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Abstract

A Statistical View of Architecture Design

by

Zhaoxia Deng

Computer architectures are becoming more and more complicated to meet the continuously

increasing demand on performance, security and sustainability from applications. Many factors

exist in the design and engineering space of various components and policies in the architec-

tures, and it is not intuitive how these factors interact with each other and how they make im-

pacts on the architecture behaviors. Seeking for the best architectures for specific applications

and requirements automatically is even more challenging. Meanwhile, the architecture design

need to deal with more and more non-determinism from lower level technologies. Emerg-

ing technologies exhibit statistical properties inherently, such as the wearout phenomenon in

NEMs, PCM, ReRAM, etc. Due to the manufacturing and processing variations, there also

exists variability among different devices or within the same device (e.g. different cells on

the same memory chip). Hence, to better understand and control the architecture behaviors,

we introduce the statistical perspective of architecture design: by specifying the architectural

design goals and the desired statistical properties, we guide the architecture design with these

statistical properties and exploit a series of techniques to achieve these properties.

In the first part of the thesis, we introduce Herniated Hash Tables. Our architectural design

goal is that the hash table implementation is highly scalable in both storage efficiency and

performance, while the desired statistical property is to achieve as good storage efficiency

and performance as with uniform distributions given non-uniform distributions across hash

buckets. Herniated Hash Tables exploit multi-level phase change memory (PCM) to in-place

expand storage for each hash bucket to accommodate asymmetrically chained entries. The
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organization, coupled with an addressing and prefetching scheme, also improves performance

significantly by creating more memory parallelism.

In the second part of the thesis, we introduce Lemonade from Lemons, harnessing de-

vice wearout to create limited-use security architectures. The architectural design goal is to

create hardware security architectures that resist attacks by statistically enforcing an upper

bound on hardware uses, and consequently attacks. The desired statistical property is that the

system-level minimum and maximum uses can be guaranteed with high probabilities despite of

device-level variability. We introduce techniques for architecturally controlling these bounds

and explore the cost in area, energy and latency of using these techniques to achieve system-

level usage targets given device-level wearout distributions.

In the third part of the thesis, we demonstrate Memory Cocktail Therapy: A General,

Learning-Based Framework to Optimize Dynamic Tradeoffs in NVMs. Limited write endurance

and long latencies remain the primary challenges of building practical memory systems from

NVMs. Researchers have proposed a variety of architectural techniques to achieve different

tradeoffs between lifetime, performance and energy efficiency; however, no individual tech-

nique can satisfy requirements for all applications and different objectives. Our architectural

design goal is that NVM systems can achieve optimal tradeoffs for specific applications and

objectives, and the statistical goal is that the selected NVM configuration is nearly optimal.

Memory Cocktail Therapy uses machine learning techniques to model the architecture behav-

iors in terms of all the configurable parameters based on a small number of sample configu-

rations. Then, it selects the optimal configuration according to user-defined objectives which

leads to the desired tradeoff between performance, lifetime and energy efficiency.

viii



Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Herniated Hash Tables: Exploiting Multi-Level Phase Change Memory for In-
Place Data Expansion 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Background of Multi-Level PCM . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Herniated Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Lemonade from Lemons: Harnessing Device Wearout to Create Limited-Use Se-
curity Architectures 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Device wearout model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 A Limited-use connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 A limited-use targeting system . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Using device wearout to build one-time pads . . . . . . . . . . . . . . . . . . . 60
3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



4 Memory Cocktail Therapy: A General Learning-Based Framework to Optimize
Dynamic Tradeoffs in NVMs 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Memory Cocktail Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Future Work 115
5.1 Hardware support for datastructures . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Rate Limiting Security architectures . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Statistical Inference and Optimization of NVM Systems . . . . . . . . . . . . . 119

6 Conclusion 121

Bibliography 123

x



Chapter 1

Introduction

Today’s computing systems are becoming tremendously complex to meet various kinds of de-

mands from applications. In the big data era, applications generate massive data at a speed

of TB per second. The large-scale data continuously demands for faster processing capability,

larger memory capacity and higher throughput, etc. Furthermore, many new types of applica-

tions emerge, such as IoT devices, self-driving vehicles, security systems, automated targeting

systems, etc. Each system seeks for its specific sweet-spot between performance, energy effi-

ciency, accuracy, security, reliability, etc.

To meet all these changing demands from applications, the computing systems have also

evolved from generation to generation. On the one hand, architects strive to scale up the system

performance by intellectually organizing various components and carefully engineering each

component and policy, despite of the diminishing impact of Moore’s Law and many challenges

in the scaling of traditional DRAM systems. However, the increasing complexity made it

extremely difficult to reason about and design these architectures. On the other hand, more and

more complexity has been pushed to the software stack, which drives the birth of many kinds

of cluster computing frameworks, including those tailored for large scale machine learning

problems. To bring the simplicity back to upper-level software systems, architects have never
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Introduction Chapter 1

stopped exploring the emerging hardware technologies to either solve problems in traditional

architectures or reduce their inherent complexity .

Many emerging technologies have shown promising characteristics to architect future com-

puting systems. Non-volatile memories (NVMs) exhibit high density, low static power, and

persistence, which are promising to solve the DRAM scaling issues in traditional architec-

tures. For example, phase change memory (PCM) has been shown possible to work as a

scalable alternative of the traditional DRAM system. Memristors have also been used to ar-

chitect components such as branch predictors and cache directories. In addition to NVMs,

nano-electromechanical devices (NEMs) and molecular devices have smaller scales of physi-

cal dimensions and high tolerance to different temperatures, radiation conditions and electric

fields so that they could be deployed in harsh environments.

This thesis aims to explore new architectures with these emerging technologies, from a

statistical perspective. In the following sections, we first discuss the new challenges in the ar-

chitecture design with emerging technologies. Also, we rethink the architecture design method-

ology and exploit statistical techniques to handle these challenges.

1.1 Motivation

1.1.1 New challenges in architecture design with emerging technologies

There are many challenges associated with building practical systems from emerging tech-

nologies. This thesis focuses on exploring the potential of phase change memory (PCM) and

NEMs switches. We discuss three of the most common challenges in the following sections.

2
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Longer read and write latency in PCM

In multi-level PCM, a single PCM cell can be used to store multiple bits in an asymmetric

manner. The deeper bits (less-significant bits) need more time to be read out and much more

time to be updated than shallower bits (more-significant bits). For read operations, the rela-

tionship between the performance penalty and the number of bits read out is about exponential.

However, it is even worse for write operations. Qureshi et al. proposed schemes such as write

cancellation and write pausing to avoid the delay of response to the following read requests.

Nevertheless, frequent write cancellation operations may hurt the performance and lifetime of

NVM systems.

Limited write endurance

It is common that emerging NVM technologies usually have limited write endurance. For

example, the typical write endurance of PCM cells is about 108. If without special treatment,

the future memory systems from emerging technologies will have short lifetime as (some of)

the memory cells will be worn out soon. As a result, special mechanisms (eg., wear leveling

and/or wear limiting) must be used to guarantee the lifetime of NVM memories.

Device failures of NEMs switches

Even worse than the limited write endurance of PCM cells, NEMs switches suffer from

device failures after tens or hundreds of cycles. Representative NEMS contact switches are

composed of a movable active element and an opposing electrode which interact by both elec-

trical and mechanical forces to open and close the switch. Generally speaking, any kind of

electrical and mechanical aging, adhesion, fracture or burnout in the active element or elec-

trode are potentially responsible for the failures of NEMS switches.

3
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1.1.2 Why is the statistical perspective helpful?

The quantitative approach has been the classical methodology of architecture design. How-

ever, simply relying on quantitative measurements seem insufficient to handle the tremendous

complexity of recent architectures and the new challenges exposed from emerging technolo-

gies. In this thesis, we propose to specify statistical properties at the interfaces between applica-

tions, architectures and devices. The statistical interface will be necessary for two reasons: one

arises from the large-scale, fine-grained configuration space; another from the non-determinism

of device level technologies.

Large-scale, fine-grained configuration space

Due to various types of applications and computing environments, each system needs to

satisfy specific QoS requirements while seeking for its sweet-spot among performance, energy

efficiency, accuracy, manufacturing cost, etc. Meanwhile, recent architectures usually consist

of many components and complicated policies to coordinate these components. It is not intu-

itive how to determine the best configuration for each specific application and objective from

the large-scale, fine-grained configuration space. An expressive abstract between the hardware

and applications is demanded so that the capacity of hardware can be utilized maximally and

the optimization of configurations can be done adaptively.

Non-determinism of device level technologies

The wearout phenomenon is commonly seen in emerging technologies such as NEMs,

PCM, ReRAM, etc, which means that the device can only work for a limited number of times.

As most researchers try to mitigate the wearout problem, we take a contrarian view and ex-

ploit the wearout to create physically-enforced security architectures. The challenging issue,

however, is that it is usually not deterministic when the device will stop functioning. Fur-
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thermore, manufacturing and processing variations can result in significant variations among

devices or cells on the same device. Therefore, to treat the non-determinism of device varia-

tions, we exploit probabilistic modeling of the underlying device behaviors and exploit a series

of techniques to provide statistical guarantees on the architectural behaviors.

1.2 Thesis statement

In this thesis, we propose the statistical architecture design methodology, to treat the above

challenges in emerging technologies.

By specifying the architectural design goals and the desired statistical properties, we guide

the architecture design with these statistical properties and exploit a series of techniques to

achieve these properties.

In general, we first formalize the statistical interface between applications, architectures

and devices. Then, the probabilistic modeling of the underlying devices is used to handle the

device variability. Also, machine learning techniques are helpful to dynamically select the

optimal configuration for specific applications and targets.

1.3 Thesis contribution

In this thesis, we first explore the novel architecture design with emerging technologies with

the following three cases. Each of the three architectures resolve some of these challenges in

building new systems from emerging technologies. Furthermore, we investigate the statistical

architecture design methodology with these cases. The contributions of each architecture are

listed in the following sections.

5
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1.3.1 Herniated Hash Tables: Exploiting Multi-Level Phase Change Mem-

ory for In-Place Data Expansion

Hash tables are a commonly used data structure used in many algorithms and applica-

tions. As applications and data scale, the efficient implementation of hash tables becomes

increasingly important and challenging. In particular, memory capacity becomes increasingly

important and entries can become asymmetrically chained across hash buckets. This chain-

ing prevents two forms of parallelism: memory-level parallelism (allowing multiple prefetch

requests to overlap) and memory-computation parallelism (allowing computation to overlap

memory operations). We propose, herniated hash tables, a technique that exploits multi-level

phase change memory (PCM) storage to expand storage at each hash bucket and increase par-

allelism without increasing physical space. The technique works by increasing the number of

bits stored within the same resistance range of an individual PCM cell. We pack more data

into the same bit by decreasing noise margins, and we pay for this higher density with higher

latency reads and writes that resolve the more accurate resistance values. Furthermore, our or-

ganization, coupled with an addressing and prefetching scheme, increases memory parallelism

of the herniated datastructure. We simulate our system with a variety of hash table applications

and evaluate the density and performance benefits in comparison to a number of baseline sys-

tems. Compared with conventional chained hash tables on single-level PCM, herniated hash

tables can achieve 4.8x density on a 4-level PCM while achieving up to 67% performance

improvement.

1.3.2 Lemonade from Lemons: Harnessing Device Wearout to Create

Limited-Use Security Architectures

Most architectures are designed to mitigate the usually undesirable phenomenon of device

wearout. We take a contrarian view and harness this phenomenon to create hardware secu-
6
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rity mechanisms that resist attacks by statistically enforcing an upper bound on hardware uses,

and consequently attacks. For example, let us assume that a user may log into a smartphone

a maximum of 50 times a day for 5 years, resulting in approximately 91,250 legitimate uses.

If we assume at least 8-character passwords and we require login (and retrieval of the storage

decryption key) to traverse hardware that wears out in 91,250 uses, then an adversary has a

negligible chance of successful brute-force attack before the hardware wears out, even assum-

ing real-world password cracking by professionals. M-way replication of our hardware and

periodic re-encryption of storage can increase the daily usage bound by a factor of M. The key

challenge is to achieve practical statistical bounds on both minimum and maximum uses for

an architecture, given that individual devices can vary widely in wearout characteristics. We

introduce techniques for architecturally controlling these bounds and perform a design space

exploration for three use cases: a limiteduse connection, a limited-use targeting system and

one-time pads. These techniques include decision trees, parallel structures, Shamirs secret-

sharing mechanism, Reed-Solomon codes, and module replication. We explore the cost in

area, energy and latency of using these techniques to achieve system-level usage targets given

device-level wearout distributions. With redundant encoding, for example, we can improve ex-

ponential sensitivity to device lifetime variation to linear sensitivity, reducing the total number

of NEMS devices by 4 orders of magnitude to about 0.8 million for limited-use connections

(compared with 4 billion if without redundant encoding).

1.3.3 Memory Cocktail Therapy: A General Learning-Based Framework

to Optimize Dynamic Tradeoffs in NVMs

Non-volatile memories (NVMs) have attracted significant interest recently due to their

high-density, low static power, and persistence. There are, however, several challenges associ-

ated with building practical systems from NVMs, including limited write endurance and long

7
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latencies. Researchers have proposed a variety of architectural techniques which can achieve

different tradeoffs between lifetime, performance and energy efficiency; however, no individ-

ual technique can satisfy requirements for all applications and different objectives. Hence,

we propose Memory Cocktail Therapy (MCT), a general, learning-based framework that adap-

tively chooses the best techniques for the current application and objectives. Specifically, MCT

performs four procedures to adapt the techniques to various scenarios. First,MCTformulates a

high-dimensional configuration space from all different combinations of techniques. Second,

MCT selects primary features from the configuration space with lasso regularization. Third,

MCT estimates lifetime, performance and energy consumption using lightweight online pre-

dictors (eg. quadratic regression and gradient boosting) and a small set of configurations guided

by the selected features. Finally, given the estimation of all configurations, MCT selects the op-

timal configuration based on the user-defined objectives. As a proof of concept, we test MCTs

ability to guarantee different lifetime targets and achieve 95% of maximum performance, while

minimizing energy consumption. We find that MCT improves performance by 9.24% and re-

duces energy by 7.95% compared to the best static configuration. Moreover, the performance

of MCT is 94.49% of the ideal configuration with only 5.3% more energy consumption.

1.4 The outline of the thesis

The rest of the thesis will present three architectures with more details, in Chapter 2, 3,

4, respectively. Then we will discuss the future work that follows the three architectures in

Chapter 5. In the end, we conclude the thesis in Chapter 6.

8



Chapter 2

Herniated Hash Tables: Exploiting

Multi-Level Phase Change Memory for

In-Place Data Expansion

2.1 Introduction

Compared with DRAM, phase-change memory (PCM) shows a number of promising at-

tributes, including higher density, non-volatility and low static power consumption. Therefore,

it is considered a possible substitute for the DRAM technique. Another interesting attribute

of PCM is that a single PCM cell can be used to store multiple bits in an asymmetric manner.

The deeper bits (less-significant bits) need more time to be read out and much more time to

be updated than shallower bits (more-significant bits). However, for the long read latency, it is

possible to develop a prefetching mechanism that manages to prefetch out the deep-level data

from PCM before their usage with a step-wise multi-level read operation. For the long write

latency, Qureshi et al. [1] have proposed schemes such as write cancellation and write pausing

to avoid the delay of response to the following read requests. Therefore, the overall system

9
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needs not to suffer from the long access latency of deep-level data.

Conventional hash tables usually use chained structures to save memory space. The ad-

dresses of entries are allocated dynamically and distributed randomly in memory, which pre-

vents prefetching and instruction-level parallelism. Moreover, with multi-level PCM, the per-

formance of conventional hash tables will decrease dramatically because of the high read and

write latency. In this chapter, we introduce the herniated hash table, which exploits multi-level

PCM and provides dense and efficient storage with support of dynamic in-place expansion and

non-uniform growth of the hash tables. By designing an addressing scheme for the multi-level

PCM and using multi-level PCM aware hash table structures and prefetching schemes, the her-

niated hash table performs better than the conventional hash table design from the following

two perspectives: On one hand, the herniated hash table yields similar performance with less

storage compared with the conventional hash table on single-level PCM; On the other hand, the

herniated hash table achieves much better performance with similar storage overhead compared

with the conventional hash table on multi-level PCM.

The rest of the chapter is organized as follows. We first provide background information

on multi-level PCM and its operations in Section 2.2. Then, Section 2.3 presents our herni-

ated hash table design. Section 2.4 describes our experimental methodology, and Section 2.5

presents our results. Finally, Section 2.6 discusses related work, and Section 2.7 draws our

conclusions.

2.2 Background of Multi-Level PCM

Phase-change memory (PCM) is one type of resistive memory, the resistance of whose

cells can be changed in a wide range. An analog-to-digital circuit (ADC) reads the resistance

as a digital value. Depending on the ADC setting, the same resistance of a PCM cell could

be interpreted as a different number of bits. Alibart et al. [2] showed that a single resistive

10
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memory cell can be used to store up to seven bits of data. Figure 2.1 shows an example of

a multi-level PCM cell: the same resistance of the cell can be interpreted as b0 when the

ADC is using one-level accuracy and as b00 and b001, respectively, when the ADC is using

two-level and three-level accuracy. This precision comes with a cost. Read latency increases

exponentially with the number of bits stored in the PCM cell and write latency is even higher

than that. However, as shown in Figure 2.1, multi-level PCM read can be operated in a step-
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wise approximate manner: that is, after reading a shallow bit of a PCM cell, the read operation

can be continued to further read out its deeper level bits. Therefore, if the data are carefully

organized in multi-level PCM, we can use this step-wise read attribute to develop an efficient

prefetching mechanism.

Although write latency of deep-level PCM accesses is also very high, we assume that our

target applications have much more read accesses than write accesses to the hash tables. More-

over, as our scheme enables both instruction-level parallelism and memory-computation par-

allelism, the write latency (which is usually caused by the write back requests from the last

level cache) doesn’t have significant effects on the critical path of the processor’s pipeline.

If the write latency is too long that the following read requests are affected, write cancella-

tion and write pausing techniques [1] will help by prioritizing the following read requests to

remove potential pipeline stalls. We use the conservative configuration with the write cancel-

lation technique in all of our systems that run on the multi-level PCM. Better combinations of

write cancellation and write pausing are possible according to [1]. We’ll also discuss the case

without write cancellation in Section 2.5.

In this work, similar to previous work [3], we have an exponential latency model for multi-

level PCM read accesses (the exponential base is 2.0) and a higher latency model for multi-level

PCM write accesses: as shown in Figure 2.2, a PCM read takes 120 ns, 240 ns, 480 ns, and

960 ns respectively, and a PCM write takes 150 ns, 600 ns, 1800 ns, 4800 ns respectively for

one, two, three, and four levels.

2.3 Herniated Hash Tables

In this section, we firstly explain the inefficiency of the conventional hash table design on

multi-level PCM and present the design of the herniated hash table (HHT), with emphasis on

the HHT’s differences from a conventional hash table on the same PCM system. Then we
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Figure 2.3: Hash table organization on multi-level PCM. We present two cases: a con-
ventional linked list-based hash table and the herniated hash table.

introduce a new addressing scheme for the multi-level PCM system since traditional virtual

to physical address mapping schemes are not efficient in multi-level PCM. Based on that, we

design multiple prefetching schemes to improve the performance of memory accesses.

The conventional hash table is implemented with an array of linked lists. The length of

the array is the number of buckets. Each array entry is an address that points to the linked list

of hash entries that fall into the same bucket. The single-level PCM system behaves similarly

as traditional DRAM. Without loss of generality, we assume the single-level PCM capacity

is 1 GB. The multi-level PCM system is assumed to be four levels, with 0–1 GB on the first

level, 1–2 GB on the second level, 2–3 GB on the third level, and 3–4 GB on the fourth level.

Multi-level PCM systems with more levels will also be analyzed in the sensitivity studies.

2.3.1 The Basic Herniated Hash Table Design

Figure 2.3 shows a snapshot of the organizations of both the conventional hash table and

the HHT. Both of them contain N buckets.

The conventional hash table, as shown in Figure 2.3(a), starts with an array of N pointers

(i.e., head pointers), and each head pointer points to the first valid entry of the corresponding

13



Herniated Hash Tables Chapter 2

3‐Level

Read

Read Out 
Entry Q_1

Intermediate
Operations (Q_1)

Read Out 
Entry Q_2

1‐Level

Read

Read Out 
Entry Q_3

4‐Level

Read

Intermediate
Operations (Q_2)

1‐Level

Read

Read Out 
Entry Q_1

Intermediate
Operations (Q_1)

Read Out 
Entry Q_2

2‐Level

Read

Read Out 
Entry Q_3

3‐Level

Read

Intermediate
Operations (Q_2)

4‐Level

Read

Read Out 
Entry Q_1

Read Out Entries
Q_1, Q_2, Q_3 and 

Redirect Pointer

Intermediate
Operations (Q_1)

Intermediate
Operations (Q_2)

Conventional
Hash Table

Herniated Hash Table
Without Prefetching

Herniated Hash Table
With Prefetching

2‐Level

Read

3‐Level

Read

Read Out 
Entry Q_4

Read Out 
Entry Q_5

Read Out 
Redirect Pointer

4‐Level

Read

Intermediate
Operations (Q_3)

1‐Level

Read

2‐Level

Read

Intermediate
Operations (RP)

Intermediate
Operations (Q_3)

Intermediate
Operations (RP)

3‐Level

Read

Read Out Entries
Q_4, Q_5, Q_6

Intermediate
Operations (Q_4)

Intermediate
Operations (Q_5)

Read Out 
Entry Q_4

Read Out 
Entry Q_5

Intermediate
Operations (Q_4)

Intermediate
Operations (Q_5)

Intermediate
Operations (Q_3)

Intermediate
Operations (Q_4)

Intermediate
Operations (Q_5)

Read Out 
Entry Q_4

Read Out 
Entry A_1

Intermediate
Operations (A_1)

Read Out 
Entry A_2

4‐Level

Read

Intermediate
Operations (A_2)

1‐Level

Read

Read Out 
Entry A_1

Intermediate
Operations (A_1)

Read Out 
Entry A_2

2‐Level

Read

Intermediate
Operations (A_2)

3‐Level

Read

Read Out 
Entry A_1

Read Out Entries
A_1, A_2 and A_3

Intermediate
Operations (A_1)

Intermediate
Operations (A_2)

Conventional
Hash Table

Herniated Hash Table
Without Prefetching

Herniated Hash Table
With Prefetching

(a) Time Flow to Process the Entry A_2

(b) Time Flow to Process the Entry Q_5

3‐Level

Read

Figure 2.4: The timing of accessing different hash entries in Figure 2.3.

hash bucket. Each conventional hash table entry contains three fields: key, which identifies the

entry; value, which contains the information for the entry; and next entry ptr, which points to

the next entry in the same bucket. This conventional implementation is not very efficient on

a multi-level PCM. The main problem is that, since it is not multi-level PCM-aware, both the

head pointers and entries can be placed randomly at any level in PCM, and therefore may need

a long latency to access if they happen to be in deep levels. Another intrinsic problem of the

conventional hash table is that it uses pointers to link the entries and the addresses of entries

are dynamically allocated and randomly distributed in the physical memory address space. It

is hard to either parallelize the computation and data retrieving because we don’t know the

address of the next entry beforehand, or use a prefetching mechanism to retrieve the entries

faster due to the lack of spacial locality in memory.

In Figure 2.3(b), we show the organization of the HHT. At first, the HHT only uses the first
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level of the PCM, and it initially contains an array of N hash entries (i.e., the first hash entry

of each bucket). Whenever possible, the HHT always puts the entries from the same bucket in

the same PCM cells but in different levels (e.g., entries A 1 to A 3). If the current cells have

already reached their level limit (in our case, four levels), new PCM cells will be allocated to

store extra hash entries. The deepest level of the previous PCM cells will be transferred to a

redirect pointer, which points to the newly allocated space at the first PCM level (e.g., entry Q 4

in the figure). This data organization creates spacial locality in memory and removes most of

the links that blocks instruction-level parallelism. In general, compared with the conventional

design, the benefits of the HHT are three-fold:

• More Compact Hash Table Structure. As shown in Figure 2.3, each entry in the HHT

has only two fields, key and value, and it does not need a pointer field (like next entry ptr

in a conventional hash entry). Moreover, the HHT does not need a separate array of head

pointers, which is also needed in the conventional hash table. The HHT, however, has

two storage drawbacks. First, it has to pre-allocate a hash entry for every bucket (even if

a bucket is never used at all). Second, if there are too many entries in one bucket, then

additional storage is needed for redirect pointers. However, we shall see in Section 2.5

that the storage merits of HHTs usually outweigh their drawbacks.

• Shorter Latency to Access Buckets with Few Entries. HHTs always insert a new hash

table entry into the shallowest unused level. Therefore, for a hash bucket with few entries

(i.e., 1-2 entries), only the shallow PCM levels are used. As a result, accessing these

entries in these buckets will have a relatively short latency. Figure 2.4(a) shows such a

situation: in the conventional hash table, entries A 1 and A 2 are buried in deeper levels

(levels 4 and 3, respectively), whereas, in the HHT, these two entries are deliberately

placed in the shallowest levels (levels 1 and 2, respectively). As a result, it takes less

time to access entry A 2 in the HHT.
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Note that, when accessing an entry in a bucket with many entries, the HHT without

prefetching may take a longer time than the conventional hash table, as shown in Figure

2.4(b). In this case the HHT also needs to use deeper PCM levels, and it takes a long

time to access the entries. Additionally, the HHT needs extra time to access redirect

pointers. We improve the system performance in this situation with prefetching, which

will be explained later.

• Ability to Prefetch Entries. In a hash table lookup function, to find the matched entry,

the function needs to traverse through the hash entries of the corresponding bucket. In

a conventional hash table, since there is no special relationship among the addresses of

successive entries (because they are linked by pointers), prefetching can not be accom-

plished without complex pointer-tracing hardware. The HHT, however, stores several

entries contiguously for each bucket, which enables prefetching. With step-wise read-

ing, we can get multiple entries ready with exponential latency. The prefetching is very

effective for hash tables because the access pattern tends to be traversing all the entries

in the same bucket. We will discuss the prefetching schemes for the HHT in detail in

Section 2.3.3.

2.3.2 Addressing HHTs

A critical challenge in exploiting multi-level PCM lies in how the data will be addressed and

stored in the cache hierarchy. To access data at different levels in the same PCM cells, each

level is potentially to be addressed as a separate physical page for a given page of physical

PCM cells. Correspondingly, four-times (for four-level PCM) of the virtual address space will

be utilized to represent all entries. Traditional virtual to physical address translation schemes

[4][5][6][7] include multi-level forward page tables [8][9], inverted page tables [10] or hashed

page tables [11] for memory efficient mapping between virtual addresses and physical ad-
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dresses. However, when both the utilized physical and virtual address space are scaled, the

existing schemes will all suffer from proportional increase in storage for the page tables.

HHTs exploit a multi-level PCM aware addressing scheme. The HHT tries to store the hash

entries belonging to the same bucket in different levels of the same PCM cells. In addressing,

this corresponds to different virtual pages with the same offset. Only the most significant

address bits differ in addresses for different virtual pages. In this manner, successive HHT

entries in the same bucket can be directly addressed by software by using the corresponding

addresses in a sequence of physical pages. We don’t need to increase storage for the page table

since the addressing of different virtual pages for the same hash bucket follows a sequential

pattern.

This scheme requires us to pay for potential hash table growth in terms of physical address,

but allows us to defer allocating physical space in the HHT as needed for each hash table

entry. For example, an HHT based upon four-level PCM would be addressed by four-times

the physical addresses, but it would begin with only one-time the actual storage and grow as

needed as the number of hash entries increases in one bucket.

An important advantage of this physical addressing scheme is that it allows multi-level

PCM to be seamlessly integrated into the hash hierarchy. Data at multiple levels can be easily

fetched (and prefetched) into caches. To avoid cache conflicts, we sequentially add a shift: the

cache block size to the addresses of different virtual pages for the same hash bucket so that

entries in this bucket will fall into different cache sets.

2.3.3 Prefetching Schemes for Herniated Hash Tables

The prefetching schemes for the HHT are based on two observations. First, the hash entries

in the same bucket tend to be placed in the same PCM cells. Second, to read out a deep entry,

the shallower entries in the same PCM cells (e.g., entries A 1 and A 2) need to be read out first.
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Therefore, the basic idea of prefetching schemes in the HHT is that, when accessing a shallow-

level entry, we perform a deep-level read that reads out all the entries on the corresponding

memory cells and buffers them for future use. Figure 2.4 illustrates the timing diagrams for

such a case: when the program accesses entry A 1 (which is on the first level), instead of

operating a single-level PCM read, the memory controller issues a three-level PCM read to

read out all the successive used entries on the same memory cells (entries A 1, A 2, and A 3).

Therefore, when the program accesses entry A 2 later, there is no longer a need to operate

a PCM read. Note that, since the data in the multi-level PCM are read out in a step-wise

manner, entry A 1 is read out with the same latency (level one read latency) irrespective of

the total number of bits stored in the same cells. That is, when using prefetching, there is no

performance penalty to read out shallow-level entries.

There are multiple trade-offs in implementing a practical prefetching mechanism for the

HHT (named as herniated prefetcher). Here we present the two most important ones:

• On-Chip vs. Off-Chip. In a modern processor, the memory controllers are usually

implemented on-chip and the main memory (PCM in our case) is placed off-chip. The

interface between these two components involves long latency and limited bandwidth. If

the herniated prefetcher is implemented on-chip, as shown in Figures 2.5(b) and 2.5(c),

the processor can get the prefetched data from the HHT with relatively low latency, but

this will require higher memory bandwidth to transfer all the prefetched data from off-

chip memory. If the prefetcher is implemented off-chip, as shown in Figures 2.5(a), the

situation is just the opposite—there is no need for additional memory bandwidth, but the

processor may suffer longer latency to access the prefetched data.

• Buffering vs. Bufferless. A prefetcher often comes with an additional buffer to store

the prefetched data, as shown in Figures 2.5(a) and 2.5(b). Some recent commercial pro-

cessors, however, use bufferless prefetchers, which directly prefetch the data into the last
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level cache (LLC). Compared with buffering, the bufferless prefetcher reduces on-chip

storage cost. Bufferless options, however, may cause cache pollution when prefetching

the wrong data or the right data at the wrong time.

Figure 2.5 shows three possible prefetching schemes for the HHT, namely (a) an off-chip

prefetcher that prefetches data to an off-chip buffer; (b) an on-chip prefetcher that prefetches

data to an on-chip buffer, and (c) a LLC prefetcher that prefetches data to LLC. In Section 2.5,

we will quantitatively compare these prefetching schemes.

2.4 Methodology

We simulate our HHT systems on gem5 [12], a detailed, event-driven system simulator. We

used the system emulation (SE) mode, as it is more efficient and it also supports simple address

translation in the TLB, which helps simulate our addressing scheme. Section 2.4.1 explains the

system simulation parameters in detail. Section 2.4.2 describes multiple benchmark kernels to

drive our evaluation. Finally, Section 2.4.3 discusses several baseline systems that will be

compared to our HHT systems.

2.4.1 Simulation Configuration

The parameters of the processor and memory system used in our experiments are listed

in Table 1. The processor configuration is similar to the ARM Cortex A9 single core pro-

cessor [13], which has a superscalar pipeline that forwards eight instructions per cycle to the

decoder. Two levels of caches are used with this processor. As the HHT system uses PCM,

we simulate a multi-level PCM and a single level PCM (for base line systems) on the nvmain

[14] memory simulator, which supports modeling of realistic timing and queuing delay of

multi-level PCM. For single-level PCM accesses, the memory latency includes the memory
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Table 2.1: Simulation parameters, similar to ARM Cortex A9 single-core processor
CPU 2 GHz, single core, out-of-order, alpha ISA, 8-issue

width, 64-byte cacheline size
L1 $ 32 KB I/D-cache, 4-way, 2-cycle latency, 6 MSHR
L2 $ 512 KB, 8-way, 12-cycle latency, 16 MSHR
Memory Controller 10 ns latency
Memory 4 GB; 1 channel, 1 rank and 4 banks;

Row buffer size 1KB
Multi-level PCM latency for level N:
read latency: (120∗2(N−1))ns
write latency: (150∗N ∗2(N−1))ns

controller latency, memory bus transmission latency, and PCM read latency. For the multi-

level PCM, the simulator models exponential read latency as more bits are read out. All data

levels are available after the highest level is read out. For write requests to the multi-level

PCM, the simulator needs to read out all existing bits first, modify the bits to be updated, and

write all the bits back to the PCM cells in the end. Table 2.1 lists the timing configuration in

detail. For most of our experiments, we used four-level PCM for the multi-level PCM, but we

will also discuss using more levels in Section 2.5.4.

2.4.2 Benchmarks

To focus the evaluation on the hash tables’ performance in particular, we take hash table

kernels from three benchmarks: Internet routing, Wordcount, and Dedup. The Internet rout-

ing benchmark takes a real trace of router traffic and builds a hash table for the mapping of

IP addresses and their next hops. Wordcount is a program that counts the frequency of each

unique word in a large text file. Dedup is a data stream compression algorithm from the PAR-

SEC Suite [15]. It exploits a hash table to store and look up data blocks to find compression

opportunities.

Table 2.2 shows the workload characterization of the benchmarks. We use similar scale
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Table 2.2: Hashtable benchmark workload characterization
Benchmarks Number of Hash Entries Number of Lookups Simulated Period (ns)
Internet
Routing

50,000 2,050,000 14.5

Wordcount 44,998 2,000,000 6.7
Dedup 45,941 1,139,905 0.82

workloads for the hash tables in three benchmarks to simplify comparisons: the hash tables

need to store around 45,000 entries in total and respond to around two million lookups (includ-

ing searching and insertion). The simulated period is the longest gem5 simulated seconds for

each benchmark with 1,024 buckets of chained hash tables on the single-level PCM.

We experiment with four hash table configurations: 8,192, 4,096, 2,048, and 1,024 buckets.

Varying the number of buckets helps us characterize hash table behaviors in different situations

and compare the scalability of different hash table systems. Figure 2.6 plots the bucket length

distributions with four hash table configurations for the total workload of the Wordcount bench-

mark. With fewer buckets, the average number of entries in the bucket increases and the bucket

size becomes more nonuniform. In this situation, it is more challenging to efficiently store

the hash table and traverse all entries in each bucket at the same time. Furthermore, we take

snapshots of the hash table bucket length distributions in the middle of each benchmark’s ex-

ecution. Figure 2.7 shows snapshots of the Wordcount benchmark with 1,024 buckets. These

snapshots are taken in the middle of the program execution when 20%, 40%, 60%, and 80%

of the total execution is finished respectively, to give a picture of the intermediate hash table

structure when lookups happen (how many entries to traverse in each bucket). We’ll show that

HHT can get both good storage efficiency and good performance when the bucket length scales

dynamically.
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Figure 2.6: Wordcount using different numbers of buckets
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Figure 2.7: Snapshots of Wordcount with 1,024 buckets
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Table 2.3: Hashtable system configuration
Baseline systems Hash Node Structure Memory Latency

Model
Multi-level
Storage

CHT on Single-level
PCM

key, value, pointer to next single-level No

CHT on Multi-level
PCM

key, value, pointer to next multi-level Yes

HHT without
Prefetching

key, value multi-level Yes

2.4.3 Baseline Systems

We compare our HHT schemes with several baseline systems with different software and

hardware implementations. We list the baseline systems and their difference in software im-

plementation, hardware storage, and latency models in Table 2.3.

For chained hash tables (CHTs), we use a common implementation based on linked lists.

The hash table maintains an array of linked lists, each of which stores hash entries that fall

into the same bucket. Each linked list node contains three elements: the key, the value, and the

pointer to the next entry in the same bucket. Chained hash tables on the single-level PCM is

similar to the traditional hash table implementations on DRAM. The single-level PCM access

latency is the sum of memory control latency, memory bus latency, and memory read latency.

To increase the storage efficiency of hash tables, we implement chained hash tables on the

multi-level PCM as a baseline system in the following way: hash entries are dynamically al-

located and randomly distributed in the multi-level PCM address space. In this system, the

memory latency model follows the exponential read and write timing model as shown in Fig-

ure 2.2.

As discussed in the previous sections, the chained hash tables prevent both memory-level

and instruction memory- level parallelisms. In the herniated hash tables (HHT) implementa-

tion, each entry contains just two elements: the key and the value. We use an array to maintain
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hash entries in the same bucket. There are no links between entries except when the number

of collisions in one bucket exceeds the maximum level of the PCM. Taking an HHT imple-

mentation without prefetching as a baseline, we can see how much overhead is caused by the

exponential latency model of the multi-level PCM and the effectiveness of prefetching schemes

to tolerate this latency.

2.5 Results

In this section, we present evaluation results on HHTs, focusing on several issues.

First, storage efficiency analysis results are explained in Section 2.5.1, comparing HHTs

with CHTs on single-level PCM and multi-level PCM, respectively.

Second, we present the performance analysis of HHTs in all benchmarks in terms of exe-

cution time and IPC (instructions per cycle). We also study the impact of the write cancellation

technique and present the performance results with and without write cancellation.

Third, the impact of different prefetching schemes discussed in earlier sections is analyzed,

in terms of execution time, LLC miss rate, average LLC miss latency and the memory traffic.

Finally, we explore the sensitivity of systems to using different numbers of buckets and

deeper levels of PCM. All of the normalized metrics take HHTs without prefetching as the

baseline.

2.5.1 Storage Efficiency Analysis

We define storage efficiency as the number of used memory cells here. Let N be the number

of buckets in our hash tables and M be the number of unique keys in the workload. A HHT

entry takes 16B and a CHT node takes 24B. HHTs use the space of the array of head entries

plus the space for redirected entries, which equals (N+ redirect pointers)∗16B. CHTs on the

single-level PCM takes the array of head entry pointers plus the actual storage of all entries,
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Figure 2.8: Storage efficiency of HHTs

which is (N ∗8B+M ∗24B). Chained hash tables on the four-levels PCM has four times the

address space of the single-level PCM, so it takes 1/4 of the storage as on the single-level

PCM.

Figure 2.8 shows the normalized storage efficiency results for HHTs and CHTs with 2048

buckets on the single-level PCM and on the multi-level PCM in three benchmarks. The HHTs

get around 4.8x the benefits of the CHTs on the single-level PCM and 1.14x the benefits of

CHTs on the multi-level PCM. When M is much bigger than N, HHTs have significant density

benefits. We will discuss situations when M is close to N in the sensitivity study in Sec-

tion 2.5.3.

2.5.2 Performance Analysis

Instructions per Cycle

For a given processor, the number of instructions per cycle (IPC) reflects the instruction-

level parallelism that different systems can achieve. As discussed in the previous sections,
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herniated hash tables enable both instruction-level parallelism and instruction memory-level

parallelism, so we can see substantial improvements in IPC.

Figure 2.9 plots the normalized IPC of three benchmarks with different hash table systems.

We use 2048 buckets for all hash table systems to simplify the comparison. Performance with

different number of buckets is shown in the sensitivity study in Section 2.5.3. The normalized

IPC results in Figure 2.9 show that HHTs can achieve a 60% improvement over CHTs on the

single-level PCM and about a 4x improvement over the CHTs on the multi-level PCM in terms

of IPC. HHTs with LLC prefetching can achieve up to 1.66x improvement over HHTs without

prefetching.

Execution Time

We also plot the execution time of benchmarks with different hash table systems to conduct

a general performance evaluation. As shown in Figure 2.10, HHTs with LLC prefetching are

up to 1.66x faster than HHTs without prefetching and more than 2.4x faster than the CHTs

on the multi-level PCM. Compared with the CHTs on the single-level PCM, The HHTs with

prefetching are 44% faster while achieving significant density benefits, as indicated in Sec-

tion 2.5.1.

Write cancellation

Write cancellation [1] is an existing work to reduce read latency by canceling the already

scheduled write requests if a read request arrives to the same bank within a period. As the

write latency of multi-level PCM is very high, the write requests could significantly increase

the effective latency of later arriving read requests. In most of our experiments, we use write

cancellation as a built-in technique in multi-level PCM. In this section, we study the perfor-

mance of our hash table systems if using multi-level PCM without write cancellation.
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Figure 2.9: IPC of the benchmarks with different systems

Figure 2.11 and Figure 2.12 show the IPC and execution time results without write cancel-

lation. For the Internet routing and Dedup benchmarks, IPC and execution time have no much

difference using multi-level PCM with or without write cancellation because the read requests

are much more than write requests. However, in the Wordcount benchmark, the number of

write requests is similar to the number of read requests. The long write latency may cause

a decrease in the system performance. From Figure 2.11, HHTs with LLC prefetching still

achieve higher IPC than CHTs on single-level PCM but the improvement decreases from 60%

to 52%. From Figure 2.12, the correspondent speedup of HHTs with LLC prefetching over

CHTs on single-level PCM decreases from 44% to 27% for the Wordcount benchmark.

2.5.3 Sensitivity to Different Hash Table Configurations

Hash table behavior varies considerably when we configure them with different numbers of

buckets, as shown in the workload characterization histograms. When fewer buckets are used,

the number of collisions in each bucket increases. In this part of the experiments, we study the

scalability of hash tables in both storage efficiency and performance in tolerating the increased

number of collisions. We choose one representative benchmark, Wordcount, and study the
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Figure 2.10: Execution time of the benchmarks with different systems
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Figure 2.11: IPC of the benchmarks using multi-level PCM without write cancellation

hash table behavior with different numbers of buckets.

Storage

Varying the number of buckets can have the following effects on the storage. On the one

hand, HHTs need more redirect pointers when fewer buckets are used while CHTs don’t have

this storage overhead. On the other hand, each hash table needs to keep an array of bucket

head entries that is linear with respect to the number of buckets. In CHTs, this array stores just

pointers (eight bytes) to the head entries. In the HHTs, this array stores real keys and values

30



Herniated Hash Tables Chapter 2

Internet Routing Wordcount Dedup
0.00

1.00

2.00

3.00
N

o
rm

a
liz

e
d

 E
x
e

c
u

ti
o

n
 T

im
e HHT without Prefetching

HHT with LLC Prefetching
CHT on Multi-level PCM
CHT on Single-level PCM

Figure 2.12: Execution time of the benchmarks using multi-level PCM without write cancellation
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Figure 2.13: Storage efficiency of Wordcount with different numbers of buckets

(sixteen bytes). When the number of buckets is very large, there are many bucket head entries

to store, even though some of the buckets are empty. HHTs have higher storage overhead

for these head entries than CHTs. However, these two effects are in the opposite directions.

Generally considering them together results in little difference in storage efficiency when the

number of buckets changes, as shown in Figure 2.13. The HHTs are more storage efficient in

all settings compared with CHTs on both the single-level PCM and the multi-level PCM.
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Figure 2.14: Performance of Wordcount with different numbers of buckets

Performance

Figure 2.14 shows the performance in terms of both execution time and IPC of Wordcount

with different hash table systems and different numbers of buckets. For 8192 buckets, the

HHTs with LLC prefetching are 12%, 59.4%, and 5.5x faster than CHTs on the single-level

PCM, HHTs without prefetching, and CHTs on the multi-level PCM respectively. When the

number of buckets decreases, the number of collisions starts to increase. the HHTs can tolerate

more collisions because there are more prefetching opportunities. The CHTs cannot prefetch

because of the dependencies between data accesses in the chained structure, so their perfor-

mance degrades more quickly compared with the HHTs. For 1,024 buckets, HHTs with LLC

prefetching show much better performance compared with CHTs on the single-level PCM by
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Figure 2.15: Sensitivity to PCM levels

achieving 1.87x IPC and 49% speedup in execution time.

2.5.4 Sensitivity to PCM Levels

When the PCM has more levels, herniated hash tables can yield more benefits by deeper

prefetching and more overlap between computation and memory accesses. However, since

latency is exponential with respect to the depth of the level accessed, there is a significant over-

head when the highest level is accessed from PCM. In this section we study the performance

of HHTs when using PCM with more levels.

Figure 2.15 shows the execution time of hash table systems using 4 levels, 5 levels, and 6

levels PCM respectively. Comparing the execution time of HHTs with and without prefetching

with different levels, we can see that the contribution of the prefetching scheme increases

by 12% from 4 levels to 5 levels because of more prefetching opportunities. However, the

prefetching is less effective with 6 levels because the prefetching of one highest level entry

will increase system latency significantly if the prefetched data is not used. In this situation,

CHTs on the single-level PCM can get the best performance, but without density benefit. One

future work is to study how to utilize different amount of levels in PCM dynamically for HHTs
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Figure 2.16: Performance of different prefetching schemes

to yield the best performance for different applications while getting the density benefit as well.

2.5.5 Impact of Different Prefetching Schemes

We discussed three possible prefetching schemes for herniated hash tables: off-chip prefetcher,

on-chip prefetcher, and LLC prefetcher. These three options were motivated by the idea that

we want to prefetch the data close to the processor to maximize the parallelism between in-

structions and memory. The off-chip prefetcher operates alongside the memory row buffer,

which reads out all levels of data iteratively on a low-level access. This prefetcher saves the

memory read latency in the multi-level PCM. The on-chip prefetcher prefetches all levels of

data to an on-chip buffer in the memory controller. It saves the transmission latency on the
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Figure 2.17: LLC Performance with different prefetching schemes

memory bus at the expense of a little more memory traffic. The LLC prefetcher moves the

prefetched data into the last-level cache. It is the closest to the processor but may cause the

cache pollution problem. Figure 2.16 shows the experimental results of the prefetchers, with

2,048-bucket hash tables.

We evaluate three benchmarks with all prefetching schemes. The HHTs without prefetch-

ing are taken as the baseline. From the execution time and IPC results as shown in Figure 2.16,

we can see that the LLC prefetcher exhibits the best performance in general. The main reason

is shown in the LLC miss rate result in Figure 2.17. With the LLC prefetcher, the LLC miss
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rate in the HHTs is reduced by about 6%, while the LLC average miss latency is similar to that

of the other two prefetchers. Both the LLC prefetcher and the on-chip prefetcher need to fetch

data to on chip storage. They achieve a little better performance than the off-chip at the expense

of memory traffic. We quantify the memory traffic overhead of the on-chip prefetching, which

is about 8.9% increase.

2.6 Related Work

2.6.1 Multi-level Phase Change Memories

Recently, a number of studies have discussed how to support multi-level PCM (and other

multi-level non-volatile memory) on both hardware and software sides. Qureshi et al. [16]

used a hardware-software hybrid scheme to improve the performance of multi-level PCM by

converting the most often used multi-level pages into single-level PCM pages. Zhou et al.

[17] extended this to a scheme for the virtual machine environment. Jiang et al. [18] focused

on improving the performance of multi-level PCM writes with the assistance of ECC bits in

memory. Joshi et al. [19] proposed controlling the write pulses of multi-level PCM, thereby

improving its performance as well as reducing the energy consumption. Saadeldeen et al. [20]

proposed using memristors to construct a branch predictor. Zhang et al. [3] proposed a sparse

directory architecture utilizing multi-level memristors (a resistive memory technique similar to

PCM). Sampson et al. [21] used an approximate technique to improve the performance, density,

or lifetime of multi-level PCM. Our work is unique in that it exploits nonuniform density to

adapt to asymmetric datastructure growth and uses a physical addressing scheme that integrates

well with the cache hierarchy.
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2.6.2 Hashtable Acceleration

A great deal of work has been done to optimize the performance, storage, and scalability of

hash tables. The use of concurrent hash tables [22] is popular which are featured with lock-free

extensive hash tables enabled by techniques such as “recursive split ordering” [23]. There has

been other work to utilize techniques such as the read-copy update mechanism [24] or software

transactional memory [25] to achieve better performance, scalability, or both. Additionally,

there has also been work focusing on novel hash tables, such cuckoo hash [26], for multiple

concurrent writers and readers.

2.7 Chapter Summary

Datastructure accelerations are of great importance in the big data era. Hashtables are

a widely-used datastructure due to their average constant complexity for accesses. How-

ever, when more and more collisions occur, the traditional chaining implementation prevents

two kinds of parallelism: memory-level parallelism and instruction-memory level parallelism.

Multi-level PCM is an emerging memory technique that may be an alternative of DRAM, as

it brings significant density benefits by supporting multiple resistance levels at each cell. In

this chapter, we introduced Herniated Hash Tables, which utilizes the multi-level PCM to store

multiple hash collisions in the same bucket at the same PCM cells. However, the density bene-

fits of multilevel PCM come with the exponential latency overhead when reading more than 1

bit per cell. To avoid this latency, we propose three prefetching options: Off-Chip prefetcher,

On-Chip prefetcher and LLC prefetcher. Experimental results show that Herniated Hashta-

bles can get up to 4.8x density benefits while achieving up 67% performance speedup over

traditional chained hash tables on single-level PCM.
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Chapter 3

Lemonade from Lemons: Harnessing

Device Wearout to Create Limited-Use

Security Architectures

3.1 Introduction

Wearout is not a new problem in computer architecture. Flash memories are the most

well-known memory technologies with the wearout problem, and people have been working

on efficient solutions to it for decades. In the big data era, the problem is even worse with

continuously increasing density and capacity demand for memory. The lifetime of a flash cell

dropped from 10,000 times to 2,000 times when the cell dimension scales down from 50nm

to 20nm [27]. Moreover, ITRS [28] envisions many new technologies such as non-volatile

memories (NVM), nanoelectromechanics (NEMS), and molecular devices, to solve the power-

consumption problem in CMOS so as to sustain Moore’s law. However, the wearout problem

also exists in these technologies [29, 30, 31, 32]. The down-scaling from MEMS to NEMS, for

instance, results in exponential degradation of device reliability [33, 34]. Representative NEMS
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contact switches can only work for one cycle to several thousand cycles without failures [33,

35, 36, 37]. As a result, existing research on these emerging technologies has been focused on

how to extend the lifetime before they can really be applied.

Meanwhile, we take a step back and find that wearout can help build purposely limited-

use security architectures. In applications that abusive accesses or adversarial accesses are not

desired, wearout can provide strong security by automatically destroying the device and hence

protects any secure information in it. For example, forward secrecy encryption [38, 39] in

any public key systems [40, 41] (eg. the encryption of e-mail archives) requires a one-time

key for the encryption of each message so that the compromise of a single private key does not

compromise all the past messages. Traditionally, the one-time access of the keys is not enforced

so the system still cannot defend against reusing or stealthy replications of the keys. Taking

advantage of wearout, we can store the keys in a security architecture that wears out exactly

after one access so that the one-time usage of keys is physically enforced and the security of

messages will not be compromised.

However, taking advantage of wearout to create hardware security mechanisms is challeng-

ing. The problems we face in designing the security architectures include:

• How do we design for system-level minimum and maximum usage in the face of proba-

bilistic wearout behaviors of each device and process variations among devices?

• Depending on security goals and usage targets, how should we adjust the parameters in

our design to minimize area and energy cost?

• How do we balance the fabrication cost of more consistent devices (in terms of wearout)

with the area cost of architectural techniques to achieve consistency (eg. redundancy and

encoding)?

In this work, we propose a methodology to create security architectures by harnessing device

wearout. Our contributions are as follows:
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• We use the two-parameter Weibull distribution to model the time to failure of each de-

vice. The two parameters in the model can be used to characterize different kinds of

wearout devices. Manufacturing and process variations among individual devices are

accommodated by introducing more variations into the distribution.

• Based on the probabilistic wearout model, we provide statistical guarantees on system-

level usage bounds by designing application-dependent architectures and exploiting re-

dundant encoding techniques. The system-level usage bounds ensure both reliability for

legitimate users and security to defend against brute-force attackers.

• Extensive engineering space exploration has been performed to study the trade-offs

among target access bounds, area cost, fabrication cost, etc.

In the following sections, we first introduce the wearout devices used in our security archi-

tectures and describe the probabilistic wearout model in Section 3.2. Then we talk about the

threat model in Section 3.3 for three use cases of hardware security mechanisms: a limited-use

connection, a limited-use targeting system and one-time pads, discussed in Section 3.4, 3.5

and 3.6, respectively. Note also, we talk about the limitations of the degradation-based security

measures in Section 3.7. Then we discuss the literature of hardware security in Section 3.8.

Finally, we conclude our work in Section 3.9.

3.2 Device wearout model

3.2.1 NEMS contact switches

NEMS contact switches exhibit promising properties such as nano-scale physical dimen-

sions, near zero OFF-state leakage, and large ON/OFF ratios. Representative NEMS contact

switches are composed of a movable active element and an opposing electrode which interact
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by both electrical and mechanical forces to open and close the switch. When a pull-in voltage

is applied to the active element, electrostatic forces deform the active element towards the op-

posing electrode so as to close the switch. After the voltage is removed, elastic forces pull the

active element away from the opposing electrode so that the switch is open again.

Among other technologies, NEMS are advantageous in building limited-use security archi-

tectures because they have relatively tight wearout bounds and they are insensitive to harsh en-

vironments [33] including radiation, temperature, external electric fields, etc. Most fabricated

NEMS switches can work properly for only one to several thousand cycles [33, 35, 36, 37].

Recently, NEMS lifetime can be extended up to millions or billions of cycles while at the

cost of scaling up the physical dimensions [42, 43, 44]. The wearout characteristics of NEMS

switches are highly dependent on the materials and structures employed. Generally speaking,

any kind of electrical and mechanical aging, adhesion, fracture or burnout in the active element

or electrode are potentially responsible for the failures of NEMS switches. For example, in

[35], graphene-based NEMS switches were recorded to work over 500 cycles and then failed

because the over-bent graphene was unable to recover. [36] reported that NEMS switches

with silicon carbide nanowires can switch for tens of cycles before the nanowire was stuck to

the electrode. In [45], the silicon carbide cantilevered NEMS switches failed after billions of

cycles because of fracture at room temperature and melting at 500◦C.

Furthermore, due to their insensitivity to harsh environment, NEMS switches can help de-

fend against attacks by varying the dynamic environment. For example, it is hard for attackers

to extend the lifetime of NEMS switches by controlling the operating temperatures, especially

these made of high temperature friendly materials such as SiC. Poly-SiC NEMS switches [42]

were recorded to operate properly for at least 105 ∼ 106 cycles without failures at 500◦C ,

comparable to those at 25◦C. [45] has shown that SiC NEMS switches can operate more than

21 billion cycles at 25◦C while more than 2 billion cycles at 500◦C. However, failures at

25◦C were characterized by fracture while failures at 500◦C were probably caused by melting.
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For security architectures, we assume the lifetime at room temperature (25◦C) as the device

wearout bound. More failures at extremely high temperatures will destroy the device faster, but

will not compromise the secret information in them. At extremely low temperatures (eg. after

freezing), it is hard to extend the device lifetime either because failures from fracture cannot

be avoided. These features have enabled NEMS switches to be applied to security or harsh

environment applications, eg. one-time-programmable FPGA interconnects in [46].

3.2.2 Probabilistic wearout model

In the reliability literature [47, 48], Weibull distributions have been commonly used to

model the failure distributions of electronic devices [49], such as the breakdown of gate oxides

in CMOS [50]. Similar models can also be applied to micro-/nano- scale devices [51]. It has

been shown that the Weibull distribution can accurately fit fracture-strength data of emerging

materials for NEMS/MEMS [52, 53], fracture-test data of cantilever beam MEMS [54], and

tensile-strength data sets of carbon nanotubes [55].

Hence, we take the general two-parameter Weibull distribution to model the failure distri-

bution of NEMS switches in this work. Assume that x represents the time to failure. Then the

probability density function (PDF) of the time to failure is:

f (x) =
β

α

( x
α

)β−1
e−(

x
α )

β

(3.1)

and the cumulative density function (CDF) is:

F (x) = 1− e−(
x
α )

β

(3.2)

Based on the CDF, the reliabity function is derived as follows:

R(x) = 1−F (x) = e−(
x
α )

β

(3.3)

In all of the above equations, α is the scale parameter and β is the shape parameter. The two

parameters can be estimated by fitting the lifetime data of a large population of similar devices.

α approximates to the mean time to failure, and β mainly determines the variation of reliability
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Figure 3.1: Weibull wearout model with different shape parameters. The red lines (β = 12)
show the lifetime plots of MEMS devices [56] with geometrical variations.

degradation among these devices.

Figure 3.1 shows the failure PDF (Equation 3.1) and reliability function (Equation 3.3)

with different β s. The variation of α will only change the axis scales. β is usually larger

(sharper peaks in the PDF) with more homogeneous devices in which the wearout happens

more consistently.

Since the manufacturing processes are less mature at nano-scales, we accommodate the

process variations in αs and β s. Typically, process variations will result in lower β s. Trevor

S. Slack et al. [56] has simulated Weibull lifetime models of MEMS devices considering ge-

ometrical variations, material variations in elastic modulus, resistance stress, etc. According

to their simulation results, αs and β s are 2.6 million cycles and 12.94 with only geometrical

variations, 2.2 million cycles and 7.2 with material elasticity variations, 1.8 million cycles and

8.58 with material resistance variations. We will experiment with various αs and β s for an

extensive engineering space exploration in later sections.
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3.3 Threat model

Since our target devices are often mobile devices, we assume the attacker has physical

access to the device. In the cases of the limited-use connection and targeting system, we want

to defend against brute-force attacks to decrypt the device by physically limiting the number

of accesses to the storage decryption key. The cracking approaches we target are professional

attacks that can exploit the nonuniform guessability in real-world passwords [57], as discussed

in Section 3.4.1.

In the case of one-time pads, we want to defend against stealthy replications of device (the

archaically named “evil maid attack”). The attackers may clone the one-time pads and make

two copies, one copy to replace the receiver’s original one and another copy for themselves to

break the encryption in the future message transmission between the sender and receiver. Our

secure architectures will resist cloning by making it difficult for attackers to ever read the entire

contents of the device memory.

In this work, we assume the chip fabrication is trusted. And we leave as future work

techniques to allow secure, one-time programming of our devices by end users. We assume

the secret information is one-time programmed in the device memory at fabrication time and

end-users will only need read operations through the NEMS network.

3.4 A Limited-use connection

Apple iOS has developed many security features with integrated secure software and hard-

ware support. However, to keep the devices easy to use, the most straightforward way to

protect the devices is to use a passcode that is configurable by users. To protect the passcode

from brute-force attacks, iOS provides several mechanisms [58]: 1) it automatically wipes out

all data on the device if someone has consecutively failed 10 times in unlocking the device. 2)
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it has incremental time delays after each incorrect passcode attempt.

However, all these guarding mechanisms are recently reported to be easily bypassed. A

company called MDSec [59] managed to bypass the internal counter in iPhone by cutting its

power right before the counter is incremented, while still getting the passcode validation re-

sult. Therefore, the counter never gets updated and the attacker can break the passcode as fast

as the hardware can support. [60] demonstrated similar attack to the counter through NAND

mirroring. An iPhone 5c was forced to power down and recover from a backup NAND mem-

ory to restore the previous state once every a few passcode attempts, which enabled unlimited

attempts to crack the passcode. Another hacking case exploited firmware updates [61]. iPhone

can launch firmware updates automatically without the passcode, which means that the guard-

ing mechanisms are disabled or the counter is disabled during the updates. Then brute-force

attacks can easily succeed, especially with real-world biased passcodes.

Although some vulnerabilities mentioned above have been patched, the real problem with

software solutions is that they can not prevent unknown vulnerabilities. Therefore, we propose

to exploit NEMS switches to build a limited-use connection that can physically limit the num-

ber of accesses to the storage decryption key. The right passcode and the storage decryption

key are needed to successfully decrypt the device storage and thus validate the passcode. We

enforce a traversal to the limited-use connection before each read of the storage encryption

key. After each passcode attempt, the failure probability of the connection increments. After

a certain number of accesses, the connection will wear out automatically and the smartphone

will be locked forever. Compared with security patches, our solution provides strong hardware

enforced security, which cannot be compromised even under government’s intervention.

In Section 3.4.1, we talk about the design principles and design options for the limited-

use connection using NEMS switches. And we discuss system integration issues with NEMS

switches in Section 3.4.2. Finally, we explore the engineering space given the design options

in Section 3.4.3.
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Figure 3.2: Design options for the limited-use connection using NEMS switches. Fig 3.2a
uses N copies of single NEMS switches. Fig 3.2b uses N copies of n NEMS switches in
series. Fig 3.2c uses N copies of n NEMS switches in parallel. Fig 3.2d uses same parallel
structures but with redundant encoding.

3.4.1 Using wearout to build a limited-use connection

The design of the limited-use connection needs to follow two principles:

• The connection should work reliably for all legitimate accesses during the smartphone’s

lifetime.

• The connection should wear out before attackers have high probabilities to guess the

passcode.
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As an example, we calculated the legitimate access bound (LAB) for a smartphone approxi-

mately as follows:

LAB = 5∗365∗50 = 91,250 (3.4)

If the real LAB is several times larger than that, we provide M-way replication of our entire

architecture to scale the LAB by a factor of M, as described in Section 3.4.1.

The main challenge in designing the security architectures is how to control the system-

level reliability degradation window [t1, t2], as indicated in the two principles. The lower bound

t1 should be greater than the LAB while the upper bound t2 should be less than the minimum

guesses needed to crack any passwords. According to Blase Ur et al.’s work of measuring real-

world password guessability [57], professional attackers usually try passwords in the order of

empirical popularity. For 8-character passwords including characters from all different classes

(lowercase letters, uppercase letters, numbers, and special characters), only a few very popular

passwords can be guessed within 91,250 attempts. The guessing probability increases to 1%

and 2% with 100,000 and 200,000 attempts, respectively.

In the following sections, we first attempt to design security architectures that wear out as

quickly as possible after the LAB. We focus on seeking for architectural techniques that can

help control the degradation window. Then we extend the upper bound to 100,000 and 200,000

accesses if the software helps reject the most popular 1% and 2% passwords, discussed in

Section 3.4.3.

According to the design principles, we consider four possible design options, as illustrated

in Figure 3.2. These design options are explained in detail as follows.

N copies of single NEMS switches

With a single NEMS switch, it is difficult to meet the system-level demand of minimum

and maximum accesses. On one hand, the empirical lifetime of a single NEMS switch is
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usually not as long as the LAB. On the other hand, even if there exists such a NEMS switch,

the degradation window expands millions of cycles, as shown in Figure 3.1. Thus, we consider

using N copies of NEMS switches, which can divide the system-level access bounds by a factor

of N. Then the design principles for each copy are adjusted as follows:

• Each copy should work reliably for LAB
N accesses.

• Each copy should wear out before LAB
N +1 accesses.

Although the second requirement still requires small degradation windows, the first require-

ment scales the mean value down to LAB
N . This down-scaling helps create a small degradation

window, as shown in Figure 3.3a.

However, when α is very small, the lifetime of the device is expected to be very small. The

manufacturing and process variability is probably hard to control for such brittle and fragile

devices. We will discuss more architectural options next to avoid such challenges in fabrication

while still satisfying both design requirements.

N copies of n NEMS switches in series

Instead of looking for NEMS switches that can fail extremely fast, we consider chaining

NEMS switches in series to accelerate the wearout, as in Figure 3.2b. In the chaining archi-

tecture, if any single NEMS switch in the chain fails, the whole chain fails. Unfortunately, we

found that increasing the number of NEMS switches in the chain has no significant impact on

the failure rate.

Assume we have n NEMS switches in series. Then the reliability of the chain is:

R(x) =
(

e−(
x
α )

β
)n

= e−n( x
α )

β

(3.5)

Compared with the reliability function for a single device in Equation 3.3, n devices with α in

series are equivalent to a single device with α

n(1/β ) . Let the denominator equals y: y = n(1/β ).

Then we get: n = yβ . If we want to increase y to scale down α as in Figure 3.3a, then n
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should increase to y12 in each copy with β = 12. To avoid the explosion of NEMS switches,

we discard this option in the following discussion.

N copies of NEMS switches in parallel

Here we propose another technique to control the degradation window, which is exploiting

parallel structures to improve the system reliability before all devices wear out, as shown in

Figure 3.2c. Assuming N copies of parallel structures, the requirements for each copy are as

follows:

• At least one NEMS switch in each copy should work reliably for LAB
N accesses.

• All NEMS switches in each copy should wear out before LAB
N +1 accesses.

Assume each copy has n NEMS switches in parallel. The reliability of this parallel structure

is :

R(x) = 1−
(

1− e−(
x
α )

β
)n

(3.6)

The redundancy in the parallel structure provides error tolerance so that the high reliability

threshold is pushed toward the degradation edge, as shown in Figure 3.3b. With 98% reliability,

the parallel structure with 40 devices can work for the 10th access. With only 2.2% probability

the parallel structure will continue working for the 11th access. In this design option, the

total number of devices may increase, from 91,250 to 365,000 (40∗ (91,250
/

10) = 365,000)

approximately, but the mean time to failure of NEMS switches is relaxed from one to about ten

cycles.

Parallel NEMS switches with redundant encoding

In this section, we introduce Shamir’s secret sharing mechanism and redundant encoding

techniques to further speed up the degradation of the limited-use connection. Instead of us-

ing highly redundant and reliable 1-out-of-n parallel structures, we require at least k NEMS
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Figure 3.3: Different techniques to control the hardware degradation window

switches working in a parallel structure in order to decrypt the device storage, which results in

a k-out-of-n parallel structure. Increasing k to some extent tightens the wearout bounds of each

parallel structure so that the connection wears out faster. The challenging part, however, is

that the k-out-of-n parallel structure should provide reliable connection when k or more NEMS

switches work properly but wear out quickly when only k− 1 or less NEMS switches do the

same.

To enforce that, we exploit Shamir’s secret sharing mechanism and redundant encoding
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techniques. The general idea is the following: We encode the storage decryption key into n

components and spread them in n read-destructive storage connected by the NEMS switches in

a parallel structure. The encoding mechanism enforces that at least k components are needed

to successfully get the key while no knowledge about the key will be revealed with less than k

components.

Shamir’s secret-sharing scheme

Shamir’s secret-sharing scheme [62] constructs fast degradation codes. One of its classical

scenarios is the secret sharing among many people. On one hand, the scheme allows efficient

and reliable secret sharing if at least k out of n people authorize accesses to the secret. On

the other hand, the scheme prevents leaking any information about the secret if there is only

authorization from k− 1 people or less. The scheme is also called a (k,n) threshold scheme

and its reliability degrades immediately at k− 1. Unlike classical secret-sharing scenarios

that tolerate partial errors for more efficient sharing (authorizing access with the majority of

people’s permission [62] or matching interests with the majority of attributes [63]), our security

architectures need to tolerate erasures from device failures.

The encoding and decoding in Shamir’s secret sharing scheme is based on polynomial

construction and interpolation. The insight is that given k independent points on a 2D plane,

there is one and only one polynomial of degree k−1 that passes through all the k points. The

encoding algorithm involves constructing such a polynomial of degree k− 1 with the secret

hidden in the coefficients:

q(x) = a0 +a1x+a2x2 + ...+ak−1xk−1 (3.7)

With this polynomial, we encode the secret into n points, for instance, q(1), ..., q(n). The n

points are then distributed to n people (or n devices) in the security application. Given any k

points, all coefficients can be easily computed by interpolation so as to recover the secret. With
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k−1 points or less, however, no information about the secret can be inferred.

Error correction codes with fast degradation

Reed-Solomon codes [64, 63] are the error correction version of Shamir’s secret-sharing

scheme and they are commonly used in the error correction of large amounts of data in devices

such as flash disks, CDs and DVDs. Theoretically, other linear codes could also construct sim-

ilar (k,n) threshold secret sharing schemes, but it is hard to reason about the security because

of the hardness of approximating the minimum distance of any linear code [65].

Figure 3.3c shows the reliability of a parallel structure with Reed-solomon codes. With

redundant encoding, the reliability of this security architecture becomes:

R(x) =
n

∑
i=k

(
n
i

)(
e−(

x
α )

β
)i(

1− e−(
x
α )

β
)n−i

(3.8)

We use 60 NEMS switches in the parallel structure and can relax the wearout bound for each

NEMS switch to around 20 cycles. With k = 1, the degradation window size is about 2, while

with k = 30, the degradation window size reduces to about 1, as shown in Figure 3.3c. With k =

30, the parallel structure provides 92% reliability for the 20th access while only 2% probability

for the 21st access. However, when k is close to the total number of parallel devices in the

structure, the reliability degrades very early that the degradation window is stretched out again.

Assisted with Reed-Solomon codes, we are able to build the limited-use connection with

approximately the same number of devices (60∗ (91,250
/

20) = 365,000) compared with the

parallel structure without encoding, but we can further relax the wearout bound to 20 cycles.

The overhead, however, includes the encoding/decoding complexity and extra storage for the

component keys.
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M-Way Replication of Modules

A legitimate usage factor of 50 times per day is potentially low for some users, so we

propose to support increasing this usage by a factor of M by replicating our entire structure M

times. The replicated modules must be used serially and each must employ a new password.

In this way, an attacker can only attack each module separately to its upper access bound, but

the user can achieve usage that is the sum of the lower access bounds of all M modules.

The cost of this scheme, however, is that a new password must be chosen when migrating

from one module to another and the storage encryption key must be re-encrypted with the new

password. For example, if we wish to increase usage from 50 times to 500 times per day, we

use a 10-way replication factor, which implies that the user must choose a new password and

re-encrypt storage every 6 months during our target 5-year lifetime of the smartphone.

3.4.2 System integration

To build the limited-use connection in practical mobile devices, we need to integrate the

NEMS network with conventional CMOS. Here we show that the CMOS-NEMS integration

is feasible in the manufacturing process and the CMOS-NEMS interface does not compromise

the security of the device storage.

Manufacturability NEMS devices are CMOS-compatible: they do not require exotic mate-

rials or fabrication flow. In the literature, there have been integrated CMOS-NEMS circuits for

leakage-control and power-gating [66, 67]. A possible integration solution, for example, is to

have NEMS and CMOS circuits in differet layers of the chip with a sandwiched metal layer in

between [68].

Security We bury the secret key many layers below the surface of the chip and only con-

nect that secret key to the surface through NEMS devices. Although there are CMOS-NEMS
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Figure 3.4: The total number of NEMS switches needed with different engineering options
for the limited-use connection.

connections both from the surface to the NEMS network and from the NEMS network to the

deeply buried secret key, the latter connections are difficult to access and thus provide a level

of physical security. Circumventing the surface connections does not help the adversary access

the secret.
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3.4.3 Engineering space exploration

In this section, we talk about the engineering space exploration for the limited-use connec-

tion. Without loss of generality, the discussion will be focused on architectural options using

N copies of parallel structures with or without encoding. As discussed earlier, our goal is to

guarantee the system-level access bounds to protect the passcode from real-world brute-force

attacks. Here we list several parameters in the engineering space of the limited-use connection:

device wearout characteristics, redundant encoding, and system-level access bounds. Next, we

will discuss these parameters and their trade-offs in fabrication cost, area cost, encoding com-

plexity, etc. The experiments are based on numerical simulations with different engineering

options.

Device wearout characteristics

We first choose different αs and β s to characterize various kinds of NEMS switches. Since

α approximates to the average lifetime of devices in the Weibull model, we set α according to

the lifetime of representative NEMS switches as listed in [33], ranging from 1 cycle to 1000

cycles. In the following discussion, we show most of our results with α from 10 cycles to

20 cycles. The redundant encoding technique enables linear scaling with the increase of αs

so that we can accommodate loose wearout bounds with a linear increase of the number of

NEMS switches in the architecture. For the parameter β , we try various values from 4 to 16

according to the Weibull modeling of various kinds of devices in the literature. For example, as

mentioned in Section 3.2.2, MEMS devices in [56] have β s of 12.94, 7.2, 8.58 with geometrical

variations, material elasticity and resistance variations. According to [69], typical β values for

MEMS reliability fall in 0.5 to 5. We try to push β values down (eg. 4) with redundant

encoding to tolerate more process variations.

Then we study how many such devices the limited-use connection requires to meet the fast
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degradation requirement. The results are shown in Figure 3.4a without redundant encoding.

With small αs, the NEMS switches have tight wearout bounds so that small parallel structures

can meet the fast degradation requirement. With large αs, the number of NEMS switches in-

creases exponentially to compensate with the loose wearout bounds (The y-axis in Figure 3.4a

is in log scale). Similarly, with large β s, the NEMS switches are relatively consistent in the

degradation so that small parallel structures are feasible. With small β s, the number of devices

increases dramatically to control the variations.

Given the number of devices needed in the architecture, we estimate the area cost analyt-

ically assuming an H-tree layout of the NEMS switches and wires. The contact area of each

NEMS switch is assumed to be 100nm2 and the distance between switches is assumed to be

1nm [33]. The area cost of representative engineering options are summarized in Table 3.1.

Although loose wearout bounds and process variations can be compensated by investing more

NEMS switches in the architecture to minimize the fabrication cost, the correspondent area

cost also increases significantly. For example, when α is 18.69 and β is 10, the area cost is

0.52mm2, which could be hard to afford especially when we need to deploy the security hard-

ware on mobile devices. In the next section, we demonstrate that we can reduce the area cost

using redundant encoding techniques.

Table 3.1: Area cost of the limited-use connection
(α , β ) without encoding (mm2) with encoding k = (10%∗n) (mm2)
(10.51, 16) 1.27e-4 3.2e-5
(10.21, 10) 2.03e-3 1.3e-4
(19.68, 16) 2.03e-3 1.3e-4
(18.69, 10) 5.2e-1 1.3e-4

Redundant encoding

As discussed earlier, with redundant encoding, we enforce at least k working NEMS switches

in each parallel structure in order to successfully decrypt the key that is required to validate the
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passcode. This encoding technique helps tighten the wearout bounds for each parallel structure

even with NEMS switches that have relatively loose wearout bounds.

Figure 3.4b shows the effect of encoding the parallel structures with different levels of

redundancy. The total number of NEMS switches needed decreases dramatically and scales

linearly rather than exponentially with the increase of device wearout bounds. For example,

without encoding, when α is 14 and β is 8, the number of NEMS switches needed in the

architecture is about 4 billion. However, if with redundant encoding and k = (10% ∗ n), the

number of NEMS switches needed is only about 0.8 million with the same α and β . So, the

redundant encoding helps reduce 4 orders of magnitude in the total number of NEMS switches.

Moreover, it also improves the system tolerance to higher device variations with β = 4. With

k = (30%∗n), however, the decrease in the number of devices needed is negligible so that we

can stop enforcing more requisite components in the encoding and decoding.

We assume the storage for component keys should be proportional to the size of the parallel

structure and we accommodate that in the area cost evaluation in Table 3.1. We do not need

extra logical circuits for the encoding/decoding because they can be done in CPU.

The switching energy is proportional to the size of each parallel structure. Assume the

energy cost for each operation in NEMS switches is 10−20 Joule [33]. When α is 14, β is 8

and k = (10%∗n), the total number of NEMS switches is 0.8 million and each parallel structure

has 141 NEMS switches. Then the energy cost for each access is 1.41e-18 Joule. Since we

use parallel structures, the switching time for each access equals individual NEMS switch’s

switching time, which is around 10 ns [33].

System-level access bounds

If small variations of the system-level access bounds are desired, we can tune the fast degra-

dation criteria to achieve the variation. The fast degradation criteria in previous experiments

are defined as follows: Each parallel structure has at least 99% probability for t accesses while
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at most 1% probability for t + 1 accesses. The reliability of the lower bound can be extended

to 99.99999% (for exponential decrease in the failure probability) with 3x linear increase in

NEMS switches using redundant encoding, in which the minimum 91,250 accesses are guar-

anteed.

More interestingly, if the application has high tolerance to the upper bound of accesses,

then, in each copy, the degradation criteria for t + 1 accesses, p, can be relaxed from 1% to

10%, for instance. We analyze the number of devices needed and the empirical access bounds

when using different degradation criteria, as shown in Figure 3.4c. When we increase p from

1% to 10%, the empirical access upper bound increases from 91,326 to 92,028 accesses, while

the total number of NEMS switches needed is reduced by 40%.

Furthermore, if the passcode is sufficiently secure for many more attempts, we can extend

the upper bound to the minimum guesses needed to crack the passcode. According to [57],

only the most popular 1% passwords can be guessed with at least 100,000 attempts. Similarly,

2% most popular passwords can be guessed with at least 200,000 attempts. We need at least

675,250 NEMS switches to architect the limited-use connection with an upper bound of 91,326

accesses when β = 8 and k = (10%∗n), according to Figure 3.4b. However, with upper bound

targets of 100,000 and 200,000 accesses, we only need 38,325 and 29,200 NEMS switches,

respectively, as shown in Figure 3.4d.

3.5 A limited-use targeting system

Similar to the security enhancement in smartphones, targeting systems can also benefit

from the physically enforced limited-usage of targeting commands. Political alliances change

over time and devices should be used only for the immediate mission.

Targeting systems are usually composed of three functional subsystems: the command

and control system, the communication network, and the launching station. The command
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and control system makes targeting decisions according to the real-time data from radars and

these orders will be encrypted and transmitted securely to the launching station through the

encrypted communication link. Although targeting systems have been designed with a high

priority for security, there are still many vulnerabilities. Cyber attacks are reported that the

hacker can execute commands on a targeting system remotely by either gaining access to the

control system or the real-time communication network [70].

We propose to enhance the security of targeting systems with limited-use security architec-

tures. Since the launching station is remotely operated through an encrypted communication

link, we restrict the maximum attempts to decrypt the targeting commands at the launching

station, which enforces an upper bound to the execution of the targeting commands. By en-

forcing the upper bound, we can enhance the security of the targeting system from two aspects:

1) it prevents excessive usage of the targeting system beyond the original task, 2) it prevents

brute-force attacks to crack the encryption system.

As demonstrated in the limited-use connection use case, device wearout can help physically

enforce the access bounds. Similarly, given an expected usage of the targeting commands in

one task, such as 100 times, we can exploit the device wearout to build an architecture that

automatically wears out after the 100th access to the command decryption key. And we build

the architecture inside the launching system so that every access to the command decryption

key needs to traverse through the architecture. Compared with the limited-use connection use

case, the access bound here is relatively small that a small number of parallel structures are

feasible. And the degradation criteria of the parallel structures should be strict because we do

not want a single unintentional targeting command to be executed.

As a result, our design principles of using device wearout to build a limited-use targeting

system are: 1) the targeting system should work reliably for the expected number of usage,

100 times, for instance. 2) the targeting system should not work for the 101st time. Since the

design goals here are similar as in the last use case, we skip the detailed discussion of design
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Figure 3.5: The total number of NEMS switches needed with different engineering options
for the limited-use targeting system.

options. Figure 3.5 shows the total number of NEMS switches needed with different engineer-

ing options. Since the targeted access bound is relatively small, the number of NEMS switches

needed in the architecture is also reduced by several orders of magnitude compared with the

limited-use connection use case. Without redundant encoding, the limited-use targeting system

needs at least 8,855 NEMS switches with α = 20 and β = 16. The worst case in Figure 3.5a is

842,941 NEMS switches with α = 14 and β = 8. With redundant encoding, the total number

of NEMS switches can be reduced to 810 when k=(10%*n), α = 10 and β = 8, as shown in

Figure 3.5b. The curves are less smooth because of the small usage target. Only 5 to 10 paral-

lel structures are needed in total and small variations in device wearout bounds can change the

total number of parallel structures.

3.6 Using device wearout to build one-time pads

One-time pads [71] are important cryptographic algorithms used in many important sce-

narios as they can provide perfect secrecy [72, 73]. However, to guarantee the perfect secrecy,
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important rules for one-time pads include that there must be only two copies of the keys (one

for the sender and one for the receiver), one copy should be securely transmitted from the

sender to the receiver before message transmission, and the sender and receiver must destroy

each key immediately after each message encryption/decryption [74].

Traditionally, secret keys were written in real paper pads. Paper, however, severely limits

the bandwidth of key distribution. One approach would be to use read destructive memories,

which can share the keys and destroy them after use. They can not, however, resist adversarial

cloning. Attackers may clone the one-time pads and make two copies, one copy to replace the

receiver’s original one and another copy for themselves to break the encryption in future mes-

sage transmission between the sender and receiver (the archaically named “evil maid attack”).

Another approach would be to use Physically-Unclonable Devices (PUFs) [75, 76] to fabri-

cate an unclonable one-time pad. PUFs depend upon process variations in each chip, however,

making it difficult to fabricate two identical chips so that a sender and receiver could share the

pad. We need to both defend against stealthy replications by making it difficult for attackers to

ever access the secret keys, yet offer reliable secret sharing between the sender and receiver.

We propose to use wearout devices to provide hardware enforced security for one-time

pads. In Section 3.6.1, we use decision trees to distribute large random keys as a form of

randomness amplification. In Section 3.6.2, we build hardware decision trees with NEMS

switches to physically enforce the one-time usage of the keys. In Section 3.6.3, we exploit

redundant encoding techniques to guarantee that the receiver can reliably retrieve the key but

adversaries can not. The impacts of engineering options such as decision-tree heights, device

wearout characteristics are discussed in Section 3.6.4.
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Figure 3.6: The decision-tree structure for randomness amplification. The receiver follows
the short string to get the random key. At each branch, ‘0’ means left and ‘1’ means right. For
instance, the short string “010” directs to random key c.

3.6.1 Secure transmission of large random keys

In one-time pads, each message employs a new key and the key must be at least as long

as the message. As a result, large keys are required for long messages and these keys must

be transmitted securely before any message transmission. To relax the requirement for secure

transmission of the whole block of random keys, we design decision trees that store many po-

tential keys in their leaves and each key is indexed by a short string about the path information,

as illustrated in Figure 3.6. We assume only the sender and receiver share the right path so that

adversaries can only do random path trials to obtain the secret keys.

As a result, the secure transmission of large random keys is divided into the secure trans-

mission of two parts: a short path string and a decision tree that contains many potential random

keys. On one hand, the secure transmission of the short path string is less expensive compared

with the whole block of random keys. There are many choices for the transmission media and
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people can even memorize it. If using a temporary channel for the short string, there is less

opportunity for adversaries to break it since the transmission time could be very short. On

the other hand, decision trees are implemented in wearout devices on a chip, and the secure

transmission of them is guaranteed by our design with NEMS devices, which will be explained

in Section 3.6.2.

The chip that contains many decision trees (many random keys) is our new set of “one-time

pads” that should be delivered to the receiver beforehand for many instances of potential mes-

sage transmission. Even if the chip is obtained by adversaries, the adversaries still have little

chance obtaining the right random keys without the right path information. Moreover, the de-

cision tree will be destroyed very quickly after one trial because of the underlying wearout de-

vices. We will explain the hardware implementation of decision trees in detail in Section 3.6.2

and Section 3.6.3.

3.6.2 Hardware design of one-time decision trees with NEMS switches

Design principles

To guarantee the security of one-time pads in decision trees, we need to follow the rules

that random strings must be transmitted securely (without stealthy cloning) and destroyed im-

mediately after use. In general, the hardware design of decision trees using NEMS switches is

guided by the following principles:

• At least one path should work so that the receiver is able to use the key at least once.

• Not many paths should work, which will prevent adversaries from getting the key within

limited trials.

• Each tree should be area efficient so that we can maximize the density of one-time pads

on a fixed-size chip.

We build the decision-tree circuit with NEMS switches as intermediate nodes of the tree. On
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Figure 3.7: Schematic graph of the implementation of a 3-layer decision tree using NEMS switches

one hand, to allow the receiver to use the tree at least once, the path to the right random

string should be successful at least for the first time, which imposes a lower bound on the path

reliability. On the other hand, to effectively withstand adversaries’ attacks, the paths should

fail as quickly as possible so that not many of the paths work successfully, which imposes an

upper bound on the path reliability. Similar to the first two use cases, we can physically enforce

the access bounds by carefully engineering the decision-tree structures with NEMS switches.

Hardware design of decision trees

Figure 3.7 shows the schematic of the decision-tree circuit. The decision-tree circuit uses

the short path string as control bits to open up the path to the right random string and sends out

the right random string serially. The intermediate nodes in the decision tree are implemented

with NEMS switches that wear out very quickly, while the random keys in the leaves are im-
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plemented in read destructive shift registers. Simply relying on an array of read-destructive or

one-time programmable devices (eg. anti-fuse technologies), however, would be vulnerable to

“evil maid attacks”. The read-destruction could be compromised if reading with a lower volt-

age. Attackers could also easily clone the devices and bypass the destruction. Our architecture

with NEMS switches on the paths will resist cloning by making it difficult for attackers to get

access to the memory. And we distribute the random keys into many small memory devices so

that it will be hard for attackers to inspect all of them.

As shown in Figure 3.7, one NEMS switch is used at each branch of the decision tree.

Only if all the intermediate nodes along the right path survive after the first access can the

receiver successfully obtain the target random string. If each NEMS switch could only be

accessed once ideally, then accessing each intermediate node should allow you to choose one

path but destroy the other one at the same time since the intermediate switch would fail next

time. As a result, only one access could be made to the ideal decision tree and this decision

tree meets all of our design goals. However, practical NEMS switches are hard to provide

deterministic wearout bounds due to fabrication and process variations. As a result, we exploit

the probabilistic modeling of NEMS switches, discussed in Section 3.2, to reason about the

security of hardware decision trees.

Probabilistic reasoning

According to the reliability model in Equation (3.3), the probability of each NEMS switch

surviving the first access is R(1) = e−(
1
α )

β

. Assume the height of the decision tree is H. Then

the probability of successfully getting through the right path is (R(1))H = e−(
1
α )

β
H . If any of

the NEMS switches on the right path failed for the first access, then no one would ever get to

the right random key.

A successful decision-tree design should enable a successful first access but prevent any

subsequent accesses. The probability for a successful second trial can be throttled by designing
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a high tree or using NEMS switches with tight wearout bounds so as to guarantee the security

and one-time usage of the decision tree. However, under this condition, the probability of a

successful first access is also restricted. We should guarantee that the receiver can succeed at

least once without sacrificing the security at the same time.

One solution to improve the one-time pads’ reliability is to provide multiple copies of the

same decision tree for each transmission. The receiver can get the key as far as the right path in

one copy is successful. However, the challenge of this solution is to avoid leaking information

to adversaries with multiple copies of the same random keys. We solve this problem by exploit-

ing Shamir’s secret sharing mechanism and redundant encoding, as discussed in Section 3.6.3.

3.6.3 Redundant encoding for reliable and secure key transmission

To prevent information leakage to adversaries with redundant copies, we encode the ran-

dom strings with error-correction codes and spread them into different copies. Some copies

may be erased because of the device failures. The receiver can recover the right random string

with a small number of failed copies. The desired feature of the error correction codes, how-

ever, is fast degradation once we get more failures beyond our error tolerance target to with-

stand adversaries’ attacks.

Based on Shamir’s secret-sharing scheme, as described in Section 3.4.1, each random string

is encoded into n component keys stored at the same position of n copies of the decision tree:

S1, S2, ..., Sn. Each random string S can be computed with k or more Si components. As a

result, to guarantee both the reliability and security of random keys, we need to guarantee that

the receiver has close to one probability to get through k or more paths successfully, while

adversaries have close to zero probability to do the same. The main difference between the

receiver and adversaries is that we assume adversaries have no knowledge about the right path

information.
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Probabilistic modeling of successful one-time pads

Given the redundant encoding technique, we can calculate the receiver’s success probability

and adversaries’ success probability analytically. The receiver’s success probability on one

copy is:

S(1)recv = e−(
1
α )

β
H (3.9)

The probability of getting at least k out of n copies successfully is:

S(k+)
recv =

i=n

∑
i=k

(
n
i

)(
S(1)recv

)i(
1−S(1)recv

)(n−i)
(3.10)

For adversaries, we first consider that they can get through x paths successfully out of n copies.

Then, we need to calculate the success probability of k or more out of x being the correct path,

with the probability of each successful path being the correct path as follows (since there are

2(H−1) paths in total):

P =
1

2(H−1)
(3.11)

The adversaries’ success probability for getting through one path in one copy is:

S(1)adv = e−(
1
α )

β
H (3.12)

The probability of getting through x paths in n copies is:

Prob(x) =
(

n
x

)(
S(1)adv

)x(
1−S(1)adv

)(n−x)
(3.13)

The probability that k or more out of x successful paths are the right paths is:

Probx(k+) =
i=x

∑
i=k

(
x
i

)
Pi(1−P)(x−i) (3.14)

The probability of getting at least k out of n copies successfully for adversaries is:

S(k+)
adv =

x=n

∑
x=k

(Prob(x)Probx(k+)) (3.15)

, in which k ≤ x≤ n.

The engineering goal for one-time pads in decision trees is to make sure that S(k+)
recv is close

to one and S(k+)
adv is close to zero. Parameters in the above equations such as H, α , β , n, k

will be discussed in Section 3.6.4 for trade-offs among fabrication cost, area cost, encoding
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complexity, etc.

3.6.4 Engineering space exploration

In this section, we explore the engineering space that can 1) guarantee the success of one-

time pads (in both security and reliability) and 2) reduce the fabrication cost and area cost.

We first use a specific type of NEMS switch with an expected lifetime of 10 cycles: α = 10

and β = 1. We can deal with high process variations (small β s) because only the reliability

of the first access can affect receiver’s and adversaries’ success probability. For each key

transmission, we use 128 copies of the same decision tree (n = 128).

Redundancy levels

Redundancy levels and encoding complexity will be reflected in the values of k. The re-

ceiver’s and adversaries’ success probability with different ks and tree heights Hs is presented

in Figure 3.8. The intersection of the red area in Figure 3.8a and the blue area in Figure 3.8b

is the success space for one-time pads. With high redundancy, the secret is easy to recover.

In contrast, with low redundancy, the access to the secret becomes more difficult since only

receiving enough components can help recover the secret. As a result, low redundancy leads to

high security. As shown in Figure 3.8a and Figure 3.8b, both receiver’s and adversaries’ suc-

cess space shrink quickly with the increase of k (decrease of redundancy) but adversaries fail

faster. Moreover, when both n and k increase, the complexity of encoding and decoding ran-

dom strings increases because the latency for constructing and solving the polynomial systems

increases.
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Figure 3.8: Success probability with different tree heights and ks (redundancy levels). The
intersection of the red area in the left figure and the blue area in the right figure is one-time
pads’ success space for both reliability and security.
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Figure 3.9: Success probability with different wearout bounds (MTTFs) and tree heights.

Tree heights

Higher trees can also enhance the security of one-time pads because 1) the path to the

random keys gets longer so that the probability of getting through all the nodes along the path69
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for both the receiver and adversaries becomes smaller, and 2) the number of paths increases

exponentially so that it is even harder for adversaries to get on the right path. In Figure 3.8a,

the receiver’s success area shrinks when the tree height increases. However, in Figure 3.8b, the

tree height can effectively block adversaries. When the tree height is 8 or more, the adversaries’

success probability reduces to zero even if the redundancy level is very high (k is close to 0).

In summary, redundancy provides reliability for the receiver and the tuning of redundancy

levels can trade encoding/decoding performance for security. And higher trees can be exploited

to further improve the security of one-time pads, while with higher area and performance cost.

In Figure 3.8, we used a specific type of NEMS switch in which the mean time to failure

is about 10 cycles. This can achieve a large success space for one-time pads. However, such

NEMS switches may be expensive to fabricate to enforce the wearout fast and under control.

Figure 3.9 shows the impacts of different device wearout bounds defined by the mean time to

failure or α values. With higher αs, both the receiver and adversaries have a higher probability

of getting the right key. To ensure security, we need higher trees or less redundancy to com-

pensate for the loose wearout bounds of devices. We can see the trade-off between tree heights

and wearout bounds when H ≤ 7: higher trees compensate for looser wearout bounds. When

H ≥ 8, the tree height can effectively withstand any adversaries’ attacks. Lower device varia-

tions (larger β s) lead to smaller wearout windows. When the target access bound is only one

cycle, larger β s postpone the wearout so they do not help ensure security, which also indicates

high tolerance to process variations while offering high reliability for the sender and receiver.

3.6.5 Evaluation

Given the design of hardware one-time pads in decision trees, we want to evaluate how

many times a single 1mm2 chip can be used for message transmissions between the sender and

receiver. We also want to evaluate the latency and energy cost for retrieving a key each time.
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Figure 3.10: Density estimate

We assume an H-tree layout for the decision tree circuit. The area cost of a complete binary

tree in H-layout is at the order of the number of leaves in the tree if nodes are separated with

unit distance [77]. Given that the height of each decision tree is H, there are 2(H−1) leaves.

We assume 100nm2 for the dimension of each NEMS switch [51, 78, 33]. Then the area

cost for the decision tree is about 100 ∗ 2(H−1)nm2. The area cost for shift registers is linear

to the size of random strings. The size of each random string is assumed to be proportional

to the tree height, that is, around 1000H bits. Then the area cost for all the shift registers is

2(H−1) ∗1000H ∗50nm2, assuming a 50nm2 cell in the registers.

The number of decision trees we can accommodate in the chip is calculated, as shown in

Figure 3.10. If H = 4 and N = 128, then we can transmit around 4,687 one-time pads in this

chip.
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Latency and energy cost

The latency to retrieve a random key is proportional to the path length and number of

decision-tree copies: lat = αHN, with α being the delay of a single NEMS switch, at the

order of 10 ns [33]. If N = 128 and H = 4 as in our previous example, the latency to get to

the random strings is around 0.00512ms in the worst case. The latency for reading the random

string out from the shift register is proportional to the length of the random string. We assume

that the propagation delay per bit is around 20ns, such as in MM74HC165 parallel-in/serial-

out shift registers. Then the delay of reading the whole random string out is about 0.08ms

(20ns∗1000H). So the total delay for each random key retrieval is around 0.08512ms.

Similarly, the energy cost on the path to the random string is 5.12e-18 (NH ∗10−20) Joule

in the worst case. The energy cost in reading the random strings out is negligible since only

one read from a shift register is needed after successfully getting through a path.

3.7 Limitations

This is an initial work to exploit a contrarian view of wearout to build limited-use security

architectures. However, more experimentation and discussion on NEMS failure models and

security mechanisms are needed in the future.

The primary limitation of the current work is that, even with techniques to decrease system-

level sensitivity to device variation, device parameters must still fall within a specific range to

make system use targets practical. Note also that we reduce sensitivity to the scale parameter

(that represents devices’ mean time to failure) but not the shape parameter (which represents

devices’ variations in lifetime degradation). Furthermore, although the Weibull model is highly

parameterized, we need experimental data to validate the range of parameters that are realistic

of this or other alternative models. Finally, we might compromise the device’s availability for
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legitimate users in order to guarantee strong confidentiality and integrity. An attacker could

purposely degrade the NEMS network through many password guesses to consume the legiti-

mate usage bound, which will hurt the availability for legitimate users. The key issue, however,

is to guarantee confidentiality and integrity of the data after the attacker got access to the de-

vice. In our design, intentional consumption of the legitimate usage bound could only degrade

the device faster, but not leak any information of the confidential data.

3.8 Related work

Hardware security has attracted a lot of interests recently. As mobile and embedded devices

become ubiquitous, attackers could easily get access to the physical devices. In order to achieve

confidential information in the devices, they could exploit any hardware measures to crack the

devices, such as brute-force, reverse engineering, side channels, etc [79]. Researchers have

proposed a variety of countermeasures to defend against such kinds of physical attacks.These

countermeasures can be generally classified into two taxonomies: software assisted approaches

and pure hardware approaches:

Software assisted approaches Many existing hardware security solutions involve the co-

operation of software and hardware [80, 58]. For example, modern smartphones have tamper-

resistant hardware modules (eg. SoC’s secure enclave) to protect the processing and the storage

of the device’s encryption key and user’s confidential information, yet some important security

policies that restrict the usage of the keys are implemented in software. The software interface,

however, could expose security vulnerabilities and compromise the hardware security. Soft-

ware may have bugs that lead to violations of the policy. The device could be reprogrammed,

either by adversaries or under duress, through these software APIs to implement a different

policy. Hence, pure hardware solutions are desired to physically secure the confidential data.
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Hardware approaches Hardware approaches exploit physical device characteristics to pro-

tect the data. The specific hardware measures have been ad-hoc and we summarize them into

the following three taxonomies:

1. Physical disorder based security: Physically unclonable functions (PUFs) and random num-

ber generators (RNGs) are most popular hardware security primitives in this category [81].

They are based on the inherent randomness in each device due to process variations to gen-

erate a unique key for each device for device authentication, IP protection, random number

generation, etc. A variety of hardware technologies have been explored to provide the phys-

ical disorder, such as SRAM [82], DRAM [83], memristors [84, 85], nanotechnologies [86],

etc.

2. Physical degradation based security: This taxonomy refers to hardware measures that en-

force physical usage bounds through purposely degradation of the hardware. [87] created

the first self-enforceable hardware for software and content usage metering. They employed

the aging effects in transistors due to negative bias temperature instability to measure the

time a particular licensed software is used. Similarly, [88] used the SRAM decay phe-

nomenon to measure time for batteryless embedded devices in order to throttle response

rates to adversarial accesses. Recently, [89] proposed a memristor-based neuromorphic

computing system that can resist adversarial learning of the model and data by degrading

the learning accuracy nonlinearly after more inputs are applied to the learning algorithm.

Our proposal also stems from this taxonomy but we tailor the devices’ degradation charac-

teristics to meet the system level usage requirements through a series of techniques. The

methodology can be generally applied to many security architectures where a physically

enforced usage window is desired.

3. Physical destruction based security: Some other hardware approaches can restrict data ac-

cesses through self-destructing circuits. However, most current self-destructing devices can
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only destruct the data, but not the devices [90, 91]. By reprogramming or cloning the de-

vices, all the internal data could be cloned into multiple copies so that the data cannot be

secured. Other self-destructing devices need external operations to trigger the destruction

[92, 93, 94]. For example, DARPA displayed a new chip built on strained glass substrates

that can shatter within 10 seconds when remotely triggered [94]. Nevertheless, our system

wears out automatically without a need for remote control.

Meanwhile, more research efforts are needed in the future to study the general design prin-

ciples, the evaluation and verification methodologies of security architectures that can offer

hardware-enforced security.

3.9 Chapter Summary

In this work, we propose methodologies of using wearout devices to build security architec-

tures. We explored a probabilistic wearout model with Weibull distribution to characterize the

behaviors of NEMS wearout. Based on these characteristics, we design architectures that can

physically limit attacks while accommodating legitimate usage. Three use cases are examined:

a limited-use connection, a limited-use targeting system and one-time pads. We first present a

family of architectural techniques to meet minimum and maximum system-level usage bounds

and characterize the design space in terms of device variability (which affects fabrication cost)

and device count (which affects area and power). Then we use redundant encoding techniques

to improve the security architectures from exponential scaling to linear scaling with the in-

crease of device wearout bounds in the limited-use connection and limited-use targeting system

use cases. In the use case of one-time pads, the redundant encoding (Shamir’s secret sharing

scheme) can effectively throttle the possibility of leaking secret information to adversaries and

thus guarantee both reliability and security of one-time pads.

Overall, we envision new opportunities for physically limiting vulnerability to attacks
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through careful engineering of intentional device wearout.
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Chapter 4

Memory Cocktail Therapy: A General

Learning-Based Framework to Optimize

Dynamic Tradeoffs in NVMs

4.1 Introduction

The traditional memory systems based on DRAM technologies have been facing increasing

challenges due to DRAM scaling issues. Non-volatile memories (NVM), both commercialized

(e.g., NAND Flash [95]) and emerging ones (e.g., PCM [96, 97], ReRAM [98] and NEMS [33,

99]), are considered as promising replacements for DRAM. Compared with DRAM technolo-

gies, these NVM technologies offer persistence, much higher scalability and lower stand-by

power and non-volatility. However, there are also disadvantages of these NVM technologies.

Here are two of the most common ones:

• Performance. The write/read access latencies of these technologies are considerably

longer than DRAM’s. As a result, NVM has lower performance than DRAM.
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• Lifetime. These NVM technologies usually have limited write endurance [100][32][30][101].

If without special treatment, NVM will have short lifetime because (some of) the mem-

ory cells will be worn out soon. As a result, special mechanisms (eg., wear leveling [30]

and/or wear limiting [97]) must be used to guarantee the lifetime of NVM memories.

Various techniques have been proposed to combat the performance and lifetime issues of

NVMs [102, 32]. Unfortunately, the goals of boosting performance and prolonging lifetime

are often in opposition. For example, write cancellation [1][103], which is an effective tech-

nique to improve the NVM performance by prioritizing the reads over writes, results in extra

writes to the NVM, thus shortening the lifetime. On the contrary, using slower and less destruc-

tive writes [32] can improve the NVM lifetime, but at the expense of lower memory system

performance.

Intuitively, we can use a combination of techniques (some for lifetime improvement, some

for performance improvement) to achieve a sweetspot between performance and lifetime. How-

ever, there are several practical issues to achieve this goal:

• Huge configuration space. The whole configuration space is huge not only because

it may contain multiple techniques, but also because each individual technique itself

contains multiple configurable parameters to control its aggressiveness. For example,

in our experiment, the total configuration space includes 3,164 configurations, which is

magnitudes larger than the configuration space of prior arts [104, 105, 106].

• High sensitivity to applications. The impacts of some techniques are very sensitive

to different applications. As a result, the ideal combination of techniques for different

applications are dramatically different, as will be shown in Section 4.3.3. They differ not

just in the choices of techniques, but also in the aggressiveness of each chosen technique.

• User-defined objectives. Different from several prior proposals that aim at improving a

single well-defined goal (e.g., IPC) [104, 106], the desired tradeoff for the NVM changes
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in different situations. This is especially true when it comes to the lifetime of NVM

memory: some users want the memory to last longer (eg. 8 years) and they are willing to

pay some performance penalty for it; and some other users want the computing system

to run at faster speed even if its NVM system will break down after just few years (eg.

4 years). For these two optimization goals here, the ideal configurations are usually

dramatically different.

To adapt the architectural techniques in NVMs to different scenarios, we propose a general,

learning-based framework, Memory Cocktail Therapy (MCT), which tailors a specific combi-

nation of techniques for each application and user-defined objective function. Specifically,

MCT formulates all different combinations of techniques into a high-dimensional configura-

tion space and then employs machine learning techniques to model the behaviors of different

configurations based on a small set of samples. Given the estimation of all different configu-

rations, MCT selects the optimal configuration that satisfies the requirements specified by the

user.

The key challenge in implementing the framework, however, is to select a near-optimal

configuration with negligible overhead at runtime, and ideally with little modification to the

hardware. We implement MCT so that it automatically reduces the dimensionality of the

configuration space by lasso regularization and uses the selected features to guide runtime

sampling, leading to more informative samples and higher prediction accuracies. Also, we

choose lightweight, yet accurate online predictors such as quadratic regression and gradient

boosting, to predict the behaviors of other configurations based on the samples. Furthermore,

we implement MCT with a lightweight phase detector and fined-grained sampling technique

to accommodate both coarse-grained and fine-grained phases in memory behaviors, which do

not rely on prior knowledge about the phases or significant modifications in hardware (except

performance counters).
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In summary, our work has the following contributions:

• We formulate NVM system design problems with various tradeoffs as constrained op-

timization problems (e.g. maximizing performance under a lifetime constraint). We

motivate the need for machine learning techniques because of the high dimensionality

of the configuration space, the high correlation and nonlinear impacts of configurations

and the heterogeneity among applications. To our knowledge, our work is the first to use

machine learning techniques to solve such problems.

• Rather than applying machine learning as a black box, we first compare various machine

learning models based on their prediction accuracy, computation overhead, convergence

rate, etc., and choose the optimal ones. Then, we improve the performance of machine

learning models by data normalization, regularization, feature selection, and training

with informative sample configurations.

• In addition to machine learning techniques, we use architectural insight to improve our

scheme’s robustness. For example, we observe that the impact of Wear Quota [32] is

difficult to predict. Thus, we exclude it from the learning procedures to achieve bet-

ter accuracy and then use it as the last resort to ensure lifetime goals are met despite

inaccurate predictions.

• The framework can also adapt to dramatic phase changes in memory behaviors by guid-

ing the learning procedures with a lightweight phase detector.

• Finally, MCT manages to dynamically choose the near-optimal NVM configuration with

no hardware modification and minimal runtime overhead. Compared to a NVM-based

system with ideal configurations for different applications, MCT using gradient boosting

achieves 94.49% of the maximum performance and consumes only 5.3% more energy.
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Table 4.1: Trade-offs of NVM and Their Impacts on Performance and NVM Lifetime
Trade-offs Impact on Performance Impact on Memory Lifetime Related Proposals
With or without Write Cancel-
lation.

Using write cancellation usually Using write cancellation shorterns [1][103][32][107][31],
etc.

improves performance. NVM lifetime.
With or without Eager/Early
Writeback.

Using eager/early writeback usu-
ally

Using eager/early writeback
shorterns

[108][109][32],etc.

improves performance. NVM lifetime.
Write Latency VS. Endurance. Using long-latency-high-

endurance writes degrades
performance.

Using long-latency-high-
endurance writes prolongs
NVM lifetime.

[32][110], etc.

Write Latency VS. Retention. Using short-latency-short-
retention writes usually improves
performance.

Using short-latency-short-
retention writes shorterns NVM
lifetime.

[111][112][113], etc.

Read Latency VS. Read Distur-
bance.

Using short-latency-high-
disturbance reads usually im-
proves performance.

Using short-latency-high-
disturbance reads shortens
NVM lifetime.

[114][115], etc.

The rest of this chapter is organized as follows. Section 4.2 introduces NVM architectural

techniques and their impacts on performance and lifetime. In Section 4.3, we provide a case

study of the optimization problem in mellow writes. Then we introduce our framework of

Memory Cocktail Therapy in detail in Section 4.4 and its implementation in Section 4.5. The

experimental methodology and results are presented in Section 4.6. Section 4.7 presents related

work, and Section 4.8 summarizes the chapter.

4.2 Background

Various trade-offs exist in non-volatile memories which can be utilized to improve their

performance or memory lifetime. However, in many cases, the trade-offs used to improve the

NVM performance considerably degrade the NVM lifetime, and vice versa.

In this section, we introduce in detail several representative trade-offs for non-volatile mem-

ories and their impact on performance and NVM lifetime, as listed in Table 4.1.These trade-offs

include:

• With or without Write Cancellation. Write cancellation [1][103] usually improves

NVM performance because it lets read request be served sooner. However, it also de-

grades memory lifetime since it performs more writes to the NVM memory.
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• With or without Eager/Early Writeback. Eager writeback [108] utilizes idle memory

intervals to eagerly perform write operations of data in the last level cache (LLC) before

their eviction, so there is less possibility that the write queue is blocked. As a result, it

usually improves performance, However, it also degrades the NVM lifetime since some

eagerly written back data need to be rewritten before their eviction.

• Write Latency VS. Endurance. The endurance of NVM [32] can be considerably im-

proved if the write operations are performed with lower power and longer latency, thus

the NVM lifetime will be significantly prolonged. However, it also significantly degrades

the performance of NVM due to longer write latency.

• Write Latency VS. Retention. In Multi-Level Cell (MLC) NVM, a write operation

usually consists of one RESET and multiple SETs. Shorter write latency can be achieved

by reducing the number of SETs in a write operation, at the expense of shorter retention

time which requries more frequent refresh writes/scrubs and thus degrades the NVM

lifetime [111][112]. Some proposals also claim that there is a similar trade-off in Single-

Level Cell (SLC) NVM [113].

• Read Latency VS. Read Disturbance. It is also possible to improve the NVM read

performance by using short latency but high disturbance reads [114][115]. However,

this also comes with NVM lifetime overhead, since such fast reads require frequent re-

fresh/scrub the read NVM cells and thus degrade the NVM lifetime.

Based on these trade-offs, researchers proposed various techniques to improve the performance

or lifetime of NVM memory. For example, Eager Writeback [108], Preset [109] and Eager

Mellow Writes [32] techniques all utilize the trade-off of Eager/Early Writeback; also, a large

amount of proposals (e.g., [107][31][103]) utilize the trade-off of write cancellation. Further-

more, to achieve a performance-lifetime sweet spot of the utilized trade-off, nearly all the
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Table 4.2: Techniques of the evaluated combined technique.
techniques value discrete continuous

parameters parameters
Default N/A fast cancellation fast latency
Bank-Aware Mellow Writes true slow cancellation slow latency
(bank aware) /false bank aware threshold
Eager Mellow Writes true slow cancellation slow latency
(eager writebacks) /false eager threshold
Wear Quota true wear quota target
(wear quota) /false

Table 4.3: Parameters of the evaluated combined technique.
parameters value
fast cancellation true/false
slow cancellation true/false (true if fast cancellation is true)
fast latency [1, 4]
slow latency [1, 4] (greater than fast latency)
bank aware threshold [1, 4] (in entries per bank)
eager threshold [4, 32]
wear quota target [4, 10] (in years)

Table 4.4: Ideal Configurations for different minimal lifetime constraint of application leslie3d
bank bank eager eager wear wear fast slow fast slow
aware aware writebacks threshold quota quota latency latency cancel- cancel-

threshold target lation lation
4.0 years True 1 True 4 False N/A 1.0 2.0 False True
6.0 years False N/A True 4 False N/A 1.5 2.5 False True
8.0 years True 1 True 4 False N/A 1.5 3.0 False True
10.0 years True 4 True 4 False N/A 1.5 3.5 False True

proposed techniques (e.g., [1][109][32]) are involved with some configuration mechanism to

control its aggressiveness. For each individual application, the ideal configuration of a pro-

posed technique is usually different.

Ideally, if we combine multiple techniques together, the combined technique might achieve

a better performance-lifetime balance than all the individual techniques. However, as will be

shown in Section 4.3.1, the configuration space of the combined techniques will be magnitudes

larger than the configuration space of each individual technique. As a result, it is challenging

to find the ideal configuration among thousands of candidates.
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Table 4.5: Ideal Configurations for different applications
bank bank eager eager wear wear fast slow fast slow
aware aware writebacks threshold quota quota latency latency cancel- cancel-

threshold target lation lation
default False N/A False N/A False N/A 1.0 N/A False N/A
baseline True 1 True 32 True 8.0 1.0 3.0 False True
lbm ideal True 4 True 16 True 8.0 1.5 3.0 False False
zeusmp ideal False N/A True 8 False N/A 1.0 1.0 True False
bwaves ideal True 3 True 32 False N/A 1.0 1.5 False True
stream ideal False N/A True 4 True 8.0 1.5 1.5 False False
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Figure 4.1: IPC, lifetime and energy comparison of default, baseline and ideal configurations.
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4.3 Case study

4.3.1 Mellow writes configurations

As a case study, we focus on solving the optimization of Mellow Writes [32], which covers

a series of techniques that utilize multiple tradeoffs in NVMs (eg. write latency VS. endurance,

write cancellation and eager/early writeback) . In each technique, there are several config-

urable parameters that controls the usage of this technique and its aggressiveness. In general,

mellow writes implements different write latencies and balances between performance and

lifetime by carefully scheduling fast writes and slow writes based on the temporal and spatial

patterns in the memory system.

• Default. Normal is the default technique which uses fast (normal) writes. There are two

configurable parameters with the default technique: fast cancellation and fast latency.

The former one indicates whether to use write cancellation for fast writes, and the latter

one is the normalized speed used for fast writes.

• Bank-Aware Mellow Writes (bank aware). This technique issues slow writes when

the current memory bank is not busy. There are three parameters with this option:

slow cancellation, slow latency and bank aware threshold. The first parameter indi-

cates whether to use write cancellation for slow writes. The second parameter is the

normalized speed of slow writes. The third parameter controls the aggressiveness of

Bank-Aware Mellow Writes: when the number of requests to the corresponding bank in

the write queue is less than bank aware threshold, we issue the current write request as

a slow write. A higher bank aware threshold usually results in longer NVM lifetime but

lower performance.

• Eager Mellow Writes (eager writebacks). This technique eagerly writes back dirty data

in the LLC to NVM memory when it is not busy. It has three parameters: slow cancellation,
85



Memory Cocktail Therapy Chapter 4

slow latency and eager threshold. The first two parameters are the same with Bank-

Aware Mellow Writes. The third parameter, eager threshold, controls the aggressiveness

of Eager Mellow Writes: If the highest N LRU stack positions of last level cache (LLC)

contributes less than 1
eager threshold total hits in LLC, then we consider these N LRU stack

positions to be useless and their corresponding LLC dirty entry can be eagerly written

back. A higher eager threshold usually corresponds to higher performance but shorter

NVM lifetime.

• Wear Quota (wear quota). This technique divides the execution into multiple small

time slices and assigns a wear quota to each slice. If at the beginning of time slice

the accumulated wear quota is reached, the whole coming time slice can only use the

slowest writes (in our implementation, 4×) and write cancellation is enforced. The pa-

rameter used here is wear quota target (in years), which indicates the target lifetime of

Wear Quota technique. A larger wear quota target enforces longer NVM lifetime, at the

expense of a lower system performance.

4.3.2 Objective tradeoffs

Since NVM systems face multiple constraints (e.g., performance, lifetime and possibly

energy [116] as in embedded systems and data centers), the optimization objectives are usually

complex and user-defined. In our case, there are three optimization goals: first, the qualified

configurations must guarantee a minimum lifetime; then, our goal is to achieve an IPC as high

as possible; finally, among all the qualified configurations whose IPCs are within 95% of the

maximum, we choose the one with the lowest system energy as the optimal configuration. Let

Pi,Ti,Ei represent IPC, lifetime, and energy respectively of configuration i, ∀i ∈ (0,N). Then
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the optimization problem can be formalized as follows:

min
i∈(0,N)

Ei

subject to Ti ≥ t,

Pi ≥ 0.95×P∗

Although we focus on optimizing IPC and energy efficiency under lifetime constraints in our

case study, our framework could be generally applied to optimization problems under other

constraints, eg. by switching the three metrics: IPC, lifetime and energy from constraints to

objectives and vice versa. For example, in embedded systems, the objectives could be to en-

force a constraint on energy, while maximizing performance and lifetime. In data centers,

however, the objectives could be to guarantee a performance target, while maximizing lifetime

and minimizing energy. Our learning framework is flexible with user-defined objective func-

tions since the main challenge we want to solve is to model performance, lifetime and energy

of all different configurations based on a small number of samples, yet at negligible cost at

runtime.

4.3.3 Challenges

The optimization problem (i.e., choosing the optimal configuration) is trivial if we have

the data for all configurations: [Pi,Ti,Ei], ∀i ∈ (0,N). However, in this section, we will show

that it is impractical to do so for three reasons: huge configuration space, high sensitivity to

applications and high sensitivity to user defined objectives.

Huge Configuration Space

As mellow writes covers a series of techniques and multiple tradeoffs, the whole config-

uration space is non-trivial, as is shown in Tables 4.2&4.3. To reduce its size, we add three

constraints to remove impractical configurations:
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• The parameters are used only when it is enabled by the selected techniques. For example,

when eager writebacks technique is not selected, eager threshold is meaningless and

thus not considered.

• The slow latency must be larger than fast latency.

• When fast cancellation is true, we force slow cancellation to be true. Prior work [32]

shows that write cancellation for slow writes is more effective in improving performance

compared with write cancellation for fast writes. Therefore, it does not make sense to

have a technique which offers write cancellation for fast writes, but not for slow writes.

However, even with these constraints, the configuration space of Mellow Writes is still huge—

there are 3,164 different configurations in total. Brute-force search of the whole configuration

space is very expensive. In our experiments, in order to compare our framework with the ideal

configuration, we simulate all the configurations for 10 applications , which consumed more

than 300,000 computing hours. The high evaluation cost makes the selection of the optimal

configuration at runtime quite challenging.

High Sensitivity to User Defined Objective

The choice of optimal configuration is highly affected by the user defined objective. For

application leslie3d, we vary the minimal lifetime requirement from 4 years to 10 years. The

results are shown in Table 4.4. Due to the experiment time constraint, we explored a limited

configuration space without the usage of Wear Quota for this table, but the results clearly

indicate that the optimal configuration varies with different user defined objectives.

High Sensitivity to Applications

Not only does the optimization objective affect the choice of optimal configuration, but also

the currently executed application. Figure 4.1 shows the optimal under the default optimiza-
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tion objective (i.e., 8-year lifetime, an IPC within 95% of the maximum IPC while minimizing

energy). For comparison purposes, we also have two representative configurations: default,

which does not use any mellow writes techniques; and baseline, which is the static configura-

tion used in prior work [32].

We can see that, the effectiveness of baseline configuration is far from ideal—for more than

half of the applications, the performance of baseline is significantly lower than ideal. However,

as is shown in Table 4.5, finding out the ideal configurations is certainly not an easy task. In

fact, in all the ten evaluated applications, none of them share the same ideal configuration.

4.4 Memory Cocktail Therapy

To address the challenges and solve the constrained optimization problem as discussed in

the case study, we propose Memory Cocktail Therapy, a general, learning-based framework to

dynamically model IPC, lifetime and system energy of different combinations of techniques

for each application. We first formalize the problem in Section 4.4.1 and then quantitatively

analyze the problem complexity in Section 4.4.2. The high complexity of our problem space

indicates that statistical modeling is necessary, therefore we investigate various learning algo-

rithms and evaluate their performance and computational overhead in Section 4.4.3. Finally,

in Section 4.4.4 we further improve the accuracy of selected learning algorithms based on the

insights from both machine learning and computer architecture perspectives.

4.4.1 Problem Formalization

We formulate the configuration space and tradeoff space to have a well-defined interface

(inputs and outputs) for learning and optimization procedures.
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Configuration Space

We represent all configurations with 10-dimensional vectors:

x =



bank aware

bank aware threshold

eager writebacks

eager threshold

wear quota

wear quota target

f ast latency

slow latency

f ast cancellation

slow cancellation



(4.1)

For example, the following vector, [1,1,1,32,0,0,1.5,3.0,0,1]T represents a combination of

techniques that uses bank-aware mellow writes with a threshold of 1, eager writebacks with

an eager threshold of 32, fast and slow write latencies of 1.5x and 3.0x, and write cancellation

only on slow writes.

Tradeoff space

We include three metrics in the objective space: IPC, lifetime and system energy, as dis-

cussed in 4.3.2. Therefore, we formulate the tradeoff space into 3-dimensional vectors:

y =


IPC

li f etime

system energy

 (4.2)

90



Memory Cocktail Therapy Chapter 4

Application Top-3 most effective features

lbm
− f ast latency,
+ f ast latency2,
+slow cancellation2

leslie3d
+slow cancellation2,
−eager writebacks∗ slow cancellation,
+eager writebacks∗ f ast latency

GemsFDTD
+slow cancellation2,
−slow latency∗ slow cancellation,
+slow latency

stream
− f ast latency,
+slow cancellation2,
−eager writebacks∗ f ast latency

Table 4.6: Most effective quadratic features in different applications

4.4.2 Quantitative analysis of the problem space

To demonstrate the problem complexity, we quantify the impacts of different input param-

eters and their correlation. We fit the training data to a quadratic regression model with lasso

regularization, which show high prediction accuracy in later experiments. More details about

the model will be introduced in Section 4.4.3. In this model, the input parameters are extended

to quadratic features including both single knobs and knob pairs. The post-training weights of

these features indicate their effectiveness and impacts on the outputs.

Then, we rank the top-3 most effective features for different applications, as shown in

Table 4.6. From the effectiveness ranking results, we can see that: 1) some of these top-

ranked features are knob pairs, which indicates high correlation between input parameters and

the importance of their correlation. Thus, it is necessary to model the joint contribution of

these parameters to the outputs. 2) different applications have entirely different top-ranked

knobs/knob-pairs, so it is difficult to determine the effectiveness order statically. 3) single

knobs can have nonlinear impacts on the outputs (e.g. fast latency on lbm). Note also, we

have a minimum lifetime constraint in the optimization problem. As a result, it is difficult

to determine the best value for each knob to satisfy the lifetime constraint while maximizing

performance and energy efficiency without statistical modeling.

Therefore, we exploit machine learning techniques to model the relationship between con-

figurations and the outputs, as discussed in the next section.
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Figure 4.2: Convergence rates and prediction accuracies using different models

4.4.3 Learning performance, lifetime and energy

To model performance, lifetime and energy, we investigate three learning algorithms: 1)

Regression, 2) Boosting algorithms, 3) Hierarchical Bayesian models.

Regression models the functional relationship between configuration vectors and objective

vectors, based on a small set of sample configurations. One drawback of regression is overfit-

ting, which can happen when the model has many parameters (e.g., higher-order polynomials).

Regularization reduces model complexity to avoid overfitting. Lasso, the least absolute shrink-
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age and selection operator, is a common regularization technique [117]. We will show that by

using lasso, we can speed up the convergence of regression-based predictors (in Figure 4.2), as

well as guide the feature selection for more informative runtime sampling (in Figure 4.4).

Boosting algorithms are a class of ensemble learning methods combining multiple weak

learners into a strong learner [118]. Gradient boosting is a state-of-art boosting algorithm for

learning regression models [119, 120]. It is also one of the most accurate methods for our data

sets as shown later.

Hierarchical Bayesian models do not learn the functional relationship between inputs

and outputs, but assume that some latent variables are shared between different applications

and learning their posterior distributions allows predictions for the current application [121].

Rather than overfit, this model uses only similar applications to predict new application be-

havior; however, accuracy requires that the training set has sufficient breadth to find known

applications that correlate with the new application.

Model selection

Table 4.7 and Figure 4.2 compare these models in terms of (1) requirements for online or

offline data, (2) computation overhead (in microseconds), (3) convergence rates (in samples),

and (4) prediction accuracies. We use coefficient of determination as our accuracy metric:

acc = max

(
0,

(
1−

∥∥(Y ′−Y )
∥∥2

2∥∥(Y −Y )
∥∥2

2

))
(4.3)

where Y
′

represents the prediction, Y represents the true data and Y represents the mean of

the true data. The coefficient of determination measures the proportion of the variance in

dependent variables that can be predicted by independent variables; a commonly used metric

to evaluate prediction accuracy [122]. The computation overhead is tested on a 12-core Intel

i7 processor with 64 GB memory.

The offline predictor averages data from training applications to predict the current applica-
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Predictors Need offline data? Need online data? Computation overhead
offline Yes No 0 ms
linear model, no regularization No Yes 1 ms
linear model, lasso regularization No Yes 1 ms
quadratic model, no regularization No Yes 3 ms
quadratic model, lasso regularization No Yes 8 ms
gradient boosting No Yes 112 ms
hierarchical Bayesian model Yes Yes 8,000 ms

Table 4.7: Comparison of different models

tion. There is no runtime overhead, but prediction accuracy is low. The Hierarchical Bayesian

model has high prediction accuracy and fast convergence rate on lifetime because of the high

correlation among benchmark applications. However, the IPC and energy predictions are not

accurate because the data magnitudes vary significantly among different applications. The

biggest issue with this model, however, is that it takes 8,000 ms to produce a prediction. We

will not focus on this predictor in this work. However, for future work, it is possible to design

specialized hardware for the model to mitigate the runtime overhead. Among online models,

gradient boosting and quadratic regression with lasso regularization both achieve high pre-

diction accuracies on all three objectives and have reasonable runtime cost. Quadratic model

without lasso regularization has difficulty converging before 200 samples. The reason is that

the input vectors are expanded from 10 dimensions to 65 dimensions in the quadratic model, in-

cluding square terms, cross terms and linear terms. Without regularization, the model is prone

to overfitting given small sample size. Linear models are not as accurate as quadratic models,

which indicates that the underlying features have complicated, interdependent relationships to

the targets.

According to Table 4.7 and Figure 4.2, we choose gradient boosting and quadratic regres-

sion with lasso in our final experiments because they achieve high prediction accuracies with

low computation overhead.
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Figure 4.3: Including or excluding wear quota in the configuration space. We take
benchmark lbm from SPEC CPU 2006 as an example and choose 77 sample configura-
tions using feature-based sampling. The xlabels are in the format of: [fast rate, slow rate,
write cancellation (on slow and/or fast writes)]. From left to right, the configurations have
increasing write latencies. Including wear quota adds more complexity to the modeling and
degrades prediction accuracies by 2%∼ 6%.

4.4.4 Improving Prediction Accuracies

Rather than applying existing learning techniques as black boxes, we can make small mod-

ifications to improve their behavior on the particular problem of optimizing non-volatile mem-

ory configurations. We find that prediction accuracy is improved using the following tech-

niques:

Normalization avoids extreme coefficient values for different parameters. We normalize

all the data to the baseline configuration’s measured behavior. This technique improves both the

prediction accuracy and convergence rate; however, the predictor now only learns how different

a configuration is from the baseline. Thus, we periodically run the baseline configuration and

95



Memory Cocktail Therapy Chapter 4

multiply the prediction data by the baseline data. This method accommodates small system

phase changes and avoids oscillation by using absolute values.

Including or excluding wear quota. We observe that wear quota is a technique that makes

significant impact on the three objectives. Wear quota is a technique to guarantee a minimum

lifetime[32]. It does so by ensuring all memory writes are slow when the fast-write quota for

a period is exceeded. Figure 4.3 illustrates the impacts of wear quota. Compared with the data

not using wear quota, the data using wear quota exhibit higher complexity. Their performance

and energy efficiency is hard to predict when the write latencies are either very low or very high.

When write latencies are very low, wear quota is triggered, resulting in slow writes. When write

latencies are very high, the memory system is intrinsically slow and its performance and energy

efficiency is bad. We observe 2%∼ 6% degradation in prediction performance when including

data using wear quota. Therefore, we exclude wear quota from our configuration space for

prediction. However, we use it as a fixup technique later to guarantee the lifetime target for

configurations whose lifetime were overestimated during prediction.

Feature selection. In the previous discussion, we use random sampling to compare differ-

ent predictors. However, we find that the prediction accuracy increases if we sample based on

prior knowledge about what features are most important in the configuration space.

To find important features, we first manually cluster the 8 features (excluding wear quota)

based on domain knowledge. For example, bank aware and bank aware threshold are merged

into one variable, bank aware, that has 5 levels from 0 to 4. Following this approach, we

compress the original 8 features into 5 features: bank aware, eager writebacks, fast latency,

slow latency and cancellation. This manual compression further aids dimensionality reduction.

The configuration space, however, requires both the usage and the aggressiveness parameter for

each technique.

Then we use lasso regularization to identify important features. Figure 4.4a shows the

coefficients of lasso regression with a linear model. The coefficients of bank aware and ea-
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Figure 4.4: Feature-based sampling vs. random sampling on gradient boosting.

ger writebacks are near zero for all objectives of all applications. The three important features

are thus: fast latency, slow latency, and cancellation. The same features in square terms and

cross terms are also the important features in the quadratic model with lasso regularization.

Based on the selected features, we obtain 77 samples by uniformly sampling from the three

primary features and randomly sampling from the left. The feature-based sampling leads to

higher prediction accuracies for all other configurations. For example, the performance of

gradient boosting increases by about 3% on average for all objectives.
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Additionally, the three primary features indicate that our framework is not limited to the

techniques in this chapter. It could be generally applied to architectural techniques in NVMs

that involve these three features [109, 112, 113].

4.5 Implementation

In this section, we discuss how to implement the learning-based framework in practical

NVM systems. There are several challenges in the implementation. First, in real memory

systems, there are various access patterns along time and among different applications. Mean-

while, the performance of architectural techniques varies significantly for different access pat-

terns as they exploit different tradeoffs. Thus, we assume that the sample configurations and

the chosen optimal configuration should run on similar memory behaviors. Otherwise, the in-

formation we learned from the training is not valuable.Second, real memory systems usually

exhibit fine-grained bursty behaviors. However, all the different sample configurations in our

framework should run on similar memory workload. We should schedule these samples care-

fully to avoid discrepancies in their workload. Third, although we have selected predictors

with accuracies higher than 90%, there still exist mispredictions. Nevertheless, the final opti-

mal configuration should still satisfy the hard constraint in the user-defined objective function,

eg. the minimum lifetime target. Finally, we should guarantee that after optimization, our

system will not perform worse than the baseline.

To address all these issues, we exploit a series of techniques, including phase detection,

fine-grained runtime sampling, wear-quota fixup and periodic health checking. Figure 4.5

illustrates the workflow of our framework. And we discuss each technique in detail in the

following subsections.
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Phase I Phase II Phase ... Phase N

Sampling Prediction and 
Optimization

Monitoring and health checking

Figure 4.5: System implementation

4.5.1 Phase detection

Phase detection methodologies have been widely investigated in system area [123, 124,

121, 125, 126, 127]. Since memory systems exhibit frequent, fine-grained phase changes,

our goal is to implement a lightweight phase detector that recognizes only dramatic changes

in memory behaviors. Our system could tolerate minor phase changes by normalization, as

discussed in Section 4.4.4, and fine-grained runtime sampling, as discussed in Section 4.5.2.

Therefore, we adapt the phase detection methodology in [121] and use Student’s t-test to em-

phasize the detection of dramatic phases. Our phase detection algorithm is as follows:

• Use performance counters to monitor the memory workload (including both read re-

quests and write requests) for every I instructions.

• Keep a history record of the memory workload during the past 1000∗ I instructions.

• Perform the two-sided Student’s t-test for the last 100∗I instructions and the past 1000∗I

instructions based on the mean values and standard deviations of their memory workload.
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Figure 4.6: Phase detection. (I is 1,000,000 instructions and scorethreshold is 15.) Recognized
phases in memory behaviors are marked with red vertical lines, which correspond with the
changes in t-test scores.

The t-test score indicates the confidence in rejecting the hypothesis that the mean values

of the memory workload in the two testing windows are the same. The higher the t-test

score is, the more confident we are to recognize a new phase with respect to the memory

behaviors.

• When the t-test score exceeds a threshold, scorethreshold , we recognize a new phase. Then

we clear off the counters and restart.

We demonstrate the phase detection result of ocean in Figure 4.6. Our phase detector can

accurately capture coarse-grained phases, while tolerate frequent, fine-grained phases.

Note that, higher accuracy might be achieved by providing more program information to the

phase detector. This can be done through either hardware modification (e.g., passing PC with
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memory requests) or application/compiler modification (e.g., generating compiler hints [124,

126, 125, 127]). In this work, the recognized phases shown in Figure 4.6 are sufficient to guide

the learning procedures. Meanwhile, our phase detection scheme only relies on the statistics

provided by existing performance counters.

4.5.2 Runtime sampling

Memory bursty behaviors are common in memory intensive applications (eg. lbm, libquan-

tum, milc, etc.) [128]. If we evenly divide the sampling period into N slices for N samples,

then some samples may fall in bursty periods while others fall in idle periods. To accommodate

these fine-grained memory patterns, we propose fine-grained sampling:

• Assume the total sampling period covers T instructions.

• Run each sample configuration for a small sampling unit, which covers t instructions.

• Loop over all samples for T
N∗t times.

• Accumulate statistics of each sample configuration during T
N∗t sampling units.

We observe that the magnitude of memory burst length is at least 10 million instructions in

our benchmarks. Hence, all the sample configurations could be scheduled within each memory

burst if we use a small sampling unit, eg. 100 kilo instructions. Note also, the configuration of

sampling unit length and the number of iterations can be guided by the mean memory workload

in the current phase, as discussed in Sec 4.5.1. If the mean value is low, we can use large sam-

pling units so that each sample configuration can make effects with enough memory requests.

Otherwise, we can use small units and repeat many times so that all configurations can evenly

experience all memory patterns.

The fine-grained sampling methodology is lightweight so that it incurs negligible overhead

at runtime. With cyclic-fine-grained sampling, each sample will cover a wide set of memory
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behaviors. And all different samples are exercised on similar memory behaviors. Using the

fine-grained sampling methodology together with the phase detector, our system can accom-

modate both fine-grained and coarse-grained phases in the memory system.

4.5.3 Prediction and optimization

After the sampling period, we collect the IPC, lifetime and energy data of the sample con-

figurations. Then we apply the learning algorithms to predict the three objectives of all other

configurations. After the prediction, we choose the optimal configuration based on the used-

defined objective function, as defined in Section 4.3.2.

However, the optimization based on prediction data may have errors. For example, the

chosen optimal configuration might be overestimated in lifetime while its real lifetime cannot

satisfy the minimum target. To correct such prediction errors, we add Wear Quota to the chosen

optimal configuration and set the Wear Quota target to the minimum lifetime target. Then the

minimum lifetime could be guaranteed. If the chosen optimal configuration could meet the

lifetime requirement itself, adding Wear Quota incurs negligible overhead according to the

prior work. For prediction errors in IPC and energy, we account that in our final optimization

results and compare them with the baseline and ideal policy.

4.5.4 Monitoring and health checking

After choosing the optimal configuration, we can launch the optimal configuration in the

memory system. However, the chosen optimal configuration might be suboptimal in practice

due to prediction errors. Hence, we monitor the performance of the memory system and pe-

riodically switch back to the baseline configuration for health checking. During this stage,

we can perform several health checks of the current system. First, we can obtain the memory

workload statistics for the phase detection. Second, we can check minor phase changes by just
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Table 4.8: Processor Simulation Parameters
Freq. 2GHz
Core Alpha ISA, single-core, OoO, 64-byte cacheline, 8-issue
L1$ split 32KB I/D-caches,

4-way, 2-cycle hit latency, 8-MSHR
L2$ 256KB per core, 8-way,

12-cycle hit latency, 12-MSHR
L3$(LLC) 2MB, 16-way, 35-cycle hit latency, 32-MSHR

Table 4.9: Main Memory System Simulation Parameters
Basics 400 MHz, 4GB, 64-bit bus width, using ReRAM,

assume using effective wear-leveling scheme (e.g., Start-
Gap [30]) in bank granularity which can achieve 95% av-
erage lifetime,
write-through (writes bypass row buffers), 1KB row
buffer, open page policy, tFAW=50ns

# of Banks 16
# of Rows 8192 per bank
# of Cols 512 per row
Read Queue 64 entries, highest priority
Write
Queue

64 entries, middle-high priority

write drain threshold: 32 (low), 64 (high)
Eager Mel-
low

32 entries per channel, lowest priority,

Write
Queue

no write drain, slow writes

tRCD 48 cycles (120 ns)
tWP (WR 60∗wr ratio cycles
pulse lat.) (150∗wr ratio ns).
tCAS 1 cycle (2.5 ns)
endurance 8∗106 ∗wr ratio2 writes;

monitoring the statistics of the baseline configuration. With the normalization technique, peri-

odic statistics of the baseline configurations can help adapt to minor phase changes and avoid

system oscillations. Third, if we find that the performance of the chosen configuration is worse

than the baseline configuration, we can switch to the baseline configuration so that our system

will never be worse than the baseline system.

4.6 Results

4.6.1 Experiment setup

We use gem5[12] and NVMain[129], which is a timing-accurate simulator for non-volatile

memories. Table 4.8 and Table 4.9 respectively report the detailed parameters of processor and
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Figure 4.7: Compare Memory Cocktail Therapy with baseline systems with respect to IPC,
lifetime and system energy.

resistive memory based main memory. We assume the memory system uses an efficient bank-

level wear-leveling technique. Without loss of generality, we use ReRAM[130] for the simu-

lated NVM-based main memory. According to recent represented commercial products[131],

we model the baseline write latency to be 150ns and its endurance as 8×106. We also model

the Write Latency VS. Endurance trade-off [32] in our simulation framework: the write latency

can be extended to 150∗wr ratio ns, as a result, the write endurance can be improved quadrat-
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bank bank eager eager wear wear fast slow fast slow
aware aware writebacks threshold quota quota latency latency cancel- cancel-

threshold target lation lation
static True 1 True 32 True 8 1.0 3.0 False True
lbm True 1 True 32 True 8 2.0 2.5 False False
libquantum True 3 True 32 True 8 1.5 3.0 False True
stream False N/A True 32 True 8 1.5 2.5 False False
ocean True 2 True 4 True 8 1.5 3.5 False True
bwaves True 4 False N/A True 8 1.0 1.5 False True

Table 4.10: Optimal configurations for different applications selected by MCT with gradient boosting.

ically to 8∗106 ∗wr ratio2. For processor and memory systems, we respectively use MCPAT

[132] and NVSim [133] to model their energy consumption.

We run 7 memory-intensive workloads (lbm, leslie3d, zeusmp, GemsFDTD, milc, bwaves

and libquantum) from SPEC CPU2006, ocean from SPLASH-2, and 2 extra microbenchmarks

(gups and stream) which separately provides random and stream memory access pattern. Each

benchmark is warmed up for 6 billion instructions and simulated in detail for another 2 billion

instructions. To calculate lifetime, we assume the system will cyclically execute the current

workload until the main memory wears out, and this total execution time is the memory lifetime

for the workload.

4.6.2 Evaluation of memory cocktail therapy

In this section, we evaluate MCT with respect to our three objectives: IPC, lifetime and

system energy. We compare MCT with three baseline systems: 1) default, which does not use

mellow writes techniques, 2) best static policy chosen from prior work, which uses bank aware

mellow writes and eager writebacks with slow write cancellation and wear quota. 3) ideal

policy, which is selected by a brute-force search through the whole configuration space. We

demonstrate MCT using gradient boosting and quadratic lasso as the learning models without

using wear quota in the learning process. After the prediction, MCT uses wear quota as a fixup

technique for the predicted optimal configuration to guarantee a minimum lifetime target.
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Figure 4.9: Sampling overhead

Better tradeoffs between IPC, lifetime and system energy

Figure 4.7 shows the comparison of MCT with other baseline systems. We assume that

the lifetime requirement is 8 years here. And we normalize the IPC and energy data by the

best static policy. The default system only uses fast writes so it achieves high IPC and low

energy consumption. However, it cannot satisfy the minimum lifetime requirement for most

of our benchmarks (except zeusmp). Both MCT and the best static policy can guarantee the

minimum lifetime requirement, while MCT using gradient boosting achieves 9.24% higher

IPC and 7.95% lower energy consumption on average for all the benchmarks. Particularly,

MCT achieves significantly better tradeoffs when the best static policy is far behind the ideal

policy, as in lbm, leslie3d, libquantum, and stream. For other benchmarks that the static pol-
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icy is already close to the ideal policy, MCT performs similarly to the baseline with negli-

gible degradation in performance and energy efficiency. We list the optimal configurations

selected by MCT in Table 4.10. Small variations in the configuration can result in significant

improvement over the static policy. For example, in lbm, the only differences between the

MCT-optimal configuration and the static configuration are in fast latency, slow latency, and

slow cancellation. However, the performance improvement is up to 35%. The main reason

is that, the high slow latency together with slow cancellation in the static policy causes many

rewrites, which hurts lifetime. Eventually, more wear quota slow writes are enforced in order

to guarantee the minimum lifetime target of 8 years.

Compared with the ideal policy, MCT using gradient boosting achieves 94.49% of the

maximum performance with only 5.3% more energy consumption. MCT using quadratic with

lasso achieves 6% performance gains and 5.3% energy savings compared with the static policy.

And it achieves 91.69% of the ideal performance with 8.3% more energy. In particular, it

performs well on most of the benchmarks except stream. This indicates that quadratic model

may not work well for every application depending on the intrinsic memory characteristics

while gradient boosting is more general as it includes a variety of weak predictors.

Sensitivity to different lifetime targets

Figure 4.8 shows the results of MCT with different lifetime targets. We only show MCT

using gradient boosting here. In our experiments, the lifetime targets range from 4 years to 10

years. In general, when we have higher lifetime targets, the chosen optimal configuration has

lower performance and higher energy consumption, and vice versa. MCT can generally capture

this trend. However, there are discontinuities in the predictions, as well as the ideal policies for

different lifetime targets. One reason is that, the set of configurations we experiment on is still

far from complete compared with the oracle, although it already contains 3,164 configurations

and needs more than 300,000 computing hours to simulate for all benchmarks. Nevertheless,
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MCT still manages to select a better configuration than the baseline configuration as in lbm,

stream, lelsie3d, etc. while saving large amount of evaluation time for each configuration.

When the chosen optimal configuration has overestimated lifetime (eg. in GemsFDTD when

the lifetime target is beyond 8 years), the wearquota fixup technique works as the last resort to

guarantee that the minimum lifetime requirement will still be satisfied.

Reduced sampling and learning complexity by excluding wear quota in the learning pro-

cess

Although for some benchmarks (eg. lbm and stream as shown in Table 4.5), including wear

quota in the learning process leads to better choices, there are two practical problems with wear

quota prediction: 1) The prediction accuracies including wear quota degrades by 2%∼ 6% for

all applications, as discussed in Section 4.4.4. 2) Wear quota is a technique that depends on

aggregate memory behaviors in a long period. However, we need short sampling period to

mitigate runtime sampling overhead and fine sampling granularity to tolerate memory bursty

behaviors. Including wear quota in the prediction space adds more challenges in practical sam-

pling methodologies. For example, using the same fine-grained sampling methodology, the

chosen optimal configuration for lbm including wear quota only achieves 70% of the perfor-

mance by excluding wear quota, while consuming 50% more energy. And we observe similar

phenomenon in leslie3d, which has 6% performance degradation with 13% more energy con-

sumption when including wear quota in the prediction.

Sampling overhead

During the sampling period, MCT exercises different configurations in order to model IPC,

lifetime and energy for all configurations. However, these sample configurations are generally

not the optimal one. In this section, we evaluate the overhead caused by running suboptimal

configurations and compare the gains in testing period to the losses in the sampling period. We
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refer the rest of the phase as the sampling period to testing period here.

Figure 4.9a shows the comparison. All the data are normalized by the static policy. On

average, the aggregate IPC of sample configurations is 94.32% of the baseline, while MCT

using gradient boosting achieves 1.09x IPC of the baseline. Similarly, the aggregate energy

consumption of sample configurations is 1.05x of the baseline, while the predicted optimal

configuration only consumes 92.05% energy of the baseline.

Considering the overhead during the sampling period, the practical gains of MCT depend

on the ratio between the testing period length and the sampling period length. As a proof of

concept, in our experiments, the sampling period covers 1 billion instructions and the testing

period covers 2 billion instructions. However, according to prior work on memory workload

characterization of SPEC CPU 2006 benchmarks[128], there are only a few phases during the

whole program execution. And each program has thousands of billions instructions. To have

a better idea about the practical gains, we extrapolate the overhead and gains with different

ratios between the testing period length and the sampling period length. If the testing period is

α times of the sampling period, then the extrapolated IPC is:

IPCtotal = (IPCsampling +α ∗ IPCtesting)/(1+α) (4.4)

Figure 4.9b shows the total IPC and energy consumption by extrapolating gains and losses

based on Equation (4.4). For example, if the testing period is 10x of the sampling period,

which is a reasonable case from the characterization results[128], then MCT using gradient

boosting can still achieve 7.93% performance gains and 6.7% energy savings compared with

the static policy.

Extension to multi-program workloads

We also investigate the effectiveness of MCT in a multi-core architecture. The architecture

has 4 cores, independent L1/L2 cache for each core, a shared 8MB L3 cache and an 8GB,
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Table 4.11: Multi-program workloads
mix1 lbm, libquantum, stream, ocean
mix2 leslie3d, bwaves, stream, ocean
mix3 GemsFDTD, milc, zeusmp, bwaves
mix4 lbm, leslie3d, zeusmp, GemsFDTD
mix5 GemsFDTD, milc, bwaves, libquantum
mix6 libquantum, bwaves, stream, ocean
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Figure 4.10: Memory Cocktail Therapy in multi-core environments.

32-bank resistive main memory. We randomly pick 4 benchmarks and execute them concur-

rently, and then evaluate the performance (in normalized geometric mean IPC) and lifetime

(in years). The multi-program workloads that we experimented on are listed in Table 4.11.

Our results demonstrate that MCT also performs well in multi-program situations, as shown

in Figure 4.10. Compared to the static policy, MCT achieves around 20% (geometric mean)

performance benefits and also satisfies the 8-year lifetime requirement. We only compare

MCT with the static policy for single-core architectures because exploring the design space

in multi-core architectures for comparison is computationally intractable. Meanwhile, MCT

can automatically find a good configuration for the current multi-program workload by only

exercising a small set of sample configurations at runtime.

We found that, multi-core workloads tend to smooth phase behavior out as soon as they

have a least a few programs. Similar results have also been reported in the literature [134].
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That is why MCT also performs well in multi-core environments. The only dramatic effect,

however, is when one or more programs start/exit. In such situations, our phase detection

scheme is still necessary to provide rapid adaptation to this large shift in memory behavior.

The effectiveness and fairness of MCT can be further improved by exploiting multi-program

specific characteristics (e.g., by utilizing the schemes similar to [135, 136]) and we leave it as

our future work.

4.7 Related Work

Machine learning approaches have attracted more interest recently to assist the architec-

ture design as systems and architectures are becoming more complicated. These techniques

have been used for automatic resource allocation [104, 106], branch prediction/LLC reuse-

distance prediction [137, 138, 139], performance modeling [140, 141, 142], etc. For example,

ensembles of Artificial Neural Networks (ANNs) were exploited to coordinate the allocation

of multiple interacting resources to different applications and thus optimize the system-level

performance [104]. Reinforcement learning (RL) was used to adapt the memory scheduling

policies to changing workload and maximize the memory utilization [106]. Markov Decision

Process (MDP) was used to model how the RL-based memory controller interacted with the

rest of system.

Particularly, machine learning approaches can provide guidance on how to determine the

optimal architectural configuration for specific applications and targets. LEO [121] exploited

a hierarchical Bayesian model to learn the system behaviors of various processor and memory

configurations and then minimize energy under performance constraints. JouleGuard [143]

employed a combination of machine learning (eg. multi-armed bandits) and control theo-

retic techniques (eg. PI controller) to provide energy guarantees while maximizing accuracy.

CASH [105] also exploited a combination of control theory and machine learning techniques
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to learn fine-grained configurations of multi-core architectures in IaaS Clouds to provide near-

optimal cost savings for different QoS targets.

Our proposal extends the application of machine learning approaches to emerging memory

technologies, which introduced a new constraint in the optimization space: lifetime. The life-

time constraint increases optimization complexity and leads to significantly different optimal

configurations according to our results. Furthermore, compared with prior machine learning

approaches, our framework is very lightweight: it does not require offline training, hardware

modification or OS coordination and it incurs negligible runtime overhead. Also, our machine

learning methodology is very straightforward and can be easily generalized to solve other ar-

chitecture problems.

4.8 Chapter Summary

This chapter introduces Memory Cocktail Therapy (MCT), a general learning-based frame-

work that manages to optimize combined techniques which utilize multiple dynamic trade-offs

in NVM. With minimal performance overhead and no hardware modification, MCT manages

to find the near-optimal configuration for the current application under a user-defined objec-

tive out of thousands of candidate configurations. MCT reduces the dimensionality of the

configuration space with lasso regularization and selects three primary features: fast latency,

slow latency and write cancellation. These are general features in NVM techniques so that our

framework can also be applied to the optimization of other NVM techniques. Moreover, MCT

manages to accommodate both fine-grained and coarse-grained phases by phase detection and

cyclic-fine-grained runtime sampling.

We implement MCT using both gradient boosting and quadratic regression with lasso. We

demonstrate that MCT using gradient boosting achieves better optimization results on aver-

age for all applications. For example, to guarantee an 8-year lifetime, achieve an IPC that is
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within 95% of the maximum, and minimize energy, MCT using gradient boosting improves

the performance by 9.24% and reduces energy by 7.95% compared to the best static configura-

tion. Compared with the ideal configuration in each application, MCT achieves 94.49% of the

performance with only 5.3% more energy consumption (geometric mean).
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Future Work

In this thesis, we explored the opportunities of exploiting emerging technologies to build novel

architectures. We exploited multi-level PCM to provide efficient storage of large-scale hash

tables. We built limited-use security architectures from NEMS switches using self-degradation

measures. And we optimized NVM systems to automatically adapt to different applications and

objectives to achieve the best tradeoff between performance, lifetime, and energy efficiency. In

addition to these architectures, we discuss several future directions of using emerging tech-

nologies in the following sections.

5.1 Hardware support for datastructures

There are other data structures that can benefit from the variable storage in multi-level PCM

except for hash tables. Here we talk about inverted index structures and prefix trees (trie) in

large scale web search engines.
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5.1.1 Scalable inverted index structures in multi-level PCM

Inverted index structures are commonly used in many domains for efficient queries. For

example, in web search engines, the inverted index structure is used to index and search related

documents based on the keywords. Each of the keywords is accessed as the index to retrieve a

list of documents that contain the word. Due to the large number of web documents, the storage

efficiency and query performance of the inverted index becomes critical to the performance

of search engines. Although solutions such as data compression could improve the storage

efficiency, they cannot improve the query performance at the same time.

As the basic organization and operations of inverted index structures are very similar to

hash tables, they can also benefit from the multi-level PCM. First, the popularity of different

words varies significantly, which results in asymmetrically linked document lists in the inverted

index. As shown in herniated hash tables, multi-level PCM can accommodate variable lengths

of lists by expanding the storage on demand in deeper levels of the same memory cells. And

prefetching techniques can help hide the longer read latency of deeper list entries. Furthermore,

the document lists in inverted index structures are usually sorted based on the access frequency

of these documents. To maintain the sorted order of the document list in traditional storage

is more expensive: it is necessary to rewrite the entire document list if the order changes. In

multi-level PCM, however, keeping the sorted order is a free byproduct because the iterative

write mechanism rewrites all the data on every data update. The sorted order will in turn

improve the query performance by alleviating unnecessary data retrieval that are stored in very

deep levels. As a result, we envision higher performance and density benefits for inverted index

structures than general hash table structures.
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5.1.2 Efficient storage of prefix trees

Prefix trees are a commonly used data structure for the efficient search of popular keywords

and phrases. A typical application is the Typeahead service in web search engines: after a

user typed in several characters of the keyword, the search engine automatically completes the

keyword or prompts with several most possible keywords the user wants to search about. In

the prefix tree, each path represents a valid keyword. Each tree node does not store a key value,

but it stores references to all its children who share the same prefix (path to the parent node)

but have different following characters. The auto-completion of keywords basically needs to

scan the prefix tree and retrieve all the paths starting from the node with the prefix.

It is promising to exploit multi-level PCM to store all the children references of each node.

First, although there are always 26 valid characters in English words, the number of popular

suffixes varies largely for different prefixes. We can pack all the references to valid suffixes

in each node in the same PCM cells. Multi-level PCM can compress the storage for each

node and offer in-place expansion for nodes with variable numbers of children. Second, the

access pattern of prefix trees is usually breath-first search starting from a specific node. As

a result, a traversal of all the children references in each node is necessary. Although the

data compression of each node in multi-level PCM may break the fast indexing feature in

traditional array structures, the performance of breath-first search will not be compromised a

lot, especially considering opportunities for prefetching. Third, the prefix tree will be rarely

updated after the initialization, which can avoid expensive write operations in multi-level PCM.

Above all, multi-level PCM can offer dense and non-volatile storage of these prefix trees, as

well as fast queries on demand. It will be interesting to explore the opportunities to improve

the quality of the Typeahead service with such hardware support.
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5.2 Rate Limiting Security architectures

In Lemonade from Lemons, we built limited-use security architectures by harnessing the

wearout phenomenon in NEMS switches: the failure probability of NEMS devices increases

with more switching cycles, which imposes a usage upper bound on the entire system, so as

to resist brute-force attacks. We proposed a series of architectural techniques and redundant

encoding methods to differenciate legitimate users and attackers, by creating a steep boundary

in their probabilities of gaining successful accesses to the device storage. However, there are

inherent differences in their access patterns: legitimate users tend to consume the access quota

evenly every day, but attackers will attempt to crack the device in a very short time. Therefore,

in addition to the number of switching cycles, the frequency of switching operations can also

be exploited to distinguish legitimate users and attackers.

Meanwhile, many NEMS switches are composed of materials with multiple electrical and

mechanical functionalities, such as polymer matrix composites, which also exhibit the ability

to automatically heal the premature facture and reduced durability [144, 145]. To enable the

self-healing, however, the switching rate must be limited so that the devices can recover in

between consecutive accesses. In opposite, the access pattern of brute-force attackers does not

give enough time for the devices to heal premature issues.

The self-healing and rate-limiting features have brought more opportunities to enhance the

security of the Lemons architectures. On the one hand, the self-healing feature can extend

the lifetime of the NEMS network for legitimate users if the user consumes the access quota

uniformly. On the other hand, the rate-limiting effect and potentially accelerated wearout can

throttle brute-force attacks in a limited amount of time. The main challenge will be to model the

self-healing behaviors of NEMS materials and characterize these materials with the required

latency and energy for the self-healing. It will be interesting to analyze the minimum access-

interval constraint to elongate the system-level lifetime.
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5.3 Statistical Inference and Optimization of NVM Systems

5.3.1 Identifying program characteristics that interference with NVM

techniques

From the motivational experiments in the Memory Cocktail Therapy, the optimal NVM

techniques for different applications can be significantly different. An interesting question,

however, is what program characteristics attribute to their preferences for these NVM tech-

niques? For example, due to the tradeoff between the write latency and write endurance in

phase change memories, various techniques attempt to schedule slow write operations in a

best-effort manner, write back early and slowly while not degrading the system performance.

As a result, program characteristics such as the type of data structures, stride access patterns,

update frequencies, etc. may have significant impact on cache-block reuse distance, memory

workload and read/write distribution, and consequently affect the best choice of NVM tech-

niques.

Identifying correlated program characteristics can bring the following benefits to the cur-

rent MCT framework. First, reduce the sample size. In the current framework, we use a general

set of sample configurations (77 samples) learned from all the training applications. To exercise

these sample configurations at runtime causes a performance overhead (the sampling period

takes 1 billion instructions). Given the knowledge of specific program characteristics, we can

rule out some sample configurations that we can predict with high confidence offline and then

focus on exercising those architectural parameters that may have large variance. Second, learn

from training applications without the runtime overhead. MCT did not use the hierarchical

Bayesian model because it is too expensive to train at runtime. Actually, it attempts to learn

the correlation of the target application with other training applications after collecting some

runtime samples of the target application. However, if we can characterize these applications
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statically, we will not need the online training to learn the correlation between applications.

Moreover, categorize applications based on their program characteristics and deploy them ac-

cordingly to heterogeneous NVM systems.

5.3.2 Approximate computing with NVM systems

In the current Memory Cocktail Therapy framework, we introduce three system metrics,

performance, lifetime and energy efficiency. Meanwhile, as applications and data scale, more

and more applications exhibit tolerance to a small amount of errors in outputs. Taking this new

metric, accuracy, into account, we can explore more interesting tradeoffs in NVM systems.

For example, instead of rewriting after a write cancellation, we can keep the partially-written

value in the memory cells if it is close to the target value. Thus, we can avoid the cost at the

system performance and lifetime during rewrite operations. Also, similar learning frameworks

as MCT can help determine the best NVM techniques for different applications adaptively.

The challenging issue, however, is how to provide statistical guarantee on the accuracy

target. The program characterization discussed in Section 5.3.1 can be helpful. The impact

of approximating different program regions on the system performance, lifetime and accuracy

will be different. Hence, the static analysis of the correlation can provide guidance on whether

we should enable the approximation of write operations.
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Conclusion

In this thesis, we have presented three cases of novel architectures using emerging technologies

and demonstrated the value of the statistical design methodology.

In Herniated Hash Tables, we provide hardware-level optimization to traditional datas-

tructures, hashtables, by storing multiple hash collisions in multilevel PCM. The density ben-

efits of multilevel PCM, however, come with the exponential latency overhead when reading

deeper bits within each cell. To avoid the degradation of system performance, we propose three

prefetching options and address mapping techniques. Experimental results show that Herniated

Hash Tables can get up to 4.8x density benefits while achieving up 67% performance speedup

over traditional chained hash tables on single-level PCM.

In Lemonade from Lemons, we build physically-enforced limited-use security architectures

from NEMS switches. We characterize the wearout behaviors of NEMS switches with a prob-

abilistic failure model: Weibull distribution. Then we design architectures that can physically

limit attacks while accommodating legitimate usage. Three use cases are examined: a limited-

use connection, a limited-use targeting system and one-time pads. We propose a family of

architectural techniques to provide statistical guarantee on the minimum and maximum usage

bounds given device variability. We perform extensive engineering space exploration for each
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case to discuss the tradeoffs between fabrication cost, area and energy. For example, redundant

encoding can effectively reduce the area from exponential scaling to linear scaling with the in-

crease of device usage bounds. Overall, we envision new opportunities for physically limiting

vulnerability to attacks through careful engineering of intentional device wearout.

In Memory Cocktail Therapy, we exploit machine learning techniques to optimize the var-

ious NVM techniques that utilize multiple dynamic trade-offs for different applications. Ac-

cording to the experiments, MCT manages to find the near-optimal configuration for the current

application under a user-defined objective. Also, compared to other adaptive systems, MCT in-

curs minimal performance overhead and no hardware modification. In particular, MCT selects

three most important features from the thousands of configurations: fast latency, slow latency

and write cancellation, which provide guidance on how to improve future NVM systems. Also,

these features are general in NVM techniques so that our framework can also be applied to the

optimization of other NVM techniques.

From these architectures, we learned the following benefits of statistical techniques. First,

as architectures are becoming more complicated, the number of features in architectures in-

creases significantly. However, these features may have different importance. It is very chal-

lenging to manually differentiate their importance without a large amount of comparison exper-

iments. Second, the multi-input/multi-output relationship between the features and the archi-

tectural behaviors could be very complicated and counter-intuitive. Meanwhile, the statistical

modeling can capture the relationship accurately at low cost. Third, if we can approximate

the complex end-to-end relationship in programs with functional relationship, we will be able

to reason about the performance bottlenecks and have more opportunities to accelerate and

optimize the program at the hardware level. Finally, the potential benefits of using statistical

techniques also include that, they can learn as they go: updating the feature weights and the

model coefficients while seeing more data.
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