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Disparities in Exposure to Automobile and Truck Traffic
and Vehicle Emissions Near the Los Angeles–Long Beach
Port Complex
Douglas Houston, PhD, Wei Li, PhD, and Jun Wu, PhD

Residential proximity to heavy traffic has been
associated with adverse health effects, includ-
ing asthma, reduced lung function, cardiac and
pulmonary mortality, and adverse birth out-
comes.1---3 Previous research suggests that non-
White and lower income individuals may be
exposed to higher levels of traffic-related air
pollution4---8 and that disparities vary with
social gradients associated with higher suscep-
tibility to pollution.9,10 Environmental justice
concerns are heightened in goods movement
corridors in which substantial volumes of
heavy-duty diesel trucks (HDDTs) transport
shipping containers on arterials near residences
and sensitive land uses through lower socio-
economic status communities.11,12

Significant questions remain, however, re-
garding the existence and magnitude of race-
and income-based disparities in traffic and air
pollution exposure.13---16 Some studies have
found little association between air pollution
exposure and socioeconomic status after con-
trolling for confounding factors17; others found
greater air pollution and traffic exposure for
higher socioeconomic groups.18,19 Such dis-
crepancies could arise because of methodo-
logical differences and challenges in assessing
inequities at various scales.11,20---22 Scale could
be an important consideration in assessing
traffic impacts because vehicle-related pollut-
ants are highly localized, with pollutant con-
centrations decaying to background levels
within 200 to 300 meters during the day,23---26

and because ambient air quality monitoring
data are likely insufficient to characterize
near-roadway pollutant gradients.

Our study provides an important environ-
mental justice case study by assessing how
traffic and mobile-source air pollution impacts
are distributed across groups in port-adjacent
communities in southern Los Angeles County,
which contain substantial racial/ethnic and

socioeconomic diversity and may experience
divergent levels of exposure to port-related
HDDT traffic because of existing residential
and land use patterns.12,27,28 We have con-
tributed to the environmental justice literature
by examining exposures at the parcel property
assessment level to determine impacts at a finer
spatial resolution,29 by using spatial regression
techniques to account for spatial dependence
of data when assessing disparities,30---33 and by
using 3 parcel-level metrics of exposure that
could have different spatial distributions and
population impacts: total nearby vehicle miles
traveled (VMT), nearby truck VMT, and the
modeled concentrations of emissions from
vehicles on neighborhood roadways. We
hypothesized that the first 2 traffic exposure
measures would provide a distance-based
assessment of near-roadway exposure to
traffic-related noise and air pollution and that
the third would account for the air pollution

“plume” after accounting for the geographic
and temporal variation in traffic, wind, and
other meteorological patterns.

METHODS

The study area covers approximately 35
square miles immediately adjacent to the ports
of Los Angeles and Long Beach in southern Los
Angeles County, California, and is transected
by a roadway network that carries substantial
passenger and diesel truck traffic (Figure 1).
The I-110 freeway on the western edge of the
port complex carries substantial commuter
traffic and about 12% HDDTs; the I-710
freeway on the eastern edge carries about
25% container truck traffic.28 Substantial
port-related HDDT traffic travels through
the study communities en route to and from
these freeways, truck facilities, and transfer
yards.12

Objectives. We assessed how traffic and mobile-source air pollution impacts

are distributed across racial/ethnic and socioeconomically diverse groups in

port-adjacent communities in southern Los Angeles County, which may expe-

rience divergent levels of exposure to port-related heavy-duty diesel truck traffic

because of existing residential and land use patterns.

Methods. We used spatial regression techniques to assess the association of

neighborhood racial/ethnic and socioeconomic composition with residential

parcel-level traffic and vehicle-related fine particulate matter exposure after

accounting for built environment and land use factors.

Results. After controlling for factors associated with traffic generation, we

found that a higher percentage of nearby Black and Asian/Pacific Islander

residents was associated with higher exposure, a higher percentage of Hispanic

residents was associated with higher traffic exposure but lower vehicle partic-

ulate matter exposure, and areas with lower socioeconomic status experienced

lower exposure.

Conclusions. Disparities in traffic and vehicle particulate matter exposure are

nuanced depending on the exposure metric used, the distribution of the traffic

and emissions, and pollutant dispersal patterns. Future comparative research is

needed to assess potential disparities in other transportation and goods

movement corridors. (Am J Public Health. Published online ahead of print

May 16, 2013: e1–e9. doi:10.2105/AJPH.2012.301120)

RESEARCH AND PRACTICE

Published online ahead of print May 16, 2013 | American Journal of Public Health Houston et al. | Peer Reviewed | Research and Practice | e1



Scale of Analysis

Our study is the first environmental justice
study to our knowledge to assess disparities
using parcel-level data. We obtained the geo-
graphic boundaries and characteristics (use
type and the year the structure was built) from
the Los Angeles County tax assessor.34 Pre-
vious studies have analyzed variation in expo-
sure to urban air pollutants that disperse at the
neighborhood level and regional level using
zip code and census tracts, block groups (BGs),
or blocks.32,33,35,36

Parcel-level data could more precisely assess
the population impacts of near-roadway pol-
lutant concentrations that decay to background
levels within 200 to 300 meters during the
day.23---26 When possible, the scale used
for analysis should match the geographic
patterns of the generation and diffusion of the
hazard.17,21,22,31

Dependent Variables

We developed 3 measures of exposure to
assess the robustness of findings across multi-
ple metrics. We developed our first 2 exposure

measures, total nearby VMT and total nearby
truck VMT, on the basis of a consolidated
traffic database previously described.37 In our
analysis, we generally define “nearby” to be
within 250 meters, a distance threshold that
corresponds closely to the distance from road-
ways at which vehicle-related air pollutants
drop to near-background concentration
levels.26 This consolidated traffic database in-
corporates passenger vehicle and HDDT
counts for freeways and major arterials and
was derived from state and city departments of
transportation, port authorities, transportation
studies, and truck route designations. Ac-
counting for HDDTs is important in the study
area because the California Air Resources
Board has declared diesel exhaust particulates
emitted from HDDTs a toxic air contaminant,38

HDDTs have substantially higher particulate
emission rates than do gasoline vehicles,39

about 70% of cancer risk from air toxins in
Southern California is attributed to diesel par-
ticulate emissions,40 and about 84% of con-
tainers leaving the port complex are trans-
ported via HDDT.28

Our third exposure measure represents the
previously described37 parcel-level---modeled
concentration of emissions from vehicles on
neighborhood roadways, which we derived
from a modified CALINE4 line dispersion
model of vehicle-related pollution including
particulate matter (PM) less than 2.5 lm
(PM2.5) on the basis of traffic volumes, vehicle
class, and meteorological conditions. Line dis-
persion models use Gaussian plume equations
to estimate pollution concentrations with in-
creasing distance from an emission source,
such as a roadway, by accounting for factors
such as traffic volume, emission factors by
vehicle type, meteorological conditions, atmo-
spheric mixing heights, and topography.41

The California Department of Transporta-
tion and the US Federal Highways Agency
developed the CALINE4 model.42 The model
employs a mixing zone concept to characterize
pollutant dispersion over the roadway. We
ran the CALINE4 model simulations to esti-
mate parcel-level PM2.5 concentrations from
local traffic emission within 3 kilometers of
a residence in a summer (August) and a winter

Note. PM = particulate matter.

FIGURE 1—Study area and distribution of vehicle particulate matter for residential parcels: Southern Los Angeles County, CA, 2005.
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(January) month in 2005 using vehicle emis-
sion factors from the California Air Resources
Board’s EMFAC2007 and 2005 meteorologi-
cal data from the National Weather Service at
the Long Beach Airport, which is located at the
eastern edge of the study region. Figure 1
shows the distribution of the modeled parcel-
level concentrations of PM2.5 from vehicle
traffic emissions in the study area. As pre-
viously reported, our model suggests that local
traffic near the port complex contributes almost
a fourth of total fine PM in the study area.37

Independent Variables

We conceptualized variables for the nearby
transportation infrastructure, land use, em-
ployment, and parcel-level characteristics to
exert a direct influence on the level of nearby
traffic- and vehicle-related pollution. That is,
they are likely directly related to the presence
of nearby traffic and the volume of pollution
generation.41,43 We expected the total mileage
of nearby truck routes and major nontruck
roadways, which we derived from a previously
described37 consolidated traffic database, to
have a direct influence on the volume of
nearby traffic and level of associated pollution.

We obtained 2005 land use data and 2008
InfoUSA business location and employment
data from the Southern California Association
of Governments to account for proximity to
potential traffic-generating land uses such
as commercial districts, job centers, and
mixed-use areas (‡ 25% nearby residential and
‡ 25% commercial use).44 We used a previ-
ously described45 firm classification scheme to
identify firms that were neighborhood-serving
businesses on the basis of a firm’s standard
industrial classification code to identify nearby
land uses that could be associated with more
localized, shorter vehicle or walking trips.

A parcel’s residential use type may be re-
lated to nearby traffic levels because multi-
family parcels may generate more vehicle trips.
Also, older housing structures tend to have higher
levels of nearby traffic, which raises concerns
because these building types tend to have higher
rates of indoor exposure to outdoor pollutants,
including intrusion of motor vehicle exhaust.6,46

We used the city or municipality a parcel
was located in as a control variable because
services such as public amenities and schools
could vary substantially across jurisdictions

and could impact residential location choices
(Figure 1).47 Although some previous studies
have raised concerns regarding the inclusion of
regional dummy variables in spatial regression
models,32 our likelihood ratio tests showed that
adding the city dummy variables could signif-
icantly improve performance of our models.
We also estimated models with and without the
city dummy variables and found that most of
the dummy variables returned highly signifi-
cant coefficients. The incidental problem,48

which can endanger the use of regional dummy
variables, was not a concern for our study
because we set infill asymptotics with a very
large sample size and a small, fixed number of
city dummy variables.49

We hypothesized that the demographic and
socioeconomic variables would exert an indi-
rect effect on exposure after controlling for
transportation, land use, employment, and
parcel-level characteristics. That is, although
these factors are not as directly associated with
traffic generation as the infrastructure and land
use factors that we hypothesized to have direct
effects, they could influence nearby housing
affordability, community resources and cul-
tural amenities, and residential location
choices. We derived a parcel’s neighborhood
characteristics using the most localized geo-
graphic scale available from the census. We
obtained a parcel’s neighborhood racial/ethnic
composition from the 2010 US Census BG
data and obtained its socioeconomic indicators
(including poverty, home ownership, and
foreign-born status) from 2005---2009 US
Census American Community Survey tract data.

Spatial Regression Methodology

We used spatial regression models to assess
associations between exposure and socioeco-
nomic variables after controlling for con-
founding variables, not to infer causality.36

Quantitative environmental justice studies
have traditionally used ordinary least squares
regression to evaluate community impacts of
environmental hazards, but the use of spatial
modeling techniques is becoming more com-
mon in environmental justice research because
of their ability to address problems of spatial
autocorrelation.30,31,50 Spatial autocorrelation
occurs when the values of one area are influ-
enced by the values of their neighbors, violat-
ing the assumptions of independence that

ordinary least squares regression assumes. We
tested the model residuals for spatial autocor-
relation using the univariate Moran’s I and
found spatial autocorrelation for all models.
Next we ran the Lagrange multiplier diagnostic
test to determine the spatial regression tech-
nique that was most appropriate for addressing
spatial autocorrelation. Spatial lag models can
be used to address spatial dependence in the
dependent variable, and spatial error models
can be used to address spatial dependence in
the error terms.32,33

Both the Lagrange multiplier lag test statistic
and Lagrange multiplier error test statistic
suggested that spatial dependence effects may
exist in both the dependent variable and the
error terms for all 3 models (total VMT, truck
VMT, and vehicle PM). Moreover, the robust
versions of the Lagrange multiplier lag and
error tests suggested that an appropriate ap-
proach for truck VMT and vehicle PM should
account for potential threats of spatial auto-
correlation in both the dependent variable and
the error terms. This test did not indicate that
spatial dependence in the error terms was
a problem for the total VMT model. We did,
however, estimate separate spatial lag and
spatial error models for all dependent variables
to understand the sensitivity of results over
different modeling techniques. For consistency,
the final spatial regression model reported in
the Results section for all dependent variables
used the Cliff-Ord approach, which adjusts for
spatial dependence in both the dependent
variables and the error terms.51,52 This mod-
eling approach takes the following form:

ð1Þ Y ¼ kWYþ Xbþ e
e ¼ qWeþ u

�
;

where

d Y is an n ·1vector of the dependent variable,
and n is the total number of observations in
the sample;

d W is an n · n spatial weight matrix, which
describes the pattern of spatial dependent
effects;

d X is an n · k matrix of independent variables,
and k is the total number of independent
variables;

d e is an n · 1 vector of original error terms in
which spatial dependence is not taken ac-
count of;
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d u ; N (0, r2In) is an n · 1 vector of error
terms in which spatial dependence effects are
taken account of; and

d k and q are spatial coefficients.

We implemented the Cliff-Ord model using
the R Project “sphet” package (Gianfranco
Piras, Ithaca, NY),53 and we used modeling
methodologies previously described.54---56 The
model implementation relies on the instru-
mental variables and the generalized moments
of methods estimators. We did not chose the
maximum likelihood estimators because the
Monte Carlo simulation of Arraiz et al.54 sug-
gests that the maximum likelihood estimator

can be substantially biased if the error terms
are heteroskedastic. We relied on the com-
monly used Delaunay triangulation technique
to create the spatial weight matrix that defines
the spatial dependence effects among sample
observations. Neighbors sharing a Delaunay
triangle with one parcel have equal weights
of impact on this parcel. We experimented
with other forms of spatial weight matrices
and obtained similar results.

RESULTS

The study area contains substantial racial/
ethnic and socioeconomic diversity, and under-

standing population distributions in the study
area in relation to major roadways and truck
routes provides important context for assess-
ing potential disparities in exposure. The
2010 US Census data indicated that the study
area was home to more than 370 000 resi-
dents and had a population density greater
than that of the county as a whole (about 10
300 vs 2405 persons/square mile). The
densest study subareas were the northern and
southern portions of Long Beach east of the
I-710 freeway (Figure 1). The study area was
composed of 56% Hispanic residents com-
pared with 48% for Los Angeles County as
a whole; less than one fifth (17%) of the

TABLE 1—Study Area and Subarea Demographic and Socioeconomic Characteristics, Census Block Groups: Southern Los Angeles County, CA,

2005–2010.

Characteristic Carson

Los Angeles,

San Pedro

Los Angeles,

Wilmington

Long Beach,

North

Long Beach,

South

Long Beach,

West

Population density (persons/square mile)a 4991 11 082 7746 14 884 25 377 8602

Racial/ethnic composition, %a

Non-Hispanic White (single race) 13 45 14 12 14 5

Non-Hispanic Black (single race) 8 5 4 17 14 12

Non-Hispanic API (single race) 34 5 9 24 13 32

Hispanic 39 36 68 39 54 41

Socioeconomic and housing characteristics (tract),

2005–2009, %

Foreign-born persons 39 20 35 36 37 49

Persons in poverty 6 11 18 23 31 14

Owner-occupied housing units 83 50 51 41 18 55

Parcel characteristics

Multifamily residential parcel type (1/0) 3 27 22 30 67 15

Structure built before 1960 (1/0) 59 77 68 87 86 87

Land use type of parcels (within 250 m)

% area residential 77 77 68 76 71 76

% area commercial 3 4 6 8 12 3

Mixed-use area (1/0)b 1 2 2 5 10 0

Roadway type within 250 m

Truck route miles 0.08 0.02 0.05 0.01 0.00 0.09

Major (nontruck) route miles 0.29 0.73 0.52 0.57 0.89 0.48

Nearby employment, 2008 (BG)

Jobs per square mile/1000 2.1 1.8 2.2 3.2 3.6 1.2

% jobs in neighborhood businesses 48 50 49 46 51 51

Exposures

Mean total VMT/100 (within 250 m) 90.1 80.5 87.4 106.4 122.8 183.3

Mean truck VMT/100 (within 250 m) 4.1 2.4 2.9 2.9 2.2 25.7

Mean vehicle PM (parcel level, lm/m3) 3.9 1.9 2.8 5.8 3.6 7.0

Note. API = Asian/Pacific Islander; BG = block group; PM = particulate matter; VMT = vehicle miles traveled.
aRelates to 2010 BG.
bMixed use was defined as > 25% residential and > 25% commercial.
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residents were non-Hispanic White compared
with almost one third (28%) for the county
(Table 1). The Wilmington area of Los
Angeles had the highest composition of His-
panic residents (75%), and the San Pedro area
of Los Angles had the highest composition of
non-Hispanic Whites (37%).

According to 2005---2009 US Census data,
about 16% of residents in the study area had
an income below the federal poverty level (vs

15% for the county) and about 33% of
residents were foreign-born (vs 35% for the
county). The southern area of Long Beach had
the highest poverty level, the lowest home-
ownership rate, the highest percentage of mul-
tifamily parcels, and parcels with the highest
percentage of nearby commercial uses (Table 1).
By contrast, the Carson area had the lowest
poverty level, the highest homeownership rate,
and the lowest percentage of structures built

before 1960. These factors could be related to
potential exposures because multifamily parcels
and nearby commercial uses and employment
centers could be associated with greater nearby
traffic generation; also, multifamily and older
housing structures may have higher rates of
indoor exposure to outdoor pollutants.46 Parcels
in Carson and Long Beach had the highest levels
of nearby truck routes, whereas the San Pedro
area of Los Angeles and the southern portion of

TABLE 3—Multivariate Analysis of Exposure, Residential Parcels: Southern Los Angeles County, CA, 2005–2010

Independent Variables

Total VMT/100 (Within 250 m),

Model 1, Coefficient

Truck VMT/100 (Within 250 m),

Model 2, Coefficient

Vehicle PM (Parcel Level),

Model 3, Coefficient

Intercept –33.42** –12.15*** 1.05***

Direct factors: built environment characteristics

Roadway type (within 250 m)

Truck route miles/100 711.95*** 86.11*** 7.10***

Major (nontruck) route miles/100 163.00*** 7.47*** 0.85***

Land use type of parcels (within 250 m)

% area residential 12.38 6.32*** –0.21

% area commercial 182.37*** –0.90 –1.02*

Mixed-use area (1/0)a –2.59 0.80** 0.13**

Nearby employment, 2008 (BG)

Jobs per square mile/1000 –0.60*** –0.07*** –0.01**

% jobs in neighborhood businesses –11.60*** –1.12* –0.08

Parcel characteristics

Multifamily residential parcel type (1/0) –0.81 –0.08 –0.02*

Structure built before 1960 (1/0) –0.88 0.08 0.03**

Indirect factors: demographic and socioeconomic characteristics

Nearby racial/ethnic composition, 2010 (BG), %

Non-Hispanic Black (single race) 193.04*** 19.83*** 3.18***

Non-Hispanic API (single race) 58.17*** –1.77 1.42***

Hispanic –37.63*** –2.22 0.76***

Nearby socioeconomic status, 2005–2009 (tract), %

Poverty –101.59*** 7.46 –1.54***

Home ownership –2.19 5.24*** –0.23

Foreign-born –40.68* –0.12 0.65

Municipal subareasb

Los Angeles, Wilmington area (1/0) 32.43*** 0.31 0.51***

Long Beach, western area (1/0) 96.85*** 22.11*** 5.24***

Long Beach, northern area (1/0) 42.12*** –1.74 3.02***

Long Beach, southern area (1/0) 24.50*** –0.18 1.47***

Carson (1/0) 4.84 –4.28** 0.97***

Spatial lag coefficient on dependent variable (k) 0.01 0.00 –0.09***

Spatial lag coefficient for errors (q) 0.90*** 0.90*** 0.90***

Note. API = Asian-Pacific Islander; BG = block group; PM = particulate matter; VMT = vehicle miles traveled. We have reported the direct effect coefficients (b in equation 1) for these Cliff-Ord
models. According to Li and Saphores55 and Saphores and Li,56 the direct effect coefficients are very similar to the total effect coefficients in spatial regression models. The sample size was n = 46
242 parcels.
aMixed use was defined as > 25% residential and > 25% commercial.
bThe San Pedro area is the excluded reference category.
*P < .05; **P < .01; ***P < .001.
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Long Beach had the highest level of nontruck
roadways.

Descriptive Results

Although the parcel exposure measures
were significantly correlated (0.59---0.67), their
spatial distribution varied across the study area
in ways that could differentially affect nearby
populations. The highest total VMT exposures
occurred in the Long Beach study areas, per-
haps because of proximity to the I-710 freeway
(Table 1). The highest truck VMT exposures
occurred in the western Long Beach study area,
which has major truck routes on its western
and eastern boundaries. Western and northern
Long Beach had the highest levels of parcel-
level vehicle PM exposures.

As expected, the means of nearby truck
route miles increased sizably from parcels in
the lowest exposure quartile to those in the
highest quartile for all exposure metrics, but
this did not hold for nontruck roadway miles
(Table 2). Parcels in the highest quartile for
both traffic exposure measures had lower re-
sidential use and higher commercial use and
job density, but these patterns did not hold for
vehicle PM exposure.

Parcels in the highest quartile for both traffic
exposure measures consistently had a higher
percentage of nearby Black, Hispanic, and poor
residents. Parcels in the highest quartile for
vehicle PM exposure had a higher percentage
of nearby Black and Asian/Pacific Islander
(API) residents, but this pattern did not hold for
the percentage of Hispanic and poor residents.
Parcels in the lowest quartile for all exposure
metrics had higher home ownership, and
those in the highest quartile had a higher
percentage of foreign-born residents.

Spatial Regression Results

We specified 6 regression models to assess
potential racial/ethnic and socioeconomic dis-
parities in exposure after accounting for land
use, built environment, and infrastructure fac-
tors that could be associated with traffic gen-
eration (Table 3). For each dependent variable
(total VMT, truck VMT, and vehicle PM), we
have reported a Cliff-Ord model that accounts
for spatial autocorrelation in both the depen-
dent variables and the error terms. The k and
q variables in the Cliff-Ord models were sta-
tistically significant.

As expected, more nearby roadway and
truck route mileage was associated with higher
exposure for all measures. More nearby com-
mercial land use was associated with higher
total VMT exposure but unexpectedly lower
vehicle PM exposure. More residential land use
was associated with higher truck VMT expo-
sure. Nearby mixed land use was associated
with higher truck VMT and vehicle PM expo-
sure, but more nearby neighborhood-serving
businesses were associated with lower traffic
exposure. Unlike descriptive results, parcels
with more nearby job density were associated
with lower exposure after controlling for other
factors.

After controlling for nearby built environ-
ment factors that could be associated with
traffic generation, parcels in BGs with a higher
percentage of Black residents were associated
with higher exposures for all exposure mea-
sures, a higher percentage of nearby API
residents was associated with higher VMT
and vehicle PM exposure, and a higher percent-
age of nearby Hispanics was associated with
higher vehicle PM exposure. Contrary to de-
scriptive results, however, a higher percentage
of Hispanic, poor, and foreign-born residents
was associated with lower total VMT exposure
after controlling for other factors. Higher
home ownership was associated with higher
truck VMT exposure, and more nearby pov-
erty was associated with lower vehicle PM
exposure.

DISCUSSION

We found racial/ethnic disparities in traffic
and vehicle PM exposure in a major goods
movement corridor after controlling for built
environment and land use factors associated
with traffic generation, particularly for parcels
with a higher percentage of nearby non-
Hispanic Black and API residents. Interestingly,
a higher percentage of nearby Hispanic resi-
dents was associated with higher total VMT
exposure but lower vehicle PM exposure, sug-
gesting racial/ethnic disparities are nuanced
depending on the exposure metric used, the
distribution of the emission source, and pol-
lutant dispersal patterns.

In contrast to most available distributional
studies of traffic and mobile-source air pollu-
tion exposure,5,6,8,10 we found that lower

socioeconomic status (more foreign-born and
poor residents) tended to be associated with
lower exposure and that higher socioeco-
nomic status (more home ownership) tended
to be associated with higher exposure. This
finding, however, is in line with a handful of
stationary- and mobile-source air pollution
and traffic exposure studies that found little
or no income-based disparity17,57 or higher
exposures for higher income or nonpoor
areas.18,19,58

Further research is needed to investigate
factors underlying disparate exposures in
goods movement corridors. Transportation in-
frastructure, land use, and residential patterns
emerged historically in the context of structural
inequalities, uneven development patterns,
and residential and economic segregation.6,32

Future research should seek to understand
local awareness of traffic and air pollution
hazards, whether housing market constraints
restrict the residential location choices of sub-
populations, and whether some residents are
more likely to accept higher levels of exposure
to live in more affordable, accessible, or cul-
turally diverse areas.

Nearby roadway designation may play an
important role, considering that nearby truck
route miles were a much stronger predictor of
exposure than were nontruck roadway miles.
We found some evidence that commercial
strips and mixed land use areas may be
associated with higher traffic and vehicle PM
exposure, which raises concerns about whether
policies promoting mixed-use land develop-
ment could result in higher exposures.

Limitations

Our study has several limitations. Our results
cannot be readily generalized, and future re-
search is needed to assess whether similar
disparities exist in other corridors with diver-
gent population, built environment, and land
use geographic patterns. We assessed popula-
tion impacts on the basis of a parcel’s BG and
tract composition, but exposures may also vary
systematically by the characteristics of parcel
residents. Lastly, our vehicle PM exposure
measure may underestimate cumulative parcel
air pollution exposures because it does not
account for nonvehicle sources, such as petro-
leum refineries and idling cargo ships and
pollution transported from other regions.
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Conclusions

Despite these limitations, this study makes
several contributions to the environmental
justice literature. First, it stresses the impor-
tance of understanding environmental dispar-
ities in transportation and goods movement
corridors in ways that inform infrastructure
and land use planning. Second, we have pro-
vided the first assessment to our knowledge of
exposure disparities at the parcel level, a more
geographically refined spatial resolution more
appropriate for examining near-roadway im-
pacts. Third, we used 3 metrics of exposure
that reflect geographic differences in emission
sources and pollutant dispersion patterns.
Fourth, we used spatial regression techniques
to account for spatial autocorrelation in our
assessment of environmental inequities.
Our results raise concerns that planning and policy
mechanisms to lower ambient air pollution levels
will likely not be sufficient to protect those
most exposed to mobile-source pollution. j
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