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We present a computationally-efficient method for obtaining the fully spun-up state of a seasonally-
varying global ocean biogeochemistry model. The solver uses a Newton–Krylov method to find the fixed
points of the map that assigns to an initial state the value of the model state at the end of a one-year run.
Apart from the preconditioner, which we describe in the paper, the method relies on a black-box public-
domain Newton–Krylov solver that does not require the explicit construction of the model’s Jacobian
matrix. Applied to the PO4 plus dissolved organic phosphorus (DOP) cycle of an Ocean Carbon Model
Intercomparison Project II (OCMIP-2) type model, the solver is more than two orders of magnitude faster
than the traditional time-stepping method for spinning up the model. The efficiency of the solver is illus-
trated by using the seasonally varying globally-gridded PO4 climatology to objectively optimize the
parameters that control the mean lifetime of semi-labile DOP and the fraction of new production allo-
cated to DOP. The optimization study demonstrates that the information in the seasonal variations of
PO4 do not provide a significantly stronger constraint than the annually averaged data used in previous
optimization studies.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Ocean-biogeochemistry models have many uncertain parame-
ters that cannot be directly measured in the field or laboratory.
These parameters must be constrained by adjusting them so that
the model output matches the available observations as well as
possible. It is therefore desirable to develop objective parameter
optimization methods that go beyond the trial-and-error approach.

The major impediment to applying automatic parameter opti-
mization methods to global ocean-biogeochemistry models is that
global models take several thousand years to reach a new equilib-
rium each time a parameter is perturbed. This timescale for tran-
sients to die out and the model to reach its equilibrium is set by
the most slowly decaying eigen-mode of the model’s advection-
diffusion equation. For a global model the slowest decaying mode
has a timescale of roughly 800 years (Primeau, 2005; Khatiwala
et al., 2005) and projects directly on the transport of nutrient rich
deep water back to the sunlit surface ocean. The long runs needed
to reach equilibrium have made it impractical to perform the large
number of runs needed to systematically optimize parameters
objectively even for relatively coarse resolution models.

Here, we present a new implicit solver that greatly reduces the
computational time needed for obtaining equilibrium solutions of
a seasonally varying global ocean-biogeochemistry model. We
ll rights reserved.

: +1 949 8243874.
build on the recent work of Kwon and Primeau (2006, 2008) who
introduced the use of an implicit iterative solver based on New-
ton’s method to compute the steady state of an ocean-biogeochem-
istry model. The key new development we present here is a solver
that can obtain cyclo-stationary solutions of a seasonally varying
model.

The inclusion of seasonal effects is important for biogeochemis-
try because the upper ocean exhibits strong seasonal variations in
both circulation and export production. Potentially important rec-
tification effects cannot be captured in a steady model. It is known
for example, that the T–S properties of the main thermocline reflect
more closely those of the end-of-winter mixed layer rather than
the annual-mean state and one expects that Stommel’s mixed-
layer ‘‘Demon” is also at work biasing the coupling between the
surface mixed layer and the main thermocline for nutrients, albeit
modified by the seasonality of the sinking particle flux (Stommel,
1979; Williams et al., 1995). The first goal of this paper is to pres-
ent the formulation and implementation of a new solver and dem-
onstrate its efficiency in the context of the phosphorus cycle as
implemented in phase 2 of the Ocean carbon Model Intercompar-
ison Project (OCMIP-2, R. Najjar and J. Orr, Design of OCMIP-2 sim-
ulations of chlorofluorocarbons, the solubility pump and common
biogeochemistry, 1998, http://www.ipsl.jussieu.fr/OCMIP/phase2/
simulations/design.ps, hereinafter referred to as Najjar and Orr
online document). A key advantage of our new solver is that it
does not require the explicit construction of the model’s Jacobian
matrix and should therefore be easy to implement in any ocean

http://www.ipsl.jussieu.fr/OCMIP/phase2/simulations/design.ps
http://www.ipsl.jussieu.fr/OCMIP/phase2/simulations/design.ps
mailto:fprimeau@uci.edu
http://www.sciencedirect.com/science/journal/14635003
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biogeochemistry model. In fact the solver we use is a professionally
written public domain Newton–Krylov solver written by Kelley
(2003). All that is needed to apply the method is to formulate a
preconditioner and to implement a simple interface between the
model and the black-box Newton–Krylov solver. We give only a ba-
sic idea behind the Newton–Krylov algorithm because the imple-
mentation details can be found in the book by Kelley (2003). Our
focus is on the formulation of the interface between the model
and the solver which we describe in Section 2 and the precondi-
tioner which we described in Section 4 after first reviewing the
model formulation in Section 3. The formulation of an effective
preconditioner is the key to the method’s efficiency.

In addition to describing the solver itself, we also illustrate how
the fast solver can be used effectively in a parameter optimization
study. The optimization study we conduct is motivated by the pre-
vious work of Kwon and Primeau (2006, hereinafter referred to as
KP06). In their optimization study of the parameters controlling
the cycling of phosphorus using the annual-average global PO4 cli-
matology, KP06 found that the parameters controlling the mean
lifetime of dissolved organic phosphorus (DOP) and the fraction
of new production allocated to DOP were not well constrained
independently. They speculated that perhaps the information in
the seasonal variations of the PO4 climatology that was left out
in the cost function for their steady-state model might help to bet-
ter constrain the parameters. The second goal of the present study
is to test this hypothesis. To our knowledge ours is the first such
optimization study of a seasonally varying global model. The for-
mulation of the cost function and the optimization results are pre-
sented in Section 6.

2. Equilibrium solutions expressed as the fixed points of a map

In this section, we describe the interface needed to cast the out-
put of a biogeochemistry model in a form that can be used by the
Newton solver. For the steady-state case considered by KP06, the
equations governing the biogeochemistry model can be written
symbolically as

dxðtÞ
dt
¼ FðxðtÞÞ; ð1Þ

where xðtÞ is the model state at time t. The usual approach to spin-
ning-up the model to equilibrium is to integrate Eq. (1) forward it
time until the transients die out so that dx=dt ! 0 and x becomes
independent of time. To find the equilibrium state using Newton’s
method one sets dx=dt ¼ 0 and seeks the solution to the resulting
time-independent coupled system of algebraic equations,
FðxeqÞ ¼ 0. A sequence of Newton iterates that yields xeq when it
converges is

xnþ1 ¼ xn �
oF
ox

� ��1

xn

FðxnÞ; ð2Þ

where ½oF=ox�xn
is the Jacobian matrix of partial derivatives of F with

respect to the model state x evaluated at xn. States for which the
time-tendency are zero within machine precision are typically ob-
tained after 5 or 6 iterations. The efficiency of the solver used by
Kwon and Primeau (2006, 2008) derives from the fact that the Jaco-
bian matrix for finite-difference models is very sparse. Because the
matrix has mostly zero elements it can be inverted efficiently using
a modern sparse-matrix factorization algorithm.

We now wish to apply a similar method to a seasonally varying
model. The difficulty is that the equilibrium state is now time-
dependent so we cannot simply set dx=dt ¼ 0. The governing equa-
tion for the seasonally varying model is of the form

dxðtÞ
dt
¼ Fðt;xðtÞÞ; ð3Þ
with an explicit time-dependence in F due to the seasonality of
the circulation, temperature field, solar radiation, etc. We are
interested in the case where the explicit time dependence of F
is periodic with period T ¼ 1 year, i.e. Fðt þ T;xÞ ¼ Fðt;xÞ. In an
offline transport model it is easy to ensure that the system satis-
fies this condition by simply recycling the pre-saved one-year
time series of velocity and eddy-diffusivity. In a biogeochemistry
model that is run concurrently with ocean dynamics, one can en-
sure that the system is periodic by recycling a one-year time ser-
ies of surface fluxes of momentum, fresh-water and heat, and by
resetting the dynamical state of the model (temperature, salinity
and momentum) to the same state at the beginning of each year.
To find the periodic equilibrium solutions of equation (3) we want
to recast the problem in a form that can be solved using Newton’s
method. To this end, we define the map, M : x0 ! x, that assigns
to the initial model state xðtoÞ � x0, the value of the solution one
period later, i.e. xðto þ TÞ. Evaluating the map, M, is equivalent to
running the model forward in time for a one year period starting
from the initial state x0. The equilibrium solutions of Eq. (3) cor-
respond to fixed points of M, i.e. MðxeqÞ ¼ xeq. We note in passing
that the usual approach of spinning up an ocean model by time-
stepping the model forward is equivalent to successive applica-
tions of the map M, in other words the model state at the end
of one year is used as the initial condition for starting the next
year of integration. Spinning-up the model in this way is there-
fore equivalent to applying Picard’s method (e.g. Pozrikidis,
1998), xnþ1 ¼ MðxnÞ, to find the fixed point of M. An alternative
to Picard’s method with a better convergence rate is to apply
Newton’s method to find the roots of GðxeqÞ � MðxeqÞ � xeq ¼ 0.
The use of a map as in intermediary in the application of New-
ton’s method has been applied successfully in the chemical engi-
neering community to obtain periodic states of cyclically operated
chemical processes, (see for example Van Noorden et al., 2003.)
Here, we apply the method on a much grander scale to the global
ocean viewed as a chemical reactor operated cyclically by the
periodic orbit of the Earth around the Sun.

Newton’s method applied to GðxeqÞ ¼ 0 yields

xnþ1 ¼ xn �
oG
ox

� ��1

xn

GðxnÞ: ð4Þ

Unfortunately, the Jacobian of G unlike that of F is not sparse.
Even for a low-order finite difference scheme, a tracer perturbation
at one grid point can spread to many grid points during the inte-
gration of the model over a full year. Consequently, the direct
inversion approach used for the steady-state case by Kwon and Pri-
meau (2006, 2008) is no longer feasible. Instead of explicitly con-
structing and inverting the Jacobian matrix of G, we use an
iterative solver that needs only Jacobian-vector products. These
in turn are computed by the solver itself from G using a forward-
difference directional derivative; all that is needed to apply the sol-
ver is a subroutine that evaluates G. Evaluating GðxÞ is as simple as
running the model forward for one year starting with x as initial
condition and then subtracting this initial state from the model
state at the end of the one-year run. The nonlinear solver then uses
an iterative linear solver, to approximate the solution to Eq. (4). A
Newton–Krylov solver therefore consists of two iterative solvers:
an outer Newton solver which forms the iterations of Eq. (4) and
an inner Krylov solver that uses an iterative approach to ‘‘invert”
the Jacobian. The particular linear iterative solver we use is the
GMRES algorithm (Saad and Schultz, 1986) as implemented by Kel-
ley (2003). GMRES approximates the solution of a linear system
Ax ¼ b with a sum of the form,

xn ¼ x0 þ
Xn�1

k¼0

akAkr0; ð5Þ
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where r0 ¼ b� Ax0 and where x0 is the initial iterate. The coeffi-
cients ak are determined using linear least squares to minimize
jjb� Axnjj. The details of the implementation are taken care by
the black-box solver.

The convergence rate of the inner iterative solver depends crit-
ically on preconditioning the matrix A by pre-multiplying it by an
approximate inverse P � A�1. The closer P is to the exact inverse of
A the fewer iterations will be needed. However, there is a trade-off
between the computational costs associated with the construction
and application of P and the need to minimize the number of inner
iterations. The preconditioner we have implemented is the so-
called ‘‘physics-based” preconditioner in that it is inspired by the
form of the governing equations. We therefore briefly describe
the biogeochemistry model equations before returning to the for-
mulation of the preconditioner.

3. Model description

The OCMIP-2 type phosphorus cycle model is described in detail
in KP06. The circulation model is also the same as the one used by
KP06. The governing equations of phosphate, PO4, and dissolved
organic phosphorus DOP are

o½PO4�
ot

¼ r � JPO4
þ SPO4 � ð½PO4� � PO4Þ=sPO4;

o½DOP�
ot

¼ r � JDOP þ SDOP;

ð6Þ

where SPO4 , and SDOP are the source-sink terms of PO4 and DOP due
to biological uptake and remineralization and where
JPO4
� ðu� KrÞ½PO4� and JDOP � ðu� KrÞ½DOP� are the advective-

diffusive fluxes of PO4 and DOP for a fluid velocity u and eddy-dif-
fusion tensor K. We have also added a slow phosphate restoring
term with PO4 ¼ 2:2 mmol=m3 and with sPO4 ¼ 53; 000 years set
to the mean residence time of PO4 in the ocean. This extra source-
sink term eliminates the null space in the Jacobian of G associated
with the conservation of total phosphorus in the original model.
Apart from making the Jacobian invertible the extra term ensures
that the iterative solver will always find a solution whose total
phosphate inventory equals the value estimated from observations.
Without such a constraint the total amount of phosphorus would be
free to drift during the Newton–Krylov iterations. The geological
timescale associated with this term ensures that it has little effect
on the spatio-temporal PO4 distribution.

The biological source-sink terms are defined as follows

SPO4 ¼ j½DOP� þ
�jPO4

z > zc

� o
oz ðz=zcÞað1� rÞ

R zc

0 jPO4
dz z < zc

(

SDOP ¼ �j½DOP� þ
rjPO4

z > zc

0 z < zc

� ð7Þ

in which

jPO4
¼ 1

s
ð½PO4� � ½PO4�obsÞ �Hð½PO4� � ½PO4�obsÞ: ð8Þ

Here, jPO4 is the organic phosphorus production, also defined as the
new production, following Anderson and Sarmiento (1995). It is
determined by restoring the modeled ½PO4� to the observed monthly
averaged values, ½PO4�obs, with a time scale of s ¼ 30 days. The func-
tion HðxÞ � 1

2 ½1þ tanhðx=kÞ� is a smoothed step-function that is
used to shut off production when the modeled ½PO4� drops below
the observed value. This shutting off of the production when nutri-
ent concentrations drop below a threshold introduces the essential
nonlinearity in the model. The parameter k controls the steepness of
the smoothed-step. In the limit k! 0;HðxÞ becomes the step-func-
tion. We chose a value of k ¼ 10�5 mmol m�3 which is small enough
to give results that are indistinguishable from solutions obtained
with the original step-function used in the OCMIP formulation.
The parameter j defines the inverse e-folding time scale for the
remineralization of DOP. r is the fraction of the production that is
allocated to DOP. The remaining fraction, 1� r is exported out of
the euphotic zone as sinking particles (POP). The exponent a con-
trols the attenuation of the POP flux with depth as particles are
remineralized and organic phosphorus is returned into inorganic
½PO4�.

The model is solved using an offline model with a one day time-
step. The advection-diffusion transport operator uses monthly
averaged velocity and eddy-diffusion tensor fields that were ob-
tained from a dynamical OGCM that was spun up for more than
6000 years. Our particular offline model is integrated forward in
time using a second order Crank Nicholson scheme for the advec-
tion-diffusion terms and a third order Adams Bashforth scheme for
the biogeochemical source-sink terms. The off-line model periodi-
cally cycles through the 12 u and K fields. It is important to empha-
size, that the implementation and efficiency of the Newton–Krylov
solver does not depend in any way on the choice of time-integra-
tion scheme used in the offline model. We chose this particular
time-integration scheme because it was easy for us to implement.

The dynamical OCGM used to generate the circulation fields is a
version of the climate model of the Canadian Center for Climate
Modeling and Analysis, based on the NCAR CSM Ocean Model
(Pacanowski et al., 1993; NCAR CSM Ocean Model Technical Note
(NCAR/TN-423+STR) http://www.ccsm.ucar.edu/models/ocn-
ncom/Doc1_3.html). The transport model has 29 vertical levels
with thickness of 50 m near the surface to 300 m in the deepest le-
vel and a horizontal resolution about 3.75� � 3.75�. The water mass
ventilation properties of the annually averaged circulation are de-
scribed in detail in Primeau (2005), Primeau and Holzer (2006),
Holzer and Primeau (2006, 2008).

4. Preconditioner

Our starting point for formulating the preconditioner is based
on the insight gained from previous water mass ventilation studies
(Primeau, 2005; Primeau and Holzer, 2006) that the long spin-up
runs needed for ocean biogeochemistry models to reach equilib-
rium are due to the slow ventilation timescale for the deep ocean.
Even though the preconditioner we use and describe below is
‘‘physics based”, it does not have to strictly satisfy any physical
or biogeochemical principles. We are free to construct the precon-
ditioner by neglecting most of the biological sources and sinks. We
kept only the slow PO4 phosphate restoring term and the first-or-
der DOP decay rate. These two terms were kept because they elim-
inate the transport operator’s null space. In general, retaining one
sink term for each tracer in the model is sufficient to assure that
the null space will be eliminated. Because these source sink terms
are linear in the model state they do not introduce any state
dependence in the preconditioner. In more complex models that
include tracers with only a nonlinear sink term one would have
to linearize the retained nonlinear sink terms about an appropriate
time-independent reference state. Furthermore, since the seasonal
variations of the circulation in the deep ocean are not very pro-
nounced, we treated the circulation as if it was steady and used
the annually averaged circulation to construct an approximate in-
verse to oG=ox.

The resulting preconditioner we used is given by P ¼ Q�1 � I
with

Q ¼
hAi � I=sPO4 jI

0 hAi � jI

� �
; ð9Þ

where I is an n� n identity matrix with n equal to the total number
of grid-boxes in the model and where

http://www.ccsm.ucar.edu/models/ocn-ncom/Doc1_3.html
http://www.ccsm.ucar.edu/models/ocn-ncom/Doc1_3.html
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hAi ¼ �r � ½hui � hKi � r�; ð10Þ

is the advection-diffusion transport operator constructed from the
annually averaged velocity and eddy-diffusivity tensor fields. The
advection-diffusion equation when discretized using a finite-differ-
ence scheme naturally yields a sparse matrix operator because the
instantaneous tracer-flux divergence at any given grid point de-
pends only on the tracer concentration in a small neighborhood of
grid-cells close to the point at which the flux divergence is being
computed. The sparsity of hAi makes it possible to efficiently com-
pute and store the LU factorization of the Q from which the effect of
pre-multiplying by P ¼ Q�1 � I can be computed accurately and
efficiently (Golub and Van Loan, 1989). Some other important prop-
erties of P are that: (1) it is independent of the biogeochemistry
model state as well as time independent and so needs to be con-
structed only once, (2) the numerical scheme used to construct
hAi need not match exactly the numerical scheme used for the time
dependent tracer transport model so that the time-dependent
scheme could in principle use a high-order upwind scheme with
flux limiters, and (3) the matrix Q has a block triangular structure
which means that only the diagonal blocks of the form hAi � D,
where D is a diagonal matrix whose coefficients are the linear Tay-
lor series coefficients of the retained sink terms, need to be factored
in order to apply P. This last point suggest that when constructing Q
for biogeochemical models that carry a large number of tracers it
should be especially advantageous to neglect source-sink terms so
as to retain a block-triangular structure.

The above preconditioner is applied by pre-multiplying G by P.
This is done by solving Q ~G ¼ G using the precomputed and stored
LU decomposition of Q and passing ~G� G instead of G to the black-
box Newton–Krylov solver. Left-multiplying by P does not change
the fixed points of M but greatly accelerates the convergence rate
of the solver as we will see in the next section.

5. Convergence rate to equilibrium

The convergence rate of the new solver is shown in Fig. 1 where
the root mean square (rms) drift of the model solution is plotted as
a function of the number of evaluations of the map M, i.e. as a func-
tion of the number of one-year runs used. The figure compares the
convergence rate of the traditional time-stepping method (Picard
iterations) which takes in excess of 3000 years to reduce the rms
drift below 10�9 mmol m�3 yr�1, the Newton–Krylov solver with-
out the application of the preconditioner which requires approxi-
 lo
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Fig. 1. Root mean square differences of xðt þ TÞ � xðtÞ, where T ¼ 1 yr, for the usual
time-stepping spin up (solid line) and for the Newton–Krylov solver with no a pre-
conditioner (open circles) and for the Newton–Krylov solver with the pre-condi-
tioner (solid squares). Although it is difficult to determine from the figure, a total
number of 24 simulation years were needed for the pre-conditioned Newton–
Krylov solver to converge.
mately 500 years of integration to reduce the drift below
10�9 mmol/yr and the Newton–Krylov solver with the application
of the preconditioner described in Section 4 which reduces the
rms drift to below 10�9 after only 24 years of integration. Since
the computational cost associated with the application of the pre-
conditioner and the overhead associated with the Newton–Krylov
solver is negligible compared to a one-year run of the model the
preconditioned Newton–Krylov solver is more than two orders of
magnitude faster than the traditional time-stepping method for
spinning up the biogeochemistry model. All three cases shown in
Fig. 1 were initialized with the same observed climatological PO4

distribution and a uniform DOP distribution. If however one has
a good initial iterate, the average number of years of integration
needed for the preconditioned Newton–Krylov solver to converge
can be substantially less. Good initial iterates are typically avail-
able when one uses the solver with a parameter optimization rou-
tine. This will be illustrated in the next section.

Depth versus time plots of the fully equilibrated DOP and PO4

concentrations for the model with parameter values (r ¼ 0:74,
1=j ¼ 1 yr;a ¼ �1:0) are shown for the N Atlantic and Eastern
Equatorial Pacific in Figs. 2 and 3. In the Eastern Equatorial Pacific
the solution shows only a weak seasonal cycle and surface waters
have elevated DOP levels throughout the year. The new-production
for the model solution is very high and does not vary much with
the seasons in the Eastern Equatorial Pacific (Fig. 4a and b). The
over estimated production in the upwelling region of the eastern
equatorial pacific is a common problem for coarse resolution mod-
els and is believed to be associated with errors in the model circu-
lation (Najjar et al., 2007). In the N Atlantic, the solution has a
strong non-sinusoidal seasonal cycle with a mixed layer that pen-
etrates down to approximately 400 m. At depth, the solution
shows only a weak seasonal cycle due to the strong attenuation
of the particle remineralization profile. In the surface the DOP con-
centration is anti-correlated with the PO4 concentration as ex-
pected form the periodic mixing of deep waters that have high
PO4 and low DOP levels and from the fact that DOP the production
of DOP is associated with the consumption of PO4. We note that the
model solution is fully equilibrated even in the deep ocean and
shows no drift associated with the slow adjustment from the initial
condition.
6. Optimization of the parameters controlling the cycling
of DOP

In this section, we illustrate the usefulness of the Newton–Kry-
lov solver in an optimization study of the parameters that control
the cycling of DOP. The parameters in question are r the fraction of
new production allocated to DOP and j the first-order e-folding
remineralization rate of DOP. When these parameters were opti-
mized by minimizing a cost function formed from the steady mod-
el and the annually averaged PO4 observations, KP06 found that
these two parameters were strongly correlated and could not be
constrained independently. Our goal here is to test the hypothesis
that the information in the seasonal variations in the PO4 data –
information that was ignored in the steady-state cost function used
by KP06 – can help to better resolve the parameters.

To test this hypothesis we form a cost function that measures
the distance of the monthly averaged model state from the
monthly averaged PO4 climatology from the World Ocean Atlas
05, (Garcia et al., 2006). The shape of the cost function near its min-
imum determines how well the parameters are constrained. If the
information in the seasonal variations helps to better constrain the
parameters, including seasonal variations in the cost function
should either increase the curvature of the cost function near its
minimum, or decrease the amount of parameter interactions by
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aligning the axes of the elliptical bowl around the minimum with
the parameter axes.

The cost we use is

Cðr; jÞ ¼
X12

k¼1

Xn

i¼1

DVið½PO4�i;kðr; jÞ � ½POobs
4 �i;kÞ

2

Var½POobs
4 �

; ð11Þ

where DVi is the volume of the ith model grid box, ½POobs
4 �i;k is the

observed PO4 concentration for the kth month interpolated to the
ith model grid point and ½PO4�i;kðr; jÞ is the simulated equilibrium
PO4 concentration in the ith grid box averaged over the kth month
(the model uses a one day time-step). The cost function is scaled by
the spatio-temporal variance of the observed field

Var½POobs
4 � ¼

X12

k¼1

Xn

i¼1

DVi ½POobs
4 �i;k � h½POobs

4 �i
� �2

ð12Þ

where

h½POobs
4 �i ¼

1
12

P12
k¼1

Pn
i¼1DVi½POobs

4 �i;kPn
i¼1DVi

¼ 2:2 mmol m�3 ð13Þ

is the spatially and annually averaged PO4 concentration.
To evaluate the cost function we computed equilibrium solu-

tions on a grid of r–j parameter values using a time-step of
dt ¼ 1=72 years. For this computation the equilibrium solution at
one set of parameter values was used as the initial iterate for a
nearby set of parameter values. The same preconditioner was used
to compute all the solutions. Fig.5a shows the number of simula-
tion years needed by the solver to reach equilibrium as a function
of r and j. The plot shows that with a good initial iterate the typical
number of years the model must be run to reach equilibrium is be-
tween 40 and 15 years. If one applied an automatic minimization
routine to find the optimal parameter values most of the needed
equilibrium solutions would be computed in the neighborhood of
the minimum of the cost function where for our example the num-
ber of years of simulation needed is around 20, making the New-
ton–Krylov solver more than 150 times faster than the straight
time-stepping approach.

The resulting cost function is plotted as a function of r and j in
Fig. 5b. The contours indicate the fraction of the spatio-temporal
variance that was not captured by the model. The plot shows that
the optimal value for r is between 0.4 and 0.75, and that 1/j is not
well constrained. The model captures slightly more than 64% of the
spatio-temporal variance. This fraction is slightly less than the
fraction (70%) of the spatial variance alone captured by the steady
model (KP06). The shape of the cost function is also very similar for
the steady and seasonally varying model. The cost function for the
steady-state model is shown in Fig. 4 of KP06. The conclusion must
therefore be that in the context of the OCMIP-2 type model, the
information in the seasonal cycle of the PO4 data does not provide
a stronger constraint than the annually averaged data. This result
emphasizes the importance of obtaining actual DOP or DOM data
so that j and r can be properly constrained.

7. Discussion and summary

Global ocean biogeochemistry models typically need long spin-
up runs of more than 3000 years before the deep ocean reaches
equilibrium with the surface. This long spin-up time is due to the
slowly decaying modes of the circulation model’s advective-diffu-
sive operator. In order to decrease the prohibitive computational
costs associated with the need to repeatedly re-equilibrate the
model each time a parameter is perturbed in the process of
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optimizing parameters, we have developed an efficient Newton–
Krylov solver that is up to two orders of magnitude faster than
straight time-stepping. The solver we have developed uses a pro-
fessionally written public-domain Newton–Krylov solver and does
not require any modification to the existing ocean biogeochemistry
model. In order to apply the method all that is needed is an inter-
face that forms the difference between the model state at the
beginning and the end of a one year run and then solves a linear
system of equations in order to apply a preconditioner. Solving
the linear system of equations effectively inverts the circulation
model’s annually averaged transport operator and thus provides
an implicit treatment of the model’s slow advective-diffusive
transport modes. The applicability of implicit solvers for reducing
the computational costs of spinning up global biogeochemistry
models initiated by Kwon and Primeau (2006, 2008) is greatly in-
creased by our new solver because it yields equilibrium solutions
to seasonally varying models.

In this study, we have explicitly constructed a preconditioner
for the phosphorus cycle of an OCMIP-2 type ocean biogeochem-
istry model with two active tracers. When we started this pro-
ject, our search in the literature on Krylov methods yielded
little in terms of general guidance or specific examples for con-
structing ‘‘physics based” preconditioners for advective-diffusive
systems. We hope that by reporting a specific example of an
effective preconditioner for an ocean transport model we might
stimulate further research on general methods for constructing
efficient preconditioners. Our results here suggest that the pre-
conditioner does not necessarily need to depend on any of the
complex biogeochemical parameterizations in order to be effec-
tive. Furthermore, our proposed preconditioner is based on the
inverse of a block-triangular matrix. This means that only the
diagonal blocks of the form hAi � D, where D is a diagonal ma-
trix, need to be factored. This fact means that the computer
memory and cpu time needed to form, factor, store and apply
the preconditioner will scale linearly with the number of tracers
in the biogeochemical model. We therefore expect that precondi-
tioners such as ours, that are based on the annually averaged
advection-diffusion transport operator, will continue to be effec-
tive in more complex biogeochemistry models as long as the bio-
geochemical dynamics of these models does not involve any
intrinsic timescales comparable to or longer than the longest
timescales associated with the circulation, i.e. �1000 years.
Whether or not it becomes necessary to modify the precondition-
er should the intrinsic dynamics of the biogeochemistry model
include such long timescales is difficult to predict, but we expect
that the Newton–Krylov solver will perform as least as well as
the un-preconditioned case which achieves a non-trivial factor
of 10 speedup compared to straight time-stepping.
We have also tested that the LU decomposition of blocks of the
form hAi � D with the same sparsity pattern as would be obtained
from our model with a 1	 � 1	 resolution with 24 levels can be
computed using less than 32 GB of memory in under 1.5 h using
one Intel(R) Xeon(R) 2.33 GHz cpu. Furthermore, this factorization
needs to be computed only once. The backsolves needed when
applying the preconditioner at the end of each year of simulation
took less than 10 s. The cost of computing and applying the precon-
ditioner is therefore substantially less than running the model for
one year. These results suggest that our solution method is ex-
pected to substantially speed up models with a resolution compa-
rable to what is currently used for global climate models.

Our solver should also be effective for finding solutions to mod-
els that include periods other than the seasonal cycle. In particular,
our solver should be applicable with little or no modification to a
model that includes a diurnal cycle in addition to the annual cycle.
If leap years are not taken into account, the solver should apply
without modification. If leap years are included then one would
have to use the solver to find the fixed point of the map that prop-
agates the model state forward for four years instead of just one.
The effects of longer period phenomena that repeat after an inte-
gral number of years could also be included by applying the solver
to the map that propagates the model state forward for n years
where n is the number of years in the long period cycle. This would
make it possible to include some representation of the effects of
low-frequency variability on biogeochemical cycling. One could,
for example, include a periodic representation of the four year
component of El Ni~no Southern Oscillation (ENSO).

To illustrate the new solver’s efficiency we have used it in a
parameter optimization study of the parameters controlling the cy-
cling of DOP. Previous studies aimed at constraining r, the fraction
of new production allocated to DOP and 1/j and the mean lifetime
of semi-labile DOP, have been conducted in the context of steady
models without a seasonal cycle (Yamanaka and Tajika, 1997;
Kwon and Primeau, 2006, 2008). In the present study, we have
explicitly computed a cost-function that measures the difference
between the model simulated PO4 and the monthly PO4 climatol-
ogy from the World Ocean Atlas (2005). By doing so, we were able
to demonstrate that the information in the seasonal variations of
the PO4 observations do not significantly improve the resolution
of r and j. This highlights the need for direct DOP and DOM obser-
vations in order to constrain these parameters.

In this study, we did not make use of an automatic minimiza-
tion algorithm to optimize the model parameters, but there are
no barriers to doing so. Automatic minimization algorithms can
be used synergistically to gain additional computational savings.
By using a lower tolerance on the Newton–Krylov solver in the
early stages of the minimization and increasing the tolerance only
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in the final stages the overall number of simulation years needed to
find the optimal parameters can be further reduced. In the future
we plan on using the new solver in combination with an automatic
minimization routine to objectively optimize the large and increas-
ing number of parameters in state-of-the-art ocean biogeochemis-
try models.
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