
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
A Fine-grain Parallel Execution Model for Homogeneous/Heterogeneous Many-core Systems

Permalink
https://escholarship.org/uc/item/4sn5d067

Author
Geng, Tongsheng

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sn5d067
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

A Fine-grain Parallel Execution Model
for Homogeneous/Heterogeneous Many-core Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Tongsheng Geng

Dissertation Committee:
Professor Jean-Luc Gaudiot, Chair

Professor Nader Bagherzadeh
Professor Rainer Doemer

Professor Stéphane Zuckerman

2018

c© 2018 Tongsheng Geng

DEDICATION

To my beloved parents, sister and friends
For your endless love and support, without which I could never make it this far.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1

2 The Codelet Abstract Machine and Runtime System 5

3 Exploiting Fine-Grain Event-Driven Multithreading 8
3.1 Introduction and Motivation . 8
3.2 Methodology: Apply Fine-Grain Parallelism 10

3.2.1 Basic Implementation of a Parallel Coarse-Grain 5-Point 2D Stencil
Computation . 10

3.2.2 Basic Implementation of a Parallel fine-Grain 5-Point 2D Stencil with
OpenMP . 15

3.2.3 Parallel Stencil Computations Using the Codelet Model 16
3.2.4 A More Realistic Stencil-based Computation: LULESH 20

3.3 Experiments . 23
3.3.1 Experimental Testbed . 24
3.3.2 Experimental Protocol . 24
3.3.3 Experiment Results — 5-Point 2D Stencil Kernel 26
3.3.4 5-Point 2D Stencil Kernel Results — Discussion 32
3.3.5 Experiment Results — LULESH . 33

3.4 Related Work . 37
3.4.1 Fine-Grain Multithreading Execution and Programming Models . . . 37
3.4.2 Other Approaches to Optimize and Parallel Stencil Computations . . 39

3.5 Observations . 41

iii

4 Profile-Based Dynamic Adaptive Work-Load Scheduler on Heterogeneous
Architecture 43

4.1 Introduction and Motivation . 43
4.2 Background . 46

4.2.1 Heterogeneous Computing and Co-running Applications 46
4.2.2 Heterogeneous-DARTS Run-time System 49

4.3 Methodology: DAWL and IDAWL . 51
4.3.1 Target: Dependence-heavy Iterative Applications 51
4.3.2 Dynamic Adaptive Work-Load Scheduler 52
4.3.3 Profile-based Estimation Model . 57

4.4 Experiment . 61
4.4.1 Experimental Testbed . 61
4.4.2 Performance Analysis . 64
4.4.3 Result of Profile-based Estimation Model 71

4.5 Related Work . 78
4.6 Observations . 80

5 Stream-based Event-Driven Heterogeneous Multithreading Model 82
5.1 Introduction and motivation . 82
5.2 Streaming Program Execution Model (SPXM) 84

5.2.1 Two Levels Parallelism and Data Locality 84
5.2.2 Streaming Codelet Model . 85
5.2.3 Streaming Codelet Abstract Machine Model 87

5.3 SPXM Design . 89
5.3.1 Streaming Codelet . 89
5.3.2 Streaming Module (Threaded Procedure) 91
5.3.3 Runtime Stream Scheduler . 92
5.3.4 Detailed Example . 95

5.4 Related Work . 101

6 Conclusions and Future Work 104

Bibliography 106

iv

LIST OF FIGURES

Page

3.1 A Coarse-Grain Version of a Näıve Stencil Computation. Each codelet resets
itself if there are remaining iteration steps. 15

3.2 A Fine-Grain Version of 2D Stencil Computation with OpenMP. 16
3.3 A Medium-Grain Version of a Naive 5-Point 2D Stencil Computation. The

computation is decomposed into several sub-Codelet graphs, allowing a ma-
chine to hold multiple synchronization units for a better workload balance. . 17

3.4 A Fine-Grain Version of a Naive 5-point 2D Stencil Computation. A single
TP is generated, which holds the full Codelet graph. Codelets only signal the
neighbors which read and write shared rows. 19

3.5 A Fine-Grain In-Place Version of a Näıve 2D Stencil Computation. Multiple
TPs can be generated, which hold a portion of the overall Codelet graph.
Codelets only signal the neighbors which read and write shared rows. A single
matrix is required. 19

3.6 LULESH Compute-Sync Graph. – OpenMP version – Coarse Grain 22
3.7 LULESH Compute-Sync Graph. – DARTS version, – Balanced Compute-

Sync Tree . 22
3.8 LULESH Compute-Sync Graph. – DARTS version, – Unbalanced Compute-

Sync Tree . 23
3.9 platform A: Strong Scaling– Matrix size: 1000× 1000. 26
3.10 platform A: Strong Scaling– Matrix size: 3000× 3000. 27
3.11 platform A: Strong Scaling– Matrix size: 5000× 5000. 27
3.12 PlatformB: Strong Scaling– Matrix size: 1000× 1000. 28
3.13 PlatformB: Strong Scaling– Matrix size: 3000× 3000. 28
3.14 PlatformB: Strong Scaling– Matrix size: 5000× 5000. 29
3.15 Platform A: Weak Scaling– Thread Number: 32 31
3.16 Platform B: Weak Scaling–Thread Number: 48 31
3.17 Platform A: LULESH on DARTS, vs OpenMP, children n is the arity of each

node in the tree, i.e., the number of children a node can have in the tree. . . 34
3.18 Platform B:LULESH on DARTS, vs OpenMP, children n is the arity of each

node in the tree, i.e., the number of children a node can have in the tree. . . 35

4.1 Concurrent Streams overlap data transfer . 49
4.2 Example: CPU-GPU Workload Balancing with DAWL. 56

v

4.3 2D stencil: speed up when GPU memory is 2 and 4GB with different initial
workload (GPU=CPU): 0.5× av GPU (1) vs 2000× ∗ (2) 57

4.4 fatnode topology . 61
4.5 2D stencil: Speedup of the different versions 66
4.6 2D stencil: Speedup when matrices are larger than 17K 67
4.7 3D stencil: Speedup with different versions 68
4.8 2D stencil: Performance with a varying number of HW threads on fatnode.

Time in nanoseconds. 71
4.9 2D stencil: Performance with a varying number of HW threads on supermicro.

Time in nanoseconds. 72
4.10 2D stencil: Performance with a varying number of HW threads on debian.

Time in nanoseconds. 72
4.11 2D stencil: Performance with a varying number of HW threads on ccsl. Time

in nanoseconds. 73
4.12 2D stencil: Speedup when matrices are larger than 17K (IDAWL) 75
4.13 stencil3D: speedup (IDAWL) . 76

5.1 sheduler: unbalanced SDFG to balanced SDFG 93
5.2 Example: streaming Codelet graph (SCG) . 94
5.3 mapping streaming Codelets to cores example 97
5.4 message example1 . 98
5.5 message example2 . 98
5.6 message example3 . 98

vi

LIST OF TABLES

Page

3.1 Codelet Model macros and their meaning. 12
3.2 Compute Nodes Characteristics. “PE” = “Processing element.” L2 and L3

caches are all unified. Hyperthreaded cores feature two threads per core.
Platform A features 64 GB of DRAM; Platform B features 128 GB. 24

3.3 System Software Stack used for the experiments. 24

4.1 Hardware Platforms . 60
4.2 Software Environment. 61
4.3 Stencil kernel implementation . 65
4.4 Mean Absolute Percentage Error . 74
4.5 2D Stencil: Important Features for ML Estimation Model 77

5.1 streaming Threaded Procedure STP0 attributes based on the Figure 5.2 . . . 95
5.2 streaming Threaded Procedure STP3 attributes based on the Figure 5.2 . . . 99
5.3 streaming Codelet S12 attributes based on the Figure 5.2 99

vii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Professor Jean-Luc Gaudiot, who
guided me in my research and encouraged me with all his passion, patience and immense
knowledge. It has been an honor to work and study under his guidance. I could not have
imagined having a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Professor Nader
Bagherzadeh, Professor Rainer Doemer, and Professor Stéphane Zuckerman for their insight-
ful comments and encouragement, but also for the hard questions which incentivized me to
expand the horizons of my research. Thanks also to Professor Tony Givargis and Professor
Mohammad Al Faruque for serving on my Ph.D. qualifying examination committee.

I would like to share a special word of gratitude with professor Stéphane Zuckerman, from
the Université Paris-Seine, Université de Cergy-Pontoise, for the generous sharing of his time
and expertise in the course of my Ph.D study and related research. He initiated the DARTS
project on which most this works is based and he spent much time passing his knowledge on
to me.

I am extremely grateful to professor Alfredo Goldman, from the University of São Paulo,
and Professor Sami Habib, from Kuwait University, who gave me extensive personal and
professional guidance and taught me a great deal about both scientific research and life in
general.

My sincere thanks also goes to professor Guang R. Gao, from the University of Delaware, who
provided me with an opportunity to participate in the activities of his extraordinary multi-
disciplinary research group. Many thanks to the University of Delaware CAPSL research
group members who granted me access to the laboratory and research facilities and provided
technical support. Without they precious support it would not have been possible to conduct
this research.

I thank all my fellow labmates in the PArallel Systems & Computer Architecture Lab (PAS-
CAL) for the stimulating discussions, for their support during the sleepless nights we spent
working together before deadlines, and for all the fun we had through the years.

Professor Gaudiot’s wife, Teresa, took me under her wing and taught me so much about
American culture and language. She has given me more than I could ever give her credit for
here. I am immensely thankful to my ”American mother.”

A work of grateful acknowledgement to the National Science Foundation who supported my
research under Grants No. XPS-1439165, XPS-1439097 and CCF-1763793. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

viii

CURRICULUM VITAE

Tongsheng Geng

EDUCATION

Doctor of Philosophy in Electrical and Computer Engineering 2018
University of California, Irvine

Master of Science in Institute of Microelectronics 2011
Tsinghua University

Bachelor of Science in Mechanical Engineering 2006
Zhengzhou University

RESEARCH EXPERIENCE

Graduate Research Assistant 2012–2018
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2015–2018
University of California, Irvine Irvine, California

ix

REFEREED CONFERENCE PUBLICATIONS

The Importance of Efficient Fine-Grain Synchronization
for Many-Core Systems

September 2016

In Languages and Compilers for Parallel Computing-29 th International Work-
shop,LCPC2016,Rochester, NY.USA, September 28-30,2016,pp203-217

SOFTWARE

Fine-grain Execution Model Run-time system https://github.com/gengtsh/darts

Runtime system that implements fine-grain parallel execution execution model

x

https://github.com/ gengtsh/darts

ABSTRACT OF THE DISSERTATION

A Fine-grain Parallel Execution Model
for Homogeneous/Heterogeneous Many-core Systems

By

Tongsheng Geng

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2018

Professor Jean-Luc Gaudiot, Chair

Computing systems have undergone a fundamental transformation from single core devices to

devices with homogeneous/heterogeneous many-cores connected within a single or multiple

chips. However, while the core count per chip continues to increase dramatically, the available

on-chip memory per core is only getting marginally bigger. How to successfully explore

parallelism and deliver scalability is a major research issue and we have successfully attacked

three main problems:

First, it is well known that, in homogeneous shared-memory many-core systems, traditional

coarse-grain multithreading models are reaching their limits. We have thus proposed and

designed a fine-grain event-driven multithreading execution model that will deliver the paral-

lelism required to efficiently operate with dependence-heavy applications in shared-memory

systems. By performing finer-grained and hierarchical synchronization, even ”almost embar-

rassingly parallel” workloads can obtain large performance improvement.

Second, it has been recognized that, in heterogeneous High Performance Computing sys-

tems, the performance depends on how well the scheduler can allocate workloads to the

appropriate computing devices and make communication and computation to overlap effi-

ciently. With different types of resources integrated into one system, the complexity of the

xi

scheduler correspondingly increases. Moreover, when the applications have varying problem

sizes on different heterogeneous resources, the complexity of the scheduler grows accordingly.

Our proposed profile-based Iterative Dynamic Adaptive Work-Load balance scheduling ap-

proach (IDAWL) combines offline machine learning with online scheduling offers a general

approach to efficiently utilize, in a dynamic fashion, available heterogeneous resources.

Finally, for those applications where the computation can be naturally expressed as streams,

our Stream-based fine-grain program execution model, was developed to explore parallelism

of hierarchical heterogeneous resources. It can exploit two levels (coarse- and fine-grain) of

parallelism, efficiently utilizing locally available heterogeneous resources to construct stream-

ing pipeline stages and minimize data movement to enhancing data locality.

xii

Chapter 1

Introduction

Computing systems have undergone a fundamental transformation from single core devices to

devices with homogeneous/heterogeneous many-cores connected within a single or multiple

chips. In the past decade, The number of Processing Elements (PEs) found in general-

purpose high-performance processors has increased hundred-fold, as demonstrated by, e.g.,

the latest processors from Intel R© and IBM R©. Further, heterogeneous resources(GPUs,

FPGAs, storage, etc.) are widely used in High-Performance Computing (HPC) platforms.

For instance, the number of platforms of the Top500 equipped with accelerators has sig-

nificantly increased during the last years [1]. In the future it is expected that the nodes’

heterogeneity and count will increase even more: hybrid computing nodes mixing general

purpose units with accelerators, I/O nodes, nodes specialized in data analytics, etc. The

interconnect of a huge number of such nodes will also lead to more heterogeneity. Many

issues must be envisioned in new software/hardware systems, including programmability,

scalability, performance evaluation, and power efficiency [2]. Better performance and power

consumption obtained from the use of more appropriate resources according to the com-

putations to perform will be obtained at the cost of code development and more complex

resource management. How to successfully exploit parallelism and deliver scalability is a

1

major research issue in both Homogeneous and heterogeneous many-core systems.

In contrast to the rapid development of the hardware, the programming models and pro-

gram execution models (PXMs), in the area of software parallel computing in homogeneous

shared-memory many-core systems used by scientific applications, have remained mostly the

same: MPI is used for inter-node communication and OpenMP is still favored for shared-

memory computations. However, while the OpenMP standard has evolved to provide ways

to define fine-grain task-dependence graphs in OpenMP4 [3] and OpenMP4.5 [4], a large ma-

jority of application programmers use OpenMP features that are mostly related to parallel

for loops, a coarse-grain style to express parallelism, i.e., a programming style which re-

quires the insertion of global barriers rather than finer-grain point-to-point synchronizations

between individual threads. As long as the core count remained low in terms of shared-

memory compute nodes, global barriers were reasonable. However, this approach is not

scalable: as the core count increases, the stress sustained by the memory subsystem leads to

unacceptable contention on the various memory banks (both at the cache and DRAM lev-

els). Moreover, the coarse-grain approach is still sustainable for CPU-bound workloads, but,

with memory-bound applications, global barriers may kill performance due to the hardware

synchronization mechanism, while high-performance based synchronization constructs rely

on some sophisticated variation of busy-waiting (potentially mitigated with a sleep policy)

which can hog the memory subsystem, particularly in the case of “almost embarrassingly

parallel” algorithms and programs.

In heterogeneous High Performance Computing systems, the performance depends on how

well the scheduler can allocate workloads to the appropriate computing devices and make

communication and computation efficiently overlap. With different types of resources inte-

grated into one system, the complexity of the scheduler correspondingly increases. Manual

scheduling workloads is time-consuming, error-prone and becomes nearly infeasible for de-

velopers since any changes of hardware may render the original scheduling approach useless.

2

A good heterogeneity-aware scheduler must leverage load-balancing techniques in order to

obtain the best workload partition between CPUs and general-purpose accelerators—e.g., a

GPU. Näıve heuristics may result in worsened performance and power consumption. This is

particularly the case for iterative algorithms, such as stencil-based computations which re-

quire regular host-accelerator synchronizations. An unbalanced workload may cause a huge

drag in performance. At the same time, stencil-based computations are at the core of many

essential scientific applications: stencils are used in image processing algorithms, e.g., con-

volutions; partial differential equation solvers, Laplacian transforms, or computational fluid

dynamics; linear algebra, the Jacobi method; etc.

Finally, streaming applications (where the computation can be naturally expressed as streams)

include scientific computations, embedded applications, as well as the emerging field of so-

cial media processing. Program execution models centered on streams have been studied

by many researchers and have been an active field of research for the past 30 years [5–9].

The most relevant early work on streams is the data flow execution model pioneered by

Dennis [10, 11], the Synchronous Data Flow (SDF) model [12, 13] and Program Dependence

Graph(PDG) model [14]. Other work include data-flow software pipelines [15, 16, 16–18].

However, these models do not address the parallelism and resources utilization problems

existing in highly heterogeneous and hierarchical system. Moreover, it should be noted that

core count per chip continues to increase dramatically while the available on-chip memory

per core is only getting marginally bigger. This means that data locality, already a must-have

in high-performance computing, will become an even critical point in streaming processing

since smooth data movement will be a must in streaming processing.

The goal of this work is to propose a fine-grain event-driven parallel execution model to

solve parallel computing, resource utilization and scalability issues coming with the new

era of High-Performance computing. Specifically, it deals with the coarse-grain synchro-

nization issues in homogeneous shared-memory many-core system, workload balance and

3

streaming parallelism issues in hierarchical heterogeneous many-core system. The structure

of this document is as follows. Section 2 reviews a fine-grain event-driven program execution

model, abstract machine and correspondingly runtime system as background information;

Section 3 proposes to demonstrate the need for fine-grain synchronization in homogeneous

shared-memory many-core systems; Section 4 proposes an approach, combining offline ma-

chine learning with online scheduling, to offers a general approach to efficiently utilize, in

a dynamic fashion, available heterogeneous resources; Section 5 proposes a stream-based

fine-grain program execution model for streaming applications to explore parallelism of hi-

erarchical heterogeneous resources; Section 6 concludes this work and presents the planned

future work.

4

Chapter 2

The Codelet Abstract Machine and

Runtime System

The Codelet Model [19] is a fine-grain event-driven program execution model which targets

current and future multi- and many-core architectures1. In essence, it is inspired by data

flow model of computation [20] and dynamic [21] models.

The quantum of execution is the Codelet, a fine-grain task that executes a sequence of ma-

chine instructions until completion and runs on a von Neumann type of processing element.

A Codelet fires when all its dependencies (data and resource requirements) are met. A

Codelet cannot be preempted while it is firing, i.e., while it is executing its instructions.

Each time a Codelet produces data items or releases a shared resource, it signals the other

Codelets which depend on such data item(s) and/or resource(s). Such a group of Codelets

can be modeled as a directed graph called a Codelet Directed Graph (CDG) where Codelets

are the nodes and their dependencies are the edges. In general, a given CDG statically

specifies the dependencies between the Codelets it contains.

1A short introduction is available at http://www.capsl.udel.edu/codelets.shtml.

5

http://www.capsl.udel.edu/codelets.shtml

A Threaded Procedure (TP) is a container that comprises a CDG and data to be accessed by

the Codelets it contains. A TP is essentially an asynchronous function: once it is invoked, its

caller resumes its execution. The TP itself can be scheduled to run anywhere in one of the

clusters of the Codelet Abstract Machine, and the Codelets can run on any of the cluster’s

Computation Units. However, once scheduled, a TP and its content (data and code) must

remain allocated in its cluster. However, individual Codelets may be scheduled for execution

in any of the computation units comprised in the cluster.

The Codelet model relies on a Codelet Abstract Machine (CAM), which models a general

purpose many-core architecture with two types of cores: scheduling units (SUs), which

perform resource management and scheduling, and computation units (CUs), which carry out

the computation. Compared to CUs, SUs have two more functions: control and synchronize

all the CUs. A CAM is an extensible, scalable and hierarchy model. One cluster contains at

least one SU, one or more CUs, and some local memory. Clusters can be grouped together

to form a chip, which itself has access to some memory modules; Multiple chips consist of

a node, and multiple nodes form a full CAM. The communication of between and within

components of each level of hierarchy is done by the interconnection network.

A CAM is meant to be mapped on real hardware: the number of clusters, and computation

units per cluster will be directly influenced by the actual hardware architecture on which a

codelet program should be running. Further, different configurations may be used on the

same target hardware, depending on the nature of the application.

The Delaware Adaptive Run-Time System (DARTS) [22–24] is a faithful implementation

of the CAM. It is written in portable C++, and runs on any UNIX-based distribution. It

targets shared-memory nodes. DARTS executes on regular multi-core chips and assigns a

role to each core or thread: each processing element is either a SU or a CU. It also implements

the configurable CAM, which can be configured at run-time by the user (or in code by the

programmer). By default, DARTS ’s CAM considers each socket to be a cluster, and assigns

6

a single SU per cluster. Furthermore, there are two queues or pools, ready queue and

waiting queue, to store these Codelets. When all the requirements of one Codelet are met,

this Codelet will be moved from waiting queue to ready queue and SUs will push it to CUs

ready queue to execute or execute by himself if all the CUs are busy or their ready queues

are full. In specific case, to reduce data movement and utilize the data locality character,

DARTS can pin the Codelets into CUs when the same Codelets are invoked repeatedly or

periodically. DARTS is also extendable. Section 4.2.2 introduces Heterogeneous-DARTS

which extend DARTS to support both CPU and GPU resources parallelism computing.

Section 5 introduces Streaming-DARTS to support stream processing.

7

Chapter 3

Exploiting Fine-Grain Event-Driven

Multithreading

3.1 Introduction and Motivation

In the past decade, the number of Processing Elements (PEs) found in general-purpose high-

performance processors has increased between forty and a hundred times, as demonstrated

by, e.g., the latest processors from Intel R© and IBM R©. Further, the recent appearance of

“accelerators” have reached even higher PE counts in recent years.

In the meantime, the programming models and Program execution Models (PXMs) used by

scientific applications have remained mostly the same: MPI is used for inter-node commu-

nication and OpenMP is still favored for shared-memory computations. However, while the

OpenMP standard has evolved to include finer-grain tasks with OpenMP3 [25], and even

to provide ways to define task-dependence graphs in OpenMP4 [3] and OpenMP4.5 [4], a

large majority of application programmers use OpenMP features that are mostly related to

parallel for loops, sometimes exploiting the nature of their scheduling and the size of their

8

iteration blocks. In turn, this approach tends to favor a rather coarse-grain style to express

parallelism, i.e., a programming style which requires the insertion of global barriers rather

than finer-grain point-to-point synchronizations between individual threads.

As long as the core count remains low in terms of shared-memory compute nodes, global

barriers is reasonable. However, it is not scalable: as the core count increases, the stress

sustained by the memory subsystem leads to unacceptable contention on the various mem-

ory banks (both at the cache and DRAM levels). Moreover, the coarse-grain approach is

still sustainable for CPU-bound workloads, but, with memory-bound applications, global

barriers may kill performance due to the underlying hardware: on x86 machines, syn-

chronization usually leverages the use of atomic operations, which can seriously hamper

performance in a multi-core, multi-socket environment [26]. In particular, memory-bound

workloads tend to tax the interconnection network which links sockets together. In general,

high-performance based synchronization constructs rely on some sophisticated variation of

busy-waiting (potentially mitigated with a sleep policy) which can hog the memory subsys-

tem, as the system software designer expects contention to be low and the workload to be

well-balanced—particularly in the case of ”almost embarrassingly parallel” algorithms and

programs. However, recent compute nodes feature a high core and hardware thread count:

cores and hardware threads nowadays share more and more resources, such as functional

units, caches, and DRAM banks. As a result, it could be tedious and error-prone to par-

allelism even ”almost embarrassingly parallel” workloads with a high compute-to-memory

operations ratio, such as matrix multiplication. On more memory-intensive kernels, the same

problem arises, but on a larger scale. One such example is the use of partial differential equa-

tion iterative solvers for linear equation systems, in particular the application of Jacobi or

Gauss-Seidel methods to a linear system by resorting to a stencil-based iterative solver: every

element of an n-dimensional grid depends on its immediate neighbors, and potentially more

remote ones. Such algorithms are used in a multitude of applications, e.g., to solve Laplace

equations used in heat conduction and computational fluid dynamics solvers.

9

Section 3 demonstrates the need for fine-grain synchronization even in the presence of rather

coarse-grained workload partitioning using a stencil-based iterative solver, 5-point 2D stencil

kernel, as an example. Different variants of 2D stencil(section 3.2), including coarse-grain

variants and fine-grain variants, are running on two different types of machines featuring

x86 processors, with a different number of processing elements per chip, but also a different

number of sockets per node. Furthermore, a realistic stencil-based computation mini-app,

LULESH(Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics) [27–29], is

introduced in section 3.2.4 to support the idea that in a dependence-heavy context, yet with

a uniform amount of work per thread, fine-grain synchronization matters, even in “regular”

general-purpose systems.

3.2 Methodology: Apply Fine-Grain Parallelism

This section starts from a coarse-grain “parallel for” loop implementation of a simple, näıve

5-point 2D stencil computation expressed in OpenMP4 and ported it to leverage the Codelet

Model in DARTS. After that, Fine-grain task mechanism introduced in OpenMP4.5 [4] and

fine-grain model of Codelet will be described including data dependence and synchronization

constructs. A realistic application, LULESH [27–29], will be used as an example to evaluate

the differences of fine-grain and coarse-grain synchronization.

3.2.1 Basic Implementation of a Parallel Coarse-Grain 5-Point 2D

Stencil Computation

The code presented in Listing 3.1 is a näıve OpenMP version of a coarse-grain multithreaded

5-point 2D stencil computation. To simplify the problem, a given number of time step instead

of convergence test is considered. This version of the stencil code privatizes everything,

10

1 void stencil_5pt(double* restrict dst , double* restrict src ,

2 const s i z e t n_rows , const s i z e t n_cols ,

3 s i z e t n_steps)

4 {

5 typedef double (* Array2D)[n_cols];

6 # pragma omp para l l e l default (none) shared(src , dst) \

7 f i r s tpr iva te (n_rows , n_cols , n_tsteps)

8 {

9 Array2D D = (Array2D) dst , S = (Array2D) src;

10 s i z e t n_ts = n_tsteps;

11 while (n_ts -- > 0) {

12 # pragma omp for nowait
13 for (s i z e t i=1; i<n_rows -1; ++i)

14 for (s i z e t j=1; j<n_cols -1; ++j)

15 D[i][j] = 0.25 * (S[i-1][j]+S[i+1][j] + S[i][j-1]+S[i][j

+1]);

16 SWAP_PTR (&D,&S);

17 # pragma omp barrier
18 }

19 }

20 }

Listing 3.1: Näıve 5-Point 2D Stencil kernel—OpenMP version. Everything has
been privatized, but threads can only proceed to the next time step if they all have
swapped their array pointers.

so that each thread can perform all computations including pointer swapping and moving

forward to the next time step. The computation itself is located in a parallel for loop

(see line 13). There is no the implicit barrier at the end of the loop because of using for

nowait clause, so that threads that finish processing their own iteration chunk may proceed

to swap their source and destination pointers for the next time step. The only required

synchronization is the global barrier (line 17) before looping to the next iteration in the

while loop, to ensure that all threads have properly swapped their array pointers before

resuming the computation.

A direct translation of Listing 3.1’s code into a DARTS framework can be found in Listing 3.2

and 3.3. Obviously, comparing with Openmp version, the DARTS version of code is more

verbose using DARTS runtime system API. The various keywords emphasized in bold red

are macros defined to simplify the writing of DARTS programs. A short description of the

various keywords is provided in Table 3.1. Listing 3.2 defines a Threaded Procedure(TP)

11

Keyword Description

DEF TP Defines a new threaded procedure
DEF CODELET Defines a new codelet
DEF CODELET ITER Defines a new codelet with a specific ID
SYNC Signals a codelet within the same TP frame
SIGNAL Signals a codelet in another TP frame
SIGNAL CODELET Signals a codelet from a TP setup phase
LOAD FRAME Loads the threaded procedure frame
FIRE(CodeletName) Code to run when CodeletName is fired
INVOKE(TPName,...) Invokes a new TP from a codelet

Table 3.1: Codelet Model macros and their meaning.

1 DEFCODELET ITER (Compute , 0, NO_META_DATA);

2 DEFCODELET (Barrier , 2, NO_META_DATA);

3 DEF TP(Stencil) {

4 // Data

5 double *dst , *src;

6 s i z e t n_rows , n_cols , n_tsteps;

7 // Code

8 Compute* compute;

9 Barrier barrier;

10
11 Stencil(double* restrict p_dst , double* restrict p_src ,

12 s i z e t p_nRows , s i z e t p_nCols ,

13 s i z e t p_nTSteps)

14 : dst(p_dst), src(p_src)

15 , n_rows(p_nRows), n_cols(p_nCols), n_tsteps(p_nTSteps)

16 , compute(new Compute[g_nCU])

17 , barrier(g_nCU ,g_nCU , this ,NO_META_DATA)
18 {

19 for (s i z e t cid = 0; i < g_nCU; ++cid) {

20 compute[cid] = Compute {1,1, this ,NO_META_DATA ,cid};
21 SIGNALCODELET(compute[cid]);
22 }

23 }

24 };

Listing 3.2: Coarse-Grain 5-Point 2D Stencil kernel—DARTS version. Stencil TP
definition and its associated codelets.

named Stencil and two Codelets, named Compute and Barrier. Compute Codelet is defined

with default 0 dependence counts and Barrier Codelet is defined with default 2 dependence

counts. The dependence count can be overridden when the Codelet is instantiated in TP.

The Stencil TP is essentially a C++ struct which allocates the right amount of Codelets

12

1 FIRE(Compute) {

2 LOADFRAME(Stencil);
3 typedef double (* Array2D)[n_cols];

4 Array2D D = (Array2D) FRAME(dst),
5 S = (Array2D) FRAME(src);
6 const s i z e t n_rows = FRAME(n_rows),
7 n_cols = FRAME(n_cols),
8 n_steps = FRAME(n_steps);
9
10 // current codelet ’s ID

11 s i z e t cid = getID(),

12 lo = lower_bound(n_cols ,cid),

13 hi = upper_bound(n_cols ,cid);

14 for (s i z e t i = lo; i < hi -1; ++i)

15 for (s i z e t j = 1; j < n_cols -1; ++j)

16 D[i][j] = 0.25 * (S[i-1][j]+S[i+1][j]+ S[i][j-1]+S[i][j+1]);

17 SYNC(barrier);
18 EXIT TP();

19 }

20
21 FIRE(Barrier) {

22 LOADFRAME(Stencil);
23 i f (FRAME(n_tstep) == 0) {

24 SIGNAL(done);
25 EXIT TP();

26 }

27
28 double *src = FRAME(dst), *dst = FRAME(src);
29 s i z e t n_rows = FRAME(n_rows), n_cols = FRAME(n_cols),
30 n_tsteps = FRAME(n_tsteps);
31 Codelet *done = FRAME(done);
32
33 INVOKE(Stencil , src , dst , n_rows , n_cols , n_steps -1,

34 done);

35 EXIT TP();

36 }

Listing 3.3: Coarse-Grain 5-Point 2D Stencil kernel—DARTS version. Compute
Codelet and barrier Codelet definition. a new TP is invoked at each new iteration
step.

for a given cluster of cores, and holds the data which the Codelets can access. The Compute

Codelet proceeds to execute the stencil operation for one time step over a chunk of the data.

When it is done firing, it signals the Barrier Codelet, which collects all the signals of all

firing Computes. Barrier then proceeds to invoke a new Stencil TP where the source

and destination arrays are swapped in the parameters list, and the time step is decreased.

This variant performs poorly compared to OpenMP since creating a new TP in every time

13

step yields a rather high overhead which involves dynamically allocating and deallocating

intermediate data structures to hold the TP frame, as well as creating a set of Codelets to

process portions of iteration space.

1 FIRE(Compute) {

2 LOADFRAME(Stencil);
3 typedef double (* Array2D)[n_cols];

4 Array2D D = (Array2D) FRAME(dst), S = (Array2D) FRAME(src);
5 const s i z e t n_rows = FRAME(n_rows), n_cols = FRAME(n_cols),
6 n_steps = FRAME(n_steps);
7
8 s i z e t cid = getID(), // current codelet ’s ID

9 lo = lower_bound(n_cols ,cid),

10 hi = upper_bound(n_cols ,cid);

11
12 RESET(compute[cid]);
13 for (s i z e t i = lo; i < hi -1; ++i)

14 for (s i z e t j = 1; j < n_cols -1; ++j)

15 D[i][j] = 0.25 * (S[i-1][j]+S[i+1][j] + S[i][j-1]+S[i][j+1]);

16 SYNC(barrier);
17 EXIT TP();

18 }

19
20 FIRE(Barrier) {

21 LOADFRAME(Stencil);
22 i f (FRAME(n_tstep) == 0) SIGNAL(done), EXIT TP();

23
24 RESET(barrier);
25 for (s i z e t i = 0; i < g_nCU; ++i) SYNC(compute[i]);
26 EXIT TP();

27 }

Listing 3.4: Coarse-Grain 5-Point 2D Stencil kernel—DARTS version. Compute
Codelet and barrier Codelet definition. Codelets reset themselves until the last
iteration step is reached.

To reduce the overhead, a better version of the same coarse-grain behavior is provided in

Listing 3.4. Adding RESET function to Codelet help reuse the same TP frame. The SYNC call

allows a Codelet to signal a sibling contained within the same TP frame. In new version,

Compute Codelets reset their dependence count when they are fired. Barrier signals the

end of the computation if there are no more time steps, or it resets itself, and then signals

Compute Codelets. This version is the “base” code we will be using to compare to OpenMP

and refine in the section 3.3. Figure 3.1 illustrates this approach.

14

Figure 3.1: A Coarse-Grain Version of a Näıve Stencil Computation. Each codelet resets
itself if there are remaining iteration steps.

3.2.2 Basic Implementation of a Parallel fine-Grain 5-Point 2D

Stencil with OpenMP

The näıve OpenMP code leverages the regular coarse-grain fork-join execution model to

parallelism code. As the loop is scheduled statically, the same OpenMP thread is tasked to

process the same iteration chunk for each time step. Tiling method can be used to optimize

the näıve code. As a result, even though as much asynchrony as possible was added to the

code, there is still a need to issue a global barrier to wait between two time steps, to ensure

each thread can start processing the new time step with the most up-to-date rows during

the kernel’s execution.

Figure 3.2 illustrates the fine-grain OpenMP4.5 ’s tasks Data Flow Graph(DFG). OpenMP4.5

tasks directives, i.e.,task depends: in, task depends:out can help configure the connec-

tions between tasks. There are two types of tasks, task-comp and task-scomp. task-comp

is a “regular” computing task, while task-scomp combines both a regular computation and

a pointer swapping steps. ck(i) stands for chunki (the ith iteration chunk in the loop/block

15

of matrix rows to process), and ts(j) stands for “time step j,” the jth time step in the it-

erative computation. The 2D stencil computation is partitioned into different chunks. Each

chunk features the same number of columns and a similar amount of rows (the last chunk

may feature a few more or a few less lines than the others, which mimics the way OpenMP ’s

parallel loops work). For each time step, there are different sets of dependencies to resolve,

depending on which neighboring iteration chunks are being processed. Hence, task-comp

for chunki of time step j cannot begin computing until task-scomps of both chunki−1 (the

“upper chunk”) and chunki+2 (the “lower chunk”) finish computing at time step j − 2.

Figure 3.2: A Fine-Grain Version of 2D Stencil Computation with OpenMP.

3.2.3 Parallel Stencil Computations Using the Codelet Model

This section presents the various steps which were followed to produce a parallel fine-grained

version of the 5-point 2D stencil code in the Codelet Model. DARTS explicitly specify how

parallelism is created, orchestrated, and ended. It is necessary for fine-grain synchronization

control including creating Codelets data dependencies and scheduling Codelets on specific

threads.

16

3.2.3.1 Distributing The Computation Over Multiple Clusters In The Codelet

Abstract Machine

Figure 3.3: A Medium-Grain Version of a Naive 5-Point 2D Stencil Computation. The
computation is decomposed into several sub-Codelet graphs, allowing a machine to hold
multiple synchronization units for a better workload balance.

As described in section 2, DARTS, by default, maps each single socket to a CAM ’s cluster

of cores comprising one SU as control element and a serial of CUs as processing elements. As

a consequence, parallelism is inherently hierarchical in this setting. Programming Codelet

applications thus leads to building “natural” hierarchical barriers. The new näıve version

with RESET function, shown in Listing 3.4 and Figure 3.1, is faithfully implementing one

SU CAM. However, this configuration centralizes all Codelet graph creations onto a single

processing element. This has several drawbacks. First among them, it effectively forces all

cores to issue an atomic operation on the same memory location, thus forcing the serialization

signals when a time step has been achieved. Second, it prevents the system from performing

load-balancing when needed. To ensure a better load-balancing on a multi-socket shared-

memory node, it is preferable to map multiple clusters from the CAM, each with its own

SU.

The way shown in Listing 3.3 partitions the Codelet graph into sub-graphs, each contained

within its own TP, and each confined to a given cluster of cores, hence maintaining local-

17

ity. To avoid paying the overhead cost of dynamically allocating and deallocating Codelets

array when create new TP in each time step, mentioned in section 3.2.1, the same array

of Codelets is passed from invocation to invocation: the Codelets are created only once the

first iteration step has been started and destroyed only once the last iteration step has been

reached. Figure 3.3 provides a high-level view of the resulting codelet graph. This results in

a somewhat medium-grained version of the stencil computation, shown in section 3.3.

3.2.3.2 Toward a Finer-Grain Approach

The goal is to allow portions of work to proceed with the next iteration step, as long as the

shared rows they require to update their portion of the matrix are available. To make it

simple, new version of code is still still decomposing the work along the rows of the matrices.

However, each Codelet simply signals its neighbors when it is done updating the rows they

depend on to move to the next iteration step. Hence, some Codelets may proceed to update

the system at step St+1 while others are still finishing step St. Figure 3.4 provides a diagram

of the resulting Codelet graph where only one TP is created to hold the whole Codelet graph,

where all dependencies are statically determined. The stress on the memory subsystem is

not expected to be excessive, however, since signals are now only sent between “neighboring”

cores.

3.2.3.3 Reducing the Stencil Computation’s Footprint

To reduce the memory footprint of the computation, instead of systematically using two

matrices to iterative compute new values at each time step (subsequently requiring to ex-

change array pointers), it is possible to allocate a small buffer per Codelet in each invoked

TP. Each buffer must be large enough to hold a set of at least three full rows in the ma-

trix. As a result, The original naive loop thus becomes more complex, as each Codelet must

18

Figure 3.4: A Fine-Grain Version of a Naive 5-point 2D Stencil Computation. A single TP
is generated, which holds the full Codelet graph. Codelets only signal the neighbors which
read and write shared rows.

Figure 3.5: A Fine-Grain In-Place Version of a Näıve 2D Stencil Computation. Multiple
TPs can be generated, which hold a portion of the overall Codelet graph. Codelets only
signal the neighbors which read and write shared rows. A single matrix is required.

now first write the new values of the system to its local buffer first, then must write the

newly updated row(s) back to the original matrix. However, this scheme lends itself well

to fine-grain synchronization.Indeed, as Figure 3.4 only features TPs, Codelets, and their

19

dependencies, but not the actual code or data that are held in the TP frames, then it is

also an adequate representation of an “in-place” version of a fine-grain version of an n-point

stencil computation. However, this version suffers from the same limitation as the previous

fine-grain variant: it requires to invoke a single TP, thus forcing the CAM to be mapped

with a single SU for the whole machine, and, in turn, to accept that all TP creations will

involve a potentially heavy serial step. Note also that since this implementation requires to

allocate enough space for three full rows of the original matrix, there is no guarantee these

buffers will fit in individual core’s L1 data caches, or even L2 caches.

Hence, a final refinement is to allow for the distribution of the fine-grain “in-place” variant

over multiple TPs. While the previous variants, including the initial fine-grain one, were

relatively easy to implement, this specific implementation requires some careful coding when

setting up the overall Codelet graph, as Codelets will reset themselves and signal each other

not only within the same TP frame, but also across frames. However, the basic structure

remains the same, and it clearly can be automated by a compiler. The resulting Codelet

graph is shown in Figure 3.5. In this last variant, each Codelet graph features three types of

Codelets: Compute performs the actual computation, as before. The CheckDown and CheckUp

Codelets are signaled when rows shared by “upper” and/or “lower” neighbors are ready to

be updated. In turn, they also signal other compute Codelets to let them know that the rows

they are sharing with their neighbors are cleared for reading. Note we elected to partition

the matrices row-wise to keep the case study simple, but further partitioning (along both

rows and columns) would follow the same principles.

3.2.4 A More Realistic Stencil-based Computation: LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics, or LULESH, is a “proxy

app,” i.e., an application that is representative of a more complete and more complex type

20

of application currently in use in national laboratories all over the world and in particular

in the US. Specifically, such applications are used to model deformation events, and in the

particular case of LULESH, the Sedov blast wave problem for one material in three dimen-

sions. It is a hexahedral mesh-based physics code with two centerings, Nodal centering and

element centering, and time simulation constraints [27, 29]. As with all other “proxy” (or

“mini”) applications published by US national laboratories, the implementation prioritizes

clarity over optimization. As a result, while the application is representative of more com-

plex (and more complete) shock hydrodynamics currently deployed in production in various

laboratories, e.g., in terms of computation steps, data movements, etc., it lacks many of the

optimization that can be found in production-level implementations.

Well known code transformations, such as tiling, loop fusion, or loop distribution, is not the

purpose of this section. The impact of transitioning from a coarse-grain implementation of

the code toward a fine-grain one, and, in the context of this mini-app, how much performance

can be hoped to be gained when “drowned” within a more complex application environment

is the interesting part.

The “official” LULESH application [29] uses OpenMP ’s coarse-grain synchronization con-

structs, as shown in Figure 3.6. For example, the Nodal centering function, one of most

time consuming functions of LULESH, copes with all nodes’ kinematics value such as force,

acceleration, positions, velocities etc. The synchronization barrier will be used for every

kinematics value calculation. The synchronization cost is proportional to the number of

nodes.

To avoid global barrier, a tree barrier approach can be used to control synchronization gran-

ularity. The tree can be balanced or unbalanced for a given arity k. The tree structure

barrier impact the overall performance by reducing atomic operations in the overall compu-

tation. For instance, there are 8 processing elements in the hardware platform, if the arity

of each node is set to 2 which ensures a balanced tree, as shown in Figure 3.7, then every

21

Figure 3.6: LULESH Compute-Sync Graph. – OpenMP version – Coarse Grain

Figure 3.7: LULESH Compute-Sync Graph. – DARTS version, – Balanced Compute-Sync
Tree

22

Figure 3.8: LULESH Compute-Sync Graph. – DARTS version, – Unbalanced Compute-Sync
Tree

inner code will have 2 children; if the arity of each name is set to 4, as shown in Figure 3.7,

then this tree is unbalanced. There is no standard criteria to determine which type of tree

is more efficient. The hardware,especially the number of available cores in one cluster, the

structure of clusters and the memory hierarchy, affect the finally performance. In this tree

structure, every Codelet fulfills two functions: computation and synchronization, excepted

the root Codelet, which only performs synchronizations.

3.3 Experiments

This section describes the results of each specific computation—näıve coarse-grain 2D stencil,

fine-grain 2D stencil, and LULESH—implemented using OpenMP and DARTS. We compare

the results obtained in each case.

23

3.3.1 Experimental Testbed

Processor # # Total L1D L2 L3
Platform type Sockets PEs per PEs (KiB) (KiB) (MiB) Comments

Socket

A Intel 2 16 32 32 256 20 Private L2 ;
Sandy Bridge Hyperthreading

B Intel 4 12 48 32 256 15 Private L2 ;
Sandy Bridge Hyperthreading

Table 3.2: Compute Nodes Characteristics. “PE” = “Processing element.” L2 and L3 caches
are all unified. Hyperthreaded cores feature two threads per core. Platform A features 64 GB
of DRAM; Platform B features 128 GB.

Platform Linux distribution Kernel version GCC version

A CentOS 7.1 3.10.0 8.1
B Ubuntu 16.04 LTS 3.13.0 8.1

Table 3.3: System Software Stack used for the experiments.

The hardware platforms characteristics are described in Table 3.2. Table 3.3 provides the

information related to the system software running on each compute node.Each platform

offers a relatively varied system software layer, with compilers and OS kernels being slightly

(or even widely) different from node to node. All experiments are run by pinning threads to

a given processing element, and by setting the OMP PROC BIND environment variable to true

(for OpenMP). DARTS automatically pins its work queues to the underlying processing

elements. 1

3.3.2 Experimental Protocol

Eight different variants of stencil code: Seq is the baseline and is a benchmark that runs

sequentially on one CPU core; OpenMP runs the same code as Seq with added OpenMP di-

rectives running on all the available CPU cores; Naı̈ve is a single TP implementation of the

stencil computation, both OpenMP and Naı̈ve are described in Section 3.2.1); OpenMPFG is

1All the code is available on the Git repository: https://github.com/gengtsh/darts-heterogeneous.

24

https://github.com/gengtsh/darts-heterogeneous

the fine-grain variant which makes use of the tasking mechanisms available in OpenMP4.5,

described in section 3.2.2; Naı̈veTPsPtr implements the same logic as Naı̈ve, but distributes

the work across several TPs, illustrated in Figure 3.3; FineGrain implements the fine-grain

synchronization scheme and illustrated in Figure 3.4; InPlace’s Codelet graph is identical

to FineGrain’s. However, FineGrain allocates two (dst and src) matrices, while InPlace

only allocates one matrix and a small 3-row buffer within a compute Codelet. Hence, the

synchronization logic of InPlace is more complex than FineGrain’s. InPlaceTPs imple-

ments the same in-place variant, but distributes the computation across multiple TPs, de-

scribed in Section 3.2.3.3 and illustrated in Figure 3.5. To summarize, OpenMP and Naı̈ve

implement coarse-grain synchronization scheme, Naı̈veTPsPtr and InPlaceTPs implement

medium-grain synchronization scheme, and FineGrain and InPlace implement Fine-Grain

synchronization scheme.

The experiments utilize the following protocol:

1. All 2D stencil computations run for 30 time steps

2. Each variant instance is run 20 times to increase the stability of the run, then the

accumulated times are averaged after removing the 2 most extreme values (min and

max).

3. Each binary containing a variant is run 10 times from the command line, and average

the accumulated times once again.

The reason why computing the the average of different invocations of the binaries for each

variant is because the overall system environment introduces enough noise to generate tim-

ings that can significantly differ, for sequential, CAM, as well as OpenMP model variants—

especially for smaller input sizes.

LULESH experiments were done in a similar way as 2D Stencil: All the computations were

25

repeated 20 times and the whole executable were run 10 times each.

3.3.3 Experiment Results — 5-Point 2D Stencil Kernel

The results for strong scaling are shown in Figures: 3.9, 3.10, 3.11, 3.12, 3.13, and 3.14. Since

there are eight different variants, as described in section 3.3.2, to maintain the readability

of the Figures, only Seq, OpenMP, OpenMPFG and two best DARTS variants will be shown in

these Figures.

Figure 3.9: platform A: Strong Scaling– Matrix size: 1000× 1000.

The default CAM is used in the case of DARTS: each socket of the target platform is mapped

to a cluster of cores. Each cluster thus features n−1 Compute Units (CUs) and one Scheduling

Unit (SU). Hence all CUs are physically close to each other, ensuring that a TP allocated

to a cluster displays some level of locality (at least at the L3 cache level). In other words,

compact mapping polices, allocating software threads as closely as possible on the available

26

Figure 3.10: platform A: Strong Scaling– Matrix size: 3000× 3000.

Figure 3.11: platform A: Strong Scaling– Matrix size: 5000× 5000.

27

Figure 3.12: PlatformB: Strong Scaling– Matrix size: 1000× 1000.

Figure 3.13: PlatformB: Strong Scaling– Matrix size: 3000× 3000.

28

Figure 3.14: PlatformB: Strong Scaling– Matrix size: 5000× 5000.

Processing Elements (PEs) according to the underlying physical topology, is used in strong

scaling test. As a result, in low-CU count case, not all the available aggregated cache will be

used, especially, on a on a 2-socket compute node, if less than half of processing element(i.e.,

one cluster/socket), then only one L3 module will be utilized.As described in section 3.3.2,

the average execution time will be used as the final result since the execution times followed

a normal distribution. For workloads that were mostly memory-bound, on Platform A, the

standard deviation using DARTS is at most 5%, and less than 1% on average. On Platform

B, the highest standard deviation reaches 18%, with an average of 10%.For cache-bound

workloads, the standard deviation is much higher. For example, for 1000 × 1000 matrices,

the standard deviation reaches 11% on Platform A (with an average of 5%), and 27% (with

an average of 24%) on platform B. This is in part due to the dynamic scheduling algorithm

which are used in the DARTS, which cannot guarantee that the same chunk of data will be

processed by the same processing element.

29

In the OpenMP case, for both OpenMP and OpenMPFG, OMP PROC BIND are set to true to

ensure that threads are pinned to a given PE. However, the OpenMP run-time system and

the underlying OS are in charge of assigning a given (OpenMP) thread to the physical PEs,

which results in threads being able to use all available L3 caches (when distributed over

several sockets). Still, when resources start to be saturated, i.e., when more than half of the

processing elements (which in the case of both platforms are hardware threads) are used,

and when they start to compete for FPUs, caches, etc., the DARTS variants outperform

the OpenMP version. As the PE count increases, so does the performance gap, as shown in

Figure 3.10, 3.11, 3.13 and 3.14.In Platform A, figure 3.9 shows that the OpenMP coarse-

grain variant has a clear advantage over DARTS and OpenMPFG fine-grain when the workload

fits in the caches (i.e., when the matrix size is 1000, or possibly 2000, as it still partially fits

in the caches). Once the data grow beyond the capacity of L3 caches, as shown in Figure 3.10

and 3.11, DARTS Medium and Fine-Grain variants get the upper hand, and the OpenMPFG

yields slightly better performance than OpenMP. The same trend can be found in Platform-B

(Figure 3.12, 3.13 3.14).

In weak scaling, shown in Figure 3.15 and Figure 3.16, FineGrain and NaiveTPsPtr achieve

the best performance, with speedups reaching up to 3× compared to two OpenMP variants.

The OpenMP has a clear advantage over DARTS when the workload fits in the caches (i.e.,

when the matrix size is 1000 × 1000 on Platform A, or 1000 × 1000 and 2000 × 2000 on

Platform B, as it still partially fits in the L3 caches). In the OpenMP coarse-grain case ,

loops are statically scheduled, thus ensuring that the same PE processes the same chunk

of data, and hence minimizing cache misses. In the OpenMP fine-grain case(OpenMPFG), all

the tasks, as described in Figure 3.2, are in the tasks pool, and will be invoked when their

dependencies are satisfied. Tasks are dynamically assigned to available PEs and cluster. In

contrast, DARTS ’s scheduling policy is fully dynamic, and thus Codelets can be run by any

PE belonging to the same cluster of cores. Hence a given data chunk may be processed by

different PEs over two successive iteration steps, resulting in additional cache trashing.

30

Figure 3.15: Platform A: Weak Scaling– Thread Number: 32

Figure 3.16: Platform B: Weak Scaling–Thread Number: 48

31

Once the data grows beyond the capacity of L3 caches, DARTS gets the upper hand: the

finer-grain variants either issue “local” atomic operations between neighbors (as with the

FineGrain variant), or at least provide a hierarchical way to maintain some locality within

their cluster of cores, thus reducing the overall memory traffic. In particular, the inclusive

nature of the caches in Intel processors allows the hardware to recognize when a given

memory location is owned by the “local” L3, and thus avoids a costly request for ownership

across sockets. Fine-grain DARTS variants are always better than coarse grain ones. When

problem sizes fit in the L3 cache(s), the OpenMP variant yield much better performance than

all the DARTS variants, no matter the granularity. When problem sizes are larger than the

L3 cache, the DARTS ’s FineGrain and NaiveTPsPtr variants yield better performance.

3.3.4 5-Point 2D Stencil Kernel Results — Discussion

Coarse-grain synchronizations (e.g., barriers) tend to be implemented with a single memory

location, even in state-of-the-art run-time systems (for example: GCC ’s OpenMP ; Intel’s

implementation offers both linear and tree-based barriers). This has several negative conse-

quences: (1) all processing elements issue an atomic operation to the same location, forcing

the other PEs to flush their write buffers, sometimes more than once; (2) there is a “natural”

contention due to the target single location. By contrast, finer-grain synchronization makes

use of more locations with better locality effects. Write buffer flushes still occur, but tend

to be limited to writing back in L3 (at least in the Intel case). In addition, Codelets can

better exploit the “slack” that exists when a core is done running a thread, due to their

event-driven nature.

Finer-grain synchronization clearly does provide better results on general-purpose many-core

systems, as shown in Figures from 3.9 to 3.16. However, which variant works best varies

significantly depending on which platform running tests. On Intel-based compute nodes, the

32

most refined variants did not perform very well in the end: the InPlace and InPlaceTPs

variants under performed compared to their most simple counterparts, and even compared to

the coarse-grain OpenMP variant. The main reason is the implementation is too näıve: while

the InPlace variant does require less memory than the original code, its implementation is

too simplistic. When computation Codelets are being fired, OS will allocate Codelets to

different Hard threads. However, when a huge amount of Codelets are fired within a very

small time range, some serialization operations, such as accessing OS’s ”memory allocator”

, will drop the overall performance.As Intel-based nodes feature inclusive caches, the data

can only be as big as the L3s of the system. The situation maybe different, if the experiment

run on the AMD-based Processor since AMD system cache are exclusive: the aggregated

size of the L2 caches equals the aggregated size of the L3s, effectively doubling the overall

size of the data that can be held in the caches.The AMD system also relies on write-through

L1D caches (compared to Intel’s write-back L1Ds), which allows for a better utilization of

the L1D (there is roughly four times more reads than writes in the stencil computation)

Moreover, the purpose of this section is to show the benefits of “pure” fine-grain synchroniza-

tion, without resorting to classical loop transformations such as tiling or loop skewing, even

the allocation of just three complete rows is enough to quickly fill L1D caches. For example,

the smallest input size for a matrix, 1000× 1000, requires three rows of a thousand elements

to implement the current in-place variants. However, this represents already ≈ 2/3 of the

L1D cache of the compute nodes. Hence, to obtain an efficient in-place variant, additional

blocking and tiling techniques need to be applied.

3.3.5 Experiment Results — LULESH

Similarly to the 5-points 2D stencil kernel, the average execution time is used as final result

since the execution times followed a normal distribution. The largest standard deviation was

33

2% for Platform A, and 1% for Platform B.

Figure 3.17: Platform A: LULESH on DARTS, vs OpenMP, children n is the arity of each
node in the tree, i.e., the number of children a node can have in the tree.

The overall performance of LULESH on DARTS, relies on three parts: the underlying computer

architecture (in particular the memory aspects), the synchronization granularity, and input

data size. As shown in Figure 3.18 (Platform B – see Table 3.2), compared to the reference

OpenMP implementation, which uses coarse grain synchronization, the DARTS, Medium-

Grain synchronization variant gets relatively good performance for small data sizes. For

instance, when the input size is less than 3203, i.e., the resolution of 3D LULESH is either

over 3203 elements or 3213 nodes per time step. Medium grain variants (where the arity of

each node is denoted by children = 6 and children = 12) fare relatively better than the

coarse grain version (i.e., children = 24 and children = 48) and the OpenMP reference

code, but not by much. The main reason is that data fits in the various L3 caches, which

34

Figure 3.18: Platform B:LULESH on DARTS, vs OpenMP, children n is the arity of each
node in the tree, i.e., the number of children a node can have in the tree.

then allows for all synchronizations to occur relatively seamlessly.

For larger matrix sizes, Fine-Grain variants (with children = 2, which builds a binary

computational tree, and children = 6) fare much better. For example, performance jumps

by a wide margin when the data size reaches 5003. This is in part due to the fact that when

the data set size increases, each individual Codelet has more work to perform, so ratio of

computation-communication cost increase while communication belongs to serialization part

and computation belongs to paralleling part. Furthermore, the Codelet graph builds a fine

grain synchronization tree, as shown in Figures 3.7 and 3.8. In it, the non-root, non-terminal

Codelets have two functions: computation and synchronization. The synchronization tree

structure can help split this large data set into a series of small and relatively independent

ones. The amount of computation is the same among all Codelets, but the communication

35

cost will be reduced compared to a coarse-grain variant leveraging a barrier. Because children

Codelets only need to communicate/synchronize with their parent, data access conflicts are

reduced within one cluster and between sockets/clusters, especially in the case that the

computation spreads across all the PEs and all the clusters, fully utilizes the L3 cache, and

needs to access data in main memory. Hence, the tree structure helps control the data flow,

data transfers, and further reduces data access conflicts. For medium-sized computations,

the situation is more complex. When the data set size reaches the L2 cache boundary, e.g.,

data sizes from 4003 to 4803 as shown in Figure 3.18 (Platform B), the overall performance

will rely on multiple factors, such as how Codelets were bound to cores or clusters, whether

the leaves and their parent are allocated in the same socket or not, how deep of tree structure

was, etc. For this data set, the best granularity cannot be easily predicted, and some fine-

tuning is in order.

DARTS assign Codelets to different PEs and clusters by using the hwloc library and bind

units to specific cores using their ID. In this experiments, the binding method is based on the

granularity of synchronization and number of cores in one cluster. The basic rule is to try

to put parent and children Codelets in one cluster/socket to reduce the data transformation

time.

In the Figure 3.17 and 3.18, there are some special points, called changing points, which

correspond to the medium sizes always somewhere “just above” the L3 cache sizes. The

boundary between coarse-grain and fine-grain is vague since the cost of tree hierarchy com-

munication and coarse-grain communication are similar during these changing cost. Different

architectures have different changing points. For example, in Platform A (see table 3.2 and

Figure 3.17), the changing point occurs at data size 3003, but in Platform B, the changing

points are range from 4003 to 4803. This is of course directly related to the sizes of the plat-

forms’ L3 size (individual and aggregated), as well as the way the workload is partitioned

among the PEs.

36

3.4 Related Work

This section presents work pertaining to fine-grain and event-driven multithreading, as well

as relevant approaches to run parallel executions of stencil computations.

3.4.1 Fine-Grain Multithreading Execution and Programming Mod-

els

In recent years, several attempts at providing more dynamic ways to create parallel work

have been proposed. Many such attempts are inspired by data flow models of computation.

Among them, we can mention Concurrent Collection [30–33], which implements a dynamic

data flow inspired execution and programming model to orchestrate parallel programs exe-

cution. Cnc was used to run workloads that expose extremely fine-grain parallel algorithms,

such as stencil computations in the LULESH application [34], using classical optimizations

such as loop fusion and tiling to coarsen granularity and enhance the application’s scalability.

However, the authors lacked a cache-specific tuner and had to suffer a large overhead due to

the data collection phase.

XKaapi [35, 36] is a macro-data flow run-time which targets multi and many core (possibly

heterogeneous) systems. Much like most modern run-time systems (including DARTS), it

relies on the use of work stealing for dynamic load-balancing, as well as work over-subscription

to ensure the system is always usefully busy.

The Open Community Run-time [37] (OCR) system is an event-driven multithreading system

in part inspired by the Codelet model. It runs on both shared and distributed memory

systems, and requires the programmer to pass data and events through data blocks and event

slots. Each data block or event-driven task is assigned a global unique identifier. While this

approach may introduce additional complexities for the parallel programmer, especially in

37

shared-memory systems, it results in a more seamless execution across computation nodes

in a distributed memory system.

The SWift Adaptive Run time Machine (SWARM) system is another implementation of the

Codelet model [38]. Just like DARTS, it is initially a run-time system with a hardware layer

abstraction. It can run on both shared and distributed memory systems. However, it is not

completely faithful to the initial Codelet model.

XKaapi, OCR, and SWARM all propose a fine-grain event-driven approach to multithread-

ing. However, they do not provide an explicit way to group data flow tasks to ensure they

execute on a specific portion of the hardware (for example, to maintain spacial and temporal

locality), contrary to DARTS (which uses threaded procedures to enforce Codelet group-

ing). SWARM does get close to this concept by providing ways to “bind” Codelets to a

specific physical portion of the machine, in a manner similar to Hierarchical Tiled Array’s

locales [39]. As a result, most of these solutions tend to resort to very dynamic ways to

spawn parallelism as a whole.

The Cilk programming and execution model [40] and its subsequent evolution, is a parallel

programming language that favors fine-grain multithreading, and encourages a divide-and-

conquer approach using a fully-strict approach to evaluate a program’s computation graph,

i.e., children tasks must synchronize back with their parents.

The Habanero parallel programming language [41–43] also relies on fine-grain synchroniza-

tion mechanisms, such as phasers, data-driven futures, and async/finish constructs. Contrary

to Cilk and CilkPlus, Habanero relies on a terminally strict synchronization approach, i.e., a

child task must synchronize back with any of its ancestors (not necessarily its parent task).

While most of the research pertaining to Habanero relies on the Java virtual machine, the

Habanero programming model has also been ported to a C-like language, Habanero C.

Finally, the latest version of the OpenMP standard proposes a way to describe task depen-

38

dencies in a program [3] [4]. The way task dependencies are expressed is directly inspired by

StarSs and OmpSs [44, 45]. The resulting task dependence graph is obtained in a fully dy-

namic manner. By contrast, DARTS ’s Codelett graphs tend to dynamically allocate chunks

of Codelets which feature statically-defined dependencies.

3.4.2 Other Approaches to Optimize and Parallel Stencil Compu-

tations

Classical loop optimization techniques provide very efficient ways to improve sequential sten-

cil computation. Loop tiling, locality optimization and parallelization are the main method-

ology to improve stencil computation performance. Loop tiling [46–48] manipulates hyper-

planes from the iteration space to determine the tile shapes for a given computation, as well

as the scheduling order.

From a parallel optimization angle, diamond-tiling [49] focuses on concurrent start-up as well

as perfect load-balance. It enables tiles to start being processed simultaneously to improve

cache reuse and provide a high degree of concurrency. However, this technique is often used

manually, as it requires a complex mapping of tiles to different cores. Hence, this technique

is limited in that it involves a complex control flow, an architecture-specific tile size and tile

shape and an overall lower portability. Some of these limitations are addressed by Bertolacci

et al. [50] by proposing a parameterized diamond tiling technique to better schedule tile

processing.

More recently, the manipulation of the iteration space has led to better work scheduling for

many-core devices. For example, Shrestha et al. propose to perform transformations on the

iteration space using jagged-tiling to allow for a better concurrent start for processing tiles

in parallel [51, 52].

39

Several works have proposed to automate the tuning and code generation of stencil-based

applications. Among them, Pochoir is a domain-specific language that allows the user to

specify a given type of stencil computation to be generated automatically for parallel ex-

ecution [53]. The Pochoir compiler then translates that specification into Cilk code to be

executed on a parallel multi/many core machine.

Kamil et al. [54, 55] propose a code generation and auto-tuning framework for stencil com-

putations targeted at multi- and many-core processors. It makes it possible to leverages the

auto-tuning methodology to optimize strategy-dependent parameters for a given hardware

architecture.

Muranushi and Makino introduced the PiTCH tiling method [56]. It leverages a temporal

blocking methodology which can achieve a target’s optimal memory bandwidth ratio well-

suited for multidimensional stencil computations.

Lesniak introduced a block-based wave-front synchronization technique for parallel stencil

calculation [57]. The matrix is divided into blocks; each diagonal block can be calculated

independently by different threads. New threads cannot be invoked until all blocks in the

current diagonal have been calculated. The iteration is completed only if the last block,

located in the lower-right corner of matrix, has been calculated. In general, the wave-front

synchronization limits the level of parallelism. Hence the parallelism level is reduced from

the center of the diagonal to the upper-left and lower-right corners of matrix.

Rawat et al. [58] have introduced their Stencil Domain Specific Language (SDSL), which

provides a target-independent description and optimization strategies for stencil computation

on multi-core CPUs with short-vector SIMD instructions, GPUs, and FPGAs. The purpose

of SDSL is to provide a programming language which can generate high-performance portable

stencil computation running on multiple platforms. It adopts both nested split-tiling and

hybrid split-tiling methods in conjunction with dimension-lifting transformation.

40

None of the upper described works on stencils are directly competing with the objective,

which is to advocate for finer-grain synchronization, even faced with ”almost embarrassingly

parallel” and well-balanced workloads. However, all these techniques could clearly be used on

top of the event-driven multithreading run-time system, to improve the overall performance

of the stencil application.

3.5 Observations

Fine-grain synchronization with our event-driven multithreading model, as described in sec-

tion 3, has the advantage of exploiting the parallelism of dependence-heavy applications

compared to the coarse-grain synchronization in current high-performance general purpose

many-core shared-memory compute nodes. Several variants, coarse-grain variants imple-

mented with OpenMP4, fine-grain variants implemented with OpenMP4.5, as well as several

variants using fine-grain event-driven execution run-time system(DARTS), were developed

to leverage the granularity of the synchronization.

While there are various ways to optimize stencil-based kernels, as described in section 3.4, the

experiments, described in section 3, demonstrate that even only with a simple hierarchical

synchronization scheme, the reduction in the number of atomic operations and amount of

memory traffic in general benefits the overall execution of the program. By leveraging

such a synchronization scheme, a transformation method from a coarse-grain program into

a fine-grain one has been demonstrated. The cost of such a transformation is that what

was initially expressed as an “almost embarrassingly parallel” loop (within a time step) now

becomes a more complex computation graph. However, the advantages of using finer-grained

synchronization show that even initially “almost embarrassingly parallel” workloads such as

stencil kernels, performance can improve by up to 3.5× using regular work distribution

among processing elements. Furthermore, a realistic stencil-based LULESH application was

41

used to evaluate the idea that fine-grain synchronization matters even in “regular” general-

purpose many-cores systems for applications which are dependence-heavy. Compared to the

reference coarse-grain OpenMP version, the speed up of the fine-grain tree-based approach

version reaches 1.35×.

This fine-grain synchronization work has relied on hand-coded Codelet programs. For the

type of applications studied in section 3, this only means that the code is slightly more

verbose than its OpenMP counterpart. However, for more complex parallel applications,

it can be unwieldy to apply the same methodology. Future work includes the use of an

OpenMP-to-Codelet compiler, omp2cd to observe how our fine-grain partitioning can be

automated through the use of OpenMP4.5 ’s compilation directives. To do so, expanding

paper [23] will be done by adding the missing directives related to task (e.g., taskloop) so

that fine-grain OpenMP4.5 code may be generated into a multi-level synchronization scheme

DARTS program.

42

Chapter 4

Profile-Based Dynamic Adaptive

Work-Load Scheduler on

Heterogeneous Architecture

4.1 Introduction and Motivation

Nowadays, most High-Performance Computing (HPC) platforms feature heterogeneous hard-

ware resources (CPUs, GPUs, FPGAs, storage, etc.). For instance, the number of platforms

of the Top500 equipped with accelerators has significantly increased during the last years [1].

In the future it is expected that the nodes of such platforms’ heterogeneity will increase even

more: they will be composed of fast computing nodes, hybrid computing nodes mixing gen-

eral purpose units with accelerators, I/O nodes, nodes specialized in data analytic, etc. The

interconnect of a huge number of such nodes will also lead to more heterogeneity. Resorting

to heterogeneous platforms can lead to better performance and power consumption through

the use of more appropriate resources according to the computations to perform. However,

43

it has a cost in terms of code development and more complex resource management.

Moreover, GPU boards are integrated with multi-core chips on a single compute node to

boost the overall computational processing power. The scientific applications tend to rely on

large amounts of data. Hence, heterogeneous systems pose some restrictions on how some of

the computation can be offloaded to an accelerator, e.g., GPUs, as their memory capacity is

limited, and data transfers incur very limited latancy and bandwidth [59]. A heterogeneity-

aware scheduler must leverage load-balancing techniques in order to obtain the best workload

partition between CPUs and general-purpose accelerators—to be specific, a GPU. Näıve

heuristics may result in worsened performance and power consumption. Furthermore, due

to the complex and dynamic interplay between the program and hardware system [60],

efficiently executing parallel programs on many-cores continues to be a challenging problem,

where efficient execution requires dynamically and continuously matching the parallelism

programs with the instantaneous resources. It is non-trivial work since neither the programs

demands nor the system resources remain constant during the execution time.

Meanwhile, whole sectors of scientific computing rely on iterative algorithms. In particular,

stencil-based computations are at the core of many essential scientific applications: sten-

cils are used in image processing algorithms, e.g., convolutions; partial differential equation

solvers, Laplacian transforms, or computational fluid dynamics; linear algebra, to apply the

Jacobi method; etc. the iterative nature of a stencil kernel is what makes it an interesting

type of computation kernel. As a result, it must make sure everything is correctly synchro-

nized between two time steps. Thus, if such a kernel is to be used in a heterogeneous context,

the application will be required to perform host-accelerator synchronizations regularly, which

will make dynamic workload scheduling even more complicated.

Section 4 proposes an approach to solve the workload balance problems between heteroge-

neous resource during run time to obtain higher performance. The following questions are

attempted to solve in section 4 :

44

1. How can a system dynamically adapt its scheduling policy according to availability of

heterogeneous resources? To answer this question, a novel approach to dynamic scheduling

of data-driven tasks on heterogeneous systems is approached relying on the concept of

co-running, as defined by Zhang et al. [61]: a system has enabled co-running, if it runs

applications decomposed in tasks which can run simultaneously on both CPUs and general

purpose accelerators. In a co-running mode, it is possible that two instances of the same

task run on both CPU and GPU processing different subsets of the input data.Co-running

friendly applications, i.e., which can run on both GPU and CPU concurrently, tend

to have low memory/communication bandwidth requirements, compared to applications

which run the workload on only one part of the system. Hence, the computation-memory

ratio and computation patterns can help identify the suitability of the workload to a

resource.

2. Are using all the computing resources simultaneously the necessary to obtain the highest

performance? To answer this question, a serial experiments were set up. As described in

section 4.4.2.2, there is no clear-cut answer, and it all depends on a wealth of parameters,

both hardware and software

3. How to build a accurate estimation model? Many researchers such as Van Craeynest et

al. [62], Power et al. [63], Garćıa et al. [64], Zhang et al. [61], Chen et al. [65], and Yang

et al. [66] proved that heterogeneous system architectures are impacted significantly by

several parameters, such as number and type of cores, their topology (cores and memory

hierarchy), bandwidth, the communication congestion and synchronization mechanism,

as well as other hardware or software factors. However, the growing variety of hardware

devices increase the difficulty of building a mathematics estimation model while keeping

higher accuracy. Moreover, the mathematics model need to be rebuilt once the Hardware

changes. The GPU concurrent stream technique furthermore increase the complexity,

as described in paper [67]. A profile-based ML approach are proposed to reduce the

45

complexity of establishing an estimation model while promoting its accuracy, more detail

will be described in section 4.3.3.

4.2 Background

4.2.1 Heterogeneous Computing and Co-running Applications

Heterogeneous computing is about efficiently using all computing resources in the system, in-

cluding CPUs and GPUs. Usually, GPUs have been connected to a host machine (CPU) by a

high bandwidth interconnect such as PCI Express (PCIe). Here, host and device have differ-

ent memory address spaces, and data must be copied back and forth between the two memory

pools explicitly by the data transfer functions. One of the most important challenges of Het-

erogeneous computing is how to fully utilize heterogeneous resources while minimizing the

communication costs between different resources by leveraging communication-computation

overlap.

Co-running friendly application [61] can run on both GPU and CPU concurrently, and tend to

have low memory/communication bandwidth requirements compared to applications which

run the workload on only one part of the system. Hence, the computation-memory ratio

and computation patterns can help identify the suitability of the workload to a resource.

For example, if the application is characterized, such that the communication time (data

transfers) between CPUs and GPUs is far higher than the computation time of a given

workload, and if there is no overlap between computation and communication, then this

application will belong to the “co-running unfriendly class”. However, the categorization

may change when the application is developed in different hardware architectures or even in

same hardware architecture with different dataset sizes.

46

4.2.1.1 Heterogeneous Hardware Communication cost

On integrated CPU/GPU architectures, Zhang et al. [61] suggested that the architecture

differences between CPUs and GPUs, as well as limited shared memory bandwidth, are two

main factors affecting co-running performance.

Lee et al. [68] analyzed a set of important throughput computing kernels on both CPUs and

GPUs. They showed the differences of optimization features, contributing to performance

improvements on these architectures. According to their conclusions, CPUs can have com-

parable performance to GPUs, if they fully utilize CPU optimization techniques, such as

cache blocking, and reorganization of memory accesses for SIMD units, among others. On

SMP (Symmetric Multi-Proces-sing) systems connected to GPU architectures, beside archi-

tectural differences, communications between CPUs and GPUs is another important factor.

GPUs and CPUs are bridged by a PCIe bus. Data are copied from the CPU’s host mem-

ory to PCIe memory first, and are then transferred to the GPU’s global memory.The PCIe

bandwidth is always a crucial performance bottleneck to be improved. Nvidia provides ways

to pin memory to lower data transfer latency [69]. However, performance may be degraded

if the allocated pined memory size is too big.

Congestion control mechanisms have a significant impact on communications. Moreover, the

PCIe congestion behavior varies significantly depending on the conflicts created by communi-

cation. Martinasso et al. [70] have explored the impact of PCIe topology, a major parameter

influencing the available bandwidth. They developed a congestion-aware performance model

for PCIe communication. They found that bandwidth distribution behavior is sensitive to

the transfer message size. PCIe congestion can be hidden if the overlapping communica-

tions transfer very small message sizes. However, when the message size reaches some limit,

congestion will significantly reduce the theoretical transfer bandwidth efficiency.

47

4.2.1.2 Concurrent Streams on GPUs

Starting with CUDA v7 (published in 2015), CUDA’s programming model was augmented

with stream-based constructs, able to schedule multiple kernels concurrently, while overlap-

ping computation and communication. This allows the system to hide host-accelerator data

transfer latency. A CUDA stream can encapsulate multiple kernels, which must be scheduled

in a particular order. CUDA streams are usable as long as the target GPU has more than

one copy engine and one kernel engine—which is true of most recent GPUs.

A main optimization of the developed application was to overlap data transfers across the

PCIe bus [70]. This is only possible using CUDA streams and pinned memory in the host. Us-

ing pinned host memory enables asynchronous memory copies, lowers latency, and increases

bandwidth. This way, streams can run concurrently. However, this goal is constrained by

the number of available kernels and copy engines exposed by GPUs. Also, synchronization

must be explicit in the stream kernels.

There are GPUs with only a single copy engine and a single kernel engine. In this case,

data transfer overlapping is not possible. Different streams may execute their commands

concurrently or out of order with respect to each other. When an asynchronous CUDA

stream is executed without specifying a stream, the CUDA runtime uses the default stream

0; but when a set of independent streams are executed with different ID numbers, these

streams avoid serialization, achieving concurrency between kernels and data copies.

Figure 4.1 explains the streaming model which are used to improve the performance of the

target GPU application. This figure compares the sequential computation of two different

kernels with their respective data transfers: one single stream vs. 3 different kernels with

their respective data transfers using 3 streams. The second method is only possible in

GPUs with two copy engines, one for host-to-device transfers and another for device-to-host

transfers.

48

HtD1K1DtH1 HtD2K2DtH2

HtD1K1DtH1

HtD2K2DtH2

HtD3K3DtH3

Stream 0

Single stream

3 streams

Stream 0

Stream 1

Stream 2

Time

CPU Thread 0

CPU Thread N

...

CPU Thread 0

CPU Thread N

...

Synchroniza tion
Synchroniza tion

Time

Figure 4.1: Concurrent Streams overlap data transfer

4.2.2 Heterogeneous-DARTS Run-time System

As described in Section 2, DARTS [22–24] run-time system is an implementation of the

Codelet Model and the Codelet Abstract Machine(CAM) on which it relies [19]. A CAM is

an extensible, scalable and hierarchical parallel machine model. It is a many-core architecture

with two types of units: scheduling units (SUs), which perform resource management and

scheduling, and computation units (CUs), which carry out the computation. CUs and SUs

are grouped into several clusters and they benefit from data locality. DARTS maps these

“abstract cores” to physical processing elements (PEs).

To target CPUs-GPUs heterogeneous system, a new scheduler named CPU-GPU-Corunning

are designed to allocate/schedule computing on both CPUs and GPUs. A new type of

Codelet named GPU Codelet is created to control/configure/run computing on GPU. Then,there

are two main Codelet types: CPU Codelets and GPU Codelets. They can run concurrently

49

on different cores.

4.2.2.1 GPU Codelet

GPU Codelet consists of two parts: CUDA host code and CUDA Kernel code. The host and

kernel codes can run concurrently or sequentially, see section 4.2.1.2.

Similar with CPU Codelet, GPU Codelet have zero or multiple dependencies. GPU Codelet

will be first pushed to ready pool of SU when all its dependencies are satisfied. Then, instead

of being pushed to normal CU by SU scheduler, GPU Codelet will be pushed to Specific CU

which is equipped with GPU scheduling policy.

GPU Codelet include sub co-running policy to decide the synchronization/asynchronization

between host and GPU kernels, whether to use concurrent streams, how many streams, and

access which GPU(s) etc..

4.2.2.2 CPU-GPU-Corunning scheduler

Theoretically, every CPU core (CU) can be the host of GPU or GPUs, which means every

CU scheduler equips with two types of ready queue, one for CPU Codelets and one for

GPU Codelets. However, to reduce the complexity of scheduler, the number of CUs which

can interact with GPU, called binding CUs, depends on the number of GPUs in the system.

Every binding CU can access any available GPU(s). In contrast, no-binding CUs can’t

directly interact with GPU(s). Binding CU also can run normal CPU Codelet when there

is no GPU Codelet available or when GPU Codelet’s kernel code asynchronously running on

GPU(s) and its host code is finished.

CPU-GPU-Corunning scheduler have two functions: one is allocating CPU Codelets and

GPU Codelets to matched CU ready pool; another is checking availability of computing

50

resources. The scheduler will invoke a set of back up CPU Codelets which have the same

function of the GPU Codelet if GPU resources are not available and estimated waiting time

is longer than running backup CPU Codelet on CPUs including waiting time on CPUs. The

GPU Codelet will stay in the ready pool if the waiting time is shorter than the running

backup CPU Codelets.

A monitor module is used to record running time of all Codelet in current CU. It will

provide a reference to the scheduler when it need to estimate running time and waiting time

for future Codelets with same function but same or different workload.

4.3 Methodology: DAWL and IDAWL

This section consists two parts: propose a dynamic adaptive workload algorithm (DAWL) as

a first step, and a profile-based machine-learning estimation model as an optimization over

it (IDAWL).

4.3.1 Target: Dependence-heavy Iterative Applications

Implementing a parallel algorithm for heterogeneous computing can yield outstanding results,

but there is still a lack of tools to get better performance [69]. Further, even if it is written

with heterogeneity in mind, a parallel application may not exploit the parallelism of various

computing resources. In particular, data-parallel algorithms dealing with large blocks of data

(i.e., algorithms featuring intense arithmetic with regular (array-based) data structures), can

greatly benefit when they are implemented to run exclusively on GPUs [71, 72].

Applications targeting heterogeneous systems must be implemented with load-balancing in

mind to better exploit the various compute units in a system. As a result, the workload

51

behavior for both the host and devices must be carefully analyzed. This work focuses on

parallel applications which require regular and/or periodic synchronization steps between

the host and the devices on a heterogeneous platform. Stencil-based computations have

an iterative nature, and expose heavy data-dependence patterns; they are well suited to

evaluate the proposed scheduling strategies. Furthermore, such stencils make up the core

computation kernels of some benchmarks such as Rodinia [73].

A 5-point 2D and a 7-point 3D stencil kernels will be used as case studies to explain the

Dynamic Adaptive Work-Load (DAWL) scheduling algorithm below, which is outlined in

algorithms 1, 2 and 3.

4.3.2 Dynamic Adaptive Work-Load Scheduler

A balance must be found between heterogeneous devices’ computing potential and memory

bandwidth/capacity.Equation 4.1 shows that the GPU execution time is split into two parts:

round-trip data transfers (“Xfer”) between the host and the device, and computing time.

GPUnaive = XferH→D +
ComputeD

NumThreadsD
+ XferD→H (4.1)

Using concurrent streams (see Section 4.2.1.2), data transfers can be partly or totally over-

lapped with computing, creating a pipeline of sorts. There are many parameters required to

build an overlapping model, including the PCIe bandwidth the number of concurrent stream

and copy engines et al. [67].

The model expressed in Equation 4.1 is too simple to integrate all features of multiple concur-

rent streams-based computations. Hence, Machine learning (ML) techniques are leveraged to

build a model to support predictions in a CPU-GPU ratio (see Section 4.3.3.2). Equation 4.2

52

holds when programs run on multiple cores.

CPUnaive =
ComputeH

NumThreadsH
(4.2)

Equation 4.3 estimates the ratio r of execution time when applications run on CPUs or

GPUs.

r =
CPU naive

GPU naive
(4.3)

Algorithm 1 consists of two steps: (1) Choose hardware (CPUs, GPUs, or both) ; and (2)

run tasks on the selected hardware. Equation 4.3 was used in step 1. r � 1 means tasks

running on CPUs are far slower than on GPUs. Hence, all computation will be carried on

the device (GPUs); On the contrary, r � 1 indicates CPUs should be chosen to run tasks;

when r is closer to 1, the tasks will be distributed in a co-running manner. In 2D and 3D

stencil, with different time step settings, r’s range may change significantly. In particular,

data transfers between host and devices affect the performance when GPUs are used.

Algorithm 1: Dynamic adaptive workload balance between heterogeneous Resources

1 Function main(HW Info, WL(problem size), GPU WL, CPU WL, Limit WL,
GPU Change ratio, CPU Change ratio):

2 step1: decision = hardware choose(HW Info,WL)
3 step2: if decision = Co running then
4 Co running WL balance(HW Info,total WL, GPU WL, CPU WL, Limit WL,

GPU Change ratio, CPU Change ratio)
5 else if decision = CPU then
6 run CPUs(HW Info,WL)
7 else
8 run GPU(HW Info,WL)
9 end

How the workload must be partitioned between host and devices to enable co-running

depends on two conditions: First, the static initial workload on GPU,which should be

smaller than the available GPU memory considering the communication cost; second, the

53

Algorithm 2: DAWL: Hardware Choose and Run Function

1 Function hardware choose(HW Info,WL):
2 if WL ¡ GPU memory available size then
3 if r � 1 then
4 decision = GPU
5 else
6 decision = CPU
7 end

8 else
9 decision = Co running

10 end

11 Function Run Func(Hardware Info, type, WL, Remaining WL, Limit WL,
Change ratio):

12 if type = CPU then
13 CPU Func(HW Info,WL)
14 else
15 GPU Func(HW Info,WL)
16 end
17 if Remaining WL¡Limit WL then
18 WL = Remaining WL;
19 else
20 (faster,Ratio) = check(CPU status,GPU status)
21 if faster = CPU then
22 TWL = WL * (1-change ratio)
23 else
24 TWL = WL * (1+change ratio)
25 end
26 if Remaining WL¡TWL then
27 WL = Remaining WL * Ratio
28 else
29 WL = TWL
30 end

31 end
32 Remaining WL -= WL
33 sync GPU CPU(Remaining WL,MEM)
34 renew(WL min,WL max)
35 Run Func(HW Info, type, WL, Remaining WL, Limit WL)

initial workload can be obtained with the Profile-based Estimation Model, described in Sec-

tion 4.3.3. It is based on profile information obtained from OProfile and nvprof and the

compute node’s hardware configuration, such as the number of CPU cores, LLC, the GPU

54

Algorithm 3: DAWL: Asynchronous Parallel function and load balance

1 Function SYNC Rebalance Func(HW Info, CPU WL Info,GPU WL Info):
2 CPU WL = Rebalance(CPU WL Info)
3 GPU WL = Rebalance(GPU WL Info)
4 IsChange = check Hardware(HW Info)
5 if IsChange=true then
6 CPU WL = CPU Update(CPU WL,HW Info)
7 GPU WL = GPU Update(GPU WL,HW Info)

8 end

9 Function Co running WL balance(HW Info, total WL, GPU WL, CPU WL,
Limit WL, GPU Change ratio, CPU Change ratio):

10 GPU initialize(HW Info,GPU WL)
11 CPU initialize(HW Info,CPU WL)
12 Remaining WL = total WL - GPU WL-CPU WL
13 do
14 PARALLEL EXECUTION: GPU and CPU
15 GPU: Run Func(HW Info, GPU, GPU WL, Remaining WL,
16 Limit WL, GPU Change ratio)
17 CPU: Run Func(HW Info, CPU, CPU WL, Remaining WL,
18 Limit WL, CPU Change ratio)
19 SYNC Rebalance Func(HW Info, CPU WL Info, GPU WL Info)

20 while Iteration !=0

type etc.. The DAWL scheduling algorithm aims at minimizing workload imbalance between

heterogeneous processing elements. DAWL dynamically adjusts the workload distribution

on different computing resources based on real time information. DAWL is composed of six

steps (steps 3 and 4 are detailed in Figure 4.2):

1. Initialize CPU, GPU configurations: determine the number of processing elements (PEs),

their initial workload, etc.

2. Run the tasks with initial workload on CPUs and GPU simultaneously.

3. Monitor the computation on CPUs and GPU, record their respective execution times

with their specific workload and adjust workload on PEs based on the all stored record

information. PEs are given the same amount of work at first (see Figure 4.2). Once

the GPU task is finished, it adds its execution time and current workload to the record.

55

Figure 4.2: Example: CPU-GPU Workload Balancing with DAWL.

Because there is no CPUs record existing, then its computing potential is currently greater

than the CPUs’, and its next workload will be increased with a ratio of 10 to 20%. When

CPUs’ task finish, excepting adding its record (current workload and execution time),

scheduler will also adjust next workload based on all the history record of both GPU and

CPUs.

4. Adapt to borderline cases. ratio = CPUcur/(GPUcur + GPUcur), where CPUcur and

GPUcur represent the amount of work finished on CPUs (resp. GPUs). When the re-

maining workload is within 10% of the total workload (see Figure 4.2), the CPUs or the

GPU only takes bratio × remaining workloadc (e.g., 27 in the Figure 4.2 case) as a next

task, no matter which one finishes first. The second part is allocated to whichever set of

PEs finishes early. Thus, the first and second parts may run either type of PE.

5. Synchronize and re-balance the workload (see Algorithm 3) when all the compute tasks in

one time step finish. The load-balancing function checks the workload information, and

computes the mean workload for each PE type. If the hardware changed, e.g., if several

CPUs are unavailable, the system must adjust the workload on both CPUs and GPU.

6. Reset CPUs and GPU and free allocated memory.

56

4.3.3 Profile-based Estimation Model

4.3.3.1 Heterogeneous Systems and the Importance of their Initial Workload

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

● ●

●

Fatnode

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
2

3

4

5

6

7

Size of the Problem

S
pe

ed
up

(b
as

el
in

e
=

 C
P

U
−

S
eq

ue
nt

ia
l)

● DARTS−DAWL−2GB−1

DARTS−DAWL−2GB−2

DARTS−DAWL−4GB−1

DARTS−DAWL−4GB−2

Figure 4.3: 2D stencil: speed up when GPU memory is 2 and 4GB with different initial
workload (GPU=CPU): 0.5× av GPU (1) vs 2000× ∗ (2)

While DAWL can dynamically adjust the workload according to real-time information, an

unsuitable initial workload may drag down the performance when the problem size is rel-

atively small since there are no enough time to adjust workload. As shown in Figure 4.3,

when problem sizes are close to a specific drop point, an unsuitable initial workload (such

as an initial workload on GPU close to the problem size) lowers the performance. It is not

57

a guaranteed behavior; Figure 4.3 shows the performance of a small initial GPU workload

(2 GiB, DARTS-DAWL-2GB-2 and 4 GiB, DARTS-DAWL-4GB-2) can be fare better than

a big initial workload (2 GiB, DARTS-DAWL-2GB-1,4 GiB, DARTS-DAWL-4GB-1,). in

Figure 4.3, (1) stands for the initial workload equals to 0.5× total workload,(2) stands for

the initial workload equals to 2000 rows × columns of total workload, e.g. total workload

equals to 4000 (rows)×4000(columns), then (2) will equals to 2000×4000. However, Assum-

ing a small workload will yield better results by default is not always working, especially for

stencil-based applications. Indeed, they feature heavy data dependencies, and thus must be

synchronized when partitioning the workload into different tasks. A suitable initial workload

can help fully utilize the computing resources with reasonable amounts of data transfers.

4.3.3.2 Profile-based Estimation Model for an Iterative DAWL (IDAWL)

In heterogeneous many/multi-core system, hardware configuration is one of the most im-

portant information to gather to estimate the performance of applications. However, the

growing variety of hardware devices as well as their combinations increase the difficulty of

building estimation model and reduce the accuracy of the established model. Furthermore, a

tiny change in the hardware configuration may generate fantastic variations on performance.

For heterogeneous systems, building an accurate transfer-computing mathematical model

including concurrent streaming aspect is a huge challenge [67].

To solve the problem of building an accurate transfer-compute mathematical model on het-

erogeneous systems, a profile-based ML approach is proposed to reduce the complexity of

establishing an estimation model while promoting its accuracy. Such a model works for the

same type of application on same configured system. It will provide a reference for other

types of application running on the same or different configured system.

2D and 3D stencil kernels are targeted as an example to explain the principle of the ML

58

approach (See Section 4.3.1). The ML approach will help optimize the DAWL algorithm

supporting execution times prediction. The resulting algorithm is called Iterative DAWL,

or IDAWL for short. A black-box ML method, (i.e., an automatic model without any user

intervention, is used). It follows three phases:

1. Collect hardware architecture information as parameters to the estimation model. Ta-

ble 4.1 and 4.2 list some parameters of the profile-based model. Besides these, the

parameters also include the host’s cache hierarchy (e.g L1, L2 and L3 cache parameters)

information, the system’s PCIe concurrent data transfer rate, and GPU’s parameters,

including the maximum number of concurrent streaming, GPU thread dimension infor-

mation, the shared memory size etc.

2. Collect the application’s profile information at run time as training data. Different com-

binations of CPU cores and different GPUs are run:

• CPU: Since too many events can be obtained from OProfile, option 1 will be that

collecting the events related to cache misses in the cache hierarchy; branch related

events will be as option 2 and will run only when necessary. Option 3 is all the events

left in OProfile (rarely chosen).

• GPU: option 1 collects gpu-trace and api-trace information. Option 2 collects all

the metrics in nvprof (rarely chosen for big workloads, as it is too time consuming).

• Sampling (leave-one-out cross validation): three levels of workloads (small, middle and

huge) are running on each PE type (purely) in the system. Here, small and middle

tasks are used for training and validation, and huge workload is used for testing only.

The transfer-computing model sample information is obtained by splitting the workload

with different ratios on the host and devices.

3. Utilize the information gathered from steps 1 and 2 to build a profile-based estimation

model for a given heterogeneous platform, and obtain a customized initial workload on

59

different heterogeneous architectures and number of devices necessary for such initial

workload. The approach attempts to predict the overlapping and running model of large

data set by using the small and middle data sets.

• Run a set of ML algorithms: regression (including linear and logistic, each using multi-

ple meta-functions, such as polynomial, logarithmic, exponential functions), ensemble

learning (i.e., random forests), and Support Vector Machine (SVM).

• Choose the resulting model that fits best the measured data. If several models are

a good fit, pick the model that is the least computationally intensive. To evaluate

how well the model fits the data, the coefficient of determination, Rsquared, is used.

It is defined as the percentage of the response variation that is explained by a linear

model: Rsquared = Explained variation
Total variation

, with 0% ≤ Rsquared ≤ 100%. 0% indicates the

model explains none of the variability of the response data around its mean and 100%

indicates the model explains all the variability of the response data around its mean.

• Build the ML estimation model: an estimation formula of the best matched statistical

model can be built to predict an application’s performance on this specific heteroge-

neous platform. For a given problem size, a minimization multi-variable function can

be used to obtain an estimation of the initial workload. The specific parameters used

to construct the formula are mentioned in Section 4.4.3

IDAWL adaptively adjusts the workload between CPUs and GPU depending on the real

time execution situation, and can further compensate the insufficient off-line ML method.

Table 4.1: Hardware Platforms

Machines
Param. CPU Parameters GPU Parameters

PCIe
Cores Clock # Socket L3 Size CPU Mem # SM Clock L2 Size GPU Mem

1. Fatnode (K20) 32 2.6 GHz 2 20 MB 64 GB 13 0.71 GHz 1.25 MB 4.8 GB 6.1 GB/s
2. Super Micro (K20) 40 3 GHz 2 25 MB 256 GB 13 0.71 GHz 1.25 MB 4.8 GB 6.1 GB/s
3. CCSL (Valinhos) (k40) 8 3.4 GHz 1 8 MB 16 GB 15 0.75 GHz 1.5 MB 12 GB 10.3 GB/s
4. Debian (Titan) 12 3.4 GHz 1 12 MB 31 GB 14 0.88 GHz 1.5 MB 6 GB 11.5 GB/s

60

Table 4.2: Software Environment.

Platform GCC CUDA
Fatnode (K20) v6.2 / v8.1 v8.0
Super Micro (K20) v4.8.5/v6.2 v8.0
CCSL (Valinhos) (K40) v5.4 v9.0
Debian (Titan) v4.9.2 v9.1

4.4 Experiment

4.4.1 Experimental Testbed

The experiments run on four heterogeneous systems, presented in Table 4.1 and Table 4.2.

They all feature Intel processors and Nvidia GPUs. The number and names presented in

the first column of Table 4.1 are used to describe the machines.

Figure 4.4: fatnode topology

fatnode’s general purpose CPUs are made of Intel Xeon R© E5-2670, each CPU processor

61

consists of 8 physical cores and 16 logical cores, considering hyper-threading, see Figure 4.4.

processors are connected by socket and each socket has 32 GB of RAM for a total of 64 GB in

this system, and one Nvidia Tesla K20 R© (Kepler architecture with Compute Capability 3.5)

board with 5 GB of global memory. Super Micro equipped with two Intel Xeon R©E7 v2,each

processor has a total of 10 physical cores with hyper-threading of 3 GHz. This system has

256 GB of RAM, 128 over each socket. and embeds 4 Tesla K20 boards R©with 5 GB of global

memory each one. CCSL Valinhos equipped with one Intel i7-4770 R© processor consisting

of 4 physical cores with hyper-threading of 3.4 GHz. This system has 16 GB of RAM. and

one Tesla K40 R©. with 12 GB of memory. Debian equipped with one i7-4930K R©processor

consisting of 6 physical cores with hyper-threading of 3.4 GHz. This system has 20 GB of

RAM, one Nvidia Titan R©board with 6 GB of global memory and one GeForce GT 630 R©with

2GB of global memory.

The original DARTS main focus on homogeneous many-core systems, as explained in Sec-

tion 4.2.2. an extend DARTS is used to support heterogeneous architectures to validate the

workload algorithms: DAWL and IDAWL. The new scheduler is capable of controlling and

monitoring CPU codelets and GPU codelets, so that the two types of tasks can synchronize

with each other1

4.4.1.1 Target Applications

Stencil-based computations are chosen,see session 4.3.1, to evaluate the two scheduling al-

gorithms: DWAL, and IDAWL.

To emphasize a worst-case scenario, stencil kernels without ghost cells are used, which en-

hances the need for synchronization.Specifically, two kernel variants: a 5-point 2D stencil,

and a 7-point 3D stencil computing over double precision numbers are focused on. The

1The heterogeneous-DARTS source code is available at https://github.com/gengtsh/darts/darts-

heterogeneous.

62

https://github.com/gengtsh/darts/darts-heterogeneous
https://github.com/gengtsh/darts/darts-heterogeneous

number of time steps is fixed to 30, removing the convergence test at the end of each time

step to simplify the problem and make it more deterministic. Each experiment was repeated

20 times. To obtain objective test results, the mean of test results after removing the best

and worst results are utilized. To make it worthwhile to run some of the workload on the

GPU, CUDA’s concurrent streaming described in Section 4.2.1.2 is used.

In particular, Exploiting the GPU’s available scratchpad memory is very important to en-

hance data locality and speedup the GPU computations on each streaming multiprocessor

(SM). Further, in 3D stencil, the geometry of the input arrays matters when it comes to

workload partitioning, especially when considering the GPU’s scratchpads. Hence, the di-

mensions of arrays should eked as much performance as possible from a single GPU SM. A

micro-benchmarks are run to evaluate the performance of 2D stencil näıve kernels vs. L1-

tiled kernels on Intel CPUs. L1-tiled kernels are used when running from DARTS, as they

improved the overall performance by a wide margin (from ≈ 1.09× to ≈ 2×, depending on

the workload size).For 3D stencil kernels, a tile has the following dimensions: 16× 16× 10,

which represents roughly 20KiB and fits into L1 caches on Intel CPUs. When running tiled

3D stencil kernel however, the performance worsens compared to un-tiled näıve kernels. So,

the un-tiled sequential 3D Stencil is chosen for the baseline of the experiments.

Beside tiling, the initial workload is statically partitioned along the first dimension, on both

2D and 3D stencils, to validate and verify DAWL. In the 2D case, the “slices” of 2000 rows

(with a varying number of columns) is as a static block of elements to process, which denote

as slice × ∗. For instance, for the 2D stencils, a static partition could be a composition of

2000× 2000 2D arrays. In the case of 3D stencils, as the overall memory footprint increases

much faster as we increase the size of any of the three dimensions, we use 200×∗× ∗ slices,

(e.g., 200× 100× 100).

63

4.4.1.2 Parameter Space of Experiments

numactl are used to allocate memory in a round-robin fashion and avoid NUMA-related

issues. All systems were configured so that only 2 GB were seen as available by the runtime

system, in order to reduce the “parameters surface” to explore. Indeed, as shown in Fig-

ure 4.3, the “drop” which occurs in the charts once data does not fit in the GPU memory

happens whether considering an artificial 2 GiB DRAM limit or if using the full DRAM

capacity; the performance drop is “only” delayed in the latter case. Hence, the artificial

constraint putting on the GPU DRAM capacity does not impact the overall methodology

nor its results.

4.4.2 Performance Analysis

To comprehensively characterize DAWL, a series of workload performance analyses were

performed. Five variants,the DARTS-DAWL performance with GPU-Only, CPU-Seq, DARTS-CPU,

DARTS-GPU (see Table 4.3 for details) are compared in the experiment.

There are three different way to implement GPU version code: one is using concurrent

streams for all size of workload,which is proved very inefficient when workload is less than

available GPU available global memory since the cost of synchronization; second is transfer

all the data to the GPU, which is also inefficient when the workload is larger than the available

global memory since the huge data transfer cost; third way is only using concurrent streams

method when the workload is larger than the available GPU global memory.DARTS-GPU is

using first method for 2D Stencil and using the third method for 3D Stencil, more detail are

described on session 4.4.2.1 . To keep the same amount of memory allocation of every stream,

the number of stream changes with workload. For example, the number of stream equals to 4

when the workload is smaller than the 0.5 × GPU global memory, and the number of stream

changes to 8 when the workload is closed to available GPU global memory. GPU-Only is

64

using the third way.Both DARTS-GPU and GPU-Only code consist two parts: host and kernel.

Here host code run on one CPU, kernel code run on GPU. Beside transferring data between

CPU main memory and GPU global memory, host code also need to synchronize CPU and

GPU and configure GPU’s parameters, such as the number of concurrent streams, the grid

structure of GPU and so on. CPU-Seq is the implementation of Sequential code on one

CPU and is used as base line.DARTS-CPU is the implementation of multi-CPU-core code on

DARTS. DARTS-DAWL is the implementation of DAWL on DARTS. Depending on parameters

mentioned in session 4.3.2, DARTS-DAWL may run on multiple CPUs or GPU, or be co-running

on both CPUs and GPU.

Table 4.3: Stencil kernel implementation

Implementation Illustration

CPU-Seq Sequential c++ code
GPU-Only CUDA code
DARTS-CPU Multi-threads c++ code
DARTS-GPU CUDA code on DARTS

(concurrent streams)
DARTS-DAWL DAWL hybrid code on DARTS

4.4.2.1 Full Resource Usage

Figure 4.5 shows the speedup of different 2D Stencils, and Figure 4.7 does the same for 3D

Stencils, using CPU-Seq version as a baseline. Here, all CPU related versions, DARTS-DAWL

(may also use GPU depending the ratio r mentioned in section 4.3.2) and DARTS-CPU, are

using all the CPU cores as computing resources. Even though there are a lot of differences,

overall GPU-Only’s performance drops dramatically at drop2D = 17000×17000 for 2D stencil,

and the same happens in the 3D Stencil, while drop3D = 400×800×800. The available GPU

global memory of the four different machines were setting to 2GB, that’s the reason why

the four machines have the same drop point. Before drop point, all the data of GPU-Only

are copied to GPU global memory. In this case, there are only two data transfer and two

65

●

● ● ●

●

●

●

●

● ● ● ● ●

●

●
● ●

● ● ● ●

● ● ● ● ● ● ● ● ●
●

●

●

●
●

●

● ●
●

●
●

●

● ●

● ●

●

● ● ● ● ●

● ● ● ●

●

● ●
●

●

● ● ●

●

●

●
●

●

●
●

●

●
●

●

●

●
● ●

●

●

supermicro

Fatnode

debian

ccsl

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000

0 5000 10000 15000 20000 25000

2.5

5.0

7.5

10.0

2

4

6

2

4

6

2

4

6

 Size of the Problem

S
p

e
e

d
u

p
(b

a
s
e

li
n

e
 =

 C
P

U
−

S
e

q
u

e
n

ti
a

l)

● DARTS−DAWL DARTS−CPU DARTS−GPU GPU−only

Figure 4.5: 2D stencil: Speedup of the different versions

66

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ● ● ● ●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

supermicro

Fatnode

debian

ccsl

20000 25000 30000 35000 40000 45000 50000

20000 25000 30000 35000 40000 45000 50000

20000 25000 30000 35000

20000 25000

1.1

1.3

1.5

1.5

2.0

1

2

3

4

2

3

4

5

 Size of the Problem

S
p

e
e

d
u

p
(b

a
s
e

li
n

e
 =

 C
P

U
−

S
e

q
u

e
n

ti
a

l)

● DARTS−DAWL DARTS−CPU DARTS−GPU GPU−only

Figure 4.6: 2D stencil: Speedup when matrices are larger than 17K

67

●

●
●

●●

● ●

●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

supermicro

Fatnode

debian

ccsl

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800

800*1000*1000

1000*1000*1000

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800

800*1000*1000

1000*1000*1000

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800

800*1000*1000

1000*1000*1000

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800

2.5

5.0

7.5

10.0

5.0

7.5

10.0

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

 Size of the Problem

S
pe

ed
up

(b
as

el
in

e
=

C
P

U
−S

eq
ue

nt
ia

l)

● DARTS−DAWL DARTS−CPU DARTS−GPU GPU−only

Figure 4.7: 3D stencil: Speedup with different versions

68

synchronization operations between CPU and GPU, one is at the beginning, another is at

the end. When the workloads are larger than the GPU available global memory which means

after drop point, concurrent streams approach is utilized by GPU-Only. Because of commu-

nication and synchronization cost, the performance of GPU-Only drop dramatically. For 2D

Stencil, as shown in Figure 4.5, DARTS-GPU is using concurrent streams all the time and its

performance on all the machines are pretty stable. The experiment that the performance

of DARTS-GPU after drop points part are very closed to GPU-Only has proved that the new

Heterogeneous-DARTS run-time system overlap can be overlooked. Since the theory that

concurrent stream method is slower than the simple one stream method when workload is

less then the available GPU Global memory is already verified or proved by 2D Stencil,

DARTS-GPU for 3D stencil will use single stream for smaller workload and concurrent streams

method for larger workload. For 2D Stencil, DARTS-CPU’s performance are stable. Except

on CCSL Valinhos, DARTS-CPU’s performance are lower than GPU-Only’s before drop point

and higher than GPU-Only after drop point and DARTS-GPU. Because of 3D Stencil geometry

structure affect performance a lot, that’s why comparing to 2D, 3D DARTS-CPU performance

fluctuate a little.

Based on the hardware choose function (Algorithm 1), when the problem size is smaller than

drop2D or drop3D, the application belongs to the GPU-friendly category and all the workload

will be run on GPU. When the problem size is larger than drop2D or drop3D, the application

changes to the co-running friendly category, and computation will run on both CPUs and

GPU. Figures 4.5 and 4.7 validate the mathematical model. On all systems, DARTS-DAWL’s

performance is very close to GPU-Only when the input set fits in the GPU global memory

capacity. As shown in Figure 4.3, the drop2D shifts from 17000 × 17000 to 23000 × 23000

when the GPU’s memory capacity changes from 2GB to 4GB.

Figure 4.6 zooms in Figure 4.5 for matrix sizes 17000 × 17000 and onward. As shown in

Figure 4.6 the speedup ratios are quite different on different systems with different workload.

69

On fatnode and Super Micro, DARTS-DAWL and DARTS-CPU are alternately faster; on CCSL

Valinhos, DARTS-DAWL and GPU-Only are similar; on debian, DARTS-DAWL is faster than

DARTS-CPU. The changes are affected by the differences of Hardware architecture, see Ta-

ble 4.1,CCSL Valinhos’s GPU is a Tesla-K40, which has a slightly higher clock and memory

frequency than Tesla-K20, as well as improved floating-point processing capability. Further

more, comparing to other machines, CCSL Valinhos only equip 8 CPU cores with only 8

MB L3 cache. That’s why DARTS-CPU on CCSL Valinhos is far slower than GPU related

version, such as DARTS-GPU and GPU-Only. DARTS-DAWL’s performance is in between since

the GPU have to wait for CPUs to synchronize in some extent.

4.4.2.2 Varying the CPU resources

Are using all the computing resources simultaneously the necessary to obtain the highest

performance? Figure 4.8, 4.9, 4.10 and 4.11 show answer for this question. fatnode server

stands for a classical type of hardware configuration: a “regular” GPU and a two-way SMP

chip multiprocessing system,see Figure 4.4. Two different mapping policies are used to pin

compute units to physical processing elements: spread and compact. The spread policy

attempts to map compute units to a processing element (PE, i.e., a core or a thread) as

far as possible from each other according to the underlying physical topology. This policy

tends to yield good results when the application features a large memory-to-computation

ratio, there is little temporal locality to be expected, and there are possibly fewer compute

units than there are actual physical PEs, as the cache is then “owned” by a single PE. On

the contrary, compact attempts to allocate software threads as closely as possible on the

available processing elements. compact is useful when data (and caches) are shared between

threads; it ensures that locality is maximal. However, should the application’s potential for

cache locality be low, the sharing threads may end up trashing each others cache lines.

Even though the compact and spread methods affect plenty the performance, the rough trend

70

●
●

● ●

●
●

● ●

● ●

● ●

DARTS−CPU DARTS−DAWL

com
pact

scatter

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

0e+00

5e+10

1e+11

0.0e+00

2.5e+10

5.0e+10

7.5e+10

Number of Threads

Sp
ee

du
p(

ba
se

lin
e:

 C
PU

−S
eq

ue
nc

e)

● 11000 17000 25000 31000 35000

Machine Fatnode

Figure 4.8: 2D stencil: Performance with a varying number of HW threads on fatnode.
Time in nanoseconds.

is the same. When the threads number reaches a given threshold, increasing the number

of threads does not improve performance—which is expected, because of memory conflicts.

An important observation is that DAWL manages to quickly make use of the GPU to lower

the overall execution time, as soon as it can. Section 4.4.3 will detail how the estimation

model can help obtain a suitable threads number based on the application and hardware

configuration.

4.4.3 Result of Profile-based Estimation Model

As described in session 4.3.3, the first two steps of building estimation model is collecting

hardware architecture and application’s run-time profile information. The required hardware

information can be obtained through hardware spec or operating system command. To

obtain application’s run-time profile information for Machine Learning estimation model,

71

●
●

● ●

●
●

● ●

● ●

● ●

DARTS−CPU DARTS−DAWL

com
pact

scatter

4 8 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40

0e+00

2e+10

4e+10

6e+10

8e+10

0e+00

2e+10

4e+10

Number of Threads

Sp
ee

du
p(

ba
se

lin
e:

 C
PU

−S
eq

ue
nc

e)

● 11000 17000 25000 31000 35000

Machine supermicro

Figure 4.9: 2D stencil: Performance with a varying number of HW threads on supermicro.
Time in nanoseconds.

●
●

● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

DARTS−CPU DARTS−DAWL

com
pact

scatter

4 8 12 4 8 12

0e+00

2e+10

4e+10

6e+10

0e+00

1e+10

2e+10

3e+10

4e+10

5e+10

Number of Threads

Sp
ee

du
p(

ba
se

lin
e:

 C
PU

−S
eq

ue
nc

e)

● 11000 17000 25000 31000 35000

Machine debian

Figure 4.10: 2D stencil: Performance with a varying number of HW threads on debian.
Time in nanoseconds.

72

●
● ● ● ●

● ●
● ● ●

● ● ● ● ●

● ● ● ● ●

DARTS−CPU DARTS−DAWL

com
pact

scatter

4 8 4 8

0e+00

1e+10

2e+10

3e+10

0e+00

1e+10

2e+10

3e+10

Number of Threads

Sp
ee

du
p(

ba
se

lin
e:

 C
PU

−S
eq

ue
nc

e)

● 11000 17000 25000

Machine ccsl

Figure 4.11: 2D stencil: Performance with a varying number of HW threads on ccsl. Time
in nanoseconds.

sampling is a good way.

2D and 3D Stencil are using the same method to collect data. The Profile-based Estimation

Model is designed for co-running applications, which means the target problem workload is

larger than 17000× 17000(2D stencil), 400× 800× 800 (3D stencil), with 2 GB of available

GPU memory. Both, the data set size, and the number of time steps are leveraged to build

estimation model.Considering the iterative nature of the application, 2D/3D stencil run with

a small number of time steps (as training set) to predict (as test set) the execution time with

a larger amount of time steps. The total sample set, including test and training data sets for

2D stencil, consists of several parameters: initial GPU workload slice (2000 × ∗, 4000 × ∗,

8000 × ∗); initial CPU workload: GPU workload × w, w ∈ {0.5, 1.0, 1.5, 2.0}; time step

(1, 4, 30); problem size (from 17000 × ∗ to 35000 × ∗ with steps of 2000); and number of

CPU cores (4, 8, 16, . . .). Samples may vary between platforms, as hardware parameters

73

differ a bit. The numbers of samples used used in the kernel ML profile were approximately

1000 (2D stencil) and 600 (3D stencil). These sample points were taken for leave-one-out

cross-validation machine-learning profile model.

In the second step, the algorithm runs several matching models, as mentioned in section 4.3.3.

It compares several strategies and picks the one that yields the best results, among linear

regression, logistic regression (each using multiple meta-functions and polynomial functions),

ensemble learning methods such as random forests, etc. In retrospect, it seems the model

that finds the majority of the best matches is linear regression: its Rsquared are between 93

and 94%.

To measure the progress of the learning algorithm the Mean Absolute Percentage Error

(MAPE) was used. Table 4.4 shows the MAPE of the linear model for each machine in the

experiments.

Table 4.4: Mean Absolute Percentage Error

Machines supermicro fatnode debian ccsl
MAPE 7.41% 6.43% 1.68% 3.45%

The second goal in this statistical estimation model is to know which parameters had more

impact in the construction of the model. Hence, the absolute value of the t-statistic is used

for each model parameter and computed each parameter’s importance in the model. Based

on the experiment results that several parameters are enough to predict the performance of

2D stencils, table 4.5 list the most important features running on the 4 different machines,

see table 4.1.

Feature selection was obtained using a black box approach. The decision is made for the

ML algorithms based in the high correlation of all the parameters and ML modules. The

selected features may totally different if the same applications run on different Hardware

configuration platform, or the different applications run on the same or different Hardware

74

●
●

●

●
●

● ● ●

●

●
●

● ● ●
●

●
●

●
● ●

●
● ●

●
● ● ● ● ●

●
●

●

●
●

●

● ●

●
●

●
●

●

● ●

●

● ● ●

●

supermicro

Fatnode

debian

ccsl

20000 25000 30000 35000 40000 45000 50000

20000 25000 30000 35000 40000 45000 50000

20000 25000 30000 35000

20000 25000

1.1

1.3

1.5

1.0

1.5

2.0

2.5

1

2

3

4

2

3

4

5

6

Size of the Problem

S
p

e
e

d
u

p
(b

a
s
e

li
n

e
 =

 C
P

U
−

S
e

q
u

e
n

c
e

)

● DARTS−IDAWL DARTS−CPU DARTS−GPU GPU−only

Figure 4.12: 2D stencil: Speedup when matrices are larger than 17K (IDAWL)

75

●

●
●

●●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

supermicro

Fatnode

debian

ccsl

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800

800*1000*1000

1000*1000*1000

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800

800*1000*1000

1000*1000*1000

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800

800*1000*1000

1000*1000*1000

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800

2.5

5.0

7.5

10.0

5.0

7.5

10.0

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

Size of the Problem

S
p

e
e

d
u

p
(b

a
se

lin
e

 =
 C

P
U

−
S

e
q

u
e

n
tia

l)

● DARTS−IDAWL DARTS−CPU DARTS−GPU GPU−only

Figure 4.13: stencil3D: speedup (IDAWL)

76

Table 4.5: 2D Stencil: Important Features for ML Estimation Model

source features

Hardware spec

The number of Sockets
CPU clock frequency
Total number of CPU threads
L2 cache size

Operfile
L2 cache hit rate
L2 cache miss rate
IPC (Instruction Per Cycle)

Nvprof

GPU Grid/Block/Thread number
GPU Thread-block occupancy
Transfer bandwidth Host to Device
Transfer bandwidth Device to Host
The number of concurrent streams
synchronization function

configuration platform.

Figures 4.12 and 4.13 show results for IDAWL. Compared to DARTS-CPU, which always

uses all the CPUs, this implementation uses at most half of the CPUs (depending on the

system). The new scheduler can reach up to 6× speedups compared to sequential runs, 1.6×

speedup compared to the multiple core version, and 4.8× speedup compared to the pure GPU

version in the 2D case. In the 3D case, DARTS-DAWL uses as many threads as DARTS-CPU,

and reaches speedups up to 9× compared to the sequential version, 1.8× against multi-

cores, and 3.6× against a pure GPU version. Comparing Figures 4.12 and Figure 4.6, and

Figure 4.13 with Figure 4.7, it is clear speedups are not always obtained using profiling. This

is especially true around drop points. Drop points are unstable points, and refer to multiple

co-running hardware/software conflicts parameters, which this machine learning estimation

model did not take into consideration. Moreover, the ML algorithm can be further improved

by combining classifier algorithms and neural-network to this learning estimation model.

77

4.5 Related Work

Teodoro et al. [74] have proposed and implemented a performance variation aware schedul-

ing technique along with an estimation optimization model to collaboratively use CPUs

and GPUs on a parallel system. A number of scheduling methods or library [75–77] were

combined with StarPU [78], a task programming library for hybrid architectures based on

task-dependency graphs, to perform scheduling and handle task placement in heterogeneous

systems. Panneerselvam and Swift proposed Rinnegan [75], a Linux kernel extension and

run-time library, and implemented and validated that decisions of where to execute a task

must consider not only execution time of the task, but also current heterogeneous system

conditions. Sukkari et al. [76] proposed an asynchronous out-of-order task-based formulation

of the Polar Decomposition method to improve hardware occupancy using fine-grained com-

putations and look-ahead techniques. Gaspar et al. [79] have proposed a general framework

for fine-grain applications-aware task management in heterogeneous embedded platforms.

This framework was specifically developed for run time performance monitoring and self-

reporting, and tackles OS task management and system resource utilization. In StarPU,

the user provides different kernels and tasks for each target device and specifies inputs and

outputs of each task. The run time ensures that data dependencies are transferred to the

devices for each task. Furthermore, the user can specify explicit dependencies between tasks.

The main challenge of the load-balancing mechanism is to precisely divide workload on pro-

cessing units. A simple heuristics devision approach may result in worse performance. Belvi-

ranli et al. proposed a dynamic load-balancing algorithm for heterogeneous GPU clusters

named the Heterogeneous Dynamic Self-Scheduler (HDSS) [80]. Sant’Ana et al. described a

novel profile-based load-balance algorithm [77] named PLB-Hec for data-parallel applications

in heterogeneous CPU-GPU clusters. PLB-HeC algorithm performs an online customized

estimation of performance curve models for each devices (CPU or GPU). Like a typical

data-parallel application, data in PLB-HeC is divided in blocks, which can be concurrently

78

processed by multiple threads. The granularity of the block size for each processing unit is

crucial for performance: incorrect block sizes will produce idleness in some processing units

and reduce performance. To get good block sizes, PLB-HeC solves the problem in three

phrases: first, it dynamically computes performance profiles for different processing units

at runtime; second, using a non-linear system model, they determine the best distribution

of block size among different processing units; third, they re-balance the block size during

execution. PLB-Hec obtained higher performance gains with more heterogeneous clusters

and larger problems sizes.

All the works presented above rely on StarPU to implement their various strategies. Of all of

them, Belviranli et al. and Sant’Ana et al.’s work are closest to IDAWL : they rely on online

profiling, or resort to some ML techniques to perform load-balancing decisions. However,

this work and most of the previous ones tend to focus on loosely synchronized parallel

workloads, where specific tasks are often run only a specific type of processing element (e.g.,

CPU or GPU). On the contrary, IDAWL focuses on workloads that are iterative in nature,

feature heavy data dependences, and require regular and possibly frequent synchronization

operations between the device and the host. The work itself is “homogeneous”, but it can

be run on either the host or the device, depending on their state of idleness, the remaining

work size to perform, etc.

Werkhoven et al. proposed an analytical performance model that includes PCIe transfers and

overlapping computation and communication [67]. A roofline model [81] was used to module

the performance of GPU kernels execution time and PCIe transfer time. Their model’s main

features are the type of synchronization, stream number, and the number of copy engines

for GPU and PCIe [82, 83].

Lutz et al. proposed PARTANS, an autotuning framework built for CPUs and GPUs [84].

They executed different shapes of stencil computations over two nodes with multiple GPUs.

They analyzed the impact of different data transfer structures based in the stencil shapes

79

across the PCIe bus. They designed a heuristic which determines the number of GPUs to

use.

Luk et al. [85] proposed an adaptive mapping approach. It relies on a new API which

maps work to either Intel Thread Building Blocks or CUDA. To handle the communication-

synchronization problem between CPUs and GPUs, Lee et al. proposed SKMD (Single

Kernel Multiple devices) [86]. It can transparently orchestrate a single kernel execution

acros asymmetric heterogeneous devices regardless of memory access patterns. O’Boyle et

al. proposed a machine-learning based approach to determine whether to run OpenCL code

on GPU or OpenMP code on multi-core CPUs at run time [87] and presented a runtime

framework [88] to decide whether to merge or separate multi-user OpenCL tasks running the

most suitable devices in a CPU-GPU systems.

These works rely on offline training models. Kaleem et al. [89] presented a scheduling tech-

niques for integrated CPU-GPU processors based on online profiling.

IDAWL dynamic scheduling approach differs in the following ways: First, it focus on the

synchronization between CPUs and GPUs; second, the communication between CPUs and

GPUs play a pivot role in IDAWL approach; third, this approach is neither purely offline

nor online. it combines two models together where an offline ML model provides an initial

workload allocation, and DAWL dynamically adjusts workload balancing to compensate

offline-ML inaccuracies, resulting in real-time adaptation.

4.6 Observations

An iterative scheduling algorithm, IDAWL as described in section 4, were designed to better

load balance tasks in a heterogeneous system. Further, it leverages a profile-based approach

based on machine learning, which allows it to converge faster to a better load-balanced

80

schedule. The ML’s estimation model can obtain a customized initial workload on various

heterogeneous architectures, as well as how many devices are necessary. As a case study, we

used a 5-point 2D and a 7-point 3D stencils using an event-driven run-time system, DARTS.

This works also evaluates the limits of co-running on heterogeneous systems. Experimental

results show our approach is at worst on par with a pure GPU approach (when data fits fully

in the GPU), or yields speedups up to 1.6× against a multi-core baseline, and 4.8× against

a pure GPU execution. In the 3D case, DAWL reaches 1.8× against multi-cores, and 3.6×

against pure GPU.

The key contributions of section 4 are:

1. IDAWL, an Iterative Dynamic Adaptive Work-Load balancing algorithm for heteroge-

neous systems, which is combined with and provides data for an offline machine-learning

based profiling system.IDAWL’s efficiency with stencil-based kernels were evaluated: they

feature a high-degree of data dependence, and require regular host-accelerators synchro-

nizations.

2. On top of evaluating raw performance of a co-running solution, the limits of co-running

are evaluated with respect to data input sizes fed to our kernels: (1) if resorting to using

all available compute resources always yields better results were also evaluated; and (2)

Which parameters matter when deciding where to schedule a task in a heterogeneous

context were also provided.

Future work includes augment power-consumption parameters to enrich a IDAWL and de-

termine good trade-offs between performance and power on heterogeneous architectures.

We will also integrate more parameters in our machine learning algorithm to improve its

real-time ability to allocate work to heterogeneous processing elements.

81

Chapter 5

Stream-based Event-Driven

Heterogeneous Multithreading Model

5.1 Introduction and motivation

Streaming applications, where the computation can be naturally expressed as streams, are

widely used in a lot of important areas, such as scientific computations, embedded applica-

tions, as well as the emerging field of social-media processing. Program execution models

centered on streams have been studied by many researchers and have been an active field of

research for the past 30 years [5–9, 90, 91]. The most relevant early work on streams is the

data flow execution model pioneered by Dennis [10, 11], the Synchronous Data Flow(SDF)

model [12, 13] and Program Dependence Graph(PDG) model [14]. Other work include data

flow software pipeline [15–18]. However, these models do not address the parallelism, re-

sources utilization and communication problems existing in highly heterogeneous and hierar-

chical system. Moreover, because of the physical limits that core count per chip continues to

increase dramatically while the available on-chip memory per core is only getting marginally

82

bigger. In this case, data locality, already a must-have in high-performance computing, will

become an even critical point in streaming processing since smoothly data movement play a

pivotal in streaming processing.

Heterogeneity has been studied by a number of researchers [92–97] but many of these efforts

are only targeted at isolated dimensions of heterogeneity, either the cores, the memory, or

the interconnects in isolation. While, heterogeneity can be cooperatively harnessed at cross-

cutting scope, spanning heterogeneous cores, hybrid memory hierarchies and re-configurable

and hybrid interconnect architecture and software. Especially for stream processing, it is

paramount to keep the streaming data flow at high-speed and maintain performance effi-

ciency, (e.g., throughput, delay, etc.) and energy efficiency on heterogeneous system. To

reach this goal, cross-layer cross-cutting design methodology, including algorithm design,

programming models, architecture design, and system software design, are necessary to ex-

plore parallelism and deliver scalability, since parallelism is ubiquitous and found at many

levels of the entire hardware-software stack.

The stream programming model offers a promising approach for exploiting parallelism for

many-cores architecture. Firstly, it can explore a coarse-grain parallelism [98, 99]. Streaming

parallelism is located at the data flow module-level. The multiple data flow modules can

execute concurrently on many-cores architecture; Secondly, it also can explore the fine-grain

parallelism within the body of an individual data flow module; Thirdly, both coarse and fine

grain parallelisms can be explored at the temporal and spatial dimensions.

To efficiently exploit parallelism and delivering scalability in stream processing, a number

of challenges must be overcome. To summarize,these challenges include: exploiting coarse-

and fine-grain level exploitation of parallelism, designing and using heterogeneous comput-

ing environments, dealing with heterogeneous workloads, and developing efficient adaptive

memory management mechanisms targeted at minimizing data movement (thus enhancing

locality) for the sake of both performance and energy efficiency.

83

Section 5 proposes an approach, stream-based event-driven heterogeneous multithreading

model, to solved parallelism, resource allocation and streaming data flow movement problems

in High-Performance Computing. section 5.2 reviews the two level parallelism of stream pro-

cessing, and proposes new streaming program execution model (SPXM); section 5.3 describes

the details of design SPXM, including streaming Codelet Model, and streaming runtime sys-

tem; section 5.4 describes the related work of stream processing.

5.2 Streaming Program Execution Model (SPXM)

The stream-based fine-grain program execution model defined in this section is based on

the Codelet Model, see section 2 for more details, which provides a basic framework for an

asynchronous, event-driven parallel program execution model.

5.2.1 Two Levels Parallelism and Data Locality

The stream programming model offers a promising approach for exploiting parallelism for

many-core architecture. Firstly, it can explore a coarse-grain parallelism [98, 99]. Streaming

parallelism is located at the data flow module level and the multiple data flow modules could

execute concurrently on multicore architecture. Furthermore, non-strict [100, 101] aspect of

data flow models(i.e., I-Structures [102]) can be explored to facilitate out-of-order stream

processing; Secondly, it also can explore the fine-grain parallelism within the body of an

individual data flow module which often contains a collection of loops. Multiple parallelism

approaches, i.e., Data-level (Thread-level) parallelism [103], Task-level Parallelism [104],

Instruction-Level Parallelism (data flow software pipeline [15–18]), can be leveraged to op-

timize performance; Thirdly, both coarse and fine grain parallelisms can be explored at the

temporal and spatial dimensions.

84

In streaming processing, maximize locality and minimize data movement are effective opti-

mization approach which can be used in both two parallel levels. Data can be classified into

two categories a) Some data are continuously streaming through the data channels in the

data flow graph. Conceptually, a (FIFO) buffer of a certain size should be allocated to such a

channel to accommodate the throughput and delay requirement, and b) Some data, that are

not streaming, should be placed in the shared memory hierarchy in order to exploit locality

and minimize data movement. The new streaming Codelet model,describe in section 5.2.2,

is developed to handle storage buffer allocation between stream producer-consumer chan-

nelsboth at the coarse-grain and the fine-grain levels.

5.2.2 Streaming Codelet Model

Stream data flow execution model pioneered by Dennis [11, 20], the Synchronous Data

Flow(SDF) model [12, 13] and Program Dependence Graph(PDG) model [14], where each

node represents a computation task (actor) and each arc represents the communication

between tasks. During program execution, each actor, which has an independent instruction

streams and address space, must fire repeatedly in a periodic schedule. However, these

models, including Codelet model which is built up on SDF, do not address the parallelism

and resources utilization problems existing in highly heterogeneous and hierarchical system.

In the new streaming Codelet model, a program(application) is partitioned into modules

which are connected by communication channels. Here, module stands for streaming Threaded

Procedure(STP), see section 2 for more details about threaded procedure. A module can be

seen as a group of streaming Codelets connected by intra-module stream channels within

a module. Modules are themselves connected through inter-module stream channels. Each

module contains at least one streaming Codelet. A stream channel is modeled as an abstract

FIFO queue where Direct Memory Access (DMA) can help speedup when the modules refer

85

to big chunk of data movement. Each stream module or stream Codelet is an autonomous

computation unit which consumes data at a given rate from the input channel and produces

data at a given rate to its output channel, while this production-consumption rate can be

static or dynamic and be determined at compile or run time. At execution time, each stream

computation module is ready to run only if there are enough data items in the input channels

and enough buffer space in the output channels.

Furthermore, to explore scalability, a module (STP) itself also can be as a component of other

module called upper level module. This feature makess streaming Codelet model smoothly

applicable to the hierarchical heterogeneous many-core system. A module can either be

mapped onto one cluster made up of computing engines, onto one chip made up of clusters,

onto one computing node made up of chips or even onto a internet. Streaming Codelets

belonging to the same module can be mapped to different computing engines within a given

cluster (e.g., a data-parallel portion can be mapped to a vector-friendly computing engine,

while a more control-irregular part of the graph may be better suited to a general-purpose

computing engine). The need to pass data between Codelets may induce unreasonably long

latencies, thus requiring the use of intra-module stream channels to specify buffer sizes, buffer

address and , etc.. On the other hand, within a given portion of the machine, latencies will

be essentially non-existent, thus only requiring that streaming Codelets signal the availability

of new data, much like the original Codelet model proposes.

Streaming Codelets are Codelets with some key additional properties: for example, an inter-

face must describe buffer sizes and latencies to ensure steady state scheduling preferences in

terms of resources. This is required to implement software pipelining. Streaming Codelets

are also by nature most likely going to be persistent. In addition, and interface of streaming

Codelet should express interconnections between Codelets, since some may be mapped to

different clusters. Furthermore, a device attribute should clearly indicate that which type of

computing engine is recommended for this streaming Codelet. Based on these requirements,

86

the more implement details can be found in section 5.3.

Both the modules (STP) and the streaming Codelets they contain are event-driven, with the

arrival of data as the primary event to satisfy, thereby potentially exploiting both coarse-

grained and fine-grained parallelism. At the module level, pipelining and task parallelism can

be exploited between stream computation modules. Further, each module may also contain

any degree of parallelism. This fact should be fully exploited by applying the fine-grained

streaming Codelet model to address performance and scalability needs.This is an important

point, considering the rapid increase in heterogeneity and hardware chip-level parallelism.

5.2.3 Streaming Codelet Abstract Machine Model

The original Codelet Model relies on an Codelet Abstract Machine Model (CAM), see section 2,

which is hierarchical and distributed, and provides two types of engines: the computing

engines called CUs, which perform the actual work, and the scheduling engines called SUs,

which ensure the correct scheduling and resource allocation across the machine. Computing

engines are grouped into clusters along with at least one scheduling engine.

Targeting at stream processing on heterogeneous and hierarchical system, Streaming Codelet

Abstract Machine Model (SCAM) extends original one level CAM Model to two levels to better

fit future architectures which exhibit a high diversity of computing capabilities. Hence, the

high-level layer will feature clusters of computing engines, where streaming Codelet modules

will be mapped. However, as opposed to the original CAM, SCAM’s clusters are expected to

widely differing capabilities and levels of parallelism. While the nominal capabilities and/or

degree of parallelism of a given cluster are known statically when starting a given application,

there are various reasons to force it to expose a different set of capabilities over time: faulty

components, high-contention of part or all of the cluster, elevated power consumption, etc.

Thus, the assignment of modules across a machine will partly rely on information only

87

available at run-time, while additional properties must be defined and added to the basic

CAM. This high level layer, which exposes clusters of computing engines without unveiling the

engines themselves, will be visible to the high-level programmer. Specific scheduling engines

are dedicated to the distribution of work among the clusters.

The second layer of the SCAM is a low-level abstract machine model, visible to both the

compiler and the runtime system. It must identify the type of capabilities embedded in

clusters–although it is sufficient for the compiler to know what kind of support it can expect

from the low-level CAM. This allows it to generate the adequate code variants. The computing

engines contained in a cluster range from specific functions provided by a low-level component

of the cluster to fully general purpose computing units. Here again, a scheduling unit is in

charge of mapping the portions of a given module to the available computing engines.

How to put together the computing engines (cpu cores, GPUs, accelerators, FPGAs, etc.)

to operate in the high power/energy-efficient domains and high performance domains while

providing full support for the SPXM is a key question in design SCAM. To achieve this goal,

on-chip and off-chip memory systems should be optimized to feed the computing engines and

the communication structure that transports the streams. In some cases. These two elements

(memory and communication, especially communication between different types of resources)

introduce overhead orders of magnitude higher than the overhead of the computing engines.

So, in stream processing, minimize latencies and global data movements play a pivotal role.

The Runtime system of SCAM, called streaming DARTS, will manage parallelism, memory

management, communication traffic, etc. It will allocate stream modules to the appropriate

computing engines (e.g., a streaming Codelet containing a vector operation should go to the

cluster which has GPUs on it) and perform dynamic resource management to ensure that

processing and memory resources are not left idle when there are tasks/streaming Codelet

available for execution. It will creates stream channels for the communications between the

modules/streaming Codelets. Finally, it needs to schedule the streaming Codelets to the

88

computing engines in order to exploit the fine-grained parallelism. Dynamically adjust re-

sources assignment besed on the run-time situation is also necessary function for the runtime

system scheduler to fully utilize the computing resources.

5.3 SPXM Design

5.3.1 Streaming Codelet

Streaming Codelet locates in the fine-grain level of SPXM and stands for the fine-grain task.

It will be mapped to and run on computing engine when all the synchronization require-

ments are satisfied. As described in section 5.2.2, it is Codelet with some key additional

properties(streaming properties):

1. ID. Instead of option in Codelet, it is necessary in streaming Codelet. It will be used

to construct streaming Codelet graph (SCG), to build up the stream data and message

channel. Streaming Codelet ’s ID is unique in current streaming module. ID also can

be used by scheduler of streaming runtime system of SCAM. Scheduler can assign and

pin the streaming Codelet to specific computing engine since it will be fired (run)

repeatedly in a periodic schedule during stream processing. The pinning operation

can help streaming Codelet utilizes the data locality and reduce unnecessary data

movement.

2. Parent streaming module (STP) ID. it can help streaming Codelet locates itself in the

whole system since the SPXM is a logical hierarchical Model.

3. Data connection slot. It helps to construct SCG. Some streaming Codelets may be

mapped to different clusters of computing engines. Buffer size, buffer address and

production-consumption rate also locate in this slot. Each arc of the SCG represents

89

one data communication channel between tasks. The arc can connect either streaming

Codelets or streaming modules(STPs). To help huge bulk data movement between

streaming modules/Codelets, DMA etc. components can be added to the slot. One

streaming Codelet/module can contain one or multiple data connection slots.

4. Synchronization slot. It is a basic component of event-driven model, will be equipped

with more functions, such as control production-consumption rate in further to control

the fire rule of streaming Codelet. Same with data interconnection slot, One streaming

Codelet/module can contain one or multiple synchronization slots. The consumer can

be fired only if all its synchronization slots’ requirements are satisfied. Different with

data connection slot, synchronization slot only exis in consumer side.

5. Message connection slot. Same with StreamIt [9] language, SACM also provides a dy-

namic messaging system for passing irregular and low-volume control information be-

tween Streaming Codeletss and streaming modules. Messages are sent from one stream-

ing Codelet to other streaming Codelets located in the same streaming module or to

current streaming module which can broadcast the messages to all its group mem-

bers (streaming Codelets). Messages also can be transferred between streaming mod-

ules. There are several types of messages: a) change the parameters,e.g. production-

consumption rate; b) change running status,e.g., from RUNNING to STOP/SLEEP etc..

For example, if the consumer encounters some issues (the usable resources are sharply

reduced because of power limitation) which cause its data processing speed unstable

and dropping quickly, a STOP or SLEEP message will be sent to its producers once the

accumulated data over the buffer limitation. Then the producer will adjust its status

based on the received message; c) change allocated device,e.g., change low computing

capability of current computing engine to high computing capability computing engine

if current one can’t satisfy the performance requirement. For example, if consumer is

always in WAITING status, it can send CHANGING message to scheduler in module to

90

request reassign its producer’s computing engine.

6. Device attribute. It indicates that the current streaming Codelet will run on which

types of computing resources. Up to now, it is static assign to the streaming Codelet,

this work should be done by compiler in the future.

7. Fire rules. One streaming Codelet can be fired need to satisfy two requirements:

first, the synchronization requirements should be satisfied, which means the current

streaming Codelet have enough data in the input channels and enough buffer space in

the output channels; second, there is no STOP or SLEEP messages were sent to current

streaming Codelet.

8. History record. It records the past execution time, it can be used to build estimation

model in the future.

9. Reset status. It will record all the configuration/status current streaming Codelets and

can be used when the the streaming Codelet wake up from STOP and SLEEP status.

10. Latency. It will be used in pipeline stage.

5.3.2 Streaming Module (Threaded Procedure)

Streaming module locates in the coarse-grain level of SPXM and stands for the coarse-grain

tasks. One stream stage can contain one or more streaming modules depending on SCG and

available computing resources. It contains all the streaming properties of streaming Codelet,

but with small differences. Except these streaming properties, it is based on Threaded

Procedure:

1. console component. Streaming module, containing a collection of streaming Codelet,

will run on the cluster. One of main functions of streaming module is synchronizing all

91

its group members (streaming Codelets or low level streaming modules, as described in

section 5.2.2). The console component records all the information of its group members,

it also provides search function.

2. data connection slot. it sets up a data bridge between streaming modules, and between

streaming module with its group members. Special communication components,such

as DMA, can be added to help speed up the bulk data movement.

3. Message connection slot. it can broadcast/receive messages to/from all its group mem-

bers, send/receive messages from its peers(other streaming modules), and transfer

cross-layer message.

5.3.3 Runtime Stream Scheduler

The high level runtime stream scheduler will access which clusters/computing resources

are available and decide on which would be the best cluster to run the various streaming

modules. Once the clusters are selected, the runtime system then determines which of its

computing resources are current usable and map the SCG to the available hardware resources.

The runtime scheduler handles the case where a specific accelerator is not available to the

computation. There are various reasons for the unavailability of a specific processing unit:

the accelerator is already busy, or, for execution-time reasons, the scheduler did not assign

the Codelet to a tile that featured such an accelerator. In this case, the local scheduler will

select the code variant of the best-suited resource (e.g., an FPGA version if such a device is

ready to be used), and insert the output stream address to feed data to the next streaming

Codelets which will then apply their data transformation process in the pipeline. During

run time, the local scheduler will change the binding (between resources and Codelet) if

CHANGING message is obtained, see example in section 5.3.4.

The scheduler supports both balanced and unbalanced SDFG. If converter from unbalanced

92

Figure 5.1: sheduler: unbalanced SDFG to balanced SDFG

SDFG to balanced SDFG option is activated, it can automatic convert unbalanced SDFG to

balanced SDFG and then assign and schedule tasks to corresponding computing resources.

In Figure 5.1, (a) stands for the original SDFG (b) stands for the converted SDFG, while

the tasks are grouped into three groups (3 STPs). How to map task (circle in the Figure)

depends on the available resources. Unbalanced SDFG is also supported by the scheduler. A

STOP or SLEEP message will be sent to producer when too many data are accumulated into

the consumer’s buffer. WAKEUP message will be sent from consumer to producer when the

accumulated data in consumer’s buffer reach to a suitable level. Consumer will automatically

enter into WAITING status when there are no enough data available based on the features of

event-driven tasks.

93

Figure 5.2: Example: streaming Codelet graph (SCG)

94

5.3.4 Detailed Example

Figure 5.2 shows an example of SCG. As described in section 5.2.2, every component,including

streaming module(Threaded Procedure) and streaming Codelet, has an unique ID. In this

Figure, rectangle stands for streaming module(STP in Figure 5.2); single circle stands for

streaming Codelet(S in Figure 5.2); double circle stands for the transfer gate between STPs

(i.e.,t1 in STP3 stands for STP1’s transfer gate in STP3.); the solid line stands for the same

layer connection, such as the line connecting S11 to S12 in STP1 group, and the line con-

necting STP1 to STP3 in STP0 group; dotted line stands for the across layers connection (i.e.,

the line connecting S12 to t3 means S12 produce data to STP3); the number on the line

stands for the production-consumption token(data); no number on line stands for producing

or consuming one token. As shown in Figure 5.2, multiple streaming Codelets can connect

to the same transfer port, and one STP can own multiple transfer port.

Table 5.1: streaming Threaded Procedure STP0 attributes based on the Figure 5.2

attributes content

ID 0

parent ID –

group members
STP1
STP2
STP3

shared share0

receivers –

Final Codelet default:SLEEP

history execution time

latency number0

device cluster/node/... (ID)

Only data connection graph is shown in Figure 5.2. The message connection graph will be

set up based on the runtime situation. For example, in the Figure 5.2 (when unbalanced

scheduler is used), Streaming Codelet(S12) produce 6 token while Streaming Codelet(S14)

only consume 1 token. Figure 5.3 shows the mapping graph of S12 and S14. There are three

95

1 inst STP0{

2
3 /*

4 * setshare: set up shared variables , data space

5 * shared variable/data can be accessed by all the group

member

6 */

7 setshare share0;

8
9 /*

10 * add: add components

11 */

12 add STP1 to STP0;

13 add STP2 to STP0;

14 add STP3 to STP0;

15
16 /*

17 * setcxn(producer , ptoken , consumer ,ctoken ,address)

18 * ptoken: producer produced token

19 * ctoken: consumer consumed token

20 * address: option

21 */

22 setcxn(STP1 ,8,STP3 ,4,addr1);
23 setcxn(STP1 ,2,STP2 ,6,addr2);
24 setcxn(STP3 ,4,STP2 ,1,addr3);
25
26 /*

27 * setlatency: set the largest latency (for pipeline stage)

28 * default latency: Infinity

29 */

30 setlatency (number0);

31
32 }

Listing 5.1: pseudocode of Figure 5.2 STP0

96

1 inst STP3{

2
3 setshare share3;

4
5 add S31 to STP3;

6 add S32 to STP3;

7 add S33 to STP3;

8 add S34 to STP3;

9
10 setcxn(S31 ,1,S34 ,2);
11 setcxn(S32 ,1,S34 ,1);
12 setcxn(S33 ,1,S34 ,2);
13
14 /*

15 * setcrosscxn: producer and consumer are in differ layers

16 * level = producer layer - consumer layer

17 * STP1 ~3: layer = 1; STP0: layer =2

18 * S: layer = 0

19 */

20 setcrosscxn (t1 ,1,S33 ,1,level =1);

21 setcrosscxn (t1 ,2,S31 ,2,level =1);

22 setcrosscxn (t1 ,1,S32 ,1,level =1);

23 setcrosscxn (s34 ,4,t2 ,4,level =-1);

24
25 /*

26 * setsync(producer , ctoken , max)

27 * set synchronization slot(only consumer)

28 * max: optional , the max number of token can keep in the

synchronization slot

29 */

30 setsync(STP1 ,4);
31 setsync(S34 ,4);
32
33 setlatency (number3);

34 }

Listing 5.2: pseudocode of Figure 5.2 STP3

Figure 5.3: mapping streaming Codelets to cores example

97

Figure 5.4: message example1

Figure 5.5: message example2

Figure 5.6: message example3

98

Table 5.2: streaming Threaded Procedure STP3 attributes based on the Figure 5.2

attributes content

ID 3
parent ID STP0
group members S31,S23,S33,S34

data connection slot

(STP1, 8, STP3, 4, addr= addr1)
(STP3, 4, STP2, 1, addr= addr3)
(t1, 1, S33, 1, addr=, level=1)
(t1, 2, S31, 2, addr=, level=1)
(t1, 1, S32, 1, addr=, level=1)
(S34,4, t2, 4, addr=, level= -1)

synchronization slot
(STP1,ctoken = 4,max=INF)
(S34,ctoken = 4,max=INF)

mesg connection slot default: running

shared data/variables share0,share3

receivers STP2

history execution time

reset status –

latency number3

device cluster/node/... (ID)

Table 5.3: streaming Codelet S12 attributes based on the Figure 5.2

attributes content

ID 12
parent ID STP1

data connection slot

(S11, 1, S12, 4, addr =)
(S13, 1, S12, 1, addr =)
(S12, 6, S14, 1, addr =)
(S12, 8, t3, 8, addr =, level=-1)

synchronization slot
(S11,ctoken = 4,max=INF)
(S13,ctoken = 1,max=INF)

mesg connection slot default: running

receivers STP3

history execution time

reset status –

latency number

device CPU/GPU/FPGA/... (ID)

99

cores, C1,C2 and C3, exist in the system. C3’s computing capability is larger than C1 and

C2; the computing capability of C1 and C2 are equal. If the execution time of S12 and S14

are equal, then the extra token will be accumulated at S14’s buffer,as shown in Figure 5.4,

once the S14 buffer size reach/close to its maximum limitation(28 token), a SLEEP message

will be sent from S14 to S12. while S14 keep running and consuming the stored token, a

WAKEUP message will be sent to S12 when S14’s buffer size reaches to its minimum limitation

(1 token); In another case, if the execution time of S14 are faster than S12, (which will be

either the computing ability of computing engine mapped by S14 is far more better than the

computing engine mapped by S12 or the computing in S12 is more complicate than S14 and

it will take a longer time to finish, as shown in Figure 5.5), no STOP or SLEEP message will

be sent if the S14’s buffer size is less than its maximum limitation. But the if S14’s buffer

size is always less than the minimum limitation, as shown in Figure 5.6, a CHANGING message

will be sent to the STP1’s scheduler to request change computing engine of S12 to one with

higher computing ability, which will be core C3 in current system.

Listing 5.1 and 5.2 are the pseudocode of STP0 and STP3 in Figure 5.2. STP0 is the upper

most layer of the module.The scheduler run in this layer. As described in section 5.3.3, this

scheduler will map its group members (modules) to clusters based on the hardware resources.

STP0 has three module components, STP1,STP2,STP3. Every module component in STP0 has

a subscheduler which schedule, bind its group members, Codelets, to computing engines, and

synchronize all its group members.

As shown in Listing 5.1 and 5.2, every module need to set up shared spaces or variables, using

function setshare, which can be accessed by all its group members. Fully utilizing the data

locality to minimize the data movement is one of important factors to make sure the stream

flow smoothly running. Both functions setcxn and setcrosscxn will set up or change the

data connection slot for the streaming module/Codelet. Function setcxn will be used to

connect components in same layer. The connection is directed, starting from producer and

100

end at consumer. The number on connection (production-consumption token) can be used

by synchronization slot. If the produced token number less than consumed token number,

the consumer has to wait. Function setcrosscxn in Listing 5.2 plays the similar roles, but

it is used to connect two components from different layers, i.e., connecting S31 to t1 which

is the transfer port of STP1 in STP3. The level attribute in data synchronization slot

indicates that whether the producer and consumer related the current line/connection are

located in same level or not. level equals to the producer layer minus to consumer layer. By

default, the level is set to zero. Function setsync in List 5.2 is to set up a synchronization

slot for the streaming module/Codelet. As described in section 5.3.1, synchronization

slot only exists in consumer side. It records its producer of current connection, the number

of token is needed to fire, the maximum and minimum number of token that buffer can

hold. Function setlatency will set the latency of current component to make sure the

pipeline can run smoothly. Table 5.1 and 5.2 show the attributes of streaming module of

STP0 and SPT3. Table 5.3 shows the attributes of streaming Codelet (S12).

5.4 Related Work

Lee [12, 13] proposed the concept of Synchronous data flow (SDF), where each node repre-

sents a computation task (actor) and each arc represents the communication between tasks.

In a SDF graph, the token of every data flow node will be consumed or produced maybe

specified a priory. The scheduler can be done at compile time (statically). During program

execution, each actor, which has an independent instruction streams and address space, must

fire repeatedly in a periodic schedule.

In stream processing, multiple optimization approaches about pipeline parallelism technique

have been studies by many researches in scheduling and compiler area. Hwanget al. [15]

proposed Pipeline net/chain which can be viewed as a two-level pipelined and dynamically

101

reconfigurable systolic array and is constructed from interconnecting multiple Functional

Pipelines (FP) through a buffered crossbar network. Software pipelining [98, 99, 105] is an

efficient method to exploit the coarse-grained and fine-grained parallelism in stream pro-

grams, and it has been one of the successful instruction level parallelism (ILP) techniques.It

considers the whole program as a loop and takes a periodic schedule as iteration of the loop,

and successive iterations can be overlapped at run-time [106]. Single-dimension software

pipelining(SSP) [17] is a resource-constrained software pipelining method for both perfect

(data independent), and imperfect (data dependence) loop nests on single-core architectures.

Multi-threaded software pipelining (MT-SSP) [16] based on SSP could automatically extract

threads from loop nest written in a sequential language and parallel schedule these multi-

threads on homogeneous multi-core with resource constraints.Decoupled software pipelining

(DSWP) [103] exploits the fine-grained pipeline parallelism lurking in most applications to

extract long-running, currently executing threads.

Task level parallelism can be used in the every stage of pipeline. Allocating task into ap-

posite computing unit play a pivot role. Sridharanet al. [60] proposed an integer linear

programming (ILP)-based parallelization approach which can automatically extract task-

level parallelism and balance the extracted tasks for processing units which have different

performance characteristics. Furthermore, the resource allocation problem can be formu-

lated as a constraint satisfaction problem. To balance the load of the multiple applications

equally over all heterogeneous multi-processor system-on-chip(tiles), Stuijk et al. [107] pro-

posed three steps resource allocation strategy: bind the nodes of SDFG to tiles to estimate

the critically execution cycles of SDFG; construct static-order schedules to fire all of the nodes

bound to each tile and the communication cost (delay when tokens were sent between tiles)

is taken into account; use binary search algorithms to allocate time slices for all tiles to

satisfy throughput constraint. Zhu et al. [108] proposed an implicit retiming and unfloding

approach for binding and scheduling static rate-optimal scheduling of Synchronous dataflow

graphs(SDFGs) on a multiprocessor platform.

102

To deliver the optimal long-term throughput by exploring inter-tasks parallelism on Multi-

processor Systems-on-Chips (MPSoC), Tang et al. [109] use Parallelism Graph(PG) to quan-

tify and model the task-level parallelism of the SDFG, and transform the mapping problem to

graph partition problem. 0-1 integer linear programming(ILP) were utilized to solve small-

scale graph partition problem and for the large-scale problems, two-step heuristic called

greedy partition and refinement algorithm(GPRA) is proposed. However both ILP and

GPRA are incapable at producing the global optimal solution, Hybrid Genetic Algorithm

(HGA) which combine genetic algorithms(GAs) with parallelism enhancement were pro-

posed. Tang et al. focused on the task-to-processor mapping problem which no more than

one processor is allocated to each SDFG task in the mapping.

Thies et al. [110] proposed StreamIt language and corresponding compiler for streaming

applications. It includes four main language features: a structured model of streams, a

messaging system for control, a re-initialization mechanism, and a natural textual syntax.

StreamIt assumes that independent processors communicate in regular pattern and overlooks

the granularity, memory layout, network interconnect, etc..

All the works mentioned above do not address or overlook data movement (communication)

problem existing in current highly heterogeneous and hierarchical system. Indeed, on-chip

and off-chip communication is projected to become a major bottleneck in terms of perfor-

mance, energy consumption, and reliability when hundreds of heterogeneous compute engines

are integrated. Moreover, because of the physical limits that core count per chip continues to

increase dramatically while the available on-chip memory per core is only getting marginally

bigger. In this case, the stream-based event-driven model, described in section 5, focuses

on the fully utilization of data locality in fine-grain parallelism level and minimization bulk

data movement cost in coarse-grain parallelism level.

103

Chapter 6

Conclusions and Future Work

A fine-grain event-driven execution model has been presented here with the goal of solving

many of the various challenges that exist in current/future high-performance hierarchical

homogeneous/heterogeneous many-core systems: exploitation of parallelism, efficient uti-

lization of resources and system scalability to satisfy the continued growing pressure for

increased processing performance requirements from industry (applications) and scientific

circles (scientific computing).

Fine-grain synchronization with event-driven multithreading model, based on the Codelet

Model, has given us large-scale parallelism exploitation of dependence-heavy applications

as opposed to the coarse-grain synchronization in current high-performance general purpose

many-core shared-memory compute nodes. The advantages of using finer-grained synchro-

nization come from the fact that, even with initially “ almost embarrassingly parallel” work-

loads such as stencil-based iterative solvers, performance can be significantly improved using

regular work distribution among processing elements. However, the fine-grain synchroniza-

tion work demonstrated here relies on a hand-coded approach. A compiler equipped with

an OpenMP-to-Codelet fine-grain function will be developed in the future.

104

Our heterogeneity-aware iterative scheduling algorithm, IDAWL, has been designed to lever-

age load-balancing techniques to obtain the best workload partition between CPUs and

general-purpose accelerators—e.g., GPUs. However, näıve heuristics may result in worsened

performance and power consumption, especially for the applications which feature a high-

degree of data dependence and need to regularly perform host-accelerator synchronizations.

IDAWL leverages a profile-based approach based on machine learning and online scheduling to

offer a general approach to efficiently utilize, in a dynamic fashion, available heterogeneous

resources.

Energy efficiency of our schemes will be the topic of future work. It will guarantee that our

IDAWL can reach a good trade-off point between performance and power on heterogeneous

architectures. Stream-based event-driven heterogeneous multithreading model has a huge

potential in the streaming application domain. The features of exploiting two levels paral-

lelism (coarse- and fine-grain level) to construct streaming pipeline stage, fully utilizing the

data locality to minimize the data movement and easily adding new heterogeneous compo-

nents help this model overcome the majority of issues encountering by streaming applications

on heterogeneous system. Future work will focus on how to dynamic schedule workloads and

overlap the computation and communication of different heterogeneous computing resources

to improvement the performance. Energy efficient computing, which seeks to utilize spe-

cialized cores, accelerators (FPGAs), and graphical processing units (GPUs) to eliminate

the energy overheads of general-purpose homogeneous cores, is another important topic for

future work.

105

Bibliography

[1] TOP500 Supercomputer List. http://www.top500.org (visited on Nov. 2017).

[2] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun. ACM,
54(5):67–77, May 2011.

[3] OpenMP Architecture Review Board. Openmp application program interface version
4, July 2013.

[4] OpenMP Architecture Review Board. Openmp application program interface version
4.5, November 2015.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, and Kevin
Skadron. A performance study of general-purpose applications on graphics processors
using cuda. Journal of parallel and distributed computing, 68(10):1370–1380, 2008.

[6] Michael I Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S Meli, An-
drew A Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, et al. A
stream compiler for communication-exposed architectures. In ACM SIGOPS Operat-
ing Systems Review, volume 36, pages 291–303. ACM, 2002.

[7] James A Kahle, Michael N Day, H Peter Hofstee, Charles R Johns, Theodore R
Maeurer, and David Shippy. Introduction to the cell multiprocessor. IBM journal
of Research and Development, 49(4.5):589–604, 2005.

[8] Ujval J Kapasi, Scott Rixner, William J Dally, Brucek Khailany, Jung Ho Ahn, Peter
Mattson, and John D Owens. Programmable stream processors. Computer, 36(8):54–
62, 2003.

[9] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language
for streaming applications. In R. Nigel Horspool, editor, Compiler Construction, pages
179–196, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[10] Jack B. Dennis. First version of a data flow procedure language. In B. Robinet, editor,
Programming Symposium, pages 362–376, Berlin, Heidelberg, 1974. Springer Berlin
Heidelberg.

[11] J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor architecture. In
Proceedings of the 1988 ACM/IEEE Conference on Supercomputing, Supercomputing
’88, pages 368–373, Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

106

http://www.top500.org

[12] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, Sept 1987.

[13] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Transactions on Computers, C-36(1):24–35,
Jan 1987.

[14] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,
July 1987.

[15] K. Hwang and Z. Xu. Multipipeline networking for compound vector processing. IEEE
Transactions on Computers, 37(1):33–47, Jan 1988.

[16] Alban Douillet and Guang R. Gao. Software-pipelining on multi-core architectures. In
Proceedings of the 16th International Conference on Parallel Architecture and Compila-
tion Techniques, PACT ’07, pages 39–48, Washington, DC, USA, 2007. IEEE Computer
Society.

[17] Hongbo Rong, Zhizhong Tang, R. Govindarajan, Alban Douillet, and Guang R. Gao.
Single-dimension software pipelining for multidimensional loops. ACM Trans. Archit.
Code Optim., 4(1), March 2007.

[18] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Adaptive, efficient, parallel
execution of parallel programs. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, pages 169–180, New
York, NY, USA, 2014. ACM.

[19] Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase, and Guang R. Gao. Us-
ing a ”codelet” program execution model for exascale machines: Position paper. In
Proceedings of the 1st International Workshop on Adaptive Self-Tuning Computing
Systems for the Exaflop Era, EXADAPT ’11, New York, NY, USA, 2011. ACM.

[20] Jack B. Dennis. First version of a data flow procedure language. In Bernard Robinet,
editor, Programming Symposium, Proceedings Colloque sur la Programmation, Paris,
France, April 9-11, 1974, volume 19 of Lecture Notes in Computer Science. Springer,
1974.

[21] Arvind and Kim P. Gostelow. The u-interpreter. IEEE Computer, 15(2), 1982.

[22] Joshua Suettlerlein, Stéphane Zuckerman, and Guang R. Gao. An implementation of
the codelet model. In Proceedings of the 19th International Conference on Parallel
Processing, Euro-Par’13, pages 633–644, Berlin, Heidelberg, 2013. Springer-Verlag.

[23] J. Arteaga, S. Zuckerman, and G. R. Gao. Multigrain parallelism: Bridging coarse-
grain parallel programs and fine-grain event-driven multithreading. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 799–808,
May 2017.

107

[24] Jaime Arteaga, Stéphane Zuckerman, and Guang R. Gao. Generating fine-grain multi-
threaded applications using a multigrain approach. ACM Trans. Archit. Code Optim.,
14(4):47:1–47:26, December 2017.

[25] OpenMP Architecture Review Board. Openmp application program interface version
3.0, May 2008.

[26] Intel. Intel 64 and ia-32 architectures software developers manual. Volumes 1–3, 1,
December 2015.

[27] R. D. Hornung, J. A. Keasler, and M. B. Gokhale. Hydrodynamics Challenge Problem.
Technical Report LLNL-TR-490254, Lawrence Livermore National Laboratory, July
2011.

[28] Ian Karlin, Jeff Keasler, and Rob Neely. Lulesh 2.0 updates and changes. Technical
Report LLNL-TR-641973, August 2013.

[29] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain, Jonathan Co-
hen, Zachary DeVito, Riyaz Haque, Dan Laney, Edward Luke, Felix Wang, David
Richards, Martin Schulz, and Charles Still. Exploring traditional and emerging paral-
lel programming models using a proxy application. In 27th IEEE International Parallel
& Distributed Processing Symposium (IEEE IPDPS 2013), Boston, USA, May 2013.

[30] Kathleen Knobe. Ease of use with concurrent collections (cnc). Hot Topics in Paral-
lelism, 2009.

[31] Zoran Budimlic, Michael G. Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney,
Ryan Newton, Jens Palsberg, David M. Peixotto, Vivek Sarkar, Frank Schlimbach,
and Sagnak Tasirlar. Concurrent collections. Scientific Programming, 18(3-4), 2010.

[32] Aparna Chandramowlishwaran, Kathleen Knobe, and Richard W. Vuduc. Performance
evaluation of concurrent collections on high-performance multicore computing systems.
In 24th IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2010, Atlanta, Georgia, USA, 19-23 April 2010 - Conference Proceedings. IEEE, 2010.

[33] Michael G. Burke, Kathleen Knobe, Ryan Newton, and Vivek Sarkar. Concurrent
collections programming model. In David A. Padua, editor, Encyclopedia of Parallel
Computing. Springer, 2011.

[34] Chenyang Liu and Milind Kulkarni. Optimizing the lulesh stencil code using concur-
rent collections. In Proceedings of the 5th International Workshop on Domain-Specific
Languages and High-Level Frameworks for High Performance Computing, WOLFHPC
’15, New York, NY, USA, 2015. ACM.

[35] T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin. Xkaapi: A runtime system for
data-flow task programming on heterogeneous architectures. In Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on, May 2013.

108

[36] T. Gautier, F. Lementec, V. Faucher, and B. Raffin. X-kaapi: A multi paradigm
runtime for multicore architectures. In Parallel Processing (ICPP), 2013 42nd Inter-
national Conference on, Oct 2013.

[37] Tim Mattson, R Cledat, Zoran Budimlic, Vincent Cave, Sanjay Chatterjee, B Se-
shasayee, R van der Wijngaart, and Vivek Sarkar. Ocr: The open community runtime
interface. Technical report, Tech. Rep., June 2015.[Online]. Available: https://xstack.
exascale-tech. com/git/public, 2015.

[38] Christopher Lauderdale and Rishi Khan. Towards a codelet-based runtime for exascale
computing: Position paper. In Proceedings of the 2Nd International Workshop on
Adaptive Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’12, New
York, NY, USA, 2012. ACM.

[39] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B. Fraguela,
Maŕıa J. Garzarán, David Padua, and Christoph von Praun. Programming for paral-
lelism and locality with hierarchically tiled arrays. In Proceedings of the Eleventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’06, New York, NY, USA, 2006. ACM.

[40] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
Journal of Parallel and Distributed Computing, 37(1), 1996.

[41] Rajkishore Barik, Zoran Budimli, Vincent Cav, Sanjay Chatterjee, Yi Guo, David
Peixotto, Raghavan Raman, Jun Shirako, Sağnak Tarlar, Yonghong Yan, Yisheng
Zhao, and Vivek Sarkar. The habanero multicore software research project. In Pro-
ceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’09, New York, NY, USA,
2009. ACM.

[42] Zoran Budimli, Vincent Cav, Raghavan Raman, Jun Shirako, Sağnak Tarlar, Jisheng
Zhao, and Vivek Sarkar. The design and implementation of the habanero-java parallel
programming language. In Proceedings of the ACM International Conference Compan-
ion on Object Oriented Programming Systems Languages and Applications Companion,
OOPSLA ’11, New York, NY, USA, 2011. ACM.

[43] Vincent Cav, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-java: The new
adventures of old x10. In Proceedings of the 9th International Conference on Principles
and Practice of Programming in Java, PPPJ ’11, New York, NY, USA, 2011. ACM.

[44] Judit Planas, Rosa M. Badia, Eduard Ayguad, and Jesus Labarta. Hierarchical task-
based programming with starss. International Journal of High Performance Computing
Applications, 23(3), 2009.

[45] Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras, Xavier Martorell,
Rosa M. Badia, Eduard Ayguade, and Jesús Labarta. Euro-Par 2011 Parallel Pro-
cessing: 17th International Conference, Euro-Par 2011, Bordeaux, France, August 29

109

- September 2, 2011, Proceedings, Part I, chapter Productive Cluster Programming
with OmpSs. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[46] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88,
New York, NY, USA, 1988. ACM.

[47] Corinne Ancourt and François Irigoin. Scanning polyhedra with do loops. SIGPLAN
Not., 26(7), April 1991.

[48] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanujam, Atanas
Rountev, and P Sadayappan. Effective automatic parallelization of stencil computa-
tions. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’07, New York, NY, USA, 2007. ACM.

[49] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. Tiling stencil com-
putations to maximize parallelism. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC ’12, Los Alami-
tos, CA, USA, 2012. IEEE Computer Society Press.

[50] Ian J. Bertolacci, Catherine Olschanowsky, Ben Harshbarger, Bradford L. Chamber-
lain, David G. Wonnacott, and Michelle Mills Strout. Parameterized diamond tiling
for stencil computations with chapel parallel iterators. In Proceedings of the 29th ACM
on International Conference on Supercomputing, ICS ’15, New York, NY, USA, 2015.
ACM.

[51] Sunil Shrestha, Joseph Manzano, Andres Marquez, John Feo, and Guang R. Gao. Lan-
guages and Compilers for Parallel Computing: 27th International Workshop, LCPC
2014, Hillsboro, OR, USA, September 15-17, 2014, Revised Selected Papers, chapter
Jagged Tiling for Intra-tile Parallelism and Fine-Grain Multithreading. Springer In-
ternational Publishing, Cham, 2015.

[52] Sunil Shrestha, Guang R. Gao, Joseph Manzano, Andres Marquez, and John Feo.
Locality aware concurrent start for stencil applications. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and Optimization,
CGO ’15, Washington, DC, USA, 2015. IEEE Computer Society.

[53] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and
Charles E. Leiserson. The pochoir stencil compiler. In Proceedings of the Twenty-third
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11,
New York, NY, USA, 2011. ACM.

[54] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning framework for
parallel multicore stencil computations. In Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, April 2010.

[55] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitectures. In

110

Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International, May
2011.

[56] Takayuki Muranushi and Junichiro Makino. Optimal temporal blocking for stencil
computation. Procedia Computer Science, 51, 2015. International Conference On
Computational Science, {ICCS} 2015Computational Science at the Gates of Nature.

[57] Michael Lesniak. Pastha: Parallelizing stencil calculations in haskell. In Proceedings of
the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming,
DAMP ’10, New York, NY, USA, 2010. ACM.

[58] Prashant Rawat, Martin Kong, Tom Henretty, Justin Holewinski, Kevin Stock, Louis-
Noël Pouchet, J. Ramanujam, Atanas Rountev, and P. Sadayappan. Sdslc: A multi-
target domain-specific compiler for stencil computations. In Proceedings of the 5th
International Workshop on Domain-Specific Languages and High-Level Frameworks
for High Performance Computing, WOLFHPC ’15, New York, NY, USA, 2015. ACM.

[59] Chris Gregg and Kim Hazelwood. Where is the data? Why you cannot debate CPU
vs. GPU performance without the answer. In IEEE International Symposium on Per-
formance Analysis of Systems and Software, ISPASS ’11, pages 134–144, Washington,
DC, USA, 2011. IEEE CS.

[60] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Adaptive, efficient, parallel
execution of parallel programs. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, pages 169–180, New
York, NY, USA, 2014. ACM.

[61] F. Zhang, J. Zhai, B. He, S. Zhang, and W. Chen. Understanding co-running behaviors
on integrated cpu/gpu architectures. IEEE TPDS, 28(3):905–918, March 2017.

[62] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel Emer.
Scheduling heterogeneous multi-cores through performance impact estimation (PIE).
In 39th Symposium on Computer Architecture, ISCA ’12, pages 213–224, Washington,
DC, USA, 2012. IEEE CS.

[63] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill, S. K. Reinhardt,
and D. A. Wood. Heterogeneous system coherence for integrated cpu-gpu systems.
In 46th IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
457–467, Dec 2013.

[64] V. Garćıa, J. Gomez-Luna, T. Grass, A. Rico, E. Ayguade, and A. J. Pena. Evaluat-
ing the effect of last-level cache sharing on integrated gpu-cpu systems with heteroge-
neous applications. In IEEE International Symposium on Workload Characterization
(IISWC), pages 1–10, Sept 2016.

[65] Q. Chen and M. Guo. Contention and locality-aware work-stealing for iterative ap-
plications in multi-socket computers. IEEE Transactions on Computers, PP(99):1–1,
2017.

111

[66] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu. Adaptive optimization
for petascale heterogeneous cpu/gpu computing. In IEEE International Conference on
Cluster Computing, pages 19–28, Sept 2010.

[67] B. v. Werkhoven, J. Maassen, F. J. Seinstra, and H. E. Bal. Performance models for
cpu-gpu data transfers. In 2014 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 11–20, May 2014.

[68] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, An-
thony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per
Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100x gpu vs. cpu
myth: An evaluation of throughput computing on cpu and gpu. In Proceedings of
the 37th Annual International Symposium on Computer Architecture, ISCA ’10, pages
451–460, New York, NY, USA, 2010. ACM.

[69] NVIDIA. CUDA C: Programming Guide, Version 10.0., Oct 2018.

[70] Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R. Alam, Thomas C. Schulthess,
and Torsten Hoefler. A pcie congestion-aware performance model for densely pop-
ulated accelerator servers. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’16, pages 63:1–63:11,
Piscataway, NJ, USA, 2016. IEEE Press.

[71] Z. Zhong, V. Rychkov, and A. Lastovetsky. Data Partitioning on Heterogeneous Mul-
ticore and Multi-GPU Systems Using Functional Performance Models of Data-Parallel
Applications. In 2012 IEEE International Conference on Cluster Computing (Cluster
2012), 2012.

[72] Benedict R. Gaster and Lee Howes. Can GPGPU Programming Be Liberated from
the Data-Parallel Bottleneck? Computer, 45:42–52, 2012.

[73] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE International
Symposium on Workload Characterization (IISWC), pages 44–54, Oct 2009.

[74] G. Teodoro, T. M. Kurc, T. Pan, L. A. D. Cooper, J. Kong, P. Widener, and J. H.
Saltz. Accelerating large scale image analyses on parallel, cpu-gpu equipped systems.
In 2012 IEEE 26th International Parallel and Distributed Processing Symposium, pages
1093–1104, May 2012.

[75] Sankaralingam Panneerselvam and Michael Swift. Rinnegan: Efficient resource use
in heterogeneous architectures. In Proceedings of the 2016 International Conference
on Parallel Architectures and Compilation, PACT ’16, pages 373–386, New York, NY,
USA, 2016. ACM.

[76] D. Sukkari, H. Ltaief, M. Faverge, and D. Keyes. Asynchronous task-based polar
decomposition on single node manycore architectures. IEEE Transactions on Parallel
and Distributed Systems, PP(99):1–1, 2017.

112

[77] L. Sant’Ana, D. Cordeiro, and R. Camargo. PLB-HeC: A profile-based load-balancing
algorithm for heterogeneous CPU-GPU clusters. In 2015 IEEE International Confer-
ence on Cluster Computing, pages 96–105, Sept 2015.

[78] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
Starpu: A unified platform for task scheduling on heterogeneous multicore architec-
tures. Concurr. Comput. : Pract. Exper., 23(2):187–198, February 2011.

[79] Francisco Gaspar, Luis Taniça, Pedro Tomás, Aleksandar Ilic, and Leonel Sousa. A
framework for application-guided task management on heterogeneous embedded sys-
tems. ACM Trans. Archit. Code Optim., 12(4):42:1–42:25, December 2015.

[80] Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. A dynamic self-scheduling
scheme for heterogeneous multiprocessor architectures. ACM Trans. Archit. Code Op-
tim., 9(4):57:1–57:20, January 2013.

[81] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun. ACM, 52(4):65–76,
April 2009.

[82] David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay, Eunice E. San-
tos, Klaus Erik Schauser, Ramesh Subramonian, and Thorsten von Eicken. Logp: A
practical model of parallel computation. Commun. ACM, 39(11):78–85, November
1996.

[83] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman. Loggp:
Incorporating long messages into the logp model for parallel computation. Journal of
Parallel and Distributed Computing, 44(1):71 – 79, 1997.

[84] Thibaut Lutz, Christian Fensch, and Murray Cole. Partans: An autotuning framework
for stencil computation on multi-gpu systems. ACM Transactions on Architecture and
Code Optimization (TACO), 9(4):59, 2013.

[85] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping. In Proceedings of the 42Nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages
45–55, New York, NY, USA, 2009. ACM.

[86] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. Transparent cpu-
gpu collaboration for data-parallel kernels on heterogeneous systems. In Proceedings
of the 22Nd International Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’13, pages 245–256, Piscataway, NJ, USA, 2013. IEEE Press.

[87] Michael F. P. O’Boyle, Zheng Wang, and Dominik Grewe. Portable mapping of data
parallel programs to opencl for heterogeneous systems. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
CGO ’13, pages 1–10, Washington, DC, USA, 2013. IEEE Computer Society.

113

[88] Yuan Wen and Michael F.P. O’Boyle. Merge or separate?: Multi-job scheduling for
opencl kernels on cpu/gpu platforms. In Proceedings of the General Purpose GPUs,
GPGPU-10, pages 22–31, New York, NY, USA, 2017. ACM.

[89] R. Kaleem, R. Barik, T. Shpeisman, C. Hu, B. T. Lewis, and K. Pingali. Adaptive
heterogeneous scheduling for integrated gpus. In 2014 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT), pages 151–162, Aug
2014.

[90] Jayanth Gummaraju and Mendel Rosenblum. Stream programming on general-purpose
processors. In Proceedings of the 38th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 38, pages 343–354, Washington, DC, USA, 2005. IEEE
Computer Society.

[91] Francois Labonte, Peter Mattson, William Thies, Ian Buck, Christos Kozyrakis, and
Mark Horowitz. The stream virtual machine. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’04, pages
267–277, Washington, DC, USA, 2004. IEEE Computer Society.

[92] Murali Annavaram, Ed Grochowski, and John Shen. Mitigating amdahl’s law through
epi throttling. SIGARCH Comput. Archit. News, 33(2):298–309, May 2005.

[93] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai. The impact
of performance asymmetry in emerging multicore architectures. SIGARCH Comput.
Archit. News, 33(2):506–517, May 2005.

[94] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer, 41(7):33–38,
July 2008.

[95] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. Core fusion:
Accommodating software diversity in chip multiprocessors. SIGARCH Comput. Archit.
News, 35(2):186–197, June 2007.

[96] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and
Dean M. Tullsen. Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction. In Proceedings of the 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 36, pages 81–, Washington, DC, USA,
2003. IEEE Computer Society.

[97] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization for het-
erogeneous chip multiprocessors. In 2006 International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pages 23–32, Sept 2006.

[98] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs. SIGPLAN Not., 41(11):151–
162, October 2006.

[99] Manjunath Kudlur and Scott Mahlke. Orchestrating the execution of stream programs
on multicore platforms. SIGPLAN Not., 43(6):114–124, June 2008.

114

[100] G. Tremblay. Lenient evaluation is neither strict nor lazy. Computer Languages,
26(1):43 – 66, 2000.

[101] Guy Tremblay. Parallel implementation of lazy functional languages using abstract
demand propagation. PhD thesis, McGill University, 1994.

[102] Alfredo Cristobal, Andrei Tchernykh, and Wen Yen. I- structure software cache, an
approach to exploit data locality in cluster computing. 2000.

[103] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with
decoupled software pipelining. In 38th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’05), pages 12 pp.–118, Nov 2005.

[104] D. Cordes, O. Neugebauer, M. Engel, and P. Marwedel. Automatic extraction of task-
level parallelism for heterogeneous mpsocs. In 2013 42nd International Conference on
Parallel Processing, pages 950–959, Oct 2013.

[105] B Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proceedings of the 27th annual international symposium on Microarchitecture,
pages 63–74. ACM, 1994.

[106] H. Wei, J. Yu, H. Yu, M. Qin, and G. R. Gao. Software pipelining for stream programs
on resource constrained multicore architectures. IEEE Transactions on Parallel and
Distributed Systems, 23(12):2338–2350, Dec 2012.

[107] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal. Multiprocessor resource
allocation for throughput-constrained synchronous dataflow graphs. In Proceedings of
the 44th Annual Design Automation Conference, DAC ’07, pages 777–782, New York,
NY, USA, 2007. ACM.

[108] X. Y. Zhu, M. Geilen, T. Basten, and S. Stuijk. Multiconstraint static scheduling
of synchronous dataflow graphs via retiming and unfolding. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(6):905–918, June 2016.

[109] Qi Tang, Twan Basten, Marc Geilen, Sander Stuijk, and Ji-Bo Wei. Mapping of
synchronous dataflow graphs on mpsocs based on parallelism enhancement. Journal
of Parallel and Distributed Computing, 101:79 – 91, 2017.

[110] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language
for streaming applications. In Proceedings of the 11th International Conference on
Compiler Construction, CC ’02, pages 179–196, London, UK, UK, 2002. Springer-
Verlag.

115

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	The Codelet Abstract Machine and Runtime System
	Exploiting Fine-Grain Event-Driven Multithreading
	Introduction and Motivation
	Methodology: Apply Fine-Grain Parallelism
	Basic Implementation of a Parallel Coarse-Grain 5-Point 2D Stencil Computation
	Basic Implementation of a Parallel fine-Grain 5-Point 2D Stencil with OpenMP
	Parallel Stencil Computations Using the Codelet Model
	A More Realistic Stencil-based Computation: LULESH

	Experiments
	Experimental Testbed
	Experimental Protocol
	Experiment Results — 5-Point 2D Stencil Kernel
	5-Point 2D Stencil Kernel Results — Discussion
	Experiment Results — LULESH

	Related Work
	Fine-Grain Multithreading Execution and Programming Models
	Other Approaches to Optimize and Parallel Stencil Computations

	Observations

	Profile-Based Dynamic Adaptive Work-Load Scheduler on Heterogeneous Architecture
	Introduction and Motivation
	Background
	Heterogeneous Computing and Co-running Applications
	Heterogeneous-DARTS Run-time System

	Methodology: DAWL and IDAWL
	Target: Dependence-heavy Iterative Applications
	Dynamic Adaptive Work-Load Scheduler
	Profile-based Estimation Model

	Experiment
	Experimental Testbed
	Performance Analysis
	Result of Profile-based Estimation Model

	Related Work
	Observations

	Stream-based Event-Driven Heterogeneous Multithreading Model
	Introduction and motivation
	Streaming Program Execution Model (SPXM)
	Two Levels Parallelism and Data Locality
	Streaming Codelet Model
	Streaming Codelet Abstract Machine Model

	SPXM Design
	Streaming Codelet
	Streaming Module (Threaded Procedure)
	Runtime Stream Scheduler
	Detailed Example

	Related Work

	Conclusions and Future Work
	Bibliography

