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A Study of Connectivity in MIMO Fading Ad-Hoc
Networks

Homayoun Yousefi’zadeh Hamid Jafarkhani Javad Kazemitabar

Abstract—We investigate the connectivity of fading wire-
less ad-hoc networks with a pair of novel connectivity met-
rics. Our first metric looks at the problem of connectivity
relying on the outage capacity of MIMO channels. Our sec-
ond metric relies on a probabilistic treatment of the symbol
error rates for such channels. We relate both capacity and
symbol error rates to the characteristics of the underlying
communication system such as antenna configuration, mod-
ulation, coding, and signal strength measured in terms of
Signal-to-Interference-Noise-Ratio (SINR). For each met-
ric of connectivity, we also provide a simplified treatment in
the case of ergodic fading channels. In each case, we assume
a pair of nodes are connected if their bi-directional measure
of connectivity is better than a given threshold. Our anal-
ysis relies on the central limit theorem to approximate the
distribution of the combined undesired signal affecting each
link of an ad-hoc network as Gaussian. Supported by our
simulation results, our analysis shows that (1) a measure of
connectivity purely based on signal strength is not capable
of accurately capturing the connectivity phenomenon, and
(2) employing multiple antenna mobile nodes improves the
connectivity of fading ad-hoc networks.

Index Terms— Ad-Hoc Networks, Connectivity, MIMO
Fading Channel, Central Limit Theorem, Capacity, Symbol
Error Rate, Random Graphs.

I. INTRODUCTION

Investigating the connectivity of radio networks goes
back to four decades ago. In his pioneering work of [9],
Gilbert studied the connectivity of infinite random net-
works relying on the so-called geometric disk model. In
the geometric disk model, a random topology network is
represented by a disk graph in which two nodes are di-
rectly connected if their distance is smaller than a given
transmission radius. As evidenced by the works of [4],
[17], and [18], the connectivity of infinite random ad-hoc
networks by means of the geometric disk model has re-
cently received much attention. In addition, a survey of

This work was supported in part by the U. S. Army Re-
search Office under the Multi-University Research Initiative (MURI)
grant number W911NF-04-1-0224. Preliminary parts of this
work appear in the proceedings of IEEE GLOBECOM [12]
and IEEE MILCOM [28]. The authors are with the Depart-
ment of EECS at the University of California, Irvine; e-mail:
[hyousefi,hamidj,skazemit]@uci.edu.

the literature reveals a large number of articles in the con-
text of connectivity of ad-hoc networks with a finite num-
ber of mobile nodes. Some of the related articles in this
area are [5], [20], [3], and [6]. Interestingly, connectiv-
ity in random networks represented by graphs of mixed
short and long edges can also be related to small world
networks [26]. Although originally attractive for studying
connectivity, the disk model measures connectivity rely-
ing on a pure distance-based metric which is far from the
reality of wireless networks. The main disadvantages of
the disk model are not considering the effects of fading,
attenuation, interference, noise, and mobility.

In [10], Signal-to-Interference-Noise-Ratio (SINR) is
proposed as the metric of connectivity in wireless ad-hoc
networks. According toSINR metric, two nodes in a
random topology are connected if their minimumSINR
is greater than a given threshold. The two connectivity
studies of [2] and [7] rely on theSINR model. While
SINR is a more realistic metric of connectivity compared
to the geometric disk model, it still falls short of fully
capturing the connectivity phenomenon in wireless ad-hoc
networks. In reality, a pair of nodes in an ad-hoc network
are connected if a sequence of transmitted symbols from
one can be received at another. In addition, variations of
the channel in time and frequency can also affect connec-
tivity. Utilizing Capacity (C) and/or Symbol Error Rate
(SER) can better describe the connectivity phenomenon
because those quantities are functions of not only fading,
shadowing, and power but modulation and antenna con-
figuration.

The use of space-time coding techniques in wireless
networks is of special interest because it can substan-
tially reduce the effects of multipath fading in the wire-
less channels through antenna diversity. Transmit an-
tenna diversity in the form of Space-Time Block Codes
(STBCs) of [1] and [24] has been adopted in WCDMA
and CDMA2000 standards. Receive antenna diversity
schemes such as Maximum Ratio Combining (MRC) are
already in widespread use in communication systems.

The contributions of our work are in the following ar-
eas. We introduce a pair of probabilistic connectivity met-
rics for wireless ad-hoc networks relying on an analysis
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of the time-varying fading wireless channels. We utilize
central limit theorem and Gaussian approximation in our
analysis to represent the combined interference and noise
signal affecting the links of an ad-hoc network. Our first
metric is defined based on the capacity of Multiple-Input
Multiple-Output (MIMO) channels. Our second metric
is defined based on the symbol error rate of such chan-
nels. We also provide a special treatment of our con-
nectivity metrics for ergodic channels. The rest of this
paper is organized as follows. Section II, of information
theoretic nature, investigates connectivity based on prob-
abilistic and ergodic concepts of capacity in MIMO chan-
nels. Section III, also of information theoretic nature, in-
cludes a treatment of connectivity based on probabilistic
and ergodic measures of symbol error rate in such chan-
nels. Section IV attempts at capturing the effects of time
correlation in the ergodic measures of the previous two
sections. In Section V, we numerically validate our con-
nectivity analysis relying on random geometric graph the-
oretic concepts. Finally, Section VI concludes this paper.

II. T HE CAPACITY METRIC

The discussion of this section revolves around defining
a pair of probabilistic and deterministic metrics of connec-
tivity based on the capacity of wireless MIMO channels.
While our general probabilistic metric is defined based on
an outage capacity analysis for such channels, our ergodic
metric provides a simplified deterministic treatment of the
probabilistic metric.

A. Probabilistic Capacity Metric

In this subsection, we introduce our first probabilistic
metric of connectivity relying on the concepts of outage
capacity and outage probability. Calculating estimates or
upper bounds of capacity in the case of uncorrelated and
correlated Single-Input Single-Output (SISO) and MIMO
channels both with Gaussian and non-Gaussian noise has
been the subject of heavy research in the past years.
The concept of outage capacity was first introduced in
[8]. Outage capacity provides an elegant description of
the achievable rate of a communication channel. Simply
put, it represents a probabilistic measure of the maximum
number of bits per cycle that can be transmitted for a given
error rate. The authors of [8] also provided approxima-
tions of the capacity of Identically and Independently Dis-
tributed (IID) MIMO Rayleigh channels. In [25], methods
of calculating the capacity of correlated MIMO channels
with Gaussian noise were proposed. The authors of [14]
numerically verified that the approximations of capacity
derived in [8] work well under various fading conditions

in the presence of Rayleigh distributed interference, for a
wide Signal-to-Noise Ratio (SNR) range, and even when
the channel is semi-temporally correlated.

Our discussion below represents a treatment of the sub-
ject material relying on the cited literature articles above.
In order to be consistent with the literature work of ca-
pacity for MIMO channels, the analysis is carried out by
explicitly working with the input and output signals of a
fading channel.

Consider an ad-hoc topology withq wireless flat fad-
ing links{L1, · · · ,Lq} on which transmission powers are
{P1, · · · , Pq}, respectively. Linki is associated with the
i-th transmitter/receiver pair. Each link may be connect-
ing multiple antenna mobile nodes. Suppose, per symbol
transmission powerPi is equally distributed amongMi

transmit antennas of linki. The number of receive anten-
nas for linki is assumed to beNi. Further, let us assume
that the matrixHij represents the fading channel between
the transmitter of linkj and the receiver of linki. Denot-
ing Si as theMi × T symbol matrix of linki transmitted
over T discrete time blocks, the received symbol matrix
at link i is the followingNi × T matrix

Ri = HiiSi + Γi (1)

where the channel matricesHii consist of complex Gaus-
sian random variable elements andΓi =

∑

j 6=i HijSj+ni

represents the combined effects of interference and noise.
We assume that the receiver of linki knows the channel
matrix Hii while the transmitter of linki only knows its
distribution. The quantities(Γi|Hij) can be considered
to form a Gaussian random process due to the following
lines of reasoning. As discussed in Chapter 2 of [11],
we know that the codewordsSj should be chosen from
a Gaussian distribution to be capacity achieving. Further,
Hij ’s are known at the receiver. Since the elementsHijSj

are linear combinations of independent Gaussian random
variables, they are themselves Gaussian. In addition, any
Sj or ni term at any given time slot is independent of its
counter parts at other time slots. Since the transmitter
does not know the channel, it assigns the codewords in-
dependently at each time slot. Therefore,(Γi|Hij) forms
a Gaussian random process. The covariance matrix for the
resulting noise term is expressed as

Ki = E{Γi.Γi
†}

= E{(∑j 6=i HijSj + ni).(
∑

k 6=i HikSk + ni)
†}

= E{∑j 6=i Hij SjS
†
j H†

ij} + P
(n)
i I

(2)
where, the superscript† indicates the Hermitian operator,

E represents the expectation operator, andP
(n)
i is the av-

erage power of noise. Since we are assuming thatHij
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coefficients are known at the receiver,

Ki =
∑

j 6=i Hij E{SjS
†
j}H†

ij + P
(n)
i I

=
∑

j 6=i HijΦjH
†
ij + P

(n)
i I

(3)

whereI is the identity matrix andΦj indicates the covari-
ance matrix of the input signal vector of linkj. Then, the
mutual informationI betweenSi andRi is derived as1

I(Si;Ri) = log2 det(I + K−1
i HiiΦiH

†
ii) (4)

To find the capacity, one needs to maximizeI(Si;Ri)
subject to a transmission power constraintTr(Φi) ≤ Pi

on link i whereTr(Φi) andPi denote the trace ofΦi and
the transmission power of linki, respectively.

The choice of covariance matrix achieving the capacity
in Equation (4) depends on the realization of the channel
matrix. When the channel is not known at the transmitter,
the best strategy is to distribute the input power equally
among the transmit antennas. The latter results in a co-
variance matrixΦi that is a multiple of the identity ma-
trix. Considering the constraintTr(Φi) ≤ Pi, we have
Φi = Pi

Mi
I resulting in the following capacity determina-

tion

Ci = log2 det

(

I +
Pi

Mi
K−1

i HiiH
†
ii

)

bps/Hz (5)

Note that the capacity can be expressed in terms of a
natural logarithm rather than a base2 logarithm assum-
ing the unit of measurement is changed frombps/Hz to
nats/sec/Hz.

In the most general case, the capacity expression of
Equation (5) can be only calculated numerically. When
the number of links is relatively large, one can utilize
central limit theorem to conclude that the covariance ma-
trix of Equation (3) can be expressed as a multiple of the
identity matrix. The reasoning follows. Relying on the
equationΦi = Pi

Mi
I, we note that the first term of the

covariance matrixKi is in the form of
∑

j 6=i
Pj

Mj
HijH

†
ij.

Since the non-diagonal entries of the first term are the sum
of zero-mean random variables, central limit theorem im-
plies that they tend to the mean value of the random vari-
ables, zero. Further, the diagonal entries of the first term
consist of the sum of the square of the magnitudes of the
channel coefficients from interfering links. Consequently,
they represent the power of interfering signals. Thus, the
covariance matrix of Equation (3) is expressed in the fol-
lowing form

Ki ≃ [P
(I)
i + P

(n)
i ] I (6)

1The symbolI used to denote mutual information should be distin-
guished from the symbolI to denote the identity matrix.

whereP
(I)
i andP

(n)
i are the average power of interference

and noise, respectively. Therefore, Equation (5) can be
rewritten as follows

Ci ≃ log2 det

(

I +
SINRi

Mi
HiiH

†
ii

)

bps/Hz (7)

with SINRi denoting the average signal-to-interference-
noise-ratio. Next, we note that the capacity in Equation
(7) is defined for a fixed realization of the fading chan-
nel Hii at link i over a large block length. Every real-
ization of the channel has some probability attached to it
through the statistical model ofHii. We assume that the
matrix Hii consists of zero-mean Gaussian random vari-
ables, i.e., each element of the matrix has a fading enve-
lope described by Rayleigh distribution. It is well known
[16] that the sum ofq zero-mean IID complex Gaussian
random variables with a standard deviation1√

2λ
is a zero-

mean Gaussian random variable with a standard deviation
√

q
2λ . Since the channel matricesHii are random in na-

ture, the capacity in Equation (7) can be treated as a ran-
dom variable.

According to Singular Value Decomposition (SVD)
theorem,Ci can be calculated in terms of the positive
eigenvalues ofHiiH

†
ii as

Ci ≃
ρ

∑

l=1

log2

[

1 +
SINRi

Mi
σl

]

bps/Hz (8)

whereσl’s with l ∈ {1, · · · , ρ} denote the positive eigen-
values ofHiiH

†
ii andρ is the rank ofHii. Therefore, the

capacityCi represents a scalar function of the set of ran-
dom variables{σ1, · · · , σρ}. Our work of [12] describes
how the Probability Density Function (PDF) of capacity
can be calculated depending on the values ofMi andNi.
Here, we summarize the results. The PDF ofHii H

†
ii for

the case ofMi × Ni = 1 × 1 is described in the form of

fz(z) = λ e−λz (9)

The PDF identified above represents the only positive
eigenvalue of the scalar functionHii H

†
ii. For the cases

of Mi × Ni = 2 × 1 andMi × Ni = 1 × 2, the PDF of
Hii H

†
ii is expressed as

fz(z) = λ2ze−λ2z (10)

Again, the PDF identified above represents the only pos-
itive eigenvalue ofHii H

†
ii. The results for the case of

Mi×Ni = 2×2 are numerically calculated similar to the
case ofMi ×Ni = 2× 1 with anHii matrix consisting of
four pairs of complex Gaussian random variables.
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Treating capacity as a random variable with a given
PDF provides us with an opportunity to represent a novel
connectivity metric based on the concept of outage capac-
ity. We introduce our first metric of connectivity as

Pr(Ci < Cout) ≤ ∆C (11)

where Pr(.), Cout, and ∆C represent probability, the
threshold of connectivity also known as outage capacity,
and the outage probability, respectively. While our defini-
tion of outage matches that of [8], it differs slightly from
that of [25]. According to [25], the outage is defined as

inf
Tr(Φi)≤Pi

Pr(Ci < Cout) ≤ ∆C (12)

The main difference between the two definitions is that
the latter may assign zero power to some of the transmit
antennas while the former utilizes all of the antennas. Ac-
cording to our outage capacity metric matching the former
definition, two nodes are connected if the probability of
the outage event for the link between them is less than a
given value.

B. Deterministic Capacity Metric

In this subsection, we provide a deterministic treatment
of the connectivity metric of the previous subsection as-
suming the underlying wireless channel is ergodic. The
ergodic capacityCi of link i can be expressed as [25]

Ci = E [Ci ]

≃ E
[

log2 det
(

I + SINRi
Mi

HiiH
†
ii

) ]

bps/Hz

(13)
Utilizing SVD theorem and the results of random matrix
theory, the following expression can be derived for the er-
godic capacity of MIMO channels.

Ci ≃ u

∫ ∞

0
log2

(

1 +
SINRi

Mi
x

)

fx(x) dx (14)

In Equation (14),fx(.) represents the PDF of a randomly
selected eigenvalue of the Wishart matrix defined as

fx(x) =
1

u

u−1
∑

k=0

k!xv−u e−x

(k + v − u)!

[

Λv−u
k (x)

]2
, x ≥ 0

(15)
with parameters u = min(Mi,Ni) and v =
max(Mi,Ni). In Equation (15),Λm

k (x) denotes the La-
guerre polynomial of orderk defined as

Λm
k (x) = ex x−m

k!
dk

dxk {e−x xk+m}
=

∑k
h=0(−1)h

(k+m
k+h

)

xh

h!

(16)

where
(

k+m
k+h

)

is the binomial coefficient.
In [23], a simplified expression for the ergodic capacity

of (14) is derived under average transmit power and equal
power allocation constraints as

Ci ≃ e
Mi

SINRi log2 e

× ∑u−1
k=0

∑k
l=0

∑2l
m=0 [ (−1)m(2l)!(v−u+m)!

22k−m l! m! (v−u+l)!

×
(2k−2l

k−l

)(2l+2v−2u
2l−m

)
∑v−u+m

n=0 Ψn+1(
Mi

SINRi
)]

(17)
whereΨn(z) is defined as

Ψn(z) =

∫ ∞

1
e−zx x−n dx, n = 0, 1, · · · (18)

with Re(z) > 0.
Using the ergodic capacity of (13) or equivalently (17),

we can introduce a more simplified connectivity metric in
the form of

Ci ≥ Cout (19)

whereCout is the threshold of connectivity.

III. T HE SER METRIC

The discussion of this section revolves around provid-
ing probabilistic and deterministic measures of connec-
tivity based on symbol error rate. Symbol error rate can
in turn be related to the characteristics of the underlying
communication system such asSINR, modulation, and
antenna configuration.

A. ProbabilisticSER Metric

Once again, consider the ad-hoc topology de-
scribed previously consisting ofq flat fading wireless
links {L1, · · · ,Lq} on which transmission powers are
{P1, · · · , Pq}, respectively. Associated with each element
Hij(n,m) of channel matrices, we define the fading fac-
torsFij(n,m) = |Hij(n,m)|2. For each linki, theSER
can be derived as an exact function of the averageSINR
and the corresponding fading factorsFii(n,m).

We start by investigating the expressions ofSER for
1×Ni link i. In [22], the expressions ofSER for 1×Ni

link i in terms of the number of signal points in the con-
stellation and the averageSNR can be found. The cal-
culations of [22] are carried out under the assumption
of facing a complex Gaussian noise signal. As one of
the operating scenarios, the calculations are carried out
for a Rayleigh fading channel and utilizing PSK modu-
lation. Because the quantity of interest isSINR rather
thanSNR in the context of current discussion, we need
to investigate the effects of interference signals in Equa-
tion (1). First, we claim that the productHijSj remains



5

Gaussian in Equation (1). Using a limited constellation
set like BPSK with a uniform distribution for each sig-
nal instead of capacity achieving codebook, we verify the
claimed statement for the case of1 × 1 link. General-
ization to L-PSK modulation andMi × Ni link is then
straightforward. If we use BPSK modulation,HijSj will
be a scalar random variable with the following description

Xj = HijSj =

{

Hij, with probability0.5
−Hij, with probability0.5

(20)

To see whyXj is a complex Gaussian random variable,
we need to show that both real and imaginary parts of
this random variable are normally and independently dis-
tributed. Since

Re{Xj} = Re{HijSj}
=

{

Re{Hij}, with probability0.5
−Re{Hij}, with probability0.5

(21)
We have

Pr(Re{Xj} < x)
= 1

2Pr(Re{Hij} < x) + 1
2Pr(−Re{Hij} < x)

= Pr(Re{Hij} < x)
(22)

Therefore, the distribution of the real part ofXj is nor-
mal. Relying on the same argument, the distribution of
the imaginary part ofXj is normal. Next, we observe

Pr(Re{Xj} < x | Im{Xj} < y)
= Pr(Re{Xj} < x | Im{Xj} < y, Sj = 1)Pr(Sj = 1)
+ Pr(Sj.Re{Xj} < x | Im{Xj} < y, Sj = −1)Pr(Sj = −1)
= 1

2
Pr(Re{Xj} < x | Im{Xj} < y, Sj = −1)

+ 1
2
Pr(−Re{Xj} < x| − Im{Xj} < y, Sj = −1)

= 1
2
Pr(Re{Xj} < x) + 1

2
P (−Re{Xj} < x)

= Pr(Re{Xj} < x)

(23)
which concludes our reasoning of independence.

Since the productHijSj remains Gaussian in Equa-
tion (1) and the sum of Gaussian random variables is still
Gaussian [16], the signalΓi can still be treated as Gaus-
sian. However, the resulting Gaussian noise is now col-
ored rather than being white. We note that applying Max-
imum Likelihood (ML) decoding as utilized by [22] to
a colored Gaussian noise results in sub-optimality, i.e.,
identifying upper bounds of theSER. Based on the ar-
gument above, the analysis of [22] can still be applied to
the case ofSINR utilizing the model of Equation (1) the
same way it is applied toSNR.

According to Section 9.2 of [22], the expressions of
SER are calculated for a1 × Ni link i utilizing MRC
and BPSK modulation as

SERi ≃ Q





√

√

√

√2

Ni
∑

n=1

Fii(n, 1) SINRi



 (24)

where SINRi is the average received signal-to-
interference-noise ratio and the GaussianQ function is
defined as

Q(x) = 1√
2π

∫ ∞
x exp

(

− z2

2

)

dz

= 1
π

∫ π/2
0 exp

(

− x2

2 sin2 φ

)

dφ
(25)

Relying on the discussion of Section4.9 of [11], we
note that the MRC expressions of (24) can also be applied
to Alamouti STBCs of [24] with proper scaling factors.
Particularly, the results of a1×2 link utilizing MRC codes
can be applied to the case of a2×1 link utilizing Alamouti
codes. Similarly, the results of a1× 4 link utilizing MRC
codes can be applied to the case of a2 × 2 link utilizing
Alamouti codes.

Utilizing BPSK modulation and under the assumption
of facing a Rayleigh fading channel, the symbol error rate
of link i can be derived from the latter analysis as

SERi ≃ Q

(
√

2 η Υi SINRi

)

(26)

whereSINRi is the average signal-to-interference-noise-
ratio of link i andη is a constant that depends on the an-
tenna configuration. While the value ofη is 1 for 1×1 and
1× 2 links utilizing MRC, it changes to0.5 for 2× 1 and
2 × 2 links utilizing STBCs of [1]. Further,Υi is defined
as

Υi =

Mi
∑

m=1

Ni
∑

n=1

Fii(n,m) (27)

Since the quantitySERi as specified by Equation (26)
represents a function of random variables, it suffices to
examine the distribution ofFii(n,m) in order to obtain
fading statistics ofSERi. We start from the case of a
single transmit and single receive antenna link, i.e.,Fii =
Fii(1, 1) andMi = Ni = 1. In a1×1 link case and when
the channel matrix is identified by a complex Gaussian
noise element, one can conclude thatri = |Hii| has a
marginal Rayleigh density function [16] in the form of

pr(ri) =
rie

−r2
i /2µ2

i

µ2
i

, ri ≥ 0 (28)

whereµ2
i equals to half of the average power of all of the

multipath components. The PDF ofFii can be expressed
[16] as

pF (Fii) =
1

2
√

Fii
pr(

√

Fii) (29)

Once the PDFs ofFii terms are calculated and assuming
they are spatially uncorrelated, the PDF ofΥi is speci-
fied [16] as defined in Equation (27). Finally, the PDF
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of SERi as defined in Equation (26) can be numerically
calculated in terms of the PDFs of random variablesΥi.

Having captured the distribution of the symbol error
rate for a MIMO link, we are now ready to express our
second metric of connectivity in terms of the quantities of
interest. We introduce our second metric of connectivity
as

Pr(SERi > Sout) ≤ ∆S (30)

where Pr(.), Sout, and ∆S represent probability, the
threshold of connectivity, and the outage probability, re-
spectively.

B. DeterministicSER Metric

In this subsection, we assume that the time-varying fad-
ing wireless channel is ergodic. Under the assumption of
facing an ergodic Rayleigh channel and utilizing BPSK
modulation, the random variableSERi of Equation (26)
can be substituted by its average valueSERi defined as

SERi ≃
R

∞

0
1
π

R π/2

0
exp

“

− 2 η Υi SINRi

2 sin2 τ

”

dτpΥ(Υi)dΥi
(31)

wherepΥ(.) is the PDF of the random variableΥi. The
result is also valid for L-PSK modulation as

SERi ≃
∫ ∞
0

1
π

∫

(L−1)π
L

0 exp
(

−2ηΥiSINRi

2 sin2 τ

)

dτpΥ(Υi)dΥi

(32)
In [27], closed-form expressions of the integral of (32)

are calculated. The expressions describe the symbol error
rate of a MIMO channel in terms of the number of signal
points in the constellation and the average signal-to-noise
ratio. We carry out our calculations under the assump-
tion of facing a slow fading ergodic Rayleigh channel and
utilizing the PSK modulation scheme. In what follows,
we provide the results of our calculations considering the
fact that in the current discussion the quantity of interest is
SINR rather thanSNR. First, we introduce the symbol
error rate of a1 × Ni link i using MRC as

SERi ≃ Li−1
Li

− 1
π

√

ϑi
1+ϑi

{

(π
2 + tan−1 θi)

∑Ni−1
j=0

(2j
j

)

1
[4(1+ϑi)]

j

+ sin(tan−1 θi)
∑Ni−1

j=1

∑j
k=1

ζkj

(1+ϑi)j

×[cos(tan−1 θi)]
2(j−k)+1

}

(33)

whereϑi = SINRi sin2( π
Li

), θi =
√

ϑi
1+ϑi

cot π
Li

and

ζkj =
(2j

j )

(2(j−k)
j−k )4i[2(j−k)+1]

.

Noting that the number of bits per symbol is related
to the number of signal points in the constellationLi as

log2 Li, the result of Equation (33) for a1× 1 link utiliz-
ing BPSK modulation withLi = 2 is expressed as

SERi ≃ 1
2

(

1 −
√

SINRi

1+SINRi

)

(34)

Similarly, the result of Equation (33) for a1 × 2 link uti-
lizing BPSK modulation is expressed as

SERi ≃ 1
2

[

1 −
√

SINRi

1+SINRi

(

1 + 1
2(1+SINRi)

)]

(35)
We observe that the symbol error rate of a1×2 link is im-
proved compared to that of a1 × 1 link due to the receive
diversity gain.

Further, we note that the symbol error rate of Alamouti
STBCs of [1] and [24] can be derived from Section II.A
of [27]. Based on that discussion and for a fixed transmit
power, one can derive the symbol error rate of a2 × 1

link by replacingSINRi with SINRi
2 in Equation (35).

Similarly, one can obtain the symbol error rate of a2 × 2
link by using the results of a1×4 link. With the choice of
BPSK modulation, the result for a2 × 2 link is expressed
as

SERi ≃ 1
2 − 1

2

√

SINRi

2+SINRi

(

∑3
j=0

(

2j
j

)

1
[2(2+SINRi)]j

)

(36)
Using the ergodic symbol error rates above, we can in-

troduce a simplified connectivity metric in the form of

SERi ≤ Sout (37)

whereSout is the threshold of connectivity.

IV. CAPTURING TEMPORAL CORRELATION OF

ERGODIC CHANNELS

Up until now, we have assumed that the wireless fad-
ing channel is flat implying no temporal correlation exists
among the symbols of a single frame. In this section, we
capture the effects of temporal correlation on our connec-
tivity metrics. We propose a scheme in which the tempo-
rally correlated fading channel is modeled by a finite-state
Markov chain. Our scheme can be applied to the cases of
our ergodic connectivity metrics. Capturing temporal cor-
relation in the cases of our probabilistic metrics is more
complex and the subject of our future study.

A finite-state Markov chain is a discrete-time represen-
tation of the behavior of a random variable. Each state
is associated with an average quantity representing the
value of the random variable at that state. The chain is
fully specified by the set of average per state quantities
and a set of per state steady-state probabilities. For anS-
state chain,S per state average quantities andS steady-
state probabilities can be calculated by partitioning the
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PDF of a random variable with a set of threshold values
{ξ0, · · · , ξS} associated with the observed behavior of the
random variable.

While such Markov chain modeling approach can be
applied to any number of states, we note that utilizing
a larger number of states improves the accuracy of the
model at the cost of increasing the complexity of calcu-
lations. We propose the use of a two-state chain with two
statesG andB to address the tradeoff between computa-
tional complexity and model accuracy. Utilizing a two-
state Markov chain applied to the PDF ofCi in Equa-
tion (8), the ergodic connectivity metric of (19) still holds
when the ergodic averageCi of link i is expressed as

Ci = π
(C)
i,G Ci,G + π

(C)
i,B Ci,B (38)

whereπ
(C)
i,G andπ

(C)
i,B represent per state steady-state prob-

abilities derived from the ratios of surface integrals of the
PDF ofCi within appropriate threshold bounds. Further,
average per state quantitiesCi,G andCi,B are specified as
the ratios of expectation integrals and surface integrals of
the PDF ofCi within appropriate threshold bounds [29].
Similarly and utilizing a two-state Markov chain applied
to the PDF ofSERi in Equation (26), the ergodic connec-
tivity metric of (37) still holds when the ergodic average
SERi of link i is expressed as

SERi = π
(SER)
i,G SERi,G + π

(SER)
i,B SERi,B (39)

with similar description of quantities in Equation (38) de-
rived from the PDF ofSERi in Equation (26) instead of
those derived from the PDF ofCi in Equation (8).

V. EXPERIMENTAL VERIFICATION OF ANALYSIS

This section is dedicated to the evaluation of effective-
ness for the information theoretic metrics of connectivity
introduced in previous sections. It consists of two sub-
sections. The objective of the first subsection is to show
why utilizing a metric purely based onSINR cannot cap-
ture the reality of connectivity in fading ad-hoc networks.
The objective of the second subsection is to investigate
the results of applying the metrics of previous sections to
a random network topology.

A. Justification of Proposed Connectivity Metrics

We open this section by providing a justification of us-
ing our proposed metrics of connectivity instead of the
SINR metric.

For different choices of antenna configurations of a
given link, Fig. 1 depicts normalized values of1 −
CDF (SER) versusSout whereCDF (SER) indicates

the Cumulative Distribution Function (CDF) ofSER. For
a choice ofSout on the horizontal axis of each figure,
the corresponding value on the vertical axis represents the
valuePr(SER > Sout). Thus, the connectivity metric
may be satisfied if the horizontal line representing∆S is
located above the value ofPr(SER > Sout). The figure
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Fig. 1. Normalized BPSK plots of1−CDF (SER) versusSout for a
wireless link utilizing different antenna configurations withSINR =
3dB.

reveals the fact that the probabilistic measure of the sym-
bol error rate can be different for the same thresholdSout

based on the antenna configuration. For example, for the
choice of(Sout,∆S) = (0.15, 0.1), the connectivity met-
ric of (30) is satisfied for2 × 1, 1 × 2, and2 × 2 antenna
configurations but not1× 1 antenna configuration. While
not shown here, similar results are observed in the case of
outage capacity metric of connectivity.

For an isolated point-to-point transmission scenario and
different antenna configurations, Fig. 2 depictsC as de-
fined in Equation (17) versusSINR. We note that in
an isolated point-to-point communication scenario, there
is no interference term and as a result the termSINR
is the same asSNR. The figure reveals that the capac-
ity can be different for the same signal strength based on
the antenna configuration. For example for the choice of
SINR = 10dB andCout = 5 bps/Hz in Fig. 2, the con-
nectivity metric of (19) is only satisfied for2× 2 wireless
links but not the other antenna configurations.

Hence, depending on the thresholds of connectivity
Cout, Sout, ∆C , and∆S that are determined by the com-
puting platform of a mobile node, a pure measurement of
the signal strength such asSINR is not sufficient to cap-
ture the connectivity phenomenon.
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Fig. 2. BPSK plots ofC versusSINR for an isolated wireless link
utilizing different antenna configurations.

B. Connectivity Experiments

In this subsection, we apply our proposed connectivity
metrics to a moderate size random ad-hoc topology. In
order to provide a meaningful basis of comparison, we
compare our results for the same random topology. In our
random topology,200 nodes are distributed on a 2-D do-
main with an area of1000 square meters according to a
Poisson point process [13]. When measuring connectiv-
ity, we assume all of the nodes can transmit at the same
time. We note that the use of Gaussian approximation ac-
cording to central limit theorem is justified for different
antenna configurations as the result of allowing simulta-
neous transmissions and considering the number of nodes.

The following describes general settings of our experi-
ments. All of the nodes are assumed to be utilizing BPSK
modulation. In our probabilistic experiments, we assume
that the slow fading wireless channel characterized by
a Rayleigh distribution is quasi-static and flat implying
there is no temporal correlation between a pair of symbols
belonging to the same frame. In our ergodic experiments,
we utilize a two-state Markov chain when partitioning the
PDFs of the random variables associated with capacity
and symbol error rate. In both cases, we set the parti-
tioning thresholds as{ξ0, ξ1, ξ2} = {0, 1.2039, 10}. We
assume that each node utilizes a total transmission power
of P = 1W on the combined set of its outgoing links. In
the case of multiple antenna nodes, the total transmission
power is split equally among the antenna paths, i.e.,Mi

signals are transmitted simultaneously from theMi trans-
mit antennas at each time slot using Alamouti STBCs of
[1] and [24]. The expected value of the noise power on
each path is assumed to be10µW . Depending on a spe-

cific experiment, a pair of nodes are considered to form a
direct link if one of the probabilistic connectivity metrics
of (11) and (30) or one of the ergodic connectivity met-
rics of (19) and (37) holds. A direct link is formed only if
both of its nodes can transmit and receive from each other
under a connectivity criterion.

For the random topology described above, we consider
three scenarios. In the first scenario which serves as our
base line SISO scenario, the network is only accommodat-
ing single antenna mobile nodes. We refer to this scenario
as the1×1 case. In the second scenario exactly half of the
mobile nodes are randomly selected to be equipped with
double antennas. We refer to this scenario as the HYBRID
case. In the third scenario to which we refer as the2 × 2
case, the network is only accommodating double antenna
mobile nodes.

We provide the results of our experiments in the case
of the probabilistic measures of (11) and (30) as well as
ergodic measures of (19) and (37). It is important to note
that all of our measures implicitly capture the effects of
shadowing and distance in addition to fading. The latter
is due to the fact that the measures are all expressed as
a function of averageSINR. We refer the reader to the
work of [29] to see how shadowing, distance, and fading
are captured in the calculations of averageSINR. For the
random topology network above, Fig. 3 includes sample
connectivity graphs chosen from among a large set of ex-
periments run with different combinations of simulation
parameters. While the parameter settings of the graphs
merely represent our sampling choices, the results of all
of our experiments remain consistent. We refer the reader
to our related work of [15] where we investigate the ef-
fects of parameter variations on connectivity.

Reviewing the connectivity graphs, we observe that
they vary depending on not only theSINR measure
but modulation, antenna configurations, and other settings
of the nodes. While a pure measurement of the signal
strength such asSINR is not quite capable of describing
the phenomenon of connectivity, utilizing one of our pro-
posed metrics provides a better way of properly capturing
the effects of the quantities of interest when investigating
connectivity.

From the results of the experiments, we can also calcu-
late the percentages of the nodes belonging to the largest
connected cluster of nodes. The larger the percentage, the
closer the network to being fully connected and a mea-
sure of100% is associated with a fully connected network.
Utilizing the connectivity metrics of (11) and (19), Tables
I and II report the connectivity results for different combi-
nation of choices ofCout and∆C with similar other set-
tings. We observe that decreasing the value ofCout and
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Fig. 3. Connectivity graphs of a random topology network in a square domain of1000 square meters. The columns from left to right correspond
to single antenna, hybrid, and double antenna mobile nodes. (a) The illustrations of the first row show the results of utilizing probabilistic
connectivity metric of (11) withCout = 2 bps/Hz and∆C = 0.01. (b) The illustrations of the second row show the results of utilizing ergodic
connectivity metric of (19) withCout = 4 bps/Hz. (c) The illustrations of the third row show the results of utilizing probabilistic connectivity
metric of (30) withSout = 0.02 and∆S = 0.01. (d) The illustrations of the fourth row show the results of utilizing ergodic connectivity metric
of (37) withSout = 0.0001.
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TABLE I
A COMPARISON OF THE RELATIVE SIZES OF THE LARGEST

CONNECTED CLUSTER UTILIZING OUTAGE CAPACITY

CONNECTIVITY METRIC.

Cout = 2 Cout = 1.5 Cout = 1
∆C = 0.01 ∆C = 0.01 ∆C = 0.02

1 × 1 1.5% 2% 7%
HYBRID 12.0% 31.0% 90.5%

2 × 2 90.5% 94.0% 98.0%

TABLE II
A COMPARISON OF THE THE RELATIVE SIZES OF THE LARGEST

CONNECTED CLUSTER UTILIZING ERGODIC CAPACITY

CONNECTIVITY METRIC.

Cout = 3.8 Cout = 4
1 × 1 32.5% 17.5%

HYBRID 85.5% 85.5%
2 × 2 98.0% 98.0%

increasing the value of∆C increases the size of the largest
cluster of the connectivity graph.

Similarly, utilizing the SER connectivity metrics of
(30) and (37), Tables III and IV report the results for dif-
ferent combination of choices ofSout and∆S with similar
other settings. We notice that increasing the values ofSout

and∆S increases the size of the largest cluster observed
in the connectivity graph.

At the end of this section, a discussion of practicality
is in order. We are aware that the calculation costs of our
measures of connectivity, accrued at each node and par-

TABLE III
A COMPARISON OF THE RELATIVE SIZES OF THE LARGEST

CONNECTED CLUSTER UTILIZING PROBABILISTICSER

CONNECTIVITY METRIC.

Sout = 0.01 Sout = 0.02 Sout = 0.05
∆S = 0.01 ∆S = 0.01 ∆S = 0.02

1 × 1 1.5% 1.5% 7%
HYBRID 29.5% 33.0% 87.5%

2 × 2 68.5% 83.5% 92.5%

TABLE IV
A COMPARISON OF THE THE RELATIVE SIZES OF THE LARGEST

CONNECTED CLUSTER UTILIZING ERGODICSER CONNECTIVITY

METRIC.

Sout = 0.0001 Sout = 0.01
1 × 1 1% 8.0%

HYBRID 4.0% 87.0%
2 × 2 17.5% 92.5%

ticularly under mobility, are relatively higher than those
of the distance andSINR measures. Further, the exis-
tence of error recovery schemes utilized by Medium Ac-
cess Control (MAC) technologies at the link layer can and
will affect connectivity. However, we believe our work
is of high importance for creating accurate benchmarks
that can lead to thorough understanding of the connectiv-
ity phenomenon. While this work has proposed analyt-
ical measures for studying connectivity, we are currently
working on developing intelligent schemes resulting in the
reduction of the calculation costs of our measures under
mobility.

VI. CONCLUSION

In this paper, we investigated the connectivity of fading
wireless ad-hoc networks. By defining a pair of proba-
bilistic metrics of connectivity, we investigated the prob-
lem of connectivity based on the capacity of MIMO chan-
nels and their symbol error rate rather than the received
signal strength. We also provided simplified measures of
connectivity in the case of ergodic MIMO channels. In
such cases, we captured the temporal correlation of the
channel by utilizing a finite-state Markov chain the pa-
rameters of which were obtained by partitioning the PDF
of the random variables of interest,Ci andSERi. Our re-
sults clearly showed that the use of signal-to-interference-
noise ratios cannot properly capture the connectivity phe-
nomenon in wireless ad-hoc networks. They also showed
that the use of multiple antenna mobile nodes improves
the connectivity of wireless ad-hoc networks utilizing any
of our proposed connectivity metrics. Comparing the two
capacity- andSER-based metrics of connectivity dis-
cussed in this paper, one may note that the latter metric
provides a more practical alternative for use in ad-hoc net-
works. Our future research is focused on analyzing the
effects of small world phenomenon [26] in placement al-
gorithms of advantaged mobile nodes in order to improve
the connectivity of wireless ad-hoc networks. In addition,
we are investigating the applicability of our connectivity
results in the context of scheduling and cross-layer routing
schemes for wireless ad-hoc networks.
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