed to the 8 subproblems used for the O(n3) recursive approach used in Algorithm 9. The
optimal partition of flops would then be approximated as a base-7 fraction to obtain an optimal
recursion scheme.

90

Chapter 5

Bounds on Communication, Runtime and
Energy for Programs that Access Arrays

In Chapter 4, we reviewed related work on communication lower bounds for direct linear algebra
[15], Strassen and Strassen-like fast matrix-matrix multiplication algorithms [20], dense matrix-
vector multiplication and the O(n2) n-body problem [61]. We then applied these communication
lower bounds to the models of runtime and energy from Chapter 3 to derive lower bounds on the
runtime and energy consumption of sequential, distributed parallel, and heterogeneous machines.
In Section 5.1, we apply a generalization of the bounds from [15] to runtime and energy bounds
to the wider class of programs that reference arrays via linear expressions of the iteration variables
(with some additional assumptions). Further, we highlight that a region of perfect strong scaling
in runtime exists with no additional energy for a subset of these algorithms (Section 5.2).

5.1 Bounds on Programs that Reference Arrays
To address the above goals, the results of [15] and [17] have been generalized by Christ et al.[45]
to problems of form

for all I ∈ Z ⊆ Zu, in some order,
inner loop(I, (A1, . . . , Aq), (φ1, . . . , φq))

(5.1)

where Z is the iteration space, Zu is the u-dimensional space of integers and the subroutine in-
ner loop represents a computation involving arraysA1, ..., Aq of dimensions u1, ..., um that are ref-
erenced by the corresponding subscripts φ1(I), ..., φq(I) where φi are affine maps φj : Zu → Zuj
for iteration I = (i1, ..., iu). The cardinality of the iteration space, |Z|, will be represented as
F in the following analysis, and is proportional to the number of work operations to be com-
puted. For example, matrix-matrix multiplication C = A ∗ B has (A1, A2, A3) = (A,B,C),
φ1(I) = φ1(i1, i2, i3) = (i1, i3), φ2(I) = φ2(i1, i2, i3) = (i3, i2), φ3(I) = φ3(i1, i2, i3) = (i1, i2)
and the function inner loop() is defined as A3(φ3(I)) = A3(φ3(I)) + A1(φ1(I)) ∗ A2(φ2(I)).

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 91

Given this program, we wish to establish a lower bound on the number of read/write operations
that must occur between fast and slow memory during execution. Because the work inside the loop
is currently defined as a general function, the potential executions of inner loop must be restricted
in a reasonable manner. If executions of inner loop(I, ...) for different values of I can not be
interleaved (which, for example, forbids loop splitting) and all m array variables Aj(φj(I)) are
accessed by each execution of inner loop(I, ...), the program execution is defined to be a legal se-
quential execution. A similar definition holds for legal parallel executions where each processor’s
execution is a legal sequential execution (see [45] for more details regarding legal sequential and
legal parallel executions). The analysis of Christ et al. any ignores data dependencies within the
program. In other words, the lower bound of Christ el al. provides a lower bound for all execution
orders, both correct, when they respect the dependencies, and incorrect, when they do not.

To express the lower bounds, we define the linear constraints on the vector of unknown scalars
(s1, ..., sq)

rank(L) ≤
q∑
j=1

sjrank(φj(L)), for all subgroups L ≤ Zu (5.2)

where rank(L) is the cardinality of any maximal subset of Abelian group L that is linearly inde-
pendent1 and the “L ≤ Zu” notation in this context indicates that L is a subgroup of Zu. This
constraint set is finite as each rank is an integer in the range [0, u]. This results in a total of at
most (u + 1)q+1 different inequalities. The values sj ∈ [0, 1] are obtained via a linear program
that minimizes sHBL =

∑q
j=1 sj subject to the constraints of (5.2).2 We will refer to this lin-

ear program as sLP , and will use properties of its dual formulation in Section 5.2 to construct a
communication-optimal algorithm for a subset of the programs described in (5.1).

If the execution is legal code and the constraints of Equation (5.2) are satisfied, Christ et al.
lower bound the number of words W transferred between “fast” and “slow” memories on a se-
quential machine by

WHBL
S (M,N,F) = Ω

(
max

(
N,

F

M sHBL−1

))
(5.3)

where the problem size, N = I + O, is the sum of the number of input (I) and output words (O).
We can derive a lower bound on the number of messages by dividing the bound in Equation (5.3)
by the maximum message size (in terms of words read/written) m

SHBLS (M,N,F) = Ω

(
max

(
N

m
,

F

mM sHBL−1

))
. (5.4)

In the parallel distributed machine model, we must divide by the total number of processors P
to reflect the fraction of operations performed on each processor to obtain the memory-dependent
lower bound for the DP model. However, if the number of processors increases beyond a cer-
tain magnitude, the memory-independent bound dominates. More details about the relationship

1The rank of an Abelian group is related to the concept of the dimension of a vector space.
2HBL is an acronym of 3 mathematicians’ last names upon which this work is based: Hölder, Brascamp and Lieb.

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 92

Memory Dependent Memory Independent.

Programs WHBL
DP Ω

(
F

PMsHBL−1

)
Ω
((

F
P

)1/sHBL

)
Referencing

Arrays W linkHBL
DP Ω

(
F

P sHBL−1/dMsHBL−1

)
Ω
(
F 1/sHBL

P 1−1/d

)
Table 5.1: Per-processor bounds (WHBL

DP) ([45]) vs. the new contention bounds (W linkHBL
DP) on a

d-dimensional torus for programs that reference arrays.

between the memory-dependent and independent communication lower bounds can be found in
Chapter 4 and [21]. The two per-processor word bounds internode communication on DP machine
models are combined to form a lower bound on word volume

WHBL
DP (M,P, F) = Ω

(
max

((
F

P

)1/sHBL

,
F

PM sHBL−1

))
(5.5)

where the memory-independent lower bound is the first term in the max(), and the memory-
dependent bound follows. The corresponding DP internode message bounds are derived in a
similar manner to Equation (5.4).

As in Chapter 4, we also consider bounds on the link contention between nodes on a parallel
distributed machine prior to stating final versions of the energy and runtime bounds for this class
of problems. Now extend the definition of link contention to the case of programs that reference
arrays via affine expressions:

W linkHBL
DP (M,P, F) = Ω

(
max
r∈R

WHBL
DP (M · r, P/r, F)

d · r · hr(GNet)

)
where

R = {r : 1 ≤ r ≤ P/2,∃K ⊆ V s.t.|K| = r and hr(GNet) = |Ê(K,V \K)|/|Ê(K)|},

and hr(GNet) is the small set expansion as defined in Equation (4.14). From this definition and the
per-processor memory-dependent and memory-independent communication bounds in Equation
(5.5), we can derive contention bounds for the larger class of problems bounded by Christ et al.
The algebra for this derivation is nearly identical to that of Section 4.1, so we simply state the
results in this instance. A summary of the link contention and per-processor communication lower
bounds on the number of communication words can be seen in Table 5.1.

In Figure 5.1, we illustrate the regions within the torus dimension (d) vs. processors (P) plane
where each of the four respective bounds dominate. As noted in Chapter 4, the dimension d of
tori and mesh networks only takes integer values, so the black lines that delineate regions of bound
dominance are for illustrative purposes. Noninteger values of d may correspond to other not-yet-
analysed, or even designed, networks. This generalizes the discussion in Chapter 4, and several
key observations are to be made in relation to Figure 5.1:

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 93

P =
(
F 1/sHBL

M

)sHBL

P =
(
F 1/sHBL

M

)(sHBL−1)d

P =
(
F 1/sHBL

M

)
⌊

1
sHBL−1

⌋
⌈

sHBL

sHBL−1

⌉

Figure 5.1: Relationship between the per-processor and contention communication lower bounds,
with labels on each region indicating lower bound dominance. F and M are constants.

• If torus dimension d > dsHBL/(sHBL − 1)e, the network may be “good enough” and the
per-processor bounds are dominant. In Section 5.2, we will prove that a region of perfect
strong scaling in runtime with constant energy exists for a communication-optimal algorithm
running on a good enough network when the per-processor memory-dependent bound is
dominant.

• For toroidal topologies with
⌊

1
sHBL−1

⌋
< d < dsHBL/(sHBL−1)e, the per-processor memory-

dependent bound is dominant until P >
(
F 1/sHBL/M

)(sHBL−1)d. A region of perfect strong
scaling with constant energy also exists on these networks when the per-processor memory-
dependent bound dominates.

• As a direct consequence of the HBL bound discussed in Christ et al. [45], we find that
P =

(
F 1/sHBL/M

)
will always be less than or equal to the minimum number of processors

required to hold the problem. To show this, we reproduce the proof found in Ballard et al.
[19]:

Claim. Let there be an algorithm performing a computation of the form given by Equation
(5.1) on P processors, each with local memory of size M , and assume a single copy of the
input data is initially evenly distributed across processors. Then,

F 1/sHBL

M
≤

q∑
d=1

|φj(Z)|
M

.

As the minimum number of processors required to hold the problem is the right-hand side
of this inequality, we conclude that the memory-independent contention bound dominates the

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 94

memory-dependent contention bound as the two bounds are equivalent when P = F 1/sHBL/M .
ut

Proof. The HBL bound discussed in Christ et al. [45], states (with certain assumptions) that

F = |Z| ≤
q∏
j=1

|φj(Z)|sj .

To detail an argument from Section 2 of [45], we present several greater upper bounds on F
that will allow us to demonstrate the desired result:

F ≤
q∏
j=1

|φj(Z)|sj ≤
q∏
j=1

(
q

max
j=1
|φj(Z)|

)sj

=

(
q

max
j=1
|φj(Z)|

)∑q
j=1 sj

=

(
q

max
j=1
|φj(Z)|

)sHBL

As maxqj=1 xj ≤
∑q

j=1 xj if all xj ≥ 0,

F ≤
(

q
max
j=1
|φj(Z)|

)sHBL

≤

(
q∑
j=1

|φj(Z)|

)sHBL

which proves the desired inequality if we take sHBLth root of both sides and divide by M . ut

Thus, the memory-dependent contention bound is always dominated by the memory-independent
contention bound for programs of form shown in (5.1). This is a similar result to that of the con-
tention discussion within Section 4.1. With this result, we can state communication lower bounds
for the DP1 model that include contention bounds. As before, we differentiate between runtime and
energy bounds because contention does not effect the dynamic energy components of the model:

WHBL
DPt

(M,P, F, d) = Ω

(
max

((
F

P

)1/sHBL

,
F

PM sHBL−1
,
F 1/sHBL

P 1−1/d

))
(5.6)

SHBLDPt
(M,P, F, d) = Ω

(
max

(
1

m

(
F

P

)1/sHBL

,
F

mPM sHBL−1
,
F 1/sHBL

mP 1−1/d

))
(5.7)

WHBL
DPe

(M,P, F) = Ω

(
max

((
F

P

)1/sHBL

,
F

PM sHBL−1

))
(5.8)

SHBLDPe
(M,P, F) = Ω

(
max

(
1

m

(
F

P

)1/sHBL

,
F

mPM sHBL−1

))
. (5.9)

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 95

Interestingly, the solution to the dual of the linear problem to obtain sHBL provides the set of
optimal block sizes for the algorithm under certain assumptions, namely that the subscripts of each
array are just subsets of the loop indices. This will be discussed further in Section 5.2 as we prove
that a communication-optimal algorithm in the DP1 model has a region of perfect strong scaling
with constant energy. As also elaborated in [45], Christ et al. note that it is currently not known
if calculating the constraints of Equation (5.2) is a decidable problem. However, the researchers
note that the desired extreme points (where the solution to the linear program can be found) of the
linear program’s feasible region may be defined via a computable subset of all the constraints in
(5.2).

While the calculation of sHBL is a difficult problem, a number of easy practical cases exist
wherein sHBL can be calculated easily. The most general case demonstrated by Christ et al. [45] is
for the situation when subscripts of each array accessed within the inner loop function are a subset
of the loop indices. This case includes a number of common situations: linear algebra, the direct
O(n2) n-body problem, database join and tensor contractions among others.

Sequential Model
For programs of the form discussed above in Algorithm 5.1, we can bound now runtime on the
sequential machine model by substituting for WHBL

S (M,N) and SHBLS (M,N) via Equations (5.3)
and (5.4):

THBLS (M,N,F) = γtF + βtW
HBL
S + αtS

HBL
S

= Ω

(
γtF + βt max

(
N,

F

M sHBL−1

)
+ αt max

(
N

m
,

F

mM sHBL−1

))
. (5.10)

Similarly, we establish a lower bound for energy

EHBL
S (M, M̂,N, F) = γeF + βeW

HBL
S + αeS

HBL
S

+ (δeM̂ + εe)
(
γtF + βtW

HBL
S + αtS

HBL
S

)
= Ω

(
γeF + βe max

(
N,

F

M sHBL−1

)
+ αe max

(
N

m
,

F

mM sHBL−1

)
+ (δeM̂ + εe)

∗
(
γtF + βt max

(
N,

F

M sHBL−1

)
+ αt max

(
N

m
,

F

mM sHBL−1

)))
.

(5.11)

Distributed Parallel Model 1
The bound for the parallel distributed model is a bit more interesting in that there may be three
different expressions that comprise the maximal lower bound on word traffic, which include the

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 96

per-processor memory-independent and dependent bounds as well as the memory-independent
contention bound presented in Table 5.1. So, the runtime bound is:

THBLDP1 (M,P, F) =
γtF

P
+ βtW

HBL
DPt

+ αtS
HBL
DPt

= Ω

(
γtF

P
+ βt max

((
F

P

)1/sHBL

,
F

PM sHBL−1
,
F 1/sHBL

P 1−1/d

)

+αt max

(
1

m

(
F

P

)1/sHBL

,
F

mPM sHBL−1
,
F 1/sHBL

mP 1−1/d

))
(5.12)

The energy bound is also nearly identical to the serial model, but we account for the additional
hardware by multiplying by the total number of processors, P :

EHBL
DP1 (M,P, F) = Ω

(
P

(
γeF

P
+ βeW

HBL
DPe

+ αeS
HBL
DPe

+(δeM + εe)T
HBL
DP1

))

= Ω

(
P

(
γeF

P
+ βe max

((
F

P

)1/sHBL

,
F

PM sHBL−1

)

+ αe max

(
1

m

(
F

P

)1/sHBL

,
F

mPM sHBL−1

)

+ (δeM + εe)

(
γtF

P
+ βt max

((
F

P

)1/sHBL

,
F

PM sHBL−1
,
F 1/sHBL

P 1−1/d

)

+αt max

(
1

m

(
F

P

)1/sHBL

,
F

mPM sHBL−1
,
F 1/sHBL

mP 1−1/d

))))
. (5.13)

Distributed Parallel Model 2
In the case of DP2, we follow a similar procedure to the derivations in Chapter 4. We begin by
substituting Equations (5.3), (5.4), (5.6) and (5.7) into the DP2 runtime expression of Equation
(3.5):

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 97

THBLDP2 (M0,M1, P,N, F) = Ω

(
γt1
F

P
+ βt1 max

(
N

P
,

F

PM sHBL−1
1

)
+ αt1 max

(
N

Pm
,

F

mPM sHBL−1
1

)
+ βt0 max

((
F

P

)1/sHBL

,
F

PM sHBL−1
0

,
F 1/sHBL

P 1−1/d

)

+αt0 max

(
1

m

(
F

P

)1/sHBL

,
F

mPM sHBL−1
0

,
F 1/sHBL

mP 1−1/d

))
. (5.14)

The energy lower bound then follows by substituting Equations (5.3), (5.4), (5.8), (5.9) and (5.14)
into the DP2 energy expression of Equation (3.6):

EHBL
DP2 (M0,M1, P,N, F) = Ω

(
P

(
γe1

F

P
+ βe1 max

(
N

P
,

F

PM sHBL−1
1

)
+ αe1 max

(
N

Pm
,

F

mPM sHBL−1
1

)
+ (δe0M0 + εe0)

(
γt1
F

P
+ βt1 max

(
N

P
,

F

PM sHBL−1
1

)
+αt1 max

(
N

Pm
,

F

mPM sHBL−1
1

))
+ βt0 max

((
F

P

)1/sHBL

,
F

PM sHBL−1
0

,
F 1/sHBL

P 1−1/d

)

+αt0 max

(
1

m

(
F

P

)1/sHBL

,
F

mPM sHBL−1
0

,
F 1/sHBL

mP 1−1/d

))

+ζ|Ê(GNet)|

)
. (5.15)

Heterogeneous Model
Due to the construction of the heterogeneous machine model, the HBL bound applies to communi-
cation traffic between each processor and global memory. Together with the models for heteroge-
neous runtime (Equation (3.7)) and energy (Equation (3.8)), we can derive bounds. We can obtain
the heterogeneous bounds WHBL

Hi
and SHBLHi

by subscripting the HBL sequential lower bounds
(Equations (5.3) and (5.4)) to differentiate the different heterogeneous processing elements:

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 98

WHBL
Hi

(Mi, Ni, Fi) = Ω

(
Ni,

Fi

M sHBL−1
i

)
and

SHBLHi
(Mi, Ni, Fi) = Ω

(
Ni

mi

,
Fi

miM
sHBL−1
i

)
.

Then, by substituting these bounds into the heterogeneous runtime and energy models, we obtain

THBLH ({Mi}, {Ni}, {Fi}) = max
1≤i≤P

(
γtiFi + βtiW

HBL
Hi

+ αtiS
HBL
Hi

)
(5.16)

and

EHBL
H ({Mi}, M̂ , {Ni}, {Fi}) = Ω

(
P∑
i=1

[
γeiFi + βeiW

HBL
Hi

+ αeiS
HBL
Hi

+δeiMi

(
γtiFi + βtiW

HBL
Hi

+ αtiS
HBL
Hi

)]
+(δ̂M̂ + εH) max

1≤i≤P

(
γtiFi + βtiW

HBL
Hi

+ αtiS
HBL
Hi

))
.

(5.17)

As discussed in Section 4.3, we can obtain lower bounds on heterogeneous runtime and energy by
minimizing over all partitions of the work, F .

Example: Energy Lower Bound for Matrix-matrix Multiplication

To be more concrete, the lower bound of Equation (5.17) applies to BLAS3 [31] operations such
as n-by-n dense-matrix-matrix-multiplication as well as most direct linear algebra algorithms. We
assume the DP1 model, and here show that the energy lower bound derived in the previous chapter
can be obtained via the generalized theory. For classical matrix-matrix multiplication, we note that
the contention bound is subsumed in such cases when a torus network topology is of dimension 2
or 3 (the latter case applies for algorithms that trade memory for reduced communication [19]) and
assume that the problem is of sufficient size that the memory-dependent bound is dominant. In the
situation of O(n3) matrix-matrix multiplication, we can rewrite Equation (5.17) as

EHBL
H ({Mi}, M̂ , {Ni}, {Fi}) = Ω

(
P∑
i=1

(Fi(νei + νtiδeiMi)) + (δ̂M̂ + εH) max
1≤i≤P

Fiνti

)
(5.18)

where
νti = γti +

βti

M
1/2
i

+
αti

mM
1/2
i

and
νei = γei +

βei

M
1/2
i

+
αei

mM
1/2
i

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 99

are constants, sHBL = 3/2 and
∑

i Fi = 2n3. We can also write both the above energy lower bound
as an integer program, and solve the associated linear program to obtain an approximation of the
optimal flop partition to guide algorithms (see [17] for more details). This approach was used to
construct an energy and communication-optimal algorithm for matrix-matrix multiplication in the
previous chapter, but a similar strategy could also be used to construct optimal work partitions for
the much larger class of problems bounded in this chapter. The major challenge in a constructing
a generalized approach to communication or energy-optimal algorithms for such problems is in
partitioning the input data of N words into blocks {Ni} that attain this optimal partition of F ,
{Fi}.

5.2 Perfect Strong Scaling in the Distributed Machine Model
In [126], Solomonik and Demmel presented an algorithm on the DP1 model for classical O(n3)
matrix-matrix multiplication that could achieve perfect strong scaling in runtime by utilizing ad-
ditional memory for replicating data to asymptotically reduce the overhead of communication. By
perfect strong scaling in runtime, we mean that an increase in the number of processors by a factor
c results in a identical reduction in runtime for a fixed problem size. Later results also used data
replication to show that new algorithms for the O(n2) n-body problem [61] and Strassen’s matrix-
matrix multiplication algorithm [98] also achieve this perfect strong scaling characteristic. This
region of perfect strong scaling has been demonstrated empirically for these algorithms as well as
a new algorithm for rectangular matrix-matrix multiplication [53]. The ability to achieve this scal-
ing with constant energy was proven theoretically by Demmel, Gearhart, Lipshitz and Schwartz in
[55] and also detailed in Chapter 4.

In this section, we reproduce and generalize the proof of [45] that presents an algorithm within
the distributed parallel machine model that achieves a region of perfect strong scaling in runtime
when the array subscript expressions φl all choose subsets Kl of the loop indices I. In addition to
slightly generalizing the argument of Christ et al., we also show that this region of perfect strong
scaling in runtime occurs at constant energy.

For per-processor communication bounds to apply, we must ensure that the parallel algorithm
distributes the workload so that every processor performs Ω(1/P) of the computation, and dis-
tributes the input and output data such that every processor stores O(1/P) of the data. For sim-
plicity, let us assume that the iteration space Z is a dense cube; i.e. that each index variable
ik ∈ I(k = 1 : u, u = dim(I)) ranges from 0 : n − 1.3 We also ignore data dependencies that
may be carried across loop iterations. Thus, we consider programs of this form

for i1 = 0 : n− 1, for i2 = 0 : n− 1, ..., for iu = 0 : n− 1,

inner loop((i1, i2, ..., iu), (A1, . . . , Aq), (φ1, . . . , φq)).
(5.19)

3The bounds can also be derived if we assume the iteration space to be encompassed by this d-dimensional cube,
thus allowing the size of each dimension to differ.

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 100

In the sequential model, Christ et al. [45] prove that ”tiling” programs of form (5.19) into this
form

// A blocked communication-optimal algorithm
// for programs that access arrays via subsets of the iteration space
for j1 = 0 : Mx1 : n− 1, for j2 = 0 : Mx2 : n− 1, ..., for ju = 0 : Mxu : n− 1,

for k1 = 0 : Mx1 − 1, for k2 = 0 : Mx2 − 1, ..., for ku = 0 : Mxu − 1,

(i1, i2, ..., iu) = (j1, j2, ..., ju) + (k1, k2, ..., ku)

inner loop((i1, i2, ..., iu), (A1, . . . , Aq), (φ1, . . . , φq))

(5.20)

can attain the serial communication lower bounds (5.3) and (5.4) if permitted by loop carried
dependencies and if the parameters x1, x2, ..., xu are chosen to be the solution of the dual xLP of
linear program sLP (previously mentioned in Section 5):

Theorem 7.1 of [45]: Suppose that the linear program (sLP) for sHBL is feasible and that each
array Al(l = 1...q) is indexed via a subset Kl of the loop indices. We define matrix ∆ ∈ Rq×u

as a matrix with ∆li = 1 if i ∈ Kl and 0 otherwise. Then the dual linear program ”xLP” for
x = (x1, ..., xu)

T

(xLP) maximize 1Tu · x subject to 1q ≥ ∆ · x,

is also feasible, and using the values of x in the tiled code (5.20) lets it attain the communication
lower bound of Ω(nu/M sHBL−1) words moved. By duality, the solution x of xLP satisfies 1Tu · x =
1Tq · s = sHBL.

The pseudocode of (5.20) partitions the iteration space of nu points into
∏u

i=1 n/M
xi =

nu/M sHBL ”bricks” of size
∏u

i=1M
xi = M sHBL that are computed with each iteration of the

index variables (j). In the following, we argue that a similar tiling approach to programs of the
form shown in (5.19) (with the same assumption that arrays are accessed via subsets of the index
variables) yields a tight upper bound on communication traffic for the distributed parallel machine
model.

If we consider the DP1 model and assume that the dimension of the torus network and F is
of sufficient size such that the memory-dependent lower bound is dominant, the number of words
transferred on a distributed parallel machine with P processors is lower bounded by

WHBL
DP (M,P, F) = Ω

(
F

PM sHBL−1

)
. (5.21)

As we ignore data dependencies, bricks of the algorithm in (5.20) may be executed in parallel.
To construct an optimal parallel algorithm, let us first consider the minimum amount of memory
required to hold the problem. As in a similar analysis by [45], we construct an algorithm that is
communication-optimal for programs of type shown in (5.19). From this, we know that nul words
of memory are required to store Al where ul is the dimension of Al. The total amount of required
memory is

∑q
l=1 n

ul = N and the amount per processor is bounded below by M ≥ N/P .

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 101

Next, we describe how the blocks of data required to compute a brick are initially laid out on
the processors such that the data distribution assumption is attained. Since Al has subscripts given
by indices in Sl, we may partition Al by blocking the subscripts ik, for k ∈ Sl, into blocks of size
Mxk , so that each block contains

∏
k∈Sl

Mxk = M
∑

k∈Sl
xk = M (∆·x)l ≤ M entries and may thus

be stored on a single processor. For each array Al, 1 ≤ l ≤ q, we assign the nul/M
∑

k∈Sl
xk blocks

cyclically across the P processors. We assume that the number of blocks of each array is sufficient
such that every processor storesO(1/P) of the data and that block assignment is load balanced, i.e.
so that all processors do not access a needed block from the same processor on a given iteration.
With this initial data layout, we now present an algorithm to compute the problem in parallel:

Algorithm 10 Communication-Optimal Parallel Algorithm for Product Case Problems

1: for all (j1, ..., ju) where ji ∈ [1, n/Mxi] do in parallel
2: for all l = 0 : q − 1 do
3: get block of array Al from correct processor
4: end for
5: for all k1 = 0 : Mx1 − 1, k2 = 0 : Mx2 − 1, ..., ku = 0 : Mxu − 1 do
6: (i1, i2, ..., iu) = (j1M

x1 , ..., juM
xu) + (k1, k2, ..., ku)

7: inner loop((i1, i2, ..., iu), (A1, . . . , Aq), (φ1, . . . , φq))
8: end for
9: end for

The pseudocode of Algorithm 10 partitions the iteration space of nu points into
∏u

i=1 n/M
xi =

nu/M sHBL ”bricks” of size
∏u

i=1M
xi = M sHBL , P of which are computed per PARFOR iteration

of the algorithm in Algorithm10. The algorithm is clearly load-balanced (assuming we have at
least P bricks) and the computation of each brick requires O(M) communication (see [45]). Thus,
Algorithm 10 attains the desired lower bound on word traffic (Equation (5.21)).

Now we wish to show that this algorithm is able to achieve perfect strong scaling in runtime by
utilizing the additional memory provided by adding additional processors to the system. To begin,
we write M = cN/P , where c is the number of copies of the data we will use; c = 1 corresponds
to the minimum memory necessary to hold the problem. Combining this expression for M with
the number of bricks, we may write

bricks =

[
nu/sHBLP

Nc

]sHBL

.

We now divide the P processors into c groups of P/c processors each. Since we assume there is
enough memory PM for c copies of the input data, each group of P/c processors will have its own
copy of the input data and no inter-group communication will be required as we chose to ignore
data dependencies. So, each group of P/c processors would require

nuP sHBL−1

N sHBLcsHBL−1

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 102

parallel phases of the parallel blocked Algorithm 10 to complete all the bricks. However, we have
c groups of processors. Thus, we actually need

nuP sHBL−1

N sHBLcsHBL
=
Kmin

csHBL
(5.22)

parallel phases to complete the problem and Kmin = nuP sHBL−1/N sHBL represents the number of
phases with the minimal amount of memory (or data replications, i.e. c = 1).

If we wish to group the processors P in to groups of P/c, we must partition the iteration space
into contiguous chunks of work that allow for the above discussion to hold. To do this, we define
a ”superbrick” to consist of (

N1/u

Mxk/sHBL

)
contiguous bricks in each direction for

u∏
k=1

(
N1/u

Mxk/sHBL

)
=

(N1/u)u

(M
∑u

k=1xk)1/sHBL
=

N

(M sHBL)1/sHBL
=
N

M
=
P

c

total bricks per superbrick as M = cN/P . Thus, each group of P/c processors executes one
superbrick of P/c contiguous bricks per parallel iteration.

Suppose that we initially use the minimum number of processors required to hold the problem:
Pmin = N/M . This is the situation when there is only enough memory for c = 1 copies of
the input data. Then according to Equation (5.22) we need Kmin parallel phases to process all
the bricks. We also know that the total number of iterations executed by the entire machine is
F = KminPminM

sHBL as each brick contains M sHBL operations. According to Equation (5.12)
(assuming the memory-dependent per-processor bound dominates), the runtime bound with Pmin
processors is

THBLDP1 (M,Pmin, F) = Ω

(
γt

F

Pmin
+ βt

F

PminM sHBL−1
+ αt

F

mPminM sHBL−1

)
= Ω

(
KminM

sHBL

(
γt +

βt
M sHBL−1

+
αt

mM sHBL−1

))
.

Note that we must divide F by the number of processors Pmin to obtain the number of iterations
executed by a single processor. Now, suppose that we scale the number of processors by c; i.e.
P = cPmin so that we have memory space for c copies of the input data. Now, the number of
parallel phases is

nu(cPmin)sHBL−1

N sHBLcsHBL
=
nuP sHBL−1

min

N sHBLc
=
Kmin

c
.

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 103

Note that by scaling by c processors, we are able to reduce the amount of parallel phases by the
same factor. With this in mind, the runtime bound with P = cPmin processors becomes

THBLDP1 (M,P, F) =
KminM

sHBL

c

(
γt +

βt
M sHBL−1

+
αt

mM sHBL−1

)
=
THBLDP1 (M,Pmin, F)

c
.

(5.23)
This result demonstrates that a region of perfect strong scaling in runtime exists for a certain
range of processors (and some assumptions on network topology). Furthermore, to generalize
an argument used in [55], the energy lower bound in Equation (5.13) (assuming the memory-
dependent per-processor bound dominates) is such that each term is dependent on either the number
of flops, number of words, or number of messages. So, the energy to run on Pmin processors is

EHBL
DP1 (M,Pmin, F) = Ω

(
Pmin

(
γe

F

Pmin
+ βe

F

PminM sHBL−1

+αe
F

mPminM sHBL−1
+ (δeM + εe)T

HBL
DP1 (M,Pmin, F)

))

= Ω

(
Pmin

(
KminM

sHBL

(
γe +

βe
M sHBL−1

+
αe

mM sHBL−1

)
+ (δeM + εe)T

HBL
DP1 (M,Pmin, F)

))
Now, if we run on P = cPmin processors the energy becomes

EHBL
DP1 (M, cPmin, F) = Ω

(
cPmin

(
KminM

sHBL

c

(
γe +

βe
M sHBL−1

+
αe

mM sHBL−1

)
+

(δeM + εe)T
HBL
DP1 (M,Pmin, F)

c

))
= EHBL

DP1 (M,Pmin, F)

(5.24)

if we recall that the number of parallel phases is now Kmin/c and the strong scaling property
of THBLDP1 shown in (5.23). This done, we see that the amount of energy required to strong scale
perfectly in runtime is constant. To summarize the runtime (THBLDP1) and energy (EHBL

DP1) to run on
P = cPmin processors is:

THBLDP1 (M,P, F) =
THBLDP1 (M,Pmin, F)

c

EHBL
DP1 (M,P, F) = EHBL

DP1 (M,Pmin, F).

Now that we’ve demonstrated the utility of extra copies of the input data to reduce communication,
we must explore an upper bound on the value of the replication factor, c. To be load balanced, there
must be at least P bricks available for computation. Thus, F/M sHBL = nu/M sHBL ≥ P recalling
that F = nu. Thus allows us to obtain an upper bound on the size of M , and consequently a

CHAPTER 5. BOUNDS ON COMMUNICATION, RUNTIME AND ENERGY FOR
PROGRAMS THAT ACCESS ARRAYS 104

lower bound on the number of words according to Equation (5.21). This expression has been
discussed previously, and is the parallel memory-independent per-processor bound in Equation
(5.13). Recalling that M = cN/P , we obtain

F 1/sHBL

P 1/sHBL
≥ cN

P

c ≤ P 1−1/sHBL
F 1/sHBL

N
(5.25)

And substituting F = nu, we obtain

c ≤ P 1−1/sHBL
nu/sHBL

N
(5.26)

as an upper bound on the size of c.
In the situation where a toroidal or mesh network is of degree d such that

⌊
1

sHBL−1

⌋
< d <

dsHBL/(sHBL − 1)e, a similar argument to the above can be made to show that a region of perfect
strong scaling in runtime with no additional energy also exists with the memory-dependent per-
processor bound (WHBL

DP = Ω(F/PM sHBL−1)) eventually dominated by the memory-independent
contention bound (W linkHBL

DP = Ω(F 1/sHBL/P 1−1/d)) when c is such that inequality (5.25) no longer
holds.

105

Chapter 6

Applications of Bounds on Specific Machine
Models

The bounds on energy presented in Chapters 4 and 5 allow us to consider a set of interesting
problems that may be of use to algorithm designers and autotuning software:

1. What is the minimum energy required for a computation?

2. Given a maximum allowed runtime T , what is the minimum energy E needed to achieve it?

3. Given a maximum energy budget E, what is the minimum runtime T that we can attain?

4. The ratio H = E/T gives us the average total power required to run the algorithm. Can we
minimize the average power consumed?

5. Given a bound on average power, can we minimize energy or runtime?

In this chapter, we first provide a high-level overview of our analysis so that readers may build
an intuition of the relationships between problem size, memory utilization, and number of proces-
sors on distributed parallel machines (Section 6.1). Next, we describe two examples of distributed
parallel machines that will be analyzed within this chapter (Section 6.2). Then, in an extension of
collaborative work with Ballard et. al [55], we analyze classical O(n3) matrix-matrix multiplica-
tion, the O(n2) n-body problem and the class of programs that reference arrays via subsets of their
iteration variables (see Chapter 5 and Christ et al. [45] for more details) and visualize energy effi-
ciency scaling on two hypothetical machine architectures with the presence of energy and runtime
constraints (Sections 6.3 and 6.4). Scripts used to generate the figures presented in this chapter can
be found at https://github.com/agearh/dissertation.git.

6.1 Overview
If we assume that the hardware parameters (γt, γe, βt, βe, αt, αe, εe) of the machine model are
fixed, the interesting parameter becomes that of the total amount of utilized local memory, M .

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 106

Mopt

 6 20 40 60 80 100

M

P

Energy
constant time contours
minimum energy runs

En
er

gy

decreasing timemaximum useful memory

minimum memory

Figure 6.1: Energy costs as node count and memory are scaled

This parameter varies depending on the problem size and sometimes can be increased to reduce
communication for specific algorithms. In the sequential model, considering the above problems
with respect to the amount of utilized slow memory, M̂ , is not extremely interesting as the param-
eter only appears in one term. As none of the other runtime parameters (F ,W and S) diminish
with larger M̂ , the best approach to minimize energy consumption asymptotically would be to
use the smallest amount of slow memory, which is the minimal size of the problem. As noted in
Section 3.2, this formulation fits with the intuition of a larger slow memory consuming a larger
amount of idle energy than a smaller cache. With this observation regarding sequential machines,
we focus our analysis on the distributed parallel model, but the same questions may also be asked
for heterogeneous machines (where the interesting parameters are the fast memory sizes, Mi).

As we are fixing hardware parameters in the models, there are three variables that may be
considered: problem size n, node memory size M , and the number of processors P .1 To illustrate
the design space explored later in this chapter, we present Figures 6.1 and 6.2 to illustrate the
general properties of the problems presented.

Each of the figures assumes a fixed problem size (n) and plots the number of nodes (P) vs. the
amount of node memory (M) available for data replication. Node memory is constrained by two
functions: the minimal amount of memory required to hold the problem (“minimum memory”),
and the amount of memory at which the memory-independent communication bound begins to
dominate (“maximum useful memory”). Within these two constraints and for a fixedM , we obtain
perfect strong scaling in runtime with constant energy by scaling the number of nodes. This scaling
can be seen in that energy is constant with P for a fixed M . Note that operating within the region
above the “maximum useful memory” is possible, but without the property of perfect scaling. Note
that we present M as a continuous axis, i.e., the figures assume that all additional memory can be
used to reduce communication, even if there is not enough available for another full copy of the
data.

1As the runtime parameters F ,W and S are functions of these variables.

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 107

Mopt

 6 20 40 60 80 100

M

P

runs within a maximum time
runs within a total power budget

minimum energy runs

minimum energy
given runtime limit

minimum energy and runtime
given total power limit

(a) Runtime and average power constraints (b) Energy and per-processor power constraints

Figure 6.2: Effect of constraints on energy efficiency

If we focus upon Figure 6.1, we observe that both excessively small (where communication
dominates energy costs) and excessively large (idle memory energy begins to dominate) amounts of
node memoryM increase the amount of energy required to solve the problem. Later, we will derive
expressions for the optimal amount of utilized memory for the algorithms under consideration,
and with the 2.5D O(n3) matrix-matrix multiplication and communication-avoiding (CA) O(n2)
n-body algorithms, calculate the value analytically. In the figure, this energy-optimal amount of
memory is Mopt. If we assume that each node utilizes Mopt words of memory and the number of
processors is scaled, we can achieve perfect strong scaling in runtime while spending the minimal
amount of energy (see green line). This optimal amount of energy is constant with processor
scaling due to the usage of more memory to offset increased communication costs. Note that if the
algorithm is only able to utilize cMmin words of memory, where Mmin is the minimal amount of
memory to hold the problem and c is a natural number, the most efficient possible run is to select
the value of c closest to Mopt/Mmin. We also represent lines of constant runtime in Figure 6.1 via
black lines. Note that as communication time increases (smaller values of M), more processors
are required to attain a desired runtime bound.

The plots within Figure 6.2 illustrate the impact of energy, runtime and power constraints when
applied to the problem. Both plots, like Figure 6.1, consider P vs. M and display the constraints
of minimum and maximum useful memory. The energy-optimal scaling region that occurs with
Mopt words of utilized node memory is again displayed as a green line. In Figure 6.2a, the magenta
region highlights runs that occur within a maximum total power budget (we refer to such a budget
or limit as HDP1 in the following analysis). Note that the point of minimum energy and runtime
within the power budget is the intersection of the energy-optimal scaling region (a run with Mopt

words of memory) and the upper bound on the number of processors imposed by the budget. In
addition, Figure 6.2a shows a crosshatched region of runs that could occur within a time bound
(Tmax). As energy consumption only depends on M between the minimum and maximum useful

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 108

memory constraints, the minimum energy point that attains Tmax is found at the point of maximal
possible local memory within the crosshatched region (see arrow in figure).

In Figure 6.2b, we illustrate a cyan region that represents runs under a per-processor power
constraint (hDP1). This region does not depend on the number of processors, just the amount of
node memory, M . In addition to the cyan region, Figure 6.2b shows a blue region that indicates
a region of runs below a maximum energy bound, or budget (Emax). As the amount of energy
required for a run does not depend on the number of processors within the perfect strong scaling
region, the only variation in energy is along the M axis, which has a minimum at Mopt. Hence, the
region of runs constrained by Emax includes the green line of energy-optimal runs.

6.2 Example Machines for Analysis
To be more concrete, we will analyze two different distributed parallel machines: a one with
modern nodes assuming Intel Xeon 2650 processors and a potential future machine that represents
a significant improvement in hardware performance over current technology. We assume nodes
each have 2 multicore processors. We also assume that per-message time and energy costs (αe
and αt, respectively) are zero for simplicity when applying algebraic results to these example
machines.2 We assume a torus interconnect of dimension d = 3, which is sufficient such that
link contention bounds do not dominate the per-processor bounds for the problems considered in
this chapter (see Sections 4.1 and 5.1 for more details on contention bounds). The characteristics
of the generic machines under discussion are shown in Table 6.1 and model parameters derived
from these characteristics are shown in Table 6.2. We assume that the algorithms under analysis
are each able to attain these parameters. We note that in actual implementations of the algorithms
to be analyzed, the attained parameters may be significantly worse than the limits imposed by
hardware (see Choi et al. [44]).

For the Xeon 2650 nodes, word size, cores per processor, core frequency, vectorization (SIMD),
fused-multiply-add (FMA), and processor Thermal Design Power (TDP) are obtained from man-
ufacturer sources [78, 82]. We assume use of dual-port 10Gb/s Intel X540-T2 ethernet network
interface cards (NICs), with peak power of 13.4W also obtained from Intel sources [79]. We as-
sume that the network card draws 85% of this peak power while idle, following evidence [106,
2] that NIC power consumption shows little variation with bandwidth utilization. As we assumed
that the network is a 3-dimensional torus, each node has 3 NICs on-board (for six connections
to neighboring machines in the torus). We also assume that node memory is composed of Mi-
cron 1600Mhz 16GB DDR3 DRAM DIMM modules and calculate memory power via the Virtium
DIMM Memory Power Calculator [58]. For more details regarding values in Table 6.1, we refer
the reader to Section 7.3. Parameters for the future machine are arbitrarily improved over the Xeon
2650-based machine for illustrative purposes. From the machine descriptions in Table 6.1, we
use the equations in (6.1) to derive parameters for our runtime and energy models. Note that our
method of calculating DRAM power assumes an upper bound (Mhw) on the amount of physical

2Note that latency terms in the model also have the benefit of being reduced by the largest message size, m. As
such, communication volume will tend to dominate unless m is small or the per-message costs (αt or αe) are high.

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 109

Parameters Xeon 2650 Future Machine
Word Size (bytes) 8 8
Processors 2 2
Cores 8 50
Vectorization (SIMD) 4 8
Fused-Multiply-Add (FMA) 2 2
Processor Freq. (Ghz) 2 2
Processor Total Power (W) 95 45
Processor Idle Fraction 0.15 0.15
NIC BW (Gb/s) 10 20
NIC Total Power (W) 13.4 13.4
NIC Idle Fraction 0.85 0.85
Torus Dim. (d) 3 3
Installed DRAM (Mhw,GB) 128 128
Peak DRAM BW (GB/s) 102.4 102.4
DRAM Dynamic Power/GB 0.6729 0.3365
DRAM Idle Power/GB 0.2533 0.127
Node Base Power (W) 100 50

Table 6.1: Description of Xeon 2650-based and future distributed parallel machines

installed memory per node (128GB). DRAM dynamic energy is likely a mixture of both intran-
ode and internode activity as caches and NICs operate3. According to the JEDEC standard [51],
each DDR3-1600 DIMM module has a peak bandwidth of 12.8GB/s. If the system has 128GB of
installed memory with 16GB DIMMs, we have 8 DIMMs per node. This results in 102.4GB/s of
total peak DRAM bandwidth. On the other hand, each of the three 10Gb/s NICs has a peak band-
width of 1.25GB/s for a total network bandwidth of 3.75GB/s. This is 3.7% of the peak DRAM
bandwidth, and we assume that network traffic also consumes 3.7% of DRAM dynamic power.
The derived parameters are shown in Table 6.2.

γt = 1/(Processor Freq ∗ SIMD ∗ Cores ∗ Processors ∗ FMA ∗ 1e9)

γe = γt ∗ Processor Dynamic Power ∗ Processors
βt = 1/(Peak Network BW/Words Per GB)

βe = βt ∗ (DRAM Dynamic Power + NIC Dynamic Power)
δe = DRAM Idle Power Per GB/Words Per GB
εe = Processors ∗ Processor Idle Power + Node Base Power + NIC Idle Power (6.1)

3Unless the NIC is integrated on the processor, in which case internode communication can bypass main memory.
In this work, we assume NIC integration does not occur.

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 110

where

Processor Idle Power = Processor Total Power ∗ Processor Idle Fraction
Processor Dynamic Power = Processor Total Power ∗ (1− Processor Idle Fraction)

DRAM Dynamic Power = (Mhw ∗ DRAM Dynamic Power Per GB)

∗ (Peak Network BW/Peak DRAM BW)

NIC Idle Power = NIC Total Power ∗ NIC Idle Fraction ∗ d
NIC Dynamic Power = NIC Total Power ∗ (1− NIC Idle Fraction) ∗ d

Peak Network BW = (NIC BW ∗ d)/Bits Per Byte
Words Per GB = 1e9/Word Size.

Xeon 2650 Future Machine
Processor Idle Power (W) 14.25 6.75
Processor Dynamic Power (W) 80.75 38.25
DRAM Dynamic Power (W) 3.15 6.31
NIC Idle Power (W) 34.17 34.17
NIC Dynamic Power (W) 6.03 6.03
Peak Network BW (GB/s) 3.75 15.00
γt (sec/flop) 3.91E-12 3.13E-13
γe (joule/flop) 6.31E-10 2.39E-11
βt (sec/word) 6.40E-09 1.60E-09
βe (joule/word) 5.88E-08 1.97E-08
δe (joules/sec)/word 2.03E-09 1.02E-09
εe (joules/sec) 162.67 97.67

Table 6.2: Parameters derived from machine descriptions

With these example machines, and the high-level overview of impact of constraints on runtime
and energy from Section 6.1, we now analyze a subset of the algorithms available to perform dense
O(n3) matrix-matrix factorization, the O(n2) n-body problem, and an example of a program lower
bounded by the HBL results discussed within Chapter 5. This final example will generalize the
analysis of the first two problems, and demonstrate the applicability of our analysis to a much
larger class of programs. Each of the algorithms is able to use additional memory to reduce com-
munication, and perfectly strong scale in runtime with constant energy for a range of processors
(see Section 3.3 for a discussion of these algorithms, and Sections 4.1 and 5.2 for a discussion of
perfect scaling).

In the discussion that follows, we will algebraically explore the impact of constraints upon
energy consumption and runtime and present heat plots with the color scale representing energy
efficiency (i.e. performance per watt, or Gflop/s/W). In the DP1 model for the class of problems

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 111

that access arrays via subsets of the iteration variables4, the energy efficiency, CHBL
perf = F/EHBL

DP1 ,
is

CHBL
perf (M,P, F) =

F

EHBL
DP1 (M,P, F)

=
F

P
(
γe

F
P

+ βeWHBL
DPe

+ (δeM + εe)
(
γt
F
P

+ βtWHBL
DPt

)) .
In this section, we assume that network contention does not dominate, so the communication bound
for the runtime model is equivalent to the energy bound (i.e. WHBL

DPe
= WHBL

DPt
, see Equations (5.6)

and (5.8)), and we substitute Equation (5.6) into the equation for CHBL
perf to obtain

CHBLperf (M,P, F) = Ω (F [P (γe
F

P
+ βe max

(
F

PM sHBL−1
,

(
F

P

)1/sHBL
)

+(δeM + εe)

(
γt
F

P
+ βt max

(
F

PM sHBL−1
,

(
F

P

)1/sHBL
)))]−1

which simplifies to

CHBL
perf (M,P, F) = Ω

([
γe + βe max

(
M1−sHBL ,

(
P

F

)1−1/sHBL

)

+(δeM + εe)

(
γt + βt max

(
M1−sHBL ,

(
P

F

)1−1/sHBL

))]−1
 .

For ease of analysis, we will henceforth assume that the memory-dependent per-processor bound
dominates, and the expression becomes

CHBL
perf MDP (M) = Ω ([γe + βeM

1−sHBL + δeMγt + δeβtM
2−sHBL

+εeγt + εeβtM
1−sHBL

]−1
)
. (6.2)

where sHBL is a problem-specific constant (see Chapter 5 for details) and “MDP” stands for the
“Memory Dependent per-Processor” bound.

To visualize energy efficiency, we will hold the number of processors, P , constant and scale the
problem size, n, with the amount of data replication (c). In this manner, we regard node memory
as a resource to be used by an algorithm within the upper bound on replication imposed by the
memory-independent per-processor communication bound (and the amount of DRAM installed on
the node, Mhw).

6.3 Classical O(n3) Matrix-matrix Multiplication
The lower bounds on runtime (Equation (4.29)) and energy (Equation (4.30)) consumption on a
distributed parallel machine model (DP1) for a load-balanced O(n3) matrix-matrix multiplication
algorithm that starts with one copy of the data are

4Some other technical assumptions apply, see Chapter 5 and [45]

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 112

TCMM
DP1 DMP (M,P, n) = Ω

(
γtn

3

P
+

βtn
3

PM1/2
+

αtn
3

mPM1/2

)
(6.3)

and

ECMM
DP1 MDP (M,n) = Ω

(
(γe + γtεe)n

3 +

(
(βe + βtεe) +

(αe + αtεe)

m

)
n3

M
1
2

+δeγtMn3 +

(
δeβt +

δeαt
m

)
M

1
2n3

)
(6.4)

if we assume that the memory-dependent per-processor (MDP) bound is dominant. To review
Section 3.3, this bound is attained via the 2.5D matrix multiplication algorithm [126], which is
able to use additional memory to replicate input data and reduce total communication volume.
In the following discussion, we will use this algorithm and model potential energy and runtime
performance in the presence of various constraints. We choose the variable c to represent the
memory replication factor. To reiterate Section 3.3, at c = 1, the algorithm executes the SUMMA
matrix-matrix multiplication algorithm [67]. At the largest value of c for this algorithm, c = P 1/3,
the 2.5D algorithm executes the 3D matrix-matrix multiplication algorithm [52, 3, 4, 87]. As we
mentioned in Chapter 4, this ability to scale data replication allows for perfect strong scaling in
runtime with constant energy for a range of processors (and consequently, a range of available
memory to be used for data replication).

Minimizing energy for the computation. Note that the energy usage in Equation (6.4) is inde-
pendent of P , and assuming the parameters of Table 6.2 are fixed, we need to choose the
value of M that optimizes energy use. Setting

A = (βe + βtεe) +
(αe + αtεe)

m
, B = δeγt, C = δeβt +

δeαt
m

,

we see that Equation (6.4) becomes

ECMM
DP1 MDP (M,n) = Ω

(
n3((γe + εeγt) +M−1/2A+MB +M1/2C)

)
.

If we set x = M1/2 by the chain rule dE/dx = (dE/dM)/(dx/dM), the derivative of
ECMM
DP1 MDP with respect to x is

dECMM
DP1 MDP

dx
= n3

(
−A
x2

+ 2Bx+ C

)
(6.5)

which, according to Maple 15.01 [107] has a unique positive real root at

Mopt =

(
1

6

(
D

B
+

C2

BD
− C

B

))2

(6.6)

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 113

where

D =
(

6
√

3(27A2B4 − AB2C3)
1
2 + 54AB2 − C3

) 1
3
.

Equation (6.6) is a minimum if M1/2
opt is positive, as would be expected for realistic values of

M .5 As in Chapter 4, energy consumption is constant in the range n2/P ≤ M ≤ n2/P 2/3,
assuming that M is held fixed. This means it is possible to attain the minimum energy use
for any

n2

Mopt

≤ P ≤ n3

M
3/2
opt

.

Minimizing energy given an upper bound on the runtime. As in the situation of minimizing
energy without a constraint, we can solve this problem in a closed form despite imposing
an upper bound on runtime, Tmax. Two potential situations may arise:

1. It is possible to achieve the required runtime Tmax and use the minimum amount of
energy. This is the case if TCMM

DP1 MDP ≤ Tmax when M = Mopt. In this case, for
example, taking P = n3/M

3/2
opt and M = Mopt is energy-optimal.

2. Otherwise, we need to use the maximal usable amount of memory to achieve Tmax (i.e.
run as the 3D multiplication algorithm, see Section 3.3). In this case, we must use at
least PTmax processors, where the time to run the algorithm equals Tmax. So, we must
solve

Tmax = TCMM
DP1 MDP (M,PTmax , n) =

n3
(
γtmM

1/2 + βtm+ αt
)

mPTmaxM
1/2

for PTmax when M = n2/P
2/3
Tmax

(as we recall that M = cn2/P where c = P
1/3
Tmax

to run
2.5D matrix-matrix multiplication as a 3D algorithm). Finally, one chooses the value of
P that minimizes ECMM

DP1 MDP when running the 2.5D algorithm with c = P 1/3, subject
to the constraint that P ≥ PTmax . An example of an upper bound on runtime can be
seen in Figure 6.2a.

Minimizing runtime given an upper bound on energy. Conversely, if we fix the maximum al-
lowed energy to some bound Emax, this will limit M to lie in some range, as we saw il-
lustrated by the blue region in Figure 6.2b. Minimizing TCMM

DP1 MDP will always result in a
3D run (i.e. a run that uses the largest amount of replication, until limited by the memory-
independent per-processor bound), as runtime decreases in P and energy does not increase
with the number of processors in this range. Thus, we wish to calculate the maximal P that
is able to attain Emax, i.e. solve

5The derivative of Equation (6.5) is 2A/x3 +2B, which has sign determined by the sign of x = M1/2 asB andA
are positive constants. If this second derivative of ECMM

DP1 MDP is positive, Equation (6.6) is a minimum energy value
of M .

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 114

Emax = ECMM
DP1 MDP (n2/P 2/3, n)

for P , and consider the largest real root. This equation becomes

0 = n2(βem+ αe + εeαt)P +m(γen
3 + εeγtn

3 − Emax)P 2/3

+ n4δe(βtm+ αe)P
1/3 + n2(δeγtn

3m+ εeβt)

which notably can not admit a positive, real root unless Emax > (γe+ εeγt)n
3. Note that this

inequality is necessary but not sufficient to guarantee that a real solution exists.

Minimizing the per-processor average power. By considering that average power for a proces-
sor is hCMM

DP1 MDP = ECMM
DP1 MDP/(PT

CMM
DP1 MDP) and assuming that all processors complete

the task utilizing the same amount of time and energy, we can combine our previous ex-
pressions for ECMM

DP1 MDP and TCMM
DP1 MDP to obtain an expression for per-processor power

hCMM
DP1 MDP :

hCMM
DP1 MDP (M,P, n) =

ECMM
DP1 MDP (M,n)

PTCMM
DP1 MDP (M,P, n)

= Ω

γen3 + βen3

M1/2 + αen3

mM1/2 + (δeM + εe)
(
γtn

3 + βtn3

M1/2 + αtn3

mM1/2

)
PTCMM

DP1 MDP (M,P, n)

= Ω

(
γen

3 + βen3

M1/2 + αen3

mM1/2

)
(
γtn3 + βtn3

M1/2 + αtn3

mM1/2

) + δeM + εe

thus,

hCMM
DP1 MDP (M) = Ω

(
γeM

1/2m+ βem+ αe
γtM1/2m+ βtm+ αt

+ δeM + εe

)
. (6.7)

Note that this definition of per-processor average power assumes that network power also
scales with the number of processors, which may not be accurate for certain type of networks.
This problem could be resolved by defining the per-processor average power in terms of the
per-node energy from the DP2 model (which does not include internode energy costs). If we
assume a constant problem size n and substitute M = cn2/P and x = c/P into Equation
(6.7), we obtain

hCMM
DP1 MDP (xn2) = Ω

(
γenmx

1/2 + βem+ αe
γtnmx1/2 + βtm+ αt

+ δen
2x+ εe

)
= Ω

(
Ax1/2 +B

Cx1/2 +D
+ Jx+ εe

)

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 115

where A = γenm, B = βem + αe, C = γtnm, D = βtm + αt and J = δen
2. As the goal

is to minimize average per-processor power, we solve dhCMM
DP1 MDP/dx = 0 so that we may

obtain potential critical points:

dhCMM
DP1 MDP (xn2)

dx
=
A(Cx1/2 +D)− C(Ax1/2 +B)

2x1/2(Cx1/2 +D)2
+ J = 0.

Via some rearrangement of terms, this becomes

2C2Jx3/2 + 4CDJx+ 2D2Jx1/2 + (AD −BC) = 0.

If we substitute y = x1/2, we obtain a cubic polynomial

2C2Jy3 + 4CDJy2 + 2D2Jy + (AD −BC) = 0. (6.8)

Considering Equation (6.8), there are two cases wherein we minimize power.

1. If BC > AD, i.e.
βem+ αe

γe
>
βtm+ αt

γt
,

then there is a unique positive value of x = c/P that minimizes power, which is given
by the square of the positive root of Equation (6.8). This root is a minima as the second
derivative of hCMM

DP1 MDP is clearly a positive monotonically-increasing function. Note
that this inequality can be interpreted as: the number of flops that can be performed us-
ing the same energy as sending a maximum-length message is greater than the number
of flops that can be performed in the same time as sending a maximum-length message.

2. Otherwise, power is an increasing function of c/P for all positive values, and the min-
imum average power is attained by setting c = 1, and P as large as possible, and
hCMM
DP1 MDP approaches

Ω

(
βem+ αe
βtm+ αt

+ εe

)
(6.9)

which is the leakage εe plus the power to send one message of the largest possible size
(m).

Minimizing runtime or energy given a bound on average power By considering that the total
average power consumed is HCMM

DP1 MDP = ECMM
DP1 MDP/T

CMM
DP1 MDP = PhCMM

DP1 MDP , we can
use Equations (6.4) and (6.3) for ECMM

DP1 MDP and TCMM
DP1 MDP to obtain an expression for total

average power HCMM
DP1 MDP :

HCMM
DP1 MDP (M,P) = Ω

(
P

(
γeM

1
2m+ βem+ αe

γtM
1
2m+ βtm+ αt

+ δeM + εe

))
(6.10)

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 116

An upper bound on total power (Hmax) thus translates into an upper bound on the number of
processors:

P ≤ PHmax = Ω

Hmax

(
γeM

1
2m+ βem+ αe

γtM
1
2m+ βtm+ αt

+ δeM + εe

)−1
 (6.11)

Using the maximum number of processors, the running time simply becomes

TCMM
DP1 MDP (M,PHmax , n) =

ECMM
DP1 MDP (M,n)

Hmax

,

and the problem of minimizing time or energy given total power is reduced to minimizing
energy, which we have already solved, with the additional constraint (6.11) between P and
M .

Alternately we may want to minimize the runtime given a bound on the power per processor
(hmax). The bound is

hmax = Ω

(
γeM

1
2m+ βem+ αe

γtM
1
2m+ βtm+ αt

+ δeM + εe

)
,

which we may solve for analytically for M since this is really a cubic equation in M1/2,
just like Equation (6.5). To minimize TCMM

DP1 MDP , we would like as many processors and
as much memory as possible subject to the constraints on M formed by solving(6.11) and
M ≤ n2/P 2/3. This implies running using the 3D algorithm.

If we wish to minimize energy with the constraint imposed by hmax and the energy-optimal
amount of memory (Mopt, Equation (6.6)) is in the range allowed by hmax, then the global
minimum energy can be attained within a per-processor power budget hmax. If not, since
ECMM
DP1 MDP is a decreasing function of M for M < Mopt, the minimum energy is when M

takes its maximum value allowed by the above constraint on M and P is anywhere in the
range n2/M < P < n3/M3/2.

We now consider the effect of scaling problem size and number of data replications on the metric
of energy efficiency (Cperf MDP). For 2.5D O(n3) matrix-matrix multiplication, sHBL = 3/2, and
Equation (6.2) becomes

CCMM
perf MDP (M) = Ω

([
γe + βeM

−1/2 + δeMγt + δeβtM
1/2 + εeγt + εeβtM

−1/2
]−1
)

(6.12)

where we recall that M = cn2/P where c is the number of replications of the input data. In Figure
6.3, we see two plots that represent the energy efficiency of 2.5D matrix-matrix multiplication
on the Xeon 2650-based (Figure 6.3a) and future distributed (Figure 6.3b) machines (according
to model parameters detailed in Table 6.2). We assume the number of processors to be fixed at

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 117

(a) Xeon 2650-based distributed machine (b) Future distributed machine

Figure 6.3: 2.5D O(n3) Matrix-matrix Multiplication: Effect of replicating memory on energy
efficiency

P = 1000, and scale the problem size from n = 125000 to n = 800000.6 Up to 8 replications
of the input data (the y-axis) are considered, and the machine in this range of memory utilization
does not attain more than approximately 0.77 Gflops/W. Note that for low memory utilization
(bottom left corner of the plots), efficiency is low due to the inability of memory utilization to
offset communication costs (terms that include βe or βt). For a given problem size, replicating the
input data increases efficiency until the idle memory costs (terms that include δe) begins to decrease
efficiency (the upper-right corner of the figures). For matrix-matrix multiplication, idle memory
energy increases rapidly due the quadratic dependence of M on the problem size n. Via improved
hardware parameters, the future machine is able to achieve higher efficiency (CCMM

perf MDP ≈ 17) for
a wider range of problem sizes before idle memory costs begin to dominate.

6.4 O(n2) n-body problem
In the case of the O(n2) n-body problem, many questions can be answered with relatively simple
expressions. To explore the effect of using data replication to reduce communication volume, we
assume use of the communication-optimal n-body algorithm discussed in Chapter 3 and first de-
scribed in Driscoll et al. [61]. In Chapter 4, we derived a lower bound on energy for this algorithm
(Equation (4.45)). Assuming that the network topology is sufficient for contention not to dominate,
communication is bounded by the maximum of the memory-dependent and memory-independent

6A range of sizes chosen to highlight scaling trends while keeping total utilized memory less than the amount of
installed node memory (128GB).

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 118

per-processor bounds. When the memory-dependent bound dominates, the runtime and energy
lower bounds of Equation (4.44) and (4.45) become

TNBDP1 MDP (M,P, n) = Ω

(
γtfn

2

P
+
βtn

2

PM
+

αtn
2

mPM

)
(6.13)

and

ENB
DP1 MDP (M,n) = Ω

((
γefn

2 + βe
n2

M
+ αe

n2

mM

+ (δeM + εe)

(
γtfn

2 + βt
n2

M
+αt

n2

mM

)))
(6.14)

where “MDP” stands for the “Memory Dependent per-Processor” bound and for n/M ≤ P ≤
(n/M)2 the algorithm is able to perfectly strong scale in runtime with constant energy until the
memory-independent bound dominates.

Minimizing energy for the computation. The minimum energy for theO(n2) n-body problem is

ENB∗
DP1 MDP = ENB

DP1 MDP (Mopt, n)

= Ω

(
n2

(
f(γe + γtεe) + δe

(
βt +

αt
m

)
+ 2

(
δeγtf

(
βe + βtεe +

αe + αtεe
m

)) 1
2

))
when using the energy-optimal amount of memory

Mopt =

(
βe + βtεe + (αe + αtεe)/m

δeγtf

) 1
2

.

It is possible to attain the minimum energy use for P in the range

n

Mopt

≤ P ≤ n2

M2
opt

.

Minimizing energy given an upper bound on the runtime. There are two cases

1. If
Tmax ≥ γtfM

2
0 + (βt + (αt/m))Mopt

then it is possible to achieve the absolute minimum energy ENB∗
DP1 MDP within time

Tmax, for example by setting M = Mopt, P = n2/M2
opt.

2. Otherwise, it is necessary to use the 2D algorithm (i.e. with M = n/P 1/2) to achieve
the Tmax. To be precise, it is necessary to use at least

PTmax =

(
(βt + αt/m)n+ ((βt + αt/m)2n2 + 4Tmaxγtfn

2)
1
2

2Tmax

)2

processors, which we obtain by solving the quadratic equation that results from solving
TNBDP1 MDP for P .

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 119

Minimizing runtime given an upper bound on energy. Conversely, suppose we fix the maxi-
mum allowed energy Emax and want to minimize the running time. Minimizing TNBDP1 MDP

will always use the 2D algorithm, since increasing P during use of the 1.5D algorithm until
it hits the 2D boundary decreases TNBDP1 MDP . Further, the 2D runtime is a decreasing func-
tion of P , so we only need to determine the maximum P such that the 2D algorithm fits in
the energy bound. This value of P , PEmax , is maximum of the two solutions7

PEmax =

(
Emax − An2

2Bn
± ((−Emax + An2)− 4Bn4δeγtf)1/2

2Bn

)2

where
A = f(γe + γtεe) + δe(βt + αt/m)

B = βe + αe/m+ εeβt + εeαt/m

Note that this expression has an imaginary component if the energy bound Emax is not at-
tainable.

Minimizing the per-processor average power. By considering that average power for a proces-
sor is hNBDP1 MDP = ENB

DP1 MDP/(PT
NB
DP1 MDP) and assuming that all processors complete

the task utilizing the same amount of time and energy, we can combine our Equations (6.14)
and (6.13) for ENB

DP1 MDP and TNBDP1 MDP to obtain an expression for power hNBDP1 MDP :

hNBDP1 MDP (M,P, n) =
ENB
DP1 MDP (M,n)

PTNBDP1 MDP (M,P, n)

= Ω

γefn2 + βen2

M
+ αen2

mM
+ (δeM + εe)

(
γtfn

2 + βtn2

M
+ αtn2

mM

)
PTNBDP1 MDP (M,P, n)

= Ω

(
γefn

2 + βen2

M
+ αen2

mM

)
(
γtfn2 + βtn2

M
+ αtn2

mM

) + δeM + εe

thus,

hNBDP1 MDP (M) = Ω

(
γefMm+ βem+ αe
γtfMm+ βtm+ αt

+ δeM + εe

)
(6.15)

As similar to the case of matrix-matrix multiplication, we substitute M = cn/P into Equa-
tion (6.15) and assume that x = c/P to simplify the analysis. We obtain:

hNBDP1 MDP (xn) = Ω

(
Ax+B

Cx+D
+ Jx+ εe

)
7In some cases there are zero real solutions when the second term is imaginary.

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 120

where A = γefmn, B = βem + αe, C = γtfmn, D = βtm + αt and J = δen.
To minimize hNBDP1 MDP , we must consider the critical points of the previous expression by
solving dhNBDP1 MDP/dx = 0. Taking the derivative of hNBDP1 MDP w.r.t. to x, the equation
becomes

dhNBDP1(xn)

dx
=
A(Cx+D)− C(Ax+B)

(Cx+D)2
+ J = 0.

And after rearranging terms,

JC2x2 + 2CDJx+ (JD2 + AD −BC) = 0. (6.16)

Considering Equation (6.16), there are two cases wherein we minimize power.

1. If BC > AD + JD2, i.e.

βem+ αe
γe

>
βtm+ αt

γt
+
δe(βtm+ αt)

2

γeγtfm
(6.17)

then there is a unique positive value of x = c/P that minimizes power, which is given
by the positive root of Equation (6.16). We obtain such a real root as the discriminant
of the quadratic in Equation (6.16) is positive if

βem+ αe
γe

≥ βtm+ αt
γt

which is attained if the inequality in Equation (6.17) is satisfied. This root is a minima
as the second derivative of hNBDP1 MDP is clearly a positive monotonically-increasing
function. Note that this inequality can be interpreted as: the number of flops that can
be performed using the same energy as sending a maximum-length message is greater
than the number of flops that can be performed in the same time as sending a maximum-
length message.

2. Otherwise, power is an increasing function of c/P for all positive values, and the min-
imum average power is attained by setting c = 1, and P as large as possible, and
hNBDP1 MDP approaches

Ω

(
βem+ αe
βtm+ αt

+ εe

)
as in the case of 2.5D matrix-matrix multiplication.

Minimizing runtime or energy given a bound on average power By considering that the total
average power consumed is HNB

DP1 MDP = ENB
DP1 MDP/T

NB
DP1 MDP = PhNBDP1 MDP , we can

use Equations (6.14) and (6.13) for ENB
DP1 MDP and TNBDP1 MDP to obtain an expression for

total average power HNB
DP1 MDP :

HNB
DP1 MDP (M,P) = Ω

(
P

(
γef + βe/M + αe/(mM)

γtf + βt/M + αt/(mM)
+ δeM + εe

))
(6.18)

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 121

An upper bound on total power thus translates into an upper bound on the number of proces-
sors

P ≤ PHmax = Ω

(
Hmax

(
γef + βe/M + αe/(mM)

γtf + βt/M + αt/(mM)
+ δeM + εe

)−1
)

(6.19)

where Hmax is the total average power bound. Using the maximum number of processors,
the running time simply becomes

TNBDP1 MDP (M,PHmax , n) =
ENB
DP1 MDP (M,n)

Hmax

,

and the problem of minimizing time or energy given total power is reduced to minimizing
energy, which we have already solved, with the additional constraint (6.19) between P and
M .

Alternately we may want to minimize the runtime given a bound on the power per processor.
The bound on per-processor average power (hmax) is

hmax = Ω

(
γef + βe/M + αe/(mM)

γtf + βt/M + αt/(mM)
+ δeM + εe

)
,

which we may solve for M

M = O

(
A+ (A2 − 4γeγtfB)1/2

2δeγtf

)
where

A = γtfhmax − γef − εeγtf − δe(βt + αt/m)

and
B = βe + αe/m− (βt + αt/m)hmax − εe(βt + αt/m).

This is the region of M for which hmax is attained. To minimize TNBDP1 MDP , we would
use as many processors as possible, and as much memory as possible subject to the above
inequality and M ≤ n/P 1/2.

If Mopt is in the range allowed by hmax, then the global minimum energy can be attained
within a per-processor power budget hmax. If not, since ENB

DP1 MDP is a decreasing function
of M for M < Mopt, the minimum energy is when M takes its maximum value allowed by
the above inequality and P is anywhere in the range n

M
< P < n2

M2 .

We now consider the effect of scaling problem size and number of data replications on the
metric of energy efficiency (Cperf MDP). For the CA O(n2) n-body algorithm, sHBL = 2, and
Equation (6.2) becomes

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 122

CNB
perf MDP (M) = Ω

([
γef + βeM

−1 + δeMγtf + δeβt + εeγtf + εeβtM
−1
]−1
)

(6.20)

where we recall that M = cn/P where c is the number of replications of the input data. In Figure
6.4, we see two plots that represent the energy efficiency of the CA O(n2) n-body algorithm on the
Xeon 2650-based (Figure 6.4a) and future distributed (Figure 6.4b) machines (according to model
parameters detailed in Table 6.2). We assume the number of processors to be fixed at P = 1000,
f = 11, and scale the problem size from n = 5000 to n = 4000000. Up to 9 replications of
the input data (the y-axis) are considered, and the machine in this range of memory utilization
does not attain more than approximately 0.73 Gflops/W. Note that for low memory utilization
(bottom left corner of the plots), efficiency is low due to the inability of memory utilization to
offset communication costs (terms that include βe or βt). Unlike the case of 2.5D matrix-matrix
shown in Figure 6.3, idle memory energy does not begin to decrease efficiency for this range of
problem sizes due to the linear dependence of M on the problem size n. Via improved hardware
parameters, the future machine is able to achieve higher efficiency (CCMM

perf MDP ≈ 18), but this
peak efficiency is attained at noticeably larger problem sizes than the case of the Xeon 2650-based
machine.

Figure 6.4 also includes example runtime (Tmax = 0.02) and energy (Emax = 5000) bounds for
both machine models as blue and green points, respectively. The bounds are represented as discrete
points for each integer value of c as the current CA O(n2) n-body algorithm is only able to utilize
full replications of the data, as opposed to utilizing a continuous range of additional memory. Runs
that attain the bounds are in the regions to the left of the colored points, and we note that replicating
data allows for larger problem sizes to be run before the bound is reached. This only provides a
significant benefit for the first few replications, as communication costs are decreased by a factor
of 1/c.

6.5 Programs that access arrays with subsets of the iteration
variables

Via the theoretical apparatus constructed in Chapter 5, we were able to lower bound the runtime and
energy consumption for programs that access arrays via affine expressions of the iteration variables.
In this section, we will analyze a subset of such problems: programs that access arrays via subsets
of the iteration variables. This includes both O(n3) classical matrix-matrix multiplication and
the O(n2) n-body problem, and thus generalizes earlier analysis in this chapter. Assuming that
certain assumptions hold (see Section 5.2 and Christ et al. [45] for details), such programs can
be executed in a communication-optimal manner via Algorithm 10. Assuming that the program is
in such a form, the network topology is sufficient such that communication is not dominated by
contention, and that the memory-independent per-processor bound does not dominate, the runtime
and energy lower bounds for the DP1 machine model (Equations (5.12) and (5.13)) become

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 123

(a) Xeon 2650-based distributed machine (b) Future distributed machine

Figure 6.4: CA O(n2) n-body: Effect of replicating memory on energy efficiency

THBLDP1 MDP (M,P, F) = Ω

(
γtF

P
+

βtF

PM sHBL−1
+

αtF

mPM sHBL−1

)
(6.21)

and

EHBL
DP1 MDP (M,F) = Ω

(
(γe + γtεe)F +

(
(βe + βtεe) +

(αe + αtεe)

m

)
F

M sHBL−1

+δeγtMF +

(
δeβt +

δeαt
m

)
M2−sHBLF

)
. (6.22)

where “MDP” stands for the “Memory Dependent per-Processor” bound.
In addition to O(n3) matrix-matrix multiplication and the O(n2) n-body problem, another ex-

ample of a computational problem bounded below in communication by the results of Chapter 5
is outlined via Algorithm 11 which can be described as computing interactions between particles
that depend on three particles at a time, not two as in Algorithm 6. As the problem in Algorithm

Algorithm 11 3-body interactions
Require: Arrays K and L of length n

1: for i = 1 : n, parallel do
2: for j = 1 : n, k = 1 : n, do
3: K(i) += func(L(i), L(j), L(k))
4: end for
5: end for

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 124

11 has arrays that are accessed via subsets of the iteration variables and if suppose the assumptions
of Theorem 4.1 of [45], we can calculate that sHBL = 3 via the solution of the linear program xLP
as described in Section 5.2. If sj ∈ [0, 1] and sHBL =

∑q
j=1 sj , sHBL is upper bounded by q. We

actually have q = 4 in Algorithm 11 as array accesses may be aliased according to [45]. Thus, the
bound is not violated. With a value for sHBL, we can bound the communication volume required
to execute the problem when

F = n3,WHBL
DP1 MDP (M,P, n) ≥ n3

PM2
, SHBLMDP MDP (M,P, n) ≥ n3

mPM2
.

Also, as Algorithm 11 has arrays that are accessed via subsets of the iteration variables, we can
attain the communication lower bounds with the blocked parallel Algorithm 10.8 According to
Section 5.2, the range of perfect strong scaling in runtime with constant energy for this problem is

N

P
≤M ≤

(
n3

P

)1/3

where the problem size in memory is N = 2n, and the right-hand side expression is the minimal
amount of memory required to fit the problem and the left-hand side represents the maximum
possible amount of memory before assumptions of load balancing break down. In this portion
of the chapter, we will consider the impact of constants upon the larger class of problems lower
bounded by the results of Chapter 5 and will use the computational problem of Algorithm 11 as a
specific example of such problems when necessary for clarity.

Minimizing energy for the computation. To minimize energy, and similar to the cases of O(n3)
matrix-matrix multiplication and theO(n2) n-body problem, we must solve for the stationary
points of the derivative w.r.t. M of the energy bound in Equation (6.22):

0 =
dEHBL

DP1 MDP (M,F)

dM
= B(1− sHBL)M−sHBL + C +D(2− sHBL)M1−sHBL (6.23)

where

B =

(
(βe + βtεe) +

(αe + αtεe)

m

)
F, C = δeγtF, D =

(
δeβt +

δeαt
m

)
F.

In contrast to the two specific problems discussed previously, a closed-form solution for the
optimal amount of local memory (Mopt) is wanting due to lack of knowledge regarding the
exponents of M . In the case of the problem shown in Algorithm 11 (i.e. sHBL = 3), we must
solve for the roots of the cubic equation

−2B + CM3 −DM = 0

8For this specific example, we assume the cost of func() is negligible. If desired, one could account for the floating
point cost of this function by multiplying the computation costs (γtF and γeF) by a constant factor f (similarly to the
n-body problem described in Section 4.2).

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 125

to obtain the optimal value, Mopt. Assuming that we are running the communication-optimal
blocked parallel Algorithm 10, perfect strong scaling with constant energy is attained for
2n/P ≤ M ≤ (F/P)1/sHBL . Thus, it is possible to attain the minimum energy use for P in
the range

2n

Mopt

≤ P ≤ F

M sHBL
opt

.

Minimizing energy given an upper bound on the runtime. Assuming the problem is of form
amenable to use Algorithm 10, there are two cases if we have an upper bound on runtime,
Tmax:

1. It is possible to achieve the required runtime Tmax and use the minimum amount of
energy. This is the case if THBLDP1 MDP ≤ Tmax when M = Mopt. In this case, for
example, taking P = F/M sHBL

opt and M = Mopt is optimal.

2. Otherwise, we need to run Algorithm 10 with the largest amount of replication (i.e.
the largest value of c prior to violation of the load imbalance assumptions discussed in
Chapter 5 and [45]) to achieve Tmax. In this case, we must use at least PTmax processors,
where the time to run the algorithm equals Tmax. So, we must solve

Tmax = THBLDP1 MDP (M,PTmax , F)

Tmax =
γtF

PTmax

+
βtF

PTmaxM
sHBL−1

+
αtF

mPTmaxM
sHBL−1

Tmax =
F (γtmM

sHBL−1 + βtm+ αt)

mPTmaxM
sHBL−1

for PTmax when M = F 1/sHBL/P
1/sHBL

Tmax
(as we recall that M = cN/P where c ≤

(P sHBL−1F)1/sHBL/N via Equation (5.25)). Finally, one chooses the value of P that
minimizes EHBL

DP1 MDP when running Algorithm 10 with c = (P sHBL−1F)1/sHBL/N ,
subject to the constraint that P ≥ PTmax .

Minimizing runtime given an upper bound on energy. Conversely, suppose we fix the maxi-
mum allowed energy Emax and want to minimize the running time with the communication-
optimal Algorithm 10. Minimizing THBLDP1 MDP will always use the maximum amount of
memory, since increasing P during use of the algorithm until it hits the upper bound P ≤
F/M sHBL decreases THBLDP1 MDP . Further, the runtime using the largest amount of memory
is a decreasing function of P , so we only need to determine the maximum P such that the
algorithm fits in the energy bound. This value of P , PEmax , is given by solving the following
equation with M = F 1/sHBL/P

1/sHBL

Emax
:

0 = AP
1+1/sHBL

Emax
+BPEmax + CP

2/sHBL

Emax
+ CP

1/sHBL

Emax

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 126

where
A = F 1/sHBL

(
βe +

αe
m

+ εeβt +
εeαt
m

)
.

B = F 2/sHBLδe

(
βt +

αt
m

)
C = F (γe + εeγt)− Emax

D = F 1+1/sHBLδeγt

and we note that the equation can not admit a real root unless Emax > F (γe + εeγt).

Minimizing the per-processor average power. By considering that average power for a proces-
sor is hHBLDP1 MDP = EHBL

DP1 MDP/(PT
HBL
DP1 MDP) and assuming that all processors complete

the task utilizing the same amount of time and energy, we can combine Equations (6.21) and
(6.22) for THBLDP1 MDP and EHBL

DP1 MDP to obtain an expression for power hHBLDP1 MDP :

hHBLDP1 MDP (M,P, F) =
EHBL
DP1 MDP (M,F)

PTHBLDP1 MDP (M,P, F)

= Ω

(
γeF + F

MsHBL−1

(
βe + αe

m

)
+ (δeM + εe)PT

HBL
DP1 MDP (M,P, F)

PTHBLDP1 MDP (M,P, F)

)

= Ω

((
γeF + F

MsHBL−1

(
βe + αe

m

))(
γtF + F

MsHBL−1

(
βt + αt

m

)) + δeM + εe

)
thus,

hHBLDP1 MDP (M) = Ω

(
γemM

sHBL−1 + βem+ αe
γtmM sHBL−1 + βtm+ αt

+ δeM + εe

)
(6.24)

As similar to the case of 2.5D O(n3) matrix-matrix multiplication and the CA O(n2) n-body
algorithm, we substitute M = cN/P into Equation (6.25) and assume that x = c/P to
simplify the analysis. We obtain:

hHBLDP1 MDP (xN) = Ω

(
γemN

sHBL−1xsHBL−1 + βem+ αe
γtmN sHBL−1xsHBL−1 + βtm+ αt

+ δeNx+ εe

)
= Ω

(
AxsHBL−1 +B

CxsHBL−1 +D
+ Jx+ εe

)
where A = γemN

sHBL−1, B = βem+αe, C = γtmN
sHBL−1, D = βtm+αt and J = δeN .

To minimize hHBLDP1 MDP , we must consider the critical points of the previous expression by
solving dhHBLDP1 MDP/dx = 0. The expression then becomes

dhHBLDP1 MDP (xN)

dx
=

(sHBL − 1)xsHBL−2(A(CxsHBL−1 +D)− C(AxsHBL−1 +B))

(CxsHBL−1 +D)2
+J = 0.

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 127

In a similar analysis to the cases of 2.5D O(n2) matrix-matrix multiplication and the CA
O(n2) n-body algorithm, we can simplify the above derivative

C2Jx2sHBL−2 + 2CDJxsHBL−1 + (sHBL − 1)(AD −BC)xsHBL−2 +D2J = 0 (6.25)

where we note that AD − BC must be negative for a positive real root to exist. This is the
case elaborated upon for the specific algorithms (2.5D O(n3) matrix-matrix multiplication
and CA O(n2) n-body), and occurs when sHBL > 1 (by the definition of program xLP in
Theorem 5.2, sHBL ≥ 1) and

βem+ αe
γe

≥ βtm+ αt
γt

.

As noted previous, this inequality can be interpreted as: the number of flops that can be
performed using the same energy as sending a maximum-length message is greater than
the number of flops that can be performed in the same time as sending a maximum-length
message. On the other hand, if the the xsHBL−2 term in Equation (6.25) is nonnegative,
power is an increasing function of c/P for all positive values, and the minimum average per-
processor power is attained by setting c = 1 and P as large as possible, and the approaches
an identical limit to the cases of the 2.5D matrix-matrix and CA O(n2) n-body algorithms
(Equation (6.9)).

Minimizing runtime or energy given a bound on average power By considering that the total
average power consumed is HHBL

DP1 MDP = EHBL
DP1 MDP/T

HBL
DP1 MDP = PhHBLDP1 MDP , we can

use Equations (6.21) and (6.22) for THBLDP1 MDP and EHBL
DP1 MDP to obtain an expression for

total average power HHBL
DP1 MDP :

HHBL
DP1 MDP (M,P) = Ω

(
P

(
γeM

sHBL−1m+ βem+ αe
γtM sHBL−1m+ βtm+ αt

+ δeM + εe

))
(6.26)

An upper bound on total power (Hmax) thus translates into an upper bound on the number of
processors:

P ≤ PHmax = Ω

(
Hmax

(
γeM

sHBL−1m+ βem+ αe
γtM sHBL−1m+ βtm+ αt

+ δeM + εe

)−1
)

(6.27)

Using the maximum number of processors, the running time simply becomes

THBLDP1 MDP (M,PHmax , F) =
EHBL
DP1 MDP (M,F)

Hmax

,

and the problem of minimizing time or energy given total power is reduced to minimizing
energy, which we have already solved, with the additional constraint (6.27) between P and
M .

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 128

Alternately we may want to minimize the runtime given a bound on the power per processor
(hmax). The bound is

hmax = Ω

(
γeM

sHBL−1m+ βem+ αe
γtM sHBL−1m+ βtm+ αt

+ δeM + εe

)
,

which we may solve for M . To minimize THBLDP1 MDP , we would as many processors as
possible, and as much memory as possible subject to the constraint on M formed by solving
the above inequality and M ≤ (F/P)1/sHBL .

If Mopt is in the range allowed by hmax, then the global minimum energy can be attained
within a per-processor power budget hmax. If not, since EHBL

DP1 MDP is a decreasing function
of M for M < Mopt (where Mopt is the energy-optimal amount of memory obtained by
solving Equation (6.23)), the minimum energy is when M takes its maximum value allowed
by the above constraint on M and P is anywhere in the range N

M
< P < F

MsHBL
.

We now consider the effect of scaling problem size and number of data replications on the metric
of energy efficiency (Cperf MDP). If the 3-body interaction problem of Algorithm 11 is computed
with the communication-optimal parallel blocked Algorithm 10, sHBL = 3, and Equation (6.2)
becomes

C3B
perf MDP (M) = Ω

([
γe + βeM

−2 + δeMγt + δeβtM
−1 + εeγt + εeβtM

−2
]−1
)

(6.28)

where we recall that M = cn/P where c is the number of replications of the input data and “3B”
stands for “3-Body”. In Figure 6.5, we see two plots that represent the energy efficiency of Algo-
rithm 10 computing Algorithm (11) on the Xeon 2650-based (Figure 6.5a) and future distributed
(Figure 6.5b) machines (according to model parameters detailed in Table 6.2). We assume the
number of processors to be fixed at P = 1000, and scale the problem size from n = 250 to
n = 50000. Up to 9 replications of the input data (the y-axis) are considered, and the machine
in this range of memory utilization does not attain more than approximately 0.73 Gflops/W. Note
that for low memory utilization (bottom left corner of the plots), efficiency is low due to the inabil-
ity of memory utilization to offset communication costs (terms that include βe or βt). Unlike the
case of 2.5D matrix-matrix shown in Figure 6.3, idle memory energy does not begin to decrease
efficiency (for this range of problem sizes) due to the linear dependence of M on the problem
size n. Via improved hardware parameters, the future machine is able to achieve higher efficiency
(C3B

perf MDP ≈ 18), but this peak efficiency is attained at noticeably larger problem sizes than the
case of the Xeon 2650-based machine.

Figure 6.4 also includes example runtime (Tmax = 0.01) and energy (Emax = 5000) bounds for
both machine models as blue and green points, respectively. The bounds are represented as discrete
points for each integer value of c as the communication-optimal parallel blocked algorithm is only
able to utilize full replications of the data, as opposed to utilizing a continuous range of additional
memory. Runs that attain the bounds are in the regions to the left of the colored points, and we

CHAPTER 6. APPLICATIONS OF BOUNDS ON SPECIFIC MACHINE MODELS 129

(a) Xeon 2650-based distributed machine (b) Future distributed machine

Figure 6.5: 3-Body Problem: Effect of replicating memory on energy efficiency

note that replicating data allows for larger problem sizes to be run before the bound is reached.
This only provides a benefit for the first few replications, as communication decreases by a factor
of 1/c2. In this chapter, we fixed the hardware parameters (γt,γe,βt,βe,δe,εe) of runtime and energy
bounds (see Chapters 4 and 5) and considered a set of interesting problems that can be addressed
via such bounds on distributed parallel machines. Many of these problems involve a bound on
runtime, energy, or power. We also used two specific examples of distributed parallel machines
to highlight the impact of scaling problem size and input data replication on energy efficiency
(Cperf ,Equation (6.2)). In the next chapter, we will allow the hardware parameters to vary to attain
targeted values of Cperf and also optimize for the financial cost per job over a range of machine
hardware choices.

130

Chapter 7

Implications for Hardware Designs

In Chapter 6, we explored questions related to the energy lower bounds derived in Chapters 4 and 5
assuming fixed hardware parameters (γt, γe, βt, βe, αt, αe, εe) for sequential and distributed parallel
machines. Such an approach allows one to address interesting questions about energy consumption
and runtime as well as highlighting the potential benefits of algorithms that are designed to reduce
communication via additional memory utilization. In this chapter, we take the analysis further and
pose the question: How do hardware parameters affect an efficiency metric?

With this question in mind, in Section 7.2 we present a new way to visualize improvements
in hardware energy efficiency: the Cityscape model.1 Via greedy scaling of terms in the expres-
sion for energy efficiency (Equation (6.2)), Cityscape allows hardware experts to generate a set of
constraints on the parameters of runtime and energy models that are needed to attain a targeted
level of improvement in energy efficiency. In addition to Cityscape, we also consider the finan-
cial cost to execute a computational kernel of a specific size under different machine hardware
configurations (Section 7.3). This is a useful metric for the design of large systems, as capital
(CapEx) (e.g. purchasing compute hardware) and operational (OpEx) (e.g. paying for the energy
of a kernel execution) expenses often represent significant financial expense. Scripts used to gen-
erate the figures presented in this chapter can be found at https://github.com/agearh/
dissertation.git.

7.1 Introduction
Prior to any further analysis, we must first include assumptions and refine the desired question.
Due to the nature of our models and the hardware, this approach has several major assumptions:

• As noted previously, a machine capable of a high level of efficiency will not attain that
efficiency without an efficient implementation of the algorithm.

1We use the name Cityscape because a machine is modeled by a collection of Roofline models [148].

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 131

• By basing models on the performance of existing processors, the hardware space under con-
sideration is limited to the regime of processors that reasonably resemble previous hardware
designs.

We address these limitations by first assuming a perfect implementation of an algorithm: i.e. that
the software is able to attain the asymptotic communication bounds of the algorithm and also uti-
lize the machine to its highest possible level of efficiency. These two assumptions differ in that
an algorithm may not be tuned for target architecture and our models ignore many details, and
thus result in low efficiency despite being asymptotically communication-optimal in communica-
tion volume (W) and messages (S). This assumption may be reasonable in certain cases due to
the existence of throughput-oriented autotuning frameworks (e.g. ATLAS [146]), and is especially
applicable in the case of algorithms with high arithmetic intensity (e.g. O(n3) matrix-matrix multi-
plication or the 3-body problem from Algorithm 11). We delegate to future research the challenge
of determining if tuning for runtime efficiency also achieves a significant fraction of peak energy
efficiency (although some evidence does support this idea [44]).

Taking the above list of assumptions into consideration, we modify the research question ap-
propriately:

How do the hardware parameters of general-purpose machines affect an efficiency metric when
running a workload that looks asymptotically like a specific algorithm for a target problem?

In other words, we do not consider emerging technologies such as quantum computing nor
the development of custom hardware designed to implement a specific algorithm (i.e. field-
programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs)). The het-
erogeneous model may be able to capture the performance of machines that encompass a collection
of specialized processors. The problems analyzed in this chapter are assumed to run on the DP1
machine model defined in Section 3.2, in which communication energy is proportional to utilized
link bandwidth. We note a similar analysis could be applied to the heterogeneous and DP2 models
(see Section 3.2), depending on the nature of the problem and target hardware. For simplicity, we
assume that the latency cost of message passing on the distributed machine to be negligible and
thus drop the latency terms from the model. Such an assumption may be problematic for machines
with a large network diameter, and is worth investigation in future research.

As discussed in Chapter 5, work by Christ et al. [45] has extended previous communication
lower bounds to a much larger class of problems, that of programs that access arrays with affine
expressions2. In Chapter 5, we extended these communication lower bounds to lower bounds on
runtime and energy. For a subset of the problems that access their arrays via subsets of the iteration
variables (also referred to as the product case in [45]), Christ et al. describe blocked algorithms
for sequential (Algorithm 5.20) and distributed parallel machines (DP1) (Algorithm 10) that are
asymptotically communication-optimal. Problems that fall within the product case include dense
matrix-matrix multiplication and the O(n2) n-body problem as well as the 3-body problem de-
scribed in Algorithm 11. In Chapter 5, we described the optimal distributed parallel algorithm
of Algorithm 10 in further detail and slightly generalized the analysis in [45]. We also showed

2Along with certain other assumptions, see Chapter 5 or [45] for more details.

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 132

that this algorithm is able to perfectly strong scale in runtime with constant energy. In this chap-
ter, we assume use of this communication-optimal blocked parallel algorithm for such problems
when another communication-optimal algorithm is not available with such scaling properties (e.g.
2.5D matrix-matrix multiplication). Via the Cityscape model and financial cost per job (Cjob), we
demonstrate how algorithm designers may evaluate the impact of varying hardware parameters.

7.2 Cityscape Model of Energy Efficiency
In Chapter 6, we visualized the effects of scaling problem size (n) and number of data replications
(c) upon energy efficiency (Gflops/W), or Cperf , for algorithms that are able to trade memory for
communication. This section extends that analysis by considering the question: “How do hard-
ware parameters need to be improved to attain a specific improvement in overall system energy
efficiency?”. With this question in mind, we present a new way to visualize the impact of hard-
ware parameters upon energy efficiency: the Cityscape model. Cityscape builds upon previous
work on Roofline models for floating point throughput [148] and energy [44] and allows hardware
designers to constrain the improvements in hardware parameters needed to reach a desired factor
of energy-efficiency improvement over a baseline machine (C∗perf). We focus on the DP1 model
for distributed parallel machines, but the technique could be applied to both the sequential and
heterogeneous machine models as well.

To begin, we modify the definition of energy efficiency (Gflops/W) for programs that reference
arrays from Section 6.2 to be

CHBL
perf (P, F,Γ) = Ω

([
γe + βe max

(
M1−sHBL

hw ,

(
P

F

)1−1/sHBL

)

+(δeMhw + εe)

(
γt + βt max

(
M1−sHBL

hw ,

(
P

F

)1−1/sHBL

))]−1

where Γ = [γe, βe, δe, εe, γt, βt,Mhw]. We assume that the algorithm utilizes the entire installed
memory Mhw, as opposed to the analysis in Chapter 6 where we assumed a fixed Mhw and that
the application was able to utilize a desired M -sized portion of this fixed amount. We also assume
that the network topology is sufficient such that contention costs do not dominate the per-processor
bounds (see Section 5.1 for details on contention bounds). If we further assume that the memory-
dependent per-processor (MDP) communication bound dominates the memory-independent per-
processor bound, energy efficiency becomes

CHBL
perf MDP (Γ) = Ω ([γe + βeM

1−sHBL
hw + δeMhwγt + δeβtM

2−sHBL
hw

+εeγt + εeβtM
1−sHBL
hw

]−1
)
. (7.1)

In Section 6.2, we defined a distributed parallel machine with dual-socket Intel Xeon nodes and
an Ethernet torus network (parameters reproduced in Table 7.1). It is this machine that we use as a

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 133

baseline upon which to apply the Cityscape model, with the addition of a fixed amount of installed
memory (Mhw) of 64GB. Similar sets of parameters for an intensity-variable microbenchmark on
several types of existing hardware can be found in [43], and may be readily adapted to our analysis.

Xeon 2650
Processor Idle Power (W) 14.25
Processor Dynamic Power (W) 80.75
DRAM Dynamic Power (W) 3.15
NIC Idle Power (W) 34.17
NIC Dynamic Power (W) 6.03
Peak Network BW (GB/s) 3.75
Mhw (GB) 64
γt (sec/flop) 3.91E-12
γe (joules/flop) 6.31E-10
βt (sec/word) 6.40E-09
βe (joules/word) 5.88E-08
δe (joules/sec/word) 2.03E-09
εe (joules/sec) 162.67

Table 7.1: Intel Xeon-based distributed parallel baseline machine

Clearly, if any of the terms in the denominator of Equation (7.1) exceed 1/C∗perf , a desired level
of efficiency C∗perf cannot be attained. Considering Table 7.1, this trivial upper bound (using εeγt,
as it is the largest term) indicates the peak efficiency to be 1.57 Gflops/Watt. Thus, on current server
nodes, idle energy (the dominant parameter in εeγt) may dominate communication energy. Along
this line of reasoning, one can attain an idea of the best parameters to optimize by considering their
magnitudes. This is done in Table 7.2 for the baseline machine described in Table 7.1. The table
includes rows for O(n3) matrix-matrix multiplication (sHBL = 1.5), the O(n2) n-body problem
(sHBL = 2) and the 3-body problem in Algorithm 11 (sHBL = 3). Note that larger values of sHBL

increase the potential reuse of local data, and accordingly require less inter-node communication
traffic. This decreases the terms that include βe and βt. In Table 7.2, we note that the terms that
depend on the per-word time (βt) and energy (βe) costs are never dominant as the level of available
reuse is sufficient to offset communication costs. Thus, for the machine described in Table 7.1,
increases in CHBL

perf MDP can be obtained for each of the example problems described in Table 7.2
via reductions in terms that do not involve the communication interconnect.3

To target improvements in hardware parameters, we must observe the effect of decreasing each
of the six denominator terms ofCHBL

perf MDP (Equation (7.1)). Thus, we define z1, ..., z6 to be scaling
factors on these terms, i.e;

3Only up to a point. Eventually, at least for sHBL = 1.5, the εeβtM1−sHBL

hw term will dominate after enough
scaling.

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 134

sHBL γe βeM
1−sHBL
hw δeMhwγt δeβtM

2−sHBL
hw εeγt εeβtM

1−sHBL
hw

1.5 6.31E-10 6.34E-13 6.80E-11 1.20E-12 6.35E-10 1.12E-11
2.0 6.31E-10 6.84E-18 6.80E-11 1.30E-17 6.35E-10 1.21E-16
3.0 6.31E-10 7.97E-28 6.80E-11 1.51E-27 6.35E-10 1.41E-26

Table 7.2: Energy efficiency terms for several problems (all are measured in the same units, namely
joules/flop)

CHBL
perf MDP (Γ) = Ω

([
γe
z1

+
βeM

1−sHBL
hw

z2

+
δeMhwγt

z3

+
δeβtM

2−sHBL
hw

z4

+
εeγt
z5

+
εeβtM

1−sHBL
hw

z6

]−1
)
. (7.2)

Without loss of generality, let us suppose that the largest term in the denominator of CHBL
perf MDP

is term 1 (γe). We then begin increasing z1 by a fixed factor g (decreasing γe and thus increasing
CHBL
perf MDP until another term (say, term 2) becomes dominant. We then begin to increase z2

by g along with zi. This process of greedily decreasing the largest terms in the denominator of
CHBL
perf MDP continues until the target energy efficiency, C∗perf , is attained.

In Figure 7.1, we apply this scaling scheme toO(n3) dense matrix-matrix multiplication (sHBL =
3/2) and demonstrate a Cityscape model for this algorithm and machine with g = 1.25. The x-axis
of this log-log plot represents the factor of energy efficiency improvement over the baseline (C∗perf)
and the y-axis shows the factor of increase in the terms zi. From the values shown in Table 7.2,
we see that εeγt (corresponding to z5) dominates followed by γe (corresponding to z1). Indeed,
the Cityscape of Figure 7.1 begins increasing z5 by g and then almost immediately begins increas-
ing z1 as γe starts to dominate. This process results in a figure with a handful of ”rooflines” that
correspond to the scaling of terms in CHBL

perf MDP .
As the terms of CHBL

perf MDP are typically composed of several energy and runtime parameters,
the Cityscape model defines a set of constraints on these parameters. As an example, suppose a
hardware designer wishes to increase the energy efficiency of the baseline machine running O(n3)
matrix-matrix multiplication by a factor of 10 (i.e. C∗perf = 10). From Figure 7.1, the x-axis value
of C∗perf = 10 results in {z1, ..., z6} = {14.55, 1.00, 1.56, 1.00, 18.19, 1.00}. We now consider the
fact that the terms scaled by the zi are actually combinations of hardware parameters, and that each
zi can be viewed as a function of individual parameter scaling factors. For example, z5 = zγtz

εe or
z2 = zβtz

−1/2
Mhw

. Thus, the parameter scaling factors are {zγe , zγt , zβe , zβt , zδe , zεe , zMhw
}, and from

the Cityscape model we can form a set of constraints on the hardware parameters, which can be

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 135

Figure 7.1: Example Cityscape Model for O(n3) Matrix-matrix multiplication

linearized by applying logarithms:

log(z1) = log(zγe) ≥ log(14.55)

log(z2) = log(zβe)−
1

2
log(zMhw

) ≥ 0

log(z3) = log(zδe) + log(zMhw
) + log(zγt) ≥ log(1.56)

log(z4) = log(zδe) + log(zβt) +
1

2
log(zMhw

) ≥ 0

log(z5) = log(zεe) + log(zγt) ≥ log(18.19)

log(z6) = log(zεe) + log(zβt)−
1

2
log(zMhw

) ≥ 0. (7.3)

These constraints imply tradeoffs in the hardware design process; e.g. the designer may find it
easier to improveMhw as opposed to δe or γt, and so concentrate on that parameter attain an overall
improvement of 1.56 in term three (δeMhwγt). Note that the above formulation of the constraints
may be overly-restrictive, as stating that log(z2) ≥ 0 means that z2 cannot get smaller (increasing
the size of βeM1−sHBL). If this term is extremely small, it could become significantly larger without
dominating. To allow such flexibility, one could alternatively formulate the constraints in this
manner:

βeM
1−sHBL
hw

z2

≤ γe
z1

or perhaps
βeM

1−sHBL
hw

z2

≤ aγe
z1

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 136

where 0 ≤ a ≤ 1. Such alternate constraints can be linearized via logarithms similarly to the
constraints of (7.3).

Two limitations of the current version of the Cityscape model are that it assumes parameters
can be scaled independently (e.g. increasing Mhw does not effect βe) and that one parameter
is as easy to scale as another (e.g. increasing the size of installed memory, Mhw, is probably
easier than reducing γe). However, provided with the constraints of (7.3), the hardware designer
is able to target improvements at parameters with the greatest impact upon energy efficiency. This
could be combined with energy and runtime bounds on machines represented as compositions
of the heterogeneous, sequential and distributed parallel models discussed in Chapter 3 to form
constraint sets on more specific hardware parameters, such as the size of last level cache or the
time cost of moving a word between L1 and L2 caches. We believe that the Cityscape model
could be a component of a future hardware autotuning system that evaluates a space of potential
hardware designs for energy efficiency.

7.3 Financial cost/Job (Cjob)
In this section, we define the metric of financial cost (in USD) per job, or Cjob. We assume the
machine has a fixed lifetime (clife) and a fixed energy cost per joule (cenergy). While there are many
factors that contribute to calculating the true cost of owning a distributed parallel machine (see
[24], [92] and [115] for more details), the financial cost factor of Cjob, Cfinancial, only considers
the capital expenditure of purchasing a target number of servers and networking equipment. Thus,

Cfinancial(P,G) = Cnodes(P) + Cnet(P,G)

= P (Cproc + Cmem + Cbase) + (CNIC(P,G) + Ccable(P,G) + Cswitch(P,G))
(7.4)

where for number of processors P and network graph G, Cnodes is the sum of the node costs and
Cnet is the total cost of network equipment. These two costs are then subdivided further. We can
represent Cnodes as the sum of processor cost (Cproc), memory cost (Cmem) and a baseline cost
for the other node components (Cbase). The network cost, Cnet, can be represented as the sum of
network interface card (NIC) costs (CNIC), cabling costs (Ccable) and routers/switches (Cswitch).

We can now combine this expression for Cfinancial with our DP1 runtime and energy models
(Equations (3.3) and (3.4), respectively, and modified to vary P and Γ) to obtain Cjob:

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 137

Cjob(P,G,Γ) =
Cfinancial(P,G)THBLDP1 (P,Γ)

clife
+ EDP1(P,Γ)cenergy

=
1

clife

(
P (Cproc + Cmem + Cbase) + (CNIC(P,G) + Ccable(P,G)

+ Cswitch(P,G))

)
(γtF + βtWt)

+ cenergyP (γeF + βeWe + (δeMhw + εe)(γtF + βtWt)) (7.5)

where clife is the machine lifetime in seconds, cenergy is the dollar cost per joule,
Γ = [γe, βe, δe, εe, γt, βt,Mhw], and Wt and We are the runtime and energy communication lower
bounds expressed in Equations (5.6) and (5.8), respectively. Again, for simplicity, latency terms
are eliminated from the expression. Note that unlike the previous section, we make no assumptions
about dominance of any one of the communication bounds. Note that THBLDP1 /clife is the fraction
of the life of the machine to execute one job, so the first term CfinancialT

HBL
DP1 /clife is the same

fraction of the cost of the machine. The second term of Cjob is the energy in joules EDP1 to run
one job time the cost in dollars per joule, cenergy. Thus, Cjob is a combination of the amortized cost
of server hardware and the energy to operate the machine during the task.

A more detailed cost metric would include additional operating (e.g. the cost of machine
cooling) and capital expenditures (such as building construction). Details on the construction of
more-detailed cost metrics can be found in [92], [115] and via the Sustained System Performance
(SSP) metric [93]. Future work may attempt to include aspects of such models to increase the
accuracy of our analysis.

To present an example analysis on the DP1 distributed parallel machine model, we assume
that the machine is comprised of dual-socket multicore nodes with processors that resemble Intel’s
Sandy Bridge-EP. We assume that this node has a base power consumption of 100W and that
Cbase = $1943.96. The base cost is calculated from an IBM System x3550 M4-x791462U 1U rack
server ($4959.00),4 once the cost of processors and memory have been subtracted.5 We assume use
of a communication-optimal parallel blocked Algorithm 10 to compute Algorithm 11 (see Chapter
5). Recall that this algorithm has sHBL = 3 and F = n3. As we make no assumptions about which
communication bound dominates, we cannot eliminate the problem size, n, from discussion. It is
thus assumed that n = 100000, the number of processors is from 1000-9000 in increments of 1000,
and the installed node memory size (Mhw) is between 16GB and 128GB in increments of 16GB.
We also assume cenergy to be 1.894e-8 dollars/joule, or 6.82 cents/KWhr, the average industrial
electricity rate in the United States during 2013 [62].6 We also assume a machine lifetime of 5
years (or 1.57785e8 seconds). These parameters are summarized in Table 7.3.

4Pricing obtained from http://www-304.ibm.com/
5Processors are 2 E5-2665 at $2880, and 8GB of DDR3-1600 at $125.05. See later tables for more information.
61 KWhr = 3.6e6 joules.

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 138

Word Size (bytes) 8
sHBL 3
Problem Size (n) 100000
F n3

Nodes (P) 1000-9000
Node Memory (Mhw, in words) 16GB-128GB
Node Base Power 100W
AVX Vectorization 4
Fused-Multiply-Add (FMA) 2
Cbase(dollars) 1943.96
clife(sec) 1.5778e8
cenergy(dollars/joule) 1.894e-8

Table 7.3: Additional model values

The data for a range of Intel Sandy Bridge-EP processors can be found in Table 7.4.7 In this
analysis, we assume that the algorithm in question (an optimal implementation of Algorithm 11,
see Chapter 5) attains the peak floating point rate while running at the Thermal Design Power
(TDP) for the processor. We also assume that 15% of the peak processor power is idle, and con-
tributes to the machine’s static energy consumption. Note that Sandy Bridge-EP processors can
compute four double-precision floating point operations in parallel via Advanced Vector Exten-
sion (AVX) vectorization, and also execute paired multiplications and additions in parallel (fused
multiply-add, or FMA). Thus, each processor can compute 8 double-precision operations per cycle.

Processor Model Frequency (Ghz) Cores Power (W) Idle/Total Power Cost
E5-2650L 1.8 8 70 0.2 1107.00
E5-2650 2.0 8 95 0.2 1107.00
E5-2658 2.1 8 95 0.2 1186.00
E5-2660 2.2 8 95 0.2 1329.00
E5-2665 2.4 8 115 0.2 1440.00
E5-2670 2.6 8 115 0.2 1552.00
E5-2680 2.7 8 130 0.2 1723.00
E5-2690 2.9 8 135 0.2 2057.00

Table 7.4: Processor parameters

We also assume that the internode network is a torus of dimension d so as to apply the con-
7Processor data obtained from ark.intel.com, with the exception of the ratio of idle to total processor power, which

is assumed.

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 139

tention lower bound defined in Chapter 5. Thus, network interface cards (NICs) on each compute
node are assumed to have a total of 2d ports and all connections are assumed to be point-to-point
without switches or external routers (i.e. Cswitch = 0). The network technology is assumed to be
Ethernet [109, 77], NICs are each assumed to be dual-port, and all network cables are assumed to
be 5 meters in length. So, the torus network includes d NICs per node and Pd total cables. NIC
and cable parameters can be found in Table 7.5.8 We also ignore network cable energy losses, and
assume that the predominant internode communication energy consumers are the node NICs and
DRAM power. The NICs are assumed to consume 85% of peak power at idle. This assumption is
likely to be over-generous, as several results have found little to no difference between the idle and
active power of NICs [124, 66, 26]. We assume that the active NIC consumes the entire rated TDP
power of the device.

NIC BW (Gb/s) NIC Model Power (W) Idle/Power NIC Cost Cable Type Cable Cost
1 Intel I350-T2 4.4 0.85 128.00 RJ-45 Cat-5 3.40
10 Intel X540-T2 13.4 0.85 508.00 RJ-45 Cat-6a 7.32
40 Chelsio T580-LP-CR 17 0.85 1023.49 QSFP+ twinax 154.00

Table 7.5: Network adaptor and cable parameters

Data regarding node DRAM is shown in Table 7.6. We assume use of 16GB, 1.5V, dual-rank,
x4 DDR3, error-correcting code (ECC), registered DIMM modules, and consider the impact of
using one of three different DIMM clock frequencies.9 As in Chapter 6 and in Section 7.2, we
model power data via the Virtium DIMM Memory Power Calculator [58].10 In the Virtium tool,
we assumed On-die termination (ODT) RD/WR Term power to be 100mW and also assumed
100% usage of the DIMM. Due to the DIMM parameters stated earlier, there are 36 DRAM chips
per DIMM. The DRAM active (IDD7) and active standby currents (IDD3N) were obtained from
Table 20 of Micron’s DDR3 SDRAM MT41J1G4 data sheet (as utilized by the Micron DDR3
SDRAM RDIMM MT36JSF2G72PZ data sheet in Table 14).11 Cost data was obtained for the
Micron DIMM modules in Table 7.6 from digikey.com. For example, for the DDR3-1333 part, the
data sheet reports that IDD7 = 190mA and IDD3N = 35mA. When the above assumptions are
entered into the Virtium tool, an active DIMM consumes 9.875W. This value is a combination of
the active power for one rank of 18 DRAM chips ((IDD7 ∗ VDD + ODT) ∗ 18), and the standby
power for another rank (IDD3N ∗ VDD ∗ 18 + 2, as the calculator assumes 2W of power from
registers/AMB and PLLs for registered DIMMs). As one rank must be in standby while the other
is active, we use 9.875W/16GB = 0.6171W/GB for our machine model. A similar calculation

8Intel NIC data obtained from ark.intel.com, Chelsio NIC data from chelsio.com and cable pricing obtained via
Amazon.com.

9We assume that the Intel Xeon E5-26XX processors are capable of supporting 1866Mhz DRAM.
10Details on the expressions used to generate values for the Virtium calculator can be found in [65]. NB: There is

a typo in the examples on this site; the DDR2 power calculation for 2 DIMMs should include standby current from 54
DRAM chips, not 36.

11Data sheets obtained from micron.com.

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 140

is used for standby power per GB. We assume that the fraction of peak DRAM dynamic power
associated with the peak total internode bandwidth contributes to βe. Thus, if the installed DRAM
has a total BW of 100GB/s and the installed NICs have a peak bandwidth of 5GB/s, 5% of peak
DRAM power is assumed to be associated with βe.

Type Part Num. (Micron) Cost/Gb Idle Power/Gb Dyn. Power/Gb DRAM BW (w/s/GB)
DDR3-1333 MT36JSF2G72PZ-1G4D1 15.00 0.2431 0.6171 10.60
DDR3-1600 MT36JSF2G72PZ-1G6D1 15.63 0.2533 0.6729 12.80
DDR3-1866 MT36JSF2G72PZ-1G9D1 13.44 0.2634 0.7303 14.90

Table 7.6: DRAM parameters

The parameters for Cjob can be calculated from Tables 7.3, 7.4, 7.5 and 7.6. Some, such as
Cbase, are straightforward. Others are derived from several table entries, as shown:

Cproc = 2 ∗ Processor Cost
Cmem = (Mhw ∗ DRAM Cost Per GB)/Words Per GB
CNIC = d ∗ P ∗ NIC cost
Ccable = d ∗ P ∗ Cable cost (7.6)

Other hardware parameters are calculated identically to the Equations in (6.1), with the exception
of βe. As we assume utilization of all installed memory, we calculate βe as a function of Mhw:

βt = 1/Peak Network BW/Words Per GB
βe = βt ∗ (DRAM Dynamic Power + NIC Dynamic Power) (7.7)

where

DRAM Dynamic Power = Mhw ∗ DRAM Peak Power Per Word ∗ ((1/βt)/DRAM Peak BW)

DRAM Peak Power Per Word = Dyn. Power Per GB/Words Per GB
DRAM Peak BW = (DRAM BW Per GB/Words Per GB) ∗Mhw

Peak Network BW = (NIC BW ∗ d)/Bits Per Byte
Words Per GB = 1e9/Word Size.

As the space of potential parameter values is discrete in this formulation of Cjob12, we can
calculate the optimal set of model parameters by exhaustive search (see Table 7.7). We observe
that for the problem within Algorithm 11, the minimal number of nodes, network dimension, and
cheapest memory are optimal. Note that the reduced cost of DDR3-1833 offsets its increased
energy consumption with this algorithm and problem size. Due to the high arithmetic intensity

129 different values of P , 8 values of Mhw, 8 types of processors (Table 7.4), 3 network bandwidths (Table 7.5), 3
types of DRAM (Table 7.6) and torus dimension d = 1..4 for 20736 total combinations of values.

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 141

of this problem, floating point operations dominate the computation. Thus, the optimal design
point is to minimize internode communication resources to reduce power and cost. The number of
processors is low due to the large base power of a node (100W). One would expect codes with low
intensity to require a larger amount of memory and a faster network to minimize Cjob.

Nodes (P) 1000
Memory Size (Mhw) 16GB
Torus Dim (d) 1
Processor Intel E5-2670
Memory DDR3-1866
Network 1Gb/s
TDP1(sec) 3.01
EDP1(joule) 1.02E+06
Total CapEx $5,395,360
CapEx/Job $0.10
OpEx/Job $0.02
Cjob $0.12

Table 7.7: Parameters for minimal Cjob

Figure 7.2 illustrates the tradeoffs between processor type and either network bandwidth (Sub-
figure 7.2a) or torus dimension d (Subfigure 7.2b). In both cases, the optimal processor choice is
an Intel E5-2670. As network cost is a function of torus dimension, note that each increase in d
results in an increase in Cjob. As a 40Gb/s ethernet torus is significantly more costly (in terms of
Cfinancial) than either 1Gb/s or 10Gb/s tori, the increase in Cjob is greater when moving from a
10Gb/s to 40Gb/s network than moving from 1Gb/s to 10Gb/s.

To conclude, the previous two sections described an approach to optimizing energy and runtime
models for a distributed parallel machine. This optimization was considered within the Cityscape
model of energy efficiency and the metric of financial cost/job (Cjob). We believe that our ap-
proaches may aid hardware designers in targeting machines to benchmarks that approach optimal
implementations of communication-optimal algorithms.

7.4 Further Directions
A potential criticism of the analyses in the previous sections is that the level of abstraction for the
machine models is too high to properly obtain constraint information from designers and archi-
tects that is useful for extrapolation and integration with a hardware/software co-tuning process.
In particular, the DP1 distributed parallel model encompasses much of the energy and runtime
performance of an entire server node within the parameters γe and γt. This hides any performance
interplay between caches and functional units (amongst other components).

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 142

(a) Processor vs. network bandwidth

(b) Processor vs. torus dimension

Figure 7.2: Cjob with various parameter sets for Algorithm 11

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 143

Figure 7.3: Sequential Machine with 3 levels of fast memory

While we were unable to address this observation quantitatively in this work, we suggest two
approaches that may address this limitation. In the first, we expose more parameters by recursively
expanding the machine model to encompass all levels of the memory hierarchy. However, this does
not include the behavior of memories such as Translation Look-aside Buffers (TLBs), instruction
caches and DRAM write buffers. In the second approach, we suggest a generalization of existing
work that derives accurate linear power models from performance counter activity (which may
include the behavior of additional memories, such as TLBs).

Expansion of Existing Models As in the derivation of the DP2 model, we can recursively define
models of runtime and energy at successive levels of the memory hierarchy to expose lower-level
parameters to the designer. For example, suppose we wish to analyze a sequential machine with
three levels of fast memory: L1, L2 and L3 (see Figure 7.3). We assume that the L3 cache then
fetches values from main memory, typically DRAM. If we attempt to use the sequential models of
Equations (3.1) and (3.2) to represent this machine, the communication traffic from L1 to L2 and
L2 to L3 are all abstracted into two terms: γt and γe. However, if we define these parameters in
terms of sequential models of the next lower level of memory, a higher degree of fidelity can be
obtained.

We derive the algebraic expressions for runtime and energy for this multilevel machine model
in a similar manner to the DP2 distributed parallel model (Section 3.2). For illustrative purposes,
we assume that the machine is able to perfectly overlap communication and computation at all
levels of memory. We also assume that per-word and per-message costs differ by a small constant
factor (e.g. messages are cache line transfers) and drop the α terms from the model for the sake
of simplicity. Further, to differentiate parameters at the different levels of the machine, we refer to
L3/Memory communication as ”at level 3”, L2/L3 communication as ”at level 2”, etc. Thus, the
total runtime of the machine becomes:

T3(M1,M2,M3, F) = max(γt3F, βt3W3) = max

(
T2

F
F, βt3W3

)
as γt3 = T2/F . If we continue this process and define T2, replace γt2 with a definition of T1, we
obtain

T3(M1,M2,M3, F) = max(γt1F, βt1W1, βt2W2, βt3W3)

as a runtime model for the machine in Figure 7.3. Via an identical process (without use of the
max() function as energy consumption cannot be hidden), we obtain a model of energy for the
3-level sequential machine:

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 144

E3(M1,M2,M3, F) = ((γe1F+βe1W1+(δe1+εe1)T3)+βe2W2+(δe2+εe2)T3)+βe3W3+(δe3+εe3)T3.

Note that we assumed that energy is consumed by idle machine components for the entire
runtime (i.e. T1 = T2 = T3). In the case of dense O(n3) matrix-matrix multiplication, we note that

F = Ω(n3),W3 = Ω

(
F

M
1/2
3

)
,W2 = Ω

(
F

M
1/2
2

)
,W1 = Ω

(
F

M
1/2
1

)
and we can see that on a typical machine of this model, a larger volume of data is transferred
between faster levels of memory than slower as would be expected assuming the caches are actually
able to take advantage of some memory locality in the application kernel.

As such, recursively-defined models of runtime and energy expose hardware parameters that
are abstracted away in the DP1 and DP2 models. The challenge of modeling individual hardware
components has been significantly addressed within the academic literature. For example, the
CACTI tool [150] models cache access latency given parameters such as cache size and associa-
tivity. We also suspect that the relationship between cache size and energy consumption could also
be added to the optimization constants. For example, [130] models the relationship between cache
size and energy and uses such models to recommend cache design decisions that increase energy
efficiency.

Integration with Low-level Performance Counter-based Models Another approach to reduc-
ing the abstraction of high-level models is to represent hardware parameters as compositions of
performance counters. Performance counters have been effectively used to model hardware be-
havior in a large body of research (see [116] and [131] for surveys of power modeling techniques,
including with performance counters) and have the benefit of directly correlating with events use-
ful to hardware architects and designers. A generic representation of a performance counter energy
model is as follows:

E =
∑
i

wici

where the total power, E, is the summation of performance event counts ci weighted by the con-
stants wi (which are in units of joules/event).

Parameters for such energy models (wi) are typically regression fits of switching activity from
gate-level simulation of a microbenchmark suite, RC delays, and power simulation via tools such as
Synopsys PrimeTime R©[29]. Assuming the microbenchmark suite is able to accurately represent
the target workloads (see Section 3.5 for a discussion of this challenge), the wi can then be used to
accurately simulate energy consumption for much faster register-transfer level (RTL) simulations
(as with the PrEsto simulator [132]) or direct FPGA emulation [30].

In [30], Bhattacharjee, Contreras and Martonosi construct performance counter models to accu-
rately represent power consumption of hardware components such as caches, memory management
units and functional units. The total processor power thus becomes

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 145

H =
∑
i

Hi =
∑
i

(∑
j

wijcij

)
where H is the sum of the component performance counter models, Hi. While this work specifi-
cally pertains to power models, a similar approach could be used for energy.

Recall the energy model for the sequential machine (Equation (3.2)):

ES = γeF + βeW + αeS + δeM̂TS + εeTS.

This model can be linked to low-level counter events via two approaches:

• Direct representation of parameters via performance counter model weights (e.g. γe =∑
iwi)

• Representation of parameters as sets of component model weights, of type similar to [30].

If this second approach is used, the energy model now becomes:

ES =

(∑
ij

w0ij

)
F +

(∑
ij

w1ij

)
W +

(∑
ij

w2ij

)
S +

(∑
ij

w3ij

)
M̂TS +

(∑
ij

w4ij

)
TS

where each parameter γe,βe,αe,δe and εe is represented by summations of the fitted weights for A
components, each of which is modeled with B terms. If performance counters are used for F ,W ,
etc., and compared to modeled values, we can determine whether our implementation is close to
attaining the lower bound, or perhaps whether hardware should be improved, e.g. perhaps with a
better cache replacement policy.

It is currently unclear as to which approach would best be used to represent the parameters for
the energy (and runtime, via a similar approach) models described in this work. Direct representa-
tion of parameters via performance counter model weights eliminates the step of partitioning the
counters into component-specific sets, but may struggle to capture the behavior of instructions (e.g.
memory accesses) that exhibit wide variation in energy consumption in certain cases (e.g. a cache
miss or page fault). Perhaps nonlinear models could be used to model components with complex
behavior.

One general limitation of using performance counter models for devices larger than the proces-
sor die is that performance events simply not be available, such as for network queues and router
routing decisions. Even if the set of available counters is able to capture the behavior of the en-
tire machine, access can be difficult due to lack of documentation from hardware manufacturers.
Counters are not needed for proper execution of the device, and as such may not be validated to a
high degree. These limitations suggest that performance counter energy models may be best suited
to small processor or system on chip (SoC) designs.

We believe that either of the above two approaches, expanding models recursively or with
performance counters, may be used to successfully lower the abstraction of the energy and runtime

CHAPTER 7. IMPLICATIONS FOR HARDWARE DESIGNS 146

models proposed in this thesis to a level that is easier for hardware experts to utilize. Both ideas
must still address the challenge of effective microbenchmark creation. If these models are directly
extended via recursive definition to more parameters, a research challenge still lies in interpreting
parameters from a hardware perspective. For example, one may ask “How does knowing the
fitted joule/word cost of L1 to L2 data allow me to improve my hardware design?” On the other
hand, performance counter models are limited by the availability, accessibility and correctness of
counters. Both techniques represent interesting areas of potential future research.

147

Chapter 8

Conclusions

This work focuses on deriving and analyzing bounds on the energy consumption of computational
kernels on several types of abstract machine models. These kernels represent the building blocks
of many high-performance computing (HPC) algorithms, and thus allow the results of this thesis to
apply to a wide range of common algorithms when used in composition. This work builds on the
existing body of research that bounds data communication, and our machine models are designed
so as to allow integration with new communication bounds and hardware designs as they emerge.
We also believe that such bounds may form the basis for a modeling infrastructure that would allow
for hardware and software engineers to co-tune for the efficiency of energy and communication-
optimal algorithms.

Specifically, we presented empirical evidence that energy consumption for building blocks of
HPC applications, computational kernels, behave predictably during phases of almost constant
arithmetic intensity (the flop/byte ratio of the implementation of an algorithm). That is, we ob-
served that several kernels demonstrated nearly constant machine wall power during execution of
a constant instruction mix. With this observation, we determined that the energy consumption and
runtime of such application phases (which correspond to kernels) can be effectively modeled via
linear expressions composed of a handful of terms. We validated these linear models for sequential
and heterogeneous abstract machines, and argued (due to limitations in measurement equipment)
for the applicability of such models to distributed parallel machines (Chapter 3). We also noted that
the empirically extracted machine parameters often did not agree with expected values, especially
for parameters in terms that do not dominate the computation (e.g. calculating per-flop parame-
ters γt and γe from communication-dominated matrix-vector or naive matrix-matrix multiplication
implementations). This suggests that specialized micro benchmarks (which may be automatically
generated) are needed to properly calculate energy and runtime hardware parameters.

In Chapter 4 we combined these energy and runtime models with existing communication
lower bounds (see [13] for details) to prove lower bounds on energy consumption and runtime
for both the classical O(n3) and Strassen-like matrix-multiplication algorithms, dense and sparse
matrix-vector multiplication and the O(n2) n-body problem. These bounds apply to sequential
machines, and with the exception of matrix-vector multiplication, were also derived for two types
of distributed parallel machines. We also proved communication and energy lower bounds for

CHAPTER 8. CONCLUSIONS 148

dense matrix-matrix and matrix-vector multiplication on a heterogeneous model of computing,
and communication and energy-optimal algorithms were described for both problems (Chapter 4).
These energy lower bounds were then generalized to a larger class of programs that access arrays
with affine expressions, and we generalized an existing optimal algorithm for the case where arrays
are accessed via subsets of the iteration variables and showed that it attains a range of perfect strong
scaling in runtime with constant energy consumption (Chapter 5).

With lower bounds on energy, we minimized energy or runtime in the presence of various con-
straints (e.g. upper bounds on runtime, energy or average power) while scaling memory usage
and processors (Chapter 6) on a distributed parallel machine model. For example, we derived an
explicit formula for the energy-optimal amount of utilized node memory for the O(n2) n-body
problem and also considered the effect of scaling problem size and data replication on the en-
ergy efficiency of two example machines. In Chapter 7, we allowed hardware parameters in the
model to vary and explored examples of optimization problems that utilize energy and runtime
lower bounds to maximize energy efficiency. In particular, we presented a new way to visualize
improvements in energy efficiency: the Cityscape model. This model generates constraint sets on
how hardware parameters for a baseline machine need to scale to attain a desired energy efficiency
improvement. In Chapter 7 we constructed a metric for the financial cost per job on distributed
parallel machines, and described the characteristics of an optimal machine under this metric for a
3-body force calculation problem of a specific size.

This thesis suggests several major directions for future research, both in algorithms and com-
puter hardware. Some key questions:

• What is the best method to measure energy consumption on distributed parallel machines?
External monitoring devices, on-board firmware, or some combination of both? Ideally, such
a method would balance measurement granularity with cost and ease of implementation.

• Do all computational motifs (i.e. classes of computational kernels) indeed exhibit predictable
energy consumption? In this thesis, we demonstrated such behavior for several problems
within two motifs: dense and sparse linear algebra. It is uncertain whether algorithms in
other motifs exhibit this behavior, or even if all the algorithms within the dense and sparse
linear algebra motifs are similarly predicable.

• How “tight” are these energy lower bounds? That is, when constants are carefully consid-
ered, how do the bounds compare to the energy consumption of optimal algorithms? Can
the optimal algorithm for programs that access arrays via subsets of their iteration variables
be used to attain performance and efficiency improvements on real machines?

• Can the energy optimal algorithm for heterogeneous matrix-matrix multiplication be gen-
eralized to the larger class of problems that access arrays with subsets of their iteration
variables?

• What is the best way to combine our high-level models for energy and runtime with mod-
els that directly inform architects and device engineers? Can this be used in a co-tuning
environment?

CHAPTER 8. CONCLUSIONS 149

• How can the work of this thesis be extended to machine and algorithm features that dynam-
ically vary energy and performance (e.g. varying node-level power limits to target higher
performance states to intensive applications)? How does this fit in with work on adaptive
runtime systems?

With computing technology evolving simultaneously toward miniaturization and large-scale
systems, energy efficiency has become a key metric in determining the capability of devices and
designs. This problem is not becoming easier as increasingly-heterogeneous devices begin to pro-
liferate the computing landscape, and present problems even for basic benchmarking. To some
extent, this problem may be addressed by automated tuning technology. However, with any met-
ric, from floating point throughput to energy efficiency, the question “How well are we doing?”
becomes vastly more interesting when considered in the light of “How well can we do?” This thesis
addresses the latter question, and will hopefully serve to enlighten a portion of the former.

150

Bibliography

[1] 80 PLUS Verification and Testing Report: Dell Dh350E-S0. Plug Load solutions. Sept.
2011. URL: http://www.plugloadsolutions.com/psu_reports/DELL_DH
350E-SO_ECOS%202779_350W_Report.pdf.

[2] Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu. “Energy
Proportional Datacenter Networks”. In: Proceedings of the 37th Annual International Sym-
posium on Computer Architecture. ISCA ’10. Saint-Malo, France: ACM, 2010, pp. 338–
347. ISBN: 978-1-4503-0053-7. DOI: 10.1145/1815961.1816004. URL: http:
//doi.acm.org/10.1145/1815961.1816004.

[3] Ramesh C Agarwal, Susanne M Balle, Fred G Gustavson, M Joshi, and P Palkar. “A three-
dimensional approach to parallel matrix multiplication”. In: IBM Journal of Research and
Development 39.5 (1995), pp. 575–582.

[4] Alok Aggarwal, Ashok K Chandra, and Marc Snir. “Communication complexity of PRAMs”.
In: Theoretical Computer Science 71.1 (1990), pp. 3–28.

[5] AMD Core Math Library (ACML). Advanced Micro Devices, Inc. 2013. URL: http:
//amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/0
5/acml.pdf.

[6] AMD Math Libraries: OpenCL Basic Linear Algebra Subprograms Levels 1, 2, and 3.
Advanced Micro Devices, Inc. 2013. URL: http://developer.amd.com/tools-
and-sdks/opencl-zone/amd-accelerated-parallel-processing-ma
th-libraries.

[7] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Third Edition. Society for Industrial and Applied Mathematics, 1999. DOI: 10.1137/1.
9780898719604.

[8] Alexandru Andrei, Marcus Schmitz, Petru Eles, Zebo Peng, and Bashir M Al Hashimi. “Si-
multaneous communication and processor voltage scaling for dynamic and leakage energy
reduction in time-constrained systems”. In: Computer Aided Design, 2004. ICCAD-2004.
IEEE/ACM International Conference on. IEEE. 2004, pp. 362–369.

BIBLIOGRAPHY 151

[9] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Hus-
bands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel
Webb Williams, and Katherine A. Yelick. The Landscape of Parallel Computing Research:
A View from Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Department, University of
California, Berkeley, 2006. URL: http://www.eecs.berkeley.edu/Pubs/Tech
Rpts/2006/EECS-2006-183.html.

[10] ATX Specification Version 2.01. Intel Corporation. URL: http://www.formfactor
s.org/developer%5Cspecs%5Catx2_1.PDF.

[11] M. Bader, R. Franz, S. Günther, and A. Heinecke. “Hardware-oriented Implementation of
Cache Oblivious Matrix Operations Based on Space-filling Curves”. In: Proceedings of
the 7th International Conference on Parallel Processing and Applied Mathematics. PPAM
‘07. Gdansk, Poland: Springer-Verlag, 2008, pp. 628–638. ISBN: 3-540-68105-1, 978-3-
540-68105-2. URL: http://portal.acm.org/citation.cfm?id=1786194.
1786267.

[12] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L Carter, Leonardo
Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S Schreiber, et al.
“The NAS parallel benchmarks”. In: International Journal of High Performance Comput-
ing Applications 5.3 (1991), pp. 63–73.

[13] G Ballard, E Carson, J Demmel, M Hoemmen, N Knight, and O Schwartz. “Communica-
tion lower bounds and optimal algorithms for numerical linear algebra”. In: Acta Numerica
23 (2014), pp. 1–155.

[14] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. “Communication-optimal Parallel and
Sequential Cholesky Decomposition”. In: SIAM Journal on Scientific Computing 32.6
(2010), pp. 3495–3523. DOI: 10.1137/090760969.

[15] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. “Minimizing Communication in Nu-
merical Linear Algebra”. In: SIAM J. Matrix Analysis Applications 32.3 (2011), pp. 866–
901.

[16] Grey Ballard. “Avoiding Communication in Dense Linear Algebra”. PhD thesis. EECS
Department, University of California, Berkeley, 2013. URL: http://www.eecs.ber
keley.edu/Pubs/TechRpts/2013/EECS-2013-151.html.

[17] Grey Ballard, James Demmel, and Andrew Gearhart. “Communication bounds for het-
erogeneous architectures”. In: 23rd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA 2011). (“Brief Announcement”). 2011.

[18] Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz, Oded Schwartz,
and Sivan Toledo. “Communication optimal parallel multiplication of sparse random ma-
trices”. In: Proceedings of the 25th ACM Symposium on Parallelism in Algorithms and
Architectures. ACM. 2013, pp. 222–231.

BIBLIOGRAPHY 152

[19] Grey Ballard, James Demmel, Andrew Gearhart, Benjamin Lipshitz, Oded Schwartz, and
Sivan Toledo. Contention Bounds for Combinations of Computation Graphs and Network
Topologies. Tech. rep. UCB/EECS-2014-147. EECS Department, University of California,
Berkeley, 2014. URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/20
14/EECS-2014-147.html.

[20] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. “Graph Expansion and
Communication Costs of Fast Matrix Multiplication: Regular Submission”. In: Proceed-
ings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures. SPAA ’11. San Jose, California, USA: ACM, 2011, pp. 1–12. ISBN: 978-1-4503-
0743-7. DOI: 10.1145/1989493.1989495. URL: http://doi.acm.org/10.1
145/1989493.1989495.

[21] Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz. “Strong
Scaling of Matrix Multiplication Algorithms and Memory-Independent Communication
Lower Bounds”. In: Proceedings of the 24th ACM Symposium on Parallelism in Algorithms
and Architectures. SPAA ’12. (“Brief Announcement”). Pittsburgh, Pennsylvania, USA:
ACM, 2012, pp. 77–79. ISBN: 978-1-4503-1213-4. DOI: 10.1145/2312005.231202
1. URL: http://doi.acm.org/10.1145/2312005.2312021.

[22] J. Barnes and P. Hut. “A hierarchical O(N log N) force-calculation algorithm”. In: Nature
Vol.324 (Dec. 1986), pp. 446–449. DOI: 10.1038/324446a0.

[23] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. Philadelphia, PA: SIAM, 1994.

[24] Luiz André Barroso and Urs Hölzle. “The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines”. In: Synthesis Lectures on Computer Architec-
ture 4.1 (2009), pp. 1–108.

[25] K Basu, A Choudhary, Jayaprakash Pisharath, and M Kandemir. “Power protocol: re-
ducing power dissipation on off-chip data buses”. In: Proceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture. IEEE Computer Society Press.
2002, pp. 345–355.

[26] D. Bedard, Min Yeol Lim, R. Fowler, and A. Porterfield. “PowerMon: Fine-Grained and
Integrated Power Monitoring for Commodity Computer Systems”. In: IEEE SoutheastCon
2010 (SoutheastCon), Proceedings of the. 2010, pp. 479–484. DOI: 10.1109/SECON.2
010.5453824.

[27] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty
Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen Keckler, Dean
Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely, Thomas
Sterling, R. Stanley Williams, Katherine Yelick, Keren Bergman, Shekhar Borkar, Dan
Campbell, William Carlson, William Dally, Monty Denneau, Paul Franzon, William Har-
rod, Jon Hiller, Stephen Keckler, Dean Klein, Peter Kogge, R. Stanley Williams, and

BIBLIOGRAPHY 153

Katherine Yelick. ExaScale Computing Study: Technology Challenges in Achieving Ex-
ascale Systems. 2008.

[28] Ramon Bertran, Alper Buyuktosunoglu, Meeta S. Gupta, Marc Gonzalez, and Pradip Bose.
“Systematic Energy Characterization of CMP/SMT Processor Systems via Automated Micro-
Benchmarks”. In: Proceedings of the 2012 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. MICRO-45. Vancouver, B.C., CANADA: IEEE Computer So-
ciety, 2012, pp. 199–211. ISBN: 978-0-7695-4924-8. DOI: 10.1109/MICRO.2012.27.
URL: http://dx.doi.org/10.1109/MICRO.2012.27.

[29] Himanshu Bhatnagar. Advanced ASIC Chip Synthesis: Using Synopsys Design Compiler
Physical Compiler and Prime Time. 2nd. Norwell, MA, USA: Kluwer Academic Publish-
ers, 2002. ISBN: 0792376447.

[30] A Bhattacharjee, G. Contreras, and M. Martonosi. “Full-system chip multiprocessor power
evaluations using FPGA-based emulation”. In: Low Power Electronics and Design (ISLPED),
2008 ACM/IEEE International Symposium on. 2008, pp. 335–340. DOI: 10.1145/139
3921.1394010.

[31] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M.Heroux,
L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley. “An
Updated Set of Basic Linear Algebra Subroutines (BLAS)”. In: ACM Trans. Math. Soft.
28.2 (2002).

[32] L Susan Blackford, Jaeyoung Choi, Andy Cleary, Eduardo D’Azevedo, James Demmel,
Inderjit Dhillon, Jack Dongarra, Sven Hammarling, Greg Henry, Antoine Petitet, et al.
ScaLAPACK users’ guide. Vol. 4. SIAM, 1997.

[33] R. Blumofe, M. Frigo, C. Joerg, C. Leiserson, and K. Randall. “Dag-consistent Distributed
Shared Memory”. In: IPPS ‘96: Proceedings of the 10th International Parallel Processing
Symposium. 1996, pp. 132–141.

[34] Robert D Blumofe, Matteo Frigo, Christopher F Joerg, Charles E Leiserson, and Keith H
Randall. “Dag-consistent distributed shared memory”. In: Parallel Processing Symposium,
1996., Proceedings of IPPS’96, The 10th International. IEEE. 1996, pp. 132–141.

[35] Béla Bollobás and Imre Leader. “Edge-isoperimetric inequalities in the grid”. In: Combi-
natorica 11.4 (1991), pp. 299–314.

[36] Rasmus Bro and Sijmen De Jong. “A fast non-negativity-constrained least squares algo-
rithm”. In: Journal of Chemometrics 11.5 (1997), pp. 393–401. ISSN: 1099-128X. DOI:
10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.
0.CO;2-L. URL: http://dx.doi.org/10.1002/(SICI)1099-128X(19970
9/10)11:5<393::AID-CEM483>3.0.CO;2-L.

[37] David J Brown and Charles Reams. “Toward energy-efficient computing”. In: Communi-
cations of the ACM 53.3 (2010), pp. 50–58.

[38] L. E. Cannon. “A Cellular Computer to Implement the Kalman Filter Algorithm”. PhD
thesis. Bozeman, MT, USA, 1969.

BIBLIOGRAPHY 154

[39] Enrique V. Carrera, Eduardo Pinheiro, and Ricardo Bianchini. “Conserving Disk Energy
in Network Servers”. In: Proceedings of the 17th Annual International Conference on Su-
percomputing. ICS ’03. San Francisco, CA, USA: ACM, 2003, pp. 86–97. ISBN: 1-58113-
733-8. DOI: 10.1145/782814.782829. URL: http://doi.acm.org/10.114
5/782814.782829.

[40] Umit V Catalyurek and Cevdet Aykanat. “Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication”. In: Parallel and Distributed Systems,
IEEE Transactions on 10.7 (1999), pp. 673–693.

[41] CHECS Computing Resources. http://www.checs.eng.vt.edu/resources.
php. Accessed: 2014.08.03.

[42] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. “Span: An Energy-
efficient Coordination Algorithm for Topology Maintenance in Ad hoc Wireless Networks”.
In: Wireless Networks 8.5 (2002), pp. 481–494.

[43] Jee Choi, M. Dukhan, Xing Liu, and R. Vuduc. “Algorithmic Time, Energy, and Power
on Candidate HPC Compute Building Blocks”. In: Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. 2014, pp. 447–457. DOI: 10.1109/IPDPS.
2014.54.

[44] Jee Whan Choi, Daniel Bedard, Robert Fowler, and Richard Vuduc. “A Roofline Model
of Energy”. In: Proceedings of the 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing. IPDPS ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 661–672. ISBN: 978-0-7695-4971-2. DOI: 10.1109/IPDPS.2013.77. URL:
http://dx.doi.org/10.1109/IPDPS.2013.77.

[45] Michael Christ, James Demmel, Nicholas Knight, Thomas Scanlon, and Katherine A.
Yelick. Communication Lower Bounds and Optimal Algorithms for Programs That Ref-
erence Arrays - Part 1. Tech. rep. UCB/EECS-2013-61. EECS Department, University of
California, Berkeley, 2013. URL: http://www.eecs.berkeley.edu/Pubs/Tech
Rpts/2013/EECS-2013-61.html.

[46] D. Coppersmith and S. Winograd. “Matrix Multiplication via Arithmetic Progressions”. In:
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing. STOC
’87. New York, New York, USA: ACM, 1987, pp. 1–6. ISBN: 0-89791-221-7. DOI: 10.1
145/28395.28396. URL: http://doi.acm.org/10.1145/28395.28396.

[47] Intel Corporation. “Intel 64 and IA-32 Architectures Software Developer’s Manual”. In:
(2011). URL: http://www.intel.com/content/www/us/en/architectur
e-and-technology/64-ia-32-architectures-software-developer-
vol-3b-part-2-manual.html.

[48] Counting Floating Point Operations on Intel Sandy Bridge and Ivy Bridge. http://i
cl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops. Ac-
cessed: 2014-09-02.

BIBLIOGRAPHY 155

[49] Kent Czechowski, Casey Battaglino, McClanahan, Chris, Aparna Chandramowlishwaran,
and Richard Vuduc. “Balance principles for algorithm-architecture co-design”. In: Proc.
USENIX Wkshp. Hot Topics in Parallelism (HotPar), Berkeley, CA, USA (2011).

[50] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Collection”. In:
ACM Trans. Math. Softw. 38.1 (Dec. 2011), 1:1–1:25. ISSN: 0098-3500. DOI: 10.1145/
2049662.2049663. URL: http://doi.acm.org/10.1145/2049662.20496
63.

[51] DDR3 SDRAM Standard. Joint Electron Device Engineering Council (JEDEC). URL: htt
p://www.jedec.org/standards-documents/docs/jesd-79-3d.

[52] Eliezer Dekel, David Nassimi, and Sartaj Sahni. “Parallel matrix and graph algorithms”.
In: SIAM Journal on computing 10.4 (1981), pp. 657–675.

[53] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger.
“Communication-Optimal Parallel Recursive Rectangular Matrix Multiplication”. In: Par-
allel Distributed Processing Symposium (IPDPS), 2013 IEEE 27th International. 2013.

[54] James Demmel. Dense Linear Algebra, Part 1. http://www.cs.berkeley.edu/
˜demmel/cs267_Spr14/Lectures/lecture12_densela_1_jwd14_v2_
4pp.pdf. 2014.

[55] James Demmel, Andrew Gearhart, Benjamin Lipshitz, and Oded Schwartz. “Perfect Strong
Scaling Using No Additional Energy”. In: Proceedings of the 2013 IEEE 27th Interna-
tional Symposium on Parallel and Distributed Processing. IPDPS ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 649–660. ISBN: 978-0-7695-4971-2. DOI: 10.1
109/IPDPS.2013.32. URL: http://dx.doi.org/10.1109/IPDPS.2013.3
2.

[56] James W. Demmel. Applied Numerical Linear Algebra. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 1997. ISBN: 0-89871-389-7.

[57] Robert H Dennard, Fritz H Gaensslen, V Rideout, E Bassous, and LeBlanc, A. “Design of
Ion-implanted MOSFET’s with very Small Physical Dimensions”. In: Solid-State Circuits,
IEEE Journal of 9.5 (1974), pp. 256–268.

[58] DIMM Memory Power Calculator. http://www.virtium.com/resources/des
ign-support/power-calculator/. Accessed: 2014-09-14.

[59] Wilm E Donath. “Placement and average interconnection lengths of computer logic”. In:
Circuits and Systems, IEEE Transactions on 26.4 (1979), pp. 272–277.

[60] Wilm E Donath. “Wire length distribution for placements of computer logic”. In: IBM
Journal of Research and Development 25.3 (1981), pp. 152–155.

[61] Michael Driscoll, Evangelos Georganas, Penporn Koanantakool, Edgar Solomonik, and
Katherine Yelick. “A communication-optimal N-body algorithm for direct interactions”.
In: Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium
on. IEEE. 2013, pp. 1075–1084.

BIBLIOGRAPHY 156

[62] Electric Power Monthly:Table 5.3. Average Retail Price of Electricity to Ultimate Cus-
tomers. http://www.eia.gov/electricity/monthly/epm_table_graph
er.cfm?t=epmt_5_3. Accessed: 2014-09-02.

[63] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. “Recursive Blocked Algorithms
and Hybrid Data Structures for Dense Matrix Library Software”. English. In: SIAM Review
46.1 (2004), pp. 3–45. ISSN: 00361445. URL: http://www.jstor.org/stable/2
0453467.

[64] Stephane Eranian. The perfmon2 interface specification. Tech. rep. 2005.

[65] Estimate memory power based on DRAM IDD modes and utilization rates. http://ww
w.rampedia.com/index.php/AE2e. Accessed: 2014-09-14.

[66] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and K.W. Cameron.
“PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applica-
tions”. In: Parallel and Distributed Systems, IEEE Transactions on 21.5 (2010), pp. 658–
671. ISSN: 1045-9219. DOI: 10.1109/TPDS.2009.76.

[67] Robert A. van de Geijn and Jerrell Watts. SUMMA: Scalable Universal Matrix Multiplica-
tion Algorithm. Tech. rep. Austin, TX, USA, 1995.

[68] Lance Glasser and Daniel Dobberpuhl. The Design and Analysis of VLSI Circuits. Addison-
Wesley, 1985.

[69] Ricardo Gonzalez, Benjamin M Gordon, and Mark A Horowitz. “Supply and threshold
voltage scaling for low power CMOS”. In: Solid-State Circuits, IEEE Journal of 32.8
(1997), pp. 1210–1216.

[70] Kazushige Goto and Robert A Geijn. “Anatomy of high-performance matrix multiplica-
tion”. In: ACM Transactions on Mathematical Software (TOMS) 34.3 (2008), p. 12.

[71] Leslie Greengard and Vladimir Rokhlin. “A fast algorithm for particle simulations”. In:
Journal of Computational Physics 73.2 (1987), pp. 325–348.

[72] Domenik Helms, Eike Schmidt, and Wolfgang Nebel. “Leakage in CMOS circuits–an in-
troduction”. In: Integrated Circuit and System Design. Power and Timing Modeling, Opti-
mization and Simulation. Springer, 2004, pp. 17–35.

[73] Bruce Hendrickson. “Graph partitioning and parallel solvers: Has the emperor no clothes?”
In: Solving Irregularly Structured Problems in Parallel. Springer, 1998, pp. 218–225.

[74] Bruce Hendrickson and Tamara G Kolda. “Graph partitioning models for parallel comput-
ing”. In: Parallel Computing 26.12 (2000), pp. 1519–1534.

[75] Ron Ho, Kenneth W Mai, and Mark A Horowitz. “The future of wires”. In: Proceedings of
the IEEE 89.4 (2001), pp. 490–504.

[76] Mark Frederick Hoemmen. “Communication-avoiding Krylov subspace methods”. PhD
thesis. EECS Department, University of California, Berkeley, 2010. URL: http://www.
eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.html.

BIBLIOGRAPHY 157

[77] IEEE 802.3ł-2012 IEEE Standard for Ethernet. Institute of Electrical and Electronics En-
gineers (IEEE).

[78] Intel 64 and IA-32 Architecture Software Developer Manual. Intel Corporation. 2014. URL:
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-manual-32
5462.pdf.

[79] Intel Ethernet Converged Network Adapter X540-T2. http://ark.intel.com/pro
ducts/58954/Intel-Ethernet-Converged-Network-Adapter-X540-T
2. Accessed: 2014-09-14.

[80] Intel Xeon Processor 7500 Series Uncore Programming Guide. Intel Corporation. 2010.
URL: http://www.intel.com/assets/en_US/pdf/designguide/32353
5.pdf.

[81] Intel Xeon Processor E5-2600 Product Family Uncore Performance Monitoring Guide.
Intel Corporation. 2012. URL: http://www.intel.com/content/dam/www/pu
blic/us/en/documents/design-guides/xeon-e5-2600-uncore-guid
e.pdf.

[82] Intel Xeon Processor E5-2650. http://ark.intel.com/products/64590/.
Accessed: 2014-09-14.

[83] Intel Xeon Processor E7 Family Uncore Performance Monitor Programming Guide. Intel
Corporation. 2011. URL: http://www.intel.com/content/dam/www/publi
c/us/en/documents/performance-briefs/xeon-e7-family-uncore-
performance-programming-guide.pdf.

[84] D. Irony, S. Toledo, and A. Tiskin. “Communication lower bounds for distributed-memory
matrix multiplication”. In: J. Parallel Distrib. Comput. 64.9 (Sept. 2004), pp. 1017–1026.
ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2004.03.021. URL: http://dx.do
i.org/10.1016/j.jpdc.2004.03.021.

[85] Ankit Jain. “pOSKI: An Extensible Autotuning Framework to Perform Optimized SpMVs
on Multicore Architectures”. MA thesis. United States: University of California, Berkeley,
2008.

[86] H. Jia-Wei and H. T. Kung. “I/O complexity: The red-blue pebble game”. In: Proceedings
of the Thirteenth Annual ACM Symposium on Theory of Computing. STOC ’81. Milwau-
kee, Wisconsin, United States: ACM, 1981, pp. 326–333. DOI: 10.1145/800076.802
486. URL: http://doi.acm.org/10.1145/800076.802486.

[87] S Lennart Johnsson. “Minimizing the communication time for matrix multiplication on
multiprocessors”. In: Parallel Computing 19.11 (1993), pp. 1235–1257.

[88] Shoaib Kamil, John Shalf, and Erich Strohmaier. “Power efficiency in high performance
computing”. In: Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna-
tional Symposium on. IEEE. 2008, pp. 1–8.

BIBLIOGRAPHY 158

[89] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for Power-Efficiency. 1st.
Morgan and Claypool Publishers, 2008. ISBN: 1598292080, 9781598292084.

[90] Ali Keshavarzi, Kaushik Roy, and Charles F. Hawkins. “Intrinsic Leakage in Low-Power
Deep Submicron CMOS ICs”. In: Proceedings of the IEEE International Test Conference.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 146–155. ISBN: 0-7803-4209-
7. URL: http://dl.acm.org/citation.cfm?id=648019.745110.

[91] G. Kestor, R. Gioiosa, D.J. Kerbyson, and A. Hoisie. “Quantifying the energy cost of data
movement in scientific applications”. In: Workload Characterization (IISWC), 2013 IEEE
International Symposium on. 2013, pp. 56–65. DOI: 10.1109/IISWC.2013.670467
0.

[92] Jonathan Koomey, Kenneth Brill, Pitt Turner, John Stanley, and Bruce Taylor. A simple
model for determining true total cost of ownership for data centers. Tech. rep. Uptime
Institute, 2007.

[93] William Kramer. “How to measure useful, sustained performance”. In: State of the Practice
Reports. ACM. 2011, p. 2.

[94] Rensselaer Polytechnic Institute. Image Processing Laboratory and D.J.R. Meagher. Oc-
tree Encoding: a New Technique for the Representation, Manipulation and Display of Ar-
bitrary 3-D Objects by Computer. 1980. URL: http://books.google.com/book
s?id=CgRPOAAACAAJ.

[95] B.S. Landman and Roy L. Russo. “On a Pin Versus Block Relationship For Partitions of
Logic Graphs”. In: Computers, IEEE Transactions on C-20.12 (1971), pp. 1469–1479.
ISSN: 0018-9340. DOI: 10.1109/T-C.1971.223159.

[96] Charles L. Lawson and Richard J. Hanson. Solving least squares problems. Vol. 15. Clas-
sics in Applied Mathematics. Revised reprint of the 1974 original. Philadelphia, PA: So-
ciety for Industrial and Applied Mathematics (SIAM), 1995, pp. xii+337. ISBN: 0-89871-
356-0.

[97] François Le Gall. “Powers of Tensors and Fast Matrix Multiplication”. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation. ISSAC ’14.
Kobe, Japan: ACM, 2014, pp. 296–303. ISBN: 978-1-4503-2501-1. DOI: 10.1145/260
8628.2608664. URL: http://doi.acm.org/10.1145/2608628.2608664.

[98] Benjamin Lipshitz, Grey Ballard, James Demmel, and Oded Schwartz. “Communication-
avoiding Parallel Strassen: Implementation and Performance”. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis.
SC ’12. Salt Lake City, Utah: IEEE Computer Society Press, 2012, 101:1–101:11. ISBN:
978-1-4673-0804-5. URL: http://dl.acm.org/citation.cfm?id=2388996.
2389133.

[99] Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. “Optimizing bus energy con-
sumption of on-chip multiprocessors using frequent values”. In: Journal of Systems Archi-
tecture 52.2 (2006), pp. 129–142.

BIBLIOGRAPHY 159

[100] Dake Liu and Christer Svensson. “Power consumption estimation in CMOS VLSI chips”.
In: Solid-State Circuits, IEEE Journal of 29.6 (1994), pp. 663–670.

[101] Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, Hung-Ching Chang, and Kirk
Cameron. “Energy and performance characteristics of different parallel implementations
of scientific applications on multicore systems”. In: International Journal of High Perfor-
mance Computing Applications 25.3 (2011), pp. 342–350.

[102] L. H. Loomis and H. Whitney. “An inequality related to the isoperimetric inequality”.
In: Bulletin of the American Mathematical Society 55.10 (Oct. 1949), pp. 961–962. URL:
http://projecteuclid.org/euclid.bams/1183514163.

[103] Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. “Profiling high performance dense lin-
ear algebra algorithms on multicore architectures for power and energy efficiency”. In:
Computer Science-Research and Development 27.4 (2012), pp. 277–287.

[104] Yuancheng Luo and Ramani Duraiswami. “Efficient parallel nonnegative least squares on
multicore architectures”. In: SIAM Journal on Scientific Computing 33.5 (2011), pp. 2848–
2863.

[105] Nir Magen, Avinoam Kolodny, Uri Weiser, and Nachum Shamir. “Interconnect-power dis-
sipation in a microprocessor”. In: Proceedings of the 2004 International Workshop on Sys-
tem Level Interconnect Prediction. ACM. 2004, pp. 7–13.

[106] Priya Mahadevan, Puneet Sharma, Sujata Banerjee, and Parthasarathy Ranganathan. “A
Power Benchmarking Framework for Network Devices”. English. In: NETWORKING 2009.
Ed. by Luigi Fratta, Henning Schulzrinne, Yutaka Takahashi, and Otto Spaniol. Vol. 5550.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 795–808. ISBN:
978-3-642-01398-0. DOI: 10.1007/978- 3- 642- 01399- 7_62. URL: http:
//dx.doi.org/10.1007/978-3-642-01399-7_62.

[107] Maple User Manual. Maplesoft. 2011. URL: http://www.maplesoft.com/view.
aspx?sl=5883.

[108] John D. McCalpin. “Memory Bandwidth and Machine Balance in Current High Perfor-
mance Computers”. In: IEEE Computer Society Technical Committee on Computer Archi-
tecture (TCCA) Newsletter (Dec. 1995), pp. 19–25.

[109] Robert M. Metcalfe and David R. Boggs. “Ethernet: Distributed Packet Switching for Lo-
cal Computer Networks”. In: Commun. ACM 19.7 (July 1976), pp. 395–404. ISSN: 0001-
0782. DOI: 10.1145/360248.360253. URL: http://doi.acm.org/10.114
5/360248.360253.

[110] Marghoob Mohiyuddin, Mark Murphy, Leonid Oliker, John Shalf, John Wawrzynek, and
Samuel Williams. “A design methodology for domain-optimized power-efficient super-
computing”. In: High Performance Computing Networking, Storage and Analysis, Pro-
ceedings of the Conference on. IEEE. 2009, pp. 1–12.

BIBLIOGRAPHY 160

[111] Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Katherine Yelick. “Mini-
mizing Communication in Sparse Matrix Solvers”. In: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis. ACM. 2009, p. 36.

[112] Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. “PAPI: A Portable
Interface to Hardware Performance Counters”. In: In Proceedings of the Department of
Defense HPCMP Users Group Conference. 1999, pp. 7–10.

[113] S.G. Narendra and A.P. Chandrakasan. Leakage in Nanometer CMOS Technologies. Inte-
grated Circuits and Systems. Springer, 2010. ISBN: 9781441938268. URL: http://boo
ks.google.com/books?id=Ht93cgAACAAJ.

[114] Koichi Nose and Takayasu Sakurai. “Analysis and Future Trend of Short-circuit Power”.
In: Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 19.9
(2000), pp. 1023–1030.

[115] Chandrakant D Patel and Amip J Shah. Cost model for planning, development and opera-
tion of a data center. Tech. rep. HPL-2005-107R1. HP Labs, 2005.

[116] Sherief Reda and Abdullah N. Nowroz. “Power Modeling and Characterization of Comput-
ing Devices: A Survey”. In: Found. Trends Electron. Des. Autom. 6.2 (Feb. 2012), pp. 121–
216. ISSN: 1551-3939. DOI: 10.1561/1000000022. URL: http://dx.doi.org/
10.1561/1000000022.

[117] Kaushik Roy, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. “Leakage current
mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits”. In:
Proceedings of the IEEE 91.2 (2003), pp. 305–327.

[118] M.A.A. Sanvido, F.R. Chu, A. Kulkarni, and R. Selinger. “NAND Flash Memory and Its
Role in Storage Architectures”. In: Proceedings of the IEEE 96.11 (2008), pp. 1864–1874.
ISSN: 0018-9219. DOI: 10.1109/JPROC.2008.2004319.

[119] Patrick R. Schaumont. A Practical Introduction to Hardware/Software Codesign. 1st. Springer
Publishing Company, Incorporated, 2010. ISBN: 1441959998, 9781441959997.

[120] A. Schönhage. “Partial and Total Matrix Multiplication”. In: SIAM J. Computing 10.3
(1981), pp. 434–455. DOI: 10.1137/0210032. URL: http://link.aip.or
g/link/?SMJ/10/434/1.

[121] John Shalf, Sudip Dosanjh, and John Morrison. “Exascale computing technology chal-
lenges”. In: High Performance Computing for Computational Science–VECPAR 2010.
Springer, 2011, pp. 1–25.

[122] Jonathan R Shewchuk. An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. Tech. rep. Pittsburgh, PA, USA, 1994.

BIBLIOGRAPHY 161

[123] Harsha Vardhan Simhadri, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and
Aapo Kyrola. “Experimental Analysis of Space-bounded Schedulers”. In: Proceedings of
the 26th ACM Symposium on Parallelism in Algorithms and Architectures. SPAA ’14.
Prague, Czech Republic: ACM, 2014, pp. 30–41. ISBN: 978-1-4503-2821-0. DOI: 10.
1145/2612669.2612678. URL: http://doi.acm.org/10.1145/2612669.
2612678.

[124] Ripduman Sohan Sohan, Andrew Rice Rice, W. Moore Andrew Andrew, and Kieran Mans-
ley Mansley. “Characterizing 10 Gbps Network Interface Energy Consumption”. In: Pro-
ceedings of the 2010 IEEE 35th Conference on Local Computer Networks. LCN ’10. Wash-
ington, DC, USA: IEEE Computer Society, 2010, pp. 268–271. ISBN: 978-1-4244-8387-7.
DOI: 10.1109/LCN.2010.5735719. URL: http://dx.doi.org/10.110
9/LCN.2010.5735719.

[125] E. Solomonik, A. Bhatele, and J. Demmel. “Improving communication performance in
dense linear algebra via topology aware collectives”. In: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis. SC ’11.
Seattle, Washington: ACM, 2011, 77:1–77:11. ISBN: 978-1-4503-0771-0. DOI: 10.114
5/2063384.2063487. URL: http://doi.acm.org/10.1145/2063384.206
3487.

[126] Edgar Solomonik and James Demmel. “Communication-optimal parallel 2.5D matrix mul-
tiplication and LU factorization algorithms”. In: Proceedings of the 17th international con-
ference on Parallel processing - Volume Part II. Euro-Par’11. Bordeaux, France: Springer-
Verlag, 2011, pp. 90–109. ISBN: 978-3-642-23396-8. URL: http://dl.acm.org/ci
tation.cfm?id=2033408.2033420.

[127] Edgar Solomonik, Devin Matthews, Jeff Hammond, and James Demmel. “Cyclops Tensor
Framework: Reducing Communication and Eliminating Load Imbalance in Massively Par-
allel Contractions”. In: Proceedings of the 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing. IPDPS ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 813–824. ISBN: 978-0-7695-4971-2. DOI: 10.1109/IPDPS.2013.
112. URL: http://dx.doi.org/10.1109/IPDPS.2013.112.

[128] V. Strassen. “Relative bilinear complexity and matrix multiplication”. In: Journal fűr die
reine und angewandte Mathematik (Crelles Journal) 1987.375–376 (1987), pp. 406–443.

[129] Volker Strassen. “Gaussian elimination is not optimal”. English. In: Numerische Mathe-
matik 13.4 (1969), pp. 354–356. ISSN: 0029-599X. DOI: 10.1007/BF02165411. URL:
http://dx.doi.org/10.1007/BF02165411.

[130] Ching-Long Su and Alvin M. Despain. “Cache Design Trade-offs for Power and Perfor-
mance Optimization: A Case Study”. In: Proceedings of the 1995 International Sympo-
sium on Low Power Design. ISLPED ’95. Dana Point, California, USA: ACM, 1995,
pp. 63–68. ISBN: 0-89791-744-8. DOI: 10.1145/224081.224093. URL: http:
//doi.acm.org/10.1145/224081.224093.

BIBLIOGRAPHY 162

[131] Hameedah Sultan, Gayathri Ananthanarayanan, and Smruti R. Sarangi. “Processor Power
Estimation Techniques: A Survey”. In: Int. J. High Perform. Syst. Archit. 5.2 (May 2014),
pp. 93–114. ISSN: 1751-6528. DOI: 10.1504/IJHPSA.2014.061448. URL: http:
//dx.doi.org/10.1504/IJHPSA.2014.061448.

[132] Dam Sunwoo, Gene Y Wu, Nikhil A Patil, and Derek Chiou. “PrEsto: An FPGA-accelerated
power estimation methodology for complex systems”. In: Field Programmable Logic and
Applications (FPL), 2010 International Conference on. IEEE. 2010, pp. 310–317.

[133] Dinesh C Suresh, Banit Agrawal, Jun Yang, and Walid Najjar. “Energy-efficient encod-
ing techniques for off-chip data buses”. In: ACM Transactions on Embedded Computing
Systems (TECS) 8.2 (2009), p. 9.

[134] Dinesh C Suresh, Banit Agrawal, Jun Yang, Walid Najjar, and Laxmi Bhuyan. “Power
efficient encoding techniques for off-chip data buses”. In: Proceedings of the 2003 inter-
national conference on Compilers, architecture and synthesis for embedded systems. ACM.
2003, pp. 267–275.

[135] Dennis Sylvester and Kurt Keutzer. “Getting to the bottom of deep submicron”. In: Pro-
ceedings of the 1998 IEEE/ACM International Conference on Computer-Aided Design.
ACM. 1998, pp. 203–211.

[136] Jürgen Teich. “Hardware/Software Codesign: The Past, the Present, and Predicting the
Future”. In: Proceedings of the IEEE Special Centennial Issue 100 (2012), pp. 1411–1430.

[137] Jan Treibig, Georg Hager, and Gerhard Wellein. “Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments”. In: Parallel Processing Workshops
(ICPPW), 2010 39th International Conference on. IEEE. 2010, pp. 207–216.

[138] User’s Guide for Intel(R) Math Kernel Library 11.1 Update 3 for Linux* OS. Intel Corpo-
ration. 2014. URL: http://software.intel.com/sites/products/docume
ntation/doclib/mkl_sa/111/11.1.3/mklman.pdf.

[139] Leslie G. Valiant. “A Bridging Model for Parallel Computation”. In: Commun. ACM 33.8
(Aug. 1990), pp. 103–111. ISSN: 0001-0782. DOI: 10.1145/79173.79181. URL:
http://doi.acm.org/10.1145/79173.79181.

[140] Mark H. Van Benthem and Michael R. Keenan. “Fast algorithm for the solution of large-
scale non-negativity-constrained least squares problems”. In: Journal of Chemometrics
18.10 (2004), pp. 441–450. ISSN: 1099-128X. DOI: 10.1002/cem.889. URL: http:
//dx.doi.org/10.1002/cem.889.

[141] Harry JM Veendrick. “Short-circuit Dissipation of Static CMOS Circuitry and its Impact
on the Design of Buffer Circuits”. In: Solid-State Circuits, IEEE Journal of 19.4 (1984),
pp. 468–473.

[142] Richard Vuduc, James W Demmel, and Katherine A Yelick. “OSKI: A library of automat-
ically tuned sparse matrix kernels”. In: Journal of Physics: Conference Series. Vol. 16. 1.
IOP Publishing. 2005, p. 521.

BIBLIOGRAPHY 163

[143] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic. The RISC-V
Instruction Set Manual, Volume I: Base User-Level ISA. Tech. rep. UCB/EECS-2011-62.
EECS Department, University of California, Berkeley, 2011. URL: http://www.eec
s.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html.

[144] Watts Up? Plug Load Meters. https://www.wattsupmeters.com/secure/pr
oducts.php?pn=0. Accessed: 2014-09-02.

[145] Vincent M Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr Luszczek,
Daniel Terpstra, and Shirley Moore. “Measuring energy and power with PAPI”. In: Paral-
lel Processing Workshops (ICPPW), 2012 41st International Conference on. IEEE. 2012,
pp. 262–268.

[146] R. Clint Whaley and Jack Dongarra. “Automatically Tuned Linear Algebra Software”. In:
SuperComputing 1998: High Performance Networking and Computing. 1998.

[147] Thomas Willhalm. Intel Performance Counter Monitor - A better way to measure CPU
utilization. 2012. URL: http://software.intel.com/en-us/articles/int
el-performance-counter-monitor-a-better-way-to-measure-cpu-
utilization.

[148] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: An Insightful Visual
Performance Model for Multicore Architectures”. In: Commun. ACM 52.4 (Apr. 2009),
pp. 65–76. ISSN: 0001-0782. DOI: 10.1145/1498765.1498785. URL: http://do
i.acm.org/10.1145/1498765.1498785.

[149] Virginia Vassilevska Williams. “Multiplying matrices faster than Coppersmith-Winograd”.
In: Proceedings of the 44th Symposium on Theory of Computing. Proc. 45th STOC. New
York, New York, USA: ACM, 2012, pp. 887–898. ISBN: 978-1-4503-1245-5. DOI: 10.1
145/2213977.2214056. URL: http://doi.acm.org/10.1145/2213977.2
214056.

[150] S. J E Wilton and N.P. Jouppi. “CACTI: An Enhanced Cache Access and Cycle Time
Model”. In: Solid-State Circuits, IEEE Journal of 31.5 (1996), pp. 677–688. ISSN: 0018-
9200. DOI: 10.1109/4.509850.

[151] D. Wise. “Ahnentafel Indexing into Morton-Ordered Arrays, or Matrix Locality for Free”.
In: Euro-Par 2000 Parallel Processing. Ed. by Arndt Bode, Thomas Ludwig, Wolfgang
Karl, and Roland Wismller. Vol. 1900. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2000, pp. 774–783.

[152] Jinchao Xu. “An introduction to multilevel methods”. In: Wavelets, multilevel methods and
elliptic PDEs (Leicester, 1996). Numer. Math. Sci. Comput. Oxford Univ. Press, New York,
1997, pp. 213–302.

[153] Ya Xu, John Heidemann, and Deborah Estrin. “Geography-informed energy conservation
for ad hoc routing”. In: Proceedings of the 7th Annual International Conference on Mobile
Computing and Networking. ACM. 2001, pp. 70–84.

BIBLIOGRAPHY 164

[154] Ossama Younis and Sonia Fahmy. “HEED: A hybrid, energy-efficient, distributed cluster-
ing approach for ad hoc sensor networks”. In: Mobile Computing, IEEE Transactions on
3.4 (2004), pp. 366–379.

