
UC Irvine
ICS Technical Reports

Title
Automated record layout for dynamic data structures

Permalink
https://escholarship.org/uc/item/4sv185xn

Authors
Kistler, Thomas
Franz, Michael

Publication Date
1998-03-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sv185xn
https://escholarship.org
http://www.cdlib.org/

ICS
TECHNICAL REPORT

Automated Record Layout for Dynamic Data
Structures

Thomas Kistler

Michael Franz

Technical Report UCI-ICS 98-22
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

March 14, 1998

Information and Computer Science
University of California, Irvine

IBRARY X.
^versify ofCaWomia

IRVINE ^

Automated Record Layout for Dynamic Data Structures

Thomas Kistler and Michael Franz

Department of Information and Computer Science
University of California at Irvine

Irvine, CA 92697-3425

Abstract. As the gap between processor power and memory speed con
tinues to widen, cache performance of modern processors is becoming
increasingly important for program performance. Lately, compilers have
addressed this problem by prefetching data ahead of time, by chang
ing the memory layout of program data, or by changing the control
structure of a program. While most of these techniques work well for
array-based numeric programs, their potential for component-based and
object-oriented applications that use dynamic pointer-based data struc
tures is fairly limited.

In this paper, we present and evaluate a simple, yet efficient opti
mization technique that increases cache performance for pointer-based
applications. Based on temporal profiling data, our algorithm reorders
and aligns individual record fields in dynamically allocated objects to
increase spatial and temporal locality. It also takes advantage of modern
hardware features such as data cache line-fill buffer forw«u-ding.

Our results demonstrate that the proposed algorithm significantly
increases performance of pointer-based applications. It increases program
speed by as much as 15% and reduces data cache miss rates by up to
30%.

1 Introduction

As the growth in raw processing power continues to outpace improvements in
memory speed, cache performance is increasingly becoming a limiting factor of
application performance. To some degree, compilation techniques offer relief,
especially in the area of scientific computing. Data-prefetching loads data and
instructions ahead of time to reduce memory latency [LM96, MLG92], and cache-
blocking, loop-skewing, and loop-tiling increase data locality by transforming the
control structure of a program [WL91]. Although these techniques have proven
very valuable for array-based programs, their merit for applications that utilize
highly dynamic data structures remains widely unexplored. Applications of the
latter kind include object-oriented programs and component-based programs.
The cache behavior of such programs is extremely difficult to predict at compile
time, not only because the size of data structures can usucdly not be determined
ahead of time, but also because of irregular memory access patterns.

In this paper, we present an optimization technique that increases cache
performance specifically in the domain of pointer-based applications. It is based
upon the observation that most compilers poorly exploit one of the major sources

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

for increasing spatial and temporal locality—the possibility of arranging fields
within records (and classes) at will. Instead, most compilers retain the ordering
of fields declared in the source code. It does not take much insight to see that
this strategy is likely to be sub-optimal. Software designers declare types, vari
ables, and classes to increase readability and maintainability of the source code.
They favor source code portability over efficiency and are generally not willing
to take into account many architecture-dependent parameters. Also, software
engineers often lack principal knowledge about the underlying machine archi
tecture (e.g. the size of the cache, or the size of a cache line) that would make
such programmer-directed optimizations feasible in the first place. However, the
full achievable performance can be reached only with a very specific ordering of
record fields. Not very surprisingly hence, retaining the declared ordering often
does not completely exploit the potential of the underlying processor.

Another approach usually taken by commercial compilers is to arrange fields
to minimize the space used by dynamically allocated objects [Muc97]. This ap
proach is based on the assumption that a smaller memory footprint leads to
faster applications, especially in garbage collected environments. However, as we
will see in Section 6, this assumption is misleading. In some cases, increasing
the object size uncovers greater flexibility in grouping and aligning record fields,
and accelerates applications quite noticeably.

The algorithm that we present in this paper pursues a different approach.
It automatically reorders fields within records to increase data cache locality
and to take maximum advantage of advanced hardware features (e.g. data cache
line-fill buffer forwarding [Mot96]). Also, it does not involve the programmer in
the optimization process but elegantly decouples software-engineering concerns
from performance issues.

The algorithm is based on a simple strategy that first splits records into
partitions the size of a single cache line. Record fields whose individual accesses
are close together in time are assigned to the same cache line to maximize data
locality and to minimize the number of cache misses. Then, after splitting, all
the fields in a single partition are ordered to minimize load latency. Here the
algorithm has specifically been designed to exploit data cache line-fill buffer
forwarding. In addition, the optimization process is guided by profiling data. The
profiler runs prior to program optimization and collects temporal information
about access patterns and access frequency of individual record fields.

The remainder of this paper is organized as follows: Sections 2 through 5
discuss different aspects of the algorithm. Section 6 applies the algorithms to
several benchmarks. Section 7 discusses related work and Section 8 concludes

the paper.

2 An Algorithm for Automatic Record Layout

Traditionally, the main focus in improving data cache performance has been on
data locality—to reduce the number of cache misses that occur while executing
a program. Our algorithm increases data locality by spUtting records into parti-

tions of fields that are temporally related—that is, frequently siccessed within a
certain period of time.

However, with the ever advancing state-of-the-art of microprocessor architec
tures, seemingly insignificant hardware features can suddenly have a major effect
on cache performance as well. Cache line-fill buffer forwarding is an example of
such a hardware feature. It can be found in more and more microprocessors, such
as the PowerPC 604e. Traditionally, on processors without this feature, when a
load misses the cache, it is placed into the load queue. The critical requested
data {do) comes back first and is unconditionally forwarded to the requesting
unit. Subsequent requests to the same cache block are required to wait until the
remaining double words {dl, d2, dS) are transferred from memory—one double
word is transferred per cycle from increasing addresses, wrapping back to the
beginning of the cache block as required. Not so with line-fill buffer forwarding;
if a subsequent load to the same cache block is requested, the data is also imme
diately forwarded to the load/store unit upon availability. Fig. 1 demonstrates

rypB

objacc " POINTEII TO nCOSD

right: Object)

left: Object)

vel: D^naBR

BSD)

right I left I val

TTPB

ttiject > pomra to rbcou)
vel: urrsoEit)

right: Object)

left: Object

BID)

val I right I left

(1) rl :> Id p.left)

(2) rO to Id p.right)

Fig. 1. Post Order TVee fVaversal

the impact of line-fill buffer forwarding on cache performance. It depicts a small
code sequence for a post-order traversal of a binary tree, with two possible stor
age layouts for tree nodes illustrated at the top-left and at the top-right. Using
the type declaration at the left, and assuming a memory latency of 10 cycles,
load instructions (1) and (2) can be executed in 11 cycles; one cycle is required
to compute the effective address of instruction (1) and 10 cycles are required to
cover the memory latency. Since both instruction (1) and (2) address the critical
double word dO they can be retired in the same clock cycle.

Not so if we use the type declaration depicted at the right. It requires three
additional cycles which is equivalent to a performance loss of 30%. Though the
result of (1) is available after 11 cycles, the result of (2) is only available after
double word dl, d2, and dS have been transferred from memory.

This example illustrates that a good strategy for rearranging fields not only

considers the placement of fields into individual cache lines to increase data
locality, but also models the special capabilities of the underlying processor ar
chitecture. This can best be done by CeirefuUy ordering record fields within single
cache lines.

The following sections present an overview of our algorithm. We first elab
orate on the requirements and on implementation issues for the profiler that
drives the optimization. We then discuss the partitioning of fields. Finally, we
explain the ordering of fields within cache lines. For clearness, a pseudo code
outline of the algorithm is given in the appendix of this paper.

3 Creating Profiles

In order to determine how to split records into optimal partitions and how to
order fields within partitions, a conflict cost measure is required. An optimal
conflict cost measure estimates the execution time penalty caused by a particu
lar arrangement of fields. Unfortunately, such an optimal measure is extremely
difficult to find in practice. We therefore fall back on a simplified measure that
estimates the number of cache misses, under the assumption that the number of
cache misses is related to the execution time penalty.

Wecompute this conflict cost measure based on a temporal relationship graph
that, for a particular record, captures information on how its fields are accessed.
Similar relationship graphs have lately been proposed to guide procedure place
ment [GBS-l-97] in the context of instruction cache optimization. Vertices in this
graph correspond to record fields. Verticesare connected by edges whoseweights
represent the degree of temporal dependency between the two connected fields.
More concretely, the weights reflect the number of times that the two fields are
accessed subsequently during a specified time interval. They consequently cap
ture an estimate on the number of cache misses that occiu- if both fields eire

placed in different cache lines.
The graph is created by profiling the program and maintaining a stack-like

data structure of the least recently accessed fields. For every load/store instruc
tion that references a field F in a dynamic object O we push the pair (O, F) onto
the stack and remove an earlier reference to (O, F) from the stack. When the
size of all the pairs on the stack exceeds the stack size, pairs are removed from
the stack bottom. Next, we traverse the stack top-down and search for pairs
(O, F') that reference the same object but a different field F'. For every match,
we increment the weight of the edge between F and F'. We so model the fact
that field Fis used following an access to field F'.

Unfortunately, the two main optimization parts—partitioning fields into dif
ferent cache lines and ordering fields within cache lines—requireslightly diflferent
temporeJ information cuid parameters. The first dissimilarity is the optimal stack
size. The stack size limits the number of fields concurrently on the star:k and con
trols the recording of relationships—older objects are displaced from the stack
due to capacity constraints. On the one hand, for partitioning, an optimal eJ-
gorithm records relationships as long as both fields reside in the data cache.

The optimcd stack size is therefore equivalent to the size of the data cache, to
accurately model the capacity constraints of the data cache. But for ordering,
the stack size must be no larger than the number of cycles required to load an
entire cache line (i.e. 4 load/store instructions for the PowerPC 604e). This is
because accessing a field within an already loaded cache line comes at no addi
tional cost. Only accessing the field while the cache line is being loaded penalizes
an inadequate ordering.

The second dissimilarity is the edge increment for two related fields on
the stack. For partitioning, a unique increment by one is sufficient. Accessing
two fields located in different cache lines requires loading both cache lines—
independent on how many cycles pass between these two accesses. However, for
ordering fields within cache lines, we prefer 2ui increment that is proportional
to the number of cycles between the accesses—or that is proportional to the
distcince between the two pairs on the stack. The reason for this is that ciccess-
ing two fields in the same cache line within one cycle might penalize more then
accessing them within three cycles.

So how can these different requirements be integrated into one basic model?
Maint€iining two different temporal graphs and two stacks with different sizes
would be a naive solution. A more adequate solution maintains two different
weights per edge—one that is used for partitioning the graph, and one that is
used for ordering fields within partitions. The weights for graph partitioning
are computed as described above, using a stack whose size is optimal for graph
partitioning, and using a constant edge increment of one. The weights for field
ordering axe computed using the same stack, and using edge increments that
are proportional to the distance between the two pairs on the stack. However,
though utilizing the same stack, we only consider items within a certain distance
from the top of the stack while traversing the stack top-down. This is equivalent
to using a smaller stack. We will subsequently call this distance the look-ahead
distance.

In order for the cost measure to be accurate, the profiler hsis to capture all the
load/store instructions in the running program. Interpretation of the program is
one method to achieve this goal. Unfortunately, interpretation slows down the
program by severed orders of magnitude, making it a practically useless tool in
a production environment. Instrumenting all load/store instructions with calls
to special profiling routines alleviates this problem and reduces runtime, but
still not by as much as required to make it applicable. A third possibility is
to utilize path profiling [BL96]. Instead of creating the temporal relationship
graph during the profiling pass, we only measure the execution frequency of
paths within single procedures. The temporal relationship graph is then created
during a post-profiling pass which, for every procedure, walks through the most
frequently executed paths and applies the above technique. For path profiling,
Bedl and Larus [BL96] have reported a runtime overhead of approximately 10%.
Unfortunately, utilizing path profiling also comes at a cost: Since we look at
procedures individually we miss important relations between subsequent field
accesses from different procedures. The larger the stack the more relations we

miss because of the increased likelihood of field accesses from different procedures
being on the stack concurrently. At first sight this is a serious disadvantage
for our intuition suggests that a larger stack captures more relations and is
thus better suited for our layout technique. However, our results indicate the
contrary. Using a smaller stack size achieves better performance throughout all
benchmarks (see Section 6). Consequently, path profiling is capable of capturing
most of the essential relations <uidappears to be a good alternative for recording
temporal relationships.

4 Graph Partitioning

The first component of our optimization partitions the fields of a record into sub
sets of fields that fit into a single cache line. In technical terms, it searches for
a k-w&y graph partitioning of the temporal relationship graph G into partitions
Pi,...,Pk, where k = {recordsize/cachelinesize], |Pj| < cachelinesize, and the
sum of all edges between the partitions is minimized. We solve the k-way parti
tioning problem by recursive bisection, that is, we first obtain a 2-way partition
of the graph that splits the graph into two equal-sized parts. We then further
subdivide each part using 2-way partitioning (also called a graph bisection).

For bisecting the graph, we have adopted a variation of the Kernighan-Lin
Graph Bipartitioning Algorithm (KL70, Dut93] that can be implemented quite
efficiently. It works as follows: Given a graph G with n — 2m vertices, we initially
create two arbitrary partitions P\ and P2, with |Pi| = [P2I = m. We then start
an iterative process that is called a -pass. A pass can best be summcirized as trying
to find two equal-sized subsets S\ C Pi and S2 C P2, such that swapping Si
and S2 reduces the total cost of edges from P\ to P2. This is done by choosing
a pair of unmarked vertices {v\,V2) € Pi x P2 that, by swapping vertices v\
and i'2, minimizes the total cost of edges from Pi to P2. Both vertex vi and
112 are then marked in Pi respectively in P2, but not actually swapped. This
procedure is repeated until all the vertices in Pi and P2 are marked. At this point
we have computed a sequence of pairs (ni,i,i;2,i)i •••1 V2,»)t •••»(vi,m?i'2,m)-
For every i: 1 < i < m, we compute the associated gain Gi for swapping vertex
pairs 1... i. We choose p so that gain Gp is maximal and exchange all vertex pairs
(vi.i,U2,i)» •••>(vi,p,U2,p) between partitions Pi andP2. A number of peisses cire
made until the maximal gain Gp is 0 and a local minimum is reached. Since
this local minimum is highly depended on the choice of the initial partition, we
repeat this process for different randomly created initial partitions.

Prior to applying the Kernighan-Lin algorithm, however, the graph requires
some minor adjustments. First, in order to end up with k equal-sized partitions
of the size of a cache line, the original graph has to be expanded to the necirest
cachelinesize • 2*^. We do this by inserting additional fill vertices into the graph.
The fill vertices are weakly connected to all other vertices in the graph with
edges of weight zero.

Second, individual fields have different sizes, which prevents the algorithm
from swapping any two arbitrary vertices in the graph. In order to maintain

equal-sized partitions the algorithm is allowed to swap fields with equivalent
sizes only, such as two one-byte characters fields or two four-byte floating-point
fields. However this is too restrictive for we might also want to swap a field of
type floating-point with four fields of type character (note that this maintains
two equal-sized partitions). To facilitate this, we split every field F of size s
into a cluster of s vertices of size one. These vertices are strongly connected by
assigning infinite weights to the edges between them. This prevents placing the
cluster into different partitions but allows swapping vertices at will.

Finally, the concept of structural type inheritance needs special attention.
For saving memory resources, we might consider placing the first field of a de
rived type into the last partially used cache line of its base type, rather than
placing it into a new cache line. We simulate the last partially used cache line
by inserting an additional leader vertex into the graph. The size of this leader
vertex is the used fraction of the last cache line of the base type (size(/eader) =
s\ze{basetype) mod cachelinesize). The partitioning algorithm is then modified so
that the leader vertex is always placed at the beginning of the first cache line. In
addition, instead of inserting one individual vertex for every field of the base type,
the leader vertex acts as a container that combines all of them into one vertex.

The leader vertex is connected to other vertices in the graph by employing one of
two different algorithmic variants—subsequently called memory-conscious and
latency-conscious. In the latency-conscious version, all the edge weights between
the leader vertex and other vertices are set to zero. This reduces the likelihood
that any field is placed into the same partition as the leader and thereby wastes
memory resources. However, it increases cache locality and reduces memory la
tency in the case of minor temporal relationships between fields of the base
type and fields of the derived type. In the memory-conscious variant, the edge
weights between the leader vertex and other vertices eire computed as we com
pute weights between two regular vertices. Fields are more likely to be placed
into the scime cache line as the leader vertex which reduces memory expendi
tures. However, more cache misses might result in the case of minor relations
between the base type and the derived type. Section 6 illustrates how these two
scenarios affect execution time of optimized programs.

5 Field Ordering

The second component of our algorithm arranges fields within cache lines. It
takes advfintage of cache line-fill buffer forwarding. The algorithm exhaustively
searches for the permutation that minimizes the load latency cost C{P) asso
ciated with a particular permutation P. The cost function C{P) for a given
permutation of n fields P = (Fi, F2,..., Fn) is depicted below:

C{P) = X]
t=i j=t+i

dij = (Ft.odrdiv buswidth) —{Fj.adrdiv busmdth)
dj^i = [linesize div buswidth —dij) mod {linesize div buswidth)

In this formula Wij represents the weight of the edge between field Fi and
field Fj in the temporal graph. Fi.adr denotes the address of field Fi relative
to the cache line, and dij represents the number of intervening cycles between
accessing field Fi and accessing field Fj in the case of a cache miss. Accordingly,
dj^i represents the number of intervening cycles between accessing field Fj and
accessing field F, in the case of a cache miss. As an example In the left type
declaration of Fig. 1, if right is accessed first and misses the cache, val is only
available one cycle after right is available {dright,vai = !)• However, in the case
of val being accessed first, right is available at earliest three cycles after val is
forwarded to the requesting unit {d^ai^right = 3). Although not illustrated in the
above formula, fields also have to be aligned properly. As an example, a double
precision floating-point value that is not aligned on an 8 byte boundary results
in a high cost value.

Although our algorithm uses an exhaustive search technique that has sin
exponential complexity, runtime is not a major problem in practice—the number
of fields in a cache line is usually fairly small. Also, using smarter branch-eind-
bound versions of the algorithm further reduces the runtime requirements.

6 Results

In the last few months, we have experimented with record layout techniques and
implemented a version of the described algorithm that has been integrated into
our optimizing compiler. In addition, we have also integrated the technique into
our operating system that performs optimizations in the background, while the
application is being executed [Kis96, Pra97].

To measure the gains of our automated field layout technique, we selected
a suite of seven benchmarks and ran them multiple times in a PowerPC based,
garbage-collected environment [WG89]. The suite is briefly summarized in Ta
ble 1: 0002 is an optimizing compiler for the programming language Oberon
[Wir90]. It utilizes large internal data structures, based on static single assign
ment form [CFR-t-91]; Layouts is an interpreter for a batch-processing language

Benchmark Program Size Execution Time Load/Store Ratio
(Lines of Code) (Mio. Cycles)

00O2

Layouts
TreeAdd

Bisort

TSP

Numbers

Huffman

Table 1. Benchmark Characteristics

that composes interactive graphical user interface components; both TreeAdd
and Bisort are part of the Olden benchmark suite [RCR+95] and, although they
are very small in size, they represent frequently used operations on dynamic
data structures; TSP is an implementation of the traveling salesman problem;
Numbers is a module for arbitrary precision floating-point number calculation;
and Huffman is an implementation of a compression/decompression algorithm.
Although all these benchmarks considerably vary in size, they represent a vari
ety of applications and programming styles. Also, each of them allocates many
megabytes of data and executes billions of instructions.

To evaluate the exact performance of our algorithm in terms of improvement
in execution time and cache miss rates we ran the entire benchmark suite on

a PowerPC 604e (32-Kbyte, four-way set-associative data cache) utilizing the
PowerPC's performance monitor. The performance monitor includes four 32-bit
hardware counters that count detailed events during execution, such as instruc
tion dispatches, instruction cycles, misses in the cache, or load/store miss load
latencies. Further, in order for the profiler to compute an accurate cost measure,
we instrumented all load/store instructions prior to program execution.

Benchmark Reduction of Reduction of

Execution Time Cache Miss Rate

0002 3.4% 4.1%
Layouts 0.1% 1.0%
TreeAdd 16.5% 33.2%

Bisort 2.9% 26.5%
TSP 0.7% 1.0%
Numbers 0.0% 0.0%
Huffman 0.1% 1.6%

Table 2. Overjill Performance

Table 2 shows the overall performance results. TreeAdd achieves the largest
speedup and improves execution time by over 16%. Since TVeeAdd allocates ob
jects smaller than a single cache line, the entire speedup has to be attributed to
the proper exploitation of cache line-fill bulfer forwarding. Again, this emphasizes
the importance of this seemingly unimportant hardware feature. An algorithm
based solely on improving cache locality could simply not achieve this level of
performance. The speedups of 0002 and Bisort are also promising—we recorded
an increase in performance by 3%. Not so however for the rest of the programs
in the benchmark suite. They do not show any significant increase in perfor
mance. The reasons for this are twofold. First, TSP, Numbers, and Huffman do
not allocate large objects, hence lack potential for increasing cache locality. Sec
ond, the ordering of fields within records is already near optimal leaving very
little room for optimizations. The story is different for Layouts. Layouts is very

memory intensive while composing graphical user interface gadgets. It allocates
and initializes numerous objects but makes little reuse of allocated objects. The
potentifd for reducing the cache miss rate is thus minimal.

Table 3 and Fig. 2 show a more distinctive picture of the results by breaking
down the results by different input parameters—the stack size and the look-ahead
for profiling, and the choice between memory-conscious partitioning (MC) and
latency-conscious partitioning (LC). They illustrate that LC does clearly better
in 0002, although the average data structure is 8% larger than in MC. This
can be explained by the fact that 0002 is an "allocate once—reference often"
type of application. It creates an intermediate data structure early in the compi
lation process emd frequently traverses it during optimization passes. Reducing
latency—not memory consumption—is therefore of primary importance. Also,
for many object-oriented applications that extensively use type hierarchies, types
are usually well encapsulated and do not allow direct access to fields from derived
types. This minimizes temporal relations between fields in different derivation
levels. It is therefore wiser to arrange fields of single types in separate cache
lines rather than mixing them with base types. In contrast to 0002, Layouts

Allocation- Steu:k-

method

MC

MC

MC

MC

MC

MC

MC

LC

LC

LC

LC

LC

LC

LC

size

1024

1024

1024

1024

1024

1024

Look-

ahead

Runtime Reduction

Layouts0002

1.51'

1.25'

0.58'

•0.50'

•0.61'

0.61'

•0.72'

1.42'

3.38'

3.15'

2.28%

2.39%

3.07%

2.77%

•0.70'

0.18'

•0.67'

•0.65'

•0.02'

0.04

0.11'

0.16'

•2.38'

•0.81'

0.08%

-0.11%

-0.83%

-0.83%

Table 3. Method Comparison

does better in MC. The reason for this is that Layouts is an application of type
"allocate often—reference once". It allocates and connects data structures but
rarely reuses them. Especially in a garbage-collected environment, reducing the
memory footprint is therefore more important. From our experience, the ratio
of load instructions to store instructions is usually a good instrument to classify
applications. Applications with a high load/store ratio are very likely to perform
better with LC whereas applications with a low ratio usually do better with MC.

OOOZ Layown TraaAdd B«oR

!»MC • S=2/I=l

|auc/s=64/ui
uauc/s=64/l=4

|aMC/S=l024/l=4
|aLC/S=2/l:1
|aLC/S:64/lsl
'•LC/Ss64/t4

!aLC/&=1024/t34

Fig. 2. Method Comparison

Table 3 also shows that using a medium-sized stack does better than using
a large stack. This is in surprising contrast to what we would expect in the
first place. In till the benchmarks, we found that using a stack size of 64 en
tries performs best. Similarly, a small look-ahead of one performs clezLrly better
than a larger look-ahead. This supports our theory that the profiler need not
necessarily interpret the progrgun or insert instrumentation for every load/store
instruction. Since a small stack size considerably reduces the likelihood of two
fields accessed from different procedures being on the stack concurrently, path
profiling is powerful enough to capture the essential relations.

7 Related Work

To bridge the gap between memory speed and processor speed, several cache op
timization techniques have been proposed lately. In the area of scientific, array-
based programs, loop-reversal, loop-tiling, loop-skewing, and cache-blocking
[WL91] are all popular techniques to increase data locality. They change the
algorithmic behavior of the program by reordering the execution sequence of it
erations and changing the shape of a loop's iteration space and iteration depth.
Another technique proposed by Rivera and Tseng [RT98] further increases cache
performance. They propose an algorithm that inserts inter-variable and intra-
variable padding to control the placement of arrays in memory and to control
the optimal row size of arrays. Their technique can be applied orthogonally to
the above-mentioned control-transforming optimizations.

Previous work has also studied the problem of data-prefetching in the context
of array-bcised programs [MLG92]. Prefetching reduces memory latency by load-

ing data values ahead of time into the cache. Primarily for array-based programs
that exhibit highly regular data access patterns, prefetching is very promising.

Unfortunately, because of the fundamental differences in program structure,
the techniques utilized for scientific programming cannot be applied directly to
pointer-based applications. Pointer-based programs usually exhibit much more
complex access patterns. Also, the size of data structures can usually not be
determined at compile time. It is therefore not very surprising, that only few
studies have been published about data prefetching [LM96], automatic place
ment of data in memory, or automatic data transformations in the context of
pointer-based applications. However, with the ever-increasing memory hunger of
pointer-based programs, other issues have also become importcint for data cache
performance. Among them, are the effects of memory allocators [GZH93, SZ97,
AG98) and garbage collectors [Rei94] in modern operating systems.

Finding an optimal k-way partition for large graphs is an NP-complete prob
lem. As such, there exists no algorithm that solves the problem in polynomial
time. However, a wide variety of heuristics-based approaches have been published
in the last 30 years. One of the original papers by Kernighan and Lin describes
a very efficient algorithm for bipartitioning large graphs [KL70]. Several refine
ments of this algorithm have been described since, among them the improved
version by Dutt [Dut93] that we use for pcirtitioning records. There also exist
more advanced algorithms based on multilevel partitioning schemes [KK95]. A
multilevel graph partitioning algorithm first coarsens the original graph down
to a few hundred vertices. It then bipartitions the coarsened graph and projects
the result back onto the original graph. Multilevel partitioning algorithms are
usually targeted towards graphs with thousands of vertices—especially in the do
main of electronic circuitry layout and telephony network design. However, since
our graphs are usually small in size, the use of multilevel-partitioning algorithms
does not seem justified.

8 Conclusion

In this paper, we have proposed a simple record layout technique for dynam
ically allocated objects. Our technique not only increases data cache locality
but also exploits advanced hardware features such as cache line-fill buffer for
warding. This is becoming increasingly important to exploit the full potential
of modern processor architectures. Moreover, our technique can be implemented
as an orthogonal addition to commonly used optimization techniques, such as
data-prefetching or optimal data placement.

The dgorithm is based on a two-tiered strategy that first assigns fields to
single cache lines and then optimizes the order of fields within cache lines. Ac
cording to the type of the application to be optimized, it can be parameterized
to arrange fields in a cache-conscious way, or in a latency-conscious way.

While we have investigated the effect of different data layout techniques for
dynamic data structures and have measured performance improvements by as
much as 16%, we have not yet studied the effects of placing global variables.

local variables, or procedure pctrameters. This is an issue that we ^e planning
to address in the near future.

9 Acknowledgement

We would like to thank Peter Frohlich who provided many helpful comments on
an earlier version of this paper. Part of this work is being funded by the National
Science Foundation under grant CCR-97014000.

References

[AG98] A. Aiken and D. Gay. Memory Management with Explicit Regions. In
Proceedings of the ACM SIGPLAN '98 Conference on Programming Lan
guage Design and Implementation, June 1998.

[BL96] T. Bail and J. Leirus. Efficient Path Profiling. In Proceedings of MICRO-
29, Paris, France, December 1996.

(CFR+91] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Efficiently
Computing Static Single Assigment Form and the Control Dependence
Graph. In ACM Transactions on Programming Languages and Systems
13(4):451-490, 1991.

[Dut93] S. Dutt. New Faster Kernighan-Lin-Type Graph-Partitioning Algorithms.
In Proceedings of the lEEE/ACM International Conference on CAD,
November 1993.

[Fra97] M. Franz. Run-Time Code Generation as a Central System Service. In
The Sixth Workshop on Hot Topics in Operating Systems (HotOS-VI),
IEEE Computer Society Press, pp 112-117, May 1997.

[GBS-t-97] N. Gloy, T. Blackwell, M. Smith, and B. Calder. Procedure Plj«:ement
Using Temporal Ordering Information. In Proceedings of Micro-30, De
cember 1997.

[GZH93] D. Grunwald, B. Zorn, and R. Henderson. Improving the Cache Locality
of Memory Allocation. In Proceedings of the ACM SIGPLAN '93 Confer
ence on Programming Language Design and Implementation, pp 177-186,
June 1993.

[Kis96] T. Kistler. Dynamic Runtime Optimization. In Proceedings of the
Joint Modular Languages Conference, JMLC'97, pp 53-66. Published as
Springer Lecture Notes in Computer Science No. 1204, March 1997. Also
published as Technical Report No. 96-54, Department of Information and
Computer Science, University of Cadifornia, Irvine, November 1996.

[KK95] G. Karypis and V. Kumar. A Fast and High Quality MultilevelSchemefor
Partitioning Irregular Graphs. Technical Report CORR 95-035, Univer
sity of Minnesota, Department of Computer Science, Minneapolis, June
1995.

B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Fekrtition-
ing Graphs. In Bell System Tech. Journal, Vol. C-33, pp 291-307, May
1970.

C.-K. Luk and T. Mowry. Compiler-Bcised Prefetching for Recursive Data
Structures. In Proceedings of the 7th International Conference on Ar
chitectural Support for Programming Languages and Operating Systems,
October 1996.

T. Mowry, M. Lam, and A. Gupta. Design and Evaluation of a Compiler
Algorithm for Prefetching. In Fifth International Conference on Archi
tectural Support for Programming Languages and Operating Systems, pp
76-84, October 1992.

Motorola Inc. PowerPC 604e Microprocessor Supplement and User's
Manual Errata. Motorola Inc. September 1996.

S. Muchnick. Advanced Compiler Design Implementation. Morgan Kauf
man, 1997.

A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Supporting Dynamic
Data Structures on Distributed Memory Machines. In ACM Transactions
on Programming Languages and Systems, 17(2), March 1995.

M. Reinhold. Cache Performance of Gjirbage-Collected Programs. In Pro
ceedings of the 21th Annual Symposium on Principles of Programming
Languages, pp 206-217, June 1994.

G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Con
flict Misses. In Proceedings of the 25th Annual Symposium on Principles
of Programming Languages, June 1998.

M. Seidl and B. Zorn. Predicting References to Dynamically Allocated Ob
jects. Technical Report CU-CS-826-97, Department of Computer Science,
University of Colorado, Boulder, January 1997.

N. Wirth and J. Gutknecht. The Oberon System. In Software—Practice
and Experience, 19(9): 857-893, September 1989.

N. Wirth. The Programming Language Oberon. Technical Report No. 143,
Institute for Computersystems, Swiss Federal Institute of Technology,
Zurich (ETHZ), November 1990.

M. Wolf and M. Lam. A Data Locality Optimization Algorithm. In
Proceedings of the SIGPLAN '91 Conference on Programming Language
Design and Implementation, pp 30-44. Published as SIGPLAN Notices
26(6), June 1991.

A Outline of Algorithm

(• Recursively p&rtition the given graph into
equal-sized partitions of the size of a cache line •)
PROCEDURE PartitionCgraph: Graph; list: GraphList);

VAR left^raph, right^aph: Graph;
BEGIN

IF size(gTaph) > CacheLineSize THEN
(• Partition the graph into two equal-sized subsets
left^aph and right^aph, such that the total cost
of edges from left^aph to right^raph is minimized •)
KLBisect(graph, left^rapb, right^raph);

Partition(left^raph); Partition(right^raph)
ELSE

AppendClist, graph)
END

END Partition;

(a Order fields within cache lines in such a vaj that
access costs are minimized •)

PROCEDURE Order(graph: Graph): Permutation;
BEGIN

Exhaustively search for field-permutation P with minimal
total cost C:

let P := (fieldo, fieldi. field,)
fieldj.adr DIV CacheBusVidth - fieldj.adr DIV CaeheBusHidth

dj,i :> (LineSize DIV BusWidth-dt.j) NOD LineSize DIV BusUidth
C :• 8uni.i....i(8uaj.i«t.,,Cwi,j*di.j + Wj,i*dj,i))

RETURN P

END Order;

(a Main procedure a)
PROCEDURE AlignFields (graph: Graph);

VAR list: GraphList; perm: Permutation;
BEGIN

(a Adjust graph a)
InsertLeader(graph);
InsertSizeAdjustment(graph);
InsertFiller(graph);

(a Split graph into partitions of the size of a cache line a)
list :« {}: Partition(graph, list);

(a Reorder fields within cache lines (i.e. paritions) a)
adr :« 0;

FOR all graphs G in list DO
RemoveSizeAdjustnent(G);
perm := Order(G);

(a Assign addresses to fields in permutation a)
A8signAddx(perm, adr);
adr :a adr + size(perm)

END

END AlignFields;

