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Abstract
Machine Learning and the Multiagent Alignment Problem

Reilly Raab

In the context of artificial intelligence (AI) or machine learning (ML), we speak of the

“alignment” of an AI system’s behavior with human goals, values, and ethical principles.

“The alignment problem” has proven challenging, and as the capabilities and applica-

tions of AI rapidly advance, the shortcomings of standard solutions are increasingly

consequential. This dissertation focuses on an often overlooked but critically important

complication to the alignment problem: Socially-consequential AI systems affect their

environment (involving, for example, human populations) and are therefore subject to

dynamical feedback driven by other agents. We address three central questions:

(1) As intelligent agents adapt to each other, does a system aligned using current

leading approaches remain aligned?

(2) Can we anticipate and utilize adaptive agents’ reactions to data-driven policy to

achieve aligned objectives dynamically?

(3) How can we guarantee alignment for AI systems that interact with complex, multi-

agent environments that are difficult to model or predict?

We will address these questions using the theoretical framework and experimental

tools of machine learning—integrating concepts from dynamical systems, evolutionary

game theory, constrained optimization, and control theory. We hope to demonstrate

that a dynamical systems approach to deployed AI is not only necessary but beneficial

to the goal of alignment.
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1 Introduction

1.1 The Rapid Development of AI

Over the last decade, machine learning (ML) techniques have enabled stunning technical

advances in artificial intelligence (AI). With sufficient scale, models developed with ML

have proven capable of accurately recreating (and therefore generating) rich, context-

dependent examples of structured data such as text, images, and video (Vaswani et al.,

2017; He et al., 2022; Bar-Tal et al., 2024). When trained in virtual environments, AI

models have demonstrated super-human play in Atari, Go, and Chess without prior

knowledge of game rules (Schrittwieser et al., 2020) and exhibited capabilities useful

for autonomous driving and robotic control (Li et al., 2019; Amini et al., 2022; Hwangbo

et al., 2019; Akkaya et al., 2019).

Such high-profile successes have driven significant, mutually reinforcing investments

in ML that continue to advance state-of-the-art performance while encouraging new

applications for AI. Novel neural network architectures, mature software ecosystems,

optimizing compilers, highly parallel hardware, and large, high-quality data sets com-

bine to lower the barriers to entry for further research and commercialization. In

addition, recent evidence of so-called “scaling laws” (Kaplan et al., 2020; Wei et al., 2022;

Hernandez et al., 2022; Chowdhery et al., 2023) have coincided with the construction

of large-scale “foundation models”, which are intended to provide Application Pro-

gramming Interfaces for use on myriad uses of AI on downstream tasks (Bommasani

et al., 2021).

At present, AI systems based on ML are used in a wide variety of socially-consequential

tasks. Machine learning is currently used to predict loan default rates, calculate

appropriate insurance premiums, anticipate the pricing of financial securities, automate
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surveillance, and produce recommendations that affect individual access to credit,

education, housing, employment, healthcare, and legal status (Hao, 2020; Metz and

Satariano, 2020; Newton, 2021; Hernandez, 2021).

1.2 The Alignment Problem

When deployed in socially consequential tasks, decisions made with AI systems can

have marked negative outcomes, not all of which are readily apparent to affected

individuals. Recent public deployments of large language models have captured media

attention due to their potential for nefarious use cases, such as the generation of

misinformation, nonconsensual pornography, phishing attacks, or malicious code. In

more benign situations, such models routinely “hallucinate” plausible but factually

incorrect assertions.

Behind the scenes, however, AI models regularly exhibit bias, discrimination, and

unauditable decisions, typically with little recourse or explanation. First, data is often

biased and generated by social systems with legacies of inequity. Second, common

models or the loss functions can induce inductive biases that encourage “shortcuts” or

“simplifications”, dismissing or ignoring minority groups. As a result, groups that are not

well represented by data, exhibit more diverse behaviors, or are unfairly summarized

by limited, unrepresentative features can be mistreated often without recourse.

This state of affairs has prompted action from world leaders, who have called for the

alignment and regulation of AI and ML. In October 2023, the Biden Administration

issued an executive order on the “Safe, Secure, and Trustworthy Development and

Use of Artificial Intelligence” (Joseph R. Biden Jr., 2023). On the first day of 2024, the

Vatican called for international efforts to regulate the use and development of AI to

limit existing problems driving inequality and injustice, instead promoting efforts
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focused on peace (Pope Francis, 2023).

Unfortunately, the policies generated by machine learning can be challenging to reg-

ulate and are not controllable to the same degree we expect from typical software

programs. Beyond nascent research tools in “Explainable AI” (XAI) that target specific

architectures, we cannot reliably understand, explain, interpret, or intercede on the

black-box models that underpin AI decision-making. This gap between the desired

control of AI outputs and what is currently possible is variously recognized as “the

alignment problem”, “the control problem”, or “the safety problem”.

1.3 Standard Interventions Fall Short

The standard approach to mitigating the misalignment of AI outputs is to attempt to

express human goals as mathematical objectives that must be accounted for during

model training (Christian, 2020). Sadly, it is generally difficult to craft optimization

objectives that do this. First, humans regularly argue about ethical imperatives, and

attempts to distill common objectives into mathematical objectives can be fraught and

self-contradictory (Corbett-Davies and Goel, 2018). Second, a common observation in

the training of AI models is that effective learning can benefit from “reward-shaping”—

that is, an intentional misdirection of the model’s objective away from our ultimate

goals.

Even if we could precisely represent our current goals and objectives to the model,

and even if such rewards were tractably learnable by AI methods, the approach of

seeking alignment through singular training objectives faces an important complication

in dynamical environments: In realistic settings, AI systems interact with complex,

adaptive, multiagent systems—people, society, and other AI systems. Other agents

typically have their own incentives, engaging in strategic actions that can, cumulatively,
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shift the context and environment of the target system away from its training data. This

feedback from other agents risks amplifying and exacerbating errors and misaligned

behaviors.

When we account for dynamics and the multitude of human incentives that shape

the use of AI systems, the realistic, immediate risk posed by AI is not a technological

coup engineered by superintelligent agents. Instead, it is the amplification of latent

incentives, distorted by machine interpretation, which threaten to destabilize human

norms, institutions, and societal bonds. (Crawford and Calo, 2016; Chaney et al., 2018;

Fuster et al., 2018; Ensign et al., 2018).

AI does not need to be integrated into all-encompassing surveillance systems, mili-

tary drones, or global psyops campaigns to merit concern: AI provides a path to the

realization of homo economicus—the hyper-rational, ethically unencumbered profit-

maximizer.

1.4 Contributions of this Dissertation

This dissertation motivates the incorporation of multiagent dynamics into our under-

standing of the alignment problem and discusses technical approaches for making the

resulting problem tractable.

Chapter 2 provides a brief background that reviews essential concepts and an overview

of the field as represented by the research literature. Chapters 3 to 5 address each of

the questions outlined in the abstract in turn. Finally, Chapter 6 draws conclusions

from this cumulative body of work and its potential contributions toward informing

our understanding of the alignment problem.
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2 Preliminaries

2.1 Empirical, Black-Box Function Optimization

At its heart, machine learning (ML) is a set of techniques for finding a function that

approximately minimizes a scalar objective. The function is a parametric function,

denoted hθ, which is described by a collection of numbers or vector of parameters θ

in the same way that a hand saw may be described by a set of angles and dimensions

that are expected to vary for different use cases (e.g., cutting steel rods, dry wood,

tree branches, etc.). The objective, a functional of hθ that quantifies how bad the

current choice of θ is, is expressed using a “loss function” L , which maps test cases z

to a measure of badness (e.g., how long it takes to saw through a given object). The

canonical goal is to minimize L in expectation over samples z.

minimize
θ

E
Z

[
L (hθ, Z)

]
. (2.1)

In general, hθ can be any function that maps a set of inputs (e.g., observations, context)

to a set of outputs (e.g., predictions, actions), and is sometimes called a policy. Mean-

while, the loss function L can be any measure of badness (such as the disagreement

between the output of hθ and desired values for a given example z) that ultimately

depends on θ in a smooth (differentiable) manner.

There is a conceptual overlap between machine learning and evolution that we can

exploit to develop intuitions for ML. Indeed, this correspondence can be made techni-

cally precise in a way that unifies their mathematics Appendix A. Nonetheless, there

are also important practical differences that we aim to highlight in setting the stage

for the exposition of this dissertation.
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Table 2.1: Agent-specific variables forming a Markov chain.

Variable Meaning Domain Realizations

G group G = {1, 2, ..., n} g, h, i, j
Y qualification {0, 1} i.e., {unqualified, qualified} y
X feature (−∞,∞) x

Ŷ classification {0, 1} i.e., {reject, accept} ŷ

qy Probability density function of X given Y = y

2.1.1 An Empirical Approximation

In Prob. (2.1), the “E” denotes an expectation value, indicating an average over random

samples z. As we will soon see, the distribution D of examples z is critical to the

policies trained by machine learning. In order to treat this distribution explicitly in the

objective, we rewrite the canonical objective as

minimize
θ

L(θ,D), (2.2)

where D represents a probability distribution for samples of z and

L(θ,D) = E
Z

[
L (hθ, Z)

]
:= lim

n→∞

1

n

n∑

i=1

L (hθ, zi), zi ∼ D. (2.3)

In this form, it is clear that the objective may be approximated empirically, using a

finite number N of randomly drawn samples:

L(θ,D) ≈ 1

N

N∑

i=1

L (hθ, zi), zi ∼ D. (2.4)

Indeed, this is a key insight of standard machine learning techniques, where we use a

large “dataset” of examples {z1, z2, ..., zN} on which L can be evaluated for any hθ.
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2.1.2 The Smooth Black-Box

To find a function that minimizes the desired objective, it is necessary to consider

many functions. Formally, we desire a large, expressive hypothesis class H of possible

functions hθ ∈ H. To locate functions within a large hypothesis class requires many de-

grees of freedom, meaning that the vector space to which θ belongs is high-dimensional.

In much the same way that life on Earth has settled on a common machinery built on

the genetic base-pair sequences of nucleic acids to express a bewildering diversity of

specialized organisms, applications of machine learning often recycle a set of “archi-

tectures” involving “artificial neural networks” to express large diversity of functions

hθ.

Like the mapping from DNA to organism traits, the mapping from parameters θ to hθ is

a “black-box”: The correspondence between parameter values and the behavior of the

function is difficult to interpret, explain, or intervene on through targeted modifications

and engineering. Unlike the black-box used by evolution, however, the type of black-

box useful for machine learning is smooth. By this, we mean that the values of θ are

continuous (unlike discrete sequences of DNA codes), and we rely on L (thus L) to

vary smoothly (differentiably) with changes in θ, such that small changes to θ make

small changes to hθ. Thankfully, many familiar problems in engineering, optimization,

and everyday experiences map to settings where ML applies.

As a familiar example of a problem involving a “smooth black-box”, consider the need to

manipulate a radio antenna in order to receive multiple television stations or channels.

In this analogy, the antenna’s position is described by a handful of angles comprising

a parameter vector θ. These angles determine the directional gain of the antenna,

represented by a function hθ, that maps spacial directions and frequencies to an overall
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level of amplification. The mapping from θ to hθ is potentially complicated, ultimately

governed by electrodynamics, but it is smooth. To complete the analogy, hθ determines

the ability of the antenna to resolve a given channel z. We may, therefore, quantify the

antenna’s loss of signal on channel z using a “loss function” L (hθ, z). ML may be used

to find appropriate angles θ by repeatedly flicking through desired channels z, making

small adjustments to θ that improve the reception in a process of iterative refinement.

2.1.3 Iterative Refinement

In the same way that you might adjust a radio antenna by making minor adjustments

that improve the reception while repeatedly flicking between test channels, ML pre-

scribes a procedure for updating θ in a series of small updates. These updates are,

in general, solutions to local approximations of the original optimization problem (

Prob. (2.2)):

θt+1 = argmin
θ

L̂t(θ,D) +
1

η
dt(θ, θt). (2.5)

In this equation, L̂t represents an approximation of L that is local to θt (i.e., has

limited error for values of θ close to θt), and dt is a metric that implies a non-negative

“distance” between successive iterates of θ, thus penalizing large updates. In Eq. (2.5)

and throughout our discussion, we adopt discrete-time semantics, where time takes

on discrete values t ∈ {1, 2, ...}, and denote the value of quantities such as θ at time t

with a superscript, as in θt.

There are many possible choices one can make regarding how to render the approxi-

mation L̂t or the metric dt, but there is a canonical choice that uses a first-order Taylor
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approximation and the Euclidean metric, respectively:

L̂(θ,D) = L(θt,D) +
〈
θ − θt,∇θL(θ,D)

∣∣∣
θ=θt

〉
. (2.6)

d(θ, θt) =
1

2
∥θ − θt∥22 =

1

2
(θ − θt)2. (2.7)

These choices render a closed-form solution to Eq. (2.5) known as gradient descent:

θt+1 = θt − η∇θL(θ,D)
∣∣∣
θ=θt

(2.8)

When we combine these choices with the empirical approximation of Eq. (2.4), we get

stochastic gradient descent, the workhorse algorithm of machine learning, which may be

practically implemented on computers using an algorithm known as backpropagation.

θt+1 = θt − η∇θ
1

N

N∑

i=1

L (hθ, zi)
∣∣∣
θ=θt

, zi ∼ D. (2.9)

In the above equation, η is known as a “learning rate” and N is known as the “batch

size” used for each update.

With the development of expressive, smooth, black-box ML architectures (such as neural

networks) and the backpropagation algorithm for efficiently calculating gradients (as

used in Eq. (2.9)) machine learning has found widespread use for optimization tasks

that rely on extrapolating from an existing dataset {z1, z2, ...} on which L can be

evaluated for any hθ.

2.1.4 Example: Binary Classification

A classic example of how ML techniques can be applied to practical tasks is provided by

binary classification. Imagine using ML to learn a function hθ that maps a vector of an
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individual’s features x (such as age, income, education, net assets, etc.), to a continuous

value hθ(x) ∈ (−∞,∞) from which we derive a binary decision ŷθ(x) ∈ {−1, 1}

(such as whether the person is qualified for a loan).

ŷθ(x) :=





−1 hθ(x) ≤ 0

1 otherwise
. (2.10)

Given a set of values z = (x, y) consisting of pairs of feature vectors and known “ground

truth” or “labels” y ∈ {−1, 1} (e.g., a bank’s records of previous loan applications and

whether the applicant was truly qualified), we would like to use ML to train a policy

that will extrapolate from these examples by minimizing the “zero-one” loss, which

penalizes disagreement between ŷθ(x) and y:

L0/1(hθ, z) =





1 ŷθ(x) ̸= y

0 otherwise
=





1 −yhθ(x) > 0

0 otherwise
. (2.11)

A standard result in ML is that L0/1 can be minimized indirectly if we instead minimize

a “margin-based loss function” such as square-loss

L (hθ, z) = −yhθ(x) +
1

2
h2
θ(x), (2.12)

or the variously-named (log, logistic, cross-entropy, etc.) information-theoretic loss,

L (hθ, z) =





− log
[
pθ(x)

]
y = 1

− log
[
1− pθ(x)

]
y = −1

, pθ(x) :=
1

1 + e−hθ(x)

= −yhθ(x) + 2 log
[
ehθ(x)/2 + e−hθ(x)/2

]
.

(2.13)
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By minimizing the error rate of hθ, and therefore ŷθ(x), over our historical data set, we

can use the learned policy on new examples in order to automate, assist, or otherwise

accelerate loan the approval for the bank... or so the thinking goes...

2.2 Present Normative Interventions

The pipeline for machine learning is built around an optimization problem for a given

distribution of examples. Adopting this mindset, what do you do when a policy you’ve

optimized using machine learning ends up being biased against a gender, a disability

status, or a racial category?

Such issues are not hypothetical: This is exactly what happened in the Florida criminal

system (Angwin et al., 2020; Metz and Satariano, 2020), with Google Images (Hern,

2018; Grant and Hill, 2023; Grant, 2024), in Amazon’s hiring (Dastin, 2018), and in

myriad other examples that negatively affect some groups of people more than others.

More consequentially, what do you do when your ML policy breaks the law by resulting

in “disparate impact” when conditioned on race, sex, gender, religion, etc.? First, you

retract the deployed model (quietly or with a public apology, depending on the flavor

of hot water you’re in). Next, you research how the issue occurred and task your

engineers to fix the issue as quickly as possible. Where possible, you fund research that

might help you avoid the same problem in the future—or at least certify that you’re

using “best-practices”.

Research will tell you that there are several mechanisms by which such problems can

occur in the first place. That is, there are many ways that ML can generate biased and

discriminatory outcomes; The data can be biased; The hypothesis class can be biased;

The objective can be biased.
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Unfortunately, the black-box architectures that make ML so widely applicable also

render the resulting model difficult to interpret, explain, or correct. Without effective

tools for interpreting and interceding on AI decision-making, what can you do?

Where data augmentation and output filtering do not suffice, leading approaches to the

alignment problem intervene on the objective itself. That is, the proposed solution is to

constrain the policy to respect some (potentially implicit) threshold of undesirable or

“alignment-violating” behavior quantified by a function V :

minimize
θ

L(θ,D)

subject to V(θ,D) ≤ ε.

(2.14)

The “slack variable” ε is introduced in this equation to allows some parametric violation

of the fairness condition while allowing a straight-forward unification with “regularized”

approaches to fairness (See Appendix B).

What should V look like?

2.2.1 Group Fairness

The need to constrain ML models to respect quantitative boundaries aligned with

intuitive notions of fairness has spawned the field of “algorithmic fairness”. The basic

idea has been to formalize different fairness measures, often in terms of statistical

(in)consistencies across groups (Dwork et al., 2012; Zemel et al., 2013; Hardt et al.,

2016b; Zafar et al., 2017a; Chouldechova, 2017; Feldman et al., 2015; Kleinberg et al.,

2016) or between similar individuals (Dwork et al., 2012; Zemel et al., 2013), so-called

“preference guarantees” (Zafar et al., 2017b; Ustun et al., 2019a; Kusner et al., 2017), or

causal considerations Kusner et al. (2017); Kasy and Abebe (2021).
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While such measures are not always mutually compatible (Corbett-Davies and Goel,

2018), such definitions have become standard in the research literature and are fre-

quently treated as proxies de jure, representing baselines that may or may not be

used in future legal defense of suspect ML policies. We briefly outline a few fairness

measures that we will repeatedly reference throughout this dissertation.

The most salient aspect of group fairness is the use of pre-defined, fixed “groups” to

which people belong. While the standard boundaries between groups in the research

literature are fixed by demographic race, sex, country of origin, etc.., this dissertation

acknowledges efforts to define meaningful groups in terms of social network clusters

or shared adaptive behaviors. We will attempt to avoid considering groups purely in

terms of narrow demographic categories.

Some fairness definitions classically consider only two groups (even going so far as

to pre-specify them as “advantaged” and “disadvantaged”). To remain as agnostic to

setting as possible, we will consider countably many groups g ∈ G = {1, 2, ..., n},

though we will frequently run experiments with only two groups, in part because

these are the easiest to visualize in two dimensions and thus interpret. Likewise,

many fairness definitions are also specialized to the binary classification setting, which

involves using ML to make a binary prediction y ∈ {−1, 1} for an individual belonging

to group g with features x. Parts of our subsequent exposition will adopt this setting

for simplicity, but many results generalize to regression tasks, etc.

Unless otherwise stated, we will adopt a convention that defines the violation of fairness,

also called “disparity”, as the group-wise variance of a some (possibly vector-valued)
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Table 2.2: Random Variables for Binary Classification

Variable Meaning Domain Realizations

G group G = {1, 2, ..., n} g
Y qualification {−1, 1} i.e., {unqualified, qualified} y
X feature vector Rd x

quantity ξ. That is, we define

V(θ,D) = Var
g

[
ξg(θ,D)

]
:=

1

n

n∑

g=1

∥∥ξg(θ,D)− ξ(θ,D)
∥∥2

=

(
1

n

n∑

g=1

∥∥ξg(θ,D)
∥∥2
)
−
(∥∥ξ(θ,D)

∥∥2
)
,

(2.15)

where ξ measures different quantities in different contexts, and we introduce the

bar-notation ( ·̄ ) to denote an average, as in

ξ̄(θ,D) :=
1

n

n∑

g=1

ξg(θ,D). (2.16)

As another convention, throughout this dissertation, we use the capitalized letters

Z = (X, Y, Ŷ , G) to represent the properties of a randomly drawn sample Z ∼ D

Loss Parity is perhaps the simplest fairness definition when one assumes that the

loss incurred by a policy is incentive-compatible, i.e., equally undesirable to affected

individuals as to the policy-designer. In this case, we treat ξg and group-wise loss as

synonymous:

ξg(θ,D) := E
Z∼D

[
L (hθ, Z) | G=g

]
. (2.17)

Demographic Parity, also known as “statistical parity” (Dwork et al., 2012; Zemel

et al., 2013; Feldman et al., 2015), is perhaps the most frequently considered fairness in-

tervention. For binary classification tasks, it prescribes an equal positive predictive rate
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(e.g. loan-approval rate) across groups. We can measure the violation of demographic

parity in terms of Eq. (2.15) by specifying

ξg(θ,D) := Pr
X,G∼D

(
ŷθ(X) = 1

∣∣ G = g
)
. (2.18)

Equal Opportunity is much like demographic parity but requires equal positive

classification rates for qualified (i.e., y=1) individuals across groups.

ξg(θ,D) := Pr
X,Y,G∼D

(
ŷθ(X) = 1

∣∣ Y = 1, G = g
)
. (2.19)

Note that equal opportunity, which requires access to ground truth labels Y , may not

always be measurable in practice.

Equalized Odds, considered by Hardt et al. (2016b); Zafar et al. (2017a); Chouldechova

(2017), like equal opportunity, requires that a classifier has equally accurate classifi-

cation rates across groups for qualified individuals, but also demands the same for

unqualified individuals. Note, in this case, that we treat ξg as a vector quantity indexed

by y ∈ {−1, 1}.

ξg,y(θ,D) := Pr
X,Y,G∼D

(
ŷθ(X) = 1

∣∣ Y = y,G = g
)
. (2.20)

2.2.2 Ethics Inferred from Examples

Rather than attempting to mathematically define fairness, a recent line of work has

proposed using machine learning to infer whether individual policy outputs are aligned,

using labeled examples. That is, reconsidering standard ML setting, if we are given

a dataset of examples z̃ = (x̃, ỹ) where x̃ represents a policy behavior (i.e., an input-
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output pair (x, y)) and ỹ labels whether this behavior demonstrates alignment, we can

train a policy vϕ, with parameters ϕ, to accurately recognize whether individual policy

outputs are “aligned”. Using a standard classification loss function L , this idea may be

represented as

V(θ,D) = E
z∼D

[vϕ⋆(hθ, z)]. (2.21)

ϕ⋆ = argmin
ϕ

E
z̃∼D̃

[L (vϕ, z̃)]. (2.22)

This approach is currently a leading proposal for regulating the outputs of so-called

“large language models” (LLMs), where the range of undesirable behaviors is far broader

than can be accounted for by simple statistics as in the case of binary classification

tasks. In particular, recent work has explored using “weak” LLMs to evaluate and flag

problematic outputs of “larger” LLMs in order to automate this process and accelerate

the work of humans who label examples.

2.2.3 The Tacit Assumption

Whether derived from formal group-fairness definitions or learned from labeled ex-

amples of (un)ethical behavior, the function V is frequently used as in Prob. (2.14) to

regulate a policy hθ with the tacit assumption that D will remain fixed. We term this

class of interventions “present normative” insofar as they prescribe a norm or standard

that is specific to a present context or environment, represented by D.

This tacit assumption is not unique to issues of fairness but is baked into the standard

optimization problem at the heart of machine learning. In reality, especially when ML

is deployed for consequential decision-making, D is liable to change.
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2.3 Past Performance is no Guarantee of Future Results

The standard machine learning paradigm assumes that a single distribution D rep-

resents both the set of training examples and the set of examples that are actually

encountered during deployment. In practice, the distribution of examples we use to

train a policy may differ from the distribution of examples when we use the policy.

Adopting standard nomenclature, throughout this paper, we will make use of the

symbol S to represent the “source” distribution on which an ML policy is trained. We

will use the symbol T to represent the “target” distribution on which the ML policy is

actually deployed.

In general, the source and target distribution are distinct: S ̸= T . In the research

literature, this phenomenon is known as distribution shift, and strategies to reduce

these problems are known as transfer learning or domain adaptation: Such literature

often focuses on the fact that the source-trained policy may be suboptimal on the target

distribution. i.e.,

θ⋆ = argmin
θ

L(θ,S) ≠⇒ θ⋆ = argmin
θ

L(θ, T ). (2.23)

This behavior can have ramifications for misaligned behavior in dynamical environ-

ments, as explored in Section 3.4. For present normative interventions, however, it

is also worth highlighting that the source-trained policy may violate the alignment

constraint:

θ⋆ = argmin
θ

L(θ,S)

subject to V(θ,S) ≤ ε.

≠⇒ V(θ⋆, T ) ≤ ε. (2.24)

There are many causes of distribution shift in practice. The most commonly considered

is the error resulting from the empirical approximation of (Eq. (2.4)) used for training.
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That is, even when S = T , the true source distribution used for training is a finite

approximation of the intended distribution. Another source of distribution shift is

caused by exogenous changes or events that occur in the environment: For example,

if we were to train an ML model to predict individuals’ creditworthiness from a set

of features represented in loan applications, overall changes in the distribution of

applicants might be affected by interest rates, GDP growth, employment trends, inter-

state immigration, etc.. As a result, applications that would likely be approved in one

set of circumstances (e.g., on which our model was trained) may need to be denied in

different settings to limit credit risk while respecting alignment constraints, but our

model could be oblivious to this shift.

In this dissertation, we are primarily concerned with distribution shift caused by the

policy itself.

2.3.1 Feedback and Strategic Response

This dissertation considers problems of alignment when a machine learning policy

participates in a multiagent system that adapts to its actions, thereby shifting the

distribution of examples it faces interactively. Rather than occupying a theoretical

niche, such a situation is fundamental to the real-world issues we face as a society with

the advent of AI.

Let us consider a simple example of how agents can react to policy, thereby shifting the

environment. Imagine a population of strategic individuals who submit applications for

schools, jobs, or loans to be evaluated by an ML model: Such individuals have potent

incentives to embellish certain parts of their applications while underplaying others.

The may try to establish (or avoid) purchasing habits that correlate with positive or

negative classification. The may also try to establish features that serve primarily to
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enhance their application, such as extracurricular activities, certifications, or awards.

Finally, they might also decide to abstain from future application altogether. Each

of these courses of action can shift the distribution of examples assumed by the ML

model, violating any alignment constraints (Hardt et al., 2016a; Ustun et al., 2019b;

Zhang et al., 2020).

From this motivating example, it is clear that the use of AI for consequential decision-

making subjects it to the complex system of dynamics and feedback that characterize

human society. At stake are the risks of runaway dynamics (e.g., “the rich get richer”)

that threaten the stability of societal institutions and demography, the dynamics of

power, class divisions, and meritocratic norms. It is perhaps less clear what those

consequences may be in different situations, nor what can be done about them.

In some ways, the problem is not new to AI: human intelligence and agency faces the

same considerations. Nonetheless, the formulation of intelligent behavior as described

in the framework of machine learning, when married to perspectives of control theory,

dynamical systems, and game theory, provides us with powerful tools to systematically

address the dynamical, multiagent alignment problem. This dissertation thus builds on

a nascent body of work that addresses the alignment of AI while accounting for such

dynamics.

2.4 Related Work

This dissertation contributes to a growing body of literature that addresses the align-

ment problem in contexts with dynamical feedback. In this section, we outline prior and

contemporary work that has considered the intersection of fairness and distribution

shift, dynamics caused by machine learning policies, or the need for online policies

that adapt to unanticipated dynamics.
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Language in this section has been adapted from previously published work (Raab and

Liu, 2021; Chen et al., 2022; Yin et al., 2023; Raab et al., 2024).

2.4.1 Fairness Subject to Distribution Shift

Prior literature has explored issues of algorithmic fairness subject to distribution shift.

In particular, one line of work has considered how distribution shift (without also

considering reactionary policy updates) can degrade or counter-act typical present

normative interventions (Liu et al., 2018; Hu et al., 2019; Hu and Zhang, 2022).

Complementary to the issue of how distribution shift can affect fairness guarantees,

several recent studies have considered specific examples of fairness transferability

subject to distribution shift (Schumann et al., 2019; Coston et al., 2019; Singh et al.,

2021; Rezaei et al., 2021; Kang et al., 2022). That is, the task at hand is to prove that an

“aligned” ML model, trained distribution S will be aligned on another distribution T ,

within some bound.

Within this problem domain, Schumann et al. (2019) examine equality of opportunity and

equalized odds as definitions of group fairness subject to distribution shifts quantified

by an H-divergence function. Coston et al. (2019) consider demographic parity subject

to a covariate shift assumption while group identification remains unavailable to the

classifier. Singh et al. (2021) focus on common group fairness definitions for binary

classifiers subject to a class of distribution shift that generalizes covariate shift and

label shift by preserving some conditional probability between variables; and Rezaei

et al. (2021) similarly consider common binary classification fairness definitions such

as equalized odds subject to covariate shift.

Related to the task of certifying fairness with anticipated distribution shift is the setting

in which a target distribution is known or can be sampled from. As an example, a model
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might assume covariate shift and the availability of some unlabeled target data (Coston

et al., 2019; Singh et al., 2021; Rezaei et al., 2021). In this task, Singh et al. (2021) focus

on learning stable models that will preserve prediction accuracy and fairness, utilizing

a causal graph to describe anticipated distribution shifts. Rezaei et al. (2021) takes a

robust optimization approach, and Coston et al. (2019) develops prevalence-constrained

and target-fair method for building a model robust to covariate shift.

2.4.2 Modelled Dynamics of Fairness Interventions

As highlighted by D’Amour et al. (2020), analysis of fairness subject to distribution

shift cannot ignore mutual feedback and sustained interaction and hope to capture

essential dynamics. In order to model a dynamical, multiagent system in sustained

interaction with an ML policy, we require good models. As in any domain, models

must always compromise between realism, tractability, generality, and usefulness.

Efforts to model population responses to algorithmic policy and the autonomous

dynamical systems that result from myopically updating policies have been performed

by Coate and Loury (1993); D’Amour et al. (2020); Zhang et al. (2020); Heidari et al.

(2019); Wen et al. (2019); Liu et al. (2020); Hu and Chen (2018); Mouzannar et al. (2019);

Williams and Kolter (2019); Perdomo et al. (2020); Hu and Zhang (2022); Zhang et al.

(2019); Dean et al. (2022); Hashimoto et al. (2018). Mouzannar et al. (2019) address

stateful dynamical transitions of the type that we consider in Raab and Liu (2021) and

address in Sections 3.5, 4.2.3, and 5.4. Perdomo et al. (2020); Hu and Zhang (2022)

consider stateless dynamical transitions of the type we consider in Raab et al. (2024)

and address in Sections 3.4 and 4.1. We organize different classes of models based on

their relationship to state in Section 3.2.

Most work in this domain has highlighted the failure modes or suitability of present
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normative interventions (Section 2.2). Hashimoto et al. (2018) also considers distri-

butionally robust policies and Morik et al. (2020) identify interventions for myopic

optimization by adopting a feedback control mechanism specific to raking on online

matching platforms.

2.4.3 Safe Reinforcement and Online Learning

Beyond case-by-case treatments of specific dynamical models, more recent work has

considered ML models that adapt to unknown dynamical environments. In Chapter 5,

we argue that such settings fundamentally require an online approach, which includes

some reinforcement learning (RL) methods. The key difficulty is in attempting to give

guarantees regarding alignment or constraints.

In model-based approaches, the algorithm learns an explicit dynamical model of the

environment (Efroni et al., 2020; Singh et al., 2020; Brantley et al., 2020; Zheng and

Ratliff, 2020; Kalagarla et al., 2021; Liu et al., 2021; Ding et al., 2021a). In model-

free approaches, the algorithm learns a policy that is implicitly refined according to

the dynamics, but the dynamical transitions are not explicitly modelled. In practice,

model-free algorithms often require the use of a simulator that allows exploration over

arbitrary state-action pairs (Xu et al., 2021; Ding et al., 2020; Bai et al., 2022), which is

unrealistic for real-world unknown dynamics.

In general, it is difficult to establish safety guarantees for online methods without

severe assumptions on the dynamics or practicality of the method. In Yin et al. (2023),

we adapt online learning methods to provide probabilistic bounds on cumulative regret

and disparity.
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3 Alignment is not Static
As intelligent agents adapt to each other, does a system aligned by present normative

intervention remain aligned?

As alluded to in Sections 1.3 and 2.3.1, this question is of great importance in deter-

mining whether current approaches to AI alignment are sufficient for mitigating the

societal risks.

In general, the answer to the stated question is “it depends”: It depends on the incentives

of other agents in the system, the dynamics of the environment, and how much agents’

actions affect each other. This being said, there are clear examples of multiagent

dynamics that we can model for in which the answer is “no”. Given this negative

answer, we will develop a general framework we can use to quantify how bad the

misalignment can be.

We will address approaches to alignment in dynamical contexts in Chapter 4. In this

chapter, we discuss different models for adaptive dynamics and their ramifications for

our motivating question.

Biased policy
Systemic discrimination
Social divisions

Distributional disparities
Structural inequality

Biased data

Figure 3.1: The mutual interactions of ML policy with its environment can lead to
pernicious feedback loops.
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3.1 Mechanisms for Distribution Shift

There are many ways that distributions can change, and modelling how populations

of humans react to change is a difficult task. A common approach to the challenge of

summarizing distribution shift in a way that is theoretically tractable is to imagine

that the distribution of examples D may be summarized by a few key variables, and to

propose feasible mechanisms by which these variables can change.

We now introduce a few different (but non-exhaustive) ways of summarizing a distribu-

tion D of individuals, belonging to different groups g ∈ {1, 2, ..., n}, who are subject

to binary predictions by an ML classifier. For intuition, we will again consider an

example setting in which ML is used for a binary classification task, where Z denotes

a randomly selected applicant, X represents his or her vector of features, Y represents

his or her true (unknown) label or “qualification”, and G represents his or her group.

For a binary classification setting (Section 2.1.4), the distribution D corresponds to

a joint probability distribution over the joint variables Z = X, Y,G. We will allow

ourselves to use the notation

D ≡ Pr(X, Y,G). (3.1)

There are many ways that this probability distribution can be decomposed.
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3.1.1 Label Shift

One way to decompose the distribution in Eq. (3.1) is as

Pr(X=x, Y=y,G=g) = Pr(G=g)
︸ ︷︷ ︸

Assume constant

Pr(Y=y | G=g)
︸ ︷︷ ︸

Model

Pr{X=x | Y=y,G=g}
︸ ︷︷ ︸

Assume constant

.

(3.2)

As indicated by the braces under the factors that comprise the expansion on the right

hand side of Eq. (3.2), label shift assumes that the type of distribution shift encountered

in a given problem can be well-approximated by a shifting conditional probability

(density) function Pr(Y=y | G=g), which can be determined according to some model.

Pr(G=g) and Pr(X=x | Y=y,G=g), meanwhile, are assumed to be static.

As an example of what the label shift assumption entails, imagine that our binary

classification task was to predict whether an individual has contracted SARS-CoV-2

(Y=1) using blood measurements X . Suppose we have robust models for how specific

protein densities, blood cell counts, etc., statistically depend on Y . If only population

infections rates were to change over time, we would expect, absent virus mutation, the

statistical effect that Y has on X for a randomly selected individual (i.e., Pr(X | Y,G)

to remain fixed. In such a situation, the overall, joint distribution of X , Y , and G would

be well-modelled by the label-shift assumption.

Meaningful values for possible groups G in this setting might include types of occupa-

tion, such as health-care workers, in-person staff, and remote workers: These groups

would likely have different rates of infection. Geographical groupings or distinctions

based on risks to Covid infection, such as whether someone is immunocompromised,

are also appropriate as motivating examples.
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We will introduce a detailed example of Eq. (3.2) in Section 3.5.1.

3.1.2 Covariate Shift

Another way to decompose the distribution in Eq. (3.1) is as

Pr(X=x, Y=y,G=g) = Pr(G=g)
︸ ︷︷ ︸

Assume constant

Pr(X=x | G=g)
︸ ︷︷ ︸

Model

Pr{Y=Y | X=x,G=g}
︸ ︷︷ ︸

Assume constant

.

(3.3)

As in label shift, only a single factor is assumed to be wholly responsible for the

type of distribution shift assumed by covariate shift: In this case, the conditional

probability (density) functionPr(X=y | G=g) is modelled as a variable whilePr(G=g)

and Pr(Y=x | X=y,G=g) are assumed to be static.

Consider again the example of classifying SARS-CoV-2 infection Y using data X ob-

tained from blood. Now imagine that measurement values X have the same predictive

relationship to SARS-CoV-2 infection Y (i.e. (Pr(Y | X) remains constant), but policy

changes have shifted such that you no longer test asymptomatic individuals, which

by and large occupy a certain segment of the feature space (possible X values). The

distribution Pr(X) has now shifted in isolation, as assumed by the covariate shift

assumption.

3.1.3 Participation Rates

A third way to decompose the distribution in Eq. (3.1) is as

Pr(X=x, Y=y,G=g) = Pr(G=g)
︸ ︷︷ ︸

Model

Pr(Y=y,X=x | G=g)
︸ ︷︷ ︸

Assume constant

. (3.4)
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In this case, the conditional probability (density) function Pr(Y=y,X=y | G=g) is

assumed to remain constant while Pr(G=g) is updated according to model.

An example of shifting participation rates is easy to imagine when users may elect

whether to “participate” in the ML classification we wish to consider. For example,

supposed we grouped users by geographic region and occupation— variables that can

strongly correlate with political affiliation or attitudes towards public health mandates.

If certain groups of users were to suddenly boycott Covid-19 testing, independent of

feature values or Covid-19 status, the distribution shift might be well-modelled by

changing group participation rates alone.

We considered a model based on Eq. (3.4) in Section 3.4.1.

We next consider how these simplified representations of distributions can be modelled

in time.

3.2 Models of Dynamics

We consider two categories of policy-induced distribution shift driven by multiagent

dynamics: The first is a tractable simplification of policy-induced distribution shift in

which the distribution is a fixed function of policy and certain consequence of policies

within the available hypothesis class H are known a priori. This first model is useful

for demonstrating the hazards of ignoring such dynamics. The second makes use of

evolutionary game theory to model a large population of affected agents that respond

to an ML policy and considers the mean-field population dynamics of such responses.

This second model allows a richer class of dynamical transitions while still remaining

tractable enough to be useful and avoiding common problems faced by prior literature.

As introduced in Section 2.1.3, we continue to use discrete-time semantics, wherein
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the parameters θt and distribution Dt) evolve in time t ∈ {1, 2, ...} through repeated

interactions. To disambiguate the sequence of updates, however, we specify that θt+1

responds to Dt, and that Dt responds to θt. While this is perhaps an unnatural time-

indexing when focusing on how D evolves in response to θ, our later discussion will

be more concerned with how θ adapts to D.

... 7→ θt 7→ Dt 7→ θt+1 7→ Dt+1 7→ ... (3.5)

Given this ordering, to use the language of Section 2.3, Dt is the “source” distribution for

θt+1, while each θt+1 induces the “target” distribution Dt+1. When θ and D alternately

update in this fashion, we describe an autonomous dynamical system that evolves in

time.

3.2.1 Distributions as Function of Policy

Our first model is built on a simplistic assumption of how ML policy affects its envi-

ronment: For discrete-time updates, this assumption is the existence of an (a priori

unknown) function S for which

θt 7→ Dt, e.g., Dt = S(θt). (3.6)

Note that, because the ML policy hθ is parametric, we express the induced distribution

as a function of the parameters θ, for simplicity.

This dynamical assumption has come to be recognized under the name of “performative

prediction” in prior work that has considered the effects of distribution shift on loss

(Perdomo et al., 2020) and in multiagent settings (Narang et al., 2022).
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Policy-Induced Participation Rates

In general, Eq. (3.6) may be combined with any summary representation of the shifting

distribution, such as those listed in Section 3.1. As an example, consider how participa-

tion rate (Section 3.1.3) might be directly induced by an ML-trained policy: Suppose

every individual who might interact with an ML maintains a personal threshold for

model performance above which they will become an active user of the ML model,

and that members of a given group g ∈ {1, 2, ..., n} all observe the same model perfor-

mance. As a consequence, user participation rates will monotonically increase with

the performance of the ML model on that group. When performance maps to negative

loss, we assume a fixed function φg for each group g such that

ρtg = φg(ℓ
t
g) and

dφg

dℓg
< 0. (3.7)

To make this example more concrete, imagine the ML model as a recommendation

service (for products, videos, internet search results, etc.) run by a corporation or firm.

To develop intuition, we may group users based on shared interests and preferences

(e.g., their favorite film genre). We may imagine how the firm will lose users from

group g as the quality of recommendations for that group deteriorates.

We use the model of Eq. (3.7) in Sections 3.4 and 4.1.

3.2.2 State Dependence

A major limitation of Eq. (3.6) is that the induced target distribution is assumed to be a

function of the deployed policy alone. Given our prior discussion about the myriad

causes of distribution shift (Section 2.3), this may not be realistic.

An alternative is to model Dt as an aspect of state st, which depends on θt−1 as well as
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its prior value:




θt

st−1


 7→ st 7→ Dt, e.g.,

Dt = M(st)

st = U(θt, st−1).

(3.8)

In this framing s represents the environment or state (which entails D), while θ may

be interpreted as an action.

In general, many contributing factors may comprise state relevant to the dynamics,

including prior history and exogenous variables. The dependence of D on state may

also allow simplifications, however, in which the evolving state is identified with a

specific shifting summary of the distribution, as discussed in Section 3.1.

Replicating Qualifications

Many possible simplifications inherit from specific mechanisms of distribution shift

(Section 3.1). In such cases, the evolving state may admit a simpler (i.e., lower-

dimensional) representation than Dt itself.

For a concrete example, consider the case of label shift and let us represent the group

“qualification rate” as:

sg := Pr(Y=1 | G=g). (3.9)

We may propose models for how sg evolves in time that are founded on evolutionary

game theory. In particular, if Qg represents the utility of qualification (Y=1) to an

individual in group g and Ng represents the utility of non-qualification (Y=0), then

we may model

stg := st−1
g

Qg(θ
t)

st−1
g Qg(θt) + (1− st−1

g )Ng(θt)
. (3.10)
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Interpreting this equation, when Qg(θ
t) > Ng(θ

t), then Qg(θ
t) > (st−1

g Qg(θ
t) + (1−

st−1
g )Ng(θ

t)), and the qualification rate sg modelled by Eq. (3.10) will increase by a

multiplicative factor. When Ng > Qg, sg will decrease. Intuitively, Qg(θ
t) and Ng(θ

t),

as the expected utility of qualification or non-qualification respectively, are mapped

by Eq. (3.10) to replication rates for two competing straties (whether or not to seek

qualification). These utilities thus determine the probability that a strategy (become

(un)qualified) will spread, in a viral manner, within each group g. For a discussion of

the underlying model for Eq. (3.10), inspired by evolutionary game theory, please refer

to Appendix A.

This model is notable for plausibly explaining persistent disparities under group-

independent prediction policies—i.e., those that do not discriminate on the basis of

group membership—without assuming a setting that is structurally imbalanced between

groups (Raab and Liu, 2021).

In particular, by assuming that utilities associated with each possible outcome (Y, Ŷ )

are universal across groups, such a model is able to endogenizes disparities by appealing

to unequal initial conditions rather than by assuming inherent differences between

groups of people, as done by previous work.

We use the model of Eq. (3.10) in Sections 3.5, 4.2.3, and 5.4.

3.2.3 Markov Transitions

A generalization of Eq. (3.8) is to allow stochastic transitions, thus defining Markovian

dynamics . 


θt

st−1


 7→ Pr

(
st
)
, e.g., st ∼ P(θt, st−1). (3.11)
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Such a framing is the standard setting for reinforcement learning, in which an AI policy

must select the optimal value of θ in a given state to maximize some long-term reward,

possibly by learning to explicitly model the stochastic transitions indicated by Eq. (3.11).

Linear Markov Transitions

A further refinement of Eq. (3.11) are so-called “linear” Markov dynamics, in which

P is linear in θ and s when both quantities are represented in appropriately chosen

coordinates.

We represent the Linear MDP assumption with respect to a “feature map” ϕ: To be

technically precise, the feature map represents the reproducing kernel Hilbert space

(RHKS) in which the system dynamics are linear. The formal assumption then is that

there exists, for each state s′ an appropriate vector µ[s′] such that, for all s and θ,

Pr(s′ | s, θ) =
〈
ϕ(s, θ), µ[s′]

〉
(3.12)

While this may seem like a significant restriction, it is well-founded when st belongs

to the infinite space of all possible observables of a system, as supported by Koopman

operator theory (Brunton et al., 2021) Unfortunately, we seldom have the ability to

represent infinitely many dimensions, or even to know the best finite-dimensional

representation of st in practice.

3.3 Baseline ML Polices

As discussed in Section 2.2, the standard paradigm in machine learning is an optimiza-

tion problem that assumes a static distribution. Where necessary to address issues of

algorithmic alignment, it is standard to impose a constraint on the policy informed by
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the current distribution, as in

minimize
θ

L(θ,D)

subject to V(θ,D) ≤ ε.

(3.13)

In other words, the baseline response to issues with machine learning are to intervene

on the objective, given that the distribution of examples — the data that makes ML

work — is difficult to change.

Given this standard approach to algorithmic alignment, we now focus on how this

approach fares when the distribution evolves in time.

We first consider the case in which Eq. (3.13) fully prescribes the response of θt+1 to Dt,

a method known as “Repeated Risk Minimization” (RRM). Next, we consider the case in

which the process of iterative refinement discussed in Section 2.1.3 is run concurrently

with updates to D. Finally, we outline a common alteration to Eq. (3.13) that seeks to

encode a notion of robustness to distribution shift.

3.3.1 Repeated Risk Minimization

“Repeated risk minimization” (RRM) names an approach to dealing with distribution

shift that, essentially, ignores it:

θt+1 = argmin
θ

L(θ,Dt)

subject to V(θ,Dt) ≤ ε.

(3.14)

Intuitively, RRM updates θt in response toDt, at each time t, by choosing the myopically

optimal policy without regard to how D may change in time. This method as been

considered by Perdomo et al. (2020), who show that the method, in practice, can
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achieve small performance gaps relative to optimal models subject to the assumption

of Section 3.2.1. As we will see, this method can also go horribly wrong, even subject to

similar assumptions: We consider RRM as a baseline policy in Sections 3.5.2 and 5.4.2.

3.3.2 Repeated Gradient Descent

As discussed in Section 2.1.3, problems in ML such as Eq. (3.13) are addressed in practice

by iteratively refining an approximate solution using a sequence of constrained opti-

mization subproblems that each approximate the true objective. When the distribution

D evolves in time, a simple adaptation this approach is to iterate a single step of this

sequence of subproblems to iteratively refine θ, anticipating that D may likewise shift

between iterates. Such a technique is known as “Repeated Gradient Descent” (RGD)

(Perdomo et al., 2020).

θt+1 = argmin
θ

L(θ,Dt) +
1

2η
(θ − θt)2

subject to V(θ,Dt) ≤ 0.

(3.15)

It should be noted that, frequently, the only algorithmic distinction between Eq. (3.14),

implemented via iterative refinement, and Eq. (3.15) is the number of updates to θ that

are made prior to considering how D may have changed in the interim.

RGD is also considered by Perdomo et al. (2020), who note qualitatively similar behavior

to the performance of RRM on the problems they considered. We consider RGD as a

baseline policy in Sections 3.4.2 and 4.1.3.

3.3.3 Distributional Robustness

A final baseline that we may consider, which straddles the boundary between normative

present fairness and policies that account for dynamics is one that accounts for the
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possibility of error between the source distribution S = Dt and the target distribution

T = Dt+1. Given that such distribution-shift can occur even without dynamics, simply

as a result of approximation errors from empirical sampling, there are a few method

that are intended to be “distributionally robust”.

While formulated in terms of adversarial Stackelberg games in some approaches, we

map this to the notation of constrained optimization represented by a primal Lagrangian

problem: Essentially, we imagine that we must choose a policy to optimize for the

worst-case scenario that may occur as a result of distribution-shift. We specify that the

target distribution D lies within a bounded distance of the nominal distribution Dt, as

measured by d.

θt+1 = argmin
θ

[
max
D

L(θ,D)

]

subject to V(θ,D) ≤ ε,

d(D,Dt) ≤ δ.

(3.16)

Often, the framework of Eq. (3.16) requires simplifications about how distributions

may shift, as in Section 3.1, in order to be tractable. We will discuss such assumptions

within the context of adversarial distribution shifts more fully in Section 3.6.

Modifications of this basic idea may also be applied to the constraint itself, as in group-

fairness. That is, rather than defining V a measure of diverging treatments between

groups (Eq. (2.15)), one can reformulate fairness as

V(θ,D) = max
g

[
ξg(θ,D)

]
(3.17)

in the case that ξg is undesirable, as is the case for incentive-compatible loss.

An example of this form of present normative intervention is provided by Hashimoto

et al. (2018) and considered as an additional baseline by Yin et al. (2023) for the work
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represented in Section 5.4.

3.4 The Failure of Myopia

Parts of this section are adapted from previously published work by Raab et al. (2024).

Even when present normative interventions do not restrict the behavior of ML policies,

the phenomenon of mutual feedback between dynamical environments and ex post

adaptive policy responses can exhibit misaligned behavior that drives undesirable

long-term outcomes.

In this section, we provide an intuitive demonstration of this sort of misalignment. First,

we discuss a setting involving policy-induced participation rates, as in (Section 3.2.1)

relevant to recommendation systems. Second, we interpret how a common baseline,

repeated gradient descent assuming a fixed distribution, can result in increasing loss in

this system, which we can visualized geometrically.

3.4.1 A Recommendation System Example

An online service run by a firm that algorithmically recommends user-generated

content (e.g., fixed-length videos) to other users based on inferred preferences. Let us

assume that users will only engage with the service if a sufficiently high percentage

of recommended videos are personally interesting. As outlined in Section 3.2.1, we

say that the proportion of prospective users in each group that will interact with the

service, denoted ρg , monotonically decreases as a function of the group-specific loss ℓg ,

where
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Assumption 3.4.1 (Participation Decreases with Loss).

ℓtg := E
Z∼Dt

[
L (hθ, Z) | G=g

]
; (3.18)

ρt+1
g = φg(ℓ

t
g) where

dφg

dℓg
< 0. (3.19)

The firm seeks to maximize user engagement (e.g., the total daily number of videos

watched on the platform) in order to drive advertising revenue. We represent this

objective as

minimize
ℓ∈A

⟨ℓ, φ(ℓ)⟩, (3.20)

where we introduce the group-indexed vectors

Group-specific losses ℓ := (ℓ1, ℓ2, ..., ℓn), (3.21)

Group-specific participation rates ρ := (ρ1, ρ2, ..., ρn), (3.22)

and where the decision variable ℓ ∈ A is a consequence of an assumption that any

policy parameterized by θ, consistently maps to the same set of achievable group-wise

losses A.

Assumption 3.4.2 (Static Set of Feasible Losses).

∀t, ℓt ∈ A. (3.23)

This simplification would apply, for example, when a user’s choice of whether to

engage with the service, in group g, is statistically independent of other group-specific

preferences relevant to the recommendation service.
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θ parameter value.
D distribution of users.
L the objective function (total loss).
g discrete group index.
ℓg average loss for group g.
ρg participation rate for group g.
A set of achievable losses.
φg map from ℓg to ρg.

Table 3.1: Choice of notation

For this problem, repeated gradient descent (RGD; Section 3.3.2) is given by

ℓt+1 = argmin
ℓ∈A

L := ⟨ρt, ℓ⟩. (3.24)

We consider the set of achievable losses A to be convex. The convexity of this set is

well justified by the ability of the firm to adopt mixed policies; that is, for any two loss

vectors a, b ∈ A, we assume that the firm is free to deploy a stochastic mixture of the

policies that resulted in a and b, implying that A is closed under convex combinations.

Without loss of generality, we fix zero loss for each group to correspond to zero

participation:

ℓ ⪯ 0 and φ(0) = 0. (3.25)

We do this to restrict interpretations of Eq. (3.24) to situations in which the firm has

incentives to realize high participation rates (as opposed to eliminating users that are

universally costly).

3.4.2 A Geometric Picture of Misalignment

The primary utility of Section 3.4.1 is that it offers a literal, geometric picture of present-

normative misalignment in a dynamical context: The vector of participation rates ρ
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may be interpreted as a dual vector to ℓ, such that the overall objective in Eq. (3.24) is

the dot-product “alignment” between the two: In Fig. 3.2, ℓ and ρ should ideally point

in opposite directions as far as possible.
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Figure 3.2: Failures of myopic optimization. In this figure, we consider two policies,
represented by the red triangle and the blue circle, which correspond to combinations of
achievable group-specific losses ℓ. In this example, the set A is defined by a quadrant of
the unit disk (lower left). These group-losses induce corresponding group participation
rates (upper right) via ρ1 = φ(ℓ1) (upper left). Because total loss has the form of an
inner product, we may interpret ρ as vector in the dual space of ℓ, where we wish to
increase the relative alignment of corresponding ρ and ℓ vectors.

In Fig. 3.2, we see that there exist alternative values of ℓ which would reduce loss if ρ

were fixed (i.e., under the assumption made by RGD). Choosing these alternative values,

however, causes ρ to shift in reality, which again induces ℓ to change in a direction that

continues the feedback cycle. The true form of the performative loss (lower right of
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the figure) when the relationship of ρ on ℓ is accounted for indicates that the policies

selected by RGD will actually increase loss over time.

The root cause of this misalignment is modifying ℓ without considering how this

changes ℓ. If the policy is repeatedly optimized for the engagement of the current user

base, as prescribed by present-normative paradigm, the resulting dynamics may enter

a feedback-cycle that exclusively targets over-represented users (Fig. 3.2), increasing

overall loss.

We will revisit this setting in Section 4.1, where we suggests ways of accounting for

the induced distribution shift and compare our suggestions to the myopic baseline

represented above. First, we will show in Section 3.5 that present-normative constraints

are also subject to dynamical misalignment.

3.5 The Potential Harm of Present-Normative Interventions

Parts of this section are adapted from previously published work by Raab and Liu (2021).

As shown in Section 3.4, myopic solutions to inherently dynamical problems can

lead to misaligned dynamics, even without additional constraints to address bias.

It is perhaps unsurprising, therefore, that the incorporation of present-normative

interventions (which do not account for induced dynamics; Section 2.2) in the machine

learning pipeline does not necessarily prevent undesired outcomes: In some cases,

such interventions can exacerbate the problems they seek to address.

3.5.1 A Setting for Unintended Selection

In this section, we provide a setting in which present-normative interventions can

backfire, driving widening distributional inequalities in society. Our setting, published
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in Raab and Liu (2021), is closely related to that of Coate and Loury (1993) but treats n

groups and a more granular classifier utility function. To ground our intuition for this

example, we imagine a binary classification task (Section 2.1.4) in which an ML-trained

policy must approve or deny loan applications. We picture this setting in Fig. 3.3. Each

individual in the population possesses a group membership G ∈ {1, 2, ...}, a feature

profile X , and a binary label Y that he or she may choose at each time t. Given the

existence of this choice, we will frequently refer to individuals in the population as

agents.

Groups: We will model groups as isolated subpopulations that differ only in size

and initial proportions of qualified individuals. That is, we are careful to attribute no

inherent disparities between groups to underlying, inherent differences: We will model

all agents identically, across groups. In each group, individuals compare qualifications

and resulting classifier outcomes, then choose whether it is in their best interest to

invest in becoming qualified or unqualified in the future.

÷⇐¥- ¥** :¥±÷±±
a

*

Figure 3.3: A graphical representation of a setting in which an ML policy is used by a
lending institution to directly approve or deny loan applications. In this setting, the
population is divided into isolated groups, identical other than initial conditions, that
compare strategies for qualification and resulting outcomes among themselves.
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Table 3.2: Agent-specific variables in this model form a Markov chain.

Variable Meaning Domain Realizations

G group G = {1, 2, ..., n} g, h, i, j
Y qualification {−1, 1} i.e., {unqualified, qualified} y
X feature (−∞,∞) x

Ŷ classification {−1, 1} i.e., {reject, accept} ŷ

Features: In this example, we think of each agent’s feature profile X as a scalar-

valued summary of attributes reported to the ML classifier in a loan application, such

as age, education, assets, etc., which we interpret as an overall credit score. Because

we wish to avoid assuming inherent differences between groups, we consider the

label-conditioned feature distribution Pr(X | Y = y) as group-independent. That is,

an (un)qualified individual in one group looks statistically the same as an (un)qualified

individual in any other group (groups only differ, statistically, in initial qualification

rates). Let us define the fixed, differentiable probability density functions

qy(x) := Pr(x | Y=y); y ∈ {−1, 1}. (3.26)

Assumption 3.5.1. For tractability of our model, we assume that qy(x) is nowhere

zero and that the ratio q1(x)/q−1(x) is strictly increasing in x. That is,

∀x, y, qy(x) ∈ (0,∞);
d

dx

(
q1(x)

q−1(x)

)
> 0 (3.27)

This assumption ensures that the feature X is statistically “well-behaved”: As credit

scores increase as x, the odds that individuals with that credit score x will pay off the

prospective loan also increases.
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Predictions: Having assumed that q1/q−1 is monotonically increasing inx (Asm. 3.5.1),

we model the ML-trained model as a threshold classifier, which will approve loans

above a certain threshold credit-score and deny applicants below the threshold.

hθ(x, g) :=





1 x ≥ θg

−1 x < θg

(3.28)

To point out a failure mode of myopic optimization, we assume that θt+1 is chosen

to maximize profit on the currently observed distribution Dt = Prt(Y,X,G) as an

instance of repeated risk minimization (RRM; Section 3.3.1), subject to imposed group-

fairness conditions (Section 2.2.1). We model the profit of decision ŷ conditioned on

true qualification y as a constant entry in a matrix Cy,ŷ, such that the classifier is

incentivized to make the correct prediction (Cy=ŷ > Cy ̸=ŷ). In summary, we specify

θt+1 = argmin
θ

−
∑

g

∑

y,ŷ={−1,1}

Cy,ŷ Pr
t
(Y=y, h(x, g)=ŷ | X=x,G = g) (3.29)

subject to V(θ,Dt) ≤ 0, (3.30)

for various possible constrained disparity measures V .

Table 3.3: Variables of state.

Variable Meaning

sg Qualification rate for group g
θg Feature classification threshold for g

Evolving Labels: The binary label Y ∈ {1, 1} of an agent indicates his or her

qualification for the loan, which is unknown to the classifier (and must be predicted

from X and G). Intuitively, a qualified (Y = 1) individual will repay a loan in full
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if accepted (Ŷ = 1). We interpret qualification as a desirable attribute at a societal

level (one which public policy would promote if it could), and note that different group

qualification rates are the sole cause of disparity in this model.

Importantly, in this model, individuals are free to choose their qualification at each

round t. Anticipating algorithmic classification, how should agents decide whether to

become qualified? We imagine that there is a cost associated with the ability to pay

back loans, and that the rationality of doing so depends on what an individual knows

about the classification policy they will be subjected to (and potential outcomes, which

they estimate from incomplete information provided by peer examples).

To deal with uncertainties that agent may possess, we model this decision for updating

personal qualification by the mechanism of imitating the strategies of others based on

popularity and observed utility. For example, if your friend chose to become qualified

for a loan and now runs a small business, the net profit of the transaction may induce

you to seek qualification yourself by first building credit history. If instead many of

your neighbors receive loans despite being unqualified and manage to live lavishly,

you may infer that qualification is a waste of resources.

Björnerstedt and Weibull (1994) have shown that imitation in this form, whereby

agents stochastically update to strategies weighted by utility and popularity yields

the replicator equation (Section 3.2.2 and Appendix A), which we use in its discrete

time form, as detailed by Friedman and Sinervo (2016). We therefore use the replicator

equation to model the replication or spread of successful strategies (and the abandon-

ment are unsuccessful strategies). We thus consider binary labels Y ∈ {−1, 1} as

competing evolutionary strategies in the population, with fitness determined by the

average decisions (and error rates) of the classifier on the group.
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Table 3.4: Variables representing notions of utility.

Variable Meaning Indices

C utility to classifier y, ŷ
A utility to agent y, ŷ
Q utility of qualification to agent g
N utility of non-qualification to agent g

Let us represent the qualification rate in group g as sg:

stg := Pr
t

(
Y = 1

∣∣ G = g
)
. (3.31)

The replicator equation (Eq. (3.10)) in this context yields

stg =
st−1
g Qg(θ

t)

st−1
g Qg(θt) + (1− st−1

g )Ng(θt, t)
(3.32)

where

Qg(θ) =
∑

ŷ∈{−1,1}

A1,ŷ Pr
t
(hθ(X, g) = ŷ|Y = 1) (3.33)

Ng(θ) =
∑

ŷ∈{−1,1}

A−1,ŷ Pr
t
(hθ(X, g) = ŷ|Y = −1) (3.34)

This model assumes that the fitness of qualification, Qg, and the fitness of non-

qualification, Ng, are dependent on the probability that the classifier will correctly

classify the individual in group g. This probability is influenced by group membership,

the current policy θt, and the inherent desirability (net cost) associated with each

possible outcome, represented by the matrix Ay,ŷ for y, ŷ ∈ {−1, 1}.

Assumption 3.5.2. We assume that A−1,1 ̸= A−1,−1 and A1,1 > A1,−1. That is, agents

care about the decision of the classifier, and qualified agents prefer to get the loan.
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Model Commentary: Our choice to model distribution shift using replicator dynam-

ics in qualification rates provides several advantages. First, it is free from structurally

asymmetric assumptions (e.g., assuming inherent, immutable advantages or disadvan-

tages of certain groups) that are common in related research literature; Second, it is

capable of explaining persistent disparities under Bayes-optimal, group-independent

policies. Third, it derives from plausible, localized information exchange between

individuals.

This modelling choice also restricts our interpretation of groups, which we model as

functionally impermeable to the exchange of qualification strategies: i.e., they must

be closed and insular. Given that “sensitive attributes” such as race, sex, color, etc.

may not correspond to meaningful divisions between people (which depend on social

context), this modelling assumption gives us a functional working definition: groups

are defined by the extent to which they satisfy this assumption of mutual independence

with regard to the exchange of information and strategies.

3.5.2 Simulation Results

In this section, we consider the setting outlined in Section 3.5.1 subject to demographic

parity, equalized odds (Section 2.2), and the absence of constraints (which we term

“laissez-faire”). We present a subset of simulations presented in Raab and Liu (2021).

In Fig. 3.4, we model two groups of equal size subject to the classifier utilities Cy,ŷ and

agent utilities Ay,ŷ given by



A−1,−1 = 0.1 A−1,1 = 5.5

A1,−1 = 0.5 A1,1 = 1.0







C−1,−1 = 0.5 C−1,1 = −0.5

C1,−1 = −0.25 C1,1 = 1.0


 (3.35)
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Figure 3.4: A “phase diagram” of the dynamics of the model presented in Section 3.5.1.
The state of the system is provided by the qualification rates of two equal-sized groups
(i.e., s1 and s2), represented by the two axes of each pane. At each time step, the
classifier performs repeated risk minimization (RRM; Section 3.3.1; Eq. (3.29)) subject
to demographic parity or equalized odds (Section 2.2), or no intervention at all, which
we refer to as “laissez-faire”. The population then responds, as modelled by Eq. (3.32),
by updating qualification rates. Through the mutual recursion of these updates, the
system state evolves in time, in directions depicted by the streamlines in each pane.
Blue shading represents the acceptance rate for group one (i.e., Pr

(
Ŷ=1 | G=1

)
).

Orange shading likewise depicts the classifier’s false positive rate for group one. By
the symmetry of the setting, these vales apply equally to group two when reflected
under exchange of the pane axes.

As demonstrated by Fig. 3.4, both demographic parity and equalized odds generally fail

to establish qualification rate parity between the two groups (the set of states along the

dark black line from lower left to upper right), despite the fact that demographic parity

achieves equal nearly equal acceptance rates, equalized odds achieves nearly equal

false positive rates (and true positive rates) across both groups, and qualification rate
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parity is naturally established by the lack of intervention. As a result, it is clear that

underlying disparities between the groups persist as a consequence of the intervention.

For demographic parity, the intervention requires “subsidizing” the under-qualified

group at each time step, thereby “unintentionally selecting” for non-qualification in

that group: Moreover, these subsidies grow larger with time as the system reaches

an extreme state of near-universal qualification in one group and near-universal non-

qualification in the other.

Likewise for equalized odds, the intervention arguably does more harm than good by

preventing the system from reaching an equitable state that eliminates all statistical

distinctions between groups, which occurs under laissez-faire dynamics.

We will provide more rigorous statements about the failure modes of these interventions

when we perform a dynamical analysis of this example system in Section 4.2.

3.6 Adversarial Bounds on Short-Term Alignment Violations

Parts of this section are adapted from previously published work by Chen et al. (2022).

In the previous section, we established that misalignment can be a problem in the

long-term, when distribution shift interacts with myopic optimization, but we relied on

simplified models of distribution shift to do so. A more general approach for quantifying

how distribution-shift can violate alignment constraints, at least in the short-term,

may be developed within a simple adversarial framework. In this section, we consider

an approach for quantifying the degree to which present normative interventions

are (in)appropriate for alignment in dynamical contexts. Rather than assume specific

dynamical reactions to policy, we consider worst-case or adversarial scenarios subject

to map bounds distribution shift to bounds on constraint violations.
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Figure 3.5: Decreases in accuracy and increases in fairness violations when a classifier
initially trained to predict income on data specific to individual US states is reused on
2018 data—an example of distribution-shift over time (Chen et al., 2022).

Since it can be difficult in general to predict how the distribution will shift, we define a

vector-valued premetric to quantify distribution-shift, then we suppose a bound on the

maximum shift we may expect to observe. Subject to this bound, we then address the

question of how much might we violate our fairness constraints in the worst case.

Definition 3.6.1 (Statistical Divergence). Given any two distributions p and q, a

divergence D is any real-valued function of the two distributions that satisfies non-

negativity and the identity of indiscernibles. That is,

D(p ∥ q) ≥ 0 ; D(p ∥ q) = 0 ⇐⇒ p = q (3.36)

We will refer to D(p ∥ q) as the “divergence from q to p”.

The identity of indiscernibles implies reflexive nullity (i.e., there is no measurable

difference between two copies of the same object) but also requires that two indistin-

guishable distributions must, in fact, be the same distribution. Typical examples of a
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statistical divergences are the Kullback-Leibler divergence and various f -divergences.

Definition 3.6.2 (Vector-Valued Distribution Shift). Define the group-vectorized dis-

tribution shift D for a classification problem as

D(T ∥ S) :=
∑

g

egD
(
Pr
T
(X, Y | G = g)

∥∥∥ Pr
S
(X, Y | G = g)

)
(3.37)

where eg represents a unit vector indexed by g.

Intuitively, the vector-valued quantity D(T ∥ S) measures how much the relevant

variables (features and labels, for a classification problem) shift within each group.

Next, we suppose a bound on the group-specific shifts that might occur in the worst-

case:

Assumption 3.6.1 (Bounded Distribution Shift). The group-vectorized distribution

shift from the source distributionS to the target distribution T is element-wise bounded

by a non-negative vector B, i.e.,

D(T ∥ S) ⪯ B ; B ⪰ 0 (3.38)

where ⪯ and ⪰ denote element-wise inequalities.

Finally, subject to the given bound Asm. 3.6.1, we define the maximal violation of the

fairness constraint or alignment intervention:

Definition 3.6.3 (Supremal Disparity). Define the supremal disparity of policy given

by policy with parameters θ within distribution shift B of S as

∀b ⪰ 0, V⋆
b(θ,S) := sup

D(T ∥S)⪯b

V(θ, T ) (3.39)
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The form of the corresponding bound assured by Asm. 3.6.1 is

D(T ∥ S) ⪯ B =⇒ V(θ, T ) ≤ V⋆
B(θ,S) (3.40)

While additional bounds are explored by Chen et al. (2022), let us give the flavor of the

possible results of this approach:

3.6.1 A Lipschitz Bound

For a fixed policy with parameters θ optimized for the source distribution S , the

supremal disparity achievable by distribution-shift within bound b, i.e. V⋆
b(θ,S),

defines a scalar field in the non-negative cone of b ⪰ 0. By treating V⋆
b as a scalar

potential, we choose to define the conservative vector field F such that

F(b) := −∇bV⋆
b (3.41)

Such a construction ensures the path-independence of the line integral of F along any

curve C from 0 to B. That is,

−
∫

C

〈
F(b), db

〉
= V⋆

b(θ,S)− V⋆
0 (θ,S) (3.42)

= V⋆
b(θ,S)− V(θ,S) (3.43)

Theorem 3.6.1 (Lipschitz Upper Bound for a Curve). Given an element-wise Lipschitz

bound for F along any curve C with endpoints 0 and B, i.e. when there exists some finite

L ⪰ 0 such that

∀b ∈ C,
∣∣F(b)

∣∣ ⪯ L, (3.44)
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we may conclude

V⋆
B(θ,S) = V(θ,S)−

∫

C

〈
F(b), db

〉
(3.45a)

≤ V(θ,S) +
〈
L,B

〉
(3.45b)

Alternatively phrased,

D(T ∥ S) ⪯ B =⇒ V(θ, T ) ≤ V(θ,S) + L ·B (3.46)

To visualize this result, we depict the meaning of the Lipschitz bound for two groups

{g, h} in Fig. 3.6.

bg

bh

V⋆
b(θ,S)

bg = Bg

bh = Bh max ∂
∂bg

V⋆
b

max ∂
∂bh

V⋆
b

Lipshitz Bound
〈
L,B

〉

0
B

V(θ,S)

V⋆
B(θ,S)

Figure 3.6: A Lipschitz bound in the form of Eq. (3.46) subject to Asm. 3.6.1, for two
groups {g, h} implies that that the supremal disparity V⋆

B cannot exceed the path-
integral of the maximum growth rate.

As we demonstrate in Section 3.6.2, Thm. 3.6.1 is not vacuous, and may be applied

natural to certain settings introduced Section 3.1
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3.6.2 Demographic Parity subject to Label Shift

Label Shift We may apply Thm. 3.6.1 in a setting in which distribution-shift result

from a label-shift mechanism (Section 3.1.1) with known bounds.

For this example, let us measure group-specific distribution shifts between S and T by

the change in proportion of true positive labels (Y=1) in each group, corresponding to

a change in qualification rates sg, as in

sg(T ) := Pr
T
(Y=1 | G=g). (3.47)

Dg(S ∥ T ) :=
∣∣sg(S)− sg(T )

∣∣. (3.48)

Consistent with Asm. 3.6.1, we will consider such distribution shifts, within an element-

wise measure bounded by B.

Let us next denote the true positive rate and false positive rate of a policy with param-

eters θ on distribution T within group g as (respectively),

β+
g (θ, T ) := Pr

θ,T
(Ŷ=1 | Y=1, G=g). (3.49)

β−
g (θ, T ) := Pr

θ,T
(Ŷ=1 | Y=−1, G=g). (3.50)

Because β+
g and β−

g are conditioned on the value of Y , they are invariant under label

shift given a constant policy θ. Assuming a fixed, universal source distribution S , we

will hereafter elide the dependencies of these quantities, writing merely β+
g and β−

g .

In terms of these quantities, we may write

Pr
θ,T

(Ŷ=1 | G=g) = β+sg(T ) + β−(1− sg(T )
)
. (3.51)

53



from which it follows that

∂

∂sg(T )
Pr
θ,T

(Ŷ=1 | G=g) = β+
g − β−

g . (3.52)

Demographic Parity Next, departing from the convention established in Section 2.2.1

for this example (for theoretical simplicity), let us choose to measure demographic

parity as

V(θ, T ) :=
∑

g,h∈G

∣∣∣Pr
T
(Ŷ=1 | G=g)− Pr

T
(Ŷ=1 | G=h)

∣∣∣. (3.53)

Differentiating Eq. (3.53), we obtain a Lipschitz condition:

Lemma 3.6.2 (Disparity Rates). The supremal disparity V⋆
B is subject to a Lipschitz

condition given by

∀g, ∂

∂bg
V⋆
b(θ,S) ≤ Lg = (|G| − 1)

∣∣∣β+
g − β−

g

∣∣∣. (3.54)

It follows that such a measure of group-wise disparity is subject to a Lipschitz bound,

as in Thm. 3.6.1:

Theorem 3.6.3 (Demographic Parity under Label Shift). For demographic parity

(Eq. (3.53) subject to label-shift (Eq. (3.51)),

V(θ, T )− V(θ,S) ≤ (|G| − 1)
∑

g

∣∣∣sg(S)− sg(T )
∣∣∣
∣∣∣β+

g − β−
g

∣∣∣. (3.55)

Interpreting this result, when β+
g is close to β−

g , the policy looks like a random classifier,

and label shift has limited effect on statistical group disparity. When |β+
g − β−

g | is

large, indicating high classifier accuracy, our bound exposes a direct trade-off between
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accuracy and fairness transferability guarantees.

3.6.3 Numerical Validation

We may evaluate Thm. 3.6.3 in the system described by Section 3.5, a binary classi-

fication setting with an analytical model of population response based on replicator

dynamics: We compare the our theoretical result in Thm. 3.6.3 to the simulated dynam-

ics of this system subject to a policy constrained by demographic parity.

As in Section 3.5.2, we graphically represent all possible states of the example system

by the state vector of qualification rates for two equal-sized groups. We assume that

the classifier in each state is trained by (RRM; Section 3.3.1; Eq. (3.29)) subject to

demographic parity.

Subject to the dynamics prescribed by Eq. (3.32), we depict the local evolution of the

state, using streamlines, as well as the rate of change of the violation of fairness—i.e.

prior to retraining.

We compare this latter quantity to our the theoretical bound.
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Figure 3.7: A policy satisfying demographic parity is subject to distribution shift
prescribed by replicator dynamics. The change in qualification rates subject to this
policy follows the streamlines, while the change in V prior to retraining is represented
with color and compared to the theoretical bound (Thm. 3.6.3) (Thm. 3.6.3).

Interpreting our results, we note that the bound lacks information about the relative

directions of the change in acceptance rates for each group. It thus over-approximates

possible fairness violations when group acceptance rates adapt with the same sign.

When group acceptance rates move in opposing directions, however, the bound gives

excellent agreement with the modelled replicator dynamics.
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4 Alignment with Dynamics
Can we anticipate and utilize adaptive agents’ reactions to data-driven policy to achieve

aligned objectives dynamically?

In Section 2.3, we commented on the fact that, in real-world deployments, machine

learning policies frequently encounter distribution-shift. Moreover, we highlighted

how ML policies can induce such distribution-shift directly, as intelligent agents react

in their own best interest to implemented policies.

In Chapter 3 we observed that the standard reaction to such distribution-shift, i.e., sim-

ply retraining or fine-tuning the policy to the shifted distribution, can have undesirable

consequences: Even without constraints, retraining for distribution-shift ex-post can

lead to increasing loss over time, as explained and demonstrated in Section 3.4. When

present normative constraints are incorporated to ensure “alignment”, as considered in

Section 3.5, the situation can also degrade.

These observations indicate that dealing with alignment in a dynamical context requires

anticipation of policy-induced distribution shift and other agents’ reactions to policy.

In this section, we ask how we can incorporate such anticipation into ML policies such

that we can realize aligned objectives in the long-term, over multiple policy iterations

and interactions with a multiagent environment.

By focusing on alignment as an inherently dynamical problem shaped by the interac-

tion of multiple intelligent agents, our perspectives and tools intersect with economics,

game-theory, and control: To an economist or a game theorist, recognizing the or-

ganization of human society as a multiagent system, the question is whether an ML

agent can induce transitions between or avoid undesirable Nash equilibria. To a control

theorist, the question is whether an ML agent can exert control over the system to steer
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it to desirable states and rewards.

We explore two techniques for addressing our questions: The first maps techniques

from constrained optimization to sequential policies based on local information about

policy-induced distribution-shift. The second considers more general dynamical mod-

els and is based on feedback control. We conclude the chapter by considering how

an explicitly dynamical treatment of alignment opens new possibilities for explicit

alignment objectives.

4.1 Sequential Policies as Optimization Programs

Parts of this section are adapted from previously published work by Raab et al. (2024).

How should a policy-maker anticipate and algorithmically address policy-induced

distributions shift?

One way to do this, as outlined in Section 3.2.1 is to model the distribution as a function

of policy, such that

Dt = S(θt). (4.1)

Subject to this assumption, the constrained optimization problem we wish to solve is

minimize
θ

L(θ, S(θ))

subject to V(θ, S(θ)) ≤ 0 .

(4.2)

In general the function S may be unknown or difficult to model, but (assuming its

existence) this doesn’t prevent us from using the available information to make iterative

improvements.

Even when S is unknown in general, the idea of using limited or local (to the currently
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deployed policy) information about an objective function and a constraint function is

well-established by the use of sequential programs in constrained optimization (i.e., in

a style similar to that of Section 2.1.3 and expanded on in Appendix B). Inspired by this

connection, we may adapt standard, first-order numerical algorithms (belonging to the

same family as repeated gradient descent Section 3.3.2) from sequential programming

to Prob. (4.2).

To use such methods, we require not only the current values of L and V on θt and Dt,

but their gradients. For compactness, we denote

∇Lt ≡ ∇θL(θ)
∣∣
θ=θt

. (4.3)

∇V t ≡ ∇θV(θ)
∣∣
θ=θt

. (4.4)

Assumption 4.1.1 (Gradients of Deployed Policy). At each time t, the policy-maker is

able to observe ∇Lt and ∇V t, i.e., the policy-maker has knowledge of the first-order

dependence of L and V on θ at the currently deployed policy θt.

Asm. 4.1.1 is reasonable when L corresponds to empirical risk and V measures dispari-

ties between sets in the population, as in Section 2.2.1: With small, random perturba-

tions to policies over the set of individuals in the population, first-order statistics can

provide an estimate of the local dependence of L and V on θ (i.e., via (conditional) cor-

relations between policy perturbations and outcomes). Conceptually, the policy-maker

can estimate gradients from A/B testing, where slightly different policies are deployed

on statistically independent subsets of the population: The local dependence of group

participation rates on group losses may be estimated by the finite difference method,

using the differences in quantities across policies.
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4.1.1 Constrained Projected Gradient

To address Prob. (4.2) in an environment satisfying Asm. 4.1.1, we propose a method

related to Fletcher’s smooth exact penalty function (Fletcher, 1973; Conn et al., 2000).

For further background, we also refer the reader to Nocedal and Wright (1999). Our

method involves solving a sequential quadratic program parameterized by step size

η > 0 and a scale factor α > 0. We refer to this method as “Constrained Projected

Gradient” (CPG), shown below.

θt+1 = argmin
θ∈A

〈
θ,∇Lt

〉
+

1

2η
(θ − θt)2.

subject to
〈
θ − θt,−∇V t

〉
≥ αV t.

(CPG)

This method provably solves Prob. (4.2) in the limit of small η, subject to the following

two assumptions:

Assumption 4.1.2 (Feasibility). The fairness constraint is feasible. That is, ∃θ⋆ ∈ A

such that V(θ⋆) ≤ 0. Furthermore, the subproblem in Eq. (CPG) is feasible at each time

step t.

The second stipulation of Asm. 4.1.2 eliminates the possibility that, for example, ∇V t =

0 and V t > 0.

Assumption 4.1.3 (Properties of Disparity). V is an invex function; that is, every

critical point of V is a global minimum.

Asm. 4.1.3 is easily satisfied by choosing a suitable V that maintains the required

zero-level set (e.g., as in Eq. (4.7)).

Theorem 4.1.1 (Asymptotic Convergence). Subject to Asms. 4.1.1 to 4.1.3, as (t → ∞),

constrained projected gradient (Eq. (CPG)) converges to a feasible local optimum of the
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objective when the step size η is sufficiently small.

We provide a proof sketch below. We defer rigorous proof to Appendix C and briefly

outline how CPG relates to Fletcher’s smooth exact penalty function subject to convex

constraints in Appendix B.

Proof Sketch. Our proof relies on establishing that CPG first achieves fairness, then

converges to a critical point of the objective function. First, note that V t > 0 =⇒
〈
θt+1 − θt,−∇V t

〉
> 0, subject to the constraints imposed by A, by the fairness

constraint of Eq. (CPG) and Asm. 4.1.2. That is, when the current policy is unfair, the

algorithm makes progress towards fairness by decreasing disparity. Second, we show

that V t ≤ 0 =⇒
〈
θt+1 − θt,−∇Lt

〉
> 0. That is, once the current policy is fair, the

algorithm decreases loss. This second fact follows from the fact that V t ≤ 0 implies

that the sign of
〈
θt+1 − θt,−∇V t

〉
is unconstrained, and minimization of the objective

will naturally ensure
〈
θt+1 − θt,∇Lt

〉
< 0 subject to the constraints of A.

4.1.2 Application to Fair Participation

In this section, we detail how CPG can be applied to the setting explored in Section 3.4.1,

with an added constraint. To briefly outline the setting again, we consider a recom-

mendation task in which a policy-maker or firm is free to choose between policies

that map to a static set of achievable group-losses A at each time step. We therefore

consider the vector of group losses ℓ ∈ A as the decision variable (θ ≡ ℓ). In each

group, the loss ℓg maps to a monotonically decreasing participation rate ρg = φg(ℓg).

Because the distribution (summarized by ρ as discussed in Section 3.2.1) is a fixed

function of the decision variable, we may express the loss function for the firm as a
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function of ℓ alone:

L(ℓ) := ⟨ℓ,ρ⟩. (4.5)

=
∑

g

ℓgφg(ℓg). (4.6)

To this objective, we now introduce a fairness constraint with slack variable ε ≥ 0:

V(ℓ) := Var
g
[ρg] + ε. (4.7)

This constraint represents the imperative for the firm to maintain a demographically

representative user-base, which can serve, for example, to mitigate negative public

relations and diversify advertising revenue. We will comment on fundamental differ-

ences between the form of this constraint and those typically considered as “present

normative” (Section 2.2) in Section 4.3.

The overall objective of the firm is therefore

minimize
ℓ

L(ℓ) := ⟨ℓ,ρ⟩.

subject to V(ℓ) ≤ 0.

(4.8)

This objective has a form that is amenable with Prob. (4.2) and may be solved by a

sequence of policies rendered by CPG.

4.1.3 Experiments

In this section, we evaluated CPG in multiple semi-synthetic settings to compare it to

repeated gradient descent (RRM; Section 3.3.2) as well as “myopic projected gradient”

(MPG), an amended form of repeated gradient descent that accounts for distribution
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Figure 4.1: Income task. This setting has a highly non-convex loss surface, shown in
the third pane, and demonstrates a situation in which CPG converges to the unique
solution, MPG gets stuck in an unfair local minimum of the utility function, and RRM
diverges to the highest disparity.

shift but does not incorporate constraints.

Concisely, MPG incorporates the gradient of ρ into the calculation of ∇L, but does not

address the fairness constraint V ≤ 0.

ℓt+1 = argmin
ℓ∈A

〈
ℓ,∇Lt

〉
+

1

2η
(ℓ− ℓt)2, (MPG)

We use MPG to demonstrate that the constraint V ≤ 0 in Prob. (4.2) is not automatically

satisfied by accounting for policy-induced distribution shift as in Eq. (MPG).

Datasets Our settings derive from binary classification tasks on the American Com-

munity Survey Public Use Microdata Sample (ACS PUMS) dataset1, as introduced by

1https://github.com/socialfoundations/folktables
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Figure 4.2: MovieLens Task. This particular setting demonstrates application of our
method to a recommendation task. Only our proposed method, CPG, satisfies the
fairness constraint, finding a solution to Prob. (4.2) at the boundary of the feasible set,
where ⟨∇L,∇V⟩ < 0. Both RRM and MPG locally optimize local utility at the expense
of fairness.

Ding et al. (2021b), for specific US states in 2018, or a recommendation task on movie

preferences using data (MovieLens) collected by Harper and Konstan (2015). Each task

gives samples of joint feature (X), label (Y ∈ {0, 1}), and group (G ∈ [k]) variables,

the joint distribution of which we summarize by writing S .

Model Class and Achievable Losses For each task, we first define a set of achievable

losses A. We generate n = 100 different binary classifiers and record the vector of

group-specific losses ℓ achieved by the predicted labels Ŷ for each classifier, where we

define ℓg as the negative binary prediction accuracy conditioned on group g:

ℓg = − E
X,Y,G∼S

[
Ŷ=Y | G=g

]
. (4.9)
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Figure 4.3: IncomeThree Task. This graphic is intended to showcase that Prob. (4.8) and
CPG are not restricted to only two groups, and in general allow very large numbers of
groups, though the resulting sets of achievable group losses and participation rates are
difficult to visualize. Inspecting the time-series, we see that CPG increases disparity at
intermediate time-steps, despite starting outside of the feasible (fair) set; we attribute
this to the large initial step size, which is not guaranteed to eliminate non-linear
behaviors of L and V within the linear approximation trust-region.

The set of achievable loss vectors A for the task is defined by the convex hull of these

samples A = Hull({ℓi : i ∈ [n]}).

In our experiments, we consider logistic classifiers trained on different weighted

logistic loss functions for the binary classification task, intended to simulate variable

participation rates. For each classifier i ∈ [n], we sample a vector of objective function

term weights β uniformly at random from the (k − 1)-simplex (
∑k

g=1 βg = 1) and
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solve the regularized logistic classification task

min
w

k∑

g=1

lg(w)βg +
1

2
|w|2;

lg(w) = E
X,Y,G∼S

[HY (hw(X)) | G = g] ;

Hp(q) = −p log q − (1− p) log(1− q);

hw(X) =
1

1 + e−⟨X,w⟩ .

(4.10)

We train each possible classifier using the limited-memory method of Broyden, Fletcher,

Goldfarb, and Shanno (LBFGS) (Liu and Nocedal, 1989), as implemented by scikit-learn

(Pedregosa et al., 2011).

Synthetic Distribution Shift We model the function f that maps group loss to

group participation rate as a reversed logistic function parameterized by bias and

sensitivity parameters b ∈ (−1, 0) and s > 0, respectively, and clipped to the interval

[0, 1]. That is, we model φ as

φ(x) = max
[
0,min[1, ϱ(x)]

]
;

ϱ(x) =
1

1 + es(x−b)
; x ∈ [−1, 0].

(4.11)

For intuition, this same function is used in the upper-left panel of Fig. 3.2 with parame-

ters (s = 20, b = −0.62).

Hyperparameters We use a learning rate that decays as a harmonic series:

ηt = η1/t; t ∈ {1, 2, ...}. (4.12)

66



All experiments follow the same decay schedule and run for the same number of steps

(i.e., 30), but the initial learning rate η1 is equal to half of the diameter of A. Each

experiments run in less than 60 seconds on a typical laptop CPU.

We set initial conditions ℓ0, the participation function parameters (b, s) (Section 4.1.3),

and the fairness slack parameter ε (Eq. (4.7)) to demonstrate qualitatively diverse

simulation outcomes among our included results.

Results In all experiments, CPG achieved a feasible local optimum of the objective,

while RGD and MPG did so only rarely. In (Figs. 4.1 to 4.3), we highlight a few examples

of our experimental results on the following tasks:

• Income: “Income” task of Ding et al. (2021b) with groups redefined to coincide

with the binary classification label and restricted to data from Alabama.

• MovieLens: From user age, occupation, and gender, predict whether this user

exhibits a stronger-than-median preference for “mystery” rather than “adventure”

films, using zero-one loss and targeting equal user rates across gender. The data

for this task comes from Harper and Konstan (2015).

• IncomeThree: “Income” task of Ding et al. (2021b) with groups expanded to

three divisions of income (below $60K, between $60K and $120K, above $120K)

and restricted to data from Alabama.

As our algorithms are deterministic, we do not consider multiple runs for the same

setting and leave characterizations of the robustness of these algorithms in terms of

different hyperparameters to future work.

In Figs. 4.1 to 4.3, the first pane visualizes the set of achievable losses, A, and the

samples used to generate it, where the axes correspond to each group’s loss. The
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second pane visualizes the corresponding set of achievable participation rates ρ with

axes corresponding to each group’s participation rate. The last pane plots total loss and

disparity vs. time-step for all three methods in the given setting. In Figs. 4.1 and 4.2,

an additional pane demonstrates the non-convexity of the total loss and disparity

surfaces along a curve corresponding to all ℓ ∈ A which maximize distance from the

origin, with angle from the x-axis parameterized by ϕ. In all figures, a distinct marker

represents each method (i.e., RRM, MPG, CPG) and their shared initialization across all

panes.

4.2 Alignment via Feedback Control

Parts of this section are adapted from previously published work by Raab and Liu (2021).

In this section, we revisit the dynamical environment of Section 3.5.1. In this setting,

agents affected by a binary classification policy (Section 2.1.4) used for approving loans

must choose whether to become (un)qualified for the loan as time evolves. Modelling

this decision according to evolutionary game theory, we assume that group qualification

rates obey the replicator equation (Eq. (3.10) and Appendix A).

We recall

stg =
st−1
g Qg(θ

t)

st−1
g Qg(θt) + (1− st−1

g )Ng(θt, t)
, (4.13)

where stg represents the qualification rate of group g at time /(t), Qg(θ
t) represents

the expected utility to an agent in group g of qualification as a consequence of the

policy parameterized by θt, and Ng(θ
t) likewise represents the expected utility of

non-qualification.

As shown in Section 3.5, it is possible for present-normative interventions in this setting,

such as demographic parity or equalized odds (Section 2.2) to backfire, artificially
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causing underlying inequities in the population to persist, requiring interventions with

increasing magnitude over time, and increasing loss for the policy-maker.

Laissez-Faire Solutions

Before analyzing how we can utilize the dynamics of the setting to refine our algorithm

design, we first perform a dynamical analyses of the laissez-faire setting, in which

fairness constraints are absent, when the policy-maker uses repeated risk minimization

(RRM, Section 3.3.1). We recall that the loan-approval policy is a threshold policy,

accepting applicants with features above a group-specific threshold X ≥ θg and

rejecting all others. We also recall the definition of qy(x) := Pr(x | Y=y) where

y ∈ {−1, 1} (Eq. (3.26)), such that q1(x)/q−1(x) is a monotonically increasing function

of x (Asm. 3.5.1).

In this case, the thresholds θt+1
g may be found in closed form by inverting the equations

∀g, q1(θ
t+1
g )

q−1(θt+1
g )

=

(
1− stg
stg

)(
C−1,−1 − C−1,1

C1,1 − C1,−1

)
, (4.14)

where Cy,ŷ represents the utility to the classifier of an individual outcome with qualifi-

cation y and decision ŷ. This solution corresponds to setting the group-thresholds at

the feature values for which an individual in each group yields an expected classifier

utility that is independent of whether the individual is qualified or unqualified.

Note, as a consequence of Asm. 3.5.1, that

∂

∂θt+1
g

stg < 0. (4.15)

That is, as the qualification rate s of group g increases, the critical threshold value

θg with decrease in response. Intuitively, when a group is statistically more qualified,

69



middling credit scores are more likely to be the consequence of noise for truly qualified

individuals while only very low credit scores reliably indicate non-qualification for a

loan. As a result, it becomes easier to get a loan when your peer-group is statistically

more qualified.

Equilibrium Given analytic solutions for the RRM policy without interventions,

we can solve explicitly for system equilibria. Let us abbreviate Qg(θ
t+1
g ) ≡ Qt+1

g and

Ng(θ
t+1
g ) ≡ N t+1

g . Inspecting Eq. (3.32), we notice that

Qt+1
g > N t+1

g =⇒ Qt+1
g

stgQ
t+1
g + (1− stg)N

t+1
g

> 1 =⇒ st+1
g > stg. (4.16a)

Qt+1
g = N t+1

g =⇒ Qt+1
g

stgQ
t+1
g + (1− stg)N

t+1
g

= 1 =⇒ st+1
g = stg. (4.16b)

Qt+1
g < N t+1

g =⇒ Qt+1
g

stgQ
t+1
g + (1− stg)N

t+1
g

< 1 =⇒ st+1
g < stg. (4.16c)

and, therefore,

sgn
(
st+1
g − stg

)
= sgn

(
Qg(θ

t+1
g )−Ng(θ

t+1
g )

)
. (4.17)

This provides a succinct description of equilibrium: Each group is in equilibrium when

qualification and non-qualification yield the same expected utility (discounting the

state in which everyone is (non-)qualified):

Equilibrium ⇐⇒
(
Qg(θg) = Ng(θg) or sg ∈ {0, 1}

)
. (4.18)

Before proceeding, we recall Asm. 3.5.2, which states that agents care about the decision

of the classifier, and qualified agents prefer to get the loan (i.e. A−1,1 ̸= A−1,−1 and

A1,1 > A1,−1).
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Theorem 4.2.1 (Strict Quasiconcavity). Qg(θg)−Ng(θg) is strictly quasi-concave in

θg . This guarantees that no more than two zeros of the function (Qg(θg)−Ng(θg)) exist,

each corresponding to a potential equilibrium.

Stability Having described the possible equilibria of the system, we now determine

whether these equilibria are stable or unstable.

Let us denote the possible zeros of (Qg −Ng) as θ−g and θ+g , such that θ−g < θ+g . Note

that the superscripts of (+) and (−) do not refer to relative time indices. By Eq. (4.17),

only θ−g is stable, as depicted in Fig. 4.4.

Qg(θg)−Ng(θg)

θg
−∞ ∞

A1,1 −A−1,1

A1,−1 −A−1,−1

0

θ⋆g
θ−g θ+g

Figure 4.4: Qg(θg)−Ng(θg) (blue curve) is a strictly quasi-concave function of θg . We
use θ⋆g to denote the unique maximum. The direction of the arrows is a consequence of
Eq. (4.17) and Eq. (4.15).

4.2.1 Intervention Geometry

Equipped with an analytical handle on the optimal classifier policy for this setting, we

briefly discuss a geometric interpretation of equalized odds in this setting.

Given our assumption that qy is group-independent, the only way to satisfy equalized

odds with threshold policies is to use a group-independent threshold value θ for all g.

Under this constraint, we can solve explicitly for the global threshold θ in terms of the

71



average qualification rate s substituted into Eq. (4.14):

q1(θ
t+1

)

q−1(θ
t+1

)
=

(
1− st

st

)(
C−1,−1 − C−1,1

C1,1 − C1,−1

)
, where st := E

G
[stG]. (4.19)

Geometrically, all states with a common s value form a hyperplane in the vector space

of s. Generalizing Thm. 4.2.1, it follows that there are at most two distinct equilibrium

hyperplanes. This geometry is apparent in the Equalized Odds panes of Fig. 3.4, where

the streamlines terminate along a single hyperplane (the line from upper left to lower

right).

We reiterate that Equalized Odds does not, in general, lead to qualification rate parity

nor group-independent statistics.

4.2.2 Basic Feedback Control

In the setting under consideration, given that laissez-faire policies converge to equi-

table states, should we dispense with fairness constraints altogether? Perhaps not:

Such constraints do at least satisfy intuitive notions of fairness, even if they lead to

undesirable long-term results. Is there a way to parameterize the trade-off between

the two?

We show that it is possible to interpolate between short-term (present normative) and

long-term notions of fairness by perturbing the equalized odds policies in the direction

of laisez-faire policies. That is, with parametrically small violations of equalized odds,

we can guarantee convergence of the system to the an equitable equilibrium with

group-independent qualification rates.

Using θ to denote the group-independent policy given by Eq. (4.19), then we may write

an appropriate perturbation for the case of two equal-sized groups as a parametric
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example of feedback control:

θt+1
1 = θ

t+1
+ ε

(
st1 − st2

)

2st1(1− st1)
. ; θt+1

2 = θ
t+1 − ε

(
st1 − st2

)

2st2(1− st2)
. (4.20)

We derive the analogous perturbation for N groups of differing size in Raab and

Liu (2021). Importantly, this policy does not require intimate knowledge of the utility

structure of the classifier nor of the agents, and is driven by measurements of quantities

that should be observable in hindsight (true qualification disparities). This intervention

also has the desirable property of being self-abating (it is only required to reach a

target equilibrium, rather than maintain it). As the system transitions to the target

equilibrium, the intervention vanishes, reverting to laissez-faire, natural equilibrium

policies.

4.2.3 Experiments

We now compare the qualitative effects of the feedback policy given in Eq. (4.20) to the

set of policies previously considered in Section 3.5.1 in simulation.

Fig. 4.5 provides “phase diagrams” of the dynamics that arise from the mutual recursion

between policy-maker and the population under different interventions. It mirrors

the presentation of Fig. 3.4, but includes an example of the feedback control policy

(Eq. (4.20)) in the third pane. We highlight that the feedback control policy achieves the

same, desirable equilibrium that the laissez-faire policies do while minimally violating

equalized odds (represented visually by the symmetry of shading, which is perfect in

the second pane and only slightly distorted in the third pane).
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Figure 4.5: Simulated dynamics for two groups of equal size, subject to different global
interventions. Streamlines approximate system time evolution. Color represents the
false positive classification rate for group 1. q−1 and q1 are Gaussians with unit variance
and have means −1 and 1, respectively. For this example, (A−1,−1 = 0.1; A−1,1 = 5.5;
A1,−1 = 0.5; A1,1 = 1.0;C−1,−1 = 0.5; C−1,1 = −0.5; C1,−1 = −0.25; C1,1 = 1.0).

4.3 New Possibilities for Algorithmic Fairness

In Sections 4.1 and 4.2, we introduced new fairness constraints: The first of these was

participation rate parity, while the second was qualification rate parity.

Importantly, these definitions do not fit into the paradigm of present normative in-

terventions. They are not operative without knowledge of distribution shift, and are

not compatible with the assumption that the distribution is static. Only by antic-

ipating policy-induced distribution shift can either of these fairness definitions be

systematically improved.

Reintroducing general group-based fairness constraints as formulated in Eq. (2.15), we

define the disparity function V in terms of a group-specific quantity ξg that depends
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on the policy θ and the distribution D.

V(θ,D) = Var
g

[
ξg(θ,D)

]
:=

1

n

n∑

g=1

∥∥ξg(θ,D)− ξ(θ,D)
∥∥2

=
1

n

n∑

g=1

∥∥ξg(θ,D)
∥∥2 −

∥∥ξ(θ,D)
∥∥2,

(4.21)

Continuing to use this formulation we define participation parity and qualification

rate parity.

Participation Parity is defined by the group-independence of participation rates by

combining Eqs. (4.21) and (4.22):

ξg(θ,D) := Pr
G∼D

(
G = g

)
. (4.22)

Qualification Rate Parity may likewise be defined as the group-independence of

qualification rates by combining Eqs. (4.21) and (4.23)

ξg(θ,D) := Pr
Y,G∼D

(
Y = 1

∣∣ G = g
)
. (4.23)

This measure of disparity is considered by Raab and Liu (2021); Zhang et al. (2020).

Unlike standard measures of unequal treatment subject to ML policy, neither Eq. (4.22)

nor Eq. (4.23) depend on the policy (i.e., the variable Ŷ ) at all. Instead, both measure are

inherent to the distribution and can only be acted on by the policy by inducing changes

in the underlying distribution.

By integrating awareness of policy-induced distribution shift into our algorithm devel-

opment, this chapter has shown that we may treat a strictly wider class of disparity

measures than standard, present-normative measures. In the next chapter, we show
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that a reinforcement-learning based approach to alignment in dynamical environments

can learn to avoid the familiar trap of pursuing short-term fairness metrics only to

widen underlying disparities that demand escalating interventions at the expense of

utility (Section 4.1.3).
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5 Bringing Alignment Online
How can we guarantee alignment for AI systems that interact with complex, multiagent

environments that are difficult to model or predict?

In unknown environments, we are forced to learn policies (or models of the environ-

ment) online—i.e., through live, irreversible interactions with the environment. This

problem domain is known as “online learning”.

The use online learning for socially consequential tasks is fraught with ethical complica-

tions: To some degree, online learning amounts to some degree of “live experimentation”

on affected populations. A more conservative interpretation of online learning, how-

ever, would be “learning from past mistakes”. We endorse the latter interpretation and

emphasize that the alternative to online learning is not learning from one’s actions.

In order to consider online learning techniques for realistic use cases, we typically

want theoretical guarantees about the performance and alignment of the system. While

guarantees relating to the primary objective (i.e., L) are standard within this domain,

guarantees about constraints (i.e., V in our formulation) remains an active area of

research, including “safe reinforcement learning” as discussed in Section 2.4.3.

In this chapter, we formulate the central problem of AI alignment as an online re-

inforcement learning problem (i.e., a “partially observable Markov decision process”

(POMDP)). To address this formulation, we also review an online reinforcement learn-

ing technique that provide simultaneous guarantees for L and V (subject to certain

assumptions). We also consider the applicability of more established reinforcement

learning (RL) techniques to the problem.

Parts of this chapter are adapted from previously published work by Yin et al. (2023).
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5.1 Alignment as an RL Problem

In Section 4.2, we considered a alignment as control problem, in which the goal of

an algorithmic agent is to drive system dynamics towards a desirable outcome. We

saw that such policies could be parameterized to make trade-offs between short-term

goals (such as normative present group-fairness targets) and long-term goals (such as

reaching inherently equitable system states). Moreover, we saw that the alignment

between short-term and long-term could be dependent on the state of the system.

In this section, we reformulate our objectives to account for such trade-offs. In order

to limit short-term disparities while also seeking aligned long-term outcomes, we

will define cumulative notions of loss (L) and disparity (V). In building towards this

reformulation of our objectives, we first adapt standard RL concepts to our purpose.

Markovian Dynamics In Section 3.2, we discussed different models of how multia-

gent systems might dynamically evolve and react to algorithmic policies. One such

model, highlighted in Section 3.2.3, is that of Markovian dynamics, in which the state

s of the system (from which the distribution D may be derived) evolves stochastically

according to a “transition kernel” P that depends on the deployed policy.

st ∼ P(θt, st−1). (5.1)

We stipulate that P may be initially unknown, but we assume that it does change with

time.
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5.1.1 States, Policies, and Meta-Policies

In the standard reinforcement learning setting, we consider a policy for stochastically

selecting actions in different states. In our current setting, we wish to know the

appropriate policy (e.g., for classification or prediction tasks on a population) to deploy

given the currently observed state (and distribution). To disambiguate these notions of

policy, we refer to a “meta-policy” π that stochastically selects the policy θ (hθ) as a

function of the state (and thus distribution) s. This identifies θ with an “action” in the

typical RL framing.

θt ∼ πt(st). (5.2)

Our goal is to find an appropriate algorithm for refining π over time.

To simplify our setting further, we assume that the state s, evolving according to

Eq. (5.1), is fully observable to the policy-maker, and that we identify the state with the

joint distribution of variables relevant to the policy hθ, i.e., s ≡ D. In the notation of

Section 3.2.2, where we relate state variables s and the entailed distribution D according

to Dt = M(st), this assumption is equivalent to setting M equal to the identity, such

that

st ≡ Dt. (5.3)

5.1.2 Value and Quality Functions

The standard objective of reinforcement learning, which we seek to maximize, is

the expected cumulative value of some reward subject to dynamic uncertainties. We

will identify reward with negative loss, −L. The difficulty of this problem is that this

expectation value must be taken over all possible future trajectories, as both θ (governed

by π) and s (governed by P) evolve in time.
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Given a fixed policy π, this objective is easily expressed using the letter “V ”, for “value”,

as in

VL(π, s) := −E

[ H∑

τ=0

γτL(θτ , sτ )
∣∣ s0 = s

]
. (5.4)

The parameter γ ∈ (0, 1] corresponds to an exponential discounting, giving multiplica-

tively less weight to future outcomes compared to proximal outcomes, while the value

of H parameterizes a (finite) time-horizon.

The value function V is related to the commonly defined Q function, which evaluates

the “quality” of state-action pairs, by the Bellman equation and “dynamic program-

ming”:

QL(π, s, θ) := E
s′∼P(s,θ)

[
− L(θ, s) + γVL(π, s

′)

]
(5.5)

VL(π, s) = E
θ∼π(s)

[
QL(π, s, θ)

]
(5.6)

For our purposes, we define Q and V functions for both cumulative loss (L) and

cumulative disparity (V):

QV(π, s, θ) := E
s′∼P(s,θ)

[
− V(θ, s) + γVV(π, s

′)

]
(5.7)

VV(π, s) = E
θ∼π(s)

[
QL(π, s, θ)

]
(5.8)

5.1.3 The Constrained RL Problem

For a given initial state s0, we formulate the following RL problem:

maximize
π

VL(π, s
0) (5.9)

subject to VV(π, s
0) ≥ ε. (5.10)
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Note that the semantics of the optimization problem have changed slightly compared to

our earlier optimization problems, because we now seek to maximize both V functions

(which is the convention in RL), rather minimize them (which is the convention in

optimization).

Prob. (5.9) is a constrained reinforcement learning problem. In general, such problems

are very difficult without restrictive assumptions about the system dynamics and the

structure of L and V . This remains an active area of research.

5.2 Scheduled Lagrangian Regularization

One way to approximately solve Prob. (5.9) is to solve a Lagrangian relaxation of the

problem. The new, “relaxed” objective may be expressed as

maximize
π

VL(π, s
0) + νVV(π, s

0), (5.11)

for some chosen dual variable ν ≥ 0. In Appendix C, the expression that we seek to

extremize in Prob. (5.11) as the Lagrangian (Appendix B).

This new problem is an unconstrained optimization problem, which is the bread-and-

butter of machine learning: Standard RL techniques will address this problem subject

to Markovian dynamics. The only trick is to choose ν appropriately.

5.2.1 Finite Horizon Interpolation

A standard trick for such Lagrangian relaxation is to vary ν according to an increasing

“schedule” in time t, effectively requiring increasing strictness with respect to the

constraint over time.

We can use this idea by varying the weight assigned to the terms that add to VL and VV
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over time (Eq. (5.4)). For simplicity, we can simply linearly interpolate between VL and

VV over the finite time horizon H . Let us define the following objective, once more

expressed as a target to minimize:

minimize
π

E

[ H∑

t=0

(1− λt)L(θt, st) + λtV(θt, st)
]
, (5.12)

where λt = t/H .

In experiment (Section 5.4), we use an “off-the-shelf” RL algorithm, viz., “Twin-Delayed

Deep Deterministic Policy Gradient” (TD3) (Fujimoto et al., 2018) to solve Prob. (5.12)

episodically, with an implementation and default parameters provided by the open-

source package “Stable Baselines 3” Raffin et al. (2021). We will refer to this implemen-

tation as “R-TD3”.

5.3 Bounding Regret

The method provided in Section 5.2, while intuitive, does not provide rigorous guaran-

tees regarding the constraint of VV . Part of the problem is that the dual variable ν has

a “correct” value in theory, but Section 5.2 does not seek to find it: it merely starts off

relatively ignorant of the constraint, then becomes overly conservative with time in

the hope that the dynamics have been appropriately “learned” by that point. Can we

provide guarantees regarding VV while learning an appropriate value of ν?

Because we have assumed stochastic dynamics, it is not possible to guarantee con-

straint satisfaction in Prob. (5.9) over a finite number of online steps. Rather than

seeking to solve this problem exactly, we can instead develop algorithms that solve

this problem approximately—i.e., by finding policies with bounded suboptimally or

constraint violation.
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Again because the Markovian setting is inherently probabalistic, it is also impossible

to guarantee hard limits on suboptimality or constraint violations. Instead, we can

only provide probabalistic guarantees for algorithm performance, limiting the degree

to which the proposed methods might fail to solve Prob. (5.9).

In this section, we build towards an algorithm that provides probabalistically sublinear

bounds on two forms of regret, a standard notion in online learning that measures

suboptimiality in hindsight.

5.3.1 Two Types of Regret

Denote the optimal value of π (defined with respect to VL alone, ignoring VV constraints)

as π⋆. We define loss-regret as the suboptimality of VL with respect to π⋆ and constraint-

regret as the suboptimality of VV with respect to the maximum allowed value ε:

RegretL(π, s) := VL(π
⋆, s)− VL(π, s). (5.13)

RegretV(π, s) := max [0, ε− VV(π, s)] . (5.14)

5.3.2 Novel Theoretical Guarantees

With Yin et al. (2023), I helped to establish the first model-free, simulator-free algo-

rithm to provide simultaneous, probabalistic bounds on both RegretL and RegretV

for continuous states (s) and policies (θ). These results rely on several simplifying

assumptions (Asms. 5.3.1 to 5.3.3).

Assumption 5.3.1 (Strict Feasibility). Prob. (5.9) is strictly feasible. That is,

∃π, ∀s, VV(π, s) > ε (5.15)
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Asm. 5.3.1 is a standard assumption necessary that ensures that it is possible to satisfy

the constraint of Prob. (5.9) in theory.

Next, generalizing Section 3.2.3, we assume a known feature map ϕ for which the state

transitions and the values of L and V are linear.

Assumption 5.3.2 (Linear MDP). Given a feature map ϕ, there exist a family of vectors

µ[s′] mapped by s′, as well as vectors µ[L] and µ[V ], such that

Pr(s′ | s, θ) =
〈
ϕ(s, θ), µ[s′]

〉
. (5.16)

L(s, θ) =
〈
ϕ(s, θ), µ[L]

〉
. (5.17)

V(s, θ) =
〈
ϕ(s, θ), µ[V ]

〉
. (5.18)

The assumption of the existence of ϕ is no less justified than Eq. (3.12) when s belongs

to the infinite-dimensional Hilbert space of all possible observables of a system. In

practical use, s must be finite-dimensional, and we can only hope to approximate

the conditions assumed by Asm. 5.3.2. The assumption that ϕ is known still qualifies

L-UCBFair as an online algorithm, insofar as the µ vectors are not known.

Assumption 5.3.3 (Lipschitz Policies). ϕ is Lipschitz continuous in θ. That is, there

exists a value α > 0, such that

∥ϕ(s, θ)− ϕ(s, θ′)∥2 ≤ α∥θ − θ′∥2. (5.19)

Asm. 5.3.3 is useful for justifying an approximation that discretizes the space of policies

represented by θ.
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L-UCB Fair

L-UCBFair, or “LSVI-UCB for Fairness” (Yin et al., 2023) is based on a Least-Squares

Value Iteration (LSVI) with an optimistic Upper-Confidence Bound (UCB), as in LSVI-

UCB (Jin et al., 2020). This algorithm operates on episodes of length H , pre-committing

to a policy πk for the entire episode before updating to policy πk+1 for the next episode

in the online setting.

During each H-step episode, L-UCBFair maintains constant estimates for QL(π
⋆, ·, ·)

and QV(π
⋆, ·, ·) (Section 5.1.2). These estimates are achieved, as in Jin et al. (2020), by

assuming a linear form analogous to and (justified by) Eq. (5.17), parameterized by a

learned weight vector w:

QL(π
⋆, s, θ) ≈

〈
ϕ(s, θ),w

〉
. (5.20)

L-UCBFair also maintains estimates for Lagrangian dual variable ν ( Prob. (5.11)) for

which the objective values of Prob. (5.9) and Prob. (5.11) achieved by π⋆ (Section 5.3.1)

coincide.

To deal with the fact that θ-space is continuous (and potentially quite large), we rely

on the Lipschitz assumption (Asm. 5.3.3) to justify discretizing this space according

to a Voronoi scheme with M regions of maximum radius ϵI . Policies are selected

stochastically, as a function of state, according to a distribution over partitions, then

uniformly at random within each partition. [Bounded Regrets (Yin et al., 2023)] With

probability p, over K episodes, L-UCBFair achieves

RegretL,RegretV ∈ O
(
log

(
HdK

1− p

)
H2

√
d3K

)
. (5.21)
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We provide additional details and discuss the proof of Section 5.3.2 in Appendix C.

5.4 Experiments

In this section, we evaluate a Lagrangian-relaxation approach to Prob. (5.9) (i.e., R-TD3

Section 5.2) to the Voronoi-LSVI-UCB method (i.e., L-UCBFair) and present-normative

baselines. Our central hypothesis is that an RL formulation of alignment should allow

a model to learn to sacrifice short-term utility and present-normative constraints in

order to drive the system towards more desirable equilibria, where beneficial. Moreover,

we hope to show that this can be achieve online.

5.4.1 Revisting a Familiar Setting

We evaluate our proposed methods in semi-synthetic experiments, which model a mul-

tiagent environment using the now-familiar model of Section 3.5: We model evolving

group qualification rates according to the replicator equation Eqs. (3.32) to (3.34) and

consider a binary classification task (Section 2.1.4) using a threshold classifier on scalar

features.

Data and Task We incorporate real-world data into our numerical experiments,

provided by a standard “Census Income” or “Adult” data set (for which the canonical

task is the prediction of income from 1993 census information (Dua and Graff, 2017)).

In Fig. 5.1, we compare L-UCBFair and R-TD3 to repeated risk minimization (RRM;

Section 3.3.1).
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Loss For this task, we define loss L as the opposite of the true-positive classification

rate.

L(θ, s) = −Pr
(
Ŷ=1 | Y=1

)
. (5.22)

Comparing this notion of loss to the model of classifier utility defined in Eq. (3.29), this

is equivalent to choosing a classifier utility matrix Cy,ŷ equal to



C−1,−1 = 0 C−1,1 = 0

C1,−1 = 0 C1,1 = 1


 . (5.23)

Disparity We define disparity V as twice the value defined by (Eqs. (2.15) and (2.18)).

V(θ, s) = 1

2

∥∥∥Pr
θ,s
(Ŷ=1 | G=1)− Pr

θ,s
(Ŷ=1 | G=2)

∥∥∥
2

(5.24)

= 2Var
g

[
Pr
θ,s
(Ŷ=1 | G=g)

]
. (5.25)

Preprocessing To map the classification task to one over scalar features while incor-

porating real-world data in multiple dimensions, we require a preprocessing pipeline.

For each simulated state sg , we perform a preprocessing step re-weights sample-losses

on an initial regression task (to mimic counter-factual group qualification rates sg):

The outputs of the trained regressor, corresponding to predicted probabilities of qual-

ification, are used as synthetic feature values to generate semi-synthetic conditional

distributions Pr(X | Y,G). The full, semi-synthetic distribution reported to the classi-

fier is a product of these conditional distributions and the modelled group qualification

rates.

The advantage of using a logistic regression pre-processing step is the ability to satisfy

Eq. (3.27) (which posits that X is a “well-behaved” feature on which the likelihood of
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qualification is monotonically dependent). This justifies the use of threshold policies.

An additional pre-processing step that we use, in order to approximately satisfy

Asm. 5.3.2, is to train a neural-network to approximate the feature-map ϕ offline.

RRM Baseline: “Myopic-Fair” We define the “Myopic-fair” baseline as the policy

that optimizes, as a function of state s the regularized objective:

minimize
θ

L(θ, s) + V(θ, s). (5.26)

5.4.2 Results

In Fig. 5.1, we compare the myopic-fair baseline to L-UCBFair and R-TD3. In this

example setting, the myopic baseline exhibits qualitatively similar behavior to the

baseline in Sections 3.5.2 and 4.2.3 subject to demographic parity: the qualification

rates of both groups diverge as a result of the present normative intervention.

In contrast to the myopic baseline, both L-UCBFair and R-TD3 are able do drive the

system towards more desirable states characterized by higher group qualification

rates that converge closer to each other. Importantly, this result is aligned with the

cumulative definition of loss: lower mean cumulative loss, as depicted in the lower half

of the figure, is achieved by L-UCBFair and R-TD3 than the baseline policy.

This experiment confirms that that an RL formulation of alignment can allow a model

to learn to sacrifice short-term utility and present-normative constraints (which are

greedily pursued by the baseline policy) in order to drive the system towards more

desirable equilibria as defined by cumulative loss.
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Figure 5.1: (Above) Phase diagrams (introduced in Section 3.5.2) for three algorithms
in the same setting: The “Myopic-fair” baseline, L-UCBFair, and R-TD3. (Below) A
comparison of cumulative losses between the algorithms achieved from a uniform
distribution over initial states. Note that the color scales on the upper diagram are not
equal and represent violations of demographic parity.
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6 Conclusion
In this dissertation, we have shown that multiagent dynamics, especially in the form

of policy-induced distribution shift, must be accounted for if we wish to intervene on

AI systems and align their behaviors with human goals, values, and ethical principles.

In particular, we have repeatedly highlighted the potential failure modes of “present

normative interventions”: Solving the alignment will not be accomplished by finding

the right optimization problem to solve as an ML task as long as dynamical realities

are ignored.

To deal with realities of multiagent dynamics that surround AI systems in socially con-

sequential positions, we have explored problem formulations that rely on constrained

optimization, dynamical stability and control, and online reinforcement learning. With

each problem formulation, we have explored increasingly more complex models of the

dynamics of the multiagent system until arriving at, and incrementally extending, the

limit of what current theory can prove as far as safety guarantees are concerned.

6.1 Closing Remarks

In this dissertation, we have considered only a tiny subset of the possible multiagent

dynamics that ML systems may interact with, and we have remained largely agnostic

to the plethora of mathematical definitions that have been proposed for “alignment”.

Our contribution might be described an initial “recipe book” of methods and strategies

for dealing with potential “alignment problems” on a case-by-case basis, depending on

the problem and the anticipated dynamical context.

To the extent that the alignment problem, writ large, is self-consistent or well-defined,

it may be the case that it is not really an ML problem: In truth, it is not clear that human

institutions have “solved” the alignment problem for humans (or for our institutions).
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Society continues to grapple with what “human goals, values, and ethical principles”

really are, and the historical record indicates that such ideals are culturally constructed,

adapted to circumstance, changing over time. To the extent that we agree on common

values, codified in law or reinforced as norms, their enforcement mechanisms do not

depend on mathematical expression, but on power and politics.

Even if we knew how to regulate and control AI, its regulation in practice will depend

on political force and foresight. My hope is that this dissertation at least frames

the problem in terms of dynamical systems and control, multiagent systems, and

game-theoretic incentives. As we have shown, when we do account for multiagent

system dynamics and correctly aligned incentives, the powerful tools we have built for

numerical optimization have the potential to realize the long-term goals we give them.
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A Replicator Dynamics
“Replicator dynamics” refers to a model for the population dynamics of competing and

replicating (i.e., reproducing, multiplying) types (e.g. species, genes, or phenotypes).

Despite originating as a model for biological systems, replicator dynamics also provides

a foundational model for evolutionary game theory, where types can imply competing

strategies, hypotheses, or norms.

In this appendix, we discuss the replicator dynamics as described by the replicator

equation and briefly discuss an original result connecting the replicator equation to

the mathematics of gradient descent.

Parts of this appendix are adapted from previously published work by Raab et al. (2022).

A.1 The Replicator Equation

The replicator equation has been applied to game theory (Hofbauer et al., 1998; Sand-

holm, 2010; Cressman and Tao, 2014; Friedman and Sinervo, 2016), economics (Fried-

man, 1991), and machine learning (Hennes et al., 2019).

In the replicator equation, the absolute fitness (in this paper, the negative loss L ) of

hypotheses h ∈ H is identified with its rate of replication: exponential growth (or

decline) in a population where different hypotheses compete for relative frequency

ρ(h) ∈ [0, 1]. For probability distributions over hypothesis space H, this equation

induces replicator dynamics, selecting hypotheses with lower than average loss.

In continuous time, the replicator equation is

ρ̇(h) = ρ(h)
[
L ρ − L (h)

]
, where L ρ :=

∑

h

ρ(h)L (h),
∑

h

ρ(h) = 1. (A.1)
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Although we allow ourselves to omit time-indexing for ρ and L in Eq. (A.1), these

quantities are time-varying.

In discrete time, the replicator equation is

ρ(h)t+1 := ρt(h)
W t(h)

W
t

ρ

where W
t
:=
∑

h

ρt(h)W t(h), (A.2)

where these two equations are related by

log
[
W (h)

]
= −L (h).

A.2 Conjugate Natural Selection

In Raab et al. (2022), I prove that the replicator equation, is optimally approximated by

Fisher-Rao natural gradient descent (FR-NGD).

FR-NGD is an update given in continuous time by

θ̇ = −∇θL (hθ)
⊤F (θ)†, (A.3)

where ∇L (hθ) is the normal loss gradient with respect to θ and F is the “Fisher”—the

Hessian of a Kullback-Leibler divergence in ρ-space taken with respect to θ. That is,

F [x] =
∂2

∂x2
DKL

(
ρx ∥ ρt

)
. (A.4)

When x is a vector with components (e.g. xi, xj), then F is matrix with entries given

by

Fij[x] = Cov
H∼ρx

[
∂

∂xi
log ρx(H),

∂

∂xj
log ρx(H)

]
. (A.5)
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The dagger (†) in Eq. (A.3) indicates a Moore-Penrose pseudoinverse.

Figure A.1: We visualize an analogy for how the use of the metric F † in Eq. (A.3)
can cause FR-NGD to differ from regular gradient descent by modifying local relative
distances: The direction of travel from Rome (point R) that most rapidly decreases one’s
distance from Chicago, when measured in the Euclidean space of latitude-longitude
pairs (λ, φ), is nearly due west (vector W), because Rome and Chicago have nearly
the same latitude λ. Performing gradient descent with an implicit Euclidean metric
for parameter space is similarly naive. Vector C is tangent to the true shortest path in
physical space: north-west at an angle of nearly 35 degrees downwards. Like the update
given by the replicator equation, this direction may not be tangent to the manifold M.
Constrained to M, the optimal approximation of the direction of C is its projection, G:
north-west, tangent to the surface, and tangent to the geodesic from Rome to Chicago
on the surface of the sphere. Map Data Credit: NASA Visible Earth.

In Fig. A.1, we provide an analogy for how F † affects parameter updates in Eq. (A.3), in

contrast to the identity matrix (standard gradient descent): Both a flat map and a globe

“warp” our perception of local distances and angles, distorting our perception of the

shortest route (closeness to the replicator equation) between two points on Earth (the

θ-manifold M of distributions ρ). Intuitively, F † warps the space to equate distance

with the information about ρ implied by changes in θ.

A.2.1 Optimal Approximation

Theorem A.2.1 (Conjugate Natural Selection). For any twice-differentiable, paramet-

ric probability distribution ρθ over hypotheses h ∈ H, FR-NGD minimizes the Fisher
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Divergence from the replicator equation, denoted E :

E :=
1

2

∫

H

∫

H

(
ρ̇θ(h)− ρ̇⋆(h)

)
F †[ρ](h, k)

(
ρ̇θ(k)− ρ̇⋆(k)

)
dh dk . (A.6)

E measures how different, on average, ˙ρθ(h) (i.e., the update to the distribution pre-

scribed by FR-NGD) is from ρ̇⋆(h), the update prescribed by the replicator equation.

This result, which I term “conjugate natural selection” is proven in Raab et al. (2022)

along with the correspondence of FR-NGD to continuous Bayesian inference.

A.2.2 Use for Learning

We may use conjugate natural selection to approximate evolution of distributions over

solutions to highly-convex problems. Such an idea is represented by Fig. A.2: We use

FR-NGD to update the parameters of a Gaussian distribution over candidate minimizers

of the Rastrigin function,

L (hx, hy) = 20 + h2
x + h2

y − 10 cos(2πhx)− 10 cos(2πhy), (A.7)

The surface of this function is depicted in the upper-right pane of Fig. A.2, clearly

showing its lack of convexity.

At each time step, N=40 hypotheses h are sampled from ρt and the loss for each h is

calculated, yielding a Monte Carlo estimate of the loss gradient.
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Empirical Losses vs Time
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Figure A.2: In the upper left, we plot the mean, standard deviation, and extremal
empirical losses for the learned distribution over 100 time steps. In the upper right,
the loss function is visualized as a surface over the domain [−6, 6] × [−6, 6]. In the
lower three panes, we represent time steps 0, 20, and 50 of the evolution: The Rastrigin
function is visualized with shading and highlighted level sets; the sampled hypothesis
are represented by white dots; and the 1- and 2-σ ellipses for the evolving Gaussian
distribution ρ are shaded white with partial transparency. The distribution is initialized
with mean at [−1.5,−1.5] and identity covariance, and we use a constant learning
rate of 1e−3 for the Euler update.
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B Constrained Optimization
Throughout this dissertation, we consider constrained optimization problems of the

form

minimize
θ

L(θ)

subject to V(θ) ≤ 0.

(B.1)

B.1 The Lagrangian

The theory for solving this sort of problem is well-articulated by introducing the concept

of the Lagrangian, Λ, which is a function of the decision variable θ (also referred to

as the “primal” variable) and a new variable ν that is referred to as a “multiplier” or

“dual-variable”.

Λ(θ, ν) := L(θ) + νV(θ). (B.2)

Prob. (B.1) may be re-expressed as

minimize
θ

[
max

ν

[
Λ(θ, ν)

]]

subject to ν > 0.

(B.3)

Intuitively, ν may be chosen adversarially (i.e., after θ is fixed). The problem, therefore,

requires the choice of some θ such that the constraint on V(θ) is satisfied: If it is not,

the objective can be made unboundedly large by some value of ν). Within the “feasible

set” of θ values that satisfy V(θ) ≤ 0, we seek to select the one for which L(θ) is

minimized.
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B.2 Primal-Dual Methods

The standard approach to numerically solving problems like Eq. (B.3) in practice is to

iteratively refine estimates for the optimal values of θ and ν: a generalization of the

idea introduced in Section 2.1.3.

A basic algorithm in the class of such “primal-dual” algorithms is one that relies on

gradient descent to update both θ and ν. Generalizing Eq. (2.5) with a Euclidean metrics,

at each time-step, we solve

θt+1 = argmin
θ

[〈
∇θΛ(θ

t, νt), θ − θt
〉
+

1

2η
∥θ − θt∥2

]
, (B.4)

νt+1 = argmax
ν≥0

[
(ν − νt)

∂

∂ν
Λ(θt+1, νt) +

1

2σ
∥ν − νt∥2

]
, (B.5)

for step-sizes η and σ.

Relabeling time-indices to consider the update to ν update before θ, this results in the

update rules

νt+1 = max

[
0, νt + σV(θt)

]
. (B.6)

θt+1 = θt − η

(
∇θL(θt) + νt+1∇θV(θt)

)
. (B.7)

B.3 Deriving Fletcher’s Method

Parts of this section are adapted from previously published work by Raab et al. (2024).

Fletcher’s penalty method (Fletcher, 1973) is outlined by Conn et al. (2000, Sec. 14.6) as

a surrogate objective or “merit” function Φ that we may seek to minimize in order to
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solve ( Prob. (B.1)):

Φ(θ) = L(θ) + max

(
0,

σV(θ)−
〈
∇L(θ),∇V(θ)

〉
〈
∇V(θ),∇V(θ)

〉
)
V(θ). (B.8)

The standard approach is to minimize Φ(θ), but the potential non-differentiability of

the coefficient of V(θ) can be problematic (Conn et al., 2000).

From this point on, we allow the shorthands

Lt ≡ L(θt), ∇Lt ≡ ∇θL(θt). (B.9)

V t ≡ V(θt), ∇V t ≡ ∇θV(θt). (B.10)

To avoid this potential non-differentiability, let us interpret the coefficient of V(θ) in

Eq. (B.8) as an estimate for the optimal dual variable ν resulting from a primal-dual

method with a non-standard regularization term. That is, replace the Euclidean update

penalty for ∥ν−νt∥2 in Eq. (B.5) with the update penalty for θ, expressed as in Eq. (B.7):

∥θ − θt∥2 = η2∥∇L+ ν∇V∥2. Additionally, approximate

∂

∂ν
Λ(θt+1, νt) ≈ V t +

〈
∇V t, θt+1 − θt

〉
. (B.11)

Then

νt+1 = argmax
ν≥0

[
ν
(
V t +

〈
∇V t, θt−1 − θt

〉)
+

η2

2σ
∥∇Lt + ν∇V t∥2

]
(B.12)

= max


0,

σ
η2

(
V t +

〈
θ − θt,∇V t

〉)
−
〈
∇Lt,∇V t

〉
〈
∇V t,∇V t

〉


 . (B.13)

This has the same form as the coefficient in the merit function Eq. (B.8). To use

Fletcher’s penalty method implicitly, we can use Eq. (B.12) in place of Eq. (B.6) and
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iterate Eq. (B.7). Notably, because Eq. (B.12) does not depend on νt, we do not require

a separate variable to track as algorithm state.

B.4 Generalizing Fletcher’s Method

Combining Eq. (B.12) and Eq. (B.7) as prescribed above we find that

〈
θ − θt,−∇V t

〉
= max

[
η
〈
∇Lt,∇V t

〉
,

σ

η + σ
V t

]
. (B.14)

It follows that
〈
θ − θt,−∇V t

〉
≥ αV t. (B.15)

for α = σ/(η + σ).

This is precisely the constraint for the CPG method proposed in Section 4.1. As shown

in Raab et al. (2024) and stated in Thm. 4.1.1, this constraint is sufficient for solving

Prob. (B.1) while allowing a formulation that admits additional convex constraints of

the form θ ∈ A.

θt+1 = argmin
θ∈A

〈
θ,∇Lt

〉
+

1

2η
(θ − θt)2.

subject to
〈
θ − θt,−∇V t

〉
≥ αV t.

(CPG)
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C Supplementary Proofs
In this appendix, we provide proofs for theorems stated as such in the main text of this

dissertation. These proofs are adapted from my original work as published in Raab

and Liu (2021); Chen et al. (2022); Yin et al. (2023); Raab et al. (2024).

Proof of Thm. 3.6.1

Theorem 3.6.1 (Lipschitz Upper Bound for a Curve). Given an element-wise Lipschitz

bound for F along any curve C with endpoints 0 and B, i.e. when there exists some finite

L ⪰ 0 such that

∀b ∈ C,
∣∣F(b)

∣∣ ⪯ L, (3.44)

we may conclude

V⋆
B(θ,S) = V(θ,S)−

∫

C

〈
F(b), db

〉
(3.45a)

≤ V(θ,S) +
〈
L,B

〉
(3.45b)

Proof. The equality

V⋆
B(θ,S) = V(θ,S)−

∫

C

〈
F(b), db

〉

is a given by Eq. (3.43) as consequence of the definition of the conservative vector

field (Eq. (3.41)):

F(b) := −∇bV⋆
b.

The desired bound follows by the linearity of integration and the Lipschitz bound

F(b) ⪯ L:

|f(x)| ≤ y =⇒
∫

C

f(x) dx ≤
∫

C

y dx .
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Proof of Lem. 3.6.2

Lemma 3.6.2 (Disparity Rates). The supremal disparity V⋆
B is subject to a Lipschitz

condition given by

∀g, ∂

∂bg
V⋆
b(θ,S) ≤ Lg = (|G| − 1)

∣∣∣β+
g − β−

g

∣∣∣. (3.54)

Proof. This is a direct result of differentiation and the label-shift assumption. First,

as explained in Section 3.6.2, note that

Pr
T
(Ŷ=1 | G=g) = Pr

T
(Y=1 | G=g)β+

g + Pr
T
(Y=−1 | G=g)β−

g (C.1a)

= sgβ
+
g + (1− sg)β

−
g . (C.1b)

where we recall (Eqs. (3.47), (3.49), and (3.50))

β+
g (θ, T ) := Pr

θ,T
(Ŷ=1 | Y=1, G=g);

β−
g (θ, T ) := Pr

θ,T
(Ŷ=1 | Y=0, G=g);

sg := Pr(Y=1 | G=g).

Importantly, β+
g and β−

g are constant subject to label shift, which confines distribution

shift to the conditional distribution Pr(Y=1 | G) (Section 3.1.1). It follows that

∂

∂sg
Pr
T
(Ŷ=1 | G=g) =

(
β+
g − β−

g

)
. (C.2)

Next, having defined (Eq. (3.48))

Dg(S ∥ T ) :=
∣∣sg(S)− sg(T )

∣∣,
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we consider that ∂
∂bg

V⋆
b, where (Def. 3.6.3 and Eq. (3.53))

∀b ⪰ 0, V⋆
b(θ,S) := sup

D(T ∥S)⪯b

V(θ, T ),

V(θ, T ) :=
∑

g,h∈G

∣∣∣Pr
T
(Ŷ=1 | G=g)− Pr

T
(Ŷ=1 | G=h)

∣∣∣,

is bounded by the following:

∂

∂bg
V⋆
b =

∂

∂sg

∑

g,h∈G

∣∣∣Pr
T
(Ŷ=1 | G=g)− Pr

T
(Ŷ=1 | G=h)

∣∣∣. (C.3)

≤ (|G| − 1)
∣∣∣ ∂

∂sg
Pr
T
(Ŷ=1 | G=g)

∣∣∣. (C.4)

≤ (|G| − 1)
∣∣β+

g − β−
g

∣∣, (C.5)

where we have used Eq. (C.2) to infer Eq. (C.5), thus deriving claimed vector of

Lipschitz constants L:

∀g, ∂

∂bg
V⋆
b(θ,S) ≤ Lg = (|G| − 1)

∣∣∣β+
g − β−

g

∣∣∣.

Proof of Thm. 3.6.3

Theorem 3.6.3 (Demographic Parity under Label Shift). For demographic parity

(Eq. (3.53) subject to label-shift (Eq. (3.51)),

V(θ, T )− V(θ,S) ≤ (|G| − 1)
∑

g

∣∣∣sg(S)− sg(T )
∣∣∣
∣∣∣β+

g − β−
g

∣∣∣. (3.55)

Proof. This is a direct result of combining Thm. 3.6.1 and Lem. 3.6.2. The former
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gives us

(∣∣∇bV⋆
b

∣∣ ⪯ L

)
=⇒

(
V⋆
B(θ,S) ≤ V(θ,S) +

〈
L,B

〉)
, (C.6)

while the latter implies

∣∣∣ ∂

∂bg
V⋆
b

∣∣∣ ⪯ (|G| − 1)
∣∣∣β+

g − β−
g

∣∣∣ = L. (C.7)

while we define Bg as
∣∣sg(S)− sg(T )

∣∣(Eq. (3.48)).

By modus ponens,

V(θ, T ) ≤ V(θ,S) + (|G| − 1)
∑

g

∣∣∣sg(S)− sg(T )
∣∣∣
∣∣∣β+

g − β−
g

∣∣∣.

Proof of Thm. 4.1.1

To prove Thm. 4.1.1, we first recall our assumptions and then establish three interme-

diate lemmas (Lems. C.1 to C.3). This proof reiterates the proof provided in Raab et al.

(2024), up to a relabelling of variables.

Assumption 4.1.1 (Gradients of Deployed Policy). At each time t, the policy-maker is

able to observe ∇Lt and ∇V t, i.e., the policy-maker has knowledge of the first-order

dependence of L and V on θ at the currently deployed policy θt.

Assumption 4.1.3 (Properties of Disparity). V is an invex function; that is, every

critical point of V is a global minimum.

Assumption 4.1.2 (Feasibility). The fairness constraint is feasible. That is, ∃θ⋆ ∈ A

such that V(θ⋆) ≤ 0. Furthermore, the subproblem in Eq. (CPG) is feasible at each time

step t.
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In addition to recalling assumptions Asms. 4.1.1 to 4.1.3, we introduce an additional

assumption, (Asm. C.1)

Assumption C.1 (Convex Achievable Losses). Independent of the distribution of

participating agents, at each time t, the firm is able to select from a constant, convex

set of losses A.

Intuitively, the first of these assumptions allows us to invoke gradient methods, while

the last three amount to guarantees that:

• Gradient flow of V constrained to A converges to feasible H ≤ 0, and

• Gradient flow of L constrained to A and constrained to H ≤ 0 converges to a

local minimum of L.

By assuming sufficiently small step size η, our algorithm effectively performs the

necessary gradient flow.

Next, we recall the proposed method given by Eq. (CPG), for parameters η, σ > 0 and

α = ησ. Note that relationship between α, η, and σ differs from the relationship we

use to explain a relationship to Fletcher’s method in Appendix B.

θt+1 = argmin
θ∈A

〈
θ,∇Lt

〉
+

1

2η
(θ − θt)2.

subject to
〈
θ − θt,−∇V t

〉
≥ αV t.

(CPG)

In addition to the assumptions above, we acknowledge the implicit assumption that

θt ∈ A and that ∇L and ∇V are finite.
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Remark C.1. The objective of the CPG subproblem may be re-expressed as

〈
θ,∇Lt

〉
+

1

2η
(θ − θt)2 =

1

2η

(
θ − (θt − η∇Lt)

)2
+

1

2η
(θt)2 − 1

2η
(θt − η∇Lt)2

︸ ︷︷ ︸
independent of θ

.

That is, CPG minimizes the distance between θt+1 and (θt − η∇L), subject to the con-

straints imposed by A and ∇V .

We next establish the following lemmas about the method before restating Thm. 4.1.1

and providing our complete proof.

Lemma C.1 (Satisfiability implies η-bounded updates). The constraints for CPG are

not satisfiable, as η → 0, only if

θt = argmin
θ∈A

Z := −
〈
θ,−∇V t

〉
and V t > 0. (C.8)

That is, a prerequisite for the infeasibility of CPG is that we are outside the feasible set

(V t > 0) and cannot further decrease−⟨θ,−∇V t⟩ (i.e., decreaseV , linearly approximated)

subject to θ ∈ A.

In all other cases (which we are guaranteed by Asm. 4.1.2), the magnitude |θt+1 − θt| is

bounded by a quantity that is linear in η.

Proof Sketch. We show that, if Eq. (C.8) does not hold, then the constraints of CPG must

be satisfiable for some η > 0, and |θt+1 − θt| is bounded by a quantity linear in η.

Proof. There are two cases in which Eq. (C.8) fails to hold:

First, we consider the case where V t ≤ 0. In this case, the constraints of CPG are

satisfiable by θt ∈ A, for any η > 0, by the null update θt+1 = θt. By Rem. C.1, all

points with lower objective value than the null update lie within a ball of radius
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2η|∇Lt| centered at θt (specifically, the ball of radius η|∇Lt| centered at θt − η∇Lt,

that is, |θt+1− (θt− η∇Lt)| < η|∇Lt|). This yields the bound |θt+1− θt| < 2η|∇Lt|,

which is an upper bound for the update magnitude that is linear in η, as desired.

Second, suppose we are outside the feasible set (that is, V t > 0), but Eq. (C.8) still

does not hold. It follows that there must exist some point θ′ ∈ A that improves upon

the objective Z by some nonzero amount. That is, there exists some υ > 0 for which

〈
θ′,−∇V t

〉
−
〈
θt,−∇V t

〉
> υ. (C.9)

By the convexity of A (Asm. C.1) and the requirement θt ∈ A, it is clear that all

points along the linear path

θ(ω) := ωθ′ + (1− ω)θt : ω ∈ (0, 1) (C.10)

are also in A, while, by the linearity of Z ,

〈
θ(ω),−∇V t

〉
−
〈
θt,−∇V t

〉
> υω > 0. (C.11)

For any sufficiently small step size η such that 0 < η < υ
σVt , the point given by θ(ω),

for ω = η σVt

υ
(which entails 0 < ω < 1), satisfies the constraints of CPG. That is,

〈
θ(ω),−∇V t

〉
−
〈
θt,−∇V t

〉
=
〈
θ(ω)− θt,−∇V t

〉
> υω = ησV t = αV t.

θ(ω) ∈ A.

(C.12)

By a similar argument as the first case, having established that a feasible point θ(ω),

for ω = η σVt

υ
, exists and, by (Rem. C.1), noting that the update θt+1 cannot therefore

be further than θ(ω) away from θt − η∇Lt, Eq. (C.12) entails, by successive use of
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the triangle inequality (see Fig. C.1), the bound

|θt+1 − θt| ≤ 2|θt − (θt − η∇Lt)|︸ ︷︷ ︸
2η|∇Lt|

+ |θt − θ(ω)|︸ ︷︷ ︸
ω|θt−θ′|

≤ η

(
2|∇Lt|+ σV t

υ
|θt − θ′|

)
.

(C.13)

We have again bounded the update magnitude linearly in η, as claimed.

ℓt − η∇Lt

ℓt+1

ℓt

ℓ′

r1 = η|∇Lt|

|ℓt+1 − (ℓt − η∇Lt)| ≤ |ℓ′ − (ℓt −∇Lt)| ≤ r1 + r2

r2 = ω|ℓt − ℓ′|

Figure C.1: Successive applications of the triangle inequality yield Eq. (C.13).

Lemma C.2. Iteration of CPG achieves feasibility (fairness) V t ≤ 0 as (t → ∞) when

the step size η is sufficiently small.

Proof. Note, if V t ≤ 0, we have already achieved fairness. We therefore restrict our

attention to the case V t > 0. In addition, Asm. 4.1.2 guarantees feasibility. It follows

that
〈
θt+1 − θt,−∇V t

〉
> αV t > 0.

A sufficiently small step size η > 0, coupled with the results of Lem. C.1, which bound
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the update magnitude linearly in η, ensure that we may rely on linear approximations

of V to adequately describe local behavior. Therefore,

〈
θt+1 − θt,−∇V t

〉
> 0 =⇒ V t+1 < V t.

It follows that, outside of the feasible set, for sufficiently small step sizes, V(θ) is a

Lyapunov function for dynamics given by sequential iterations of CPG. This function

is monotonically decreasing except at critical points, i.e. where ∇V = 0. However,

by Asm. 4.1.3, any such critical point must a global minimum, which by Asm. 4.1.2

entails that it is feasible. Iterations of CPG therefore achieve feasibility for sufficiently

small step sizes.

Lemma C.3. Given V t ≤ 0, CPG achieves a local optimum (subject to the constraints) of

the objective function L as (t → ∞), when the step size η is sufficiently small.

Proof. The objective of CPG is convex in θ. Having assumed feasibility for each

iterate of CPG (Asm. 4.1.2), this implies that any null update (i.e., θt+1 = θt) occurs

only when θt is already a feasible local minimum of L. In all other cases, let us

establish that V t ≤ 0 =⇒
〈
θt+1 − θt,−∇Lt

〉
> 0.

Lem. C.1 guarantees solutions within an update magnitude of θt that is bounded

linearly in η. When θt is not already a local minimum of L, minimization of the

objective will naturally ensure
〈
θt+1 − θt,∇L

〉
< 0. Therefore, for sufficiently small

step size η > 0, we may rely on linear approximations of L to adequately describe

local behavior, and

〈
θt+1 − θt,−∇Lt

〉
> 0 =⇒ Lt+1 < Lt.

With this observation, it follows that L is a Lyapunov function inside the feasible set,
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which will converge to a local minimum.

Finally, we restate our main result, which we establish by combining the above lemmas.

Theorem 4.1.1 (Asymptotic Convergence). Subject to Asms. 4.1.1 to 4.1.3, as (t → ∞),

constrained projected gradient (Eq. (CPG)) converges to a feasible local optimum of the

objective when the step size η is sufficiently small.

Proof. This is a direct result of Lems. C.2 and C.3.

Proof of Thm. 4.2.1

Theorem 4.2.1 (Strict Quasiconcavity). Qg(θg)−Ng(θg) is strictly quasi-concave in

θg . This guarantees that no more than two zeros of the function (Qg(θg)−Ng(θg)) exist,

each corresponding to a potential equilibrium.

Proof of Thm. 4.2.1. We proceed by characterizing the function B(θg) := Qg(θg) −

Ng(θg), starting with its zeros. by Eqs. (3.33) and (3.34), the marginal relative increase

in the utility of qualification for group g, as the classifier’s threshold feature value θg

is varied, is

dB

dθ
= q1(θ)(A1,−1 − A1,1)− q−1(θ)(A−1,−1 − A−1,1) (C.14a)

=

(
q1(θ)

q−1(θ)
− A−1,−1 − A−1,1

A1,−1 − A1,1

)(
q−1(θ)(A1,−1 − A1,1)

)
. (C.14b)

Recall that Ay,−1 ̸= Ay,1 and A1,−1 < A1,1 (Asm. 3.5.2). By the strict (increas-

ing) monotonicity of q1(θ)
q−1(θ)

in θ and strict positivity of q−1(θ), both guaranteed by

Asm. 3.5.1, the sign of this expression can change at most once as θ is varied from

−∞ to ∞. We denote the value of θ at which the sign of this first derivative changes

as θ⋆:

q1(θ
⋆)

q−1(θ⋆)
=

A−1,−1 − A−1,1

A1,−1 − A1,1

. (C.15)
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Moreover, it follows that

θ < θ⋆ =⇒ d

dθ
B > 0. (C.16a)

θ > θ⋆ =⇒ d

dθ
B < 0. (C.16b)

B(θg) := Qg(θg)−Ng(θg) is therefore strictly quasi-concave, from which it follows

that only two zeros of the function can exist (By contradiction, more than two zeros

would require the function, which has no discontinuities, to invert its slope more than

once.)

For completeness, we may also take a second derivative of B with respect to θ:

d2

dθ2

(
B(θ)

)
=

d

dθ

(
q1(θ)

q−1(θ)

)(
q−1(θ)(A1,−1 − A1,1)

)

+

(
q1(θ)

q−1(θ)
− A−1,−1 − A−1,1

A1,−1 − A1,1

)(
d

dθ
q−1(θ)

) (C.17)

Doing so, we observe that B may have any number of inflection points, but θ⋆ cannot

be one of them. We see this because the second term of the expression above evaluated

at θ⋆ must be zero, but the first term must be non-zero by Asm. 3.5.1 and Asm. 3.5.2.

It follows that θ⋆ is the unique occurrence of a local extremum and therefore a global

extremum of B(θ).
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