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This paper presents a teach-and-repeat path-following method for an autonomous underwater

vehicle (AUV) navigating long distances in environments where external navigation aides are

denied. This method utilizes sonar images to construct a series of reference views along a path,

stored as a topological map. The AUV can then renavigate along this path, either to return to

the start location or to repeat the route. Utilizing unique assumptions about the sonar image-

generation process, this system exhibits robust image-matching capabilities, providing observa-

tions to a discrete Bayesian filter that maintains an estimate of progress along the path. Image-

matching also provides anestimateof offset from thepath, allowing theAUVto correct its heading

and effectively close the gap. Over a series of field trials, this system demonstrated online control

of an AUV in the ocean environment of Holyrood Arm, Newfoundland and Labrador, Canada. The

system was implemented on an International Submarine Engineering Ltd. Explorer AUV and per-

formed multiple path completions over both a 1 and 5 km track. These trials illustrated an AUV

operating in a fully autonomous mode, in which navigation was driven solely by sensor feedback

and adaptive control. Path-following performancewas as desired, with the AUVmaintaining close

offset to the path.
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1 INTRODUCTION

Autonomous underwater vehicles (AUVs) are free swimming robots

that traverse some of the most remote and dynamic environments

on Earth. These environments include beneath floating ice shelves

(Jenkins et al., 2010) and under moving sea ice (Kaminski et al., 2010).

In these scenarios, AUVs are required to traverse long distances away

from a known safe launch-and-recover site. Where the environment

is unknown and diverse, a path the AUV has taken previously may be

one, or the only, safe passage to and from a particular site. In these

instances, it is imperative that anAUVhas theability to retrace its steps

and follow a path it has traversed before.

When robots have access to a consistent positioning aid, such as

GPS, retracing a path is a simple matter of storing the positions along

the path and following them in order. Due to the severe attenuation

of high-frequency radio signals through water, AUVs do not have

access to GPS signals when submerged and thus face a major chal-

lenge in maintaining an estimate of their location (Kinsey, Eustice, &

Whitcomb, 2006). AUV localization solutionsmaybedivided into three

categories: inertial/dead reckoning, external aiding through acoustic

beacons, and geophysical referencing (Paull, Saeedi, Seto, & Li, 2014).

Inertial systems have an advantage in that they are self-contained,

but they suffer from cumulative errors as accelerometer biases are

integrated into positions (McEwen & Thomas, 2003). Acoustic aiding

provides a drift-free source of location, but a major financial and logis-

tical cost is incurred to install the required infrastructure (Jakuba et al.,

2008).

Geophysical referencing allows an AUV to position itself using sen-

sory feedback. If a reference map is provided in advance of a mis-

sion, localization occurs by comparing local measurements against the

map to limit the probable locations. When combined with knowledge

of the vehicle motion, an estimate of position can be obtained; this is

generally referred to as terrain relative navigation (TRN). Examples of

TRNadapted for underwater vehicles arepresented inClaus andBach-

mayer (2015), Meduna, Rock, and McEwan (2008), and Rock, Hobson,

and Houts (2014), with a general overview of systems provided by

Chen, Li, Su, Chen, and Jiang (2015). Another approach is to simulta-

neously generate amap of the area and localize to it, known as simulta-

neous localization and mapping (SLAM). This is an active field of study,

andmanyexample systemsexist (Mahon,Williams, Pizarro,& Johnson-

Roberson, 2008; Paull et al., 2014; Tena Ruiz, de Raucourt, Petillot, &

Lane, 2004).

An alternate geophysical approach is teach-and-repeat (TR) path-

following, which does not require the estimation of position in the
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global reference frame, but only with respect to previously collected

data. This lack of positioning requirement allows for a less complex

system than SLAM. TR enables an autonomous vehicle to refollow

a path by relating its current sensory input to a stored sequence

of sensory input from a previous traversal. TR localizes the agent

relative only to the path, and it does not rely on a global local-

ization of either the robot or locations along the path (Furgale &

Barfoot, 2010; Matsumoto, Sakai, Inaba, & Inoue, 2000; Nguyen,

Mann, Gosine, & Vardy, 2016). For long-range exploration missions,

TR allows an AUV to venture into an unexplored area and return

along the same path, regardless of its accumulated global position

error.

Presented here is an adaption of TR for an AUV that builds upon

similar work in the terrestrial robotics world, with adaptations to an

underwater vehicle. The contribution of this work is the successful

implementationof teach-and-repeatpath-followingonanautonomous

underwater vehicle utilizing sonar as the primary imaging sensor. This

implementation has been demonstrated with multiple successful field

demonstrations of fully autonomous path-following in a true ocean

environment over paths up to 5 km in length, with the vehicle under

fully self-determined adaptive mission control. The success of this sys-

tem relies on improvements made to image registration techniques,

capitalizing on the unique aspects of the sonar imaging used in this

work.

This paper is organized as follows: Section 2 provides an overview

of the core image generation and matching methodology used for this

work; Section 3 describes the implemented teach-and-repeat system;

Section4presents results from field trials of the prototype system; and

Section 5 is a discussion of the performance of the system and future

directions for the work.

2 METHODOLOGY

For a geophysical navigation system, how the environment is perceived

is critical to its ability to localize anddetermine any required corrective

actions. The primary development in adapting teach-and-repeat (TR)

to an underwater vehicle was the use of images derived from available

sonar data. This section provides an overview of techniques used for

image generation andmatching.

2.1 Target platform

Development of this system was for Memorial University of New-

foundland's (MUN) Explorer AUV, shown in Figure 1. The MUN

Explorer is a 4.5-m-long, 3000-m-depth rated vehicle manufactured

by International Submarine Engineering (ISE) (ISE, 2016; Lewis et al.,

2016). This survey class AUV can traverse distances over 100 km, and

it navigates using a true-north sensing fiber optic gyroscope and a

Doppler velocity log (DVL), capable of providing velocity relative to the

seabed at altitudes less than 200 m. Additional operational specifica-

tions are given in Table 1.

F IGURE 1 Memorial University of Newfoundland's Explorer AUV

2.2 Vehicle integration

In addition to the AUV itself, our system requires two main computa-

tional components. The first requirement is a processing component

that collects the raw sonar data, generates images, performs match-

ing, and updates the navigation estimate. This was hosted on a ded-

icated payload computer connected to both the sonar and AUV con-

trol system throughEthernet. The second is a control interface to allow

incoming requests from the payload computer to affect themovement

of the AUV. The manufacturer, ISE, provided a set of short messages

that would allow the processing computer to request control, provide

a new target to navigate toward, and relinquish control.

At the start of the workflow, the AUV is given a mission script to

follow, essentially a series of waypoints. This phase, referred to as the

Discovery phase, is merely an intermediate step between the teach-

and-repeat phases. Upon the TR system making a match and achiev-

ing a belief in its location above a threshold, min_belief_localize, a con-

trol request is sent to interrupt the current mission and await location

targets; this is known as the Repeat phase. At any time the TR system

can relinquish control and theAUVwill return to the last executed step

in the previously interrupted mission script. Figure 2 illustrates this

workflow. It should be noted that in practice, returning to the previous

executedmissionmay not be advisable, but it suited the test scenario.

2.3 Image generation

For underwater vehicles, sonar is the primary means for sensory feed-

back from the environment, given the attenuation of optics in water

(Al-Shamma'a, Shaw, & Saman, 2004). This work focuses specifically on

sidescan sonar, for the following reasons: it is commonly found on sur-

vey classAUVs, it provides a valueof reflected intensity that lends itself

to the constructionof a grayscale image, and it has anoperational range

that allows coverage over a large area while operating the AUV at safe

distances from the seafloor.
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TABLE 1 System specification of memorial university's explorer AUV

System Components Specification

Navigation DGPS, iXBlue Fiber Optic INS, RDI Doppler
Velocity Log (300 kHz)

Positional accuracy to 0.1% of distance
traveled when submerged and relative
seafloor velocity provided by DVL.
Heading accuracy to 0.01◦

Payload Edgetech 2200m, SeaBird CTD 400 kHz sidescan sonar. 200mmaximum
range per side, 75m for this work at 7m
altitude. Processed resolution to 0.2m at
1.5m/s survey speed.

Processing Payload Computer 2.1 GHz Intel i7, 4GB RAM, 128GB SSD

F IGURE 2 Flowchart of AUV decision to remain in Discovery phase,
or switch to Repeat phase. Flow is from top to bottom, with final deci-
sion based on localization belief being either above, >, or below, <, a
threshold

A sidescan sonar projects acoustic energy down and to each side

of the AUV in a pattern that is narrow in the along track dimension

and wide across track. This is illustrated in Figure 3. Reflected inten-

sity decreases as the beam travels away from the AUV, increases when

encountering a strong reflector, such as the illustrated rock, and may

reduce to nil in the shadow zone behind obstructions, as can be seen

on the side of the rock furthest from theAUV. The intensity of themea-

sured reflected signal is dictated by the reflectivity of the seabedmate-

rial, angle of incidence to the bottomor objects, occlusion, and the nor-

mal loss of sound intensity as it moves away from the source (Pinto,

Ferreira, Matos, & Cruz, 2009). In addition, there will be an area of

poor coverage directly below the AUV, known as the nadir. The sonar

used in this work had a maximum operating range of 75 m from each

side of the AUV, for a total coverage width of 150 m at a fixed altitude

of 7m.

TheAUVmeasures its trueheading and speed relative to the seabed

to construct a two-dimensional projection of the sonar intensity by

georeferencing sequential sonar pings onto a common north-up image

grid of fixed resolution. These images assume a localized flat bottom

with intensities corrected for attenuation such that relative intensity

variations in the imageare related to artifacts of the seafloor andnot to

propagation of the sound energy. Figure 4 provides examples of gener-

ated images. Amore detailed description of the image-generation pro-

cess used in this work is provided in King, Vardy, and Anstey (2012). A

F IGURE 3 Top: Overhead view showing coverage area of a single
sonar ping. The ping encounters a rock, which acts as a strong reflec-
tor. Middle: Rear view showing the occlusion of the sonar beam by the
rock. Bottom: Relative intensity over the horizontal dimension. Inten-
sity decreases as we move away from the AUV, becomes stronger as it
reflects off the rock, then turns to shadow in the regionoccludedby the
rock

distinguishing feature of sonar images is the blank nadir region, which

is masked out in this work to ignore poor image quality directly below

the vehicle.

It should be noted that in this work a fixed image size of 1,000 pings

was used. This valuewas selected adhoc, resulting in an image thatwas

nearly square and continually performedwell in testing. This is an area

where further investigation could yield optimizations in both localiza-

tion and efficiency.

2.4 Imagematching

For navigation, we must compare images from the repeat phase to

those from the teach phase to determine how likely they are to be in



4 KING ET AL.

F IGURE 4 Examples of sonar images. The boundaries of the sonar data (including the nadir) are masked to ignore any deformations, hence the
black regions. Left: A flat sandy area showing a patch of gravel. Right: A region with visible scour marks

the same location, and, should they match, how the AUV's estimated

position and orientation differ. Image-matching techniques utilized in

this work rely on feature extraction and matching and include SIFT

(Lowe, 2004), SURF (Bay, Ess, Tuytelaars, & Gool, 2008), and FREAK

(Alahi, Ortiz, & Vandergheynst, 2012), with implementations taken

from the Open Source Computer Vision Library (OpenCV) (Itseez,

2015). Preliminary work on the selection and characterization of the

chosen feature matching techniques as they relate to sonar images

are described further in King, Anstey, and Vardy (2013) and Vandrish,

Vardy,Walker, and Dobre (2011).

At its core, feature extraction is the process of locating areas of

interest in an image, referred to as keypoints. These keypoints are

expected to be consistently discernible from repeated views of the

same image subject. Keypoints are described by the size of their

included pixel neighborhood, as well as an orientation, derived by the

dominant gradient component of the feature. Figure 5 illustrates a sin-

gle sonar image and the detected set of keypoints drawn with relative

size and direction indicators.

Image matching is the determination of the likelihood that two

images represent an overlapping view of the seabed. If we assume that

keypoints are fixed artifacts of a particular area of the seabed, then two

overlapping viewsmay contain the same keypoints. Thus, if two images

are compared based on keypoints, we can infer a likelihood that they

represent a common view of an area of seabed.

2.4.1 Match filtering

The image match filtering process described here is a key contribution

of this work. Its effectiveness stems from the unique characteristics of

images produced from sonar data. The process is to compare the set of

keypoints in one image to those of another image to forma set of candi-

datematchpairs. In thiswork, anexhaustivematcherwasused inwhich

each keypoint in the first set is compared against all keypoints in the

second set to select the closestmatch. This initial brute force pairing of

bestmatches produces a large pool of pairs containingmany likely false

matches. The goal of the filtering process is to reduce this set to those

pairs that are likely to be truematches.

F IGURE 5 Top: Sonar image. Bottom: Same imagewith overlaid key-
point indicators, where circle size represents the size of the keypoint,
and the inscribed line represents the orientation, or major gradient
direction

To extract the true matches from all possible matches, we avail of

two invariants:

1. Given the AUV's ability to directly measure its true heading, the

generated images share a common north-up orientation.

2. Given theAUV's ability tomeasure its height above the seafloor, the

generated imagesareprojectedontoa common flat plane, thus they

share the same scale.

Therefore, common keypoints across images should be similar in

both size and orientation, quite different from what is experienced in

optical images of natural terrestrial scenes. These invariants hold up in
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areas of relatively flat terrain but have been untested in areas with a

sloping or more dynamic terrain.

The initial set of matched pairs are subjected to a filtering stage

to disregard mismatched keypoint pairs. Allowing for some error in

the AUV's orientation and ability to scale generated images, keypoint

matches that differ in size or orientation beyond some nominal thresh-

old are considered nonmatches, and they are discarded. Algorithm 1

includes the filtering steps. This threshold is a tuned parameter and, in

these results, was set based on prior offline testing, described further

in King et al. (2012).

Following this initial filtering, we investigate the remaining pairs,

again exploiting our invariant that images are in a common north-

up orientation that imposes the constraint that should the images

match, the resulting geometric transformation between themmust be

solely translation, with negligible rotation or scaling. For a given pair

of imageswithmultiple featurematches, true-matcheswill represent a

common feature translated from one image to another by a common

offset. Conversely, the feature offset in a false-match will be unpre-

dictably distributed.

Figure 6 illustrates this process, where two views, indicated by the

dashed boxes, overlap over a set of features. The resultant images have

the features located in differing locations, based on the orientation of

the view.When compared, we can see how the featuresmust translate

from one image to another and that good featurematches have offsets

consistent in both direction and displacement.

2.4.2 Match consensus

To determine a consensus within the raw matches, given our already

filtered set of matches and constraints on orientation, it is possible to

employ a brute-force consensus algorithm that determines the largest

possible inlier set of matches satisfying the invariant. Again, the ability

to rely on a common scale and orientation greatly improvesmatch per-

formance. This differs from the more common use of methods based

on the random sample consensus algorithm (RANSAC), which provides

a suitable consensus within a group, but not necessarily the largest or

optimal consensus (Fischler & Bolles, 1981).

This complete matching algorithm, provided in Algorithm 1,

includes the steps for determining consensus. Every possible group

of matched pairs, with similar orientation and lateral displacement

within a specified threshold, is considered. The largest of these groups

determines the estimate of geometric translation, with matches pairs

outside this group rejected as outliers. Figure 7 illustrates the steps

in image match determination for both the matching and nonmatch-

ing cases. Should no inlier group exist, or should it be smaller than

a set threshold, no match is assumed to have occurred. In the event

of two inlier groups having equal size, an event not seen in all test-

ing to date, the system would only consider the first largest set

encountered.

From the resultant set of matches, an average of the translation is

taken as the difference in pose from the first image to the second. The

size, or absence, of a dominant inlier set relates to the likelihood that
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F IGURE 6 Top: Overlapping views of various features. Middle:
Resultant images of features. Bottom: Match result between images;
arrows show offset between matching keypoints. Short arrows are in
agreement in both displacement and direction, longer arrow repre-
sents an outlier

themeasurement occurs at a particular view in the path, described fur-

ther in the next section.

3 TEACH-AND-REPEAT PATH FOLLOWING

Teach-and-repeat path following allows a vehicle to navigate along a

previously traversed path. The path, as described by Matsumoto et al.

(2000), may be a sequence of view images, each with information

describing its relation to the next image in the sequence. During train-

ing, images are added if they represent a significant change in view.

During the repeat phase, image matching is employed to compare the

current view against the estimated subsequent training image. If the

subsequent image has a higher correspondence, the estimated loca-

tion along the route is incremented. Image matching is used to deter-

mine the correspondence between images and the azimuthal offset

between them. The offset is used to direct the robot toward the cen-

ter of the path, allowing correction of horizontal offsets from the pre-

scribed route (Matsumoto, Inaba, & Inoue, 1996).

An example of this type of systempresented by Furgale andBarfoot

(2010) models the path as a topologically connected set of submaps,

F IGURE 7 Top: Sonar images with raw keypoint matches. Middle:
Remaining matches after filtering on size and orientation. Bottom:
Onlymatches from the largest consensus group

F IGURE 8 Representation of views as locations along a path: Left:
Sonar images as there are collected by the AUV. Middle: The vector of
nodes, where location is a single dimension index. Right: Data stored
with each node, including ID of previous and next node, and average
heading along the node

where only the submaps are described as locally Euclidean. Localiza-

tion is based on a combination of feature detection and knowledge

of the robot's motion. Several trials of the system are described, with

the longest a 32 km route over rough outdoor terrain (Furgale & Bar-

foot, 2010). Themotivation of their work is to support extra-planetary

exploration by robots, a field not unlike that of exploratory AUVs.

In this work, the path is constructed by continuously generating

sonar images, consisting of a fixed number of individual pings, of

the seafloor and storing them as a connected series of images, with
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F IGURE 9 Top: AUV following path using the stored node-to-node
vectors, but with an offset. Bottom: Corrective vector from image
matching added to path vector so that the AUVwill reduce its offset

F IGURE 10 Flowchart of how a new sonar file is processed and the
exchange of data between themajor components

information of how each subsequent view connects to the next; we

refer to this series of views as the reference path, and each individ-

ual view a node. As in Furgale and Barfoot (2010), the constraints are

that the images are locally consistent with reasonable transformations

between them. In the context of this work, the transformation is mini-

mal as eachviewconnects to thepreviousone such that theyare essen-

tially seamless. Unlike thework ofMatsumoto et al. (2000), every com-

pleted image is added to the path, given they are each distinctive, and

the AUV's internal navigation system provides the relative position of

each image to the previously added.

Localization along the reference path is one-dimensional, as the

AUV need only know at which node in the set it is most likely at. The

arrangement of the nodes is topological, not globally topographic, such

as in Matsumoto et al. (1996) and Matsumoto et al. (2000) where it

is referred to as Visual Sequenced Route Representation (VSSR). We

are simply concerned with the relative relation of views to each other

and not the precise placement relative to a coordinate system, Figure

8 illustrates this concept.

F IGURE 11 Flowchart of navigation determination

In the repeat stage, theAUVdetermines its present location relative

to the reference path so that navigation actions may be determined to

maintain its track along the path to completion. The likelihood value

provided by the imagematching gives a quantitative measure of which

nodes the AUV's current viewmatches. But, this is insufficient as there

is the possibility that (a) the AUV matches to multiple locations, (b)

the AUVmakes no match and thus gains no insight into its location, or

(c) the AUVmatches to a single incorrect location.

Tomaintain a robust estimate of the AUV's location along the route,

a discrete probability filter, or Markov localization filter, is employed,

similar to the along-route localization employed in Zhang and Klee-

man (2009). The Markov localization filter maintains an array of prob-

abilities, representing each node in the path, where the probability

is the belief that the AUV is at that node. This array represents the

probability distribution of the AUVs location along the route. At any

given time, the array location of the distribution peak is taken as the

current location estimate. If this peak is above a specified thresh-

old, the vehicle is considered localized at the corresponding path

node.

This distribution is updated in two steps: a prediction step, account-

ing for the AUV's motion; and an observation step, accounting for the

current sensor view. This filter suits this problem due to its inherent

discrete nature and the condition that the AUV may face phases of

global uncertainty due to a difficult data association problem in which

matches yield multiple hypotheses, as stated in Thrun, Burgard, and

Fox (2005).

Generation of a new sonar image triggers the update cycle. At

this point, the prediction and observation updates are made to the

belief array. For each node, the predicted probability of the AUV being

located at a particular node is based on the sum of probabilities that
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F IGURE 12 Reference paths for field trials shown in black. Shorter path used in 2013 trials and repeated in 2014. Longer path used in 2014 trials
only. Location is Holyrood Arm, Newfoundland and Labrador, Canada
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the AUV has moved to this node from all possible previous nodes,

stated as

p(ni,t) =
∑
j

p(ni,t|ut, nj,t−1)p(nj,t−1) (1)

= p(ut = stay)p(ni = nj) + p(ut = move)p(ni−1 = nj),

where p(ni,t) is the estimated probability of being at node i at time step
t. p(ni,t|ut, nj,t−1) is the probability ofmoving to node i fromnode j, given

someaction u. In this system, there are only twopossibilities of arriving

at ni: already being at ni in the previous time step and not moving; and

moving to ni from the prior node in the sequence, ni−1. For the linear-

type paths attempted in this work and the fine control of the AUV, we

assume the AUV can only remain at a node or move forward. For this

work, we repeat the path at the same speed as was taught, thus we

maintain a high probability of reaching the next node in one update

cycle. For completeness, the probability of moving is as follows:

p(u = stay) = 1 − p(u = move). (2)

The likelihood of an observation at a node results from the image

matching and the current localization estimate outcome of the predic-

tion step. As stated in the previous section, this likelihood, ormeasure-

ment value, relates to the consensus of featurematch pairs:

p(ni,t) = p(zt|ni,t)p(ni,t) (3)

=
(
S +

ci∑
N ci

)
p(ni,t),

TABLE 2 Test parameters

Parameter Value Description

grid_
resolution

0.2 size inmeters of each image pixel

size_
threshold

10 themaximum allowable difference in
feature size, given in pixels

angle_
threshold

10 themaximum allowable difference in
feature orientation, given in degrees

uniform_
measurement

0.2 seed value to avoid 0 belief conditions

min_belief_
to_
localize

0.8 minimum peak belief value to begin repeat
phase

min_belief_
to_navigate

0.3 minimum peak belief value to produce a
navigation correction

TABLE 3 2013 trial results

Dive
Local-
izations

Mean
Error
(stdev)

%Dist.
Traveled Result

3 9 7.94m
(5.3)

1.24 Successful until premature abort
due to incorrect
out-of-bounds parameter

7 14 8.09m
(7.2)

0.55 Successful completion

8 17 5.71m
(4.3)

0.41 Successful completion

F IGURE 13 AUVtrack for three successful attempts at following the
reference path

where p(zt|ni,t) is the probability that the measurement comes from

matching to node i, S is a small seed value given to all nodes to avoid a

zerobelief condition, ci is thenumberofmatches in the largest inlier set

whenmatching against the ith image in the path, andN is the total num-

ber of nodes in the path. In essence, the measurement is proportional

to the number of goodmatches of one node and inversely proportional

to thematches to all other nodes. Thus the likelihoodmeasure growsas

there are more good matches, but it is diluted as there are more total

matches in other nodes.

TheMarkov filter algorithm is given in Algorithm 2.
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From each filtered match, an offset between images is provided, in

pixels, for both the x and y axis. The mean offset is then calculated for

all remaining matches and converted to a physical offset in both the

north and east axis, based on the image resolution:

offseteast = offsetx × grid_resolution, (4)

offsetnorth = offsety × grid_resolution,

where grid_resolution is expressed asmeters per pixel. The translation is

the distance between the AUV's current position and its locationwhen

the reference viewwas captured. Tomaintain a consistent retracing of

the path, the offset, with respect to the centerline of the path, should

be reduced.

When a successful localization is made, a vector addition is per-

formed between the offset vector and the path vector connecting the

current estimated node to the next. There is no separation between

each view—the end point of one image is adjacent to the start point of

the next image in the reference path—thus, when localized, the AUV is

assumed to be offset from the end point of the current estimated node,

or at the start of the next node in the path. Ifwe add the offset vector to

the vector across the next node in the series, wewill perform an action

both to close the offset and to traverse the path.

When no localization is made, the navigation is based on the

stored node-to-node vectors in the series from our predicted location.

F IGURE 14 AUV off-track error for Dive 8. Bars indicate update steps, which included a successful match, with height indicating the measured
distance between teach-and-repeat views. The line is the off-track error as measured by the AUV's onboard navigation system

TABLE 4 2014-a trial results

Dive Localizations Mean Error (stdev) %Dist. Traveled Result

30 13 8.11m (3.7) 0.43 Successful completion

37 14 7.30m (6.5) 0.57 Successful completion

40 15 5.49m (5.5) 0.43 Successful completion

41 13 11.52m (6.2) 0.84 Successful completion

42 12 10.28m (7.3) 0.80 Successful completion

67 5 14.63m (17.0) 1.25 Successful, larger offset on 2nd leg due
to lack of localizations, stored vectors
allowed to track parallel
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F IGURE 15 AUV track for follow-up attempts at short reference
path

Closure of the path offset occurswhen a localization ismade and a cor-

rective vector is added to the path vector as shown in Figure 9.

Figure 10 illustrates the processing of a new sonar file and the

exchange of data between the major components. Figure 11 expands

the calculation of a new navigation target.

4 FIELD TRIALS

Tests of the complete teach-and-repeat system were conducted in

May, 2013 and November, 2014, in Holyrood Arm, Newfoundland and

Labrador, Canada. This is a sheltered 5 km inlet with water depths

ranging from20 to 80m. Prior surveys had been conducted in this area

allowing empirical configuration of the sidescan parameters based on

repeated processing of the previously collected sonar data.

Tests were performed on two predefined reference paths: a short

path for initial testing in 2013, repeated in 2014; and a longer path only

attempted in 2014. In each scenario, the reference mission plan was

traversed in teach mode and the resulting reference path then utilized

for multiple repeat attempts. Figure 12 show the reference paths used

in testing. On each repeat attempt, the AUV conducted a prescribed

mission that guaranteed it to both cross the reference path and then

pass alongside while generating sonar images in an attempt to make

an initial match and localization to the reference set—the discovery

phase. If a strong match was made to provide the initial localization,

the TR system requested an interrupt to the ongoing mission, entered

the repeat phase, and attempted to follow the reference path to

completion. The trials provided an opportunity to test all aspects of the

TR system: image-matching, localization, navigation, and autonomous

AUV control.

The shorter path consisted of a 400 m straight line section running

north-south followed by a 600 m line to the south-east. The reference

path held 26 individual image views. Discovery attempts for this path

approached from the east, crossing near orthogonally. Given the time

constraints on field testing, this approach was thought to be the most

difficult and thus the worse-case scenario.

In the following field season, a repeat of the shorter path was con-

ducted to ensure that continued development of the system and the

vehicle had not affected the performance of the TR system. This devel-

opment included bug fixes, refactoring for improved efficiency, and

the inclusion of additional feature detection algorithms. In these tests,

the same reference path route as the previous year was utilized, but

with a shortened north-south line due to deployed fishing gear, giv-

ing 20 individual image views. A longer route was also used to further

show the performance and utility of the system for extended opera-

tions. In this test, a south to north route following the eastern coastline

was selected. This reference path extended approximately 5 km, with

61 views.

4.1 Operating parameters

For the reference path and all attempted repeat runs, the vehicle

operated at a speed of 1 m/s and a constant altitude of 7 m. These

values had been used on previous AUV surveys and were known to

produce high-quality sonar images. Images were constructed by com-

bining 1001 individual sonar pings, a value that generally produced

good results in both image generation and image matching in offline

trials (Vandrish, Vardy, & King, 2012). This ping count also ensures a

sufficient update period to allow for all necessary processing to occur.

In the case of 1001 pings, processing takes 2.2 s, matching 0.004 s per

pair, with tile generation occurring every 44 s. Complete test results

for image generation andmatching times are discussed further in King

et al. (2012).

The core parameters related to matching and localization were

initially set and remained unchanged throughout all attempts. Prior

offline tests using precollecteddata from the same region informed the
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F IGURE 16 AUV off-track error for Dive 37. Bars indicate update steps, which included a successful match, with height indicating themeasured
distance between teach-and-repeat views. The line is the off-track error as measured by the AUV's onboard navigation system

TABLE 5 2014-B Trial Results

Dive Localizations Mean Error (stdev) %Dist. Traveled Result

48 24 5.20m (4.4) 0.09 Successful, matchesmade throughout track

75 10 19.23m (7.0) 0.38 Successful, matchesmade throughout track

selection of each parameter through trial and error. Table 2 provides

the core parameters used throughout testing.

In 2013, only SURF feature extraction was employed. For the 2014

attempts, the system was modified to allow multiple feature extrac-

tors. In these instances, the extractors were SURF, SIFT, and FREAK.

The final match pair sets from each extractor were combined prior to

match filtering.

4.2 2013 trials

To test the complete teach-and-repeat system, a new module was

added to the AUV control system to allow mission interruption and

control. The integration of this system and its subsequent testing was

a major priority of 2013 and thus only a single day of testing was allo-

cated for TR field tests. Following an initial teach mission to acquire

the reference path, a set of three repeat missions were conducted.

Table 3 is a summary of each attempt, referenced by its dive number.

The localization column is a count of how many successful observa-

tions occurred; a successful observation is one in which a match led to

a correction providing the number of matches that led to a localization

update. Themean error is based on the navigation estimate, seeded by

theGPSat either endof the trial, and the%Dist. Traveled is thepercent

error versus the distance the AUV traveled during the repeat attempt.

This metric is often used as an overall performance metric for local-

ization systems; from Table 1 we see the best-case performance being

0.1%, thoughpractical performanceoften approaches0.5%. TheResult

columnwas the overall outcome of the test.

Overall the system performed as expected with the AUV able to

discover the reference path and make sufficient corrective actions to

maintain its track toward completion. The first test, dive-3, aborted

early due to boundary parameters set in the mission interruption sys-

tem. These boundaries are meant to prevent the AUV external control

system from taking the vehicle outside a predetermined safe area. In

this instance, the parameters were incorrectly set and resulted in an

AUV fault condition andmission termination.

In each trial attempt, the AUV calculated suitable headings to close

in on and maintain track on the reference path. Figure 13 shows the

resulting tracks of each attempt. The plotted positions are the vehi-

cle's onboard estimate of position. As there was no external tracking,

the accuracy was limited by GPS fixes at either end for both the ref-

erence path collection and the repeat attempt. Figure 14 displays the

off-track error from both the AUV's onboard navigation estimate and

the measured image translation of any successful matchers over each

update step of Dive 8. We observe that image matches generally align

with changes in the off-track error, as expected.

We see a mean off-track error of 7.04 m, with a standard deviation

of 5.8m.What is evident fromDive8 is that the error does not increase

steadily aswe traverse thepath, suchaswouldoccur for an inertial nav-

igation system.

4.3 2014 trials

Following the initial trials, further development continued on the TR

system. This included implementing the navigation subsystem's ability

to correct itself by setting a target waypoint rather than a heading. To

test the relative performance to the previous years, the same mission

track was used for the reference path generation, but with a shorter

north-south line, due to an obstruction, i.e., deployed fishing gear. A
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F IGURE 17 AUV tracks for long reference path

total of six repeat attempts were performed over this track. Table 4

summarizes the results of these attempts.

In each instance, the AUV was able to maintain a track along the

reference path, even in instances of sparse matching, such as Dive 67.

As for why there were so few matches on Dive 67, we are uncertain.

Figure 15 illustrates the AUV tracks, and Figure 16 shows the off-track

error and the measured image translation for each successful image

match.

In addition to the shorter path, a longer path was attempted to

gauge the longer-term performance, as the ultimate utility of this sys-

tem would be for long-term exploration and path-following, where it

would be unsuitable to rely on the internal navigation estimate alone.

Again, waypoint targeting was used to drive the navigation along the

path. Table 5 summarizes the results of the two repeat tracks.

As seen in Figure 17, the first attempt, Dive 48, is a great exam-

ple of the system at work, with matches made throughout the track.

Figure 18 is the off-track error for Dive 48 and the image transla-

tion for each successful match. Again, even in the longer path, we see

the error is not monotonically increasing, but somewhat bounded and

reacting to imagematches.

The second attempt, Dive 75, brought to light an important issue

with the waypoint targeting system. As the AUV proceeds along the

path, new waypoint targets are generated in series, with the intent

being that as the vehicle achieves a waypoint, the next subsequent tar-

get is issued unless a localization is made, in which case a new target is

issued immediately and all subsequent waypoints are updated. In the

final trial, as the AUV completed a waypoint, there was a delay before

the next waypoint was issued. During this time, the AUV enacted its

internal behavior for reaching a waypoint, which is to circle the point.

As is evident in the path, there were instances where the vehicle

began to circle waypoints until the newwaypoint was issued. Upon the

new waypoint being issued, the AUV then continued along the track.

Figure 19 provides a closer look at this behavior, where we see large

spikes in the heading setpoint that then reconvergence to the path

heading.

It is important to note that on the longer attempts, we maintained

an overall percent error of 0.09% and 0.38%. Both values are below

that of the practical expected performance of a high-quality INS sys-

tem, with Dive 48 beating even the best-case estimate of 0.01%.

As this system continually corrects over the path, we would expect

a bounded error and a decreasing error rate as the path length is

extended.

5 CONCLUSIONS

Anautonomous teach-and-repeat path-following systemhasbeenpre-

sented for a survey grade AUV. This system is an adaption of sim-

ilar work in the realm of terrestrial robotics. The core of this sys-

tem is a sonar image generation and matching capability, which relies

on well-known feature extraction techniques to compare a current

view of the seabed to a set of previously collected views. Utilizing a

quality indication of the resultant matches and Markov localization,
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F IGURE 18 AUV off-track error for Dive 48. Bars indicate update steps, which included a successful match, with height indicating themeasured
distance between teach and repeat views. The line is the off-track error as measured by the AUV's onboard navigation system

F IGURE 19 AUVwaypoint circling behavior

a best match is selected. This best match provides a vector indicat-

ing the bearing of the AUV to the path, which, when combined with

the known vector from the matched view to the subsequent view in

the stored path, provides a corrective heading to align the AUV to the

path.

This method was tested in two sets of trials in 2013 and 2014, in

which two scenarios, namely a 1.2 and a 5 km path, were collected in

a teaching phase to become the reference path, and multiple repeat

attempts weremade. Overall the system performedwell, with the sys-

tem able to first discover the path, obtain control of the AUV, and
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produce sufficient corrective actions to move the AUV along the path

to completion. Although no external position tracking was available

due to the lack of a functioning acoustic tracking system, the recorded

heading commands of the system indicate that the AUV repeatedly

returned to a near-zero corrective state where alignment with the

path was seen. Due to the dynamics of the AUV, there were consis-

tent deviations from the path, which were subsequently corrected. As

image matches were seen throughout the traversal, the AUV main-

tained proximity to the pathwithin the bounds of the sonar image foot-

print.

The success of this system in the field is due to the robustness of the

image generation and matching. The use of images that share a com-

mon rotation and scale allows poor matches to be quickly and reliably

discarded. Overall, very few false positives are present, and thus suc-

cessful matches provide a strong indication of location and offset. The

success of image matching during all phases of the repeat traversal,

including initial approaches that were orthogonal to the taught path,

was due to the image-based approach taken. By aligning all images

to a common orientation, utilizing feature detection not restricted to

strong shadow landmarks, and matching images as a whole, strong

matching performance even in the face of stark orientation changes

was possible.

5.1 Future considerations

Given the success of the trials, it is expected that development of

teach-and-repeat path-following will continue. One area in which

this method will find application is long-range under-ice applications,

where an AUV may traverse long distances in an unknown environ-

ment andwish to return to the original site, for example an open-water

lead. For this to be possible, the effects of ice-motion on navigation and

the sonar datamust be studied and understood.

The implementation in this work entailed several simplifications

and assumptions to reduce the overall complexity. These assumptions

may limit the extendability of this system and will need to be investi-

gated moving forward. Specifically, these assumption include the AUV

continuously moving along the track, a relatively flat seabed, and a

discrete probability filter covering the entire space. In future work,

a more realistic motion model would be required, taking input from

the AUV's own motion sensors. For the navigation filter, as distances

grow, a more efficient particle filter would exhibit decreased com-

putational demands. There is also the issue of unbounded growth in

the reference image set. As longer paths are attempted, a mecha-

nism to only search the most likely region of this image set may be

required.

To better understand the benefit of this system with regard to the

ability tomaintain path-followingwith bounded error, longer attempts

should be made. As seen in the percent error versus distance traveled,

as path lengths grow, the TR system should begin to outperform event

the best commercial INS systems given that the error is bounded. Illus-

tration of this through longer trials is critical to prove the worth of

implementation.

Finally, the interaction with the AUV's control system should be

addressed. This includes a proactive approach to ensure that waypoint

completion does not result in completion behavior—circling—around

the waypoint. This is specific to the current implementation on the

Explorer AUV and it may not affect subsequent vehicles, although it

does highlight thepotential issueswhen interconnecting complex vehi-

cle control systems.
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