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Abstract

Background: The higher incidence of non-Hodgkin’s lymphoma (NHL) in males is not well 

understood. Although reactive oxygen species (ROS) have been implicated as causes of NHL, they 

cannot be measured directly in archived blood.

Methods: We performed untargeted adductomics of stable ROS adducts in human serum albumin 

(HSA) from 67 incident NHL cases and 82 matched controls from the EPIC-Italy cohort. 

Regression and classification methods were employed to select features associated with NHL 

in all subjects and in males and females separately.
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Results: Sixty seven HSA-adduct features were quantified by liquid chromatography-high-

resolution mass spectrometry at Cys34 (n=55) and Lys525 (n=12). Three features were selected 

for association with NHL in all subjects, while seven were selected for males and five for 

females with minimal overlap. Two selected features were more abundant in cases and seven 

in controls, suggesting that altered homeostasis of ROS may affect NHL incidence. Heatmaps 

revealed differential clustering of features between sexes, suggesting differences in operative 

pathways.

Conclusions: Adduct clusters dominated by Cys34 oxidation products and disulfides further 

implicate ROS and redox biology in the etiology of NHL. Sex differences in dietary and 

alcohol consumption also help to explain the limited overlap of feature selection between sexes. 

Intriguingly, a disulfide of methanethiol from enteric microbial metabolism was more abundant in 

male cases, thereby implicating microbial translocation as a potential contributor to NHL in males.

Impact: Only two of the ROS adducts associated with NHL overlapped between sexes and one 

adduct implicates microbial translocation as a risk factor.

Introduction

The non-Hodgkin lymphomas (NHL) comprise a group of malignancies derived primarily 

from B- and T-cells in lymphoid tissue. According to the Italian Association of Cancer 

Registries and the European Cancer Information System, NHL accounts for approximately 

3% of all cancers in Italy with estimated 2020 incidences of 7,000 cases in males and 

6,200 in females (1). From the 1970s to 1990s the age-adjusted incidence of NHL in 

Italy increased by 3–4% per year and then stabilized in the 2000s, (2) and similar trends 

were observed in other westernized countries (3). Age-standardized incidence rates varied 

world-wide from 4 to 19 per 100,000 males and 3 to 12 per 100,000 females, with the higher 

rates observed in westernized countries (3,4).

The most prominent risk factor for NHL is immune deficiency – whether congenital or 

acquired from infections - with incidence rates among immuno-compromised individuals 

being many times that of the general population (5). Although relative NHL risks of 100 or 

more have been reported for individuals infected with HIV, more modest risks have been 

associated with diverse bacterial and viral infections [reviewed by (4)], e.g., a relative risk of 

3.59 has been reported following chronic infection with hepatitis-C virus (6).

Infections activate phagocytic cells that release reactive oxygen species (ROS) to kill foreign 

organisms (7).Yet, ROS are generated naturally, e.g. by mitochondrial membranes in cells 

and via activation of NADPH oxidases in cytosol, and are detoxified by antioxidants under 

homeostasis. However, excessive production of ROS can overwhelm natural defenses and 

promote a cascade of events leading to metastatic cancers (8). The hypothesis that ROS 

are mechanistically linked to NHL is supported by increased risks with polymorphisms in 

oxidative-stress genes (9,10) and type 2 diabetes mellitus (11), and by reduced risks with 

intake of dietary antioxidants (12,13).

Because ROS cannot be measured in archived blood, investigators have studied their stable 

adducts with nucleophilic loci of blood proteins, particularly Cys34 of HSA, which is the 
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dominant scavenger of ROS in the interstitial space (14). Not only does Cys34 react directly 

with ROS, oxidation of its free sulfhydryl group to the unstable sulfenic acid (Cys34-SOH) 

leads to mixed-Cys34 disulfides of circulating thiols, including cysteine, glutathione and its 

precursors, glutamyl cysteine (GluCys) and cysteinyl glycine (CysGly), that are sentinels of 

redox biology (15,16).

We developed an adductomics pipeline that employs nano-liquid chromatography-high-

resolution mass spectrometry (nLC-HRMSMS) to measure all detectable Cys34 adducts 

in tryptic digests of human serum/plasma, which yield the triply-charged T3 peptide 

(21ALVLIAFAQYLQQC34PFEDHVK41, m/z 811.7593) and its modifications (17). Previous 

applications of Cys34 adductomics for cancer etiology employed archived serum from 

incident cases of colorectal cancer (CRC) (18) and lung cancer (19) and matched controls 

from the Italian subset of the European Prospective Investigation into Cancer and Nutrition 

(EPIC-Italy), a cohort of healthy European adults enrolled between 1992 and 2000 (20). 

Those investigations found associations between adducts and cancer incidence up to 14 

years prior to diagnosis and added mechanistic insights. A third application analyzed HSA 

from neonatal blood spots in childhood leukemia cases and matched controls and reported 

associations between adducts and incident cases of acute lymphoblastic and myeloid 

leukemias (21).

Since not all ROS react with Cys34, we recently extended our HSA-adductomics pipeline 

to include ε-amino modifications to Lys525, a hotspot for adduction of glycation end 

products and Schiff bases (22,23). The combined Cys34/Lys525 pipeline interrogates 

modifications to both the T3 peptide and the doubly-charged miscleaved Lys525 peptide 

(525KQTALVELVK534, m/z 564.8529). Here we report the first application of the Cys34/

Lys525 pipeline to cancer etiology, using incident NHL cases and matched controls from the 

EPIC-Italy cohort. We conducted this exploratory study to discover adducts that discriminate 

for NHL incidence, with particular emphasis on sex differences and potential roles played by 

ROS and redox biology.

Materials and Methods

Cases and controls

Serum specimens from 67 incident cases of NHL (59 B-cell and 8 T-cell cases tabulated 

in Supplementary Table S1) and 82 controls were obtained from the EPIC-Italy cohort of 

47,749 volunteers recruited in five centers in Italy between 1993 and 1998 (24). Written 

informed consent was obtained from all participants and the study was conducted in 

accordance with the World Medical Association Declaration of Helsinki. The study protocol 

was approved by an institutional review board of the Human Genetics Foundation (Turin, 

Italy). Participants were followed-up from the date of entry in the cohort until the occurrence 

of any cancer (except non-melanoma skin cancer), death, emigration, or end of follow-up 

(between 2009 and 2014, depending on the center). NHL cases were identified through 

linkage with cancer and mortality registries by the morphology codes morphology 967–972 

of the International Classification of Diseases (ICD-O-2). Controls from the cohort were 

matched to cases (1:1) by age, year and season of enrollment, and sex. After removal of 

15 cases due to misclassified cancer type or missing covariate data, the corresponding 15 
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controls were retained in the analyses for feature selection. Information about diet, body 

mass index (bmi) and lifestyle factors were collected with questionnaires (including FFQ) 

(25). Table 1 lists summary statistics for the NHL cases and controls and selected covariates 

based on previous associations with NHL risk (4,12,13,26). Across our subjects, no evidence 

of significant differences between NHL cases and controls were observed (nominal p-values 

≥ 0.23, Table 1). Table 1 also provides statistics for time (from recruitment) to case diagnosis 

(ttd, days).

Laboratory analysis and data acquisition

Serum samples had been stored in liquid nitrogen for approximately 20–25 years prior to 

shipment to our laboratory where they were maintained at −80°C for a few months prior 

to analysis in 2018. Laboratory investigators were blinded with regard to disease status 

except that case/control pairs were analyzed in the same daily analytical batch and in 

random order to reduce effects of technical variation. Sample processing and analysis by 

nLC-HRMSMS were performed with duplicate injections as previously described (22,23) 

and elaborated in Supplementary Methods S1. Briefly, after digesting HSA with trypsin, 

an isotopically labeled and iodoacetamide-modified T3 peptide (IAA-iT3) was added as 

an internal standard to normalize data for instrument performance. One microliter of each 

digest was then analyzed by nLC-HRMSMS to locate spectra from the T3 and Lys525 

peptides (17,22). The corresponding precursor ions were extracted to obtain a monoisotopic 

mass (MIM) for each peptide feature (hereafter simply ‘feature’) and assign accurate 

masses. To normalize peak areas for the amount of HSA in each sample, the MIM was also 

extracted for the robust HSA peptide 42LVNEVTEFAK51 (m/z=575.3111), adjacent to the 

T3 peptide and referred to as the housekeeping peptide (HKP). The peak area ratio (PAR) 

of the adduct peak to that of the HKP is a robust measure of the adduct concentration (17). 

Peak picking and integration were performed with the average MIMs and retention times. 

Added masses relative to the Cys34 thiolate ion and the Lys525 peptide were estimated 

as described in Supplementary Methods S1. Putative adducts were annotated based on a 

combination of retention time, accurate mass, elemental composition, database searches and 

available reference standards.

Statistical analysis

Data consist of nLC-HRMSMS peak areas for 57 Cys34-containing features and 12 Lys525-

containing features from 148 samples analyzed with duplicate injections and one with a 

single injection (n=297). Duplicate injections are used to estimate the amount of technical 

variation in nLC-HRMSMS analysis and averaging them lessens the impact of this source 

of variability. As previously described (18), peak areas were log-transformed and intraclass 

correlation coefficients (ICC) and coefficients of variation (CV) were estimated using a one-

way random effects model where the log-abundance of the feature was the subject-specific 

effect and duplicate injections were sample-specific effects. Using an empirical ICC cutoff 

of >0.2 to remove features with large proportions of technical variation resulted in removal 

of five features, leaving 62 for further analysis. For each feature, log-abundances from 

148 duplicate injections were averaged, ignoring missing values, and those with more than 

30% missing values were removed. This resulted in the additional removal of 27 features, 

leaving 35 for further analysis. When values were missing from both duplicate injections, 

Grigoryan et al. Page 4

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



missing values were imputed using k-nearest-neighbor imputation with the number of 

neighboring features set to five. The scone package (https://rdrr.io/bioc/scone/) was used 

to select a normalization scheme with inputs consisting of the imputed abundance matrix, 

the analytical-batch variable, a binary case/control variable, and the matrix of sample-level 

quality control (QC) measures (i.e., HKP abundance, internal standard abundance and 

sample run order). Based on performance measures returned by scone, the data were 

normalized using upper-quartile scaling while adjusting for case/control status, batch, and all 

three principal components of the QC matrix.

Statistical analyses of the normalized data were performed in the R environment as 

previously described (18,21). To capture associations between features and case/control 

status for hypothesis generation, features were selected using an ensemble approach based 

on multivariate linear regression, regularized logistic regression (LASSO), and Random 

Forest. First, the following linear regression model was used for a given logged and scaled 

feature abundance Y in the ith subject:

E[Y i Xi, Qi] = β0+β1Xi, case/control+β2Xi, sex+β3Xi, age+β4Qi, 1+β5Qi, 2+β6Qi, 3+∑j:{7:20} βjXi, batcℎj − 6 (1)

where: case/control denotes binary status, Q represents the matrix of QC principal 

components, sex and age (at recruitment) are self-explanatory, and batcℎ is the analytical 

sample batch. Features were ranked by their nominal unadjusted p-values for testing the null 

hypothesis that the case/control coefficient (β1) is zero using a t-test, and the case/control 

fold-change (FC) was estimated as exp(β1). Second, a LASSO model was fit to normalized 

feature abundances over 500 bootstrapped datasets, with case/control status as the outcome 

variable and the following independent variables: normalized logged abundances for all 35 

features, and the covariates age and sex. The percentage of times that each feature was 

selected by LASSO was used to rank its association with NHL. The same input was given 

to Random Forest to rank features by their mean decreases in Gini index. Features highly 

ranked by concordance plots for both linear regression nominal p-value and LASSO were 

joined with those of high importance from Random Forest, to provide additional evidence 

of associations with NHL, including non-linear associations. Given prior evidence that NHL 

incidence was consistently greater in males, feature selection was repeated separately for 

males and females.

Correlations between normalized feature abundances were displayed with agglomerative 

hierarchical clustering using complete linkage of Spearman correlation values (‘superheat’ 

function in R from the superheat package). Associations between selected features and 

covariates (smoking, bmi, caloric intake, consumption of meat, vegetables and alcohol, 

physical activity, and age) were further ranked with Random Forest.

Because NHL cases and matched controls were evaluated up to 21 years after recruitment, 

we used permutation tests to check for associations between relative adduct abundance 

(case/matched control) and days from recruitment to diagnosis (ttd) to differentiate between 

potentially causal effects or reactive effects of disease progression (reverse causality) 

(18,27,28). This was done by randomly permuting the ttd of a given case and the log(FC) 

10,000 times (thereby breaking any association between the two), each time recording 
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the slope of the best fit line when regressing log(FC) on ttd. The p-value reported is the 

percentage of the 10,000 random permutations that the absolute value of the estimated slope 

was greater than or equal to the absolute value estimated using the observed data. If a 

significant linear trend in log(FC) for a given feature was detected with increasing days to 

diagnosis, the adduct feature was considered as potentially reactive.

Data Availability

The data generated in this study are available upon request from the corresponding author.

Results

The 57 Cys34 and 12 Lys525 features are listed in Supplementary Tables S2.A and S2.B, 

respectively. For each feature, the LC retention time, observed and theoretical MIMs 

and the corresponding mass deviation (Δmass), accurate mass, added mass and elemental 

composition are shown along with the annotation and PAR value. Supplementary Table S3 

shows FCs and the nominal p-values for testing the null hypothesis that the case/control 

coefficient (β1) is zero using a t-test for both the unstratified and sex-stratified data. 

Case-control-fold changes were both positive and negative, indicating that some features 

were more abundant in cases and others in controls, respectively. Supplementary Table 

S4 shows the within- and between-subject variance components from the random effects 

model of each feature and the corresponding values of the ICC (median=0.753) and CV 

(median=0.337). Forty seven of the 67 detected features have been reported previously in 

our laboratory, with citations noted as footnotes in Supplementary Tables S2.A and S2.B.

Supplementary Figures S1.A–C, D–F and G–I show the results of feature selection for all 

subjects, males and females, respectively, and Table 2 combines the results to list features 

selected for associations with NHL. Altogether ten features satisfied the selection criteria 

based on multivariate linear regression plus LASSO and/or Random Forest: eight Cys34 

adducts, i.e., 796.43 (Cys→Gly, males), 805.76 (Cys→oxoalanine/formylglycine, males), 

816.43 (methylation, males and females), 822.42 (Cys34 sulfinic acid, males), 827.088 

(methanethiol, males), 827.094 (Cys34S–(O)–O–CH3, all subjects and males), 835.11 

(crotonaldehyde, females) and 894.44 (γ-GluCys, all subjects, males and females), and two 

Lys525 features, i.e., 580.85 (Lys525 oxidation product, females) and 578.32 (unknown, all 

subjects and females). Two of the three features selected from analyses of all subjects were 

heavily influenced by either males (827.094) or females (578.32). Eight of the ten selected 

features were more abundant in controls and two were more abundant in (male) cases.

In order to determine whether the eight T-cell lymphomas substantially altered the results, 

we repeated data normalization, imputation and feature selection after excluding the T-cell 

cases (three males and five females). The results, summarized in Supplementary Table S5, 

are very similar to those in Table 2. Eleven features were selected (rather than ten), including 

the same seven in males and six (rather than five) in females, and four (rather than three) 

in all subjects. One new feature was selected in females, 647.34 (unknown) and 835.11 

(crotonaldehyde) was now also selected in all subjects.
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Heatmaps presenting matrices of Spearman correlations between features and their 

corresponding clusters are shown in Figures 1A and 1B for males and Figures 2A and 

2B for females, respectively. Clusters containing selected features (shown in red) provide 

clues regarding pathways towards peptide modifications associated with NHL, i.e., clusters 

C1-C3 for males and D1-D3 for females. Figures 3A and 3B and Figures 4A and 4B 

show Random Forest plots and the corresponding heatmaps of the selected features and 15 

covariates for males and females, respectively. For males, Figure 3A shows that five selected 

features are ranked as more important by Random Forest than any covariate. Total calories 

and fruit have somewhat lesser importance by Random Forest while physical activity and 

smoking have the least importance. The corresponding heatmap (Figure 3B) shows that the 

five features in cluster E1 (796.43, 805.78, 822.42, 827.088 and 827.094) tend to be strongly 

negatively correlated with age, total calories and consumption of alcohol and meat (cluster 

E3) and to a lesser extent with leafy-vegetables. In E2, feature 894.44 clusters with bmi, 

age and smoking and has a strong negative correlation with physical activity. Regarding 

females, Figure 4A indicates that consumption of fruit and meat showed importance by 

Random Forest that was comparable to four of the selected features (578.32, 816.43, 894.44 

and 835.11) while other covariates showed substantially less importance. The heatmap 

(Figure 4B) shows contrasting correlations of these four features with covariates where 

strong/moderate negative correlations are seen between 835.11 and 816.43 and smoking and 

root vegetables, and also between 894.44 and meat, physical activity and nuts and seeds, and 

between 578.32 and physical activity and fruiting vegetables.

To determine whether abundances of selected features may have resulted from disease 

progression (reverse causality) rather than their causal role in NHL, we examined the 

relationships between log-fold-changes of adduct abundances of NHL case/control pairs and 

days from recruitment to diagnosis (ttd). Results are presented in Supplementary Figures 

S2.A and S2.B as individual plots for the seven selected features in males and five in 

females, respectively. Of these nine features, only 816.43 (methylation) in male subjects 

had a sufficiently small p-value for the regression coefficient (p=0.0026) to suggest reverse 

causality (Supplementary Figure S2.A).

Discussion

As with our previous adductomic investigations of CRC and childhood leukemia (18,21), 

this study of incident NHL cases and controls relied on an ensemble of regression and 

classification methods to generate hypotheses about features for likely association with 

NHL, up to 11 years prior to diagnosis (Table 2). All seven of the T3-peptide features 

had previously been reported in humans (Supplementary Table S2.A) suggesting that their 

reactive precursors, including ROS, represent common exposures and/or pathways that 

increase NHL risks. The two Lys525 features selected for association with NHL (578.32 and 

580.85) had not previously been reported in the two prior studies that included modifications 

at that locus (Supplementary Table S2.B).

Two interesting findings emerged (Table 2). First, only two of the nine selected features 

overlapped between males and females, supporting empirical evidence that NHL incidence 

differs substantially between sexes (3,4). Indeed, if we had relied solely on analysis of 
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all subjects, six of the nine selected features would have been missed. Second, seven of 

the nine selected features were more abundant in controls (FC range: 0.710–0.826), while 

only two were more abundant in (male) cases (FC: 1.204 and1.392) (Figures 1B and 2B). 

This indicates that adduct features reflect both protective and detrimental effects on NHL 

incidence.

Focusing first on the features selected in male subjects, four were present in cluster C1, 

one in C2 and one in C3 (Figure 1A). Cluster C1 contains products of sulfoxidation or 

oxidative cleavage of Cys34, including selected features: 796.43 (Cys→Gly, FC=0.792), 

822.42 (Cys34 sulfinic acid, FC=0.826) and 827.094 (Cys34S–(O)–O–CH3, FC=0.735). 

Inclusion of selected feature 827.088 (S-addition of methanethiol, FC=1.392) in C1 is 

particularly intriguing because methanethiol is a product of microbial-human co-metabolism 

that is mediated by the gut microbiota via catabolism of methionine and/or methylation 

of hydrogen sulfide (29). Our previous investigation of CRC found elevated levels of 

827.088 in incident cases (18), thereby implicating the gut microbiota as a CRC risk factor, 

consistent with formal hypotheses (30,31). Here, a similar positive association of NHL 

with 827.088 years prior to diagnosis suggests that translocation of gut microbes to the 

circulation may increase NHL risk.

Microbial translocation from the gut to the circulation and the resulting immune activation 

in healthy humans can result from a host of factors, including gut microbial dysbiosis, viral 

infections, IgA deficiency, reduced bacterial clearance by the liver, and excessive alcohol 

consumption (32), and has been associated with B-cell NHL following HIV infection 

(33). The fact that 827.088 clusters in C1 with features representing Cys34 oxidation 

products suggests a possible pathway involving systemic inflammation induced by gut 

microbial translocation. Indeed, the Cys34 sulfinic and sulfonic acids (822.42 and 827.75, 

respectively) in C1 are recognized biomarkers of systemic inflammation that have been 

linked to several diseases and syndromes including type 2 diabetes mellitus (34,35) [a risk 

factor for NHL (11)], kidney disease (36), liver disease and sepsis (37,38), and hemodialysis 

(39).

Referring next to cluster C2, feature 894.44 (Cys34 disulfide of γ-GluCys) is less abundant 

in NHL cases (FC=0.710). γ-GluCys is a precursor of GSH that is the predominant 

intracellular scavenger of ROS (40). Although our previous study of lung cancer found 

that lower abundance of 894.44 was associated with increased smoking intensity and 

pack-years of cigarette consumption (19), this adduct shows moderate positive correlation 

with smoking in this study (Figure 3B). Membrane-bound γ-glutamyltranspeptidase 

catabolizes conversion of extracellular GSH to CysGly (another constituent of C2) that 

stimulates production of pro-oxidant species and is upregulated by depletion of intracellular 

GSH (41,42). Thus, the high correlation in C2 between Cys34 disulfides of γ-GluCys 

(894.44) and CysGly (870.43) points to dysregulation of GSH metabolism in NHL cases. 

Interestingly, similar reductions in levels of 894.44 and 870.43, as well as that of the 

GSH adduct (913.45), were observed in smokers from the lung-cancer study (19) and also 

among nonsmoking Chinese females exposed to indoor effluents from coal combustion, a 

major source of ROS (43). It is also noteworthy that 827.088 (methanethiol) is negatively 
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correlated with both 894.44 and 870.43, suggesting roles for microbial translocation in GSH 

metabolism and redox biology.

The large C3 cluster contains a mixture of Cys34 and Lys525 features, one of which was 

selected for association with NHL, i.e., 816.43 [816.43 (methylation of T3 at Glu 37), 

FC=1.204]. The T3-methylation product 816.43 has been observed in all prior applications 

of our adductomics pipelines, including inconsistent associations with smoking (17,19). 

Review of HRMSMS spectra for this investigation confirmed that Glu37 is the methylation 

site in the T3 peptide. As noted previously, the significant trend of 816.43 abundance with 

ttd in male subjects (Supplementary Figure 2.A) points to reverse causality and encourages 

investigation of 816.43 as an early biomarker of NHL, with lower abundance at diagnosis.

Turning now to features selected for association with NHL among females (Table 2), in 

addition to 816.43 and 894.44 (also selected in males) 835.11 (crotonaldehyde, FC=0.785) 

has been reported previously (footnoted in Supplementary Table S2), while 578.32 

(unknown, FC=0.886) and 580.85 (Lys525 oxidation product) are novel to the current 

investigation. Crotonaldehyde is a reactive α, β-unsaturated aldehyde produced by ROS 

oxidation of membrane lipids (44), and we had previously found 835.11 to be elevated in 

CRC cases (18) as well as in incident cases of childhood acute lymphoblastic leukemia (21) 

and in workers exposed to benzene (45), a known human leukemogen and promoter of ROS 

that has been causally linked with NHL (46) and with autoimmune disease as a risk factor 

for NHL (47). Figure 2A shows that unknown feature 578.32 and the Lys525 oxidation 

product 580.85 cluster with each other and with unknown feature 587.31 (cluster D3). 

The fact that neither 578.32 and 580.85 nor 816.43 and 835.11 are appreciably correlated 

with the oxidation products in D2 that were favored in C1 for association with NHL in 

males (Figure 1A) emphasizes differences in operative pathways between sexes. However, 

894.44 (γ-GluCys adduct) is marginally negatively correlated the oxidation products in D2 

(Figure 2A), albeit much weaker than the corresponding correlations observed in males 

(Figure 1A). Also 827.088 (methane thiol adduct) is moderately positively correlated with 

the D2 oxidation products suggesting possible influences of microbial translocation/systemic 

inflammation in females.

Analyses of covariates summarized in Figures 3A and 4A indicate that calories (total 

energy) and consumption of fruit and meat highly ranked for importance to NHL incidence 

by Random Forest in both sexes. In males, alcohol was also highly ranked whereas, in 

females, stalk vegetables and sprouts were highly ranked. In particular, three of the five 

features representing Cys34 oxidation products in cluster E1 of the male heatmap (Figure 

3B: 796.43, 805.76 and 827.088) are all negatively correlated with intake of calories, alcohol 

and meat. A similar pattern is seen for features 816.43 and 835.31 in the female heatmap 

(Figure 4B), which are negatively correlated with intake of alcohol, meat and fruiting and 

root vegetables.

Figure 5 shows a Mean-Difference plot of the case/control ratios of median values of feature 

abundances for covariates by sex. Since deviations from the dashed line, representing equal 

ratios, indicate substantial differences between sexes, ratios for consumption of cabbage and 

root vegetables tend to be greater in females while those for calories and consumption of 
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alcohol, fruit, meat and mixed and leafy vegetables tend to be greater in males. These sex 

differences in dietary and alcohol consumption and the heatmaps in Figures 3B and 4B may 

help to explain the limited overlap of feature selection between males and females (Table 

2). Also, the correlations between selected features and consumption of alcohol, meat and 

certain vegetables are interesting when considering that these same covariates are recognized 

risk factors for NHL (4,13).

Perhaps our most provocative finding is evidence that the methanethiol adduct (827.088) is 

elevated in male NHL cases. This biomarker of enteric microbial metabolism was previously 

found to be elevated in incident CRC cases, where translocation of enteric bacteria into 

colonic mucosa and the resulting inflammatory response hypothetically contributed to 

localized tumors (18). Extending this hypothesis to NHL implies that microbial translocation 

from the gut results in systemic release of microbes and the resulting inflammation/ROS 

that can transform circulating lymphocytes and/or promote cancers throughout the body. 

Furthermore, associations between 827.088 and intake of total calories, alcohol, meat and 

leafy vegetables suggest that prior reports of NHL associations with intake of alcohol, 

meat and dietary constituents (4) may involve microbial pathways. Follow-up is needed to 

confirm this finding with additional data from prospective cohorts, preferably in conjunction 

with fecal metagenomics to determine whether gut microbial dysbiosis may be involved and 

with screening for immune activation.

Our study has some strengths. First, the adductomics assay provides direct evidence of 

the disposition of ROS in the interstitial space during the month preceding phlebotomy 

and thus is highly relevant to ROS-induction of NHL. Second, our hypothesis-free design 

and ensemble of regression/classification methods permitted unbiased selection of adducts 

for associations with NHL. Third, expanding the Cys34 adductomics pipeline to Lys525 

extended the range of adducts and their underlying chemistries, and included two selected 

features (578.32 and 580.85). And third, the high quality of serum samples from the EPIC-

Italy cohort collected up to 11 years prior to diagnosis reduced the potential for reverse 

causality.

There are also weaknesses. The sample size was small, particularly after stratification by sex 

(Table 1) and results will require validation. Although storage of biological specimens for 

decades can produce artifacts, specimens were stored (for 20–25 years) in liquid nitrogen, 

and cases and controls were matched by year of enrollment to minimize potential storage 

effects. While four selected adducts were confirmed with synthetic standards (827.088, 

827.094, 835.11 and 894.44), annotations of the others were based on elemental composition 

and should be regarded as putative. Since HSA adducts have a residence time of one month 

in humans, adduct levels measured in blood collected at recruitment may not accurately 

reflect those in following months or years. Likewise, given the seasonality of the Italian 

diet, correlations between adduct levels and dietary covariates collected by FFQ should be 

interpreted skeptically. Another limitation was our inability to examine connections between 

adducts and advanced neoplasms (precursors of NHL) for advanced stage vs. early stage 

cancers.
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In summary, we used untargeted adductomics to detect 68 adduct features in HSA from 67 

incident NHL cases and 82 controls, of which nine were selected for association (seven in 

males and five in females), with three selected in both sexes. The minimal overlap among 

selected features between males and females reinforces well-known sex differences in NHL 

risk. In male subjects, decreased abundances of several features representing oxidative 

pathways as well as γ-GluCys (894.44), a precursor of GSH, add weight to findings that 

long-term oxidative stress can lead to dysregulation of redox biology. Also, the increased 

abundance of the methanethiol adduct (827.088) and its correlation with Cys34 oxidation 

products in males implicates enteric microbial translocation and the resulting systemic 

inflammation as a potential pathway for NHL.
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Figure 1. 
Heatmap showing all features in MALE subjects (A) with clusters identified in (B). Features 

selected for association with NHL are highlighted in red.
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Figure 2. 
Heatmap showing all features in FEMALE subjects (A) with clusters identified in (B). 

Features selected for association with NHL are highlighted in red.
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Figure 3. 
Variable importance of covariates and selected features as ranked by Random Forest in 

MALE subjects (A) and heatmap showing the corresponding correlations (B).
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Figure 4. 
Variable importance of covariates and selected features as ranked by Random Forest in 

FEMALE subjects (A) and heatmap showing the corresponding correlations (B).
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Figure 5. 
Mean-Difference plot of median values of case/control ratios for covariates by sex. The 

y-axis shows the case/control ratio of median values in males minus the case/control ratio of 

median values in females. The x-axis shows the mean of these two quantities. The dashed 

line indicates no difference in the ratio between males and females.
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Table 1.

Summary statistics for covariates included with NHL cases and controls.

Variable Cases (n=67) Controls (n=82) p-value1

Sex Male 23 Male 32 0.67

Female 44 Female 50

BMI (kg/m2)   Min 19.84 Min 15.53 0.63

Mean 26.42 Mean 25.76

Median 25.69 Median 26.06

Max 36.59 Max 36.16

Alcohol Consumption (g/d) Min 0 Min 0 0.38

Mean 12.45 Mean 15.35

Median 5.13 Median 8.78

Max 64.78 Max 78.98

Smoking Status Yes 32 Yes 41 0.34

Ex 17 Ex 28

No 16 No 13

Meat Consumption (g/d) Min 0 Min 10.4 0.40

Mean 108.9 Mean 114.1

Median 100.6 Median 105.3

Max 348.0 Max 350.5

Physical Activity2 1 17 1 22 0.67

2 23 2 29

3 17 3 16

4 8 4 15

Age at Recruitment (years) Min 40 Min 39 1.00

Mean 54.21 Mean 5417

Median 54 Median 53

Max 74 Max 75

Calorie Consumption (kCal) Min 1048 Min 1021 0.64

Mean 2269 Mean 2323

Median 2051 Median 2110

Max 4571 Max 5727

Leafy Vegetable Consumption (g/d) Min 0 Min 0.3 0.51

Mean 35.22 Mean 36.06

Median 26.60 Median 26.75

Max 121.9 Max 138.3

Fruiting Vegetable Consumption (g/d) Min 13.5 Min 9.6 0.43
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Variable Cases (n=67) Controls (n=82) p-value1

Mean 76.24 Mean 70.18

Median 69.30 Median 66.65

Max 195.0 Max 202.8

Root Vegetable Consumption (g/d) Min 0 Min 0 0.55

Mean 15.09 Mean 15.75

Median 8.60 Median 8.85

Max 216.7 Max 127.8

Cabbage Consumption (g/d) Min 0 Min 0 0.54

Mean 6.02 Mean 5.09

Median 3.80 Median 3.50

Max 29.6 Max 40.5

Stalk Vegetable and Sprouts Consumption (g/d) Min 0.3 Min 0.1 0.50

Mean 14.61 Mean 12.49

Median 12.3 Median 9.8

Max 54.5 Max 41.0

Mixed Vegetable Consumption (g/d) Min 0 Min 0 0.23

Mean 4.74 Mean 4.73

Median 1.1 Median 2.05

Max 94.8 Max 126.1

Fruit Consumption (g/d) Min 41.3 Min 27.5 0.26

Mean 331.6 Mean 346.1

Median 260.9 Median 320.6

Max 1,057 Max 894.6

Nut and Seed Consumption (g/d) Min 0 Min 0 0.27

Mean 1.16 Mean 1.24

Median 0.3 Median 0.3

Max 8.5 Max 14.3

Time to Diagnosis (days) Min 45

Mean 2010

Median 2005

Max 3721

1
p-values were computed with chi-squared statistics for categorical variables and with Wilcoxon-rank sum tests for continuous variables.

2
For definitions and validation of physical activity see (48).
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