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RESEARCH ARTICLE Open Access

Genetic variants modulate gene expression
statin response in human lymphoblastoid
cell lines
Elizabeth Theusch1, Yii-Der I. Chen2, Jerome I. Rotter3, Ronald M. Krauss4 and Marisa W. Medina1*

Abstract

Background: Statins are widely prescribed to lower plasma low-density lipoprotein cholesterol levels. Though
statins reduce cardiovascular disease risk overall, statin efficacy varies, and some people experience adverse side
effects while on statin treatment. Statins also have pleiotropic effects not directly related to their cholesterol-
lowering properties, but the mechanisms are not well understood. To identify potential genetic modulators of
clinical statin response, we looked for genetic variants associated with statin-induced changes in gene expression
(differential eQTLs or deQTLs) in lymphoblastoid cell lines (LCLs) derived from participants of the Cholesterol and
Pharmacogenetics (CAP) 40 mg/day 6-week simvastatin clinical trial. We exposed CAP LCLs to 2 μM simvastatin or
control buffer for 24 h and performed polyA-selected, strand-specific RNA-seq. Statin-induced changes in gene
expression from 259 European ancestry or 153 African American ancestry LCLs were adjusted for potential
confounders prior to association with genotyped and imputed genetic variants within 1 Mb of each gene’s
transcription start site.

Results: From the deQTL meta-analysis of the two ancestral populations, we identified significant cis-deQTLs for 15
genes (TBC1D4, MDGA1, CHI3L2, OAS1, GATM, ASNSD1, GLUL, TDRD12, PPIP5K2, OAS3, SERPINB1, ANKDD1A, DTD1, CYFI
P2, and GSDME), eight of which were significant in at least one of the ancestry subsets alone. We also conducted
eQTL analyses of the endogenous (control-treated), statin-treated, and average of endogenous and statin-treated
LCL gene expression levels. We identified eQTLs for approximately 6000 genes in each of the three (endogenous,
statin-treated, and average) eQTL meta-analyses, with smaller numbers identified in the ancestral subsets alone.

Conclusions: Several of the genes in which we identified deQTLs have functions in human health and disease,
such as defense from viruses, glucose regulation, and response to chemotherapy drugs. This suggests that DNA
variation may play a role in statin effects on various health outcomes. These findings could prove useful to future
studies aiming to assess benefit versus risk of statin treatment using individual genetic profiles.

Keywords: Statin, Expression quantitative trait locus (eQTL), Gene-environment interaction, RNA-sequencing,
Lymphoblastoid cell line
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Background
Statins are a class of drugs widely used to lower circulat-
ing low-density lipoprotein cholesterol (LDL-C) levels
and reduce cardiovascular disease risk [1]. Statins can
have other beneficial pleiotropic effects, such as reducing
inflammation [2]. However, statin treatment can also
have adverse effects, such as myopathy [3] or new-onset
diabetes [4]. Though the general mechanism by which
statins lower LDL-C is well established [5], there is con-
siderable inter-individual variability in statin efficacy that
remains largely unexplained by genetic [6–8] and other
[9] factors. In addition, there is much still to be learned
about the mechanisms by which statins exert their pleio-
tropic and adverse effects and how genetic variation im-
pacts statin response at the individual level.
Genetic variants associated with human traits in

genome-wide association studies (GWAS) are enriched
for those also associated with gene expression levels (ex-
pression quantitative trait loci or eQTLs) [10]. Conse-
quently, eQTL datasets contributed by GTEx [11] and
others have been instrumental toward improving the an-
notation of GWAS in recent years, helping to assign
candidate causal genes to associated loci. Historically,
pharmacogenomics GWAS have not been as well-
powered as other traits, since participants need pre-
treatment and on-treatment phenotype measurements,
limiting the available participant pool [12]. Thus, anno-
tation of sub-genome wide loci from pharmacogenomic
GWAS using eQTL data could help to filter signal from
noise and identify candidate genes for study.
Environmental exposures can alter the relationships

between genetic variants and phenotypes, creating
gene-environment interactions (GxE). For instance,
drug exposure could differentially change gene ex-
pression levels in individuals with different genotypes
for a particular “differential eQTL” genetic variant. In
contrast to the large number of “endogenous” eQTL
studies already conducted in human cells and tissues
in their natural, untreated state, there have been a
limited number of differential eQTL studies to date,
including studies of exposures to immune system
stimulation [13–16], UV light [17], drugs [18], or a
variety of environmental factors [19] .
In this study, we used a human lymphoblastoid cell

line (LCL) statin response model system to identify can-
didate genetic modulators of clinical statin response.
Previous work has demonstrated that statins elicit a
strong transcriptional response [20] and that genetic
modulators of statin-induced changes in LCL gene
structure [21] and expression levels [18] are associated
with clinical statin efficacy and adverse events, respect-
ively. Here, we identify additional genetic variants associ-
ated with the statin response of clinically important
genes that may play a role in statin response.

Results
Endogenous eQTLs
We first correlated genetic variation with endogenous
gene expression levels to identify eQTLs in 259 Choles-
terol and Pharmacogenetics (CAP) European American
participant LCLs and in 153 CAP African American
LCLs separately. To correct for testing multiple variants
per gene, we conducted 100,000 permutations in
FastQTL [22]. The most significant eQTL per gene was
retained prior to false discovery rate (FDR) adjustment
for the number of genes tested. In European American
LCLs, 5456 of 13,841 genes tested (39%) were eGenes
(genes with at least one significant eQTL) at an FDR of
5% (Additional File 1: Table S1). Similarly, in African
American LCLs, 3389 of 13,817 genes tested (25%) were
eGenes at an FDR of 5% (Additional File 2: Table S2). Fi-
nally, we used METAL [23] to conduct a fixed effects
meta-analysis of the eQTL results from the two ethnic
subsets, identifying 6065 (44%) eGenes at a threshold of
p < 1 × 10− 5 (Additional File 3: Table S3). Of these, a mi-
nority, 104, had a heterogeneity level of significance of
p < 0.0001, suggesting a difference in effect size between
the two ethnic groups.

Statin-treated eQTLs
Similarly, we correlated genetic variation with gene
expression levels in statin-treated LCLs. Using this
approach, 5414 of 13,841 genes tested (39%) were
eGenes (FDR = 5%) in European American LCLs (Add-
itional File 4: Table S4), while 3298 of 13,817 genes
tested (24%) were eGenes (FDR = 5%) in African
American LCLs (Additional File 5: Table S5). In the
meta-analysis of both ethnic subsets, we identified 5978
eGenes (43%) at p < 1 × 10− 5 (Additional File 6: Table
S6). 85 of these were ethnically heterogeneous, with a
heterogeneity p < 0.0001. Overall, there was a compar-
able but slightly smaller number of statin-treated eQTLs
than endogenous eQTLs identified from the same cell
lines. Over 90% of statin-treated eGenes were also en-
dogenous eGenes (Fig. 1 [24]).

Average eQTLs
Since the majority of eQTL relationships were similar in
the endogenous and the statin-treated state in LCLs, we
reasoned that averaging control-treated LCL gene ex-
pression levels with the corresponding 2 μM
simvastatin-treated LCL gene expression levels would in-
crease power to detect eQTLs due to the reduction in
measurement error [18]. Indeed, we identified more
eQTLs using the average of the control- and statin-
treated LCL gene expression levels compared to the
control-treated or statin-treated gene expression levels
alone. In European American LCLs, we identified 5870
(42%) eGenes with significant average eQTLs (FDR = 5%;
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Additional File 7: Table S7), while in African American
LCLs we identified 3766 (27%) eGenes (Additional File 8:
Table S8). In the meta-analysis, there were 6481 (47%)
eGenes (p < 1 × 10− 5), 115 with heterogeneity p < 0.0001
(Additional File 9: Table S9). 78.6% of eGenes over-
lapped between the endogenous, statin-treated, and
average eQTL meta-analyses, as shown in Fig. 1 [24].

European American differential eQTLs
Using statin-induced changes in LCL gene expression
and imputed genotype data from 259 CAP

participants of European ancestry, we identified gen-
etic variants significantly associated with the statin re-
sponse (i.e. change in transcript levels) of eight genes
(FDR 5%; Table 1, Fig. 2a-e & Fig. 3a-c). For six of
these genetic variants, the endogenous eQTL relation-
ship with gene expression levels was stronger than
the differential eQTL relationship. For the remaining
two deQTL genes, OAS1 and OAS3, we did not iden-
tify a strong endogenous eQTL in our dataset
(Fig. 4a-e & Fig. 5a-c). However, other studies have
reported all eight of the deQTL variants to be eQTL

Fig. 1 Venn diagrams of overlap between endogenous, statin-treated, and average eQTLs from the meta-analysis and ancestry subsets. Overlap
of (a) endogenous (b) statin-treated and (c) average eQTL eGenes between European and African American ancestry subsets and the meta-
analysis. The majority of eQTLs identified are not ancestry specific, and the numbers of eGenes identified increases with sample size. d Overlap of
eGenes from endogenous, statin-treated, and average eQTL meta-analyses. Statin treatment did not significantly change numbers of eGenes, but
averaging endogenous and statin-treated expression levels offered increased power for eQTL analysis. Overlap of European and African American
ancestry endogenous eQTLs with (e) statin-treated and (f) average eQTLs. Venn diagrams were created in Venny 2.1 [24]
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Fig. 2 Box and whisker plots of significant deQTL relationships unique to ancestry subsets. a-e Significant lead deQTLs unique to the European
ancestry subset. f Significant lead deQTL unique to the African American subset. Genes for which the lead deQTL variant was the same in the
European ancestry subset and meta-analysis are shown in Fig. 2 only. In all cases, the reference allele is on the left, in blue. Whiskers mark the 5th
and 95th percentiles. Approximate fold changes were calculated by taking 2^(statin-treated minus endogenous variance stabilized gene
expression levels) for display purposes

Table 1 Significant lead deQTLs in European ancestry LCLs

Variant Chr BP Gene |Dist. to TSS| (bp) Ref Alt Alt Freq. Effect Size (Alt) Nominal P Beta Perm Q

rs745527 1 111,745,975 CHI3L2 2581 G A 48% 0.73 4.8E-16 8.50E-08

rs7134391 12 113,366,691 OAS1 22,108 G A 63% −0.73 1.9E-14 7.10E-07

rs1859329 12 113,376,452 OAS3 294 C T 63% −0.65 6.7E-12 9.90E-05

rs507901 13 75,869,652 TBC1D4 186,599 C A 57% 0.63 7.3E-11 9.50E-04

rs4711510 6 37,669,641 MDGA1 2558 G A 50% −0.54 3.5E-10 0.0034

rs2237310 7 24,759,648 GSDME 49,597 A C 11% 0.81 3.0E-10 0.0034

rs1684051 15 65,198,309 ANKDD1A 5793 G C 65% −0.54 2.0E-09 0.006

rs1233291 2 190,690,951 ASNSD1 164,839 G C 27% −0.57 6.2E-09 0.016
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variants in at least one cell or tissue type (Add-
itional File 10: Table S10) [11, 25, 26].
OAS1 and OAS3 are adjacent to each other in the gen-

ome, and their lead deQTL variants are in strong linkage
disequilibrium (r2 = 0.97) in EUR (Fig. 6) [27]. They are

also in LD with a known OAS1 splice site mutation
(rs10774671) in EUR (r2 = 0.88) but not AFR (r2 < 0.2)
and were strongly (p < 10− 50) correlated with endogen-
ous, but not statin-induced changes in, OAS1 splicing in
the CAP European American LCLs (Fig. 7).

Fig. 3 Box and whisker plots of significant deQTLs from meta-analysis. Significant lead deQTLs from meta-analysis are shown in the European
(left) and African American (right) subsets in each plot. Asterisks (*) preceding ancestry subset names indicate deQTL relationships that are
significant in that ancestry subset. In all cases, the reference allele is on the left, in blue. Whiskers mark the 5th and 95th percentiles. Approximate
fold changes were calculated by taking 2^(statin-treated minus endogenous variance stabilized gene expression levels) for display purposes
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African American differential eQTL
Similarly, we conducted a deQTL analysis in 153 CAP
participants of African American ancestry. TBC1D4 was
the only gene with a significant (FDR = 5%) deQTL in
this population, and its most significant deQTL was
rs11332300 (Table 2, Fig. 2f). Interestingly, rs11332300
and adjacent variants rs61960554 and rs7329261 in
strong linkage disequilibrium (r2 > 0.98 in AFR and
EUR) may be functional variants because they are lo-
cated in a LCL enhancer element based on ChIP-seq
data from the ENCODE project (Fig. 8) [28, 29]. These
variants are also endogenous eQTLs for TBC1D4(-
Additional File 10: Table S10) [11, 25, 26]. These three
variants were not imputed in the CAP European
Americans using the Haplotype Reference Consortium
reference panel, but the fourth most significant variant in
more modest LD (r2 = 0.58 in AFR and 0.92 in EUR) with
the first three, rs507901, was found in both datasets.

Differential eQTL meta-analysis
Significant deQTLs for 15 genes were identified in the
meta-analysis (p < 5 × 10− 9; Table 3, Fig. 3), and these
included deQTLs for all eight of the genes identified in
the ethnic subset analyses. All of these variants were
within 200 kb of their target genes, though the search
space was five times larger. Four of the 15 significant
deQTL loci (CHI3L2, OAS1, OAS3, and GSDME)
showed evidence for ethnic heterogeneity in effect sizes,
with stronger effects seen in individuals of European
ancestry.
All 15 variants were also eQTLs for the deQTL genes

in at least one cell or tissue type (Additional File 10:
Table S10) [11, 25, 26], but the deQTLs for OAS1, OAS3
and GATM were not significant eQTLs in the CAP LCLs
from our study (Table 4, Fig. 5). Though statin treat-
ment enhanced the eQTL relationship for most deQTLs
(8 out of 12), it dampened the eQTL relationship for

Fig. 4 Control and statin-treated gene expression levels split by deQTL genotype for lead deQTLs unique to ancestry subsets. a-e Significant lead
deQTLs unique to the European ancestry subset. f Significant lead deQTL unique to the African American subset. Genes for which the lead deQTL
variant was the same in the European ancestry subset and meta-analysis are shown in Fig. 5 only. In all cases, the reference allele is on the left.
Whiskers mark the 5th and 95th percentiles. Approximate fold changes were calculated by taking 2^(statin-treated minus endogenous variance
stabilized gene expression levels) for display purposes. Sample sizes match those in Fig. 2
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others (e.g. ASNSD1), which is reflected in the weaker
statin eQTL association compared to the eQTL associ-
ation (Table 4) and the different directionality of the
deQTL and eQTL associations (Figs. 3 & 5). For ex-
ample, the association of rs5742938 genotype with ASNS
D1statin-treated expression levels was more modest
(P = 1.6 × 10− 26) than its association with endogenous
expression levels (P = 2.1 × 10− 47) (p = 0.04 and p = 0.08
for difference between endogenous and statin eQTL

correlations using Fisher’s r to z transformation in
European and African American subsets, respectively),
and the alternate “C” allele of rs5742938 was correlated
with higher endogenous and statin-treatedASNSD1
levels but with greater reductions in ASNSD1 expression
with statin treatment.
Of note, a deQTL for GATM was previously identified

using gene expression array data from a partially over-
lapping sample set of 480 European American CAP

Fig. 5 Control and statin-treated gene expression levels split by deQTL genotype for lead deQTLs from meta-analysis. Gene expression levels of a
TBC1D4 b MDGA1 c CHI3L2 d OAS1 e GATM f ASNSD1 g GLUL h TDRD12 i PPIP5K2 j OAS3 k SERPINB1 l ANKDD1A m DTD1 n CYFIP2 or o GSDME
genes are plotted split by their significant lead deQTL genotypess from the meta-analysis in the European (left) and African American (right)
subsets in each plot. In all cases, the reference allele is on the left. Whiskers mark the 5th and 95th percentiles. Approximate fold changes were
calculated by taking 2^(statin-treated minus endogenous variance stabilized gene expression levels) for display purposes. Sample sizes match
those in Fig. 3
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LCLs [18]. (211 European ancestry LCLs were used in
both studies.) The lead deQTL variant in that study,
rs9806699, is in moderately strong linkage disequilib-
rium with our lead deQTL variant, rs1365610, in EUR
(r2 = 0.768) but not AFR (r2 = 0.266) populations [27]
(Fig. 9). rs1365610 could itself be a functional variant
based on its location in a collection of regulatory ele-
ments just upstream of an alternate GATM first exon
(Fig. 10) [28, 29].
The lead deQTL for GSDME (aka DFNA5), rs754554,

is a missense variant that is located in an LCL enhancer

element based on ENCODE ChIP-seq data (Fig. 11) [28,
29], while the lead deQTL variant from the European
American subset analysis, rs2237310, lacks this level of
support for functionality. This is also reflected by an im-
proved RegulomeDB score for rs754554 (score of 1f
reflecting a likelihood that the variant affects transcrip-
tion factor binding and is an eQTL) compared to
rs2237310 (score of 6 showing minimal binding evi-
dence), a phenomenon that was also observed for lead
deQTL variants for other genes, such as ANKDD1A
(score of 1f for rs1628955 from meta-analysis versus 5

Fig. 6 LocusZoom plots of (a) OAS1 and (b) OAS3 deQTL associations in European ancestry subset. Linkage disequilibrium information is derived
from EUR individuals in the November 2014 1000 Genomes data release
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for rs1684051 from European ancestry subset) [30].
Similar to the GATM deQTL results, this illustrates the
utility of adding the African American to the European
American data.

Discussion
In this study, we identify genetic variants (“differential
eQTLs”) that influence the statin response of 15 genes
in lymphoblastoid cell lines from European American

Fig. 7 Endogenous, statin-treated, and statin-induced changes in OAS1 splicing by deQTL genotype in European ancestry subset. a OAS1
annotated isoforms. For three abundant splice isoforms with introns beginning at hg19 chr12:113355505 (p46:b-d, unnamed isoform: e-g, p48:h-
j), the proportion of each isoform in control- and statin-treated European ancestry LCLs was calculated using junction-spanning read fractions.
Isoform fractions in (B,E,H) control- and (C,F,I) statin-treated LCLs as well as the (D,G,J) statin-induced changes in these isoform fractions were
plotted by European ancestry lead OAS1 deQTL (rs7134391) imputed genotypes in Tukey box and whisker plots. Since genotypes were imputed,
some of the outlying points may be genotype assignment errors
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and African American CAP study participants. We also
detect endogenous, statin-treated, and average eQTLs
for about 6000 genes in the same population of LCLs.
In our eQTL analyses, we identify substantially more

eGenes than a study [25] of a comparable number of
LCLs (> 6000 vs. < 4000 eGenes identified) and we iden-
tify approximately the proportion of eGenes observed in
GTEx tissues with this sample size [11], demonstrating
the robustness of our data and analysis methods. In
addition, the average eQTL analysis yields an additional
620 associations that are not identified by the endogen-
ous eQTL meta-analysis, illustrating the utility of repeat
measures to increase power when sample sizes are lim-
ited. Furthermore, 104 of the endogenous eQTLs we
identify in the trans-ethnicmeta-analysis have heteroge-
neous effects between LCLs of European and African
American ancestry, indicating a small subset of endogen-
ous eQTL relationships exhibit ethnic heterogeneity..
The 15 deQTLs all share several properties that sup-

port their validity. First, they are close to the transcrip-
tion start site of the target gene. Despite considering all
variants 1Mb up- and downstream of the TSS, they are

all within 200 kb. Second, they all show consistent direc-
tionality between the European American and African
American ethnic groups, though there is some hetero-
geneity in effect sizes between ethnic groups for four of
the deQTLs. Third, they are all also endogenous eQTLs
in at least one cell or tissue type in published studies
[11, 25, 26]. Most, but not all, are endogenous eQTLs in
the CAP LCLs.
In contrast to the thousands of eQTLs we identify in

these 412 LCLs, we only find a modest 15 deQTLs. This
highlights the large sample size necessary to detect rela-
tively subtle GxE interactions with sufficient power. The
modest number of deQTLs identified is also consistent
with the handful of associated genetic loci identified in
GWAS studies of lipid statin response [8] compared to
the hundreds of loci associated with plasma lipids to
date [31, 32]. Together, these findings suggest that the
DNA-drug interaction might only be a minor contribu-
tor to inter-individual variation in drug response.
Some of the deQTL findings may be specific to LCLs

or blood, while others are likely to be more broadly rele-
vant to other tissues. Most of the deQTL variants have

Table 2 Top deQTLs in African American ancestry LCLs

Variant Chr BP Gene |Dist. to TSS| (bp) Ref Alt Alt Freq. Effect Size (Alt) Nominal P Beta Perm Q

rs11332300 13 75,874,521 TBC1D4 181,730 GC C 55% 0.77 1.41E-12 2.6E-04

rs61960554 13 75,874,524 TBC1D4 181,727 T C 55% 0.77 1.47E-12 N/A

rs7329261 13 75,874,528 TBC1D4 181,723 T C 55% 0.77 1.47E-12 N/A

rs507901 13 75,869,652 TBC1D4 186,599 C A 60% 0.71 1.18E-09 N/A

Fig. 8 Regulatory elements overlapping TBC1D4 lead deQTL from African American ancestry subset
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been reported to be endogenous eQTLs in multiple tis-
sues, but others (such as the TBC1D4 deQTL) seem to
be more narrowly restricted to LCLs or blood. This is
exemplified by the fact that some deQTL variants, such
as the GATM deQTL, fall within regulatory elements in
multiple cell types based on ChIP-seq data from the EN-
CODE project [28], while others may be restricted to
regulatory elements active only in LCLs or similar blood
cell types. Statins affect a wide-range of tissues, as evi-
denced by both the pleiotropy of statin benefit (i.e.

reduction of circulating cholesterol and anti-
inflammatory properties), as well as the broadness of
statin adverse effects (i.e. statin-induced diabetes, myop-
athy, etc.). Thus, the tissue-specificity (or lack of specifi-
city) of individual deQTLs may be used to infer which
(if any) of these statin effects they may impact.
Unsurprisingly, with the increased sample size in the

meta-analysis, we discover more deQTLs than in the
ethnic subset analyses. Importantly, we also observe a
greater increase in precision of deQTL association

Table 3 Lead deQTLs from meta-analysis with heterogeneity statistics

Marker Chr BP Gene |Dist. to TSS| (bp) Alt Dir Meta P EurAm P AfrAm P Het ISq Het PVal

rs507901 13 75,869,652 TBC1D4 186,599 ++ 7.3E-19 7.3E-11 1.2E-09 0 0.39

rs4711510 6 37,669,641 MDGA1 2558 – 2.1E-14 3.5E-10 1.2E-05 0 0.73

rs745527 1 111,745,975 CHI3L2 2581 ++ 3.0E-13 4.8E-16 0.16 93.2 1.3E-4

rs2384074 12 113,382,977 OAS1 38,394 – 9.5E-13 2.2E-14 0.076 90.5 1.2E-3

rs1365610 15 45,694,610 GATM 84 – 1.1E-12 4.8E-07 3.1E-07 0 0.32

rs5742938 2 190,649,958 ASNSD1 123,846 ++ 1.1E-11 7.2E-09 2.9E-04 0 0.51

rs7549498 1 182,363,623 GLUL 2281 ++ 2.2E-11 3.9E-06 6.5E-07 22.1 0.26

rs12460944 19 33,305,725 TDRD12 95,065 ++ 2.5E-11 7.3E-08 7.9E-05 0 0.88

rs34818 5 102,436,111 PPIP5K2 19,743 – 2.7E-11 1.2E-07 5.2E-05 0 0.98

rs7134391 12 113,366,691 OAS3 9467 – 2.1E-10 1.9E-11 0.092 86.8 5.9E-3

rs62391517 6 2,936,204 SERPINB1 93,963 ++ 3.7E-10 1.8E-06 4.8E-05 0 0.76

rs1628955 15 65,187,220 ANKDD1A 16,882 – 1.2E-09 2.7E-09 0.025 70.8 6.4E-2

rs6136391 20 18,480,845 DTD1 87,693 ++ 1.6E-09 1.1E-05 2.9E-05 0 0.53

rs62383003 5 156,700,461 CYFIP2 7371 – 2.2E-09 8.3E-06 5.9E-05 0 0.64

rs754554 7 24,758,818 GSDME 50,427 ++ 4.8E-09 4.0E-10 0.14 85.7 8.1E-3

Table 4 eQTL, statin eQTL, and average eQTL relationships of deQTL associations

Marker Gene deQTL Meta
Dir

deQTL Meta
P

eQTL Meta
Dir

eQTL Meta
P

Statin eQTL Meta
Dir

Statin eQTL
Meta P

Ave eQTL Meta
Dir

Ave eQTL
Meta P

rs507901 TBC1D4 ++ 7.30E-19 ++ 3.02E-55 ++ 3.30E-60 ++ 9.41E-58

rs4711510 MDGA1 – 2.10E-14 – 2.02E-102 – 8.09E-101 – 3.41E-102

rs745527 CHI3L2 ++ 3.00E-13 ++ 1.68E-29 ++ 3.07E-30 ++ 5.64E-30

rs2384074 OAS1 – 9.50E-13 ++ 9.73E-02 −+ 2.81E-01 −+ 8.41E-01

rs1365610 GATM – 1.10E-12 ++ 1.26E-03 ++ 3.38E-01 ++ 3.82E-02

rs5742938 ASNSD1 ++ 1.10E-11 – 2.11E-47 – 1.64E−26 – 5.35E-40

rs7549498 GLUL ++ 2.20E-11 ++ 1.58E-29 ++ 4.31E-31 ++ 1.45E-30

rs12460944 TDRD12 ++ 2.50E-11 ++ 4.12E-27 ++ 1.73E-31 ++ 1.17E-29

rs34818 PPIP5K2 – 2.70E-11 ++ 1.28E-76 ++ 2.49E-65 ++ 7.48E-73

rs7134391 OAS3 – 2.10E-10 ++ 2.29E-03 ++ 1.07E-01 ++ 1.95E-02

rs62391517 SERP
INB1

++ 3.70E-10 ++ 1.85E-38 ++ 2.39E-42 ++ 6.01E-41

rs1628955 ANKD
D1A

– 1.20E-09 – 6.99E-97 – 6.05E-97 – 9.30E-98

rs6136391 DTD1 ++ 1.60E-09 – 5.89E-37 – 3.09E-25 – 1.06E-32

rs62383003 CYFIP2 – 2.20E-09 – 6.84E-08 – 2.43E-13 – 1.11E-10

rs754554 GSDME ++ 4.80E-09 – 8.85E-36 – 1.70E-33 – 1.09E-34
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signals in the meta-analysis compared to the European
American subset analysis, which could be due in part to
the reduced linkage disequilibrium between loci in the
African American population [33], even though there
are a relatively modest number of African Americans in-
cluded in this study. In fact, the lead deQTL variants for
GATM, GSDME, and ANKDD1A from the meta-analysis
could themselves be functional since regulatory elements
overlap their positions, unlike the corresponding lead
deQTL variants from the European ancestry subset
analysis.

Using a partially overlapping set of CAP European
American LCLs, a deQTL was previously identified
for glycine amidinotransferase (GATM), a creatine
synthesis enzyme [18]. Here we show that the pub-
lished GATM deQTL (rs9806699) is less likely to be
functional than the lead deQTL variant (rs1365610)
identified in the current analysis. Not only is
rs1365610 located in a regulatory element just 84 bp
upstream of an alternate GATM TSS, but it is also
the strongest GATM deQTL in the African American
LCLs, while the rs9806699 association with GATM

Fig. 9 LocusZoom plots of GATM deQTL results in each ancestry subset. a European ancestry deQTL using LD information from November 2014
1000 Genomes EUR (b) African American ancestry deQTL using LD information from November 2014 1000 Genomes AFR
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statin response is only observed in European Ameri-
can LCLs.
In addition to GATM, which encodes a metabolically

important enzyme, we identify deQTLs in other clinic-
ally significant genes. For instance, given reports that
statins increase diabetes risk [4, 34, 35], it is interesting
that we identify a deQTL for TBC1 domain family mem-
ber 4 (TBC1D4), a gene which plays a role in glucose
homeostasis and type 2 diabetes [36–38]. In addition,
cellular gasdermin E (GSDME/DFNA5) expression levels
help determine the type of cell death (i.e. pyroptosis or
apoptosis) that is stimulated by chemotherapy drugs,
with Gsdme knockout mice experiencing less side effects
from the chemotherapy drug cisplatin than their wild

type counterparts [39]. This is particularly interesting
given that epidemiological studies have suggested that
statin use reduces cancer-related mortality [40], and sta-
tins are well known to be cytotoxic in cellular models
(reviewed in [41]), at least at supraphysiological levels.
2′-5′-oligoadenylate synthetase 1 (OAS1) and 2′-5′-

oligoadenylate synthetase 3 (OAS3) are important com-
ponents of the innate immune system that are induced
by interferon and can activate RNase L, which in turn
can degrade cellular and viral RNAs and impair viral
replication. Due to this activity, OAS1 has been a target
of intense natural selection in humans [42]. Alternative
splicing of OAS1 results in several isoforms with differ-
ent enzymatic activity [43], and the splice site

Fig. 10 Regulatory elements overlapping GATM lead deQTL from meta-analysis
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polymorphism rs10774671 has been associated with in-
fection by viruses [44]. There is some evidence that sta-
tins have anti-viral activity against viruses such as
Hepatitis C [45, 46], HIV-1 [47], poliovirus [48], and
cytomegalovirus [49], though the mechanism(s) involved
are poorly understood. In the future, it would be inter-
esting to investigate whether the antiviral activity of sta-
tin treatment differs by OAS1/3 deQTL genotype.

Conclusions
Overall, this study provides a resource of eQTLs identi-
fied in European ancestry and African American ances-
try cell lines and identifies genetic variants that
modulate the statin response of some clinically interest-
ing genes. In the future, these differential eQTL variants
could be incorporated into panels designed to predict
benefits versus risk of statin therapy.

Methods
Participants and genotyping
This study uses genome-wide genotype and lymphoblas-
toid cell line (LCL) transcriptomic data derived from
412 of 944 Cholesterol and Pharmacogenetics (CAP) 40
mg/day 6 week simvastatin clinical trial participants
(ClinicalTrials.gov ID: NCT00451828) [9]. Demographic
and phenotypic characteristics of this participant subset
are shown in Table 5. Self-reported white CAP

participants were genotyped as previously described on
one or more (Illumina HumanHap300, Human610-
Quad, custom iSelect and Cardio-Metabochip) platforms
[50, 51], and self-reported black participants were geno-
typed on the Illumina HumanOmni2.5Exome and, for
the majority of participants, the Cardio-Metabochip and
Immunochip.

Fig. 11 Regulatory elements overlapping GSDME (aka DFNA5) lead deQTL from meta-analysis

Table 5 Characteristics of European ancestry and African
American ancestry CAP participants used in eQTL analyses

African Americans European Americans

N 153 259

Gender 53.6% Female 47.9% Female

Age (years) 53.7 ± 12.8 54.2 ± 12.0

BMI 30.1 ± 6.0 27.9 ± 5.7

Smoker 28.8% 10.8%
aTotal Cholesterol (mg/dl) 204 ± 36 214 ± 37
aLDL Cholesterol (mg/dl) 129 ± 35 135 ± 33
aHDL Cholesterol (mg/dl) 55 ± 17 54 ± 17
aTriglycerides (mg/dl) 103 ± 49 125 ± 67

% change TC -26 ± 10% −28 ± 9%

% change LDLC −40 ± 13% −43 ± 11%

% change HDLC 2 ± 11% 5 ± 11%

% change TG −14 ± 26% −17 ± 24%

Values are mean ± SD. aValues are prior to the start of statin treatment
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Genotype imputation
Prior to imputation, 3 sex mismatches, 2 related individ-
uals, and 5 ancestry outliers were excluded from the
subset of 422 CAP participants with both RNA-seq and
genome-wide genotype data, and participants were di-
vided into two groups (European American and African
American) based on their genetic ancestry. Mono-
morphic, multi-allelic, and multi-mapping markers were
excluded, except those that mapped to the X and Y
chromosomes. Markers with greater than 5% missing-
ness or with significant deviations from Hardy-Weinberg
equilibrium (p < 0.000001 or p < 0.00001 for European
and African Americans, respectively) were also excluded.
European Americans were imputed with the Haplotype
Reference Consortium v1.1 reference panel [52] using
minimac3 on the Michigan Imputation server [53].
African Americans were imputed with the 1000 genomes
phase3v5 cosmopolitan reference panel [27] using
MaCH Admix [54].

RNA sequencing and analysis
LCLs were established through Epstein-Barr virus (EBV)
transformation of blood sample-derived lymphocytes as
previously described [18]. Simvastatin (kindly provided
by Merck Inc., Whitehouse Station, NJ) was activated by
heating in ethanolic NaOH for 2 h at 50 °C, adjusting to
pH 7.2 with HCl, and diluting to create a 10 mM stock
solution. The control buffer underwent the same pro-
cedure without simvastatin added. LCLs were exposed
to 2 μM simvastatin or control buffer for 24 h, and total
RNA was extracted as previously described [18].
PolyA-selected RNA was made into strand-specific
[55] libraries for 100 or 101 bp Illumina paired-end
sequencing similar to previously described [56], ex-
cept that this experiment included samples from an
additional 262 LCLs in 2 additional library prepar-
ation and sequencing batches.
Using Tophatv2.0.4 [57], sequences were aligned to

the human (hg19) and Epstein-Barr virus (EBV; NC_
007605) genomes with Ensembl v67 [58] and EBV [59]
transcriptome annotations, allowing 4 mismatches per
read. Duplicate fragments were removed, and samples
that did not meet quality control criteria (described
previously [56]) were excluded. Fragments aligning to
annotated genes were counted using HTSeq [60] and ad-
justed for library size and variance stabilized (roughly a
log2 transformation) using DESeq2 [61]. Gene expres-
sion changes (deltas) were calculated by subtracting en-
dogenous from statin-treated variance stabilized
expression levels.
For downstream eQTL analyses, gene expression levels

or changes were adjusted for potential confounders
using probabilistic estimation of expression residuals
(PEER) [62]. For endogenous, statin-treated, and average

expression levels, we used K = 40 hidden factors and a
mean expression covariate. This appeared to be a suffi-
cient number of hidden factors, because very little ex-
pression level variance was explained by factors 13–40.
For statin-induced gene expression changes, we used
K = 6 and 7 measured covariates (delta fraction of frag-
ments aligned, delta fraction of duplicate fragments,
delta fraction of ribosomal fragments, delta fraction of
EBV fragments, delta fraction of fragments aligning to
annotated mRNA transcripts, delta fraction of fragments
aligning to the annotated strand, and delta 5′➔3′ bias).
Additional hidden factors for this analysis would have
been redundant, since pilot analyses indicated that any
additional hidden factors were strongly correlated to one
of the first six (Spearman correlation > 0.9, p < 1 ×
10− 74). Since the changes in gene expression were calcu-
lated between samples from genetically identical cell
lines processed in the same experimental batches, it is
expected that fewer hidden factors were necessary for
the gene expression change analysis compared to the ex-
pression level analyses. For OAS1 splicing analyses,
junction-spanning sequence fragments were quantified
using Leafcutter [63].

eQTL analyses
PEER normalized gene expression levels or changes were
tested for association with well-imputed (imputation
Rsq ≥ 0.5) common (≥3% MAF in European Americans
or ≥ 5% MAF in African Americans) genetic variants
within 1Mb of the transcription start site (in cis) using
FastQTL [22] in the European and African American
subsets separately. Sex and the first three ancestry prin-
cipal components were included as covariates, and gene
expression phenotypes were normalized prior to analysis.
To adjust for testing multiple variants per gene, 100 to
100,000 adaptive permutations were conducted per gene
for endogenous, statin-treated, and average eQTL ana-
lyses, while 100 to 1,000,000 were conducted for differ-
ential eQTL analyses. The most significant eQTL
association per gene was retained, and these p-values
were false discovery rate (FDR)-adjusted to account for
the number of genes tested.
eQTL meta-analyses incorporating results from both

European and African Americans were conducted in
METAL [23], using p-value, direction of effect, and
sample size as input. Heterogeneity between ethnic
subsets was also evaluated. A conservative threshold
of 5.78 × 10− 9 was used for significance of the deQTL
meta-analysis based on ≤13,841 genes tested and 625
independent markers per 2 Mb of genome. (One mil-
lion independent markers per genome divided by
3200Mb/genome would estimate 312.5 independent
markers per Mb.)
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