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Wavelets on Planar Tesselations

Martin Bertram1;2 Mark A. Duchaineau1 Bernd Hamann2 Kenneth I. Joy2

AbstractWe present a new technique for progres-

sive C0-continuous approximation and compression

of polygonal objects in images. Our technique uses

local parametrizations de�ned by meshes of con-

vex polygons in the plane. We generalize a lifted

biorthogonal wavelet transform to polygonal do-

mains to perform multiresolution analysis and com-

pression of image regions. The advantage of our

technique over conventional wavelet methods is that

the domain is an arbitrary tesselation rather than a

rectilinear grid. We expect that this technique has

many applications image compression, progressive

transmission, radiosity, virtual reality, and image

morphing.

Keywords: Image Compression, Multiresolu-
tion Methods, Subdivision Surfaces, Tesselations,
Wavelets

1 Introduction

Wavelet techniques [6, 20] are used for compression
of images, progressive transmission, morphing, and
solving complex mathematical problems like the in-
tegration of radiosity kernels [10]. The advantage
of the discrete wavelet transform over many other
techniques is linear computation time and sparse
representation of highly detailed functions on rec-
tilinear domains. In this paper we de�ne wavelets
on planar tesselations to allow for more exible do-
mains that can be deformed for morphing images
or video compression.

Wavelets de�ned on arbitrary topology (two-
manifolds with arbitrary genus) have been intro-
duced by Lounsbery [12, 13]. These construc-
tions are de�ned on subdivision surface schemes
[5, 8, 14] that re�ne an arbitrary polygonal or tri-
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angular mesh in a regular way and thus converge
rapidly to a limit surface. In a related paper [1]
we presented a highly e�cient approach general-
izing tensor-product B-spline wavelets to arbitrary
topology. We used a generalized bicubic wavelet
transform to represent and compress isosurfaces [2].
Constructions on spherical domains were provided
by Schr�oder/Sweldens [17], Nielson et al. [16], and
Bonneau [3]. Signal processing algorithms for mesh
hierarchies with completely irregular subdivision
were presented by Daubechies et al. [7] and Guskov
et al. [11].

It has been shown by Stam that subdivision sur-
faces often can be evaluated analytically at arbi-
trary parameter values [19]. Thus, they are an ideal
tool for constructing continuous basis functions on
irregular domains like tesselations. Most subdivi-
sion schemes that o�er tangent plane continuity,
however, assume that the parametric domain is de-
formed by the same subdivision rules. For evalua-
tion of the corresponding basis functions at global
parameter values, this deformation needs to be in-
verted, which cannot be done in a closed form in
general. For simpler subdivision schemes that gen-
erate C0-continuous surfaces like linear or bilinear
splines, it is straight-forward to construct global
closed-form parametrizations.

We use the generalized bilinear B-spline wavelets
constructed in [1] as basis functions on tesselations.
We present a complete signal processing algorithm
based on this wavelet transform and outline some
applications.

2 Parametrization

Before we describe our wavelet transform, we need
to de�ne a parametrization for bilinear subdivi-
sion generalized to tesselations composed of convex
polygonal regions. Such a tesselation is de�ned by
sets of vertices V , edges E, and convex polygons
(faces) F that completely cover an image domain

I, for example, the unit square I = [0; 1] � [0; 1],
without overlapping each other. It is assumed that
the valence of every vertex, i.e., the number of in-



Figure 1: Subdivision process.

cident edges, is at least three, except for boundary
vertices. The edges are line segments between two
vertices that encompass all convex combinations of
these, except for the vertices themselves. The faces
are the remaining open regions enclosed by vertices
and edges. It is assumed that every angle between
two incident edges enclosing a face is strictly less
than 180 degrees, i.e., all faces must be convex and
T-nodes are not allowed.

Consider an initial tesselation

T0 = fV0; E0; F0g: (2.1)

We now de�ne recursive re�nement rules for a se-
quence of tesselations T1; T2; : : : The set Vi+1 is
composed of Vi, the midpoints of all edges in Ei,
and the centroids of all faces in Fi. The set Ei+1 is
composed of four edges incident to every midpoint
of an edge in Ei connecting this midpoint to the
two adjacent vertices in Vi and the centroids of the
two adjacent Faces in Fi. The midpoints of bound-
ary edges have only three incident edges, since they
have only one adjacent face in Fi. The set Fi+1

contains the remaining open surface regions in the
image plane. We note that all polygons in Fi+1 are
convex quadrilaterals, provided that all polygons in
Fi are convex, see Figure 1.

We de�ne a local parametrization for the
quadrilaterals in F1. This parametrization can
be used for all subsequent levels of subdivision,
since the quadrilaterals are uniformly subdivided.
For every face fk 2 F1, de�ned by points
pk;00;pk;10;pk;11;pk;01 2 V1 in counterclockwise
order, we de�ne local coordinates u; v 2 [0; 1] so
that every point p in the closure of fk has the rep-
resentation

p = (1� u)(1� v)pk;00 + u(1� v)pk;10

+ (1� u)vpk;01 + uvpk;11:
(2.2)

It is more di�cult to compute the local coordi-
nates u and v for a point p = (x; y) in the global
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Figure 2: Computing local parameters u and v

for point p.

image domain I. We compute these local coordi-
nates in this way: �rst, the face index k needs to
be determined (k is not uniquely de�ned if p lies
on an edge or vertex); second, we compute u from
the z-component of

(p� p0) � (p1 � p0) = 0; where

p0 = (1� u)pk;00 + upk;10 and

p1 = (1� u)pk;01 + upk;11:

(2.3)

Equation (2.3) is a quadratic equation that has a
unique solution u 2 [0; 1], provided that the quadri-
lateral fk is convex. Once u is determined, v can
be computed from

p = (1� v)p0 + vp1: (2.4)

This process is illustrated in Figure 2. We note
that computing the local parameters u and v from
the global ones is expensive, due to the evaluation
of a square root for solving the quadratic equation.
We therefore avoid using global parameters in our
signal processing algorithm. For resampling of an
image represented by a �ne tesselation Tj , we sug-
gest to use graphics hardware to render the quadri-
laterals of T1, with texture representing all �ner
subdivision levels.

3 Wavelet Construction

In the previous section, we have de�ned a
parametrization of the image plane based on re-
cursive subdivision of a tesselation into quadrilat-
erals. The quadrilateral regions resulting from the
�rst subdivision are re�ned by recursively cutting
the parameter intervals for u and v into halfs. In
the following, we construct a lifted bilinear wavelet
transform based on this parametrization. A more
detailed description of the bilinear wavelet con-
struction, and also of bicubic and biquintic equiva-
lents, can be found in [1].
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Figure 3: Lifting scheme for one-dimensional de-
composition.

The images that we intend to represent in a
wavelet basis can be considered as continuous, bi-
linearly blended functions f(I), mapping the im-
age domain into a vector space containing all pos-
sible colors. The dimension of this vector space de-
pends on the application and the color model used,
e.g., one dimension for grey-scale images, three for
RGB images. When using the wavelet transform in
rendering applications, additional coordinates for
opacity and z-bu�ering can be added. In radiosity
applications, the domain I represents all surface
components in a scene and f describes the local
radiance emanating from them. Since our wavelet
transform is applied independently yet in the same
way to all coordinates, the number of dimensions
does not have an impact.

3.1 One-Dimensional Wavelets

Given a piecewise linear function de�ned by a list of
control points, the one-dimensional wavelet trans-
form eliminates every second point and thus pro-
vides a coarser representation of this function. The
eliminated points are replaced by accumulated dif-
ferences from which the function at its original res-
olution can be reconstructed without loss. The
coarsening can be interpreted as low-pass �lter-
ing and computing the accumulated di�erences is
equivalent to band-pass �ltering, since details of a
certain frequency band are separated. The entire
process is called decomposition and is recursively
applied to the coarsest approximation of the func-
tion until a base resolution is reached. Assuming
that the computation time for every decomposition
step is linear in the number of transformed control
points, the computation time of the entire trans-
form is O(n+ 1

2
n+ 1

4
n+ � � � ) = O(n).

Our wavelet transform is based on the lifting
scheme [21]. Lifting operations are used to design
wavelets with certain properties, like vanishing mo-
ments, and to subdivide the computation into small

Figure 4: Wavelet and B-spline scaling function.

local steps, called lifting operations. Our wavelet
transform is based on linear B-spline subdivision
[9]. Every decomposition step is computed by two
lifting operations, implemented as follows: we label
every second control point with e and the remaining
ones with v. The v points correspond to vertices
in the next coarser level, and the e points, located
on edges, are replaced by accumulated di�erences.
The computation of the new values is de�ned by
the two lifting operations

e0 = e � ve and

v0 = v + 1

2
e0v;

(3.1)

where the operator xy returns, for every point of
type y, the arithmetic average of all adjacent points
of type x. The decomposition is thus implemented
by subtracting from every e point the average of
its two v neighbors and then adding to every v

point one half of the average of its (modi�ed) e0

neighbors. This decomposition step is illustrated
in Figure 3. Decomposition is recursively applied
using the v0 points from the previous step as input.

The inverse of a decomposition step is called re-

construction, and is de�ned by the lifting opera-
tions

v = v0 � 1

2
e0v0 and

e = e0 + ve0 :
(3.2)

Reconstruction is recursively applied starting with
the coarsest representation (base level) and recur-
sively reproducing the �ner approximation levels.
Assuming zero e0 points on every level, the re-
construction formula becomes a subdivision scheme
that converges to a continuous curve when applied
ad in�nitum. For our construction, the subdivision
rules reproduce linear B-splines [9]. The basis func-
tions of the wavelet transform can be visualized by
pulling a control point and by recursively applying
the reconstruction formula. The e0 points corre-
spond to wavelets and v0 points to scaling functions
(linear B-splines for our construction), see Figure 4.
The wavelet has two vanishing moments, since it
has zero direct current and is symmetric [1].
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Figure 5: Lifting operations for two-dimensional
decomposition.

3.2 Wavelets on Tesselations

Given a hierarchy of tesselations, as de�ned in Sec-
tion 1, a wavelet transform can be de�ned based
on the mesh hierarchy. Initially, a function is rep-
resented by a �ne tesselation Tj and by a sample of
the image f(I) at every vertex in Vj . These sam-
ples are denoted as v, e, and f points, depending on
the types of their associated vertices in Vj that cor-
respond to vertices, edges and faces, respectively,
in the next coarser tesselation Tj�1. A decompo-
sition step transforms v points into control points
v0 on the next coarser level, j � 1, and the v and e

points become wavelet coe�cients representing the
missing detail. Using only the v0 points as samples
associated with the vertices in Vj�1, decomposition
is recursively applied to all levels until base level
j = 0 is reached.

The decomposition formula is de�ned by the
three lifting steps

f 0 = f + vf � 2ef ;

e0 = e � ve + 1

2
f 0e; and

v0 = v � 1
4
f 0v + e0v:

(3.3)

These operations are illustrated in Figure 5. It can
be shown that this decomposition formula is iden-
tical to a tensor-product construction of equation
(3.1) on a uniform rectilinear grid [1]. The scal-
ing functions for this transform are thus bilinear
B-splines in the regular regions of the tesselation.
Some basis functions obtained from this transform
are visualized in Figure 6.

The reconstruction formula is the inverse of ev-
ery lifting operation, applied in reverse order. It is
de�ned by

v = v0 + 1

4
f 0v0 � e0v0 ;

e = e0 + ve0 � 1

2
f 0e0 ; and

f = f 0 � vf 0 + 2ef 0:

(3.4)

To represent boundary edges properly and to
model discontinuities along certain edges within a

v

e

f

Figure 6: Basis functions near an extraordinary

vertex of valence three. Scaling function (top right),
e wavelet (bottom left), and f wavelet (bottom
right). Dark regions correspond to negative and
bright regions to positive function values.

tesselation (which requires a double set of coe�-
cients along these discontinuities), all vertices lo-
cated on such boundary edges are transformed by
the one-dimensional decomposition and reconstruc-
tion rules, instead. Corner vertices of the tessela-
tion are not modi�ed by any rule and thus contain
the same color information through all levels of res-
olution.

The computation time for one decomposition
step is linear in the number of transformed ver-
tices. Since only one quarter of these vertices is
transformed again on the next coarser level, the
computation time for the wavelet transform, start-
ing with n samples, is O(n+ 1

4
n+ 1

16
n+� � � ) = O(n).

Applications for our wavelet transform are outlined
in the next section.

4 Applications

To demonstrate that our wavelet transform works
correctly, we transformed the \Cygnus Loop" Hub-
ble telescope image, courtesy of NASA. The image
was resampled using a tesselation T0 composed of
20 vertices and 14 faces. The �nest tesselation T7
has 217921 vertices, which is about 3.5 times the
number of pixels of the original image (249� 251).
Figure 7 shows the resampled image, the tessela-



tion, our wavelet transform and reconstructions us-
ing 10, 1, and 0.1 percent of the wavelet coe�cients.
Since the coe�cients are vector-valued (RGB val-
ues), we use the Euclidean length for tresholding.
For progressive transmission the coe�cients can be
sorted by decreasing absolute values in expected
linear time by using a hash table. For lossless
compression, our wavelet transform can be imple-
mented in integer arithmetic [1, 4]. The integer-
valued coe�cients have low expected modulus and
can be compressed by arithmetic coding [15].

Some of the most important applications of our
wavelet transform are:

� Video compression. Video data can be com-
pressed in a straight-forward way by apply-
ing a trivariate tensor product wavelet trans-
form. Correlation in time, however, can
be much better exploited when applying a
wavelet transform de�ned on a grid that is
deformed or moves with the objects. Our
wavelet transform has therefore a great poten-
tial to improve compression rates for moving
images.

� Image Morphing. Morphing algorithms typi-
cally deform objects and compute the interme-
diate image regions by blending two images.
This blending operation can be improved by
performing it in the range of the wavelet trans-
form. This treatment would blend the individ-
ual frequency bands rather than pixel values
resulting in a much more realistic image. Our
wavelet transform can be applied to polygonal
regions that are deformed simultaneoulsy with
the blending process.

� Radiosity. Occlusion of objects causes radi-
ance functions to be discontinuous on smooth
surfaces. These discontinuities de�ne tesse-
lations on the surface regions that provide a
natural parametrization for the radiance func-
tion. Since our wavelets have two vanishing
moments (in local parameters, except at ex-
traordinary points), they form an ideal basis
for e�cient and stable integration of radiosity
kernels.

� Scattered Data Approximation. Starting with
a tesselation of selected scattered data points,
our e�cient wavelet transform can be used for
further regular re�nement and higher detailed
approximation. Our wavelet basis functions
are piecewise bilinear in local parameters and
can be computed analytically for �tting pur-
poses. To construct initial tesselations at cer-

tain levels of resolution, we can use hierarchi-
cal Voronoi diagrams by Schussman et al. [18].

5 Conclusions

We have presented a technique for multiresolution
analysis of functions de�ned on planar tesselations.
Our wavelet transform has a wide range of appli-
cations that still need to be explored. Future work
will be directed at constructing wavelets and subdi-
vision surfaces of higher degree of continuity, e.g.,
tangent-plane continuous representations, with lo-
cal parametrizations that can be evaluated in a
closed form.
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Figure 7: \Cygnus Loop" Hubble image. Top left: original, resampled image on tesselation T7 (217921
samples); top right: tesselation T0 and three levels of subdivision; middle left: our wavelet transform (the
coe�cients are scaled by 10 and a grey level is added); middle right: reconstruction from 10 percent of
coe�cients; bottom left: 1 percent of coe�cients; bottom right: 0.1 percent of coe�cients.




