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Abstract

Inference from Two Non-Equilibrium Models in Population Genetics

by

Benjamin Marco Peter

Doctor of Philosophy in Integrative Biology

Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Rasmus Nielsen, Chair

Improvements in sequencing technologies and the resulting increased availability of ge-
netic data call for new and more sophisticated analysis methods. Particularly in ecological
genetics and evolutionary biology, questions that can be addressed are often limited by the
availability of analysis tools and statistical inference procedures. Non-equilibrium models
in particular have been relatively poorly studied, mainly because analytical approaches
are challenging and many useful and well-known results make equilibrium assumptions.
However, using heuristic methods and strongly simplified models, we can make progress
and arrive at procedures that help us gaining new insights from population genetic data.
After an introductionary first chapter, in the second chapter, I develop an Approximate
Bayesian Computation procedure to distinguish selection from standing variation from
selection on a de novo mutation. This method is applied to human genetic data where
we identify two genes, ASPM and PSCA, that are most likely affected by selection on
standing variation. In the third chapter, I develop an inference procedure to infer the
origin of a range expansion, introducing the directionality index statistic ψ. Applying
this method to human data, we find a most likely origin of humanity in southern Africa,
and evidence of the main expansion routes into Asia, finding evidence for a Southern
route. In the fourth chapter, I extend the work on range expansions by developing an
analytical model based on branching processes, which gives a biological interpretation to
ψ, and allows us to measure the decay of genetic diversity with distance. An application
to Arabidopsis thaliana reveals that we are able to infer both recent expansions in the
Americas, as well as expansions from the last glacial maximum in Europe. Between these
three chapters, I use different approximation procedures to introduce inference procedures
for models where direct likelihood calculations are not available.
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Chapter 1

Introduction

Inference methods have become one of the main focus of population genetic theory in the
last few decades, ever since genetic data became widely available (Nielsen et al., 2005).
As sequencing technologies further improve, become cheaper and ubiquitously available,
this trend is likely to further increase. In evolutionary biology, many old questions can be
addressed in light of this new data. In this thesis, I present inference methods addressing
two major problems in evolutionary biology: Distinguishing between different modes of
positive selection, and inference under a range expansion model.

In the next chapter, I will present a method to distinguish two of the major types of
positive selection: selection on a de novo mutation and selection on standing variation.
The two scenarios differ in the order in which mutation and the appearence of new selec-
tive pressures occur: Under the selection on standing variation model, we assume that a
potentially beneficial mutation may arise and segregate in the population before the pop-
ulation ever experienced the conditions under which these mutations are beneficial; the
population may pre-adapt to novel environments. On the other hand, selection on a de

novo mutation is the scenario where new mutations evolve only after an environment has
changed – in that regime, the population is necessarily slower to adapt, as it has to wait
for beneficial mutations to occur after the environment changes. Both modes of adapta-
tions are likely to be important under different conditions and in Chapter 2 I will present
one of the first empirical tests to distinguish these two modes of selection using genetic
data. I approach this by combining several common statistics used to detect selection in
an Approximate Bayesian Computation (ABC) framework, which allows me not only to
discriminate between the two models of selection, but it also provides estimates of the
age of the selected allele and the selection coefficients acting on them. I use simulations
to assess the power and accuracy of the method, and apply it to seven of the strongest
sweeps currently known in humans. I identify two genes, ASPM and PSCA, that are
most likely affected by selection on standing variation and I find three genes, ADH1B,
LCT and EDAR in which the adaptive alleles seem to have swept from a new mutation.
I also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD,
neither neutral models, nor models of selective sweeps, fit the data, presumably because
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this locus has been subject to balancing selection.
The inference methods for range expansion models are presented in Chapters 3 and 4.

Range expansions are thought to be very common in nature, as one of the main processes
through which species change their habitat boundary, and are thought to occur in all
taxa from bacteria through plants and animals, on scales from petri dishes to the entire
globe, and on time scales from weeks to millennia (Hallatschek et al., 2007; Hewitt, 1999;
Taberlet et al., 1998). Nevertheless, inference under explicit range expansion models has
been a little studied topic so far, primarily because until this decade it was prohibitively
expensive to generate relevant data for almost all species (but see e.g. François et al., 2008;
Ramachandran et al., 2005). However, as we are entering the era where assessing genome-
wide genetic data for many individuals becomes economically feasible, we can address
range expansions in light of this new data. In Chapter 3, I first develop a statistical
test to reject equilibrium isolation-by-distance. Equilibrium models have been commonly
assumed for inference procedures (Excoffier, 2004; Hey and Nielsen, 2004; Nielsen and
Wakeley, 2001), however, it is not clear how often the equilibrium assumption actually
holds. We develop a test to reject equilibrium migration models, while being largely
agnostic about the underlying population structure. While the range expansion model
is only one of many possible alternative models, in some cases historical or geological
records may suggest it to be appropriate. For these cases, I propose a method to infer
the location of the origin of the expansion.

Under the range expansion model, inference is based on the novel statistic ψ (the
directionality index) that detects asymmetries in the two-dimensional allele frequency
spectrum of pairs of population. These asymmetries are caused by the series of founder
events that happen during an expansion and they arise because low frequency alleles tend
to be lost during founder events, thus creating clines in the frequencies of surviving low-
frequency alleles. Using simulations, I show that ψ is more powerful for detecting range
expansions than both FST and clines in heterozygosity. I also show how the approach can
be adapted to more complicated scenarios such as expansions with multiple origins or to
infer barriers to migration, and I illustrate the utility of ψ by applying it to a data set
from modern humans.

A further parameter of the range expansion model that is of great interest is the
strength of the founder effect. In contrast to Chapter 3, where I largely theory and argue
empirically, in Chapter 4 I develop a population genetic model of a range expansion.
Through a series of approximations, I arrive at a branching process interpretation of a
range expansion, in which founder effects can be interpreted as an increase in genetic drift
caused by an increased offspring variance at the wave front. This allows us to measure
the strength of the founder effect, dependant on an effective founder size. I demonstrate
that the predictions from the branching process model fit very well with Wright-Fisher
forward simulations and backwards simulations under a modified Kingman coalescent, and
further show that estimates of the effective founder size are robust to possibly confounding
factors such as migration between subpopulations. I apply my method to a data set of
Arabidopsis thaliana, where we find that the founder effect is about three times stronger
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in the Americas than in Europe, which may be attributed to the more recent, faster
expansion.

The common element of these three chapters are their focus on inference from models
where calculations of full likelihoods is not feasible. Through approximations, we arrive
at methods whose properties can be assessed using simulations, and, subsequently, can
be applied to explore the evolutionary history of humans and Arabidopsis thaliana.
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Chapter 2

Distinguishing between Selection
from Standing Variation and
Selection on a De Novo Mutation

2.1 Introduction

Most organisms harbor large amounts of, mostly neutral or nearly neutral, standing ge-
netic variation (Hernandez et al., 2011; Hurst, 2009; Kimura, 1985; Ohta, 1992) As envi-
ronments change, alleles that previously segregated neutrally, or were only weakly affected
by selection, may become targets of strong selection. Examples of a change in environment
that could induce such a change include invasion of a new habitat or niche through disper-
sal, climate changes, and introduction of novel disease agents. This type of selection, in
which selection acts on already segregating alleles, is called selection from standing varia-
tion (SSV). We contrast this model with the more commonly assumed model of selection
on a de novo mutation (SDN). In the SDN model the selection pressure already exists
when a new mutation is introduced into the population. In addition, there are several
more complicated scenarios of selection. The case where an allele under selection has
multiple independent origins has received particular attention (Hermisson and Pennings,
2005; Pennings and Hermisson, 2006a,b), and is often also referred to as selection from
standing variation. In this paper, we focus on the case where all copies of an allele are
identical by descent, and do not consider multi-origin alleles. Of great interest is the
question of which mode of selection has been more frequent in the evolution of a species
(Hermisson and Pennings, 2005; Innan and Kim, 2004). In particular, if we observe a
selected variant, which mode of selection is more likely to have occurred? Theoretical
results by Hermisson and Pennings (2005) find that SDN should be common if selection is
strong and mutation rates are low, in all other cases we expect SSV to be more prevalent.
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2.1.1 Statistics Affected by Selection

Detection of selected regions has been a major goal in population genetics in recent years
(Akey et al., 2004; Sabeti et al., 2002, 2006; Williamson et al., 2005). Rather than working
with the full data, all of these studies simplified their data by using various statistics
designed to detect the signal of selection (see e.g. Nielsen et al., 2005; Sabeti et al.,
2006). These statistics may be classified in different categories, based on the information
they exploit. First, functional differences between different codon positions, and the
substitution rates of synonymous and non-synonymous sites were used by Hudson et al.
(1987) and McDonald and Kreitman (1991). Another approach relies on finding related
populations, where selection acts on only one of them. This leads to locus-specific high
population differentiation, which may be detected by statistics such as FST (Lewontin
and Krakauer, 1973) or XP-EHH (Sabeti et al., 2007). A third category of statistics is
based on the length of haplotypes associated with a given allele. Haplotypes associated
with the selected allele will on average be younger than haplotypes carrying the derived
allele, and there will therefore be fewer recombination events that break up the haplotypes.
Statistics such as EHH (Sabeti et al., 2002) and iHS (Voight et al., 2006) were developed to
detect this pattern. Finally, the site frequency spectrum (SFS) can also be used to detect
departures from neutrality and hence selection. SFS based statistics usually compare
various estimators of the population mutation rate θ. The first and perhaps most well-
known statistic in this category is Tajima’s D (Tajima, 1989), but the statistic can be
generalized (Achaz, 2009; Fu, 1997), and other statistics such as Fay and Wu’s H (Fay
and Wu, 2000) belong to the same family.

2.1.2 Distinguishing SSV and SDN

In this study, we are interested in distinguishing the SDN and SSV models of evolution for
a single putatively adaptive mutation. Barrett and Schluter (2008) identify three possible
ways of identifying SSV: i) the selected allele may occur in an ancestral population, ii) an
allele is shown to be older than the environment it is adaptive in and iii) the signature
of selection at linked loci, the selected sweep, is different between SSV and SDN. Our
approach is based on differences in the genetic signature of selection, but when possible,
we will compare to inferences based on i) and ii). To understand the difference between
the SSV model and the SDN model, it is important to realize that all the information
regarding selection, and mode of selection, is captured by the allele frequency trajectory
through time. In other words, the full allele frequency path through time would be a
sufficient statistic for the selection coefficient, if it was known. As selection acts only to
change the allele frequency in the selected site, and does not act directly on adjacent sites,
the effects of the selection on linkage disequilibrium, haplotype patterns, allele frequencies
in linked sites, etc., are only through the effects caused by the change in allele frequency of
the selected allele (hitch-hiking effects). This observation is the foundation for standard
population genetic theory on selective sweeps (e.g. Kaplan et al., 1989; Spencer and Coop,
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2004) and forms the basis for several simulation methods, in which the path of the selected
mutation is first simulated and then neutral simulations are performed conditional on the
allele frequency path (Spencer and Coop, 2004). Such simulation methods would be
invalid if the allele frequency path did not contain all information regarding the selection
coefficient acting on the selected mutation. Similarly, if the path of an allele is the same
under the SSV and the SDN model, no additional genomic data could help us distinguish
between the two models. Armed with this insight, we can further explore the differences
between the two models. Figures 2.1a,b depict the trajectory, the number of copies of the
selected allele through time for an SSV and SDN model. Looking backward in time, the
adaptive alleles are selected at first in both models, and during this stage the two models
do not differ at all. In the SSV model, however, the mutation stops being advantageous at
some point in the past. Backwards from this time point, the mutation in the SSV model
acts as a neutral allele, whereas the mutation in the SDN model is under selection. As
selection is the same in the phase when both alleles are selected, the difference between the
models is during the phase in which selection is acting on the mutation in the SDN model
but not in the SSV model. How big is this difference? It depends on two parameters:
the selective advantage of the mutation under the SDN model, and the frequency of the
mutation at the time when selection first start acting in the SSV model. A good measure
of the difference might be the allele age distribution at this point, which is plotted in
Figure 2.1c and Figure 2.1d for a mutation at a frequency of 1% and 5%, respectively.
Unfortunately, it turns out that the difference it is rather small: While the allele age
of a mutation at a low frequency does depend on the selection coefficient, the difference
is very small if selection is weak. Clearly, it will be much easier to distinguish between
the two models if selection is strong and if the frequency of the mutation is initially
high in the SSV model. However, we cannot observe the trajectory directly, but only
the diversity at linked site. It has been shown that the genetic signature of sweeps from
standing variation differs in three important aspects from the signature of sweeps from
new mutations (Przeworski et al., 2005): at the same selection coefficient, the signal of
selection from standing variation is 1) weaker and 2) affecting a narrower region. As a
third difference, we expect an increased variance in both allele age and trajectory. Under
the SSV model, the selected allele may be present on several haplotypes when selection
starts, and these haplotypes will be affected equally strongly by selection. Thus, there
will be more variation compared to SDN, and the, loss-of-diversity signal of selection will
be weaker. The fact that the signal of selection affects a narrower region is due to the
fact that the selected allele is older in the SSV model, and hence recombination had more
time to break it up (Figure 2.1a, 2.1b). The increase in variance is evident from the
large variance in the neutral phase of the allele trajectory in Figure 2.1b, and the wider
distribution of the allele age of neutral alleles in Figure 2.1c and 2.1d. In Figures 2.1e
and 2.1f we give the expected distribution of Fay and Wu’s H (Fay and Wu, 2000) and
EHH (Sabeti et al., 2002), two statistics used to detect selection, and where we show that
the signal is indeed expected to be weaker and affecting a narrower region under the SSV
model. The objective of this paper is to develop and explore a statistical method for



CHAPTER 2. DISTINGUISHING BETWEEN SSV AND SDN 7

distinguishing between SSV and SDN models, and for providing associated estimates of
relevant parameters. However, the method we develop is not intended as a new method for
performing scans for selection in genome-wide data or for quantification of genome-wide
levels of selection. For computational reasons, other methods might be more suitable for
such genome-wide analyses. We focus on illustrating the method on a few loci previously
hypothesized to be under selection in humans, but the method could as well be applied
to other human loci or data from other species.

2.1.3 Approximate Bayesian Computation

To exploit the characteristics of selective sweeps discussed in the previous section, we
combine different statistics and calculate them for different genomic regions. Using com-
binations of statistics to improve inference is not a new concept, and has been applied
previously (e.g. Grossman et al., 2010). Here, we choose an Approximate Bayesian Com-
putation (ABC) framework for combining statistics (Beaumont et al., 2002; Tavaré et al.,
1997). ABC has the advantage that it extends naturally to allow both model choice and
parameter estimates under a given model. ABC was developed to estimate parameters of
complex models in manageable computer time, and has been widely used in population
genetics, most frequently to infer parameters for complex models of demographic history
(Beaumont et al., 2002; Csilléry et al., 2010; Fagundes et al., 2007; Peter et al., 2010; Weg-
mann et al., 2010). Several implementations of the ABC algorithm have recently been
published (Cornuet et al., 2008; Jobin and Mountain, 2008; Wegmann et al., 2010), and
in the past few years, various variations of the algorithm have been developed (Blum and
François, 2009; Marjoram et al., 2003; Sisson et al., 2007). ABC is a rejection sampling
algorithm used to calculate the posterior distribution of a parameter under a given model,
used frequently when the likelihood cannot be calculated analytically. In ABC inference,
a large number of data sets are simulated using parameters randomly drawn from a prior
distribution. If a simulation does not match the observed data, it is rejected, otherwise
it is retained. However, if the data is complex, the probability of a match is prohibitively
low, and two important approximation steps are used: First, the data is transformed into
a set of summary statistics. If these statistics are sufficient (i.e. retain all the information
present in the data), this step is exact. However, in many cases, including this study, no
sufficient statistics are known, and this step results in a first approximation step. In many
cases, however, this transformation will still result in very low acceptance probabilities.
Therefore, the condition of an exact match is relaxed. Specifically, the summary statistics
based on the simulations (S) are compared to the summary statistics of observed data
(S∗). Using some distance measure δ, simulations are retained if |δ(S, S∗)| < ǫ for an
arbitrarily small distance ǫ. Frequently, some post-sampling adjustment is used in an at-
tempt to correct for the error introduced in the second approximation step, and posterior
distributions are estimated from the parameters of the retained simulations. In this study,
we propose to use ABC to distinguish between a selective sweep from a new mutation
and a selective sweep from standing variation. We use simulations to determine which
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parts of the parameter space the method has power to make this distinction, and aim to
estimate parameters under both models. We then apply our method to seven genes that
were previously reported to be under selection.

2.2 Results

2.2.1 Accuracy of Parameter Estimates

We first wanted to assess how accurately we can estimate the selection coefficient and
the age of the selected mutation from the SSV and SDN models. For this purpose, we
performed ABC inference on simulated data sets with known parameter values. Results
for a case of moderately strong selection (α = 400) are given in Figure 2.2, with α being
the population scaled selection coefficient α = 4Ns. As can be seen from the figure,
the mode is an accurate estimator of the true value for both models. However, in the
SSV case the posterior distribution is much broader than under the SDN model, and the
95% confidence interval extends to the edges of the prior, indicating low accuracy in the
estimate. For the initial frequency parameter, f1, the posterior differs only marginally
from the prior, and therefore this parameter cannot be reliably estimated.

2.2.2 Accuracy of Model Choice

We aim to identify parameter regions where we can distinguish between the SSV and
the SDN model. As a control, we also consider a model of neutral evolution (NT),
where an allele increases to high frequency solely due to genetic drift. In particular, we
are interested in three parameters that are expected to have a strong influence on model
choice accuracy: the selection parameter α, the frequency of the mutation when it became
selective advantageous, f1, and the current frequency of the selected allele fcur. In Figures
2.3 and 2.6, we explore the accuracy of our model choice procedure in three series as a
function of α, f1, and fcur. We find (Figure 2.3a) that in cases where α < 100; the
method cannot reliably distinguish between selection and a neutral model. This is not
surprising, as for such values of α, standard neutrality tests have little or no power to
detect selection (Simonsen et al., 1995; Teshima et al., 2006). For selection coefficients
of α = 100 and α = 200 the neutral model has a very low posterior probability and
would be rejected, but we still do not have sufficient power to distinguish the signals
from SSV from SDN. Only under strong selection (α = 1, 000) do we have reasonable
power to distinguish between SSV and SDN. Thus, we find that there is a parameter
range of α between 100 and 500, in which selection can be reliably detected, but the
two models of selection are statistically indistinguishable. In the second series (Figure
2.3b), we vary the initial allele frequency (f1). We find that simulations under the SSV
model, with f1 = 1%, are identified as SDN models, but that the accuracy in model
choice increases with f1. For larger values of f1, we can detect selection when selection is
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strong (α =1,000). For high initial allele frequency (f1 = 20%) we correctly infer the true
mode of selection even when α is 200. This suggests that the ability to distinguish the
two models increases with f1. Furthermore, we also find a negative relationship between
the estimated value of f1 for a data set and the posterior probability of the SDN model
(Figures 2.7, 2.8 and 2.9): As we would expect, the larger the estimate of f1, the lower
is the posterior probability of the SDN model, and we find a strong negative correlation
(R2 = 0.51) between these two quantities based on 1,000 simulations. In the third series
(Figure 2.3c), we investigate the effect of the current allele frequency fcur on the model
comparison. For simulations under the SSV model, we find that the accuracy strongly
decreases with fcur. For fcur = 0.2, we classify slightly less than half of the data sets
correctly. This is in contrast to simulations under the SDN model, where the power to
correctly classify simulated data sets gradually increases with fcur. Thus, in studies aimed
at detecting selection on standing variation, the false positive rate should depend only
slightly on fcur, but the false negative rate is expected to increases drastically when fcur is
low. Figure 2.4 illustrates how the selection parameter (α) and the initial allele frequency
(f1) affect the accuracy of model choice between the SSV, SDN and NT models for three
values of fcur (fcur = 0.95, fcur = 0.8 and fcur = 0.5). As in Figure 2.3, the number
of correctly assigned data sets increases with α, f1 and fcur. Under the SSV model, the
gradient with which the power declines is strongest when fcur is large (95%, Figure 2.4a),
and becomes less pronounced for smaller fcur (see Figure 2.4c and 2.4e). For fcur = 95%
(Figure 2.4a), there is a region with f1 > 0.05 and α > 1, 000 where there clearly is very
high power to infer the correct model. On the other hand, for α < 200 or f1 < 0.03, we
make incorrect inferences more than half of the time, indicating that in these regions of the
parameter space, the signal of the sweep is too weak to discriminate between the SSV and
SDN models. While that global pattern is the same for fcur = 0.8 and fcur = 0.5 (Figure
2.4c,e), the distinction between regions where we can and cannot assign simulated data
sets correctly is less pronounced. Quite surprisingly, however, we find that for fcur = 0.8,
the number of correctly assigned data sets increases when selection is low. The same
trend holds for fcur = 0.5 (Figure 2.4e), however here the influence of selection is even
weaker, and inference becomes quite ambiguous, with posterior probabilities ranging from
60% to 80% in the entire parameter space. In contrast, the pattern is much simpler for
simulations under the SDN model (Figures 2.4b, 2.4d and 2.4f), where the probability
to correctly identify the model increases with decreasing fcur. When fcur is set to 0.95,
we need a selection coefficient of α = 1, 500 to make confident inferences. For fcur of 0.8
and 0.5, this value decreases to 900 and 300, respectively. In summary, a high current
allele frequency increases the power to distinguish between SSV from SDN (Figures 2.3c,
2.4). The frequency with which the SDN model is correctly inferred increases slightly
with decreasing fcur, presumably because the selected phase makes up a larger proportion
of the trajectory.
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2.2.3 Applications

We illustrate our model choice procedure by analyzing seven genes that have previously
been identified as candidates for being under selection. These genes are ADH1B, ASPM,
EDAR, G6PD, LCT, PSCA and TRPV6. The genes were selected using the following set
of criteria: i) there is evidence for selection from a previous study, ii) a putative causal
mutation has been identified and iii) the putative causal site has reached a high frequency
in at least one population, but has not yet reached fixation. In addition, we also analyzed
four regions that were noncoding and presumably neutral. We retrieved polymorphism
data from the 1000 Genomes Project low coverage data (1000 Genomes Project Consor-
tium, 2010) using tabix (Li, 2011). Ancestral genotypes were inferred by comparison to
the homologous chimpanzee allele. If a signal of selection was present in more than one
population, we used data for the population where the selected site was most frequent, to
facilitate inference. Model choice and parameter estimation were performed using the pro-
cedures described in the methods section. In contrast to the inference on simulated data
sets, here we explicitly model varying recombination rates and the complex demographic
history of the human population. Results for the sample genes are given in Figures 2.5
and 2.9, as well as Table 2.1. For six of the seven genes analyzed, the neutral scenario
was strongly rejected with a posterior probability of less than 1%, and we can confirm the
prior evidence that these genes are under selection. Three of those genes, ADH1B, EDAR
and LCT, were found to be under selection from a new mutation and one gene, TRPV6
could not be assigned with any significant probability to either model. Two genes, ASPM
and PSCA, were found to be under selection from standing variation. Finally, none of
the three models provided a good fit to observed data in the G6PD gene, suggesting that
neither of the models is appropriate for this gene. In the following paragraphs, we will
discuss each gene in some detail, and give estimates for selection coefficient and time when
appropriate. All estimates are given with a point estimate for the mode, and the lower
and upper bound of a 95% Highest Posterior Density interval in brackets. Estimates in
years were made assuming a generation time of 25 years.

2.3 Discussion

2.3.1 Applications

2.3.1.1 ADH1B

The ADH1B gene encodes one of three subunits of the Alcohol dehydrogenase (ADH1)
protein, a major enzyme in the alcohol degradation pathway that catalyzes the oxidization
of alcohols into aldehydes. ADH1B is part of a 60kb gene cluster on chromosome 4, encod-
ing for all three ADH1 subunits. Selection on the major ADH gene complex has received
major attention as it is suggested to be one of the major genetic causes of alcoholism
risk (Li et al., 2007), and a possible cause of the “alcohol flush” phenotype prevalent in
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many Asian populations, where individuals turn red due to increased acetaldehyde levels
in the blood after alcohol consumption (Peng et al., 2010). As a result, the genes are well
studied and several non-synonymous polymorphisms are known to have various effects on
enzyme activity (Eng et al., 2007; Osier et al., 2002). One particular allele, Arg47His,
has been proposed to be under selection based on several lines of evidence: First, the
derived Histidine allele results in an increased enzymatic activity. Second, age estimates
of the derived allele based on its frequency correlate with the onset of rice domestication
(Li et al., 2007; Peng et al., 2010) and the availability of fermented beverages (McGovern
et al., 2004). In our analysis, we analyzed the CHB population where the allele is found
at a frequency of 0.71 in the 1000 genomes data. For this data set, we could clearly reject
the neutral model, with a posterior probability of 10−8. The SDN and SSV models have
posterior probabilities of 78.3% and 21.7%, respectively, indicating slightly stronger evi-
dence in favor of the SDN model. Under this model, we estimate a selection coefficient of
s = 0.036 (0.009 - 0.19), and an age of the mutation of 11,100 (1,900 - 42,900) years It is
remarkable that this age corresponds very well with the arrival of rice agriculture and the
availability of fermented beverages in China around 10,000 year ago (Peng et al., 2010).
Our finding of evidence for a de novo sweep is conflicting with the fact that the derived
47His allele also occurs at a high frequency in Western Asian populations, but only at
low frequencies in Central Asian and Indian populations (Li et al., 2007), a pattern of
genetic variation that has previously been suggested to be a result of selection on standing
variation (Li et al., 2007).

2.3.1.2 ASPM

The ASPM (abnormal spindle-like microcephaly associated) gene has been identified as a
major determinant of brain size (Bond et al., 2002). Much attention has been focused on
the difference between humans and chimpanzee in that gene, and several studies (Kouprina
et al., 2004; Zhang, 2003) have quantified these differences and found an unusual high
amount of fixed substitutions between these two species, indicating positive selection
on the branch between humans and chimps. In addition, recent ongoing selection was
proposed based on the finding that a single haplotype was unusually frequent in several
populations (Mekel-Bobrov et al., 2005). However, the interpretation of their results
stirred considerable debate (Currat et al., 2006; Mekel-Bobrov and Lahn, 2007; Timpson
et al., 2007; Yu et al., 2007), with researchers pointing out that the haplotype distribution
found by Mekel-Bobrov et al. (2005) is not that unusual (Yu et al., 2007) and that neutral
demographic scenarios are able to produce haplotype distributions similar to the one
observed in ASPM (Currat et al., 2006). We used the non-synonymous SNP A44871G
(rs41310927) for our study, which was identified in (Mekel-Bobrov et al., 2005) as a
putative causal variant in our analysis. We found evidence for selection on standing
variation (P(SSV ) = 0.87), with little support for the neutral and SDN model with
posterior probabilities of 0.13 and 2 × 10−7, respectively. We estimate a rather weak
selection coefficient of 0.029 (0.003-0.170), and estimate that selection started to act
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17,412 (771-56,443) years ago, and an age of the mutation of 97 (17-289) ky. This is
considerably older than the estimate of 5,800 years for the most recent common ancestor
of the selected allele by Mekel-Bobrov et al. (2005), a difference that might be due to the
fact that we assume a different demographic history.

2.3.1.3 EDAR

The EDAR gene region has been suggested to be under selection in East Asians based
on multiple genome scans (Akey et al., 2004; Voight et al., 2006; Williamson et al., 2005)
and has been studied in more detail by Bryk et al. (2008). EDAR encodes a cell-surface
receptor that activates a transcription factor (Bryk et al., 2008; Fujimoto et al., 2008), and,
among other phenotypes, has been associated with the development of distinct hair and
teeth morphologies (Fujimoto et al., 2008; Kimura et al., 2009). A non-synonymous SNP
(rs3827760, V370A) has been associated with these phenotypes, and has been confirmed
in an in vitro study to enhance the activity of the EDAR gene (Bryk et al., 2008). The
rs3827760 SNP lies in a DEATH-domain that is highly conserved within mammals (Sabeti
et al., 2007), and is found at a very high frequency in East Asian and American individuals,
but is absent from all European and African populations (Bryk et al., 2008). In the 1000
genomes data, EDAR shows the strongest signal of selection for EHH, Tajima’s D and
Fay & Wu’s H among all genes we analyzed. This is reflected in our model choice analysis,
where we find a 88.5% probability that the V370A polymorphism originated from a new
mutation. The probability for the SSV model was 13.3%, and the neutral model did
not receive any measurable support. We estimated a very high selection coefficient of
s = 0.15 (0.04, 0.31), and an origin of the mutant allele 3,000 (1,400, 6,900) years ago.
This estimate is most likely too young, as the allele is also present in Native American
population and so is strongly expected to have been present before the colonization of
America. A possible explanation for this is that selection does not act codominantly on
EDAR. Comparing our codominant model with a model where the dominance parameter h
was allowed to vary between 0 and 1 resulted in a strong favor for the more complex model
(Bayes Factor = 36). Under this model we estimate a selection coefficient of s = 0.14
(0.07-0.31), but a much older age of the allele of 11,400 (4,300-43,700) years. This is at
the lower end of estimates for the time of colonization of the Americas (Fagundes et al.,
2007; Waters and Stafford, 2007), indicating that the derived allele might have moved into
the American populations at a low frequency. This hypothesis is consistent with the very
high divergence of the EDAR region between the Mexican and Chinese populations, where
we find an FST of 0.36 (excluding the conserved DEATH-domain), which is much higher
than the genome-average FST of 0.069 between these two populations (Altshuler et al.,
2010). This may indicate that the 370A allele has risen in frequency largely independently
between these two populations.

This is in contrast to the analysis of Bryk et al. (2008), who estimated that the derived
370A allele has been fixed 10,740 years ago. However, both in the 1,000 genomes data
and the data of Bryk et al. (2008), the site is still segregating within the CHB population.
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While we cannot exclude the scenario of fixation and recent reintroduction of the ancestral
allele, the high divergence between Native Americans and East Asians seems to favor a
more recent sweep.

2.3.1.4 G6PD

The G6PD gene is located on the X chromosome, and is one of the best studied cases
of selection in humans (Sabeti et al., 2002; Saunders et al., 2002; Tishkoff et al., 2001;
Verrelli et al., 2002). The G6PD gene encodes the Glucose-6-phosphate dehydrogenase
protein, the first enzyme in the pentose phosphate pathway. The G6PD gene has long
been associated with reduced-efficiency erythrocytes (Beutler, 1994; Carson et al., 1956),
and several hundred variants causing various levels of reduction in catalytic activity have
been discovered (Nkhoma et al., 2009), leading to a significantly reduced fitness in af-
fected individuals. As a benefit, however, G6PD deficiency provides resistance to malaria
(Ruwende et al., 1995) and therefore even strongly deleterious alleles rise to considerable
frequencies in populations where malaria infections are epidemic. Due to these antag-
onistic selective pressures, G6PD in populations affected by malaria is one of the best
examples of balancing selection described in the human genome. We use the A/A- poly-
morphism (rs1050828), identified by (Tishkoff et al., 2001) as the putative site under
selection. When applying our method, however, none of the models provided a good fit
to the data, indicating that the models we used are too simplistic for the complicated
history of G6PD (see Figure 2.5). The combination of summary statistics with a low
EHH, very low IHS and high, non-significant values for Tajima’s D and Fay and Wu’s
H cannot be captured by either of our models. This is not surprising given that the
selection on the G6PD locus cannot be described as a selective sweep, but is the effect of
balancing selection. It is encouraging the method in this case indirectly, through a poor
model fit, helps determine that the simple selective sweep models considered here are not
appropriate for this locus.

2.3.1.5 LCT

In most mammals, the ability to digest lactose, a common disaccharide in milk, decreases
when they stop being milk-fed. In contrast, in many humans the main enzyme used to
digest lactose into monosaccharides, continues to be expressed even in adults, a pheno-
type known as lactase-persistence (Bersaglieri et al., 2004; Enattah et al., 2002; Hollox
et al., 2001). Several presumably independent alleles have been identified that confer the
same phenotype (Tishkoff et al., 2007) in different populations. The first and possibly
best-characterized allele is the C/T-13910 polymorphism (rs4988235) that is particularly
prevalent in Northern European populations and has been shown in Finnish populations
to be 100% associated with the lactase phenotype (Kuokkanen et al., 2003). Further evi-
dence that the T-13910 allele is causal for the persistence phenotype is given by in vitro
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analyses (Olds and Sibley, 2003; Troelsen et al., 2003) that found increased enhancer
activity.

We analyzed the FIN population from the June 2011 data release of the 1,000 Genomes
Project, using the C/T-13910 polymorphism as the selected site. We found a 98.7%
posterior probability for the SDN model and only a 1.2% posterior probability for the
SSV model, indicating that this particular LCT allele most likely was under selection
shortly after it arose. We estimated a rather low selection coefficient of 0.025 (0.003-
0.19), and an origin of the mutation 11,200 (1,500-64,900) years ago. Our estimate is
much older than the estimates by Bersaglieri et al. (2004), who estimated a selection
coefficient between 0.09 and 0.19, and an age of the mutation of 1,625-3,188 years using
a deterministic approximation based on the observed frequency of the allele. The fact
that they used a deterministic approximation may explain the fact that we have wider
confidence intervals. Our estimate is more consistent with the estimate of Tishkoff et al.
(2007) who used the width of the sweep region to date the selected allele to an age of
7,998 years and obtained an estimated selection coefficient of 0.069. Our estimates are
also in good concordance with the estimate of Itan et al. (2009). In their study, they
modeled the spread of lactase persistence through Europe using a spatially explicit ABC
model, which takes advantage of the arrival of dairy farming in various locations. They
estimated a selection coefficient of 0.095 in dairy farmers and a slightly older age for the
selected allele (7,441 years). While all studies suggest a more recent origin of the selected
allele, we note that the confidence intervals on both the selection coefficient and age of
the sweep overlap between all four studies. A complimentary approach to dating the age
of an allele, and estimating selection coefficients from modern DNA data, is the usage
of ancient DNA (Burger et al., 2007; Malmström et al., 2010; Plantinga et al., 2012).
Indeed, the derived allele of the LCT the C/T-13910 polymorphism as was found in a
single copy in a 5,000 year old sample from Sweden (Malmström et al., 2010), and at a
higher frequency of 27% in the Basque country in a sample of approximately the same
age (Plantinga et al., 2012). In contrast, the derived allele was absent from an Eastern
European sample roughly 7,000 years old (Burger et al., 2007). These findings are in good
agreement with our estimates and other estimates on genetic data. Based on this ancient
DNA evidence, it has been speculated that the LCT allele may have swept from standing
variation (Plantinga et al., 2012), mainly due to the fact that the derived allele is found
at a rather high frequency only two millennia after the introduction of agriculture in that
population. However, if the allele was mostly neutral before the arrival we would expect
it to be rather old, and in particular we might also expect to see the derived T allele in
African populations, which is not the case. Calculating the expected age of an allele at
a frequency of 27% (Kimura and Ohta, 1973; Maruyama, 1974) results in expected ages
of 480ky and 6,500 (2,500 -36,000) years for neutrality and selection, respectively, using
our estimated selection coefficient and an effective population size of 10,000. While these
estimates based solely on allele frequencies should be interpreted with great caution, they
nevertheless show that our estimate of a de novo selected mutation is consistent both
with the observed allele frequencies around 5,000 years ago and an assumed origin of
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dairy farming 11,000-12,000 years ago.

2.3.1.6 PSCA

The prostate stem cell antigen gene (PSCA) on chromosome 8 has been proposed to be
under selection by (Bhatia et al., 2011) based on an analysis of population differentiation
in a global array of human populations. A non-synonymous SNP in PSCA (rs2294008)
is known to be involved in various forms of cancer (Wu et al., 2009), and we therefore
used it as the causal site in our analysis. Interestingly, the derived allele is present
in all human populations although the frequency varies considerably between different
populations (Bhatia et al., 2011). The highest derived allele frequencies of more than
75% are reported in West African and East Asian populations, whereas some sub-Saharan
African and most Native American populations have allele frequencies below 20%. This
worldwide distribution of the allele was interpreted as evidence of selection from standing
variation (Bhatia et al., 2011). Our analysis confirmed this hypothesis based on analyses
of data only from the Yoruban population, with the SSV model receiving a posterior
probability of 86.0%, compared to a posterior probability of 23.9% for the SDN model,
and 1.2% for a neutral model Under the SSV model, we estimate a selection coefficient of
0.035 (0.004 - 0.15), with selection having started 8,000 (1,000-54,900) years ago, and the
allele being 191 (50 698) thousand years old. The fact that the mutation is distributed
globally supports our inference of a sweep based on standing variation.

2.3.1.7 TRPV6

TRPV6 is in the heart of a 115kb region on chromosome 7 that has been reported to
be under selection (Akey et al., 2004; Stajich and Hahn, 2005) and has been closely
investigated by Akey et al. (2006). TRPV6 codes for a protein subunit that encodes
cation pores, particularly for calcium ions (Akey et al., 2006; Birnbaumer et al., 2003).
TRPV6 was found to be in a region of accelerated evolution on the human lineage, as
indicated by an elevated ratio of non-synonymous to synonymous fixed differences (Akey
et al., 2006). In particular, three non-synonymous mutations segregating in humans were
found, with a striking diversity pattern; the derived allele was at an intermediate frequency
in all African population, but at frequencies of 90% and more in the rest of the world.
In addition, both Tajima’s D and Fay and Wu’s H statistics were significantly negative
for non-Africans and European-Americans. For this reason, we restricted our analysis
to the CEU population, and used the first of the non-synonymous SNP (rs4987682) as
the focal site for our analysis, as it was the only one that was in the N-terminal region
of the TRPV6 protein, the suggested target of selection (Akey et al., 2006). While the
neutral model could be rejected with a posterior probability close to zero (8× 10−7), the
separation of SSV and SDN model remained inconclusive, with posterior probabilities of
0.55 and 0.45 respectively. The estimate of the selection coefficient was very similar for
both models sSSV = 0.032 (0.005-0.25), sSDN = 0.023 (0.007-0.08), but the confidence
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interval is much smaller under the SDN model, as expected. Furthermore, the estimated
age of the allele differed between models: Under the SSV model, the mutation is inferred
to be 211 (29-697) ky old, but became selected only 7,600 (900-43,300) years ago. Under
the SDN model, the mutation arose and became selected 23,400 (6,400-70,400) years ago.
These findings are in good concordance with the patterns of diversity found previously,
(Akey et al., 2004, 2006) and in particular the evidence that the signature of selection
is shared between all non-African populations and thus selection started likely less than
100,000 years ago. Also, the estimate under the SSV model that selection started less
than 10,000 years ago is concordant with the role of TRPV6 in absorbing calcium (Akey
et al., 2006).

2.3.1.8 Neutral Regions

In addition to these genes, we also analyzed four putatively neutral regions that were
5Mb away from our candidate genes. This distance should be big enough that the neutral
region are not impacted by the selective sweep, but are likely influenced by the same
mutational processes as the selected regions. For all these regions, the neutral model had
the highest posterior probability, with posterior probabilities of 0.758, 0.932, 0.994 and
0.999 for the four regions. This indicates we are indeed able to discern selected from
neutral regions.

2.3.2 Conclusions on Data Applications

The distribution of summary statistics in Figure 2.10 illustrates the impact of choice of
summary statistic for model inference (Marin et al., 2011). Very high values of EHH are
clearly indicative of the SDN model, at both a 10kb and 20kb distance. Both the SSV
and SDN models are associated with low IHS values, whereas the neutral regions have
IHS values closer to zero. Tajima’s D and Fay and Wu’s H are both very informative
for model comparison, with SDN genes having very low D values, SSV genes having D
values close to zero and neutral regions having positive D values. The main exception is
the LCT gene, however, which we inferred to be selected from a de novo mutation, but
which has a high D. The signal for SDN apparently comes more from the high EHH and
low IHS values.

In general, our results are highly concordant with previous studies of these genes.
Our estimates tend to be slightly older for several genes, which might be due to us
assuming a recent bottleneck and thus a period of relaxed selection, whereas the majority
of other authors assumed a constant population size for their timing inferences (Peng
et al., 2010), which results in a stronger signal of selection (Figure 2.6). For one gene,
G6PD, we could not make any inferences, because we could not reproduce the observed
pattern of diversity using simulations of positive directional selection. G6PD shows an
extremely narrow region of reduced diversity, surrounded by a region of high diversity.
This may be due to balancing selection between malaria resistance and reduced efficiency
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oxygen transport introducing a signal that cannot be reproduced by our simple model of
directional selection. Alternatively, the X-linked mode of inheritance of this locus is not
concordant with the assumptions of our model. This also highlights one of the dangers of
ABC: It is crucial that the models investigated are able to reproduce the data observed;
otherwise false inferences may be drawn. This danger inherent to any ABC approach
is also highlighted by the fact that misidentification of the selected site will bias model
choice results towards SSV (Figure 2.11). This can be explained by the fact that even if
the neutral site is closely linked to the selected site, it is likely to “escape” the sweep by
recombining away from the selected haplotype, thus giving the signal of selection from
standing variation. Similarly, analyzing data simulated under a population bottleneck
under a constant size model will bias the results towards stronger selection and SDN
(Figure 2.12), presumably due to the younger age of mutations being taken as evidence
of strong selection.

2.3.3 Model Choice Accuracy

We have shown that it is much more difficult to estimate the model parameters α, and
t1 from the SSV model than from the SDN model. This is unsurprising, as the SSV
model has been shown to have a higher variance in allele age, which results in a higher
expected variance for most summary statistics (Innan and Kim, 2004). We further show
that there is not enough information to estimate the initial frequency of the sweep f1.
This is unsurprising, as the exact position of the switching point has likely only a minor
effect on the data, especially as the effect of selection on the trajectory is weak when the
allele frequency of the beneficial allele is low (Kaplan et al., 1989). We further notice that
the accuracy of our model choice procedure decreases when the signal of selection is weak.
Consistent with previous findings, selection is very hard to detect if α is below about 100
(Hermisson and Pennings, 2005; Teshima et al., 2006; Williamson et al., 2005). This is
also the point where our method gains power to distinguish between SVN from SDN. The
initial frequency required to detect standing variation is moderate at around 3% for weak
selection and 2% for stronger selection. However, selection has to be rather strong, at
around α = 1,000 and initial frequencies have to be above 5% to allow accurate inference.
Presumably, this is because below this threshold, the stochasticity of the trajectory is
very large even under selection, and the difference between the two scenarios is small
(see also Figure 2.1c). These findings are not particularly surprising, as selection scans
based on summary statistics have been shown in general to have low power under these
conditions (Teshima et al., 2006). These findings certainly limit the scope of our approach.
Could we do better with a different strategy? As discussed in the introduction, the ABC
approach simplifies data in two ways. First, instead of using the full data, we use an array
of summary statistics. Second, we substitute an exact match between observation and
simulations with an approximate match, depending on “close” simulations. Regarding the
use of summary statistics, we note that summary statistics have been widely used to detect
selection from genetic data (Akey et al., 2004; Nielsen et al., 2005; Sabeti et al., 2002;
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Voight et al., 2006; Williamson et al., 2005), and currently provide the only way to detect
selection from DNA sequence data. No full likelihood based method is available to detect
selection from DNA sequence data that could be adapted to distinguish between the two
sweep models entertained here. The second simplification step is based on the number
of simulations performed and the tolerance interval and is imposed by computational
constraints. We examine the effect of different numbers of simulations and tolerance
cutoffs on our results by calculating relative error rates of the posterior mean and the
false negative rate of the model choice. We show in Table 2.2 that increasing the number
of simulation by a large amount or changing the rejection parameter does not significantly
improve our results, indicating that we do not lose a lot of information at this stage. This
shows that the ABC approach reliably estimates the posterior based on the summary
statistics, and as such use all the information available in these statistics. Statistics
such as EHH, iHS, Tajima’s D, etc., do not contain information that will allow us to
provide more reliable estimates. It the light of this, it may appear disappointing that
our method does not provide more accurate parameter estimates and more power to
distinguish between models. However, it is important to realize that as previously argued,
all information regarding selection is in the frequency path of the selected allele (Hudson
and Kaplan, 1988; Kaplan et al., 1989). For relatively small selection coefficients and/or
small initial frequencies of the selected allele, the paths are very similar for the SSV and
SDN models. Even if a full likelihood method could be developed, it is unlikely that
it had much more power to distinguish between models. A further simplification in our
method is the restriction to a single population. Population differentiation measures,
such as FST , are one of the most successful ways to detect sweeps from standing variation
(Barrett and Schluter, 2008; Bhatia et al., 2011), and the inclusion of more realistic
models of demography may improve our accuracy. Such models, however, require an
additional estimation of multi-population demographic history, which greatly increases
the complexity of the model. While we applied our method only to human candidate loci,
it should be possible to easily translate it to other species. In particular, as our simulation
results suggest that we have more power to distinguish SDN and SSV if selection is strong,
species with large population sizes, such as e.g. Drosophila or many microorganisms may
be very promising targets for a similar study. Another possible target might be species
with very strong artificial selection, such as domesticated animals or plants, where we
may gain valuable insights on the domestication history of these species. Of course, our
approach could also be combined with ancient DNA (e.g. Plantinga et al., 2012), which
could provide much narrower confidence intervals on time estimates and also help improve
estimates of selection coefficients.

The two selection models we consider here, the SSV and the SDN models, are nested
models, Setting f1 = 1/2N in the SSV model recovers the SDN model. To facilitate
Bayesian model choice we assign positive probability to f1 = 1/2N , and base our in-
ferences on a choice between f1 = 1/2N and f1 ∼ U(0, 0.2) (See Methods). ABC based
model choice has recently been criticized and been shown to be biased in some cases where
the statistics used are not sufficient (Didelot et al., 2010; Robert et al., 2011). While some
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of the specific issues raised by (Birnbaumer et al., 2003) are not applicable in our setting
because we consider nested models, we do not base our inference on sufficient statistics
and the statistical properties of our model choice procedure are, therefore, largely un-
known. To address this issue, and in general to validate our approach, we use a method
introduced in (Cook et al., 2006). We show in Figure 2.13 that our estimated probabilities
only show bias for very small values of the Bayes factor, where there appears to be a bias
towards inference of the SDN model for simulations generated under the SSV model with
very low values of f1.

2.4 Methods

2.4.1 Models

In order to keep our problem simple, we condition on two important parameters: We
assume that the exact site under selection is known from extraneous information, and we
furthermore assume that the allele frequency fcur of that site at the time of sampling,
tcur = 0 is known. The interpretation of the parameters is depicted graphically in Figure
2.1a. Unless noted otherwise, we assume a panmictic diploid population of size N with
an additive selection model where the ancestral homozygous, heterozygous and derived
homozygous genotypes have fitness 1, 1 + s/2 and 1 + s, respectively. However, the
methodology applied here can easily be adapted to more complex scenarios, e.g. models
involving multiple populations, more sophisticated demographic models, and other models
of selection. For most simulated data sets, we will report the population scaled mutation
rate α = 4Ns, as the shape of the allele frequency trajectory depends only on that
compound parameter (Ewens, 2004). However, for most of the genes we analyze previous
estimates were made directly on s rather than the compound parameter. To facilitate
comparisons, we report s for the genes we analyzed.

2.4.1.1 Sweep from a De Novo Mutation Model

The sweep from a de novo mutation (SDN) models a single selective sweep and has two
parameters: the mutation rate µ, and the selection coefficient s. For all simulations, we
follow Itan et al. (2009) and record the time t0 when the mutation arose, as t0 depends
stochastically on s. The prior distributions we use for this model were µ ∼ U(0.5 ×
10−8, 6× 10−8) and log(s) ∼ U(−3,−0.5), where U is a uniform distribution.

2.4.1.2 Sweep from Standing Variation Model

The sweep from standing variation (SSV) model is identical to the de novo mutation
model, with the exception that we define a frequency f1 at which the mutation becomes
selected. Unless noted otherwise, the priors for µ and s are the same as in the SDN model,
and the prior for f1 is f1 ∼ U(0, 0.2). In addition to t0, which is defined analogous to the
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SDN model, we are also interested in t1, the time when the mutation becomes selectively
advantageous (i.e. the time when the mutation reaches frequency f1).

2.4.1.3 Neutral Model

We also consider a neutral model (NT), without any selection. The only free parameter
in this model is the mutation rate µ, with the same prior distribution as described under
SDN model. As under the selection model, however, we still condition on one site having
reached a final allele frequency of fcur, so this model does not correspond to the classical
neutral coalescent.

2.4.2 Approximate Bayesian Computation

We use a standard ABC approach (Beaumont et al., 2002; Tavaré et al., 1997), using a
post-sampling adjustment in the form of a GLM (Leuenberger and Wegmann, 2010). We
used the ABCToolbox package (Wegmann et al., 2010), for specifying priors, rejection
sampling and post-sampling adjustment. Unless specified otherwise, we perform 105 sim-
ulations per model, and retained the 100 (0.1%) simulations with associated Euclidean
distance between observed and simulated summary statistics closest to zero. To assess
how the number of simulations and acceptance rates influence our results, we analyze
10,000 random data sets with up to 107 simulations and varying acceptance rates. We
show that these parameters have very little impact on the relative error for both the model
choice and parameter estimates in Table 2.2.

2.4.2.1 Details of Statistics Used

We use a diverse array of summary statistics, with the goal of maximizing the information
captured, while not incluing any statistics that just add noise. The statistics we used may
be broadly classified into statistics based on haplotype patterns, and statistics based on
the site frequency spectrum. The haplotype based statistics we used were iHS (Voight
et al., 2006) and EHH citepsabeti2002. We recorded EHH in a 10kb, 20kb and 50kb
window, centered on the selected site. For the SFS based statistics, we used Tajima’s
D (Tajima, 1989), Fay & Wu’s H (Fay and Wu, 2000), the average number of pairwise
differences π, and the number of segregating sites S as statistics. All these statistics are
calculated for three regions: A central region of 20kb around the selected site, an inter-
mediate region consisting of all sites 20-50kb away from the selected site, and a faraway
region consisting of all sites further than 50kb away from the selected site. Following
Wegmann et al. (2009), we linearize all statistics using a Box-Cox-transformation (Box
and Cox, 1964). To choose a set of informative summary statistics, we used a Partial
Least Squares Discriminant Analysis (PLS-DA) (Lê Cao et al., 2009; Tenenhaus, 1998).
PLS-DA is a variant of Partial Least Squares regression, that, similarly to principal com-
ponent analysis, extracts orthogonal components from a high-dimensional data set (in
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this case the summary statistics). In contrast to PCA, in PLS-DA these components are
chosen such that the covariance between summary statistics and models is maximized (see
e.g. Boulesteix and Strimmer, 2007). We did our computations using the “psda” function
of the mixOmics package for R, and kept the five first PLS-DA axes (Lê Cao et al., 2009).
ABC has two crucial parameters independent of the model it is applied to: The number
of simulations nS and the acceptance rate ǫ. To assess the effect of these parameters on
inference, we calculate the accuracy of our model choice estimates for various values of
nS and ǫ (Table 2.2).

2.4.3 Simulations

All our data sets used for both the ABC inference and the assessment of our procedure
are simulated using a modified version of the coalescent simulator mbs (Teshima and
Innan, 2009). Mbs allows simulation of genetic data sets with a single selected site using
the structured coalescent (Hudson and Kaplan, 1988). Mbs first simulates the allele
frequency trajectory of the site under selection, and then generates a data set conditional
on that trajectory. We simulate allele frequency trajectories using Euler’s method on the
unscaled backwards diffusion equation with selection (eq 7.1. in Kimura, 1964). This
equation makes it very easy to incorporate population size changes by just changing the
variance term. To simulate sweeps from standing variation, we set the selection coefficient
(s) to zero the first time the trajectory reaches f1. To analyze simulated data sets, we
generally simulate a 100kb region with a recombination rate of 1.5cM/Mb. For the human
genes, we simulate the gene and a 50kb flanking region on both sides, resulting in regions
that are usually between 100kb and 150kb wide. Recombination rates and hotspots are
modeled by using the HapMap recombination map (Myers et al., 2005) in the application
to selected genes. For all simulated data sets we assume a constant-sized population.
For the analysis of human genes, we use the population history estimated by (Li and
Durbin, 2011). Specific regions and details of the used regions are given in Table 2.3. To
ensure that our method does not suffer from a high false positive rate, we also analyze
regions 5Mb downstream from the candidate genes, as they are presumably neutral. For
three of genes (ASPM, G6PD, and PSCA), no data was available for these downstream
regions, so we analyzed the remaining loci. Candidate loci for selection were chosen using
the following criteria: i) they were required to have a derived allele frequency between
0.7 and 0.9 and ii) to be as closely to 5Mb away from the actual candidate locus in the
upstream gene as possible. We estimate parameters from our models using the standard
ABC procedure described above. The parameters we estimate are the mutation rate µ,
the age of the sweep t1 the selection coefficient s and, only under the SSV model, the initial
frequency f1 for the SSV model. In particular we want to determine if our posteriors are
unbiased, and if we were able to get reasonable confidence in our estimates. To do this,
we simulate data sets with fixed parameters and plotted the average posterior distribution
for all parameters in Figure 2.2.
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2.4.4 Model Choice

For model choice, our main goal is to calculate the relative probabilities of the models
given the data, i.e. P(SSV |data),P(SDN |data) and P(NT |data), which we calculate us-
ing the marginal densities as proposed by Leuenberger and Wegmann (2010). To identify
parameter regions where there is power to distinguish between the models, we simu-
late 1,000 data sets each under 30 different scenarios in three series, corresponding to
three parameters of interest: The strength of selection α, the frequency when the muta-
tion became selective advantageous f1 and fcur, the frequency at which the mutation is
observed. To test the algorithm for approximating Bayes factors, we also use a simula-
tion approach. The estimator of the posterior probability from k simulations, p̂k(m|x) ,
should have the property limk→∞ p̂k(m|x) = P(m|x) where m is a model indicator func-
tion for a specific model. Also, for a particular draw from the posterior, m(0), we expect
P(m(0) = m|x) = P(m|x), if the simulation algorithm works properly. In other words,
p̂k(m|x) , should asymptotically equal P(m(0) = m|x), i.e. if p̂k(m|x) = c, we expect a
proportion c of simulations to have been obtained from model m. Equivalently, for an
estimated log Bayes factor B, logB = c, we expect a proportion 10c/(1 + 10c) of draws
to be from model m. This prediction is tested in Figure 2.13, based on 10,000 random
data sets from both the SDN and SSV model.
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2.5 Tables

Table 2.1. Genes analyzed in this study. Chr: chromosome, pop: population we analyzed using the population
code from the 1000 genomes project; For each gene, we give the favored model(s) and in brackets the posterior
probability for that model.

Estimates
Gene chr function pop Model S t1 (years) t0 (years) References
ADH1B 4 Alcohol metabolism CHB SDN(0.78) 0.036 (0.009-0.192) - 11,100 (1,900-42,900) Osier et al. (2002)
ASPM 1 microcephalism GBR SSV(0.87) 0.029(0.003-0.17) 17,400 (800-56,400) 79 (17-288 ) ky Mekel-Bobrov et al. (2005)
EDAR 2 NF-B Activation CHB SDN(0.88) 0.14 (0.07- 0.31) - 11,400 (4,300 -43,700) Bryk et al. (2008)
G6PD X malaria resistance YRI - - - - Tishkoff et al. (2001)
LCT 2 lactase persistence FIN SDN(0.99) 0.025 (0.004-0.20) - 11,200 (1500-64,900) Hollox et al. (2001)
PSCA 8 cancers YRI SSV(0.86) 0.035 (0.004 - 0.015) 8,000 (1,000 54,900) 191 (50 698) ky Bhatia et al. (2011)
TRPV6 7 Calcium absorption CEU SSV (0.55) 0.032 (0.005-0.25) 7.600 (900-43,300) 211 (29-697)ky Akey et al. (2006)

SDN (0.45) 0.023 (0.007-0.08) - 23,400 (6,400-70,400)
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Table 2.2. Details of genes and neutral regions analyzed in this study. Chr: chromosome, pop: population
we analyzed. All positions given are on the hg19 build of the human genome.

Selected site
Gene chr function freq pop Region sim dbSNP id Position size
ADH1B 4 Alcohol metabolism 0.71 CHB 100177528-100292572 rs1229984 100239319 115044
ASPM 1 microcephalism 0.48 GBR 197007250-197165824 rs41310927 197070697 158574
EDAR 2 NF-B Activation 0.95 CHB 109460931-109605828 rs3827760 109513601 144897
G6PD X malaria resistance 0.21 YRI 153709606-153825233 rs1050828 153764217 115627
LCT 2 lactase persistence 0.56 FIN 136535946-136657220 rs4988235 136608646 121274
PSCA 8 cancers 0.77 YRI 143691875-143834142 rs2294008 143761931 142267
TRPV6 7 Calcium absorption 0.91 CEU 142518960-142633477 rs4987682 142569596 114517
ADH1B.OFF 4 - 0.71 CHB 105177528-105292572 rs7672705 105247146 115044
EDAR.OFF 2 - 0.95 CHB 114460931-114605828 rs34264290 114528334 144897
LCT.OFF 2 - 0.56 FIN 141535946-141657220 rs59101965 141583482 121274
TRPV6.OFF 7 - CEU 147518960-147633477 . 147583629 114517

Table 2.3. Relative Error for different numbers of simulations and acceptance rates. In this table, we
give the relative error of the mean and the false negative rate of the model choice for 1000 data sets randomly
simulated under the SSV model with varying number of simulation nS and proportion of accepted simulations δ.
FN=False negative rate in model choice.

nS δ RE(f1) RE(log(s)) RE(µ) RE(log(t1)) RE(log(t0)) FN
105 10−3 0.0392 0.348 2.92e-9 0.366 0.321 0.258
105 10−2 0.0387 0.348 2.91e-9 0.365 0.322 0.240
106 10−4 0.0389 0.343 2.95e-9 0.361 0.321 0.250
106 10−3 0.0388 0.345 2.93e-9 0.364 0.320 0.236
107 10−5 0.0386 0.343 2.86e-9 0.361 0.323 0.258
107 10−4 0.0387 0.344 2.97e-9 0.362 0.321 0.246
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2.6 Figures
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Figure 2.1. Characteristics of a selective sweep from standing variation.
orange: sweep from standing variation blue: sweep from a new mutation, grey: neutral
model. Panel a: A cartoon of the allele frequency trajectory with relevant parameters: f1:
allele frequency at the time selection started, fcur: allele frequency at the time mutation
is observed. t1: time at which selection started. t0: time when mutation arose. Panel b:
100 stochastic realizations of the allele frequency trajectory. Panels c,d: Age distribution
of an allele at 1% frequency and 5% frequency in a population (log scale). Grey line
denotes neutrality, blue lines represent selection with α=20,100,200 and 1000 (right to
left). Panels e,f: Distribution of the EHH (e) and H (f) statistic under neutrality (grey), a
de novo mutation (blue) and standing variation (orange). Full and dashed lines represent
selective pressures of α = 1,000 and 200, respectively. The dash-dot line represents α =
4000. Note that the slopes of the curves are different for the two scenarios, and the low
H value around 0 under neutrality is due to the conditioning on a high frequency derived
allele. Times are given in coalescent units and are plotted on a logarithmic scale.
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Figure 2.2. Parameter estimation accuracy under SSV and SDN model.
Prior distributions are given as histograms; the orange and blue lines depict the aver-
age posterior distribution from 100 replicates of the parameters under the SSV and SDN
model, respectively. The vertical dashed red line gives the parameters used for the simula-
tion: α = 400, µ = 2.5× 10−8, f1 = 0.05, log(t1) = −1.51 (SSV)/−1.36(SDN). Estimates
for the SSV model are less accurate for all parameters except µ, and 95% confidence
intervals of estimates under the SSV model span the entire prior range for f1, α and t1.
The age of the sweep is given in coalescence units.
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Figure 2.3. Simulation results for ABC model choice procedure.
We simulated data using the fixed parameter values given in the lower part of the figure.
The boxplots show the lower and upper quartiles, the median and the limits of a 95%
interval of the posterior probability for the NT (grey), SSV (orange) and SDN (blue)
models, respectively. Panel a: We compare the effect of the increasing selection coefficient
α. Panel b: The effect of increasing initial frequency f1. Panel c: The effect of the current
frequency fcur, In panels a,b fcur was set to 0.95, and in panel c, α=1,000.
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Figure 2.4. Parameter regions where distinction between models is possible.
On the x and y axes are the prior ranges for selection coefficient and initial frequency of
a selective sweep, respectively. Panels a, c and e give simulations under the SSV model,
panels b, d and f for the SDN model. The different panels represent different current
frequencies: In Panels a, b fcur is 0.95, in c, d fcur = 0.8 and in panels e and f fcur = 0.5.
Color gives the proportion of simulated data sets that were assigned to the correct model,
when compared to the two alternative models. Black areas correspond to regions where
this proportion is less than 50%, white areas to parameter regions where 95% or more of
the data sets are correctly assigned. Each shade of grey corresponds to a 5% increase in
the number of correctly assigned data sets.
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Figure 2.5. Distribution of summary statistics of 7 genes.
This figure shows the observed (red) and prior predictive distribution of the first two
PLS-DA components. Neutral simulations are shown in grey, SSV in orange and SDN in
blue. For G6PD we show components 2 and 3 to highlight the finding that none of the
three models analyzed is able to model the data for this gene.
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Figure 2.6. ROC plots.
This figure gives ROC plots for the same data as in Figure 3. As we have three models,
the first two columns compare both selection models with a neutral model, and the last
two columns compare the two selection model, with the model better characterized as the
null model plotted on the x-axis. The lines give the percentage of simulation assigned to
the model on the y-axis (sensitivity), given a proportion of models assigned to the x-axis
(specificity). Parameters used for the simulations are given above the plot and in the
legend box.
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Figure 2.7. Joint posteriors of f1 and t1 of simulations under SDN model.
Inferred joint posterior distribution of nine replicate simulation with parameters of
α = 400, µ = 2.5 × 10−8 are shown. Red and blank areas correspond to areas with
zero probability, yellow areas indicate high probability densities. Notice that for most
simulation the inferred initial frequency is below 2%.



CHAPTER 2. DISTINGUISHING BETWEEN SSV AND SDN 32

run13_

t1

f1

run13_

t1

f1

run13_

t1

f1
run13_

t1

f1

run13_

t1

f1

run13_

t1

f1

run13_

t1

f1

run13_

t1

f1

run13_

t1

f1

Figure 2.8. Joint posteriors of f1 and t1 of simulations under SSV model
Inferred joint posterior distribution of nine replicate simulation with parameters f1 = 0.1,
of α = 400, µ = 2.5 × 10−8 are shown. Red and blank areas correspond to areas with
zero probability, yellow areas indicate high probability densities. Notice that for most
simulation the inferred initial frequency is above 5%, but the inferred probability of f1 is
often very inaccurate.
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Figure 2.9. Joint posteriors of f1 and t1 for analyzed genes.
Inferred joint posterior distribution of all seven genes analyzed in this paper. Red and
blank areas correspond to areas with zero probability; yellow areas indicate high proba-
bility densities.
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Figure 2.10. Observed summary statistic distributions.
We show the observed untransformed summary statistics for all genes and genomic re-
gions we analyzed in this study (see Table 2.3). Colors indicate the most likely mode of
evolution: neutral evolution (grey), SDN (blue), SSV (orange) and undetermined (black).
TD=Tajima’s D, FWH=Fay and Wu’s H. The suffix “global” indicates that the statistic
was calculated for the entire gene, the suffix “close” indicates the statistic calculated on
a 20kb window around the selected site.
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Figure 2.11. Effect of misidentification of selected site.
We show the posterior probabilities for SSV (orange), SDN (blue) and NT (grey) for
simulations done from a de novo mutation(left panel) and standing variation (right panel),
if we misidentify the selected allele. Simulations were done with selection strength α =
1, 000, sample size n = 100, mutation rate µ = 2.5 × 10−8 and recombination rate ρ =
3× 10−8. For the SSV simulation, f1 was set to 0.1 X-axes give the distance between the
“true” selected allele from the site for which the summary statistics were calculated. If
the distance is larger than 50kb, we find a bias towards inferring SSV.
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Figure 2.12. Bias in model choice due to a population bottleneck.
We show the inferred posterior probabilities for SSV (orange), SDN (blue) and NT (grey)
under a constant size model for simulations done under a bottleneck model. The bottle-
neck started 400 generations ago and lasted for 2,000 generations, which might be similar
to the human out-of-Africa bottleneck Simulations were done with selection strength
α=1,000, sample size n = 100, mutation rate µ = 2.5 × 10−8 and recombination rate
ρ = 3 × 10−8. For the SSV simulation, f1 was set to 0.1. X-axes give the strength
of the bottleneck as a proportion of the current effective population size. Unaccounted
demographic history results in a bias towards estimates of stronger selection.
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Figure 2.13. Model choice bias.
B denotes the Bayes factor in favor of the SSV model, B = P(SSV )/P(SDN). We
simulated 10,000 data sets under both the SSV and SDN model, and performed our
model choice procedure on each data set, and divided the distribution into discrete bins.
The figure gives the observed (bars) and expected (red line) proportion of simulations
from the SSV in each bin. As can be seen, there is a slight excess of simulations from
the SSV on the lower end of the graph. The leftmost bin contains only 28 simulations,
two of which were simulated under the SSV model. Both of these simulations had a f1
below 0.005, corresponding to a parameter region where the SSV and SDN models are
very similar. The first and second row of numbers below the figure denote the number of
simulations simulated under the SSV and SDN model, respectively.
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Chapter 3

Detecting Range Expansions from
Genetic Data

3.1 Introduction

Range expansions are ubiquitous in natural populations, and they are responsible for
numerous biological phenomena. Range expansions result in a series of founder events
that cause the newly founded populations to differ genetically from the source population.
Some well-known examples are biological invasions (Handley et al., 2011), the post-ice
age patterns of migration in several European taxa (François et al., 2008; Hewitt, 1999;
Schmitt, 2007), and the colonization of Eurasia, North and South America by modern
huamans (Cavalli-Sforza et al., 1994; Ramachandran et al., 2005; Tishkoff et al., 2009).
Some of the descendants of an ancestral source population may remain near the location
of that ancestral population. For example, the European population of the brown bear
Ursus arctos most likely survived the last ice age in refugia in Spain and Greece. Brown
bears followed the receding glaciers to colonize most of Europe, but populations at the
locations of the former refugia persisted until the populations were driven to the verge of
extinction by humans in the 20th century (Taberlet et al., 1998). Humans provide another
example; derived populations are found all over the world, but there are also descendants
of the first humans still living in Africa.

Sometimes, the routes of migration are known from direct observations, historical
records and archaeological evidence. Frequently, however, the exact history of a species
is unknown, and we want to use population genetic methods to gain more information.
In this paper, we use genetic data to address two related problems: detecting whether a
range expansion has occurred and inferring the geographic origin of a range expansion.

Characterizing the influence of geographic structure on genetic diversity has been
one of the major goals of population genetics theory, with important contributions from
Wright (1943), Malécot (1950), Kimura (1964) and many others. While there are many
statistics designed to infer differentiation between populations (Balakrishnan and Sanghvi,
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1968; Goldstein et al., 1995; Nei, 1972; Reynolds et al., 1983), the most widely used
statistic to detect differentiation between populations is the fixation index FST , which
traces to Wright (1949). A variety of estimators of FST have been developed (e.g. Reynolds
et al., 1983; Weir and Cockerham, 1984). Roughly speaking, FST measures how much
diversity exists between subpopulations compared to the diversity in the entire population;
an FST value of 0 indicates that the two subpopulations are indistinguishable, whereas
a value of 1 indicates that two populations are maximally differentiated. FST has been
directly linked to the migration rate in several models, including the finite island (Slatkin
and Voelm, 1991) and stepping-stone models (Cox and Durrett, 2002). Although FST can
be used to estimate the amount of gene flow between equilibrium populations, it cannot
be used to infer directionality of gene flow.

Two other methods that are widely used to detect geographic patterns are cluster-
ing algorithms and ordination methods. Clustering algorithms (Corander et al., 2004;
François et al., 2008, 2010; Pritchard et al., 2000) such as STRUCTURE (Pritchard et al.,
2000) classify individuals into discrete groups, which can then be used for further analysis.
Ordination techniques (Cavalli-Sforza and Edwards, 1967), such as principal components
analysis and multidimensional scaling, summarize data by indicating the overall similarity
of populations. For example, principal component analysis has shown that genetic diver-
sity is correlated with the geographic distribution of humans on a continental (Novembre
et al., 2008) and global (Cavalli-Sforza et al., 1996; Wang et al., 2012) scale.

It is also possible to use likelihood methods to infer past features of population history.
For example, the program IM (Hey, 2010) estimates the time of separation of populations
and migration rates between them using data from multiple unlinked loci, and the pro-
gram dadi (Gutenkunst et al., 2009) estimates past rates of population growth from the
joint allele frequency spectrum of two or three populations. Both of these programs are
computationally intensive and analysis for more than a few populations is infeasible.

Most statistics applied to subdivided populations do not provide information about
asymmetries. FST and most genetic distances are defined in such a way that they are
commutative (i.e. FST between populations A and B is the same as FST between B and
A), and hence the value depends only on the amount of migration, not whether migrants
moved mostly from A to B or from B to A. Clustering algorithms can produce groupings
of populations that can be interpreted as describing an expansion, but expansion-specific
information is lost in the process and the results of clustering analysis is often sensitive to
tuning parameters such as the number of clusters. For principal components analysis, the
view that the first principal component axis follows the direction of expansion (Menozzi
et al., 1978) has recently been challenged (DeGiorgio and Rosenberg, 2012; François et al.,
2010; Novembre et al., 2008), and it has recently been shown that, depending on the pa-
rameter values and the locations of the populations sampled, the first principal component
axis may be parallel to or orthogonal to the axis of expansion, or at an angle in between.

Population genetics theory has shown that a range expansion can be detected from
the characteristic reduction in genetic diversity with increasing distance from the origin
of the expansion (Austerlitz et al., 1997; DeGiorgio et al., 2009; Edmonds et al., 2004;
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Hallatschek et al., 2007; Ramachandran et al., 2005; Slatkin and Excoffier, 2012). The
reason is that the succession of founder events during the expansion causes the progressive
loss of genetic variants. In extreme cases, this can lead to relatively rapid fixation of
neutral or even deleterious alleles, a process called allele surfing (Hallatschek et al., 2007;
Klopfstein et al., 2006). The prediction of decreasing diversity has been confirmed by
comparing the numbers of mtDNA haplotypes found in Southern European refugia and
in central Europe (Taberlet et al., 1998). The same pattern can also been seen in humans
where both a reduction in heterozygosity and an increase in linkage disequilibrium with
increasing distance from the presumed origin of the expansion in Africa can be seen
(Ramachandran et al., 2005).

In addition to creating a gradient in genetic diversity, range expansions tend to create
clines in the frequencies of neutral alleles, with the frequency increasing on average in
the direction of the expansion (Slatkin and Excoffier, 2012). An intuitive reason for
this pattern is that each founder event results in additional genetic drift, and populations
further away from the origin of expansion will therefore have experienced more drift. This
can be seen from the following argument: The expected frequency of a neutral allele in the
newly founded population is the same as in the source population. But some alleles will
have zero frequency in the new population. Therefore, the average frequency of alleles in
the newly founded population, given that they have non-zero frequency is expected to be
higher than in the source population, thus creating the cline. This observation provides
the foundation for our method of detecting range expansions.

In this paper, we introduce a statistic, the directionality index ψ, defined for pairs of
populations. ψ is sensitive to patterns created by range expansions because it detects the
allele frequency clines created by successive founder events. We show, using simulations,
that the expectation of ψ is zero in an equilibrium isolation-by-distance model, and that
its expectation is positive in the direction of the expansion. We also show that, using
multiple samples, ψ can be used to infer the origin of a range expansion and the locations
of barriers to expansion. We explore the power and robustness of our methods and finally
apply it to human genetic data.

3.2 Results

In this section, we define the directionality index, give an intuitive explanation and discuss
some of its properties. We will show that the directionality index is sensitive to recent
range expansions in a one or two dimensional stepping-stone model, and then explore
some more advanced applications.

3.2.1 Definition of the Directionality Index

Consider two samples of size n, n ≥ 2 taken from two subpopulations S1, S2. Each sample
consists of L biallelic markers (e.g. SNPs) that are shared between S1 and S2. The
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directionality index is defined as

ψ(S1, S2) =
1

n

(

f̄ (S1) − f̄ (S2)
)

=
1

nL

L
∑

l=1

(

f
(S1)
l − f

(S2)
l

)

, (3.1a)

where f̄ (S) is the average allele frequency of all derived alleles in population S, and f
(S)
l

is the number of copies of the derived allele at locus l in the sample from population
S. It is important that the average and the sum are over only those alleles that are
present in both populations; sites where either population is fixed for the ancestral copy
are excluded. Equivalently, ψ can also be defined in terms of the two-dimensional site
frequency spectrum (2D-SFS):

ψ =
n
∑

i=1

n
∑

j=1

(i− j)fij. (3.1b)

where fij denotes the proportion of SNP in the sample that are at frequency i in S1 and
at frequency j in S2, and the SFS is normalized such that

n
∑

i=1

n
∑

j=1

fij = 1.

This normalization is unusual in that alleles private to either of the two populations are
excluded. In the special case where we compare two diploid genomes, n = 2 and equation
3.1b reduces to

ψ = f21 − f12. (3.1c)

These three definitions are equivalent and represent different interpretations of the direc-
tionality index. To aid intuition, we discuss them briefly. Equation 3.1a corresponds to
the model we introduced in the introduction; we compare the average allele frequencies
in the two populations. Because the population further away from the expansion origin is
expected to have experienced more genetic drift, its alleles are expected to be at a higher
frequency on average. Thus a positive ψ indicates that f̄ (S1) > f̄ (S2) and that S1 is further
away from the origin of the expansion than S2. If both populations have experienced sim-
ilar amounts of genetic drift, then the average frequencies of shared alleles will be equal,
ψ ≈ 0 and we will not detect an expansion. Equation 3.1b is based on the SFS, and
we see that ψ will be positive if fij is usually greater than fji. Thus, we are comparing
the SFS entries that are reflected along the x = y diagonal, and the directionality index
measures the “skew” in the 2D-SFS. If there are more SNP that fall in the upper left
triangle of the SFS (where j > i), ψ will be negative, and we infer an expansion from S1

to S2. The opposite conclusion will be drawn if there is an excess of SNP in the lower
right triangle, and if the SNP are distributed symmetrically around the x = y diagonal,
ψ will be zero. Much of the paper will be focused on the case where each population
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is represented by a single genome, a case that will be particularly common in genomic
studies. In that case, equation 3.1b reduces to 3.1c and we are simply comparing the
abundance of SNP fixed for the derived allele in sample S1 and heterozygous in S2 to the
number heterozygous in S1 and fixed in S2. If either number is significantly larger than
the other, we infer expansion in the direction of the population with the larger number.
It is also worth comparing the computation times. Equation 3.1a scales proportionally
to the number of loci in the sample, whereas equation 3.1b scales with the square of the
sample size if the site frequency spectrum has been previously calculated. As this is often
required for calculation of other statistics such as FST , equation (3.1b) should be used
for data sets where L ≫ n2. It is important to note that we have to assume that the
sample sizes are the same in the two populations we are comparing. The reason is that
the probability that an allele is absent in a sample is a complicated function of the sample
size and the expected site frequency spectrum, and cannot be easily computed. When
there are samples of unequal size we downsample the larger sample to the size of the
smaller sample.

3.2.1.1 Determining Whether a Range Expansion Occurred

We first test the power of ψ to distinguish pairs of populations sampled from a recent
range expansion to pairs of populations sampled under isolation-by-distance at equilib-
rium in a 1D-model. Figure 3.1 shows that FST increases at approximately the same rate
under an equilibrium stepping-stone model with only isolation-by-distance (Panel A) and
a model with a range expansion (Panel B), indicating that the two scenarios are compa-
rable. We see that ψ is nearly zero in the isolation-by-distance model, regardless of the
distance between the samples. In contrast, ψ increases with distance under the expansion
model. Interestingly, ψ increases almost linearly with the distance between the origin and
the population sampled, a fact we exploit later to infer the origin of the expansion. We
also plotted the heterozygosity, a statistic that is also expected to be constant under an
equilibrium model (Durrett, 2008) and decreasing under an expansion (Austerlitz et al.,
1997; Ramachandran et al., 2005). However, our simulations show that heterozygosity
is larger in the center of the habitat than near the boundaries because of the boundary
effects. This is in contrast to most theoretical results (Durrett, 2008), which either as-
sume either a circular model or an infinitely long stepping stone model, and where the
heterozygosity is independent of the deme sampled. This observed gradient in heterozy-
gosity has been observed previously and has been explained by longer coalescence times
for a sample taken close to the boundary (Wilkins and Wakeley, 2002). It is also worth
noting that this effect is much weaker in a two dimensional population.

Similar results for FST and ψ were obtained in 2D (Figure 3.2). FST is slightly larger
in the case of a range expansion than in the isolation-by-distance model (Panels A and
C), but qualitatively we see an increase of FST with distance under either model. The
pattern for ψ, however, is again different (Panels B and D): under the isolation-by-distance
model, ψ < 0.01 for almost all comparisons, with the exception of a few demes that are
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at the boundary of the simulated region. In contrast, the magnitude and sign of ψ nicely
illustrate the effect of the range expansion. ψ is zero only for demes that are very close
to each other or pairs of demes equally far away from the expansion origin. The latter is
due to symmetry: two samples that are an equal distance apart from the origin will have
a symmetric SFS, resulting in a ψ close to zero.

In Figure 3.3 we show the effect of the most important parameters on our ability to
reject the null hypothesis of equilibrium isolation-by-distance for pairs of samples of size
two. For all parameters, we find that using the directionality index results in higher power
than comparing differences in heterozygosity, while false-positive rates are low and roughly
the same for the two methods. We find that we have comparatively little power to reject
the null hypothesis if the two sampled individuals are close to each other(Panel 3.3A).
This is expected, since there are fewer founder events separating the two individuals.
Therefore we expect ψ to be lower for nearby populations, as shown in Figures 3.1 and
3.2. Panel B shows that a moderate number of shared SNP is necessary, i.e. more than
one thousand, to get high power to reject equilibrium isolation-by-distance. In addition,
we find that slow expansions are harder to detect than rapid expansions, and more recent
expansions are easier to detect than expansions that happened a longer time in the past
(Panels C and D). Neither of these findings are unexpected; after an expansion, genetic
drift will affect the loci in both populations equally. The number of shared SNP that are
due to the range expansion will decrease with time and be partially replaced by SNP that
only experienced the equilibrium population structure and hence do not carry a signal
of the expansion. Similarly, if the time between expansion events is large, the founder
effects caused by the expansion will become less important relative to genetic drift that
occurs between expansion events, weakening the signal of the expansion. For these slow
expansions, the power of heterozygosity to detect an expansion decays much faster than
the power of ψ. Finally, we note that the false positive rate, denoted in grey and pink in
Figure 3.3, is independent of both the distance between loci and the number of SNP for
both ψ and H.

3.2.2 Inferring the Origin of a Range Expansion

In addition to showing that a range expansion occurred, the results in Figures 1 and 2
suggest that spatial patterns in pairwise values of ψ can indicate the origin of an expan-
sion if more than two populations are sampled. For this purpose, we employ a method
commonly used by engineers in problems of localization and navigation (Gustafsson and
Gunnarsson, 2003), called Time Difference of Arrival location estimation (TDOA). TDOA
methods are used in remote sensing and to locate cell phones (Gustafsson and Gunnars-
son, 2003). The key assumption of the TDOA algorithm is that the magnitude of a
pairwise statistic between two sample locations i and j is proportional to the difference
in distance from i to the origin and the distance from j to the origin. If i is very close
to the origin and j far away, the TDOA statistic will be large, but if i and j are at the
roughly the same distance from the origin, then the TDOA statistic will be close to zero.
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In engineering applications the TDOA statistic is the time difference between the arrival
of a signal emitted from different sources (hence the name). In our application, ψ takes
on the role of the time difference with the implicit assumption that the magnitude is pro-
portional to the difference in distances of the two samples from the origin. To illustrate,
we first consider the special case of ψij = 0. Assuming that we have already rejected
isolation-by-distance in favor of a range expansion, we know that i and j are equally far
from the origin and the origin must therefore lie on the line perpendicular to the line
through i and j. If we had three or more samples all at the same distance from the origin
so that the pairwise ψ values are all zero, we could infer the origin was at the center of
the circle passing through the three points.

In general, however, ψij will be non-zero. In that case, we know from elementary
geometry that the set of candidate points based on a one pair of samples is not a straight
line, but a hyperbola with the sample locations as its foci. (see Figure 3.4). For samples
from k locations, we calculate ψ for k(k − 1)/2 pairs and hence obtain k(k − 1)/2 hyper-
bolas. In a perfect, noiseless world, all hyperbolas would intersect in a single point, the
origin of the expansion. In practice, genetic data is stochastic and we have to estimate the
location of origin. To do this, we interpret each hyperbola as a non-linear equation with
three unknowns, the sample coordinates x, y and the speed of expansion v. v is a nuisance
parameter that describes how much the allele frequency increases per unit distance from
the origin. For more than three samples the system is overdetermined and, rather than
solving the system of equations explicitly, we use weighted non-linear least squares.

We first illustrate this approach on simulated data, where we sample a regular grid
(Figure 3.5). We simulated a range expansion in a 101× 101 stepping-stone model. In all
simulations, we chose the coordinate system such that each deme corresponds to one unit
of distance. The start of the expansion is in deme (25,35), indicated by the grey dotted
lines in Figure 3.5. The direction of the arrows plotted in Figure 3.5 indicate the sign of
the pairwise ψ-value, between adjacent samples on a grid, and the thickness of each arrow
corresponds to the magnitude of ψ. A missing arrow denotes a non-significant ψ value. In
Panel 3.5A we performed a simulation under an equilibrium isolation-by-distance model.
We see that in this scenario, only 11 out of the 60 pairwise comparisons are significant; all
of them point towards the corners and are due to the boundary effects of the simulations.
The red ellipse is a 95% confidence ellipse of the inferred origin. Under the isolation-by-
distance model, this is located in the center of the population, illustrating that the TDOA
approach will yield an answer even if no expansion has occurred, so it is important to first
test if an expansion has actually occurred. From Panels B-D we see that the expansion
signal is clearly portrayed by the directionality indices and we get high confidence in the
estimated origin. In fact, the confidence region is so narrow that the ellipse is barely
visible in Panel B. The confidence region becomes larger when we reduce the number of
samples. Furthermore, we see in Panels C and D that the origin is slightly biased towards
the center of the population. This is again due to a boundary effect, and goes away if we
take all samples at least 10 demes away from the boundary of the population.

To assess the properties of this method more systematically, we report the root mean
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squared error (RMSE) under several scenarios (Figure 3.6). The RMSE is the square of
the Euclidean distance between the estimated origin and true origin. We also compare
our method to the method of Ramachandran et al. (2005), who used a linear regression
of the heterozygosity on the distance to a set of candidate origins. Their inferred origin
of the expansion is the point with the highest associated regression coefficient, condi-
tional on the slope of the regression curve being negative. Most data in Figure 3.6 was
simulated with a fairly rapid expansion; the time between subsequent expansion events
was set to 0.001 coalescence units, so that the complete expansion was completed in 0.13
coalescence units. This speed is roughly that of the out-of-Africa expansion of humans.
For these parameters (Figure 3.6A-D) the two methods have similar performance, with
only marginal improvements in how the methods perform with different amounts of data.
We find that with adequate numbers of samples and data, the RMSE for both method
is around four, with less than one distance unit of difference between the two methods.
Overall, the ideal amount of data for this method lies around 20 diploid samples and 7,000
independent SNP. Having more data will not substantially improve performance. For the
set of simulations with increasing numbers of SNP, we also tested the effects of sampling
on a grid versus taking samples from random locations. The latter scenario is probably
closer to real sampling schemes. Interestingly, we found only negligible differences, indi-
cating that the sampling locations are only a minor issue unless the sampling locations
are very skewed (for example if they all lie on a transect).

Changing the position of the origin has little effect on the RMSE for the first 30
distance units, indicating that the method is accurate if the origin is sufficiently far
away from the boundary. If the origin is outside the region sampled, the performance is
significantly worse. This has two causes: first, we would expect it to be easier to infer
the origin if it lies in the middle of the sample, as compared to an origin that is far from
all samples. This part also explains the difference between samples taken on a grid and
random samples: In the grid, the corners are systematically sampled (since we force a
grid sample to be there), whereas in many random samples there may be fewer samples
on one side of the origin than on the other, resulting in a loss of accuracy. A second
factor resulting in reduced accuracy are again boundary effects, which skew the effect of
the expansion if samples happen to be close to the boundary.

We next focus our attention on the effect of varying the parameters of the expansion
(Figure 3.6C-F): The number of founders (Figure 3.6D) has an almost linear effect on
the estimation accuracy. Fewer founders imply a stronger founder effect and hence a
stronger signal of expansion (Slatkin and Excoffier, 2012), which makes the origin easier
to detect. We find the biggest difference in how our method performs in comparison to
the Ramachandran method is when the expansion is slower, or when we want to detect
an expansion that occurred a longer time in the past. Interestingly, our method has
almost the same accuracy for different expansion speeds, whereas the Ramachandran
method is less accurate if the expansion is slower. Also, we find that the heterozygosity
gradient disappears soon after the expansion has finished (3.6F), whereas the ψ retains
the signature of the range expansion for much longer.
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3.2.3 Adding Environmental Complexity

The previous section assumes an idealized population in a homogeneous habitat. In prac-
tice, however, habitats are heterogeneous and barriers to gene flow and range expansion
often exist. In the following sections, we show how our method performs in slightly more
complex scenarios. First, we allow demes with different population sizes. While we kept
the mean size of demes the same, we followed Wegmann et al. (2006) in drawing deme
sizes from a gamma distribution. Next, we include barriers to dispersal that affect both
the initial expansion and gene flow following the expansion. We illustrate how we can use
algorithms from graph theory to locate barriers. Finally, we model an expansion starting
from multiple origins.

3.2.3.1 Heterogeneous Population Sizes

The effect of variance in deme size on demographic expansions was explored by Wegmann
et al. (2006). They found that heterogeneous populations have a higher rate of population
differentiation between demes, and predicted that detecting range expansion would be
more difficult because of the increased noise. Our simulations confirmed this prediction
but only if there is substantial variation in deme size (Figure 3.10). We found that
heterogeneity in deme size has little effect if the variance in deme size is low, with RMSE
only differing slightly from the case with equal deme sizes. A variance of 0.5 in deme
size, for example, corresponds to a size difference of around two orders of magnitude. But
the average RMSE for the location estimate only increased to 5.43, compared to 4.57 in
a comparable model without variation in deme size. However, this value corresponds to
some kind of “tipping point”: when we further increase the variance in deme size, some
deme sizes will become effectively zero in size and this greatly reduces the accuracy of the
estimated origin.

3.2.3.2 Barriers

We can use pairwise directionality indices to gain qualitative information about colo-
nization paths, i.e. the corridors through which the population expanded. To do so,
we interpret the matrix of pairwise values of ψ as the adjacency matrix of a graph. A
positive ψ between populations S1 and S2 is interpreted as meaning “Population S2 was
colonized after population S1” and can be visually represented by an arrow between S1

and S2. To improve the visual representation of the graph, we apply standard algorithms
to remove some of the edges. In particular, we apply the transitive reduction algorithm
(Aho et al., 1972) to find the graph with the fewest edges that retains the connectivity of
the original graph. If ψ is positive between populations S1 and S2, but there is also an
indirect path with ψ > 0 when comparing S1 and S3 and S3 and S2, we remove the direct
connection from S1 to S2. This is justified by noting that colonization of S2 through S3

is more parsimonious than colonization of S2 both through S3 and directly from S1. We
obtained a further reduction by computing a maximum spanning tree (Korte and Vygen,
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2008), which reduces the graph to n−1 edges, where n is the number of sample locations.
The maximum spanning tree identifies major migration paths, and does not cross strong
barriers to expansion and gene flow (Figure 3.7). Furthermore, we can obtain an ordering
of all samples by simply summing all ψ values that sample is involved in:

ψi =
∑

j∈samples

ψij. (3.2)

The smallest value of ψi indicates the sample taken closest to the origin, and the largest
value of ψi indicates the sample furthest along the expansion. In Figure 3.7B we show
that both the maximum spanning tree and the ordering are useful qualitative tools to
identify barriers.

3.2.3.3 Multiple Origins

Range expansions may have more than one origin. A classical example is the coloniza-
tion of Central Europe after the last glacial maximum. Species with Southern European
refugia in the Balkan Penisula, Italy and the Iberian peninsula followed the receding
glaciers and explain many biogeographical pattern we observe today (Schmitt, 2007). A
straightforward way to apply our method to such expansions is to first estimate which
populations were colonized predominantly from each potential origin, and then use only
those populations to infer the location of each origin. There are several ways to assign
sampled individuals to clusters corresponding to a each origin. In classical studies, often
mtDNA haplotypes were used for this purpose (e.g. (Hewitt, 1999; Taberlet et al., 1998)),
but programs such as STRUCTURE (Pritchard et al., 2000) or simple clustering based
on the observed polymorphism frequencies may yield more accurate results. In our simu-
lations, a simple K-means clustering algorithm was able to correctly identify the number
of clusters in all cases, even when the two founder populations were drawn from the same
original population. The resulting estimates of the locations of the origins are slightly less
precise than with a single origin (Figure 3.8), but that is to be expected because there are
fewer samples contributing to the location estimate for each origin. Also, the estimates
were worse when the two origins were close together.

3.2.4 Application

3.2.4.1 Human Diversity

We applied our method to a data set from 55 human populations from the Human Genome
Diversity Panel and HapMap III (Altshuler et al., 2010; Cann et al., 2002; Fumagalli et al.,
2011). The results are given in Figure 3.9. We calculated ψ and its standard error for all
pairs of populations and transformed this into a Z-score. As expected from a data set with
several hundred thousand loci, the vast majority of comparisons were highly significant,
with a median absolute Z-score of 28.1, and a mean absolute Z-score of 41.9 across all
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comparisons. Globally, we could detect four major clusters: i) Africans, ii) Europeans
and Pakistani, iii) East Asians and iv) Native Americans. Here, a cluster is loosely
defined as a group of sampled populations that all show the same signal when compared
to other groups of populations. For example, all 450 comparisons made between African
and Non-African populations showed evidence for expansion out of Africa, consistent
with the out-of-Africa hypothesis. Similarly, with few exceptions all comparisons between
Europeans and Native Americans showed that Europe was colonized before the Americas.

Within Africa, we found all comparisons to be significant, and all pairwise ψ values
agreeing on a single origin of the expansion. The San people were the only population
that had positive ψ values when compared to all other populations, indicating that they
are closest to the origin. They are followed by the Biaka- and Mbuti-pygmies, which are
have negative ψ values with the San. This is followed by the southern Bantu sample,
and a cluster consisting of Yerubans, Luhya, Mandenka and Northern Bantu, each having
a negative ψ with the others previously mentioned, and positive values for all other
populations. The African populations furthest from the origin were the Maasai and
Mosabite, the latter being very distinct from the sub-Saharan populations.

The closest outside Africa are the Bedouin and Palestinian populations, both from the
Middle East. The third Middle Eastern population present in our data, the Druze, fall in
a larger group containing almost all European, Pakistani and Indian populations. Within
Europe, the three Italian population all have non-significant ψ scores with one another,
but are found to be ancestral to the other European populations. They are followed by the
French and French-Basque, which also cannot be distinguished, and the Orcadian, Adygei
and Russians. In Pakistan, we find the Makrani to be the most ancestral population,
followed by the Brahui and Balochi, Sindhi, Kalash and Burusho. It is noteworthy that
this list corresponds to their distances from Africa, with the exceptions that the Brahui
and Balochi are switched, and the Hazara are not in the main Pakistani cluster, but
rather form a distinct group with the Uygur. Besides the Uygur, all other East Asian
populations form a single large cluster with very little resolution. Clearly distinct from
this cluster are the Papuans and Melanesians, which are similar with asymmetry between
them(ψ = 0.0019, SEψ = 9.2 × 10−4, Z = −2.05). They are closer to the African
populations than to the East Asian populations, but further away than the Pakistani and
European populations.

Finally, Native American populations form a distinct cluster, which are strongly sep-
arated from all other populations. Within the Native American populations, we find
evidence of a North to South colonization pattern with the Pima population being closest
to the Eurasian populations, followed by the Maya and Colombians. The most distant
populations are the South American Karitiana and Surui, which have a nonsignificant
pairwise ψ between them.

We also tested our ability to infer the origin of humans using the TDOA approach.
As continents most likely act as strong migration barriers, we did not use the TDOA
approach on the entire HGDP data set. Instead, we applied our method to the data set
of Henn et al. (2011) which contains 30 African populations. We estimate an origin of
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the Human expansion at 30◦ S 13◦ E, which lies in central South Africa, closest to the
location of the San sample (28.5◦ S 21◦ E and 22◦ S 20◦ E).

3.3 Discussion

We introduce a new statistic, the directionality index ψ, and showed that ψ can be used
to test for a range expansion and to characterize it. Although we have focused on range
expansions, ψ is sensitive to other deviations from symmetric migration. While a range
expansion might be a plausible explanation in many cases, alternative scenarios such as a
source-sink population structure or a large differences in effective population sizes should
also be considered. One of the main advantages of the directionality index is that the
assumptions and limitations of the approach are easy to discern: the directionality index is
zero if the 2D-SFS is roughly symmetric about the diagonal. This is certainly true under
most equilibrium models considered in theoretical studies, such as island and stepping
stone models, particularly as the boundary conditions in the latter are typically chosen
such that the model is symmetric. The directionality index can be used to determine how
appropriate these models are for a given data set. If ψ differs from zero then care should
be taken in applying methods that are based on these theoretical models. On the other
hand, if ψ is close to zero, we can interpret this as justification for using the powerful
theoretical results for these models (Durrett, 2008).

In this regard, the directionality index can be seen as a “first step” analysis that can
be computed very easily, is able to answer very broad questions about a data set and may
act as a guide to what parametric models might be employed, e.g. Approximate Bayesian
Computation (Beaumont et al., 2002; Wegmann et al., 2010) or dadi (Gutenkunst et al.,
2009). We have also shown how we can introduce the physical location of the samples
in our inference framework. In many cases, natural populations are well described by a
continuous distribution (Guillot et al., 2009; Rosenberg et al., 2005), and as we show in the
TDOA analysis, using a simple statistic together with the physical locations can result in
a powerful method. Our approach is also different from most other methods dealing with
spatial data in that it explicitly assumes a non-stationary population. In this paper, we
link the ancestral demographic process of a range expansion to the observed patterns of
genetic diversity. While the effect of the expansion on FST appears to be quite small, our
ψ statistic can be used to distinguish between equilibrium and non-equilibrium models.
Finally, we show how we can extend our method to deal with more realistic landscapes.
Whereas the TDOA analysis is not robust to large barriers of gene flow, interpreting the
pairwise ψ statistics as a graph can unmask important details of a species’ history.

3.3.1 Simulation Results

We find that ψ is well suited to distinguishing between isolation-by-distance and range
expansion when demes are sufficiently far apart and the range expansion is recent and
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occurs at a fast rate. These restrictions are not surprising. Geographically close demes
will be genetically more similar, regardless of their history, and historical processes should
therefore be harder to distinguish. That a recent expansion is easier to detect than an
older one is also easily explained by the eventual convergence to equilibrium isolation-
by-distance pattern, and similarly, a rapid range expansion leaves less time for genetic
drift to blur the patterns created by the range expansion. Lastly, increasing the amount
of data will increase the power to distinguish asymmetric from symmetric processes as
each SNP contributes only a little information about the history of dispersal. In all
cases, our ψ statistic outperforms ∆H. From the analyses of the stepping-stone model
we see one of the main differences between ψ and FST . In an isolation-by-distance model,
as the distance between the sampled locations increases, FST will increase but ψ will
remain small. Again, this makes sense intuitively. The number of shared genetic variants
decreases with distance, and hence FST increases. However, this reduction in shared
polymorphisms is symmetric, and hence will have no effect on ψ. The pattern is different
in the model of a population expansion: when comparing with a sample from the origin of
expansion, both FST and ψ increase with distance. The signal diminishes, when migration
rates are high, however. This is apparent from Panel D in Figure 3.1, where ψ is zero
for the first ten demes. Here, migration had enough time to undo the effect of the range
expansion in the demes that are furthest away from the origin.

We find that we can get surprising estimates of the location of the origin of an ex-
pansion from relatively small datasets. 20 samples with around 10,000 SNP yield accu-
rate estimates. This result indicates that our method is not applicable to mtDNA or
microsatellite data, but it should be applicable to transcriptome data, which can be as-
sembled for many non-model organisms. It is also worth noting that the error does not
go to zero even with larger amounts of data. There are several reasons for this. The
linearity assumption we made for the TDOA approach is not completely accurate. ψ does
not increase perfectly linearly with distance especially near boundaries. A more subtle
reason is the algorithm we use; although least-squares is easy to implement and yields
good results, other optimization algorithms might reduce the RMSE. A third reason is
the intrinsic stochasticity of genetic processes. We demonstrated how our method can be
adapted to incorporate more complex models. We showed that small differences in deme
size have little effect on our ability to estimate the location of origin. If however, the
habitat is very heterogeneous our method becomes less accurate. This implies that when
analyzing species that live in very patchy habitats, , the TDOA method should not been
applied, because the assumption that ψ is proportional to physical distance is violated.
In that case, while it is not possible to infer an origin that is distinct from the samples,
it is nevertheless possible to find the sample that is closest to the origin, which in many
cases might suffice. Also, we have shown that we can apply graphical algorithms to get
an accurate representation of the expansion pattern.
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3.3.2 Human Genetic Diversity

When analyzing the human data set, we found that i) ψ scores are correlated with distance
and ii) if population i is closer to Africa than population j, then ψ(i, j) is in most cases
negative, a pattern that is expected under a model of expansion from Africa. As explained
previously, the directionality index depends not only on the two population compared but
also on the history of the other populations. We find the South African San people to be
the population closest to the origin of humans both using the TDOA method and when
interpreting all pairwise directionality indices. This supports the interpretation that the
origin of modern humans is somewhere in Southern Africa (Henn et al., 2011; Tishkoff
et al., 2009). Another interesting result is that the Melanesian and Papuan samples, while
very similar, show positive ψ values when compared to other East Asian populations, but
the directionality index is negative when compared to the Pakistani, European and African
populations. This is consistent with a “two-wave” model of colonization of South-East
Asia, with a first wave consisting of present-day Papuans and Melanesians, and a second
wave consisting of the present day Chinese populations(Rasmussen et al., 2011). Our
results are also in agreement to the results obtained by Hofer et al. (2009), who analyzed
the HGDP data set and found that neutral processes might be an explanation for large
differences in allele frequency between human population groups. Our results support
their findings, and extend them by giving an explanation on how the increase in derived
allele frequencies might have arisen.

3.4 Methods

3.4.1 Simulations

We implemented a simulator that performs continuous time coalescent simulations on a
discrete stepping stone model (Kimura, 1964; Malécot, 1950) of finite size. We assumed
that the backward migration rates were equal between all pairs of adjacent demes and
that the boundaries were reflecting. We used a modified version of the expansion model of
(Slatkin and Excoffier, 2012), where an expansion is modeled with a one-generation bot-
tleneck of reduced size. In our backward-in-time framework, this corresponds to moving
all lineages present in a deme being colonized to a randomly chosen neighboring deme.
We introduce a founder effect by adding additional coalescence events according to the
appropriate backward Wright-Fisher transition probability (Wakeley, 2009, p. 62). Unless
noted otherwise, all expansions were done with a founder size of 200. Once the final deme
is reached, an regular island model coalescent is run where each island corresponds to a
founder population (in most simulation, the number of islands is one).

Throughout this paper, we simulated unlinked SNP using an importance sampling
scheme. After generating 1,000 gene trees, we calculate the appropriate multi-dimensional
site frequency spectrum, where each sampled population corresponds to a dimension. We
can then draw SNP with replacement from this site frequency spectrum.
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The parameters used for the majority of the power simulations are as follows: We sim-
ulated on a 101×101 stepping stone model, with deme coordinates starting at (−50,50) at
the lower left corner and (50,50) in the upper right corner. Each deme exchanges migrants
to the neighboring demes to the north, south, east and west at scaled migration rate of
M = 2Nm = 1. For the power simulation, we sampled a single diploid individual each
from two colonies at (−25,−25) and (−25,25). For the TDOA simulations we simulated
one individual each from a deme on a quadratic grid between (−30,−30) and (30,30),
with 36 samples in total. This corresponds to a distance of 12 demes between any two
sampled demes. We usually generated 1,000 independent coalescent trees and then used
importance sampling to generate 100,000 SNP from the population, conditioning on them
being shared between at least two of the samples. In the case of a range expansion, the
standard point of origin was set to (−15,−25) and the expansion occurred at a rate of
one expansion event every 0.001 coalescence units, with the expansion being observed
0.13 coalescent units after it started, where coalescent units are measured on the time
scale of a local deme. These parameters were chosen to roughly correspond to the human
out-of-Africa expansion: if we assume a local human population size of N ≈ 10, 000 and
a generation time of 25 years, this corresponds to an expansion that started 65,000 years
ago. The directionality index ψ and FST were calculated in Python; for ψ we used equa-
tion (3.1b), and FST was estimated using Reynold’s estimator (Reynolds et al., 1983).
Note that these are only baseline parameters, and exploring the effect of changing these
parameters was the purpose of our power simulations.

Various significance tests can be used to determine the significance of ψ between two
populations; for the case of n = 2 in both samples we can simply perform a binomial
test on the absolute frequencies f21 and f12. If their proportions differ significantly from
0.5, we can reject the null hypothesis of symmetric migration between the two demes.
When comparing samples of size n > 2, we can generate a null distribution using a
permutation test, i.e randomly assigning the allele frequencies for each SNP to either
population. However, both these tests will underestimate the variance in the data if
SNP are not in linkage equilibrium. In that case the “effective” number of loci will be
lower than the actual number. To take linkage into account we use a computationally
more computationally intensive block-jackknife approach (Busing et al., 1999; Reich et al.,
2009) to analyze the human data.

To generate data for the 1D stepping stone model analyzed in Figure 1, we simulated a
201 x 1 habitat, with scaled migration ratesM = 1, 10 between adjacent demes. Sampling
was done in demes −i/2 and i/2, with the center deme having coordinate 0. In case of
range expansions, the expansion started in deme −i/2.

SNP ascertainment may influence our results, because most ascertainment schemes
favor high frequency alleles in the populations where the ascertainment was performed.
To assess the effect of ascertainment bias on the value of ψ, we performed simulations in
an isolation-by-distance stepping stone model with samples at coordinates (0,0), (10,0),
(20,0), (30,0), (40,0), (50,0) as well as (0,10) and (15,10) and then computed ψ between
the (10,0) and (20,0) sample. We then simulated ascertainment by selecting a set of pop-
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ulation, and rejection sampled SNP so their 1D-SFS followed a Beta(2,4/3) distribution,
which roughly matches the SFS in the HGDP data set and is very different from the ex-
pectation without ascertainment bias. We chose this ascertainment scheme as the original
ascertainment scheme for HGDP is unknown. If ψ differs significantly from zero, then we
know that ascertainment is important. Results are given in Figure 3.11; ascertainment is
important if it is performed in one of the populations that we calculate ψ for. However,
the effect of ascertainment is negligible if the population we calculate ψ for are different
from the ascertainment population, even if the ascertainment population is much more
closely related to some populations than to others.

3.4.2 Estimating the Origin of a Range Expansion

We use a time-difference of arrival (TDOA) approach (Gustafsson and Gunnarsson, 2003)
to estimate the origin of a range expansion. TDOA was originally used in naval navigation
during the Second World War, and is currently widely used to solve localization and
navigation problems. It is based on the assumption that a single source emits a signal
that decays with increasing distance from the origin. For range expansions, this signal is
the difference in frequency of shared alleles. At the origin, the allele frequency is expected
to be lowest (Slatkin and Excoffier, 2012) and to increase approximately linearly with
distance. However, since we do not know the allele frequency at the origin, we have to
use the indirect approach by comparing pairs of populations. To be precise, if we know
that shared alleles have a lower frequency at point Si compared to point Sj, then we know
that Si is closer to the origin than Sj. If the habitat is two-dimensional, however, this
does not tell us the direction of the expansion. Let ||Si, Sj|| denote the Euclidean distance
between two points Si and Sj. Then,

||Si, O|| − ||Sj, O|| ≈ vψi,j, (3.3)

where O denotes the unknown origin ψi,j is the directionality index between samples Si

and Sj and v is a constant that links space to allele frequency (i.e how much does the
allele frequency change per unit of space). In words, ψi,j is approximately proportional
to the difference of the distances ||Si, O|| and ||Sj, O|| (see also Figure 3.5). We assume
that the sampling locations of Si and Sj are known without error, and that ψi,j can be
estimated from genetic data, along with its sample variance Var(ψi,j). We estimate the
variance by doing 1,000 bootstrap replicates on the SNP. The unknowns that remain
are the coordinates of the origin O and the proportionality constant v. To infer these
parameters, we solve for ψ, subtract ψ from the equation and sum over all pairs of
samples:

(

Ô, v̂
)

= argmax
O,v

∑

i<j

1

Var(ψi,j)

( ||Si, O|| − ||Sj, O||
v

− ψi,j

)

. (3.4)
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In most biological application, space will be two-dimensional and therefore we can make
this equation more explicit by writing O = (x, y) and Si = (xi, yi). Then,

(x̂, ŷ, v̂) = argmax
x,y,v

∑

i<j

1

Var(ψi,j)

×
(

1

v

(

√

(xi − x)2 + (yi − y)2 −
√

(xj − x)2 + (yj − y)2
)

− ψi,j

)

. (3.5)

The variance terms correspond to weighting terms; terms where ψ has a high variance
are weighted down, whereas terms where we can infer ψ with high accuracy are given a
larger weight. We can then find a solution to this equation using nonlinear least squares.

3.5 Figures

Figure 3.1. Behavior of H, ψ and FST .
This figure shows the behavior of H (red, full line), ψ (black, dotted) and FST (blue,
dashed) in one-dimensional (A) isolation-by-distance and (B) population-expansion mod-
els. Simulations were performed on a 200 demestepping-stone model with scaled migra-
tion rate M=100 between adjacent demes, and expansion events every 0.001 coalescence
units. FST increases linearly with distance in both models and ψ is zero in the isolation-
by-distance model, but increases approximately linearly in the expansion model. Het-
erozygosity is plotted for demes from the center of the population (left) to the border of
the habitat (right), and given as the difference to the central deme.
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Figure 3.2. Behavior of FST and ψ
Each panel gives the value of the pairwise statistics FST and ψ under an isolation-by-
distance model and an expansion model with the expansion starting in the central deme
(50,50). Simulations were performed on a 101 × 101 deme stepping stone model, and
a diagonal transect from demes at coordinates (0,0) to (100,100) was sampled, and all
pairwise statistics were calculated. Black regions correspond to regions where FST and
ψ are very low (below 1%). The orange and grey regions denote areas with positive and
negative ψ, respectively. Whereas FST behaves qualitatively similar under both models,
the behavior of ψ is very different. Under isolation-by-distance, ψ is very close to zero,
with some deviations due to boundary effects. Under an expansion, however, we see a
clear signal for all demes, except demes that are very close to each other, or demes that
have the same distance to the origin, but in different directions.
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Figure 3.3. True/false positive rates of detecting range expansion.
Each panel give the proportion of replicates in which the null model was rejected at the
5% significance level. Black circles correspond to ψ under an expansion model and an
isolation-by-distance model, red triangles and plus signs denote simulations correspond to
using H to distinguish an expansion model and isolation by distance model, respectively.
The grey dashed line at 0.05 gives the expected proportion of false positives under the null
hypothesis. Baseline parameters for the simulations were of 2 chromosomes (one diploid
individual) at each location sampled, with locations a distance of 50 each other. Fixed
parameters used for generating the data sets are 1,000 independent SNP from one diploid
individual per sampled deme. Time between expansion events was set to 0.1 (coalescence
units) and the data was observed immediately after the expansion ended.
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Figure 3.4. Illustration of the method used to infer the origin of a range
expansion.
The black and grey points correspond to genetic samples taken, the white point corre-
sponds to the (unknown) origin of the expansion. Using the directionality index ψ, we can
infer the difference in distance from the samples to the origin (dashed lines). The set of all
points that has the same difference in distance to the origin corresponds to the arm of a
hyperbola (red), which comprises all candidate points according to ψ and the location of
two points. Using a second pair of points (the grey and top black point), we can identify
a second hyperbola (dotted), and find an unique location of the origin. In practice, we
use more than three sampling locations. Sampling noise will cause the hyperbolas to not
intersect in a single point and we use a least-squares criterion to estimate the location of
the origin.
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Figure 3.5. Detecting the origin of a range expansion.
Each panel corresponds to a 101 × 101 grid of populations that were simulated. The
expansion began at point (25,35) (indicated by gray dotted lines). Black bordered circles
indicate sampling locations, black arrows correspond to ψ > 1% between adjacent sam-
ples, with the direction of the arrow indicating the sign of ψ. Thicker arrows correspond
to larger ψ. The red ellipse corresponds to the 95% confidence interval of the estimated
location of the origin. Panel a: no expansion (isolation-by-distance model). Edge effects
cause the estimated origin to be close to the center of the grid of populations. Panels b-d:
Expansion with parameters M = 1, t = 0.1 and samples taken every 10th, 20th and 50th
deme. While the confidence region is larger for smaller numbers of samples, we get a very
accurate result even when we have only 9 samples.
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Figure 3.6. Performance of TDOA method.
We present the root mean squared errors (RSME) of our TDOA method (black) compare
it with the method of Ramachandran et al. 2005 (red). Samples taken on a grid ware
represented by full lines, whereas dashed lines denote samples that were taken from ran-
dom coordinates in the simulated region. Our method is superior when the expansion
occurred slowly or when it finished some time in the past; but the method perform very
similar for recent, fast expansions.
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Figure 3.7. Identifying complex patterns of migration.
We simulated data on a S-shaped habitat with two impermeable barriers (Panel A) The
darkness of the shading is proportional to the arrival time of the expansion, which began
in deme (20,20). Black circles correspond to locations sampled. In Panel B we show the
inferred pairwise directionality, with all edges remaining after thinning the graph shown
in grey, and a maximum spanning tree in red. We also show the inferred ordering of
the samples as a color gradient of the samples from light (closest to origin) to dark. The
barriers can be identified from panel B by the absence of any indication of gene flow across
the barriers and by examining the ordering of the samples.
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Figure 3.8. Detecting multiple origins.
Panel a: We simulated two expansions that originated at the same time from origins
indicated by the blue crosses. The color gradient in the background corresponds to the
time of colonization time of each deme. We address the problem of inferring the origin of
multiple expansions using a two-step procedure. First, we cluster the samples into discrete
clusters (red and black circles, respectively) and then estimate the expansion signal and
origins independently for the clusters, resulting in high accuracy for both estimated origins
(green X) when compared to the actual origins (blue +). The grey triangle denotes the
estimated single origin if we did not do the two step procedure; it lies approximately half
way between the two actual origins. The right panel shows the inferred migration patterns
after a transitive reduction (grey/red arrows) and a maximum spanning tree (red arrows).
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Figure 3.9. Inference of human migration routes.
The figure shows a visual representation of the pairwise directionality indices between
human populations in HGDP and HapMap. Each line corresponds to the pairwise ψ
statistic, with thicker and brighter lines corresponding to higher values. Grey and red
lines denote eastward and westward migration, respectively. Lines with an absolute Z-
score below 5 were omitted.
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Figure 3.10. Effect of population size variance on the estimation of the
origin.
We show the effect of variance in population size on our ability to estimate the origin of a
range expansion. RMSE increases only slightly if the variance is below 0.1, but increases
quite drastically if the variance is higher than that.
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Figure 3.11. Effect of ascertainment bias on ψ.
We show the effect of strong ascertainment bias in different demes given on the x-axis on
ψ calculated between samples taken from coordinates (0,10) and (0,20). The first column
shows results with no ascertainment. Ascertainment has very little effect if it is performed
in a deme that is not used in the comparison.
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Chapter 4

The Effective Founder Effect in a
Spatially Expanding Population

4.1 Introduction

We may think of a range expansion as the spread of a species or population from a narrow,
geographically restricted region to a much larger habitat. Range expansions are a common
occurrence in many species and systems, and they happen on time scales that differ by
orders of magnitude. Viruses and bacteria may spread across the globe in a few weeks
(Brockmann and Helbing, 2013), invasive species are able to colonize new habitats over
decades (Davis, 2009); and many species migrated into their current habitat over the last
few millennia, following changing environments such as receding glaciers (Hewitt, 1999;
Taberlet et al., 1998).

The population genetic theory of range expansion is based on two largely distinct
models. The first model, based on the seminal papers of Fisher (1937) and Kolmogorov
et al. (1937) and often called the Fisher-KPP model, is based on the diffusive spread
of alleles, and has been mostly explored from a statistical mechanics viewpoint. The
other model, called the serial founder model, has its roots in the empirically observed
decrease in genetic diversity from an expansion origin (Austerlitz et al., 1997; Hewitt,
1999; Ramachandran et al., 2005).

The Fisher-KPP partial differential equation describes the deterministic change in al-
lele frequency at a spatial location due to the individuals with a selected allele having
more offspring than wild-type individuals. The model can be applied to range expansions
by substituting the selected allele with presence of a species, and the wild-type allele as
absence of a species(see e.g. Barton et al., 2013, for a recent review). Its solution is a trav-
elling wave; similar to logistic growth where populations grow to some carrying capacity.
This model has received more widespread attention recently due to the empirical tests
by Hallatschek et al. (2007), who compared growing colonies of E. coli to the predictions
from the Fisher-KPP equation.
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However, it is also apparent that some of the predictions of the Fisher-KPP model
are inconsistent with many macroscopic systems. In particular, the Fisher-KPP model
predicts that local populations start with extremely small population sizes. This leads to
a very high amount of genetic drift, and, for example, in the experiments of Hallatschek
et al. (2007), all local genetic variability was quickly eliminated, so that no polymor-
phisms were shared between individuals sufficiently far from each other. This is in strong
contrast to humans, for example, where an expansion out-of-Africa is well supported (e.g.
Ramachandran et al., 2005), but where we find many genetic variants shared between all
human populations. This was part of the motivation for the development of the serial
founder model, which is typically based on a variation of a stepping stone model (Kimura,
1964) in one or two dimensions. Typically, only a small subset of populations is colonized
at the beginning of the process, but over time subsequent populations are colonized, usu-
ally by means of some founder effect. There are multiple ways a founder effect has been
modelled: Austerlitz et al. (1997) and Ray et al. (2010) chose to model the founder effect
by local logistic growth, where each local subpopulation grows according to the logistic
equation. A simpler model, favored by DeGiorgio et al. (2011) and Slatkin and Excoffier
(2012), is to model the founder effect by a temporary reduction in population size.

A complete serial founder model, including selection, founder events and migration
between subpopulations, has, so far, be proven to complex to be of use for analytical
research. However, a recursion approach (Austerlitz et al., 1997) and simulations (Klopf-
stein et al. 2006, Travis & Burton 2010) have been successfully applied to investigate
the behavior of the model. Other alternatives are models that do not model expansions
explicitly, and make additional simplifications. Perhaps the simplest model of this kind
is that of a demographic expansion without any spatial component, which can be fully
described by a change in the rate of coalescence (Gravel et al., 2011; Li and Durbin, 2011),
with the assumption made that the population is panmictic throughout the expansion.
This model resembles a spatially explicit expansion, when migration rates between demes
are very large. A more sophisticated model, incorporating spatial structure, is the infi-
nite island approximation model of Excoffier (2004). In this model, an originally small,
panmictic population expands instantly into a metapopulation with a large number of
subpopulations. In contrast to the demographic expansion, in this model we can com-
pare coalescent time distributions between demes and within demes (called the mismatch
distribution), which has been used for inference previously. However, this model assumes
that all subpopulations are exchangeable, so that there is no difference in coalescence
times with individuals at a wave front, when compared to individuals in the center of a
population. A further step were the models of DeGiorgio et al. (2011) and Slatkin and
Excoffier (2012). DeGiorgio et al. (2011) derived coalescence times under a serial founder
model, using a small bottleneck as a founder event. In the model of Slatkin and Excoffier
(2012), the expansion is modelled as a spatial analog of genetic drift, where each founder
event corresponds to a generation in a standard Wright-Fisher model.

So far, these theoretical models of range expansions have let to few applications that
can be applied to interpret genetic data from non-model organisms. In this paper, we first
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develop a simple model of a range expansions based on a branching process approximation.
The advantage of the simplicity of the model is that it leads to the development of an
intuitive understanding of an expansion. We test the model using simulations, and discuss
its limitations, and then show how it can be used for inference.

We demonstrate the utility of our approach by re-analyzing SNP data of the model
plant species Arabidopsis thaliana (L.) Heynh. (Horton et al., 2012). A. thaliana is a
small, annual plant, thought to be native to Europe, but introduced in North America
and other locations (Jorgensen and Mauricio, 2004). The biogeography and population
structure of A. thaliana has been well studied (Horton et al., 2012; Jorgensen and Mauri-
cio, 2004; Nordborg et al., 2005). While earliest studies showed relatively little population
differentiation on a global scale, genome-wide genetic data supports widespread popula-
tion structure and clear genetic differentiation between populations (Horton et al., 2012;
Nordborg et al., 2005). The availability of genome-wide SNP-chip data from more than
a thousand individual plants from hundreds of locations make A. thaliana an ideal test
case for the genetic signatures of range expansions. However, the status of A. thaliana
as a human commensialist and the fact that A. thaliana is a selfing plant, may make the
analysis more challenging.

4.2 Results

4.2.1 Overview of Theoretical Results

In this section, we will briefly outline our model and the main theoretical results. Details
and full derivations can be found in Section 4.5. A schematic of the model studied is given
in Figure 4.1. In brief, we assume a serial founder model on a one dimensional stepping
stone grid, where initially only one deme is colonized. We compare the allele frequency
of individuals in the same location as the origin of the population at time t, Xt, with
the allele frequencies of individuals at the wave front at time t, which we denote by X̃t.
In particular, we are interested in the difference in derived allele frequency between the
population at the starting position and the expansion front, which we denote as Zt. In
Section 4.5.1, we show that the expected difference in allele frequency is

EZt = f0

(

1

1− L̃(t)
− 1

1− L(t)

)

, (4.1)

where f0 is the initial frequency of an allele, and L(t) and L̃(t) are the probabilities that
an allele is lost by time t at the origin of the expansion and the wave front, respectively.

We can make this result more explicit assuming the populations evolve according
to a branching process. A (Galton-Watson) branching process (Harris, 1954) models the
evolution of a population by assuming that all individuals produce offspring independently
from each other, with some offspring distribution F . In Section 4.5.2 we use standard
results from branching process theory to show that if each deme evolves according to a
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branching process, then (4.1) can be written as

EZt =
1

2

(

Var(F̃ )− Var(F )
)

t+ o

(

1

t

)

, (4.2)

that is, the difference in allele frequency is expected to increase linearly with distance, and
the slope is half the difference in the variance of offspring distribution at the expansion
front Var(F̃ ) and away from the expansion front Var(F ). Since we assume that founder
effects occur at the expansion front, we expect it to have a higher offspring variance,
corresponding to a lower effective population size. It is worth pointing out that the term
of order t in EZt does not depend on f0, so that we expect the same slope independent
of the initial allele frequency. As the higher order terms depend on f0, we will examine
the accuracy of this result using simulations.

In Section 4.5.3 we then use the offspring variance from a Wright-Fisher model to
define an effective founder size ke, and show that

EZt =
1

2

(

Ne

ke
− 1

)

t, (4.3)

where Ne is the effective population size of a deme. In some cases, it might be possible to
interpret Ne and ke directly. For example, if we think of a species colonizing a system of
islands, Ne corresponds to the carrying capacity of that species on a given island, and ke
to the number of founders. In most cases, however, subpopulations are not clearly defined
and the population is relatively continuously distributed. Under these circumstances, it
is not clear what Ne and ke represent. Therefore, we show in Section 4.5.4 that it makes
more sense to think about the distance over which the ratio ke

Ne

has a certain value (e.g.
0.99), that is, how far apart demes need to be so that each founding population is 1%
lower than the population at equilibrium. The larger this distance, the weaker the founder
effect.

Finally, in Section 4.5.5 we show how we can estimate EZt from genetic data using
the ψ statistic defined as

ψ =
f21 − f12

f12 + f11 + f21
, (4.4)

where fij is the (i, j) entry in the allele frequency spectrum. ψ was introduced by Peter
and Slatkin (2013), and we show in Section 4.5.5 why ψ is an useful estimator of EZt.
Taken together, these results suggest that we can define and estimate the effective founder
effect that describes the loss of genetic diversity with distance from the expansion origin,
and that we can infer the strength of the founder effect using a simple linear regression
on the allele frequency of shared alleles.

4.2.2 Simulations

We validate our analytical results by performing extensive simulations under two different
models. The first is the forward-in-time model stepping stone model described by Slatkin
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and Excoffier (2012). The second model is a backward-in-time stepping stone model,
based on the Kingman coalescent (Wakeley, 2009).

4.2.2.1 Forward Simulations

We first validate our results using a discrete-time, forward-in-time Wright-Fisher model.
In Figure 4.2, we give results for various initial allele frequencies f0, setting ke = 0.1N
(first row), ke = 0.5N (middle row) and ke = 0.9N (bottom row). Using Equation 4.3,
we would predict Zt to be 4.5t, 0.5t and t/18, respectively. Those predictions are given
by the red lines; the points represent data observed in simulations. We find that we get
better estimates when i) the effective founder size is low, ii) the time after the expansion
is low and iii) the effective population size is high. In particular, we find that we get
a systematic bias when we have a very strong founder effect, and thus allele frequency
differences are expected to be very large. In that case, many alleles will become fixed in
the population, and the predictions between the Wright-Fisher and the branching process
models are quite different.

In Figure 4.3, we investigate the effect of demes growing to their carrying capacity
via logistic growth, as opposed to instantaneous growth which we assume in most other
cases. Here we can apply the result that under non-constant founder population sizes,
the effective founder size is simply the harmonic mean of all founder sizes, divided by
the number of generations. In Figure 4.3, simulations were performed with a carrying
capacity of 10,000, and growth starting at a size of 1,000 individuals, with subsequent
founder effects starting after k = 1, 2, . . . 10 generations, corresponding to the different
data series.

4.2.2.2 Backwards Simulations

We also performed backward-in-time simulations i) to test the robustness of the branching
process predictions to migration, ii) to test the effect of estimation from a subsample and
iii) to remove the initial allele frequency as an explicit parameter. Coalescent simulations
were performed in a continuous-time model with discrete expansion events. In particular,
most of the time lineages are allowed to merge according to the standard structured
coalescent. The only exception are the expansion events, which are modelled as a single
generation of Wright-Fisher mating, followed by moving all lineages in the newly colonized
deme back to the founder deme. Thus, unlike the Kingman-coalescent, this model allows
for multiple mergers at the wavefront. Under this model,

EZt =
1

4ke
, (4.5)

since the founder effects result in an increase of the offspring variance by a factor of
(2ke)

−1. We estimate EZt using the ψ-statistic defined in Peter and Slatkin (2013),
justification of this is given in Section 4.5.5. Results are displayed in Figure 4.4. In the
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top row, we show samples taken immediately after the expansion reached the boundary of
the habitat, in the bottom row, we show samples that were taken a very long time (20N
generations) after the expansion finished. We find that recent expansions are detected
rather easily, almost independent of the migration rate, and the effective founder size
is estimated with high accuracy. In the bottom row, we observe that for intermediate
migration rates (M = 0.1 and M = 1), we still get a relatively accurate result, however,
we have more noise, indicating that much larger samples would be required to obtain
confident estimates, since most SNP will be either fixed or lost after this time. For a low
migration rate, we see that we do not have any power for inference, since individuals all
coalesce within their demes before they have the opportunity to coalesce with lineages
from other locations. For high migration rates (M = 100), we find that the signal of the
range expansion has almost vanished. Under these conditions, migration is so strong that
the population essentially resembles an equilibrium isolation-by-distance population, and
the signal of the range expansion has been lost. For M = 10, we see an intermediate
behaviour, close to the origin we are at equilibrium, but far away the slope of the curve
is still the same as we would expect under an expansion.

4.2.2.3 2D Simulations

In addition to the results presented in the previous two sections, where we performed
simulations in a one-dimensional habitat, we also performed simulations on a 2D-stepping
stone model to investigate the impact of multiple dimensions. We performed simulations
by simulating expansions both under a migrant pool model and a propagule pool model
(Slatkin and Wade, 1978). In a migrant pool model, all neighbouring populations send
migrants at equal rates, whereas under the propagule pool model, one possible founder
population is selected to send out a “propagule”, which colonizes the new deme. We
find that if the sample axis is parallel to the orientation of the stepping-stone-grid, then
the migration model does not matter, and we get the same behavior as in the 1D case.
However, if we sample a diagonal we find that the results from the 1D-simulations are
applicable under the propagule pool model, but not under the migrant pool model (Figure
4.5). The reason for that is quite simple: under the migrant pool model, there are many
different paths on how a deme can be colonized, and the number of paths increases with
distance from the origin, which reduces the amount of drift in a non-linear way with
distance from the origin. In contrast, under the propagule pool model, always one path
is chosen. We also find that under the 2D-model the signal of the expansion disappears
faster. Whereas in the 1D-model at a migration rate of M = 1 the expansion is still
detectable after 20N generations, we find that at the same migration rate, the population
already approaches equilibrium.
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4.2.3 Application to A. thaliana

We applied our model to the SNP dataset of Horton et al. (2012). Based on a PCA
analysis (Figure 4.6a) and the sample locations, we defined five regions for further analysis:
Scandinavia, Americas, as well as Western, Central and Eastern Europe.

In the Americas, (Figure 4.6c) we find a most likely expansion origin in the Great
Lakes region, as opposed to the East coast. This might be somewhat surprising, but as
we only have one sampling location at the East cost, power might be low. However, we
can speculate that traders through the Great Lakes first introduced A. thaliana to the
US, which may explain the signal. This may be seen as evidence for a recent introduction
of A. thaliana into the Americas from Europe. Further support for this hypothesis comes
from the fact that the American samples cluster together with the Western European
samples in the PCA analysis, and from the fact that the North American population
shows the strongest founder effect, with a 1% founder effect every 4.26 km.

Scandinavia (green dots in Figure 4.6a, Figure 4.6c), shows the most diversity within
a region according to the PCA plot, and the second highest founder effect size. The most
distinct samples, in the bottom left of Figure 4.6, are from Northern Sweden and Finland,
whereas those samples that cluster with the Central and Eastern European Accessions
are predominately found in Southern Sweden. We find evidence of immigration from the
East, with the most likely origin of the Scandinavian accessions lying in Finland. Based
on the PCA analysis, we might expect the accessions from Southern Sweden to show
evidence of a range expansion from the South, and that is indeed the case when we only
consider these Southern samples.

If we analyze these Southern Scandinavian samples together with the samples from
Austria, Czech Republic, Russia, Lithuania and Tajikistan (Figure 4.6d, pink and brown
dots in the PCA), we find evidence of an expansion out of eastern Asia, possibly from a
refugium close to the Caspian Sea. For the Central European samples, we find an origin
close to the border between Austria and Italy. This is likely a proxy for a refugium in
either Southern Italy or the Balkan region, as the inferred origin was covered by an ice
sheet during the last glacial maximum. Finally, for the Western European samples we
find the weakest founder effect among all analyzed region, with a 1% founder effect at a
scale of 38.6 km, almost an order of magnitude weaker than the strongest founder effect
we observed in this set of populations, in the Americas. This is however partly due to
the aggregation of the British and continental samples; if we just analyze the French,
Spanish and Portuguese samples (excluding the British samples), we find a founder effect
of 18.7, in line with the other continental European regions. In contrast, if we analyse
the British samples separately, we estimate an 1% decrease to occur over 47.8 km, and in
fact we cannot exclude equilibrium isolation by distance, as, after Bonferroni correction,
as p > 0.05.
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4.3 Discussion

In this paper, we study range expansions using a serial founder model, with the main
goal to develop inference procedures. We use a branching process approximation to ap-
proximate the decay of genetic diversity due to the recurring founder effects. We use this
approximation to define an effective founder size, which can be estimated using standard
linear regression from genetic data.

A linear or approximately linear decline of genetic diversity with distance has been
observed previously in humans (DeGiorgio et al., 2009; Ramachandran et al., 2005) and
in simulations (DeGiorgio et al., 2009; Peter and Slatkin, 2013). In previous work, we
showed, using simulations, that the directionality index ψ, defined in Equation 4.4, in-
creases approximately linearly with distance (Peter and Slatkin, 2013). In this paper,
we connect these empirical observations with a theoretical model, that explains this de-
cay in terms of differences in offspring variance. This is justified because in populations
with a higher offspring variance, genetic drift occurs faster and therefore the population’s
effective size becomes smaller.

While branching processes have a long history in population genetics (Ewens, 2004),
they differ from other commonly used models such as the Wright-Fisher model and the
Coalescent in that the total number of individuals in the population is not constant
(or following a predetermined function). Instead, the expected number of individuals
is constant, leading to different dynamics. For example, a neutral branching process
will eventually die out almost surely, something that cannot happen under the Wright-
Fisher model. Therefore, the models presented here are only useful in parameter regions
where the branching process model and other population genetic models result in similar
dynamics. For example, our model breaks down if there are only few shared variants
between populations. However, in this case, phylogeographic methods are arguably more
appropriate than population genetic ones. Otherwise, our model appears to be useful as
long as a significant fraction of variants has a most recent common ancestor during the
expansion or before the expansion started. If that is not the case, as in the simulations
with high T and highM in Figure 4.4, we find that ψ will be very close to zero, due to the
signal of the expansion vanishing over time. The last parameter region where the model
breaks down is when the mean allele frequencies become very large (Figure 4.2. In that
case, the increase slows down due to fixations in the Wright-Fisher model, whereas it may
further increase under the branching process approximation, explaining the difference.

Similar to the effective founder size defined in Slatkin and Excoffier (2012), the effective
founder size ke we defined here is a variance effective size. This is different from the model
proposed by DeGiorgio et al. (2009), where an explicit bottleneck was used to model a
founder effect. Using an effective size is less specific than that – there are many models
that will lead to the same founder size – but has the advantage that the same formalism
can be applied to many different situations. We also showed various rescaling properties.
Perhaps counterintuitively, EZt is largely independent of the expansion speed, conditional
on ke. The reason for that is that, even though more segregating variants will be lost in a
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faster expansion, the difference between the expansion front and the rest of the population
remains the same. Similarly, waiting after the expansion finished will not change EZt.

Of course, an effective size has its limitations, as in essence, it is just a measure of
the speed of genetic drift. Many other models exist that may lead to similar or identical
patterns of genetic diversity (DeGiorgio et al., 2009). However, in many cases it is natural
to assume a range expansion occurred, often through climatic or historical evidence. In
these cases, our framework may provide a starting point for a genetic analysis.

The analysis of the A. thaliana data shows both the usefulness and some of the limi-
tations of our approach. We are able to identify expansion origins and infer the strength
of the founder effect from genetic data. In the A. thaliana data set, we find that the
founder effect is much stronger in the Americas than in continental Europe. This is an
interesting pattern, and it would be very interesting to see if the same is true for other in-
troduced or invasive species. In Europe, our results are consistent with previous analyses
by Nordborg et al. (2005) and François et al. (2008). Nordborg et al. (2005) found that
Arabidopsis likely colonized Scandinavia both from the East, through Finland, and from
the South. The strong population structure is consistent with this finding a global pattern
of an Eastern origin, and evidence for immigration from the South when just analyzing
the Southern Swedish samples, or if we jointly analyze them with Eastern European and
Asian samples. Overall, we identify a likely ice-age refugium close to the Pyrenees in
Southern France or Eastern Spain, a likely refugium near the Caspian sea and a refugium
in central Southern Europe, either in the Balkan or Italy, where denser sampling is re-
quired for a more accurate picture. In the Americas, we find that Arabidopsis experienced
very strong founder events, and we identify a most likely point of introduction near the
Great Lakes.

On the other hand, describing the founder effect as a distance over which genetic
diversity decreases by a certain amount is not as satisfying as is the inference of an
effective founder size, on the same scale as the effective population size. However, it is
necessary because of scaling reasons; if a single population spans a larger area, then we
necessarily need a strong founder effect to get the same diversity gradient than. On the
other hand, if we subdivide the area of the large population into smaller populations, each
of those will have its own, smaller founder effect, but the population will experience a
larger number of founder events. Thus, if we know the scale of a local population, or can
reasonably approximate it (e.g. if we know the dispersal distance of the species). We can
obtain an estimate on how much lower the founder size is compared to the effective size
at carrying capacity in equilibrium. On the other hand, interpreting the founder effect as
a distance allows us to obtain a measure that is independent of how populations actually
occupy space, which is more versatile, but somewhat harder to interpret.
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4.4 Methods

4.4.1 Forward Wright-Fisher-Simulations

Forward simulations were performed using a simple simulator implemented in R. Simu-
lations were started with a fixed initial frequency f0, and allowed to evolve for a fixed
number of generations. Every t-th generation, the rightmost deme founded a new pop-
ulation, first with a single Wright-Fisher generation of size ke, which then, in the next
generation, expanded to size N . All demes except the newly founded one underwent t
generations of Wright-Fisher mating in the same time frame, thus after gt generations, g
demes are colonized. EZt was estimated from 106 replicate alleles. More complex models
were implemented the same framework, i.e. we added migration between all demes at
each generation and allowed the population to evolve for additional generations after the
expansion finished. We also used a modification that allowed for changes in population
size after each expansion event, and we used this modification to study the effect of logistic
growth (see Figure 4.3).

4.4.2 Backwards Simulations

Backward-in-time simulations were performed using the standard structured coalescent
model Wakeley (2009), with a minor modification. The structured coalescent allows easy
inclusion of migration events. The coalescent is usually studied in the continuous limit
where the number of generations and population sizes are both very large. We follow
this approximation with the exception of expansion events, which are modelled using a
single generation of Wright-Fisher-mating. Backward in time, we stochastically merge
lineages, the backwards-transition probability for the number of lineages is (Watterson
1975, Wakeley 2008, p. 62):

P(Lt + 1 = j|Lt = i; ke) =
S
(j)
i ke[j]
kie

, (4.6)

where ke is the effective founder size, Lt is the number of lineages at time t, (time measured

backwards in time in coalescence units), S
(j)
i is the Stirling number of the second kind and

N[j] is the jth falling factorial. If the number of lineages is reduced, we merge lineages
uniformly at random. All remaining lineages are then transported to a neighbouring
colonized deme. To compare this model to our predictions from the branching process
model, we have to consider the excess variance in offspring distribution resulting from
these expansion events, which is 1

4ke
, such that for this coalescent model

EZt =
1

4k
t+O

(

1

t

)

. (4.7)

Thus, the smaller the effective founder size ke, the larger the allele frequency gradient will
be. 1D-and 2D-simulations were performed using the same simulator. For 1D-simulations,
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we sampled eleven samples with n lineages every 5th deme, with 20 additional demes
to avoid boundary effects. For the 2D-simulations, we sampled both a diagonal and
horizontal transect. The horizontal transect, parallel to the demic structure, had length
30. The diagonal transect, where demes were colonized every

√
2t time units, had length

20
√
2 , so that both transect are colonized in approximately the same time.

4.4.3 Application

The data set of Horton et al. (2012), along with the coordinates for the accessions
was downloaded from the website at http://bergelson.uchicago.edu/regmap-data/.
Genotypes of the sister species Arabidopsis lyrata provided by Matthew Horton were used
to determine the ancestral state for each SNP. SNP where we could not determine an an-
cestral state unambiguously, either because no homolog A. lyrata allele was found, or the
allele A. lyrata was not present in A. thaliana, were removed. Similarly, we removed all in-
dividuals where we did not have sampling coordinates. Since A. thaliana is a selfing plant
and highly inbred accessions were sequenced, we only had a single haploid genotype per
individual. Since our methodology requires at least two sampled haplotypes, we restricted
our analysis to locations with at least two accessions sampled. To avoid bias due to very
closely related accessions, we subsequently removed locations where the plants differed
at less than 1.5% of sites (average heterozygosity of locations was 7.1%, with a standard
deviation of 3.2%). This resulted in a total of 149 locations with at least two samples,
representing 855 individuals, with 121,412 SNP genotypes remaining. As a single, uni-
form expansion throughout Europe seems rather unlikely, we performed a PCA analysis
to find the main axes of population differentiation (Figure 4.6a). As the resulting pat-
tern divided the samples broadly into four different groups, we analyzed data from these
groups separately. These groups are: Americas (black), Western Europe (blue), Central
Europe (red) and Scandinavia (green). For each of these groups, we estimated the origin
of the range expansion using Equation 5 of Peter and Slatkin (2013). For visualization,
we evaluated eq 5 of Peter and Slatkin (2013) on a grid (with locations not falling on land
excluded), and estimated the best fit for the slope parameter (v) using linear regressions,
with the location with the highest r2 corresponding to the least squared estimate of the
origin of the expansion (Figure 4.6b-f).

The expected value of ψ depends on the ratio of the effective founder size ke to the
effective population size Ne and the number of demes that the population colonized. The
number of demes is relevant, since if we subdivide the population into more demes, it will
undergo more (but weaker founder effects) over the same physical distance, or conversely,
if we assume that demes are large, then we have few founder events with a very strong
founder effect. Using the simple model developed in this paper, we cannot distinguish
these cases without additional extraneous information. For example, we may fix the
size of each deme based on extraneous information. For example, if the mean dispersal
distance is known for a species, we may assume that the spatial extent of each deme is
approximately that dispersal distance, and we can calculate ke relative to that quantity.
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In this context, the ratio ke/Ne has the interpretation as the percentwise reduction in
Wright’s neighborhood size. Alternatively, if the dispersal distance is unknown, we may
fix the ratio r = ke/Ne to an arbitrary constant, and instead report the required distance
xe over which the effective founder size is ke. This has the advantage that it provides us
with a quantity that is independent of assumptions of the demic structure, and the larger
xe is, the weaker is the founder effect of the population. For illustration purposes, we
calculate the ratio ke/Ne for deme sizes of 1km, 10km and 100km, as well as xe for all
groups and report them in Table 4.1.

4.5 Derivation of Main Results

4.5.1 Discrete Time Expansion Model

We model a range expansion on a one-dimensional stepping stone model with potential
deme positions 0, 1, 2, . . . labelled di, i = 0, 1, . . . . All but deme d0 are not colonized at
the start of the process. We denote the frequency of an allele of a biallelic marker in
deme di at time t as fi(t), and we assume that f0(0) = f0, where f0 is some constant.
The population behaves as a Markov process, so that the allele frequencies at time step
t only depend on step t − 1. Each time step, genetic drift will change allele frequencies
according to some probability distribution. In addition, deme dt will become colonized
by the offspring of individuals present at time t− 1 in deme dt−1 according to some other
probability distribution. For simplicity, we at first assume there is no migration between
demes, and test the robustness to this assumption using simulations.

Let {Xt} = {f0(0), f0(1), . . . f0(t)} and {X̃t} = {f0(0), f1(1), . . . ft(t)} be the processes
describing allele frequencies at and away from the wave front, respectively. Since we
disallow migration, we can describe the history of “intermediate” demes di, 0 < i < t by
processes {X(i)

t } = {f0(0), f1(1), . . . fi(i), fi(i+1) . . . fi(t)}. In words, demes are colonized
when the wave front first reaches them, and the subsequent evolution depends only on the
allele frequencies at the time when they first evolved. From this construction, it follows
that for i < j, {X(i)

t } and {X(j)
t } are conditionally independent given fi(i). Together with

the Markov property this implies that the difference in allele frequency in two demes is a
function of distance, i.e. they obey

F (X
(i)
t , X

(j)
t |fi(i)) = F (Xt−i, X̃t−i|f0). (4.8)

Throughout this section, we assume that EXt|X0 = f0 is constant, which is satisfied
if there are no new mutations and no selection, and we further assume that Var(Xt) <
∞. For example, for the critical branching process model we introduce in the following
section, Var(Xt) = σt, where σ is the offspring variance in one generation. Then the
autocovariance for s < t is,

Cov(Xs, Xt) = Var(Xs), (4.9)

and similarly for X̃, because {Xt}, {X̃t} are martingales.
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Next, we define the conditioned processes {Yt} = {Xt|Xt > 0} and {Ỹ } = {X̃t|X̃t > 0}
which give the allele frequency conditional on the allele not being lost.

Then, we have that

EYt =
EXt

P(Xt > 0)
=

EXt

1− L(t)
(4.10)

since
EX = E(X|X > 0)P(X > 0). (4.11)

Here, L(t) = P(Xt = 0) denotes the probability that an allele is at frequency zero in
generation t, and we remove the dependency of L(t) from f0 for notational convenience.

Using the conditional variance formula, we can compute the variance and autocovari-
ance of {Yt}:

Var(Yt) =
E(X2

t )

1− L(t)
−
(

E(X2
t )

1− L(t)

)2

=
Var(Xt)

1− L(t)
+ L(t)(EYt)

2 (4.12)

and covariance for s < t

Cov(Ys, Yt) = EYsYt − EYsEYt

= E(XsXt|Xt > 0)− E(Xs|Xs > 0)E(Xt|Xt > 0)

=
E(XsXt)

P(Xt > 0)
− f 2

0

P(Xs > 0)P(Xt > 0)

=
Var(Xs)

1− L(t)
+ L(s)

f 2
0

(1− L(s))(1− L(t))
. (4.13)

The last quantity of interest is the difference Zt = Yt − Ỹt, which gives the difference
in allele frequency between the wavefront and the origin of the expansion, conditional on
an allele surviving in both locations. We find that

EZt = f0

(

1

1− L(t)
− 1

1− L̃(T )

)

, (4.14)

Var(Zt) = Var(Yt) + Var(Ỹt)

=
Var(Xt)

1− L(t)
+

Var(X̃t)

1− L̃(t)
+ L(t)EYt + L̃(t)EỸt, (4.15)

and

Cov(Zs, Zt) = Cov(Ys, Yt) + Cov(Ỹs, Ỹt)− Cov(Ys, Ỹt)− Cov(Ỹs, Yt)

=
Var(Xs) (1− L(s)) + f 2

0L(s)

(1− L(s))(1− L(t))

+
Var(X̃s)

(

1− L̃(s)
)

+ f 2
0 L̃(s)

(1− L̃(s))(1− L̃(t))
. (4.16)
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4.5.2 Branching Process

To further specify the moments derived in Section 4.5.1, we need to define Var(Xs), L(s)
and f0, and the corresponding quantities at the wave front. This is particularly easy using
a Galton-Watson branching process. Under this model, each generation individuals leave
offspring independent from each other according to some offspring distribution F . Let
Li(t) denote the probability that an allele has been lost by generation t, given that it
started with i copies in generation 0. Kolmogorov (1938) showed that when t is large, L1

is well approximated by

L1(t) ≈ 1− 2

tVar(F )
, (4.17)

where F is the offspring distribution and Var(F ) is assumed to be finite. We assume
that a branching process with offspring distribution F describes neutral genetic drift at
the wave front, and that the colonization of new demes occurs according to a branching
process with offspring distribution F̃ .

If the initial frequency f0 of the allele is greater than one, the corresponding expression
becomes

Lf0(t) = (L1(t))
f0 , (4.18)

by independence of individuals. Plugging this into on Equation 4.1 and using a Taylor
expansion around t = ∞ yields

EZt = f0

(

1

1− L̃f0(T )
− 1

1− Lf0(t)

)

=
1

2

(

Var(F̃ )− Var(F )
)

t−
(f 2

0 − 1)
(

Var(F̃ )− Var(F )
)

6Var(F )Var(F̃ )

1

t
+ o

(

1

t2

)

,(4.19)

Thus, we find that the expected difference in allele frequency between the expansion origin
and the front of the population increases approximately linear with distance, the slope
of the curve being the difference in offspring variance of individuals at the wavefront
and expansion origin. From the second term in the Taylor expansion we see that the
approximation is suitable when t > f 2

0 , i.e. the number of demes between the two samples
is large, and the frequency of the allele at the founding location is small.

4.5.3 Effective Population Size

The variance effective population size for a Cannings model is defined as

Ne =
N

Var(F )
, (4.20)

where N is the absolute number of individuals per population. The branching process
considered above is not a Cannings model, however, the evolution of the offspring of a sin-
gle individual under a Cannings population is well approximated by a branching process,
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as long as that offspring only makes up a small fraction of the individuals in a population.
Fisher(1930) pioneered the modelling of population genetics using branching processes
(Ewens, 2004, p.29). Under a Wright-Fisher model, the offspring distribution of a single
individual has mean and variance very close to one. This justified Fisher to approximate
the evolution of an individual under the Wright-Fisher model as evolving according to a
branching process with a Poisson(1) offspring distribution, which has offspring variance
1, a model we will also use here to model genetic drift away from the wave front.

To incorporate the reduced effective size of a founder effect at the wave front, we
use a modified offspring model: with probability (1− α), an individual at the wavefront
does not produce any offspring. With probability α, the number of offspring is Poisson
distributed with parameter 1/α s.t. the overall expected number of offspring is still one
and the variance is Var(F̃ ) = α−1. This allows us to define an effective founder size ke

ke = αN , (4.21)

which measures the “increase” in genetic drift at the wave front.
Combining Equation 4.21 and Equation 4.19 yields

EZt =
1

2

(

Ne

ke
− 1

)

t. (4.22)

From this, we see immediately that EZt = 0 only if Ne = ke, and also that the effective
founder size enters the equation only in the ratio κ = ke

N
, so that it makes sense to further

define the relative founder size κ, which measures the strength of the founder effect.

4.5.4 Rescaling

The branching process we used above assume that exactly one generation of genetic drift
happens between each founder event. In this section, we show that the expected allele
frequency difference between the expansion front and at the origin is (i) invariant of addi-
tional generations between expansion events and (ii) invariant to additional generations
after the expansion finished.

Both follow from the fact that for a branching process with mean 1, the variances of
subsequent generations can simply be added: Consider the generating function of a critical
branching process B after t generations, denoted by pt(s) which has variance pt(1)

′′. Then,
after an additional generation, the generating function becomes q(pt(s)), where q(s) is the
generating function of the offspring distribution of that additional generation. Then, the
variance in offspring after this additional generation is q(pt(1))

′′.

Var(B) = (p′t(1)
2q′′(pt(1)) + q′(pt(1))p

′′

t (1) = q′′(1) + p′′t (1), (4.23)

since p′t(1) = q′(1) = pt(1) = q(1) = 1.
Thus, if individuals in the range expansion model have offspring variance v at the

expansion front and variance ṽ away from the front, the total variance after t time steps
with d expansion events is (t− d)v + dṽ.
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Now from Equation (4.19) we have (for f0 = 1),

EZd =
1

2

[

Var(Xd)− Var(X̃d)
]

d

=
1

2
[(dv)− (dṽ)] .

Adding T generations with neutral drift between each founder event and τ generations
after the expansion stopped, changes this only to

EZd =
1

2
[(dv + (d− 1)Tv + τv)− (dṽ + (d− 1)Tv + τv)]

which simplifies to Equation (4.19).
We can model more complex expansion models, such as an extended bottleneck or

logistic growth similarly. Again, this will result in an increase of V ar(Xd) and V ar(X̃d)
by the same amount, which cancels in the difference.

Furthermore, we can also change how we subdivide a population into demes. It is
easy to see that a population with expansions at times 0, 1, 2, . . . and offspring variances
Var(F ) and Var(F̃ ) behaves similarly to a population with expansions occurring at times

0, δt, 2δt, . . . with offspring variances Var(F )
δ

and Var(F̃ )
δ

in the sense that EZt will be the
same for either population. This suggests that it is not important how we subdivide space
into demes, only the relative size of the founder population versus the neutral populations
matters. Thus, it is most convenient to report the strength of the founder effect in units
of “decrease” in genetic diversity per unit of distance.

4.5.5 Estimation

To estimate EZt from genetic data, we need to take subsampling into account, i.e. we need

to estimate EẐt = E
ˆ̃Yt − EŶt. In particular, the probability that an allele got lost from a

population is not the same as it being absent from a sample. To model subsampling, we
assume we start with f0 copies of the derived allele and A0 copies of the ancestral allele,
all evolving as a independent branching processes. The expected number of ancestral
alleles will be EAt = A0 in all generations, whereas the expected number of the derived
allele, conditioned on it not being lost, is EYt. We Hence, in generation t, the probability
of drawing m copies of the derived allele out of n samples is approximately binomially
distributed with parameters n and EYt

EYt+A0

. The mean of the expected allele frequency,
conditional on sampling at least one derived allele is

EŶt/
n

2N
=

nEYt
EYt + A0

/(

EYt
EYt + A0

)n

=
nEYt(A0 + EYt)

n−1

An
0

, (4.24)

with the n
2N

term normalizing Ŷt to allele counts. Setting A0 ≈ 2N − EYt we obtain the
series representation

EŶt = EYt +
n

2N
(EYt)

2 + o

(

1

N2

)

. (4.25)



CHAPTER 4. THE EFFECTIVE FOUNDER EFFECT 81

Hence,

EẐt = E
ˆ̃Yt − EŶt = EỸt − EYt +

n

2N

(

(EỸt)
2 − (EYt)

2
)

+ o

(

1

N2

)

, (4.26)

and we see that we have a bias term that increases with sample size. Hence, the easiest
way to proceed is to downsample larger samples to a sample size of two, the case that is
arguably most important in light of genomic data.

To compare samples of size n1 and n2, from a site frequency spectrum S = fij , 0 ≤
i ≤ n1, 0 ≤ j ≤ n2 we can calculate a reduced site frequency spectrum matrix S ′ from the
full site frequency spectrum using

S′ = P1SP
T

2
, (4.27)

where P1 and P2 are (2 + 1) × (n1 + 1) and (2 + 1) × (n2 + 1) matrices (with indices
starting at 0), respectively, with entries

pji =

(

2
j

)(

n1−2
i−j

)

(

n1

i

) (4.28)

for 0 ≤ i ≤ n1 and 0 ≤ j ≤ 2 for P1. Entries in P2, are similar, except n1 is replaced by
n2.

If we denote the entries of S′ with sij, we can write EẐt as

EẐt =
s12 − s21

s12 + s21 + s11
. (4.29)

This statistic is identical to the ψ statistic defined in Peter and Slatkin (2013), where we
did not give any theoretical justification.
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4.6 Table

region longitude latitude q r1 r10 r100 xe r2 p
Scandinavia 24.16 60.32 0.00065 0.99869 0.9871 0.884 7.75 0.252 4.2e-55

USA -78.63 44.22 0.00118 0.99763 0.9768 0.808 4.26 0.242 6.8e-06
Central Europe 11.40 46.84 0.00035 0.99928 0.9928 0.932 14.05 0.171 8.3e-21
Western Europe 2.47 43.33 0.00013 0.99973 0.9973 0.974 38.60 0.264 4.7e-50
Eastern Range 48.29 46.92 0.00028 0.99943 0.9943 0.946 17.80 0.115 3.6e-22

Table 4.1. Analysis of A. thaliana data.
The table shows the inferred latitude and longitude of the origin. q: regression slope in km−1, ri = ke/Ne, for demes
of size ikm. di, distance (in km) over which 1 − ke/Ne = 1%. r2 and p: adjusted coefficient of determination and
Bonferroni-corrected p-value.
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4.7 Figures

Figure 4.1. Schematic of the expansion models studied.
This figure shows the basic process we study, each square corresponds to a subpopulation,
with grey borders indicating subpopulations not colonized at a time step. Each time
step, a new deme is colonized (black, dashed arrows), and other demes undergo neutral
genetic drift (grey arrows). We compare the allele frequencies {Xt} at the expansion
origin d1 (dashed borderes) with the allele frequencies {X̃t} at the expansion front (dark
backgrounds).
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Figure 4.2. This figure shows the expected allele frequency difference
between demes compared with simulations.
Top row: k = 0.1N , middle row: k = 0.5N , bottom row: k = 0.9N . first column:
f0 = 1, N = 1000, second column: f0 = 10, N = 1000, third column: f0 = 10, N = 10000,
Fourth column: f0 = 100, N = 10000, red line: prediction using branching process model.
black, blue and lightblue dots correspond to samples right after expansion reached deme
100, 100 generations later and 500 generations later, respectively. Other parameters are
t = 2, m = 0 and 106 alleles were generated
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Figure 4.3. Logistic growth
Comparison between WF-simulations and predictions from the branching process model
under a logistic growth model. Growth rates were set to 1 (Panel a) and 0.5 (Panel b),
respectively the lines correspond to 1-10 generations of logistic growth per expansion step
(from bottom to top). Dots correspond to the simulated data, and the dashed lines are
the analytical predictions using the harmonic mean of the population sizes.
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Figure 4.4. Effect of migration rate and subsampling.
Each set of points corresponds to ψ estimated from simulations under a specific ke value,
ke varies from 100 to 500 in increments of 100 (top to bottom/ blue to green). Grey
dashed lines give the expectation from the branching process model. Top row: data
sampled immediately after the expansion finished. Bottom row: data sampled a very
long time (100 coalescence units) after the expansion finished. Other parameters are:
sample size n = 10, time between expansion events te = 0.0001 (in coalescence units).
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Figure 4.5. Effect of a 2D-geography.
Each set of points corresponds to ψ estimated from simulations under a specific ke value,
ke varies from 100 to 500 in increments of 100 (top to bottom/ blue to green). Grey
dashed lines give the expectation from the branching process model in one dimension.
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Figure 4.6. Results for A. thaliana data set.
Panel a: PCA analysis of the 121,412 SNP. Colors: Green: Scandinavia. Black: Americas.
Blue: UK. Cyan: France. Light blue: Span & Portugal. Red: North-Western Europe.
Orange: Switzerland & Italy. Pink: Central Europe. Brown: Russia, Lithuania and
Western Asia. Panels b-f: Expansion for Scandinavia, USA, Central Europe, Western
Europe and British Isles, respectively. Brighter regions indicate more likely origin of
expansion.
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Chapter 5

Conclusion

While the preceding three chapters address two quite distinct problems, there are several
crucial aspects that all projects have in common. First, all projects deal with inference
from non-equilibrium models. There are many theoretical results based on equilibrium
assumptions (e.g. Durrett, 2008) and the underlying models are comparatively well ex-
plored. This is, of course, not because equilibria are biologically common, rather it is
their mathematical convenience that is desirable. Many populations of ecological or evo-
lutionary interest will not be in equilibrium, requiring new approaches. In this thesis, I
explore three different approaches for the development of inference methods for models
with little analytical theory.

In the second chapter, where I develop a method to distinguish selection from standing
variation from selection on a de novo mutation, I use an Approximate Bayesian Compu-
tation (ABC) approach. While we can use ABC to do inference under any model, the
statistical properties of the resulting inference method are largely unknown, and we have
no guarantees for important quantities, such as the robustness to model violations. This
is another common theme between all three chapters, and in all of them I need to explore
the properties of the inference methods by performing simulations under scenarios where
the model assumptions are violated. For the ABC procedure I apply in Chapter 2, I can
go further by using the fact that accuracy is reduced due to the two approximation steps
present in ABC. In the first step, I make the approximation that I can substitute the
probability of the data given the full model, P(data|model), with the probability of some
summary statistics from the model. While this makes inference feasible, it nevertheless
reduces the confidence in the model choice and parameter inference procedure. The other
approximation is the substitution of an exact match of the summary statistics of the ob-
servations to the summary statistics of the simulated data with an approximate match.
This again introduces some error. If this error is small, this likely implies that the model
fit well, however, if theses errors are intermediate or large, we have to be very carful with
any interpretation. One important issue is that ABC will always be able to compute a
posterior distribution and model choice probabilities, so that it is crucial to check how
well the models fit. If they do not, results have to be interpreted with extreme caution.
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An example for this is given by our analysis of the G6PD gene, where it can be seen that
the genetic patterns can not always be replicated by the simulations, which thus precludes
any inference.

Chapters 3 and 4 both address questions pertaining to range expansions, yet the
approach I use is quite different between the two chapters. In the first part of Chapter 3,
inference is based on a symmetry argument; I try to reject a symmetrical pattern in joint
allele frequencies that is expected only if the populations are at a migration equilibrium.
Subsequent analyses, inferring the origin of the expansion and the migration history, are
primarily based on empirical pattern, without any theory to back them up. However, the
diversity gradient correlated with range expansions has been observed in many species
(Ramachandran et al., 2005; Taberlet et al., 1998), and is predicted by all theoretical
models of range expansions (Austerlitz et al., 1997; Hallatschek and Nelson, 2008; Slatkin
and Excoffier, 2012).

Finally, in Chapter 4 I tackle the range expansion model by radically simplifying
it, making strong assumptions that are biologically rather unrealistic. In particular, by
using a branching process framework, I use a different set of assumptions than that of the
commonly used Wright-Fisher model; instead of assuming a predetermined population
size function, the population size is changing randomly throughout the life of each allele.
This of course rises the question how meaningful the resulting model is for biological
applications, and again the easiest way to address this question is by using simulations,
which I use to show that our results are meaningful even if the assumptions I am making
are violated.

Contrasting the approaches, in Chapter 2 I deal with the difficulties of inference by
focusing on inference and model choice between few very specific models, that are nec-
essarily explicitly parametrized and designed to encompass all important patterns of the
underlying history of the samples. With the ABC approach I am unable to exactly ex-
plain how the inference procedure exactly works, I do not know which details of the data
allow the distinction between the SDN and SSV models, but I can assess that, in some
situation, this distinction can be made with reasonable certainty. Chapter 3 is motivated
by the empirical observation of the diversity gradient that results from an expanding pop-
ulation. This gradient is exploited – first to test whether a range expansion happened,
then to infer its origin. Finally, in Chapter 4 I use a bottom-up approach by starting
with a very simple, generative model. While the explicit assumptions of this models are
almost always violated, I may hope that the model’s simplicity and focus on very basic
premises adds some robustness, but the extent of this again has to be assessed using
computer simulations. The biggest drawback of this approach is that it is much harder
to extend. Scenarios that show big differences to the simple model cannot be explored,
however, other extensions, for example the inclusion of variable population sizes, are rel-
atively easy to include. As such, I arrive at a model for which a very good understanding
of its easiest forms can be developed, but I again need to rely on simulations and power
analyses to test its robustness and its statistical properties in more complex cases.

All three chapters also include a real data application. In Chapters 2 and 3 I use
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human data to illustrate the utility of our approach, and the same is done in Chapter
4 with a data set from Arabidopsis. These applications are crucial: They illustrate that
the modeling assumptions I make are biological sensible; that sensible results can be
obtained using these particular models as the basis for inference. They also advance our
knowledge of the biology of these species, while the data sets I am using had previously
been used for similar analyses, my novel approaches give a new perspective. For the
gene investigated in Chapter 2, I identify allele ages and selection coefficients that are
largely concordant to previous analyses using similar methods. In Chapter 3, I identify a
Southern African origin for the expansion, which is concordant with some studies (Henn
et al., 2011), but disagrees with others (Ramachandran et al., 2005). Finally, for the
Arabidopsis application in Chapter 4, I confirm the previously identified pattern of an
east-to-west colonization (François et al., 2008; Horton et al., 2012; Nordborg et al.,
2005), but I also identify a discordant pattern in the Iberian peninsula. Thus, in all
chapters, I find some agreement with previous estimates, which increases our confidence
in the methods. But I am also able to make a novel contribution to the knowledge of the
evolutionary history of the two species we study.

Hopefully the biological importance increases in the future. In ongoing collaborations,
I am working on applying modifications of the selection on standing variation methodology
to the human genes CPT1A and IFNL4, which are thought to cause cold resistance and
Hepatitis C resistance, respectively. Using the range expansion tools I developed in Chap-
ters 3 and 4, I am investigating the colonization history of the Ecuadoran Andes by Mus

musculus. These projects should further prove the usefulness of the methods described
here, and provide further examples on how new and innovative inference procedures help
us solve biological problems in complex scenarios.
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