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Statistical Frameworks for Improved Seismic Demand Analysis of Ordinary 

Standard Bridge Structures  

by 
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Doctor of Philosophy in Civil Engineering 

University of California, Irvine, 2021 

Professor Farzin Zareian 

 

Transportation networks of highway bridges are considered the lifelines of a community’s 

infrastructure as they play a significant role in joining communities and serving as the first outlet 

during a calamity such as earthquakes. They are expected to sustain minor damage and maintain 

their functionality after major natural and human-made disasters. Observations from seismic events 

of the last three decades reveal that bridges designed according to seismic design codes demonstrate 

poor performance and occasionally undergo significant damages leading to major consequence on 

the affected societies. In the light of these effects, numerous studies have showcased that one of 

the primary reasons for the unexpected performance of the bridge structures is the improper 

estimation of the expected seismic demands during the design and analysis phase.  

 

With the evolution of risk, reliability, and hazard analysis in quantifying the seismic vulnerability of 

structures, the seismic structural design procedures are continuously updating to develop 

methodologies that achieve more accurate estimations of the structural demands corresponding to 

the target hazard levels. The most widely used conventional procedure is to conduct Incremental 

Dynamic Analysis (IDA) by selecting and scaling seismic ground motion records to attain a scalar 

Intensity Measure (IM), such as spectral acceleration (Sa), associated with a target hazard level of 

the IM hazard curve. The scaled ground motions are then used to conduct the Non-Linear Time-

History Analysis (NLTHA) of finite-element models of the structures, and the obtained response 

value, i.e., Engineering Demand Parameters (EDP), are then utilized for developing EDP hazard 

curves by integrating the EDP-IM data over the IM hazard curve. Numerous studies are conducted 

worldwide describing the limitations of this type of analysis, such as sufficiency and efficiency of 
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single scalar IM as the target, unrealistic scaling of recorded ground motions, type of IDA, ground 

motions not being site-specific, etc. 

 

The research effort presented herein firstly proposes a supplementary Generalized Ground Motion 

Prediction Model (GGMPM) that can be used to construct a vector-based (29 x 1, representing 

intensity-, duration- and frequency- the content of ground motions) IM hazard curves which can 

be then used to select and scale ground motions targeted to a vector of correlated IMs. The 

proposed GGMPM consists of Recurrent Neural Network (RNN) and inter-event and intra-event 

covariance functional forms developed using the Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES). Though the proposed GGMPM framework provides a swift tool to the 

engineering community to tackle some of the deficiencies of current IDA methods, this research 

work further develops EDP hazard curves by conducting large-scale NLTHA of the four bridge 

structures using synthetic ground motions of Site-Based (i.e., DRD model) and Physics-Based (i.e., 

CyberShake 15.12) simulation models. For the five sites in the southern California region, rupture 

variations and their respective probabilities are obtained from Uniform California Earthquake 

Rupture Forecast, Version 2 (UCERF2) database, which are used to simulate Site-Based synthetic 

ground motions using the DRD simulation model for a time-span of 100,000 years. Similarly, 

Physics-Based synthetic ground motions simulated for the CyberShake 15.12 study representing a 

time-span of 200,000 years are selected. This leads to around ~20,000 Physics-Based ground 

motions and ~10,000 Site-Based ground motions for each site.  These simulated ground motions are 

then used to conduct NLTHA of the four OSBs to obtain simulation-based- Site-Based and Physics-

Based EDP hazard curves. The two types of simulation-based EDP hazard curves are compared 

against the conventional IDA-Based EDP hazard curves and various regression models are proposed 

to transform IDA-Based EDPs to simulation-based EDPs. Finally, the three types of EDP hazard 

curves (i.e., Site-Based, Physics-Based, and IDA-Based) for the four bridges and five sites are 

provided for comparison.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

This dissertation proposes different statistical frameworks that can be utilized to conduct an 

improved structural seismic demand assessment. In this research, comprehensive studies are 

conducted to facilitate engineers with statistical tools to obtain more accurate “site-specific” 

estimations of the seismic demands of structures, in particular bridge structures. The current 

methodologies of structural seismic demand assessment do not explicitly include the regional 

seismicity and are highly generalized. This study is a step towards conducting “site-specific” 

assessment of structures which implies that the possible seismic conditions and events of the site 

are considered while conducting structural demand analysis. This research aims at providing the 

engineering community with the frameworks for better seismic hazard modeling in the context of 

Performance-based Earthquake Engineering for standard ordinary bridges, and a complete set of 

testbeds to demonstrate the key features of the proposed technology. In general, the research study 

presented herein have three-fold goals: 1) improve the methods of selecting hazard-targeted 

ground motions, 2) utilize Site-Based synthetic ground motions for bridge demand analysis, and 

3) utilize Physics-Based synthetic ground motions for bridge demand analysis. Furthermore, to 

expedite the engineering community various open source softwares are provided along with the 

frameworks.  

To attain the first goal, a data-driven non-parametric Generalized Ground Motion Prediction 

Model (GGMPM) is developed that predicts an internally correlated vector of 29 Intensity 

Measures (denoted as IM) including geomean of Arias Intensity (Ia), geomean of Cumulative 

Absolute Velocity (CAV), geomean of Significant Duration (D5-95) (denoted as 𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 

and 𝐷5−95𝑔𝑒𝑜𝑚
, respectively), and RotD50 Spectral Acceleration (Sa) at 26 periods (for 5% damped 

oscillator) (Fayaz et al., 2020d). To incorporate the higher-order dependencies among the components 

of IM, the framework of Recurrent Neural Network (RNN) is adopted along with optimization 

techniques of the evolution strategy. In particular, Long-Short-Term-Memory (LSTM) network is used 
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to estimate IM using the seismic source and site parameters which describe the physics of the rupture 

and the site characteristics, as inputs. A sensitivity analysis is conducted in order to choose a subset of 

seismic source and site parameters that can be used as inputs to the RNN framework. Furthermore, the 

residuals of the RNN structure are carefully calibrated in terms of two 29 × 29 covariance matrices that 

estimate the intra-event and inter-event variabilities of the IM. This is done by using functional forms 

to estimate the variances and correlations whose coefficients are calibrated by maximizing the log-

likelihood computed from the discrepancy between the IM estimated from the RNN framework and the 

recorded data. The predictions of the developed GGMPM are then compared against the current 

state-of-art Ground Motion Prediction Models (GMPMs). 

To achieve the second goal, Site-Based stochastic models of Rezaeian and Der Kiureghian (2012) 

and Dabaghi and Der Kiureghian (2018) - denoted as the DRD simulation model, is utilized. Site-

specific synthetic ground motion catalogs representing a time span of 100,000 years are simulated 

for five sites located in Southern California with diverse site and local seismicity conditions. This 

leads to around 10,500 ground motion simulations for each site with Mw > 6.0 occurring within a 

vicinity of 200 km. The simulated Site-Based ground motions are then used to conduct Non-Linear 

Time-History Analysis (NLTHA) of four Ordinary Standard Bridges (OSBs). The Engineering 

Demand Parameters (EDPs) obtained from the bridge structures are used to develop Site-Based 

EDP hazard curves for each bridge at each site. The developed Site-Based EDP hazard curves are 

compared against the EDP hazard curves obtained using conventional Incremental Dynamic 

Analysis (IDA) and a regression model is proposed that can be used to convert IDA-Based EDPs 

to Site-Based EDPs as a function of return period, site soil condition, and site basin depth. 

Furthermore, to assist design engineers, a reduced sample number of ground motions and 

increment angles that can statistically replicate the simulation set at the IM corresponding to the 

desired hazard level 𝜆𝐼𝑀 (= 1/975 years) is proposed for the four bridge structures. This will assist 

engineers in making informed decisions in selecting an adequate number of ground motions and 

intercept angles for conducting the NLTHA of bridge structures (Fayaz et al., 2020b). 

For the third goal, a study is conducted using Physics-Based simulated ground motions of 

CyberShake ver. 15.12. For the five sites located in Southern California, catalogs of  Physics-

Based simulated ground motions representing 200,000 years are obtained from the CyberShake 

database. CyberShake (Graves et al., 2011) is a ground motion simulation tool that contains 



3 
 

ground-motion waveforms representing scenarios present in the Uniform California Earthquake 

Rupture Forecast, Version 2 (UCERF2) (Field et al., 2009) in Southern California. At each site, 

the selected catalog contains roughly 20,000 ground motions from events with Mw > 6.0 occurring 

within a vicinity of 200 km. For each site, the catalog of simulated ground motions is used to 

conduct NLTHA of the four Ordinary Standard Bridges (OSBs). For each combination of bridge 

and site, column drift demands obtained from NLTHA data are used to generate EDP hazard 

curves. This data is compared with the results obtained from conventional methods where recorded 

ground motions are used to conduct Incremental Dynamic Analysis (IDA) of the bridge and the 

results are integrated over a ground motion Intensity Measure (IM) hazard curve for the site. 

Finally, site-specific predictive relations are proposed that correlate the ratio between the two types 

of EDPs with hazard level, site soil condition, and site basin depth. The proposed relations can 

assist engineers to scale the EDPs as per the effects of site and basin conditions (Fayaz et al., 2021a). 

1.2 Background 

Performance-based Earthquake Engineering (PBEE) has been the focus of much research in the 

past two decades. Researchers have faced up to challenges such as: identifying performance 

objectives that are quantifiable and meaningful for engineers and stakeholders alike, identifying 

representations of ground motion intensity that well relate to seismic hazard at the site and the 

global bridge response characteristics, and many other advances whose enumeration does not fit 

into this brief introduction. The new challenge facing researchers is to transfer these sophisticated 

developments to the practicing engineers through applied but comprehensive procedures that 

facilitate implementation.  

Despite fundamental advances in analytical modeling of bridge components, bridge structures, and 

transportation networks, current methods for design of Ordinary Standard Bridge (OSB) structures 

(e.g., SDC ver. 1.7, 2013; ver. 2.0, 2019, AASHTO, 2011) follow conventional methods and utilize 

tools that are incapable of addressing issues related to infrastructure resiliency directly. Current 

OSB design methods mainly focus on bridge component design with a holistic outlook on bridge 

structural behavior. On the other hand, design for infrastructure resiliency is founded on the 

concepts of Performance-based Earthquake Engineering (PBEE) and is capable of tackling issues 

such as bridge functionality, durability, lifecycle cost, and transportation network resiliency. As 

promoted by the Pacific Earthquake Engineering Research (PEER) center’s PBEE framing 
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equation (see Equation 1.1, G functions represent complementary cumulative distribution 

functions, and d represents the derivative function), PBEE can be achieved by stringing four 

random variables of Intensity Measure (IM), Engineering Demand Parameter (EDP), Damage 

Measure (DM), and Decision Variable (DV). Conversely, current bridge design methods utilize 

conventional methods and tools to proportion bridge components for the mean value of EDP for 

an IM representing a target hazard level (i.e., λIM). Embracing PBEE concepts for the design of 

bridge structures requires a more in-depth characterization of EDP such that exercising Equation 

1.1 is possible from λIM to λDV (i.e., an annual frequency of the desired realization of the DV). This 

study is a step in facilitating the use of PBEE in the design of bridge structures.   

𝜆(𝐷𝑉) =  ∫ ∫ ∫ 𝐺(𝐷𝑉|𝐷𝑀). 𝑑𝐺(𝐷𝑀|𝐸𝐷𝑃). 𝑑𝐺(𝐸𝐷𝑃|𝐼𝑀). 𝑑𝜆(𝐼𝑀)  (1.1) 

𝜆𝐸𝐷𝑃 = ∑ 𝐺(𝐸𝐷𝑃|𝐼𝑀)∆𝜆𝐼𝑀     (1.2) 

In Equation 1.1, λ(DV) is the desired realization of the DV (e.g., mean annual frequency of 

exceedance) and the G functions represent complementary cumulative distribution functions. For 

instance, for downtime performance (i.e., average annual downtime for a given bridge) one can 

complete the PBEE methodology as follows: intensity measures, IMs, (e.g., spectral acceleration 

at the first mode period of the structure, Sa(T1)), are determined from seismic hazard analysis; 

relevant engineering demand parameters, EDPs, (e.g., deck rotation, column drift ratio) are 

predicted from structural analysis for given values of IMs (and representative ground motions); 

component/system damage states are developed from repair strategies and DMs fragility curves 

are developed for each component/system; and finally, predictions are made on DVs (i.e., total 

amount of downtime losses of the bridge). For engineering analysis, Equation 1.1 is only 

implemented up to EDP level to obtain EDP hazard curves (𝜆𝐸𝐷𝑃). This is shown in Equation 1.2 

where the close form integral has been replaced by discrete summation for practical computation 

of the integral. 

Engineering of bridges in accordance with Equation 1.1 up to the level of DV was originally 

tackled by Mackie et al. (2008). They utilized several simplifying assumptions on how to treat the 

correlation among damages in bridge components to evaluate DVs for typical bridges in 

California. Similar studies were pursued by Moschonas et al. (2009) who estimated seismic 

fragility curves for typical modern bridges in Greece; and by Kotsoglou and Pantazopoulou (2010) 

who developed a methodology for simulation and assessment of common over crossings subject 
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to transverse seismic excitations while considering soil-structure interaction effects. The common 

theme among these studies – and many more that are not reviewed here – is that they utilize 

nonlinear (dynamic or static) analyses using a set of ground motions to estimate the EDP|IM 

relationships (a.k.a. the EDP-IM curves). The variability in the EDP-IM curves is typically large. 

For example, Dutta and Mander (1998) calibrated the dispersion of statistical data obtained from 

actual bridge damage in the Loma Prieta (1989) and Northridge (1994) earthquakes and observed 

the dispersion in the EDP|IM relationship to be as high as 0.6. Kaviani et al. (2012) presented 

similar results based on simulations carried out over a wide variety of bridge model. Characterizing 

EDP|IM curves and reducing their variability are fundamental in developing accurate estimates of 

DVs using Equation 1.1. Accurate estimation of EDP|IM curves for a bridge structure requires two 

basic ingredients: (1) a rigorous finite-element model capable of capturing component-, and 

system-, level response from elastic to highly inelastic regimes, and (2) proper set of ground 

motion that represent seismic hazard at the location of the bridge (Mackie et al., 2008; Kotsoglou 

and Pantazopoulou, 2010; Yoon et al., 2019; Fayaz et al., 2020a; Fayaz et al., 2020b). The latter 

particularly requires selection and scaling of ground motion records, or using synthetic motions, 

for estimation of EDP-IM curves. Equation 1.1 is currently used up to the EDP level and integrated 

over the IM hazard curve to obtain the EDP hazard curves. The current methods of estimating 

EDPs by depending on “proper” IMs (Luco and Cornell, 2007) can be updated with the current 

increase in the computational resources. The overdependence on IMs representing the seismic 

hazard for developing EDP hazard curves (through integration) often leads to large variations in 

response analysis. Also, though there have been numerous research articles on what can be 

considered a good IM (Jalayer et al., 2012; Eads et al., 2015; Lin and Baker, 2015, Ebrahimian 

and Jalayer, 2020), no single IM has been developed that is independent of the structural 

application and can completely describe the behavior of the structure. RotD50 Sa
 (Boore 2010) is 

the current state-of-art IM that is adopted by all current GMPMs and is expressed as RotDpp, where Rot 

indicates the rotation of the two orthogonal components of the ground motion, D indicates the period 

dependency, and pp corresponds to the percentile value (mainly limited to the 50th percentiles, that is, 

the median value). For the sake of brevity, in this study, RotD50 spectral acceleration at first mode 

period is used as the primary IM of ground motions and used interchangeably with 𝑆𝑎(𝑇) or 𝑆𝑎. 

Current Caltrans design practice is based on utilizing design Acceleration Response Spectrum 

(ARS) with 5% probability of occurrence in 50 years (i.e. Return Period = 975 years). Conditioned 
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on using nonlinear response history analyses for assessing the behavior of a bridge structure, 

engineers select 7 actual or synthetic records and adjust them to the desired, and adjusted, ARS 

curves using linear scaling or spectral matching. Such matching has few shortcomings: (1) it does 

not directly incorporate near field effects such as directionality and incident angle, (2) fails to 

accurately address ground motion time-domain characteristics such as strong motion duration and 

velocity pules in the scaling/adjustment routine, and (3) does not directly discuss matching of two 

orthogonal components of ground motions in the proposed adjustments. These scaled ground 

motions are then applied in three orientations (0, 45, and 90 degrees). For each orientation (and 

for each of the seven sets of time histories) the peak response at each pertinent Degree of Freedom 

(DOF) is recorded. Then for each of the seven time-histories the maximum response among the 

three orientations is obtained, which leads to 7 peak responses at each pertinent DOF. The bridge 

is then designed for the average of the 7 recorded peak responses at each degree of freedom of 

interest.  

The improvements in the procedures of seismic demand analysis of structures have highly 

increased the need for acceptable ground motion time series. In this context, a set of earthquake 

ground motions recorded during past earthquakes are selected, scaled, and utilized to evaluate the 

seismic demands on structures. It is assumed that this set of ground motions represents the seismic 

hazard at the location of the structure. Two commonly used methods to obtain hazard consistent 

ground motions for NLTHA are: 1) selecting a set of ground motion recordings that have a proper 

range of moment magnitude and distance (Mw and R) obtained from seismic hazard deaggregation 

at the site, and 2) scaling a number of ground motions to match the Intensity Measure (IM) of a 

target Hazard Spectrum of the site, which is usually a Uniform Hazard Spectrum (UHS) or a 

Conditional Mean Spectrum (CMS) (Baker 2011). These two methods are frequently applied in a 

sequence where recorded ground motions arising from events that match the deaggregated Mw and 

R, are selected and then scaled to match the target IM. However, these methods have logical 

limitations; they are based on the assumption that ground motion recordings at other locations can 

be utilized to represent the seismic hazard at the site of interest. Despite the expansion of the 

recorded ground motions databases, there remains a lack of usable records especially for scenarios 

with high magnitude and close distances, which makes any ground motion selection and scaling 

method to be approximate. Also, scaling processes can highly modify the characteristics of the 

recorded ground motions and, therefore, may result in unrealistic ground motion characteristics 
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and inaccurate estimation of the structural seismic demands. This has led to an increased interest 

in developing methods for the generation of synthetic ground motions for design scenarios. 

Ground motion simulation methods can be broadly classified into two groups: 1) Physics-Based 

(also known as Source-Based) and 2) Site-Based. The Physics-Based simulation approach is a 

deterministic technique (randomness is added at an earlier stage for rupture generation, and at a 

later stage to augment the record with high-frequency content) that uses the three-dimensional (or 

one-dimensional) representation of the Earth structure to spatially propagate the seismic waves 

from the rupture source to a site. Physics-Based models can produce realistic accelerograms at low 

frequencies (typically <1 Hz), but often need to be augmented for high frequencies by combining 

with a stochastic or empirical component, resulting in “hybrid” models (Douglas and Gehl, 2008). 

In general, these models tend to heavily employ seismological principles to describe the source 

mechanism and wave travel path, as pointed out by Stafford et al. (2009). They depend on physical 

parameters that vary significantly from region to region. This limits their use in regions where 

seismological data are lacking–exactly in places where there is an increased need for generation 

of synthetic ground motions. On the other hand, the Site-Based simulation approach involves a 

stochastic method to generate a data-driven realization of a ground motion time series at a location. 

Compared to Source-Based models, Site-Based models are simpler, computationally efficient, and 

require input parameters that are easily accessible to engineers. Such models implicitly account 

for source, path, and site effects by developing predictive relations for the model parameters in 

terms of seismic event parameters (e.g., magnitude, distance, site conditions) that describe the 

source, the path, and the site. Using the predicted model parameters, Site-Based models then utilize 

a stochastic process to simulate ground motions. 

In the light of the shortcomings of current Caltrans design practice in ground motion hazard 

representation and demand analysis, sophisticated techniques are being proposed to upgrade 

design and analysis methodologies. In a recent study conducted by Caltrans research team Yoon 

et al., 2019, the concept of Probabilistic Damage Control Application (PDCA) was used to analyze 

the bridge structures using the Site-Based ground motion simulation model (Rezaeian and Der 

Kiureghian, 2012; and Dabaghi and Der Kiureghian, 2018; denoted as the DRD simulation model). 

The study proposed to use the event parameters of the top 3 contributing sources to simulate ground 

motions and then either conduct point scaling to match UHS Sa(T1) or use range scaling method to 

match UHS Sa(T1±1 sec). However, this method has some limitations as it adjusts the amplitude 
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of simulated ground motion time histories by applying linear scaling methods. Due to increase in 

the computational power and these types of research works, the current engineering community is 

gradually moving away from generalized design and analysis methodologies. The concept of 

conducting site-specific analysis within the framework of PBEE is being extensively studied and 

has been the topic of interest.  

Probabilistic Seismic Hazard Analysis (PSHA) has played a major role in promoting probabilistic 

thinking in structural seismic design and assessment. PSHA forms a critical module in various 

types of analysis from individual structures to regional seismic risk assessment (Abrahamson, 

2006, Abrahamson and Bommer, 2005, Abrahamson et al., 2019, Gerstenberger, 2020). The 

implementation of PSHA for a given site resides on the execution of the triple integral described 

in Equation 1.3 where 𝜆 represents the rate of exceedance in one year, 𝐺(. ) represents the Survival 

Function (i.e., 1 – Cumulative Density Function, 𝐹), 𝑃(. ) represents the probability density 

function, 𝐼𝑀 represents the Intensity Measure used (such as Spectral Acceleration (𝑆𝑎), 𝑀 

represents the magnitude of the event, 𝑅 represents the distance to the rupture, and 𝑁𝑠, 𝑁𝑀, and 𝑁𝑅 

represent the number of potential sources, magnitudes and rupture distances. The integration 

process aggregates the total hazard at a location which leads to the final rate of exceedance of the 

IM (𝜆𝐼𝑀). The integration process of the PSHA integral requires two primary ingredients: 1) An 

Earthquake Rupture Forecast (ERF) model to forecast the potential events along with their 

respective probabilities and rates, and 2) Ground Motion Model (GMM) that relates the seismic 

event parameters to an IM and can be used to estimate the probability of exceedance of an IM 

given the event parameters (𝑀, 𝑅 etc.).  

𝜆𝐼𝑀 = ∑ ∑ ∑ 𝜆𝑖𝐺(𝐼𝑀|𝑀𝑗 , 𝑅𝑘

𝑁𝑅

𝑘

)𝑃(𝑀𝑗)𝑃(𝑅𝑘)

𝑁𝑀

𝑗

𝑁𝑠

𝑖

 (1.3) 

The probabilities included in an ERF are based on four layers of modeling: 1) Model of physical 

geometry of fault, 2) Model for characterizing the deformation of fault in terms of slip rates and 

related factors, 3) Earthquake rate model of the region, and 4) Probability model to estimate 

earthquake probability during a time-interval. These are used to produce both time-independent 

and time-dependent forecasts of earthquake probabilities. Among these one such series of 

forecasting models includes Uniform California Earthquake Rupture Forecast (UCERF); three 

models, namely, UCERF1 (1988), UCERF2 (Field et al. 2009), and UCERF3 (Field et al. 2014) 
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are released.  Apart from the added complexity in the rupture generation and updated probabilities, 

one of the main differences is the number of possible fault sections. While UCERF1 and UCERF2 

contained 16 and 200 faults in California, UCERF3 relies on 350 faults for its computation. Owing 

to the additional fault segmentation and calculation of the "grand inversion," results require heavy 

computational resources to cover a broad range of models (>5,000), each considering more than 

250,000 fault-based earthquake possibilities (including multi-fault ruptures) throughout 

California. However, due to all these added complexities of UCERF3, UCERF2 remains as the 

popular choice and most of the PSHA frameworks continue to utilize it for conducting PSHA. 

Ground Motion Models (GMMs) are used to estimate the levels of ground motion Intensity 

Measures (IMs) using the earthquake source and site parameters (e.g., Magnitude 𝑀, Rupture 

Distance 𝑅𝑟𝑢𝑝, Site Soil-Shear-Wave Velocity 𝑉𝑠30). In general, the most used IMs in the field of 

Seismic Engineering include Arias Intensity (𝐼𝑎), Cumulative Absolute Velocity (𝐶𝐴𝑉), 

Significant Duration (𝐷5−95), Peak Ground Acceleration (𝑃𝐺𝐴), Peak Ground Velocity (𝑃𝐺𝑉), 

and Spectral Acceleration (𝑆𝑎). Conventionally, GMMs are developed as parametric functional 

forms using empirical data. Since the ground motions are recorded in two or three orthogonal 

directions, various measures have been used to quantify the intensity of ground motions on single-

degree-of-freedom (SDOF) systems, such as maximum 𝑆𝑎 among the two components, average 

𝑆𝑎 of the two components, Square-Root-of-Sum-of-Squares (SRSS) 𝑆𝑎 of the two components, 

Geomean of 𝑆𝑎  of the two components, 𝐺𝑀𝑅𝑜𝑡𝐼50 𝑆𝑎, 𝑅𝑜𝑡𝐷50 𝑆𝑎 etc. 𝑅𝑜𝑡𝐷50 𝑆𝑎 (Boore 2010) 

is the current state-of-art IM that is adopted by all current GMPMs and is expressed as RotDpp, 

where Rot indicates the rotation of the two orthogonal components of the ground motion, D 

indicates the period dependency, and pp corresponds to the percentile value (mainly limited to the 

50th percentiles, i.e., the median value). For the sake of brevity, 𝑅𝑜𝑡𝐷50 𝑆𝑎 is referred as 𝑆𝑎 in this 

study. Some of the commonly used GMMs include ASK14 (Abrahamson et al., 2014), CY14 

(Chiou and Youngs, 2014), CB14 (Campbell and Bozorgnia, 2014), AS16 (Afshari and Stewart, 

2016), CB19 (Campbell and Bozorgnia, 2019) etc. Apart from the parametric models, various 

other non-parametric data-driven GMPMs have been proposed in the current studies (e.g., Tezcan 

and Cheng, 2012; Dhanya and Raghukanth, 2017).  

Though the discussed GMMs are primarily developed to estimate linear responses of an SDOF 

oscillator and are based on past studies (Bazzurro and Luco, 2004; Luco et al., 2005; Luco and 
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Cornell, 2007) it has been observed 𝑆𝑎 does not correlate well with the inelastic response of multi-

degree-of-freedom (MDOF) structures, resulting in poor seismic-demand prediction. To tackle 

this, studies such as Tothong and Cornell (2006) and Bozorgnia et al. (2010) have developed 

GMMs that estimate the inelastic response spectrum conditioned on earthquake scenario 

parameters. These studies define the inelasticity of the SDOF system in terms of explanatory 

factors like Strength Reduction Factor (𝑅), Normalized Yield Capacity (𝑉𝑦/𝑊), Ductility Capacity 

(𝜇𝑐𝑎𝑝), and Initial Period (𝑇). Though these GMMs provide an advancement to estimate the 

behavior of nonlinear structures, the use of idealized SDOFs to represent MDOF systems still 

doesn't incorporate the required level of sophistication in modeling nonlinear behavior. Hence the 

estimates of Engineering Demand Parameters (EDPs) obtained from the PSHA of such type of 

GMMs are not adequate to estimate the real structural demands for design and analysis. Also, none 

of the IMs have completely settled the debate on the efficiency and sufficiency to describe 

structural response (Jalayer et al. 2012). 

1.3 Problem Statement 

Caltrans’ seismic design philosophy for proportioning standard ordinary bridge system and 

components is moving towards embracing the concepts of Performance-Based Earthquake 

Engineering (PBEE). Although PBEE concepts have been extensively investigated, such research 

has not become standardized and transformed into an applied format for Caltrans design practice 

for standard ordinary bridges. Specifically, the methodologies utilized in the characterization of 

IM and then obtaining corresponding EDPs are overly generalized and do not explicitly 

incorporate the tendencies of regional seismicity. This research aims at providing frameworks for 

the first step of implementing site-specific PBEE in the design of standard ordinary bridges. The 

proposed effort will encompass aspects of ground motion modeling, structural hazard analysis, 

ground motion simulation techniques and their utilization. 

Current Caltrans Seismic Design Criteria (SDC, ver. 1.7 – ver. 2.0), and state-of-practice, in 

general, are not well-suited to address site-specific Performance-based Earthquake Engineering 

(PBEE) concepts in the design of standard ordinary bridges. In essence, current SDC (SDC ver. 

1.7) states that standard ordinary bridges are “expected to remain standing but may suffer 

significant damage requiring closure” at the design level seismic hazard. Such a design philosophy 

fails to address issues such as: (1) safety, functionality, and durability of bridge structures, (2) 



11 
 

service life optimization and inclusion of lifecycle cost in decision making on selection of “best” 

structural system and proportioning its components, (3) a holistic view of the transportation 

network and its performance as a whole, and (4) no explicit consideration of regional seismicity. 

The current methodologies of design and analysis utilized by SDC (ver.1.7 and ver. 2.0) of 

selecting and scaling previously recorded ground motions from all over the globe to analyze bridge 

structures give no consideration to the region-specific seismicity. Apart from numerous issues 

associated with the scaling of ground motion records (such as alteration of frequency content, non-

realistic motions, bias of scaling etc.), the premise of using ground motion records from other sites 

with different source and site conditions to conduct analysis of structures is fundamentally 

unnatural. These issues, as addressed in California Bridges and Structures Strategic Direction 

(2014), are foundational issues to any update to SDC and other design guidelines and tools for 

proportioning standard ordinary bridges. Such updates require that PBEE concepts become the 

cornerstone of Caltrans practice in the design of standard ordinary bridges. 

PBEE has been the focus of much research in the past two decades. Within PBEE framework, 

researchers have faced up to challenges such as: identifying performance objectives that are 

quantifiable and meaningful for engineers and stakeholders alike, identifying representations of 

ground motion intensity that well relate to seismic hazard at the site and the global bridge response 

characteristics, and many other advances whose enumeration does not fit into this brief 

introduction. The new challenge facing researchers is to transfer these sophisticated developments 

to the practicing engineers through relatively simple but comprehensive procedures that facilitate 

implementation. The first step for such implementation is the development of guidelines for proper 

selection of hazard-targeted ground motions and conducting site-specific structural demand 

analysis. This dissertation tries to propose different statistical frameworks to tackle these issues. 

1.4 Dissertation Outline 

This dissertation is organized into six chapters, including this introduction. As a first measure to 

select proper hazard-targeted ground motions, Chapter 2 presents a novel framework of 

Generalized Ground Motion Prediction Model (GGMPM) developed using hybrid Recurrent 

Neural Network (RNN) which can be used to estimate an internally correlated 29×1 vector of 

ground motion intensity measures. Chapter 3 gives an overview of the four bridge structures and 

five southern California sites used in this study and discusses the developed analytical models of 



12 
 

the bridge structures. Chapter 4 explains the response EDP used in this study and describes the 

development of EDP hazard curves through conventional Incremental Dynamic Analysis (IDA). 

Chapter 5 describes the Site-Based ground motion simulation tool (DRD model) and its utilization 

to develop EDP hazard curves of the four bridge structures at the five sites. Similarly, Chapter 6 

explains the Physics-Based ground motion simulations (CyberShake ver. 15.12 study) and its 

application to develop EDP hazard curves of the four bridge structures at the five sites. 



CHAPTER 2 

GENERALIZED GROUND MOTION PREDICTION MODEL 

 

2.1 Introduction      

In the field of structural and hazard analysis, Ground Motion Prediction Models (GMPMs) form an 

essential tool that is used to estimate the levels of ground motion intensity using the earthquake event 

parameters (e.g., magnitude M, source- to-site Rrup). In general, GMPMs provide statistical 

predictions of Intensity Measure (IMs) such as Arias Intensity (Ia), Cumulative Absolute Velocity 

(CAV), Significant Duration (D5-95), Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), 

and Spectral Acceleration (Sa) of a single-degree-of-freedom-system for various periods. GMPMs are 

used along with an earthquake rupture forecast (ERF) database such as UCERF2, which provides the 

GMPMs with the necessary event parameters to estimate ground motion intensity at the sites of 

interest. These are widely useful in an extensive range of research areas of seismic engineering, such 

as regional seismic analysis, structural loss estimation, hazard map. Over the years, there have been 

numerous GMPMs developed across the world for both global and regional bases. Conventionally, 

GMPMs are developed as parametric functional forms using empirical data. Since the ground motions 

are recorded in two or three orthogonal directions, various measures have been used to quantify the 

intensity of ground motions on single-degree-of-freedom systems such as maximum Sa among the two 

components, average Sa of the two components, square-root-of-sum-of-squares Sa of the two 

components, geomean of Sa of the two components, GMRotI50 Sa, RotD50 Sa. RotD50 Sa
 is the current 

state-of-art IM that is adopted by all current GMPMs and is expressed as RotDpp, where Rot indicates 

the rotation of the two orthogonal components of the ground motion, D indicates the period dependency, 

and pp corresponds to the percentile value (mainly limited to the 50th percentiles, that is, the median 

value). To avoid any confusion and for the sake of brevity, in this dissertation, the RotD50 spectral 

acceleration at bridge’s first mode period, which is used as the primary IM of ground motions, is termed 

as 𝑆𝑎(𝑇) or 𝑆𝑎. The rotations that lead to RotDpp depend on period, whereas a single- period-

independent rotation is used for GMRotIpp; the angle is chosen to minimize the spread of the rotation-

dependent geometric mean (normalized by RotDpp) over the usable range of oscillator periods. 

The GMPMs mainly express the IM as a function of predictor variables such as M, Rrup, Shear-Wave 



14 
 
 

 

Velocity over the upper 30 m of the site Vs30, etc. Abrahamson et al. (2014) proposed the ASK14 ground 

motion model for shallow crustal earth- quakes in active tectonic regions. It includes regional 

differences between California, Japan, China, and Taiwan. Also, Chiou and Youngs (2014) updated 

their 2008 version of the model and incorporated regional differences in far-source distance and site 

effects between active tectonic regions in their CY2014 model. Similarly, Campbell and Bozorgnia 

(2014) includes regionally independent geometric attenuation, regionally dependent anelastic 

attenuation, and magnitude-dependent aleatory variability in their CB14 model and corrected the bias 

of their 2008 version. The growing interest of using intensity- based IMs (such as Ia, CAV) (also termed 

as integral IMs), and duration-based IMs (such as D5-95) alongside spectrum- based IM (such as Sa) as 

described by Kiani and Pezeshk (2017), Du and Wang (2018), and Yeow et al. (2018) has led to the 

development of various GMPMs. Afshari and Stewart (2016) developed a GMPM for geometric mean 

(geomean) of Significant Duration (D5-95), while Campbell and Bozorgnia (2019) recently proposed 

GMPMs for geomean Arias Intensity (Ia) and CAV. Other investigators have developed relationships 

correlating the amplitude- and spectrum-based IMs (e.g., Bradley 2012, Du and Wang 2013, Liu et 

al., 2016, Xu et al., 2016) and ground motion duration measures. As the parametric models with 

functional forms require pre-informed physical interpretation of seismological and geotechnical 

modeling, researchers can lean towards data-driven non-parametric modeling techniques for developing 

GMPMs. These models do not require any predefined formulas and make fair use of advanced statistical 

techniques to develop predictive models for the ground motion IMs. Tezcan and Cheng (2012) used 

Support Vector Regression (SVR), which maps data points into a high dimensional feature space to 

build their non-parametric model to predict response spectra for 13 periods between 0-4s. Recently, 

Dhanya and Raghukanth (2017) adopted an Artificial Neural Network (ANN) in combination with a 

Genetic Algorithm (GA) to train a data-driven model to predict PGA, PGV, and spectral accelerations 

at 26 periods between 0.01 and 4s.      

However, one of the drawbacks of these GMPM models is that they predict the target IMs (Ia, CAV, Sa 

at different periods, D5-95) independently from each other. In other words, using the same event 

parameters (M, Rrup, Vs30, etc.), the values estimated for the different IMs may or may not be 

correlated with each other. Particularly for Sa at different periods, Baker and Jayaram (2008) 

measured the correlations between the epsilons and concluded that the observed correlations are not 
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sensitive to the choice of GMPMs. They proposed a functional form that estimates the cross-correlations 

between Sa for periods between 0.01s and 10s. Using this correlational structure, a different form of 

hazard spectrum was introduced, known as conditional spectrum (CS). Furthermore, Eads et al. (2016) 

developed a metric for quantifying the ground motion intensities called SaRatio, which is the ratio 

between Sa at the first period and the average spectral value over a period range. The primary limitation 

of such an approach is that the characteristics of seismic excitation are only represented in terms of 

spectral accelerations. It is well acknowledged that the severity of seismic excitation is not sufficiently 

described by spectral acceleration(s), which does not explicitly account for other important features that 

are mainly time-domain signal characteristics. To overcome this limitation, Bradley (2012) proposed a 

generalized conditional IM (GCIM) approach to construct the multivariate distribution of any set of IMs 

conditioned on the occurrence of a specific ground-motion IM obtained from probabilistic seismic 

hazard analysis. Bradley (2012) developed a GM selection algorithm based on the random realization 

from the conditional multivariate distribution of IMs rather than implicit causal parameters such as 

source magnitude and source-to-site distance. Although other researchers (Du and Wang 2013, Liu et 

al., 2016) have also tried to propose empirical correlations between different IMs, the general 

representation of correlations can be improved. For example, some of the IMs do not necessarily follow 

the assumption of linear correlation with each other, and the assumption of multivariate lognormality 

also needs more sophisticated evaluation. 

As a first measure to select proper hazard-targeted ground motions, this chapter aims at developing 

a data-driven non-parametric Generalized Ground Motion Prediction Model (GGMPM) that 

predicts an internally correlated vector of 29 Intensity Measures (denoted as IM) including 

geomean of Arias Intensity (Ia), geomean of Cumulative Absolute Velocity (CAV), geomean of 

Significant Duration (D5-95) (denoted as 𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐷5−95𝑔𝑒𝑜𝑚

, respectively), and RotD50 

Spectral Acceleration (Sa) at 26 periods (for 5% damped oscillator). To incorporate the higher-order 

dependencies among the components of IM, the framework of Recurrent Neural Network (RNN) is 

adopted along with optimization techniques of the Evolution Strategy. Long-Short-Term-Memory 

(LSTM) network is used to estimate IM using the seismic source and site parameters which describe 

the physics of the rupture and the site characteristics, as inputs. A sensitivity analysis is conducted in 

order to choose a subset of source and site parameters as input to the RNN framework. Furthermore, 
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the residuals of the RNN structure are carefully calibrated in terms of two 29 × 29 covariance matrices 

that estimate the intra-event and inter-event variabilities of the IM. This is done by using functional 

forms to estimate the variances and correlations whose coefficients are calibrated by maximizing the 

log-likelihood computed from the discrepancy between the IM estimated by the RNN framework and 

the recorded data. The predictions of the developed GGMPM are then compared against the current 

state-of-art GMPMs. 

2.2 Ground Motion Database 

 
Figure 2.1 – Magnitude (M) and Source-to-Site Distance (Rrup) of the selected Ground Motions 

 

A subset of the PEER NGA-West2 (Timothy et al., 2014) database containing the bi-directional 

ground motion acceleration records along with the site information, source information, event 

parameters, and ground motion intensity measures are selected as the ground motion database for 

this study. Some of the records from the database are eliminated based on the exclusion criteria 

given below: 

1) Earthquakes that lack any event or site information such as Rake Angle (𝜆), Strike Angle 

(𝜙), Vs30 etc. 

2) Earthquakes with a hypocentral depth greater than 20 km or less than 1 km. 

3) Earthquakes do not belong to shallow active crustal regions. 

4) Recordings that are not representative of free field ground motion. 
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5) Earthquakes with fewer than 5 recordings when Mw ≤ 5 and with fewer than 3 recordings 

when 5 ≤ Mw. 

6) Recordings that lack any one horizontal component. 

7) Recordings having Rrup greater than 90 km. 

8) Recordings from aftershocks. 

 
             (a)                          (b) 

 
             (c)                   (d) 

Figure 2.2 – Histograms of: (a) Rjb (km), (b) DHyp (km), (c) ZTOR (km), and (d) Vs30 (m/s) 

Based on the above-mentioned exclusion criteria, 6958 recordings with 277 earthquakes are finally 

selected. The earthquakes are classified into 5 Fault mechanisms (F) which include Normal (17 

earthquakes with 185 recordings), Normal Oblique (12 earthquakes with 245 recordings), Reverse 

(34 earthquakes with 1,057 recordings), Reverse Oblique (23 earthquakes with 910 recordings), 

and Strike-Slip (191 earthquakes with 4,575 recordings). The magnitude and distance details of 

the selected motions are shown in Figure 2.1. The statistical details of the other parameters 

obtained from the metadata are listed below, a few of which are presented in Figure 2.2: 

1) Moment magnitude (M) ranges from 3.05 to 7.9. 
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2) Closest distance to the fault rupture plane (Rrup) ranges from 0.07 to 90 km. 

3) Joyne-Boore distance to the surface projection of fault rupture plane (Rjb) ranges from 0.02 to 

90 km. 

4)  Closest distance to the surface projection of the top of the fault rupture plan (Rx) ranges from -

79.93 to 98.57 km. 

5) Depth to the top of the fault rupture plane (ZTOR) ranges from 0 to 19.54 km. 

6) The average dip angle (𝛿) of the fault rupture plane ranges from 10 to 90 degrees. 

7) Hypocentral depth measured from sea level (ZHYP) ranges from 0.02 to 20.23 km. 

8) Distance to Hypocenter (DHYP) ranges from 2.6 to 160.45 km. 

9) Rupture length (L) and Rupture width (W) range between 0.4 to 305 km and 0.3 to 70.4 km, 

respectively. 

10)  Shear wave velocity in the top 30m of the profile (Vs30) ranges from 116.35 to 2016.13 m/s 

2.3 Parameter Sensitivity Analysis 

Before developing the RNN framework, it is necessary to identify which source and site 

parameters possess the highest predictive power to estimate the vector of IMs (IM). Non-

parametric Random Forests algorithm (Breiman et al., 1984) is primarily used to conduct the 

sensitivity analysis of  𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐷5−95𝑔𝑒𝑜𝑚

, and RotD50 Sa at three periods, including 0.5, 

1.0, and 2.0 secs with respect to all the source and site parameters. The main benefit of using this 

algorithm as compared to traditional methods of gradient-based sensitivity analysis is that it does 

not require any closed functional forms to compute the partial derivatives. Due to their non-

parametric nature, the Random Forests algorithm has a high power of handling large data sets with 

higher dimensionality, handling the outliers, and deducing the highly non-linear relationships 

among the features and target variable. The method of Bagging is used to create randomized 

decision trees in Random Forests, and the bootstrap dataset is then created from random sampling 

(with replacement). Bootstrap datasets that do not contain a particular record from the original 

dataset are called Out-Of-Bag (OOB) examples (Zhu et al., 2015), and Out-Of-Bag (OOB) 

estimate for the generalization error is the aggregation of errors of the OOB examples. By first 

fitting a random forest to the data, the OOB error for each data point is recorded and averaged over 
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the forest. The importance of the jth feature is measured by permuting the values of the jth feature 

among the data and computing the OOB error on this perturbed data set. The importance score for  

 
        (a)                          (b) 

 
        (c)                            (d) 

      
         (e)                              (f) 

Figure 2.3 – Relative Importance (RI) of seismic source and site parameters to predict: (a) 

RotD50Sa (T=0.5s), (b) RotD50Sa (T=1.0s), (c) RotD50Sa (T=2.0s), (d) 𝐼𝑎𝑔𝑒𝑜𝑚
, (e) 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, (f) 

𝐷5−95𝑔𝑒𝑜𝑚
  

 

the jth feature is computed by averaging the difference in OOB error before and after the 

permutation over all trees. Features that produce large values for the normalized (by the standard 

deviation) score are ranked as more important than features that produce small values. Using the 
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Random Forests algorithm, the relative importance (RI) of each seismic source and site parameter 

in predicting the target IMs (𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐷5−95𝑔𝑒𝑜𝑚

, and RotD50 Sa at T = 0.5s, 1.0s, and 

2.0s) is obtained and compared. The results are presented in Figure 2.3. As can be observed from 

Figure 2.3, parameters including M, Rrup, RJB, Rx, ZTOR, and Vs30 are deemed significant for all IMs. 

Specifically, it is observed that the DHyp becomes primarily important for estimating D5-95. Source 

parameters of M, Rrup, and Rx are consistently observed to be rated significantly by the Random 

Forests algorithm. Also, the physics of the fault mechanism (F) is widely known to cause 

differences in the ground motion characteristics, hence finally 8 parameters (including F, M, Rrup, 

Rx, RJB, ZTOR, DHyp, and Vs30) are selected to be used as inputs to the RNN framework. All the 

selected parameters are consistent with the current-state-of-practice parametric and non-

parametric GMPMs (e.g., CB14; CY14; Dhanya and Raghukanth, 2017). 

 

2.4 Recurrent Neural Networks 

 
Figure 2.4 - Long Short-Term Memory (LSTM) cell structure 

Recurrent Neural Network (RNN) is a class of artificial neural network (ANN) that attempts to 

model time or sequence-dependent behavior. This is performed by feeding back the output of a 

neural network layer at time t to the input of the same network layer at time t + 1. Hence, RNN 

possesses connections between nodes that form a directed graph along a temporal sequence, which 

allows it to exhibit temporal dynamic behavior. RNN not only feeds forward but keeps an internal 

memory to process the sequences of inputs so that all input vectors are related to each other. 

Therefore, RNN is one of the best candidates to train a data-driven model for the prediction of 
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sequential processes, in this case of the correlated vector of IMs. Since these IMs represent the 

characteristics of the same ground motion, the values are dependent on each other. This can be 

viewed as a sequence of IMs where one value depends on the other values in the sequence. The 

recurrent nature of RNN allows it to perform the same function for each input, copying and sending 

the data back to the network while producing the output simultaneously.  

Although RNN is capable of tackling dependencies between the steps of the sequences, RNNs are 

known to have problems of short-term memory and vanishing gradients. To tackle this issue, the 

framework of Long-Short-Term-Memory (LSTM) (Hochreiter and Schmidhuber, 1996) is used, 

which consists of internal mechanisms called ‘gates’ that regulate information flow. A typical 

LSTM structure is a cell state consisting of three gates that are explained below and illustrated in 

Figure 2.4. 

1) Forget Gate: The Forget Gate determines what information should be discarded or retained 

from the previous steps in the sequence. Information from the previously hidden state and 

information from the current input is passed through the sigmoid function (𝜎). The function 

of the gate is shown in Equation 2.1, where the current input xt and the previous output ht-1 

are combined using weights Wf and bias bf with a sigmoid layer. 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.1) 

 

2) Input Gate: This determines how the cell state (𝐶𝑡) will be updated, and memory will be 

modified based on the input. Firstly, the previous hidden state (ht-1) and the current input (xt) 

are combined through the sigmoid function (𝜎) as shown in Equation 2.2 using weights Wi 

and bias bi to obtain the sigmoid output (𝑖𝑡). Then using Equation 2.3, the hidden state (ht-1) 

and current input (xt) are passed to the tanh function with weights WC and bias bC to regulate 

the network. In Equation 2.4, the tanh output (�̃�𝑡) is multiplied by the sigmoid output (𝑖𝑡) and 

the previous cell state (𝐶𝑡−1) is multiplied by the forget vector (𝑓𝑡). If 𝑓𝑡 is close to 0, 𝐶𝑡−1 

may be discarded in new cell state (𝐶𝑡). Then the addition of the two products updates the cell 

state (𝐶𝑡). 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.2) 
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�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (2.3) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡 (2.4) 

3) Output Gate: This decides what the next hidden state (ht) should be, and which information will 

be produced by the state. First, the previous hidden state (ht-1) and current input (xt) are passed 

to the sigmoid function with weights (Wo) and bias (bo) to obtain output (𝑜𝑡) using Equation 2.5. 

Then the newly modified cell state (𝐶𝑡) is passed to the tanh function and the output is multiplied 

with the sigmoid output (𝑜𝑡) using Equation 2.6 to determine the information to be carried by 

the hidden state (ht). The new hidden state (ht) is transferred to the next time step. 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.5) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ( 𝐶𝑡) (2.6) 
 

 
Figure 2.5 – Proposed Recurrent Neural Network (RNN) Architecture 

The selected database of the PEER NGA-West2 consisting of 6,947 recordings from 277 events 

are randomly split into Train and Test sets with 70% of events in the Train set and 30% of events 

in the Test set. Since the database is heavily dominated by the smaller magnitude events, the Train 

and Test splitting is conducted in discretized sets of 3 ≤ Mw ≤ 4, 4 < Mw < 5, and 5 ≤ Mw. This 

means that 70:30 (Train: Test) random split is done independently for the events in each discretized 

set and then combined to form a single Train set and Test set. 10% of the train set is then further 

used to train the neural network with cross-validation. To further prevent overfitting, the neural 
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network framework is trained in epochs using Adam optimizer (Kingma and Ba, 2014) along with 

the Early Stopping (Prechelt, 2002) callback. The final proposed Neural Network architecture is 

presented in Figure 2.5. The source and site inputs to the RNN framework include a vector of 12 

values of {M, Rrup, Rx, RJB, DHyp, ZTOR, Vs30, F}. F denotes the Fault mechanism represented by a 

one-hot encoded vector for 5 fault mechanisms. Unlike the conventional methods of using 

discretized values for the discretized classes (as done by Dhanya and Raghukanth, 2017), the 5 

classes of fault mechanisms are represented by one-hot vector given in Table 2.1. Using discretized 

values for the classes is usually not the preferred method to differentiate between the classes since 

the classes that receive arbitrary greater values prioritize the gradient slope in the backpropagation 

algorithm. Hence to avoid this, the fault mechanisms are differentiated in terms of one-hot vector 

as given in Table 2.1. The framework then processes the correlated vector of IMs (IM) using the 

LSTM layer, which estimates the values of IMs while maintaining their internal dependencies. The 

LSTM layer is then connected to two Dense ANN layers that update the estimations made by the 

LSTM layer to obtain better final predictions. The output of the RNN framework is the median 

IM, which includes  𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐷5−95𝑔𝑒𝑜𝑚

, and RotD50Sa values corresponding to periods 

of 0.01 sec to 1 sec with the interval of 0.1 sec, and 1.2 sec to 3.0 sec with the interval of 0.2 sec, 

and 3.4 sec to 5 sec with the interval of 0.4 sec. 

Table 2.1 - One-Hot Vectors for Fault Mechanisms 

Mechanism (F) One-Hot Vector 

Strike Slip 1 0 0 0 

Normal 0 1 0 0 

Reverse 0 0 1 0 

Reverse Oblique 0 0 0 1 

Normal Oblique 0 0 0 0 

 

2.5 Estimation of Covariance Matrices for Residuals 

2.5.1  Methodology 

The proposed RNN structure is used to estimate 29×1 vectorized IM. The residuals of the RNN 

model are carefully tackled in two aspects. First, the error term, which measures the discrepancy 
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between the IM from the database and the predicted IM value through the RNN structure, is 

carefully partitioned into two parts: inter-event and intra-event effects. The hierarchical model is 

expressed in a functional form shown in Equation 2.7, where yij  represent the vector of target IMs 

(IM) and 𝑹𝑵𝑵(𝑀𝑖, 𝑟𝑖𝑗, . . . ) is the estimated IM from implementing the RNN structure. The 

random effects of the ith event, namely ηi represent inter-event variation, and εij represents the intra-

event variation of the jth recording from the ith event. For each target vector, the components of ηi 

and εij are assumed to be normally distributed with zero means and variances τ2 and σ2, 

respectively. Secondly, since the 29 components of yij represent the same ground motion recording, 

they are not treated as independent variables. The correlations in the residuals are fetched by 

estimating the variances τ2 and σ2 as 29×29 covariance matrices 𝚻 and 𝚺, as shown in Equations 

2.8 and 2.9.  

In a nutshell, 𝑰𝑴𝒊𝒋 and 𝑹𝑵𝑵(𝑀𝑖, 𝑟𝑖𝑗, . . . ) are the true and predicted vectors of IM and 𝚻 and 𝚺 are 

the estimated 29×29 covariance matrices for inter-event (ηi) and intra-event (εij) variation for jth 

ground motion record of ith seismic event. The diagonal elements of 𝚻 and 𝚺 represent the inter-

event (τ2) and the intra-event (σ2) variances of the 29 components of IM, including variances of 

𝐷5−95𝑔𝑒𝑜𝑚
 (σD

2, τD
2), variances of 𝐶𝐴𝑉𝑔𝑒𝑜𝑚 (σC

2, τC
2), variances of 𝐼𝑎𝑔𝑒𝑜𝑚

 (σI
2, τI

2) and variances of 

RotD50Sa at 26 periods (𝜎𝑆𝑎0.01
2 to 𝜎𝑆𝑎5.0

2, 𝜏𝑆𝑎0.01
2 to 𝜏𝑆𝑎5.0

2). The off-diagonal element at the mth 

row and the nth column represent the covariances τmτnρm,n and σmσnρm,n for 𝚻 and 𝚺, respectively, 

where ρm,n is the correlation between the residual (𝑰𝑴𝒊𝒋 – 𝑹𝑵𝑵(𝑀𝑖, 𝑟𝑖𝑗, . . . )) of the mth IM and 

residual (𝑰𝑴𝒊𝒋 – 𝑹𝑵𝑵(𝑀𝑖, 𝑟𝑖𝑗, . . . )) of the nth IM, respectively. The ρ consists of three types of 

correlations: 1) correlation of the residuals among 𝐷5−95𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚 and 𝐼𝑎𝑔𝑒𝑜𝑚

 (i.e. ρD,C, ρD,I, 

ρC,I), 2) correlation of the residuals between 𝐷5−95𝑔𝑒𝑜𝑚  and RotD50Sa at 26 periods (i.e. 𝜌𝐷,𝑆𝑎0.01
 

to 𝜌𝐷,𝑆𝑎5.0
), 𝐶𝐴𝑉𝑔𝑒𝑜𝑚 and RotD50Sa at 26 periods (i.e. 𝜌𝐶,𝑆𝑎0.01

 to 𝜌𝐶,𝑆𝑎5.0
), and 𝐼𝑎𝑔𝑒𝑜𝑚

 and 

RotD50Sa at 26 periods (i.e. 𝜌𝐼,𝑆𝑎0.01
 to 𝜌𝐼,𝑆𝑎5.0

), and 3) correlation of the residuals among the 

RotD50Sa pairs ρi,j, where i and j represent the ith and jth periods among the 26 periods (i.e. 

𝜌𝑆𝑎0.01,𝑆𝑎0.1
 to 𝜌𝑆𝑎4.6,𝑆𝑎5.0

).  
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𝑙𝑛 𝑰𝑴𝒊𝒋 = 𝑹𝑵𝑵(𝑀𝑖, 𝑟𝑖𝑗, . . . ) + 𝜼𝒊 + 𝜺𝒊𝒋 (2.7) 

𝚺 =

[
 
 
 
 

𝜎𝐷
2 𝜌𝐷,𝐶𝜎𝐷𝜎𝐶

𝜌𝐷,𝐶𝜎𝐷𝜎𝐶 𝜎𝐶
2 ⋯

𝜌𝐷,𝑆𝑎5.0
𝜎𝐷𝜎𝑆𝑎5.0

𝜌𝐶,𝑆𝑎5.0
𝜎𝐶𝜎𝑆𝑎5.0

⋮ ⋱ ⋮
𝜌𝐷,𝑆𝑎5.0

𝜎𝐷𝜎𝑆𝑎5.0
𝜌𝐶,𝑆𝑎5.0

𝜎𝐶𝜎𝑆𝑎5.0 ⋯ 𝜎𝑆𝑎5.0
2

]
 
 
 
 

 

 

(2.8) 

𝐓 =

[
 
 
 
 

𝜏𝐷
2 𝜌𝐷,𝐶𝜏𝐷𝜏𝐶

𝜌𝐷,𝐶𝜏𝐷𝜏𝐶 𝜏𝐶
2 ⋯

𝜌𝐷,𝑆𝑎5.0
𝜏𝐷𝜏𝑆𝑎5.0

𝜌𝐶,𝑆𝑎5.0
𝜏𝐶𝜏𝑆𝑎5.0

⋮ ⋱ ⋮
𝜌𝐷,𝑆𝑎5.0

𝜏𝐷𝜏𝑆𝑎5.0
𝜌𝐶,𝑆𝑎5.0

𝜏𝐶𝜏𝑆𝑎5.0 ⋯ 𝜏𝑆𝑎5.0
2

]
 
 
 
 

 (2.9) 

 

 
   (a)                                            (b)           

Figure 2.6 - Correlation of the residuals between RotD50Sa at 26 periods for: (a) M ≤ 4.5, and 

(b) M ≥ 5.5 

Following the suggestions of Campbell and Bozorgnia (2014), the variances τ2 and σ2 for RotD50Sa 

at each period show significant differences when grouped by the earthquake magnitude M. Their 

work proposed two sets of τ2 and σ2, one for M ≤ 4.5, one for M ≥ 5.5, and linear interpolation is 

proposed for M between the 4.5 and 5.5. However, the issue remains unsolved whether the 

correlation between the residuals of the target IMs differs with earthquake magnitude M. To test 

the dependency of correlation coefficients on M, the dataset in this study is separated into groups 

of M ≤ 4.5 and M ≥ 5.5. For both groups, the correlation coefficient matrix is calculated for the 

residuals of RotD50Sa at 26 periods and are plotted in Figure 2.6a and Figure 2.6b, respectively. 
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By visual inspection, it can be observed that the correlation coefficient structures of the two groups 

are different. To statistically assess the similarity of the two correlation structures, chi-squared 

(𝜒2) test (Srivastava and Yanagihara, 2010) for equality of covariance matrices is carried out. The 

test resulted in a p-value ≤ 0.001, which implies that the two correlation coefficient structures 

cannot be considered as the same. Therefore, in this study, the inter-event and intra-event 

covariance matrices 𝚻 and 𝚺 are estimated separately for M ≤ 4.5 and M ≥ 5.5, and linear 

interpolation is suggested for 4.5< M < 5.5.  

To estimate parameters of the covariance matrices 𝚻 and 𝚺 (for various ranges of M), the log-

likelihood function shown in Equation 2.10 is used. In Equation 2.10, y and μ are vectors of true and 

RNN-predicted IMs, respectively, and C is the covariance matrix, and |C| and C-1 are its determinant 

and inverse, respectively. As an p×p covariance matrix has 𝑝(𝑝 + 1)/2 distinct elements, the total 

number of parameters that are required to be optimized for the four matrices is equal to 

4 × 29 × 30/2 = 1740. Since there are a large number of parameters to be optimized, which can 

be computationally expensive, the elements contained in the covariance matrices are not directly 

treated as unknowns. Instead, functional forms are fitted to preliminary estimation of the variances 

(both inter-event and intra-event) and correlations, and then the coefficients of the fitted functional 

forms are optimized to minimize the negative of the likelihood function. The optimized functional 

forms are then used to compute the variances and correlations of the residuals.  

𝑙𝑛 𝐿 =
𝑁

2
𝑙𝑛( 2𝜋) −

1

2
𝑙𝑛|𝐶| −

1

2
(𝑦 − 𝜇)𝑇𝐶−1(𝑦 − 𝜇) 

(2.10) 

In this study, the variances (inter-event (τ2) and intra- event (σ2)) and correlations (𝜌) are estimated 

separately due to their nature. An aleatory variability model can be easily developed using the 

combination of τ2, σ2 and 𝜌, where τ2and σ2 together form the diagonal elements of covariance 

matrices 𝚻 and 𝚺, while the correlations (𝜌) are parts of the off-diagonal elements. The following 

stepped procedure is followed to estimate the covariance matrices (steps are not necessarily to be 

followed sequentially). The computation of variances τ2 and σ2 is tackled in Steps 1 and 3, and the 

correlations 𝜌 are dealt in Steps 2, 4, and 5. Finally, the three types of estimates are combined in 

Step 6. The methodology is also illustrated in Figure 2.7. 
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Figure 2.7 - Illustration for estimating correlation matrix 

 

Step 1: 

Since the total variability in the residuals (𝑰𝑴𝒊𝒋 – 𝑹𝑵𝑵(𝑀𝑖, 𝑟𝑖𝑗, . . . )) can be expressed as  𝜏2 + 𝜎2, 

the residuals are partitioned into two parts: τ2 and σ2, using the ratios of the initial estimates of τ2 

and σ2 (termed as 𝜏𝑖𝑛𝑖2and 𝜎𝑖𝑛𝑖2, respectively). The initial estimates 𝜏𝑖𝑛𝑖2and 𝜎𝑖𝑛𝑖2  are obtained 

by conducting 29 independent linear mixed effect regressions using 𝐷5−95𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐼𝑎𝑔𝑒𝑜𝑚

, 

and RotD50Sa at 26 periods as the targets and Mw, Rrup, Rjb, Rx, ZTOR, Vs30, and F as the predicting 

variables. The 29 mixed-effects regressions return the initial estimates of inter-event variances 

(𝜎𝐷
𝑖𝑛𝑖2,  𝜎𝐶

𝑖𝑛𝑖2,  𝜎𝐼
𝑖𝑛𝑖2 , 𝜎𝑆𝑎0.01

𝑖𝑛𝑖2  to 𝜎𝑆𝑎5.0

𝑖𝑛𝑖2 ) and the intra-event variances (𝜏𝐷
𝑖𝑛𝑖2, 𝜏𝐶

𝑖𝑛𝑖2, 𝜏𝐼
𝑖𝑛𝑖2 ,𝜏𝑆𝑎0.01

𝑖𝑛𝑖2  to 

𝜏𝑆𝑎5.0

𝑖𝑛𝑖2 ) for the 29 targets. The superscript ini is used to denote these as initial estimates of the 

variances. Then the pairwise ratios of 𝜏𝑖𝑛𝑖2/𝜎𝑖𝑛𝑖2for the 29 targets are used to partition the RNN 

residuals (𝑰𝑴𝒊𝒋 – 𝑹𝑵𝑵(𝑀𝑖 , 𝑟𝑖𝑗, . . . )) into two parts: τ2 and σ2. While arguably the error terms of 

different statistical models are dependent on their mathematical formulations, for this study, it is 

postulated that the ratio of τ2/σ2 only depends on the seismic events and follows a pattern for the 

various target IMs. This partitioning of the residuals, however, doesn’t affect the pairwise 

correlation of residuals of the target IMs. For this reason, correlations ρ computed from residuals 

will not differ for the inter-event and intra-event effects. 

Partition the residuals 

into τ2 and σ2 using initial 

estimates from 29 mixed-

effects regressions

Compute empirical

correlations between each 

pair of the 29 IMs 

Fit to and 

to using Equation 11 and 

optimize σD
2, τD

2,σC
2, τC

2, σI
2, and τI

2

as point estimates

Fit to , to

, and to using 

Equation 12 and optimize ρD,C, ρD,I, 
and ρC,I as point estimates

Fit the correlation contour among 

the 26 RotD50Sa pairs using 

Equations 13 to 17

Construct the covariance 

matrices and and 

return the estimates by 

minimizing the log-

likelihood using CMA-ES

1

2

3

4

5

6
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Step 2: 

The Pearson product-moment correlations (Garren, 1988) of the residuals between each pair of the 

29 targets are computed. This results in a 29×29 correlation coefficient matrix, whose off-diagonal 

elements include: 𝜌𝐷,𝑆𝑎0.01
 to 𝜌𝐷,𝑆𝑎5.0

, 𝜌𝐶,𝑆𝑎0.01
 to 𝜌𝐶,𝑆𝑎5.0

, 𝜌𝐼𝑎,𝑆𝑎0.01
 to 𝜌𝐼,𝑆𝑎5.0

, 𝜌𝑆𝑎0.01,𝑆𝑎0.1
 to 

𝜌𝑆𝑎4.6,𝑆𝑎5.0
and ρD,C, ρD,I, ρC,I, and the diagonal elements are equal to 1. This matrix represents the 

“true” computed pairwise correlations between the 29 targets. 

Step 3: 

The variances of RotD50Sa at 26 periods 𝜎𝑆𝑎0.01
2 to 𝜎𝑆𝑎5.0

2and 𝜏𝑆𝑎0.01
2 to 𝜏𝑆𝑎5.0

2 calculated in Step 

1 are fitted using a 3rd order polynomial function, as shown in Equation 2.11. To quantify the 

feasibility of the polynomial models, 2nd, 3rd, and 4th order polynomial functions were evaluated 

using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Although 

AIC and BIC of 4th order polynomial functions were observed to be slightly (~ 0.5 points) less 

than those of 3rd order polynomial functions, the improvement was observed to be negligible and 

3rd order polynomial function form was selected for the sake of dimensionality reduction of fitting 

parameters in the optimization process. While variances 𝜎𝑆𝑎0.01
2 to 𝜎𝑆𝑎5.0

2and 𝜏𝑆𝑎0.01
2 to 𝜏𝑆𝑎5.0

2 

are fitted as functions of the periods (Equation 2.11), other variances for 𝐷5−95𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 

𝐼𝑎𝑔𝑒𝑜𝑚
 (σD

2, τD
2,σC

2, τC
2, σI

2, τI
2) are considered as point estimates and optimized as single variables. 

𝑣(𝑇) = 𝑝3,𝑣𝑇
3 + 𝑝2,𝑣𝑇

2 + 𝑝1,𝑣𝑇
1 + 𝑝0,𝑣             𝑣 ∈ {𝜎, 𝜏}, and 0.01s ≤ T ≤ 5.0s  (2.11) 

Step 4: 

Similarly, the correlations: 𝜌𝐷,𝑆𝑎0.01
 to 𝜌𝐷,𝑆𝑎5.0

, 𝜌𝐶,𝑆𝑎0.01
 to 𝜌𝐶,𝑆𝑎5.0

, 𝜌𝐼,𝑆𝑎0.01
 to 𝜌𝐼,𝑆𝑎5.0

are fitted using 

3rd  order polynomial functions shown in Equation 2.12. It should be noted that the dimensional 

reduction not only benefits in the optimization scheme, but the functional form of the fitting can 

also be used for the generalized prediction of variances and correlations. Similar to Step 3, the 

correlations between 𝐷5−95𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐼𝑎𝑔𝑒𝑜𝑚

 (ρD,C, ρD,I, ρC,I) are considered as point estimates 

and optimized as single variables. 
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 𝜌𝑢,𝑆𝑎
(𝑇) = 𝑞3,𝑢𝑇3 + 𝑞2,𝑢𝑇2 + 𝑞1,𝑢𝑇1 + 𝑞0,𝑢 𝑢 ∈ {𝐷5−95𝑔𝑒𝑜𝑚

, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 

𝐼𝑎𝑔𝑒𝑜𝑚
}, and 0.01s ≤ T ≤ 5.0s 

(2.12) 

Step 5: 

To account for the correlation among the residuals of all RotD50Sa pairs, a functional form of 

correlation contour is utilized to fit the correlation coefficient matrix computed in Step 2. This 

represents the 26×26 submatrix from the 29×29 correlation coefficient matrix computed in Step 2. 

Due to its versatility, the functional form developed by Baker and Jayaram (2008) is adopted in this 

study with 5 selected parameters (s1, s2, s3, t1, t2) shown in Equations 2.13 to 2.17.  These parameters 

are optimized to obtain the contour that fits best to the computed correlation coefficient matrix. 

𝐶1 = 1 − 𝑐𝑜𝑠(
𝜋

2
− 𝑠1 𝑙𝑛(

𝑇𝑚𝑎𝑥

𝑚𝑎𝑥( 𝑇1𝑚𝑖𝑛, 𝑡1)
) (2.13) 

max

max min
2 max 2100 5

max2

1
1 (1 )( ),

1 0.0099

0,

T

T T
s T t

e TC

otherwise

−

−
− − 

+ −= 



 

       

(2.14) 

2 max 1

3

1

,

,

C T t
C

C otherwise


= 


 (2.15) 

𝐶4 = 𝐶1 + 𝑠3(√𝐶3 − 𝐶3)(1 + 𝑐𝑜𝑠(
𝜋𝑇𝑚𝑖𝑛

𝑡1
)) (2.16) 

2 max 1

1 min 1

2 4 max 2

4

,

,

min( , ),

,

C T t

C T t

C C T t

C otherwise







= 




 

s1, s2, s3 are multiplication factors. t1, 

t2 are the threshold of periods that 

control the shape of the correlation 

matrix. 

       

(2.17) 

Step 6: 

Given the specific set of parameters, 29x29 covariance matrices 𝚻 and 𝚺 (Equation 2.8 and 

Equation 2.9) are formed with three submatrices:  

i. Point estimates σD
2, τD

2, σC
2, τC

2, σI
2, ρD,C, ρD,I, ρC,I  are used to form 3×3 covariance matrices 

among the residuals of 𝐷5−95𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐼𝑎𝑔𝑒𝑜𝑚

.  
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ii. Equation 2.12 is used to construct correlations 𝜌𝐷,𝑆𝑎0.01
 to 𝜌𝐷,𝑆𝑎5.0

, 𝜌𝐶,𝑆𝑎0.01
 to 𝜌𝐶,𝑆𝑎5.0

, and 

𝜌𝐼,𝑆𝑎0.01
 to 𝜌𝐼,𝑆𝑎5.0

, while Equation 2.11 is used for variances 𝜎𝑆𝑎0.01
2 to 𝜎𝑆𝑎5.0

2 and 𝜏𝑆𝑎0.01
2 to 

𝜏𝑆𝑎5.0
2. This results in 26x3 (or 3x26) matrices representing covariance of 𝐷5−95𝑔𝑒𝑜𝑚

, 

𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐼𝑎𝑔𝑒𝑜𝑚
with RotDSa at 26 periods.  

iii. The coefficients (s1, s2, s3, t1, t2) from Equations 2.13 to 2.17 are used to form a 26×26 

correlation coefficient matrix. Combining the correlation coefficient matrix with constructed 

variances 𝜎𝑆𝑎0.01
2 to 𝜎𝑆𝑎5.0

2 and 𝜏𝑆𝑎0.01
2 to 𝜏𝑆𝑎5.0

2, 26×26 covariance matrices of Sa at 26 

periods are formed. The three submatrices are then merged to develop 29×29 covariance 

matrices 𝚻 and 𝚺, which are finally utilized to form the covariance matrix C in Equation 2.10 

using Equations 2.18 and 2.19. 

𝐄𝐢 = [
𝚺 + 𝐓 ⋯ 𝐓

⋮ ⋱ ⋮
𝐓 ⋯ 𝚺 + 𝐓

] 
where 𝐄𝐢 is a 29𝑛𝑖 × 29𝑛𝑖 sparse matrix accounts for 

the covariance of the ith event with diagonal matrices 

of 𝚺 + 𝐓 and off-diagonal matrices of 𝐓. 𝑛𝑖 is the 

number of recordings in the ith event. 

(2.18) 

𝐂 = [
𝐄𝟏 ⋯ 𝟎
⋮ ⋱ ⋮
0 ⋯ 𝐄𝒏

]  
where C is a 29𝑁 × 29𝑁 sparse matrix with diagonal 

matrices of 𝐄𝐢 and off-diagonal matrices of 𝟎. N is the 

total number of recordings from all events. 

(2.19) 

 

The negative of log-likelihood function is then minimized by optimizing the parameters discussed 

in Steps 1-5 using Covariance Matrix Adaption Evolution Strategy (CMA-ES) (Hansen, 2006). 

CMA-ES is a widely used genetic algorithm to solve non-convex optimization problems. In this 

algorithm, several particles are randomly generated, with each particle representing a particular 

setting of parameters that are random variables of the objective function to be minimized. During 

the search steps of the algorithm, the mean of the distribution of the particles as well as the 

covariance matrix of the distribution of the particles are both updated until the algorithm converges 

at the global minimum. The boundary conditions of the algorithm are fixed to keep the correlation 

values between -1 and 1, standard deviations ≥ 0, and the covariance matrices as positive-definite 

(eigenvalues ≥ 0). 
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2.5.2 Results 

The final solution of the optimal parameters obtained from this procedure is presented in Tables 

2.2 to 2.4, the optimal standard deviations of the 29 targets are presented in Figure 2.6 and Figure 

2.9, and the optimally fitted correlations are compared against the ones directly computed from 

the residuals of the RNN structure in Figures 2.6, 2.7, 2.8, and 2.10. In Figures 2.6, 2.7, 2.8, and 

2.10, ‘computed’ represents the empirical values directly calculated from the residuals of the RNN, 

while ‘fitted’ indicates the values obtained from the optimized function forms. 

Table 2.2 - Coefficients of Polynomial Function (Equation 2.11) 

𝒗 𝒑𝟑,𝒗 𝒑𝟐,𝒗 𝒑𝟏,𝒗 𝒑𝟎,𝒗 

𝜎𝑆𝑎, M ≤ 4.5 -0.0075 0.0828 -0.2422 0.7544 

𝜎𝑆𝑎, M ≥ 5.5 0.0020 -0.0178 0.0568 0.5728 

𝜏𝑆𝑎, M ≤ 4.5 -0.0009 -0.0204 0.1205 0.3530 

𝜏𝑆𝑎, M ≥ 5.5 -0.0039 0.0148 0.0180 0.2422 

 

Table 2.3 - Coefficients of Polynomial Function (Equation 2.12) 

u 𝒒𝟑,𝒖 𝒒𝟐,𝒖 𝒒𝟏,𝒖 𝒒𝟎,𝒖 

D, M ≤ 4.5 0.0295 -0.2298 0.5709 -0.5045 

D, M ≥ 5.5 0.0102 -0.1488 0.4898 -0.5556 

C, M ≤ 4.5 -0.0253 0.2244 -0.6016 0.8326 

C, M ≥ 5.5 -0.0134 0.1129 -0.3099 0.5250 

I, M ≤ 4.5 -0.0308 0.2674 -0.7287 0.9466 

I, M ≥ 5.5 -0.0221 0.2097 -0.5183 0.8787 

 

Figure 2.8 shows the intra-event and the inter-event standard deviations of the residuals at 26 

periods  𝜎𝑆𝑎0.01
 to 𝜎𝑆𝑎5.0

 and 𝜏𝑆𝑎0.01
 to 𝜏𝑆𝑎5.0

 with Figure 2.8a (left column) showing the 

results of M ≤ 4.5 and Figure 2.8b (right column) showing the results of M ≥ 5.5. From Figure 

2.8a, it can be observed that the relationship between 𝜎Sa and periods tend to show a decreasing 

trend at periods less than 2 sec and an increasing trend at periods larger than 2 sec. Overall, 𝜎Sa 

ranges from 0.55 to 0.75. In Figure 2.8b, 𝜎Sa remains consistent from 0.55 to 0.65. For τSa in Figure 

2.8a, the standard deviation has an increasing trend at periods smaller than 2 sec and a decreasing 

trend at periods larger than 2 sec, and τSa ranges from 0.3 to 0.5 in general.  For τSa in Figure 2.8b, 

𝜎Sa remains consistent from 0.2 to 0.35. To summarize, for M ≤ 4.5, the trends of intra-event and 
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the inter-event standard deviations change after a period of 2 sec, while for M ≥ 5.5, the minimum 

variations are observed throughout the periods. 

Table 2.4 - Parameters of the correlation coefficient matrix for Equations 2.13-2.17 

 s1 s2 s3 t1 t2 

M ≤ 4.5 0.3869 0.1512 0.7174 0.0885 0.1989 

M ≥ 5.5 0.4241 0.0606 0.9033 0.0468 0.3408 

Baker & Jayaram (2008) 0.366 0.105 0.5 0.109 0.2 

 

 
      (a)                (b) 

Figure 2.8 - Intra-event standard deviations (𝜎𝑆𝑎0.01
 to 𝜎𝑆𝑎5.0

) and inter-event standard 

deviations (𝜏𝑆𝑎0.01
 to 𝜏𝑆𝑎5.0

) of residuals of Sa with (a) M ≤ 4.5, and (b) M ≥ 5.5 

Figure 2.9 illustrates the correlation between the residuals of 𝐷5−95𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐼𝑎𝑔𝑒𝑜𝑚

and 

RotD50Sa at 26  periods 𝜌𝐷,𝑆𝑎0.01
 to 𝜌𝐷,𝑆𝑎5.0

, 𝜌𝐶,𝑆𝑎0.01
 to 𝜌𝐶,𝑆𝑎5.0

, and 𝜌𝐼,𝑆𝑎0.01
 to 𝜌𝐼,𝑆𝑎5.0

where Figure 

9a (left column) shows the results for M ≤ 4.5 and Figure 2.9b (right column) shows the results 

for M ≥ 5.5. Generally, the residuals of 𝐷5−95𝑔𝑒𝑜𝑚
are observed to display slightly negative 

correlations with the residuals of RotD50Sa while the residuals of 𝐶𝐴𝑉𝑔𝑒𝑜𝑚 and 𝐼𝑎𝑔𝑒𝑜𝑚  show 

positive correlations with the residuals of RotD50Sa. The correlation of residuals is observed to be 

strong at the smaller periods (≤1.5 sec) and weak at the longer periods (≥1.5 sec). For M ≤ 4.5, all 

three correlations show a good match between the computed and fitted values, except that the fitted 

values for 𝜌𝐷,𝑆𝑎 are slightly larger than the computed ones when the period is larger than 4 sec. 
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For M ≥ 5.5, the computed values of 𝜌𝐷,𝑆𝑎show a slight positive correlation while the fitted ones 

show a negative correlation when the period is larger than 3 sec. 𝜌𝐶,𝑆𝑎 displays a relatively good 

match between fitted and computed values for all periods. The fitted values of 𝜌𝐼,𝑆𝑎 show a slightly 

higher correlation than the computed ones when the period is larger than 3 sec. 

  
(a)             (b) 

Figure 2.9 - Correlation between the residuals of D5-95, CAV and Ia with Sa (𝜌𝐷,𝑆𝑎0.01
 to 𝜌𝐷,𝑆𝑎5.0

, 

𝜌𝐶,𝑆𝑎0.01
 to 𝜌𝐶,𝑆𝑎5.0

, 𝜌𝐼,𝑆𝑎0.01
 to 𝜌𝐼,𝑆𝑎5.0

) with (a) M ≤ 4.5, and (b) M ≥ 5.5 

Figures 2.10 and 2.11 show the correlation coefficient structure of the residuals of RotD50Sa at 26 

periods with M≤4.5 and M ≥ 5.5, respectively. It can be observed that for both magnitude groups, 

the fitted and the computed correlations match relatively well when periods are larger than 0.5 sec, 

and the fitted correlations are observed to be slightly higher than the computed one for periods 

smaller than 0.5 sec. However, the results of M ≥ 5.5 show a better match between the fitted and 

computed correlations than the results of M ≤ 4.5, especially when the periods > 0.5 sec. 

Computed Fitted
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    (a)                                                             (b)         

Figure 2.10 - Correlation coefficient of residuals of Sa at 26 periods with M≤4.5, (a) computed 

from data, (b) fitted through optimization 

 
    (a)                                                             (b)           

Figure 2.11 - Correlation coefficient of residuals of Sa at 26 periods with M ≥ 5.5, (a) computed 

from data, (b) fitted through optimization 

Figure 2.12 demonstrates the fitted standard deviation of residuals of 𝐷5−95𝑔𝑒𝑜𝑚
 (σD, τD), 𝐶𝐴𝑉𝑔𝑒𝑜𝑚 

(σC, τC), and 𝐼𝑎𝑔𝑒𝑜𝑚
 (σI, τI). It can be observed that the intra-event variability is generally smaller 

than the inter-event variability and the variability is lesser in the group with M ≥ 5.5 compared to 

the M ≤ 4.5 group. 𝐼𝑎𝑔𝑒𝑜𝑚
is observed to possess higher variability compared to 𝐷5−95𝑔𝑒𝑜𝑚

, 

𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and the latter two are much more stable regarding the variation in intra- and inter-event 

as well as different magnitude groups. Lastly, Figure 2.13 shows the computed and fitted 

correlations between residuals of 𝐷5−95𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐼𝑎𝑔𝑒𝑜𝑚

 (ρD,C, ρD,I, ρC,I). In general, there 
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is a strong positive correlation between the residuals of 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐼𝑎𝑔𝑒𝑜𝑚
, while the correlations 

between residuals of 𝐷5−95𝑔𝑒𝑜𝑚  and the other two are less stable, as the sign of the correlation 

changes from different magnitude groups, and the absolute value shows weak correlations. 

Overall, the fitted values match well to the computed values for 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐼𝑎𝑔𝑒𝑜𝑚
. 

 
Figure 2.12 - Standard deviations of 𝐷5−95𝑔𝑒𝑜𝑚

 (σD, τD), 𝐶𝐴𝑉𝑔𝑒𝑜𝑚 (σC, τC), 𝐼𝑎𝑔𝑒𝑜𝑚
 (σI, τI) for both 

M ≤ 4.5 and M ≥ 5.5 

 

Figure 2.13 - Computed and fitted correlations between residuals of 𝐷5−95𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚 and 

𝐼𝑎𝑔𝑒𝑜𝑚
 (ρD,C, ρD,I, ρC,I) for both M ≤ 4.5 and M ≥ 5.5 

2.6 Model Performance 

The proposed RNN framework is evaluated firstly by comparing the recorded values of the 

components of IM with the median prediction of IM made by the RNN framework (median 

predictions of the proposed GGMPM). This is presented in Figure 2.14 for both Train and Test sets. 
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As mentioned in Section 2.3, the Train and Test sets are split in discretized based on Magnitudes. 

Figure 2.14a shows the predicted RotD50Sa plotted against the measured values of RotD50Sa for both 

Train and Test sets for all periods combined. As can be observed from the figure, the RNN framework 

shows good predictions for all ranges of RotD50Sa for both Train and Test sets. It can be observed 

from the figure that the scatter between Measured vs. Predicted RotD50Sa for both Train and Test sets 

tend to follow a 1:1 line, which leads to the conclusion that the statistical performance of the RNN 

framework is satisfactory. Similar observations are made in Figure 2.14b and 2.14d, that show the 

trend between the measured and predicted values of 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐼𝑎𝑔𝑒𝑜𝑚
, respectively. An exception 

to this is observed in Figure 2.14c, due to the highly complex nature of duration and the fact that 

duration parameters such as 𝐷5−95𝑔𝑒𝑜𝑚
 cannot be expected to grow with higher magnitude, leads to 

less accurate predictions of 𝐷5−95𝑔𝑒𝑜𝑚
. It is mainly seen that the predictions are good for the 

𝐷5−95𝑔𝑒𝑜𝑚
with values between 4.5 secs to 54.6 secs (logged values between 1.5 to 4), where most 

of the data lie.  Furthermore, the performance of the RNN structure is tested by checking its goodness-

of-fit using the statistical measure of R2 in Figure 2.15. Figure 2.15a shows the values of R2 for both 

Train and Test sets for RotD50Sa at 26 periods. As can be observed from the figure, the values of R2 

for all periods tend to be greater than 0.85, which shows the high predictive power of the proposed 

RNN framework. Also, as the R2 from the Test set is observed to be very close to the R2 of the Train 

set, it can be concluded that the RNN framework is not overfitted to the database and can be effectively 

used for the future predictions and hazard analysis. Figure 2.15b shows the values of R2 for 𝐼𝑎𝑔𝑒𝑜𝑚
, 

𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐷5−95𝑔𝑒𝑜𝑚
. As can be seen, the RNN framework demonstrates good prediction power 

for 𝐼𝑎𝑔𝑒𝑜𝑚
 and 𝐶𝐴𝑉𝑔𝑒𝑜𝑚 with R2 of around 0.9; however, as expected, the R2 for 𝐷5−95𝑔𝑒𝑜𝑚

 is observed 

to be much lower. But the R2 ~ 0.45 is still statistically sound prediction power. Note, the IM is 

predicted such that their internal dependencies are maintained, and still, the RNN framework is 

observed to perform satisfactorily.  

The performance of the model is further evaluated by checking the normality of the residuals 

obtained from the RNN framework. This is done by checking for any noticeable trends in the 

residuals with respect to M and Rrup, as shown in Figures 2.16 and 2.17, respectively. Figures 2.16a, 

2.16b, 2.16c, 2.16d, 2.16e, and 2.16f show the M vs. residual plots of Sa for periods of 0.5, 1.0, and 
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2.0 secs, 𝐷5−95𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐼𝑎𝑔𝑒𝑜𝑚

, respectively. Figures 2.17a, 2.17b, 2.17c, 2.17d, 2.17e, 

and 2.17f show the Rrup vs. residual plots of Sa for periods of 0.5, 1.0, and 2.0 secs, 𝐷5−95𝑔𝑒𝑜𝑚
, 

𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐼𝑎𝑔𝑒𝑜𝑚
, respectively. In both Figures 2.16 and 2.17, to show any trends in the 

residuals, discretized trend lines are drawn showing the 25th, 50th, and 75th percentile of the 

residuals.  It can be observed from the figures that no noticeable trends are observed in the residuals 

and except for 𝐷5−95𝑔𝑒𝑜𝑚
 residuals of all other components of IM tend to be small.  

        
  (a)                              (b) 

            
   (c)                               (d) 

Figure 2.14 – Predicted vs Measured for Train and Test sets: (a) Sa for the 26 periods, (b) CAV, (c) 

D5-95, and (d) Ia 
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   (a)                             (b) 

Figure 2.15 – Values of R2 for Train and Test sets: (a) RotD50Sa for all 26 periods, (b) 𝐼𝑎𝑔𝑒𝑜𝑚
, 

𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐷5−95𝑔𝑒𝑜𝑚  

   
  (a)             (b)               (c) 

   
    (d)            (e)    (f) 

Figure 2.16 – Residuals vs M: (a) Sa (T=0.5s), (b) Sa (T=1.0s), (c) Sa (T=2.0s), (d) 𝐷5−95𝑔𝑒𝑜𝑚  (e) 

𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and (f) 𝐼𝑎𝑔𝑒𝑜𝑚
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(a)          (b)            (c) 

   
(d)         (e)             (f) 

Figure 2.17 – Residuals vs Rrup: (a) Sa (T=0.5s), (b) Sa (T=1.0s), (c) Sa (T=2.0s), (d) 𝐷5−95𝑔𝑒𝑜𝑚  (e) 

𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and (f) 𝐼𝑎𝑔𝑒𝑜𝑚
 

2.7 Comparison against other Ground Motion Prediction Models  

2.7.1 Comparison against Campbell and Bozorgnia (2014) and Conditional Mean 

Spectrum (CMS) 

In this section, two earthquake scenarios are selected from the Test set of the NGAWest2 database; 

ground motion spectra generated from the proposed RNN framework (median predictions of the 

GGMPM) are compared against the spectra generated from CB14 (Campbell and Bozorgnia, 2014) 

GMPM, recorded spectra, and Conditional Mean Spectra (CMS) (Baker, J.W. (2011)) developed 

using CB14, conditioned on four periods (𝑇 = 0.2 s, 𝑇 = 0.5 s, 𝑇 = 1 s, and 𝑇 = 3 s) and four 

epsilons (휀 = −2, 휀 = −1, 휀 = 1, and 휀 = 2).  Figure 2.18 shows the spectral comparisons for 

ground motion arising from Reverse-Oblique mechanism with M = 6.9, Rrup = 18.33 km and Vs30= 

663.3 m/s. Figures 2.18a, 2.18b, 2.18c, and 2.18d show the recorded spectrum along with the 

spectrum generated from the RNN framework with four CMS conditioned on 𝑇 = 0.2 s, 𝑇 = 0.5 s, 

𝑇 = 1 s, and 𝑇 = 3 s, respectively. Since the CMS are conditioned on the period (T) and 𝜖, the four  
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(a)     (b) 

  
   (c)                                                      (d) 

Figure 2.18 – Spectral Comparisons for ground motion from Reverse-Oblique mechanism with 

M = 6.9, Rrup = 18.3 km and Vs30 = 663.3 m/s for CMS of: (a) 𝑇 = 0.2 sec, (b) 𝑇 = 0.5 sec, (c) 

𝑇 = 1 sec, and (d) 𝑇 = 2 sec  

sub-figures further contain the CMS conditioned on the four epsilons (휀 = −2, 휀 = −1, 휀 = 1, and 

휀 = 2) and the median estimate of CB14. As can be observed from the figures, the median spectrum 

generated from the GGMPM (i.e RNN predictions) lies very close to the recorded spectrum. Based 

on Figure 2.18, it can be observed that having additional constraints on the period (T) and 휀 can 

cause undesired variability in the estimation of the ground motion spectrum. It is observed that CB14 

or CMS conditioned on 휀 = 0 show a closer match with respect to the recorded spectrum. It can be 

further observed that all four CMS and CB14 tends to be smoother than the recorded spectrum and 

differ from the recorded spectrum at several periods. Similar trends are observed for another 

scenario, shown in Figure 2.19, obtained from the Test set for the ground motion arising from a 

Strike-Slip mechanism with M = 6.0, Rrup = 13 km, and Vs30 = 349.9 m/s. The spectrum generated 

from the RNN framework is estimated very close to the spectrum of the recorded ground motion, 

and high variability is observed in CMS due to variation across the periods (T) and 휀. CB14 tends to 

estimate a smoothened version of the spectrum; however, it consistently underestimates the Sa for 
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mid-range periods (from T = 1.5 to T = 3 secs). In general, it is observed that CMS conditioned on 

various periods causes some variability in the predicted spectra. For example, comparing Figures 

2.18a, 2.18b, 2.18c, and 2.18d or Figures 2.19a, 2.19b, 2.19c, and 2.19d, the generated CMS spectra 

show a wide range of predictions for different values of T and 휀   

  
(a)           (b) 

  
       (c)          (d) 

Figure 2.19 – Spectral Comparisons for ground motion from Strike-Slip mechanism with M = 

6.2, Rrup = 13 km and Vs30 = 349.9 m/s for CMS of: (a) 𝑇 = 0.2 sec, (b) 𝑇 = 0.5 sec, (c) 𝑇 = 1 

sec, and (d) 𝑇 = 2 sec  

2.7.2 Comparison against Campbell and Bozorgnia (2019) and Afshari and Stewart (2016) 

Furthermore, the RNN predictions of 𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, and 𝐷5−95𝑔𝑒𝑜𝑚

 of the two events selected 

in the previous section are compared against the recorded values in Figures 2.20a and 2.20b. Note 

that the spectra shown in Figure 2.18 and 𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐷5−95𝑔𝑒𝑜𝑚  shown in Figure 2.20a 

belongs to the same ground motion. Similarly, the spectra shown in Figure 2.19 and 𝐼𝑎𝑔𝑒𝑜𝑚
, 

𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐷5−95𝑔𝑒𝑜𝑚  shown in Figure 2.20b belong to the same scenario. The median predictions 

of the GGMPM (i.e RNN predictions) for 𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚  is further compared against the median 

predictions of CB19 (Campbell and Bozorgnia, 2019) and 𝐷5−95𝑔𝑒𝑜𝑚  is compared to AS16 (Afshari 
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and Stewart, 2016). As can be observed from Figure 2.20, even while maintaining the correlations 

between the IMs, the RNN framework tends to predict 𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐷5−95𝑔𝑒𝑜𝑚

 much closer 

to the recorded IMs as compared to the CB19 and AS16 GMPMs. 

   
(a)                        (b)  

Figure 2.20 – 𝐼𝑎𝑔𝑒𝑜𝑚
, 𝐶𝐴𝑉𝑔𝑒𝑜𝑚, 𝐷5−95𝑔𝑒𝑜𝑚  comparisons for: (a) Reverse-Oblique mechanism 

with M = 6.9, Rrup = 18.3 km and Vs30 = 663.3 m/s, and (b) Strike-Slip mechanism with M = 6.2, 

Rrup = 13 km and Vs30 = 349.9 m/s 

2.8 Spectral Comparisons 

The proposed GGMPM (i.e., RNN framework and covariance matrices) is compared against the 

Conditional Spectrum (CS) proposed by Baker, J.W. (2011) for the estimations of spectral 

accelerations. This is done by using the records of two seismic events, including Northridge (1994) 

(M = 6.4, 140 station recordings) and Landers (1992) (M = 7.3, 70 station recordings). For the two 

events, GGMPM and CS are used to construct the median and ± 1 standard deviation of Sa for all 

recording stations. Since the covariance matrices of the GGMPM describe the covariance between 

the 29 target IMs, the variability of all IMs conditioned on one IM can be estimated using Equation 

2.20 as done by Baker, J.W. (2011). In Equation 2.20, 𝛾𝐼𝑀𝑖|𝐼𝑀
∗ represents the conditional standard 

deviation of residual between the ith IM and IM*, and 𝜌 represents the correlation between them. 

In Equation 2.21, 𝜎𝐼𝑀𝑖|𝐼𝑀
∗ represents the ± 1 standard deviation of the ith IM conditioned on ± 1 

standard deviation of IM*. The event parameters of the three seismic events are also used to 

construct Conditional Spectrum (CS) based on CB14 GMPM. For both GGMPM and CS, the 
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spectra are constructed for 3 periods (T = 0.2, 0.5 and 2.0 secs). It should be noted that the GGMPM 

framework does not require conditioning of T to obtain the median prediction; however, the 

estimation bands are conditioned on the variance of the selected IM*. Since the construction of 

Conditional Spectrum (CS) also requires an appropriate epsilon, 40 CMS were constructed using 

epsilons of -2 to 2 with an interval of 0.1, and the one with a minimum sum of squared error (SSE) 

with respect to the recorded spectrum was used to construct the CS in the figures and compared 

against the true spectrum and estimate of GGMPM framework. Figure 2.21 shows some examples 

of the spectrum of recorded ground motion against the estimates of GGMPM and CS (i.e., CMS 

±𝜎) for the two events conditioned on T=0.2 secs. This is done for all stations of the three events 

for all three periods.  

𝛾𝐼𝑀𝑖|𝐼𝑀
∗ = √1 − 𝜌2(𝐼𝑀𝑖, 𝐼𝑀∗) (2.20) 

𝜎𝐼𝑀𝑖|𝐼𝑀
∗ = 𝜎𝐼𝑀𝑖

(𝜌2(𝐼𝑀𝑖, 𝐼𝑀
∗) + √1 − 𝜌2(𝐼𝑀𝑖, 𝐼𝑀∗)) (2.21) 

𝑙𝑛 𝐿 = ∑ [−
𝑙𝑛( 2𝜋)

2
−

𝑙𝑛(𝜎𝑖
2)

2
−

1

2𝜎𝑖
2
(𝑥𝑖 − 𝜇𝑖)

2]

𝑛=26

𝑖=1

 (2.22) 

 

(a)  

(b)  

Figure 2.21 – Recorded spectra against estimates of GGMPM and CS conditioned on T = 0.2 

secs for: (a) Northridge and (b) Landers seismic events. 

CMS Recorded Median GGMPM

CMS Median GGMPM 
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(a)    

(b)    

Figure 2.22 – Log-likelihood of the Recorded spectra to fall within the bands of estimation of 

GGMPM and CS for: (a) Northridge and (b) Landers, with IM* as Sa at T = 0.2, 0.5, and 2.0 secs 

 

The predictions of the GGMPM and CS are compared by computing the log-likelihood of the 

recorded spectrum at each recording station to fall within the bands of estimation of GGMPM and 

CS, using Equation 2.22. In Equation 2.22, the log-likelihood for each of the 26 periods is 

calculated (term inside the brackets) and then summed across the entire spectrum to achieve one 

estimate per recording. Hence higher log-likelihood represents better predictive power. The results 

of this analysis are presented in Figure 2.22 for the two seismic events for three periods. For all 

the cases, it is observed that the estimation of GGMPM has a relatively stable log-likelihood 

indicating that there is not relative bias in the predictions with respect to the M or Rrup of the events. 

For both scenarios, it is observed that for the period of 0.2 secs, the CS performs better for stations 

with large Rrup, while for the shorter distances, the GGMPM performs better. It is also observed 

from these figures that with the increase in the period, the estimation power of CS for larger Rrup 

is reduced as compared to the GGMPM. Specifically, for the period of 2 secs, the GGMPM 

framework consistently leads to higher log-likelihood as compared to CS. Also, it can be observed 

that the log-likelihoods of the CS between the two events are highly variable as compared to the 

proposed GGMPM. Hence, based on a brief comparison presented here, it can also be derived that 

the proposed GGMPM is an improved method for estimating the spectra of ground motions of an 
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GGMPM

CS
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earthquake without large variability in predictive power with respect to the distance to the fault 

rupture or magnitude of the seismic event. 

2.9 Conclusions 

This chapter presents a non-parametric Generalized Ground Motion Prediction Model (GGMPM) 

to predict a vector of ground motion intensity measure (denoted as IM) with 29 components using 

8 inputs of earthquake event and site parameters (including M, Rrup, Rx, RJB, DHyp, ZTOR, Vs30, F) 

that describe the physics of the rupture. The suggested IM includes geomeans of Ia, CAV, and D5-

95, which comprise three out of 29 components of the suggested IM obtained from pairs of two 

horizontal components of ground motion records. The other 26 components of IM include 5% 

damped RotD50Sa at 26 periods. Characterization of ground motion intensity as a vector was 

brought to the mainstream research arena after Baker and Jayaram (2008); the suggested GGMPM 

for estimation of IM is a step in that direction; it incorporates both time and frequency domain 

ground motion intensity measures with their correlation in a single stand-alone model.  

GGMPM for the suggested IM is developed using the hybrid framework of Recurrent Neural 

Network (RNN) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES); In particular, 

Long-Short-Term-Memory (LSTM) cells are used to incorporate the higher-order dependencies 

within IM and optimization technique of CMA-ES is further used to describe the aleatory 

variability among the components of IM. The aleatory variability of the framework is expressed 

in two components: inter-event variability and intra-event variability. The two types are 

variabilities are expressed in terms of covariance matrices, which are optimized using the CMA-

ES algorithm, separately for M ≤ 4.5 and M ≥ 5.5, and linear interpolation can be performed for 

4.5 < M < 5.5. The developed GGMPM is carefully trained and methodologically tested with a 

subset of NGA-West2 ground motion database containing mainshock records with 3.05 ≤ 𝑀 ≤ 

7.9. The used subset of ground motions has a significant overlap with the set used in Campbell and 

Bozorgnia (2014). Detailed validation exercises are carried out to demonstrate the adequacy of the 

developed GGMPM. The superiority of the GGMPM lies in its capability of estimating the vector 

of ground motion intensity measures with an acceptable representation of the correlation between 

the estimated intensity measures. By using illustrative examples, it is shown that only for short 

period systems in large distances, spectra developed using Conditional Spectrum is a better match 
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to recorded RotD50 Sa spectrum compared with the suggested GGMPM; otherwise, (i.e., for 

medium to short distances, with medium to long period structures) GGMPM provides a better 

match to the recorded ground motion spectra. Also, the GGMPM performs satisfactorily against 

the predictions of AS16 and CB19 for geomeans of D5-95, Ia, and CAV. Based on all the results, it 

is observed that the proposed GGMPM demonstrates acceptable performance in predicting the 

vector of intensity measures while maintaining their internal correlations. Furthermore, another 

advantage of this framework is that it can be easily re-trained with other ground motions records 

or extended to a larger vector of IMs, that can include any additional IMs of interest. The proposed 

GGMPM can be readily utilized in any modern seismic hazard analysis toolbox. An executable 

application is developed to obtain estimations from the proposed GGMPM.  
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CHAPTER 3 

BRIDGE STRUCTURAL MODELS AND SITE DATABASE 

 

3.1   Inventory of Bridges 

Table 3.1 - Characteristics of Bridge Structures 

Bridge A B C F 

Name 
Jack Tone Road 

Overcrossing 

La Veta Avenue 

Overcrossing 

Jack Tone Road 

Overhead 

E22-N55 

Connector Over-

crossing 

Total Length 220.6 ft 300.0 ft 418.0 ft 500.0 ft 

Number of 

Spans 
2 2 3 4 

Column Bent Single-column Two-column Three-column Single-column 

Column 

Radius 
33.1 in 33.5 in 33.1 in 47.7 in 

Column Height 22.0 ft 22.0 ft 24.1 ft 18.5 ft 

Reinforcement 

of Column 

Section 

Long: 44 #11 

(bundles of 2) 

Trans: Spiral, #6 

@ 3.34 in 

Long: 44 #11 

(bundles of 2) 

Trans: Spiral, #4 

@ 6.00 in 

Long: 34 #14 

(bundles of 2) 

Trans: Spiral, #7 

@ 4.52 in 

Long: 42 #14 

(bundles of 2) 

Trans: Spiral, #7 

@ 2.95 in 

Fundamental 

Period 
0.61 sec 0.83 sec 0.79 sec 1.11 sec 

Configuration 

   
 

 

This study is focused on Caltrans ordinary standard bridges. A bridge is considered as an ordinary 

standard bridge if it satisfies the following five conditions: (1) the span length should be less than 

300 feet; (2) the bridge should be constructed with normal-weight concrete; (3) foundations must 

be supported on spread footings, pile caps with piles, or pile shafts; and (4) the soil is not 

susceptible to liquefaction, lateral spreading or scour. This chapter provides a brief description of 

the selected ordinary standard bridge structures and the related Opensees (McKenna et al. 2010) 

modeling technique based on the first generation of guidelines for modeling ordinary bridges. 
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Four representative Reinforced Concrete (RC) ordinary bridge structures are selected for the 

statistical analysis. Table 3.1 includes the details of the four ordinary bridges with seat-type 

abutments, which reflect the common bridge engineering practice in California. The selection was 

focused on modern structures (designed after 2000) and based on the need to have a manageable 

number of structures and, at the same time, to cover the most common bridge geometries 

encountered within the Caltrans highway bridge inventory. The first selected bridge is the Jack 

Tone Road Overcrossing (Bridge A) located at the city of Ripon, with two spans supported on a 

single column. The second bridge is the La Veta Avenue Overcrossing (Bridge B) located at the 

city of Tustin, with two spans supported on a two-column bridge bent. The third bridge is the Jack 

Tone Road Overhead (Bridge C) located at Ripon, with three spans and two three-column bridge 

bents. And the fourth bridge is the curved bridge E22-N55 Connector Over-crossing (Bridge F) 

located in Santa Ana, with four spans supported on single columns.  

3.2   Analytical Modelling 

 

Finite Element models of the bridges are developed in the OpenSees (McKenna et al. 2010). The 

seismic demand of a bridge is estimated by developing and analyzing a mathematical model of the 

superstructure and substructure of the bridge subjected to representative ground motions. The 

models represent the geometry, boundary conditions, mass distribution, energy dissipation as well 

as the interaction between elements. Since the bridge consists of many components that exhibit 

nonlinear behavior, a fully 3D nonlinear model is developed. The finite element models are 

comprised of: seat-type abutments, abutment piles, shear keys, column bents, elastomeric bearing 

pads, backfill soil, and superstructure. A detailed representation of the Opensees finite-element 

model of the bridge structures is given in Figure 3.1. The concrete and steel used in modeling 

possess a compressive strength fc’ = 5.0 ksi (34 MPa) with a modulus of elasticity Es = 4030.5 ksi 

(27.8 GPa) and yield strength = 65 ksi (448 MPa) with a modulus of elasticity Es = 29000 ksi (200 

GPa), respectively. 
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(a) 

 
             (b)       (c)         (d)       (e)          (f) 

Figure 3.1 - a) Details of the finite-element model of bridges, b) Bearing pads response, c) 

Abutment pile response, d) Backfill soil response, e) Shear key response, and f) Column response 

3.2.1 Superstructure 

The superstructure is modeled using linear elastic elements since Caltrans SDC (2013) 

recommends, and designs, the superstructure to remain elastic under the seismic excitations. 

Dependent on the bridge type, the superstructure is either prestressed concrete beams or steel 

girders with a concrete slab. It should be noted that the stiffness of the superstructure does not have 

a significant effect on the seismic response of the bridge since the longitudinal response is typically 

governed by the bearings, columns, abutments, and foundation. As the superstructure is designed 

to remain elastic when undergoing seismic events, the superstructure is modeled with 

elasticBeamColumn elements using uncracked section properties of the deck of the bridge. 

To capture the dynamic response accurately, the mass of the superstructure is discretized and 

Bearing Pads Columns
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distributed throughout the length of the deck with each span’s mass being distributed in ten 

intervals connected by the elasticBeamColumn elements. 

3.2.2 Column Bent  

Single (SCB) and multi-column bents (MCB) with seat-type abutments are the most common types 

of bridges designed in California. The bent caps are modeled using elasticBeamColumn 

elements having high torsional, in-plane and out-of-plane stiffnesses, while the columns are 

modeled using beamWithHinges element (two Gauss integration points) with fiber-discretized 

cross-sections to model confined concrete for the core, unconfined concrete for the cover and steel 

rebars. Fiber-defined cross-sections have the unique advantage of allowing the specification of 

material properties specific to different locations in a member cross-section. For instance, 

unconfined concrete properties are assigned to the cover concrete while confined concrete 

properties are assigned to the core fibers. Further, the precise location of the longitudinal 

reinforcing bars and prestressing strands may be specified, and material properties assigned to 

them. Furthermore, rigid links are used to connect the top of the column to the bent cap beam and 

translation springs representing the behavior of foundations are applied at the base of the columns. 

Figure 3.2a presents the finite element discretization of the bents for the bridge structures. The 

details of the models of the structural components are presented in the sections that follow. The 

hysteretic behavior of columns is given in Figure 3.1f. 

  
(a) (b) 

Figure 3.2 - a) Details of Bent, b) Column fiber section at AA` 
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3.2.2.1 Column Section and Bent Cap  

The bridge columns are modeled using displacement-based beam-column elements for all the 

bridges. The modeling is done using the beamWithHinges element (two Gauss integration 

points) with fiber-discretized cross-sections to model confined concrete for the core, unconfined 

concrete for the cover and steel rebars. The plasticity of the columns is concentrated at two plastic 

hinges at the opposite ends connected by a linear elastic element. The length of the plastic hinge 

is determined based on Caltrans SDC (2013). Details such as column diameter, longitudinal and 

transverse reinforcement ratios vary across the four bridges. Three different constitutive rules are 

used simultaneously within a fiber-discretized cross-section: (i) confined concrete for the core 

concrete, (ii) unconfined concrete for the cover concrete, and (iii) steel rebar for the reinforcing 

bars. The Opensees Concrete01 constitutive model is used for both the cover and core concrete, 

and steel rebars are modeled by the ReinforcingSteel material. A rigid element is attached 

to the top of the nonlinear beam-column element to model the portion of the column-bent 

embedded in the superstructure. Figure 3.2b shows a discretized fiber section for a bridge column, 

which consists of unconfined and confined concrete properties assigned to the fibers along with a 

precise location of the longitudinal reinforcement. Assuming a monolithic construction of the cap 

beam and columns, the cap beam is modeled as a rigid bent using an elasticBeamColumn 

element with high torsional, in-plane and out-of-plane stiffnesses. The concrete and steel are 

modeled using Concrete01 and ReinforcingSteel materials, respectively, which are 

available in Opensees. 

3.2.2.2 Column Bases and Piles  

The boundary condition of the column base proves to introduce a significant impact on the seismic 

responses obtained from NLTHA. In current models, the single-column bridges (Bridge A and 

Bridge F) are modeled with a fixed base connection, while pinned base connections are assigned 

to the multi-column bridges (Bridge B and C). However, the flexibility of base connections arising 

from piles beneath is specifically modeled. To describe the translational behavior of pile 

foundations, a linear elastic spring model is used. The vertical movement is restricted since vertical 

ground motion are not applied to the bridge structures in this study. The response of piles laterally 

loaded (by horizontal forces) is independent of their length, in most practical situations. Only the 
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uppermost part of the pile experiences appreciable displacement. It is along this active length, 𝑙𝑐, 

that the imposed load is transmitted to the supporting soil. The length 𝑙𝑐 is typically on the order 

of 5 to 10 pile diameters and is a function of the pile length with respect to the soil. Equation 3.1 

presents simple algebraic expression, given by Fang (1999), for estimating 𝑙𝑐 of a circular solid 

pile with diameter d, Young's modulus 𝐸𝑝, and 𝐸�̂� is the reference Young's modulus of the soil at 

a depth, z = d. 

Equation 3.2 is then used to calculate the horizontal stiffness, 𝐾ℎ, of a pile foundation, but it is 

valid only for piles with length 𝐿 > 𝑙𝑐. In Equation 3.3, N represents the number of piles in a 

footing and 𝐾ℎ,𝑡𝑜𝑡𝑎𝑙 is the total horizontal stiffness of a pile footing. The reference modulus of sand 

varies from 34.5 Mpa (5 ksi) to 68.9 Mpa (10 ksi). In this study, the minimum reference modulus 

of sand, 34.5 Mpa (5ksi), is used for conservatism. The piles are assumed to be made of concrete 

(𝐸𝑝 = 21994 Mpa, 3190 ksi). With the above information combined with the bridge data, the 

horizontal stiffness of the column foundation is calculated for all the bridges. 

𝑙𝑐 = 2 𝑑 (
𝐸𝑝

𝐸�̂�
⁄ )

0.22

         (3.1) 

𝐾ℎ  =  0.8 𝑑 𝐸�̂�  (
𝐸𝑝

𝐸�̂�
⁄ )

0.28

       (3.2) 

𝐾ℎ,𝑡𝑜𝑡𝑎𝑙 = 𝑁. 𝐾ℎ      (3.3) 

3.2.3 Shear Keys  

In the transverse direction, exterior and interior shear keys are designed to provide transverse 

support to bridge superstructure and transmit the lateral shear forces through vertical reinforcement 

between the shear key and the stem wall in minor-to-moderate earthquake events and service loads. 

These elements are designed to break off once subject to strong motions to save the abutment 

structure and piles. Shear-key design philosophy requires that these elements behave similarly to 

a fuse. In essence, shear-keys are designed to resist lateral service loads with minor deformation 

and break under extreme loads to save the stem wall and the supporting piles. Hence, the shear 

keys are designed and modeled in a brittle/isolated manner using the hysteretic spring model 

available in Opensees. The model is defined with a trilinear backbone curve as given in Figure 
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3.1e. The shear key is designed as per Caltrans SDC (2013) with an area of vertical reinforcement 

(𝐴𝑣𝑠𝑘) calculated as per Equation 3.4, where 𝑃𝑑𝑙
𝑠𝑢𝑝 is the superstructure dead load reaction at the 

abutment and 𝑓𝑦𝑒 is the yield strength of steel rebars.  

Based on past experimental observations detailed in Kottari (2016), the sliding shear resistance of 

an isolated shear key can be associated with two states: i) shear resistance at first sliding (𝑉𝑠𝑙𝑖𝑑) 

and ii) ultimate sliding shear resistance (𝑉𝑢) right before the rupture of the dowel bars. Assuming 

a smooth construction joint, the shear resistance due to the dowel action (𝐹𝑑)  of the vertical dowel 

bars is calculated using Equation 3.5 which leads to the calculation of 𝑉𝑠𝑙𝑖𝑑 as shown in Equation 

3.9 through Equations 3.6, 3.7 and 3.8. Based on the equilibrium of the horizontal and vertical 

forces (Borzogzadeh et al. 2006), 𝑉𝑢 is calculated as per Equation 3.10 

𝐴𝑣𝑠𝑘 =
𝛼 × 𝑃𝑑𝑙

𝑠𝑢𝑝

1.8 × 𝑓𝑦𝑒
                       0.5 < 𝛼 < 1 

(3.4) 

𝐹𝑑 = ∑ √2. 𝑀𝑝𝑙,𝑖. 𝑓𝑐𝑏,𝑖. 𝑑𝑏,𝑖

# 𝑜𝑓 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑎𝑟𝑠

𝑖=1

 

(3.5) 

𝑀𝑝𝑙,𝑖  =  
𝑓𝑦. 𝑑𝑏,𝑖

3

6
 

(3.6) 

𝑓𝑏,𝑖  =  𝑎𝑖. 𝑓𝑐
1.2

 (3.7) 

𝑎𝑖  =  2.0 +  
0.5

𝑑𝑏,𝑖
 

(3.8) 

𝑉𝑠𝑙𝑖𝑑  =  
𝑇 +  𝐹𝑑

(1 − 𝜇𝑓 . 𝑡𝑎𝑛𝛽)
 

(3.9)      

𝑉𝑢 =  
𝜇𝑓 . 𝑐𝑜𝑠𝛼 + 𝑠𝑖𝑛𝛼

1 − 𝜇𝑓 . 𝑡𝑎𝑛𝛽
. 𝐴𝑣𝑠𝑘 . 𝑓𝑠𝑢 

(3.10) 

In these equations, 𝑀𝑝𝑙,𝑖 is the plastic moment capacity of bar i, 𝑓𝑐𝑏,𝑖 is the compressive strength of 

confined concrete, 𝑓𝑐 is the uniaxial concrete compressive strength, 𝑑𝑏,𝑖 is the diameter of bar i, β is 

the angle of the inclined face of the shear key with respect to a vertical plane, T is the cohesive force, 
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and 𝜇𝑓 is the coefficient of friction of the smooth construction joint (= 0.36) (Kottari, 2016). 𝛼 is the 

angle of inclination of the vertical dowel bar with respect to the vertical (angle of kink). It is assumed 

that a bond breaker is applied on the construction joint, hence T = 0 in Equation 3.9. The value of 𝛼 

is obtained from Kottari (2016) through interpolation for the provided diameter of dowel bars. The 

initial stiffness (k1) of the backbone curve is computed through the summation of shear and flexural 

responses of the concrete cantilever action of the shear key (Omrani et al. 2015), while the stiffnesses 

of the hardening (k2) and softening (k3) branches are expressed as a percentage of k1 (ranging from 

0.5 % to 2.5% for various rebar diameters) that is interpolated according to Kottari (2016)  

3.2.4 Abutment Piles  

As stated previously, piles are considered to provide longitudinal and transverse stiffness to the 

abutments. For the passive longitudinal response, piles act in parallel with the backfill soil, while 

piles alone account for the active resistance. The transverse resistance just like the active resistance 

is also provided solely by the piles. The abutment stiffness in active action is dependent on the 

resistance of piles. The Caltrans recommendation for pile stiffness (Caltrans, 1990), 119 kN/pile 

(40 kips/pile), is considered in this study. However, the behavior of abutments in active action is 

not unilinear to the ultimate strength. The initial stiffness in active action degrades with surface 

soil yielding. Therefore, in this study, a trilinear response stemming from the recommendations of 

Choi (2002) is used to model the response of the piles. 

The model assumes that piles become plastic at a deformation of 25.4 mm (1 inch), first yielding 

occurs at a displacement equal to 30% of the ultimate deformation, and the yielding force is 70% 

of the ultimate force. The force deformation response of the pile along with the model parameters 

is presented in Figure 3.1c. The piles are modeled in Opensees through a trilinear hysteretic 

spring model whose parameters are given in Equations 3.11 to 3.15. 

𝐾𝑒𝑓𝑓 = 7.0 kN/mm/pile × Number of Piles    (3.11) 

𝐾1  = 2.333 ×  𝐾𝑒𝑓𝑓        (3.12) 

  ∆1 = 7.62 𝑚𝑚 (0.3 𝑖𝑛)       (3.13) 
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  𝐾2  = 0.428 ×  𝐾𝑒𝑓𝑓        (3.14) 

  ∆2 = 25.4 𝑚𝑚 (1.0 𝑖𝑛)       (3.15) 

3.2.5 Backfill Soil  

The hyperbolic soil model proposed by Shamsabadi and Kapuskar (2006) is used in the present 

study to capture the response of the abutment backwall soil in passive response. The model is 

based on experimental testing of bridge abutments with 1.67 m (5.5 ft) high backwalls and typical 

cohesionless and cohesive backfill soils conducted at the University of California Los Angeles. 

The test results were then extended to develop closed-form solutions for the abutment backfill soil 

response for a range of backwall heights based on a series of analyses using the limit-equilibrium 

method that implements mobilized logarithmic-spiral failure surfaces coupled with a modified 

hyperbolic soil stress-strain behavior. Figure 3.1d shows a typical abutment force-displacement 

backbone curve, where Fult is the maximum abutment force developed at maximum displacement, 

ymax, and which possesses an initial stiffness k. Equation 3.16 presents the closed-form solution 

(used in this study) for the force-displacement response of the backfill soil, where parameters 

𝛽, 𝛼, 𝑛, and 𝜂 are expressed in Equations 3.17 to 3.20 as suggested by Khalili-Tehrani et al. (2010) 

in terms of the soil parameters of cohesion (c), friction angle (𝜑), unit weight (𝛾), strain 

corresponding to 50% ultimate stress (휀50), backwall-soil friction angle (𝛿), and soil failure ratio 

(𝑅𝑓), which is the ratio of deviatoric stress at failure to the theoretical ultimate deviatoric stress of 

soil. F and y are abutment passive resistance and deflection, respectively, and the term Ĥ is the 

ratio of the actual height of the abutment backwall to the reference height of 1 meter. 

𝐹(𝑦) =  

1
𝛽

(𝜂 − 1)𝛼𝑦

𝐻
𝐻𝑟

+
1
𝛽

(𝜂 − 2)𝑦
 (3.16) 

𝛽 = [1703 − 683.4(tan𝜑)1.23]휀50 (3.17) 

𝛼 = {

[5.62(tan𝜑)2 + 0.53]𝛾 + [10.58(tan𝜑)1.79 + 2.86]𝑐,            𝜑 ≠ 0,   𝑐 ≠ 0 

[5.62(tan𝜑)2 + 0.53]1.06𝛾,                                                             𝑐 = 0
    0.50𝛾 + 2.63𝑐,                                                                                      𝜑 = 0   

 (3.18) 
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𝑛 = {

2,                                        𝑐 = 2

0.91(tan𝜑)2 + 1.49

√𝑐
+ 0.9,     𝑐 ≠ 0 

 (3.19) 

𝜂 = {

15.47,                                  𝜑 < 5,   𝑐 ≠ 0 

18.10 − 9.38√tan𝜑,         𝜑 ≥ 5, 𝑐 = 0

16.36 − 7.49√tan𝜑,                      𝑐 = 0 

 (3.20) 

Four classes of backfill material have been identified for California Highway bridges in a study by 

Earth Mechanics, Inc. (Earth Mechanics, 2005): (I) Dense to very dense sand with gravel; (II) 

Medium dense silty sands, some with gravel; (III) Medium dense clayey sands, some with gravel; 

and (IV) Stiff-hard clays with fine to coarse-grained sands, some with silts (see Table 3.2). In this 

study, category II is used as the soil type for all the bridges. Phase relationships are used to 

determine the total unit weight (𝛾) from the lower bounds of measured field dry density (𝜌𝑑) and 

moisture content (W). The backwall-backfill interface friction angle, 𝛿, has been set to two-third 

of the soil internal friction angle, 𝜑, per recommendations of Shamsabadi et al. (2005, 2007, 2010). 

Zero-length springs characterized by nonlinear soil behavior are used to capture the response of 

the abutment soil. The backfill soil is modeled using the HyperbolicGapMaterial material 

with a Generalized Hyperbolic Force-Deformation (GHFD) backbone (Shamsabadi et al. 2005, 

2007; Duncan and Mokwa, 2011). It must be noted that in the case of seat type abutment, there 

exists a gap between the deck and abutment backwall, which in this case is taken as 25.4 mm (1 

inch).  

Table 3.2 - Backfill soil type categories in California highway bridges 

Category 
𝝆𝒅 

(kip/ft3) 

W 

(%) 

𝜸 

(kip/ft3) 

𝝋 

(deg) 

c 

(kip/ft2) 
𝜺𝟓𝟎 𝑹𝒇 

I 1.2 3-6 0.12 38 0 0.0035 0.96 

II 0.12-1.2 5-14 0.11 33 0.5 0.0035 0.96 

III 0.1-0.11 7-15 12 23 2 0.0035 0.96 

IV 0.11-0.08 14-29 0.09 6 3.5 0.007 0.96 

3.2.6 Bearing Pads  

Elastomeric bearings are the most commonly adopted bearing types in concrete bridges. These 

bearings typically transfer horizontal forces by friction and their behavior is characterized by 
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sliding which in turn depends on the initial stiffness. Once the coefficient of friction is exceeded, 

the stiffness of the rubber pads drops to zero and therefore, their response can be characterized by 

an elastic perfectly plastic material. The initial stiffness, kpad, of the bearing pad is calculated using 

Equation 3.18, where, G is the shear modulus, A is the cross-sectional area, and h is the thickness 

of the bearing pad.  

Figure 3.1b shows the force deformation response of an elastomeric bearing pad. The yield force, 

Fy, is calculated by multiplying the normal force, N, acting on the bearing with the coefficient of 

friction, μ, of the pad. Scharge (1981) presented an expression for the coefficient of friction, 

specific to elastomers on concrete, based on experimental tests, and is a function of the normal 

stress in MPa, σn, as presented in Equation 3.19. The response of the bearing pad is captured using 

the Steel01 material provided by Opensees and is applied to a zero-length element to capture 

its force deformation response. 

𝑘𝑝𝑎𝑑 =
𝐺𝐴

ℎ
 (3.18) 

𝜇 = 0.05 +  
0.4

𝜎𝑛
 (3.19) 

Table 3.3 - Summary of variables used to describe Opensees springs 

Parameter Bridge A Bridge B Bridge C Bridge F 

Concrete, 𝑓𝑐𝑘 5 ksi 5 ksi 5 ksi 5 ksi 

Steel, 𝑓𝑦 65 ksi 65 ksi 65 ksi 65 ksi 

Circular solid pile diameter, d 24 in 24 in 24 in 118.1 in 

Number of Column piles, N 25 20 24 1 

Young's modulus of soil, 𝐸𝑝 3190 ksi 3190 ksi 3190 ksi 3190 ksi 

Reference Young's modulus of the 

soil at a depth= d, 𝐸�̂� 
5 ksi 5 ksi 5 ksi 5 ksi 

Diameter of Shear Key rebars, 𝑑𝑏 1 in 1.41 in 1.41 in 1 in 

Number of Abutment Piles 12 24 34 14 

Shear Modulus of Bearing Pads, 𝐺 0.108 ksi 0.108 ksi 0.108 ksi 0.108 ksi 

Area of Bearing Pads, A 139.47 in2 280.3 in2 327.98 in2 309.76 in2 

Height of Bearing Pads, h 2.56 in 2.46 in 4.52 in 4.92 in 
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Overall, the longitudinal behavior of the abutment is modeled using five springs in parallel 

connected by a rigid link while the transverse behavior is modeled using one spring on both ends 

of the abutment. The model of the longitudinal abutment response comprises of a combination of 

springs that represent the abutment piles, elastomeric bearing pads, and backfill soil. And the 

model of the transverse abutment response comprises of a combination of springs that represent 

the abutment piles, elastomeric bearing pads, and shear key. The arrangement of the transverse 

and longitudinal springs is shown in Figures 3.1a. Summary of all the variables used to describe 

the springs of the Opensees models for the four bridges are provided in Table 3.3. 

3.3 Site Database 

 
Figure 3.3 - Selected five sites in the greater Southern California region 

A subset of 5 representative sites is selected for the research conducted in this study. The selected 

sites include Los Angeles downtown (LADT), San Bernardino strong motion (SBSM), Seven Ten-

Ninety Interchange (STNI), Whittier Narrows Golf Course (WNGC), and Century City Plaza 

(CCP) sites. The sites LADT and CCP are located within the northern L.A. basin and are selected 

because of their proximity to a large inventory of buildings and bridge structures of societal 

importance. STNI is situated on a very deep part of the basin in this region, where the effects of 

the geologic basin on the resulting ground motions are highly pronounced (Graves et al., 2011). 

The WNGC and SBSM sites are interesting because they exhibit coupling of basin and directivity 

effects in the ground motions (Graves et al., 2011). Figure 3.3 shows the locations of the selected 
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five sites in the Southern California region. Table 3.4 includes the site information including shear-

wave velocity averaged over the top-most 30 m of soil (Vs30), and the depth where Vs30 is equal to 

2.5 km/sec (Z2.5) (aka basin depth) obtained from Lee et al. (2014).  

Table 3.4 - Characteristics of the selected sites 

Site 

Name 

Site  

Abbreviation 

𝑽𝒔𝟑𝟎 (𝒎/𝒔) 

(CVM 4.26) 

𝒁𝟐.𝟓 (𝒌𝒎) 

(CVM 4.26) 

Location 

Latitude Longitude 

Los Angeles 

Downtown 
LADT 358.6 2.08 34.052 -118.257 

San Bernardino 

Strong Motion 
SBSM 354.8 1.77 34.064 -117.292 

Century City 

Plaza 
CCP 361.7 2.96 34.054 -118.413 

Whittier 

Narrows Golf 

Course 

WNGC 295.9 2.44 34.041 -118.065 

Seven Ten-

Ninety 

Interchange 

STNI 268.5 5.57 33.930 -118.179 

 

 

 

Chapter Citation: 

1) Fayaz J., Dabaghi M., and Zareian F. (2020b). Utilization of Site-Based Simulated Ground 

Motions for Hazard-Targeted Seismic Demand Estimation: application for Ordinary Bridges 

in Southern California. Journal of Bridge Engineering, Vol. 25, Issue 11. 

 

 



CHAPTER 4 

SEISMIC DEMAND ANALYSIS USING INCREMENTAL DYNAMIC  

ANALYSIS 

 

4.1   Introduction 

Current seismic design procedures such as Caltrans SDC (2013, 2019) are continuously evolving to 

develop methodologies for conducting seismic analysis to achieve more accurate estimations of the 

demands corresponding to target hazard levels. In this chapter one of the conventional method of 

Incremental Dynamic Analysis (IDA) is implemented to obtain Engineering Demand Parameter 

(EDP) hazard curves. Sets of 20 recorded ground motions are scaled and selected using the hazard 

curves developed through Campbell and Bozorgnia (2014) (CB14) and the concept of Average Sa 

(Eads et al., 2015) for 15 hazard levels. The selected ground motion records (20 ground motions 

×15 hazard levels = 300 ground motions) are then used to conduct Non-Linear Time-History 

Analysis of the four bridge structures to obtain the EDP-IM data (IDA curves). The EDP-IM data 

(IDA curves) is then integrated over the Sa hazard curves obtained from Campbell and Bozorgnia 

(2014) (CB14) GMPM using Equation 1.2  to obtain the final EDP hazard curves. This is done for 

each bridge structure for all five sites. Due to asymmetric nature of the dynamic properties of the 

bridge structures in the two directions (longitudinal and transverse), the EDP is obtained by 

rotating the two orthogonal components of ground motions in incremental rotations from 0 to 180 

degrees (excluding 180o for straight bridges) with 15o increments. Therefore, a total of 

approximately 78,000 NLTHA (= 4 bridges × 5 sites × 20 ground motions × 15 hazard levels × 

13 intercept angles) are conducted in this chapter. The EDP hazard curves obtained in this chapter 

are used as the basis of comparison for EDP hazard curves for Chapters 5, 6, and 7. 

 4.2   Selection of recorded ground motions for IDA  

The conventional method of Incremental Dynamic Analysis (IDA) uses recorded ground motions 

for developing Engineering Demand Parameters hazard curves. This is done by first obtaining 

hazard curves for various spectral periods generated using the Campbell and Bozorgnia (2014) 

(CB14) empirical Ground Motion Model (GMM) for each site with the ruptures based on 
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CyberShake-UCERF2, using the OpenSHA software (Field et al. 2003). Then the hazard curves 

are used to develop 15 Uniform Hazard Spectra (UHS) for 15 hazard levels (Return periods of: 

5000, 3750, 2500, 1500, 1250, 1000, 900, 700, 500, 300, 200, 100, 75, 50, 25). For each UHS for  

 
Figure 4.1 - Illustration of selecting hazard-representative recorded ground motions for IDA 

a given site, average Sa (𝑆𝑎𝑎𝑣𝑔
∗ )  (Eads et al., 2015) is calculated between the period range of 0.5T* 

to 2T*, where T* represents the first mode period of each bridge structure. Then, for each UHS, 

20 recorded ground motions that match the 𝑆𝑎𝑎𝑣𝑔
∗  with scaling factors of 0.5 to 2 are selected. To 

select the recorded ground motions, a set of 6958 mainshock recordings available in the NGA-

West2 database (Timothy et al., 2014) are used. Each ith recorded ground motion (1 ≤ 𝑖 ≤ 6958) 

is scaled with a scaling factor j (in the range 0.5 ≤ 𝑗 ≤ 2) and its average Sa ( 𝑆𝑎𝑎𝑣𝑔
𝑖𝑗

) is computed. 

𝑆𝑎𝑎𝑣𝑔
𝑖𝑗

 is compared against 𝑆𝑎𝑎𝑣𝑔
∗  by computing their squared error ( 𝑆𝐸𝑖

𝑗
= (𝑆𝑎𝑎𝑣𝑔

∗ −

𝑆𝑎𝑎𝑣𝑔
𝑖𝑗

)2). Then, for each ith recorded ground motion, the one with the minimum 𝑆𝐸𝑖
𝑗

 is selected, 

which leads to 6958 scaled ground motions. Among these 6958 scaled ground motions, 20 ground 

motions with minimum 𝑆𝐸𝑖
𝑗

 are selected as a representation of the hazard for the given UHS. 

This ensures that a ground motion with two different scaling factors is not selected for the same 

hazard level. Furthermore, once a ground motion is selected for a higher hazard level (higher return 

period), it is withdrawn from the selection set of 6958 ground motions. In this way, no ground 

  ∗ .   ∗

Calculate: 

where,
GMs 

&
Scaling Factors 

Calculate:

Campbell and 
Bozorgnia 

(2014)
GMPE

NGA-West2 
Database

(6958 
Ground 

Motions)

For ith GM, select the scaling 

factor (j) with min

Among the obtained 6958 GMs 

select 20 GMs with least 
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motion is selected more than once across all scaling factors and hazard levels. This process is 

explained in Figure 4.1 and is repeated for all 5 sites and for the 4 bridges to select 20 ground 

motions for each of the 15 hazard levels. Hence, for each site and each bridge, 20×15=300 unique 

recorded scaled ground motions are selected. It should be noted here that even though the recorded 

ground motions corresponding to the same hazard level possess similar Average Sa, their Sa(T*) 

may still differ from each other. Hence this method is similar to the Cloud method of performing 

IDA rather than typical strip IDA. The number of ground motions that are classified as pulse-like 

(Shahi and Baker, 2014) ground motions among the 300 motions for each bridge is given in Table 

4.1. 

Table 4.1 - Number of pulse-like ground motions among the selected 300 ground motions 

Site Bridge A Bridge B Bridge C Bridge F 

LADT 101 111 97 107 

SBSM 144 139 131 135 

CCP 108 103 97 100 

WNGC 126 124 126 137 

STNI 126 113 133 140 

 

4.3   Engineering Demand Parameter (EDP) of the bridge structures 

The behavior of ordinary bridge structures is mainly deduced by examining the maximum Column 

Drift Ratio (CDR) of the central bent throughout the time-history of ground motion. Hence, the 

primary Engineering Demand Parameter (EDP) that bridge engineers rely their design on is the 

Column Drift Ratio (CDR) as it correlates well with the bridge damage and other EDPs (such as 

Deck Rotation Angle, Based Shear etc.). Due to the significant differences in the dynamic 

characteristics of bridge structures in the two orthogonal directions, in this study, the bi-directional 

components of the ground motions are used to conduct Non-Linear Time-History Analysis 

(NLTHA) of the bridge structures in incremental rotations from 0o to 180o (excluding 180o for 

straight bridges) with 15o increments. Hence, to be consistent with the Caltrans practice and at the 

same time not to over or under- estimate the EDPs, the primary EDP considered in this research is 

the median value of the maximum CDR obtained after analyzing the bridge structure using the two 

components of ground motions at the 13 intercept angles. This EDP is termed as 𝑅𝑜𝑡50𝐶𝐷𝑅 and 
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is expressed in Equation 4.1. It should be noted that the EDP of Column Drift Ratio (CDR) is 

termed in the form of RotppEDP, where Rot indicates the rotation of ground motion components, 

pp indicates the percentile value used for the measure (e.g. “00”, “50” and “100” correspond to 

minimum, median and maximum values, respectively; the median value is used in this study), and 

EDP indicates that the measure is an Engineering Demand Parameter (i.e., Column Drift Ratio 

CDR). The idea of Rot50CDR is borrowed from the state-of-practice ground motion Intensity 

Measure (IM), RotD50 spectral acceleration (Sa); expressed as RotDpp, where Rot indicates the 

rotation of the two orthogonal components of the ground motions, D indicates the period 

dependency and pp corresponds to the percentile value (mainly limited to the 50 percentiles, i.e., 

the median value). Conclusively, RotD50 is a measure of IM obtained after rotating the two ground 

motions components on a Single-Degree-of-Freedom (SDOF), Rot50CDR is a measure of the EDP 

(Column Drift Ratio CDR) obtained after rotating the two components of ground motions through 

180 degrees on the Multi-Degree-of-Freedom (MDOF) bridge models. To avoid any confusion 

and for the sake of brevity, in this study, the RotD50 spectral acceleration at bridge’s first mode 

period, which is used as the primary IM of ground motions, is termed as 𝑆𝑎(𝑇). Hence, each ground 

motion is associated with one value of 𝑆𝑎(𝑇) (as an IM) and one value of Rot50CDR (as an EDP). 

𝑅𝑜𝑡50𝐶𝐷𝑅 =  𝑚𝑒𝑑𝑖𝑎𝑛 {

𝐶𝐷𝑅0°
𝐶𝐷𝑅15°

⋮
𝐶𝐷𝑅180°

} (4.1) 

4.4  IDA-Based EDP Hazard Curves    

 
Figure 4.2 - IDA (CB14) data for Bridge B (T*=0.8s) at the LADT site 
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Figure 4.3 - IDA (CB14) curves for Bridge B (T*=0.8s) at the LADT site 

300 recorded ground motions are selected for each bridge and site combination and used to conduct 

NLTHA. Hence, a total of 78,000 NLTHA (= 5 sites × 300 ground motions × 4 bridges × 13 

intercept angles) are conducted for IDA, i.e., 3900 NLTHA for each bridge for every site. An 

example for LADT site for Bridge B is shown in Figure 4.2. The EDP-IM data is used to obtain 

the IDA curves by computing the mean and standard deviation of the EDP-IM data in lognormal 

domain. The IDA curves of the EDP-IM data are shown in the Figure 4.3. The IDA curves are then 

integrated over the CB14 Sa(T=0.8 sec) hazard curve using Equation 4.2 to obtain the EDP hazard 

curve. The obtained IDA-Based EDP hazard curves for Bridges A, B, C and F are presented in 

Figure 4.4. Similar to IM hazard curves, the EDP hazard curves can be directly utilized to obtain 

EDPs corresponding to a hazard level. Similar EDP hazard curves are obtained for other four sites 

and shown in Appendix A. In general it is observed that the EDP hazard curves of Bridge F are 

lower than other three bridges. This can be due to the longer period of the Bridge F as compared 

to other bridges. For a 1000-year return period the corresponding values of Rot50CDR for Bridges 

A, B, C, and F are computed to be 2.66%, 2.71%, 2.56%, and 1.41%, respectively, for LADT site.  

 

𝜆𝐸𝐷𝑃 = ∑𝐺(𝐸𝐷𝑃|𝐼𝑀)∆𝜆𝐼𝑀      (4.2) 



65 

 

   
(a)                                        (b) 

   
       (c)              (d)  

Figure 4.4 – IDA-Based hazard curves at LADT site for Bridges: (a) A, (b) B, (c) C, and (d) F 

 

 

 

Chapter Citation: 

1) Fayaz J., Rezaeian S., and Zareian F. (2021a). Evaluation of simulated ground motions using 

probabilistic seismic demand analysis: CyberShake (ver. 15.12) simulations for Ordinary 

Standard Bridges. Soil Dynamics and Earthquake Engineering. Volume 141, 106533. 



CHAPTER 5 

SEISMIC DEMAND ANALYSIS USING SITE-BASED SIMULATED  

GROUND MOTIONS 

 

5.1   Introduction 

This chapter briefly describes the broadband Site-Based parameterized stochastic DRD model to 

generate synthetic ground motions given information about the earthquake source, the site, and the 

source-to-site geometry. Compared to Physics-Based simulation models, Site-Based stochastic 

models are simpler, computationally efficient, and require fewer input parameters and that are easily 

accessible to engineers. This chapter describes the framework of utilizing the Site-Based DRD 

simulation tool to generate catalogs of synthetic ground motions representing a time-span of 100,000 

years for the five sites in Southern California. This leads to around 10,500 ground motions per site. 

The simulated ground motions are then used to conduct NLTHA of the four Caltrans ordinary 

standard bridge structures to obtain their Rot50CDR EDPs. Therefore, a total of approximately 

2,730,000 NLTHA (= 10,500 ground motions × 5 sites × 4 bridges × 13 intercept angles) are 

conducted in this chapter. The obtained EDPs are then used to develop EDP hazard curves which 

can then be used to estimate the Rot50CDR corresponding to a target hazard-level. The obtained 

EDP hazard curves are compared against the IDA-Based hazard curves and site-specific relations are 

proposed that correlate the ratio between the Site-Based EDPs and conventional IDA-Based EDPs 

with the hazard level, shallow site condition, and site basin depth. Furthermore, the results of the 

analyses are used along with statistical methods of Hypothesis T-Test and KL-Divergence to obtain 

the optimal number of ground motions and ground motion intercept angles that can statistically 

replicate the results of simulated ground motions that naturally possess the IM of target hazard level. 

This can assist engineers to utilize this study as a reference to ideally utilize the DRD model for 

seismic demand analysis. 

5.2   DRD Ground Motion Simulation Model  

This chapter uses broadband Site-Based parameterized stochastic models to generate synthetic 

ground motions given information about the earthquake source, the site, and the source-to-site 
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geometry hereafter referred to as Event Parameters. In this study, the far-field model of Rezaeian 

and Der Kiureghian (2012) is used to simulate ground motions for sites with 𝑅𝑅𝑈𝑃 > 30 km, and 

the near-fault model of Dabaghi and Der Kiureghian (2018) is used for near-fault sites with 𝑅𝑅𝑈𝑃 ≤

30 km because it accounts for the rupture directivity effect. These two models are combinedly 

denoted as the DRD model.  

Both models employ a modulated and filtered white-noise (MFW) process with time-varying filter 

parameters proposed by Rezaeian and Der Kiureghian (2008) and can represent the characteristics 

of recorded ground motions, including temporal and spectral non-stationarity and inherent 

variability. The near-fault model accounts for the occurrence of the forward rupture directivity effect 

in the form of a velocity pulse and produces pulse-like and non-pulse-like motions in accordance 

with their observed proportions among recorded motions. The models are formulated in terms of a 

relatively small number of physically meaningful model parameters that describe the ground motion 

amplitude, duration, and frequency content. Both models can generate horizontal orthogonal pairs 

of synthetic ground motion time series for given Event Parameters. The Event Parameters that are 

required as input by the DRD model are the type of faulting 𝐹 (= 0 for strike-slip faults, = 1 for 

reverse and reverse-oblique faults), the moment magnitude 𝑀𝑤, the closest distance 𝑅𝑅𝑈𝑃 from the 

site to the fault rupture plane, and the shear-wave velocity 𝑉𝑠30 of the top 30 m of soil at the site, in 

addition to, only for the near-fault model, the depth 𝑍𝑇𝑂𝑅 to the top of the rupture plane, and 

directivity parameters 𝑠𝑜𝑟𝑑 and 𝜃𝑜𝑟𝜙 (see Dabaghi and Der Kiureghian 2018, for the definition of 

the directivity parameters). These directivity parameters affect the probability that a ground motion 

is pulse-like and, if so, the amplitude and period of the pulse.  

5.3   Site-Specific Simulations 

In this study, site-specific synthetic ground motion catalogs representing a time span of 100,000 

years are simulated for the five sites located in Southern California. The sites selected are a subset 

of the sites considered in the CyberShake ver. 15.12 (Graves et al. 2011); their coordinates and soil 

properties are listed in Table 5.1. The simulated catalogs represent the seismic hazard at each site. 

The evaluation of the seismic hazard at a site requires a seismic source model, which describes the 

geometry and magnitude of possible earthquake ruptures in a region of interest and their associated 

probabilities of occurrence over a specified time. The seismic source model used in this study is 
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based on the mean Uniform California Earthquake Rupture Forecast, Version 2 (UCERF2) single 

branch model (Field et al. 2009). This version is selected because all the necessary information about 

the ruptures is available and can easily be extracted from the database of CyberShake study 15.12. 

Note that CyberShake study 15.12 doesn’t directly used UCERF 2, while performs some 

modifications and puts additional constraints. These modifications and constraints are thus, also 

applied in this study. These modifications include setting the minimum magnitude of considered 

earthquakes to 6, excluding background seismicity, and adjusting rupture areas for consistency with 

the simulation model (Graves et al. 2011). Moreover, for a specific site, the ruptures that are within 

200 km of the site are considered in the hazard analysis. The ruptures are assumed to follow 

independent Poisson distributions with annual probabilities of occurrence provided in CyberShake 

15.12. For each rupture, CyberShake also introduces a suite of variations in the hypocenter location 

and slip distribution thereby accounting for the natural variability in the rupture characteristics. This 

process results in an average of 415,000 rupture variations for each site.  

Table 5.1 – Details of the sites and their Site-Based simulations 

Site LADT WNGC SBSM STNI CCP 

Latitude 34.052 34.042 34.065 33.931 34.055 

Longitude -118.257 -118.065 -117.292 -118.179 -118.413 

𝑉𝑠30 for UHT (m/s) 360 259 259 259 360 

No. of relevant ruptures 7,019 7,076 7,076 7,001 6,939 

No. of relevant rupture 

variations 
476,920 478,210 478,210 475,910 475,065 

Total No. of GMs in 

100,000-year catalogs 
10,406 10,663 10,663 10,102 10,046 

No. of Pulse-Like GMs 

in 100,000-year catalogs 
296 245 678 164 282 

 

A comprehensive list of all the possible earthquake rupture sources in the region of interest (about 

15,000 ruptures) is obtained from the CyberShake platform. For each rupture, the platform provides 

the fault name, the rupture geometry, the corresponding earthquake magnitude 𝑀𝑤, and the annual 

probability of occurrence. The CyberShake platform also provides a set of variations in the hypocenter 

location and the slip-distribution. This process results in a total of more than 800,000 different rupture 

variations in the region of study. For each site, Table 5.1 presents the number of relevant ruptures 

(those within 200 km) and rupture variations extracted from CyberShake. The source model is defined 

in terms of the geometry and magnitude of all the relevant ruptures, their annual probability of 
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occurrence, and the variations in the hypocenter location. This information is sufficient to obtain all 

necessary Event Parameters for simulating synthetic ground motions using the DRD model. 

Azar et al. (2019) described a simulation-based approach for performing probabilistic seismic hazard 

analysis (PSHA). The same methodology is used here to develop synthetic ground motion catalogs, 

calculate hazard curves, and obtain deaggregation results for the seven sites of interest. First, the 

UCERF2 seismic source model and Monte Carlo simulation are used to develop a synthetic catalog 

of earthquake scenarios (or events) over a period of 100,000 years, by randomly sampling rupture 

variations according to their annual probability of occurrence. Next, for each of the seven sites and 

each earthquake scenario, the corresponding Event Parameters 𝐹, 𝑀𝑤, 𝑍𝑇𝑂𝑅, 𝑅𝑅𝑈𝑃, 𝑉𝑠30, 𝑠𝑜𝑟𝑑, and 

𝜃𝑜𝑟𝜙 are obtained. Then the DRD ground motion model is used to generate at each site of interest 

one synthetic pair of horizontal ground motion time series for each scenario (or event) in the catalog. 

Because the DRD model was not fitted to earthquakes from normal faults and because the same 

directivity parameters 𝑑 and 𝜙 are used for all non-strike-slip faults, 𝐹 = 1 is used for ground 

motions from normal and normal-oblique faults, i.e., they are assumed to be similar to ground 

motions from reverse and reverse-oblique faults. Note that ground motions from normal and 

normal-oblique faults account for only 1% of the ground motions used in this study, and therefore 

this assumption is not expected to significantly affect the results. This procedure results in one 

catalog of 100,000 years at each of the five sites. Each catalog represents a possible realization of 

the ground motions that may occur at the site over a duration of 100,000 years. Table 5.1 presents 

for these sites the total number of ground motions in the simulated catalogs and the number of ground 

motions that are classified as pulse-like using Shahi and Baker (2014).  

The ground motions are firstly validated through IM hazard curves and deaggregation results at each 

site. The simulations are used to compute hazard curves and conduct deaggregation and the results 

are compared with those obtained using the U.S. Geological Survey (USGS) Unified Hazard Tool 

(UHT) (2008), which is widely used by engineers for seismic design or assessment studies at a site 

with known location and 𝑉𝑠30. The 2008 dynamic version of the USGS UHT is used in this study 

because it uses UCERF2 as the seismic source model for California (Petersen et al. 2008). The 2008 

USGS UHT uses as ground motion model the 2008 NGA GMPMs with equal weights (Petersen et al. 

2008). Theses GMPE models include terms for basin depth. The IM for which the 2008 USGS UHT 

hazard curves are calculated is the RotD50 horizontal component of spectral acceleration. Note that 
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the 2008 USGS UHT currently provides deaggregation and hazard curve results only for PGA and 

spectral periods of 0.2, 1, and 2 s, and only for 𝑉𝑠30 values of 180, 259, 360, 537, 760 and 1150 m/s. 

For each site, the 𝑉𝑠30 value nearest the one extracted from CyberShake is used in the UHT and is 

listed in Table 5.1. 

 
    (a)                                         (b) 

 
        (c)              (d) 

Figure 5.1 – IM hazard curves comparison for (a) PGA level, (b) Sa(T=0.2 s), (b) Sa(T=1 s), and 

(d) Sa(T=2 s) 

 

Figure 5.1 compares the hazard curves obtained using the simulated 100,000-year catalog at LADT 

with the hazard curves obtained from the 2008 USGS UHT. Comparisons are made for: (a) PGA level, 

(b) Sa at 𝑇 = 0.2 s, (b) Sa at 𝑇 = 1 s, and (d) Sa at 𝑇 =2 s. The 𝑅𝑜𝑡𝐷50 𝑆𝑎(𝑇) values obtained from 

the catalogs of 10,500 simulated ground motions for 100,000 years’ time span are used directly to 

develop Site-Based IM hazard curves. This is accomplished by sorting the obtained ~10,500 

𝑅𝑜𝑡𝐷50 𝑆𝑎(𝑇)  in a descending for each site and dividing their order number by the time-span of 

100,000 years to attain the average annual rate of exceedance of IMs (𝜆). Figure 5.1a shows that 

the PGA hazard curves are similar for both methods. However, some differences exist for the 𝑆𝑎(𝑇) 

hazard curves. At 𝑇 = 0.2 s, the DRD simulation-based approach results in higher mean annual 

frequency values of 𝑆𝑎(𝑇 = 0.2) compared to the USGS UHT; see Figure 5.1b. This is not the case 

at 𝑇 = 1 s, where the mean annual frequency values of 𝑆𝑎(𝑇 = 1.0) from the USGS UHT are higher; 
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see Figure 5.1c. This difference could be due to the DRD model predicting larger spectral ordinates 

for 𝑇 = 0.2 s and smaller spectral ordinates at 𝑇 = 1 s compared with the 2008 NGA GMPEs. 

Deaggregation of the hazard at the high hazard levels are needed to determine the most contributing 

scenarios at that level and compare the ground motion levels predicted by the DRD model and the 

GMPEs. At 𝑇 = 2 s, the results from both models are similar; see Figure 5.1d. Figure 5.2 shows the 

deaggregation into the contributing sources of the 𝑆𝑎(𝑇) hazard curves at 𝑇 = 1 s and for a 5% 

probability of exceedance in 50 years from both the DRD simulation-based methodology and the 

USGS UHT. The contributing sources and their ordering are also generally consistent between the two 

methods; the most hazard contributing sources are Elysian Park (Upper) and Puente Hills (LA). 

Any differences in the hazard curves and deaggregation results between the two methodologies can be 

attributed to several factors. First, although both methods use UCERF2 as their seismic source model, 

the simulation-based approach excludes background seismicity and ruptures at distances greater than 

200 km. Second, and most importantly, differences exist in the ground motion models used by the two 

methods (2008 NGA GMPEs versus DRD model). For example, two out of the three 2008 NGA 

GMPEs used in the UHT include basin effects while the DRD model does not; and the DRD model 

includes the directivity effect while the 2008 NGA GMPEs lack this capability. Despite these 

differences, the simulated catalogs are deemed representative of the true hazard at the site for the 

analysis and discussion that follow. 

 
      (a)             (b) 

Figure 5.2 - Contributing sources for deaggregation of Sa at 1 s using: (a) DRD Simulations, (b) 

USGS UHT 
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5.4   Site-Based EDP Hazard Curves 

 
Figure 5.3 – Site-Based data for Bridge B (T*=0.8s) at the LADT site 

The simulated ~10,5000 ground motions for each site are used to conduct NLTHA of the four 

bridge structures. Hence, a total of ~2,730,000 NLTHA (= 10,500 ground motions × 5 sites × 4 

bridges × 13 intercept angles) are conducted, i.e., 136,500 NLTHA for each bridge for every site. 

The Rot50CDR values obtained from the catalogs of 10,500 simulated ground motions for 100,000 

years’ time span are used directly to develop Site-Based EDP hazard curves. This is accomplished 

by sorting the obtained ~10,500 Rot50CDR in a descending for each site and dividing their order 

number by the time-span of 100,000 years to attain the average annual rate of exceedance of EDPs 

(𝜆). An example for the EDP-IM data and IM hazard curve at LADT site for Bridge B is shown in 

Figure 5.3. It was observed from Fayaz et al. (2020b) that the difference between EDP hazard 

curves obtained through the procedure of numeric counting and EDP hazard curves obtained from 

integrating the EDP-IM cloud of the simulated data over the IM  hazard curve are highly similar. 

Hence the bias of integration is ignored and the numerical EDP hazard curves are used for this 

study. Unlike the conventional IDA method, the simulated ground motion catalogs not only 

represent the Sa of the 100,000 years but also include the natural variability in the other ground 

motion characteristics, such as Arias Intensity, duration, frequency content, and other intensity 

measures. All these ground motion characteristics can lead to variability in the response of the 

structures. The obtained Site-Based EDP hazard curves for Bridges A, B, C and F are presented in 

Figure 5.4. Similar to IM hazard curves, the EDP hazard curves can be directly utilized to obtain 

EDPs corresponding to a hazard level. Similar EDP hazard curves are obtained for other four sites 



73 

 

and presented in Appendix A. In general it is observed that the EDP hazard curves of Bridge F are 

lower than other three bridges. This can be due to the longer period of the Bridge F as compared 

to other bridges which causes lower demands on the bridge structure leading lower EDPs. For a 

1000-year return period the corresponding values of Rot50CDR for Bridges A, B, C, and F are 

computed to be 1.78%, 1.99%, 1.83%, and 1.27%, respectively, for LADT site.  

   
(a)                                        (b) 

   
       (c)              (d)  

Figure 5.4 – Site-Based hazard curves at LADT site for Bridges: (a) A, (b) B, (c) C, and (d) F 

 

5.5   Comparison of Site-Based and IDA-Based EDP Hazard Curves   

 

The developed Site-Based EDP hazard curves are compared against the hazard curves developed 

using IDA in the Chapter 4, for all four bridges and five sites. An example of the comparison is 

provided in Figure 5.5 which compares the Site-Based EDP hazard curve against the IDA-Based 

EDP hazard curve for the four bridge structures for LADT site. Similar plots are developed for visual 

comparison of the EDP hazard curves. From these plots it is observed that the EDP hazard  
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(a)                                        (b) 

   
(c)              (d) 

Figure 5.5 – Comparison of Site-Based and IDA-Based hazard curves at LADT site for Bridges: 

(a) A, (b) B, (c) C, and (d) F 

curves tend to be generally identical for all bridge structures. However, it is observed that in all cases 

that the Site-Based EDP hazard curves tend be lower than the IDA-Based EDP hazard curves. This 

shows that use of ground motion recordings from different regional seismicity can lead to increased 

estimations in the EDP hazard curves. This is mainly due to the higher variability in the EDPs in 

EDP-IM data caused by recorded ground motions, especially for larger IM levels. This can be 

observed by comparing Figures 5.3 and 4.2 especially for ground motions with Sa > 1.5g. The 

integration process accumulates this variability, causing the IDA-Based EDP hazards curves to grow 

faster as compared to Site-Based EDP hazard curves. To quantify the differences between the two 

EDP hazard curves, ratios between the two types of EDPs are computed for various hazard levels 

for all four bridges and five sites. The EDP ratios are presented in Figure 5.6 which shows that the 

ratio increases from ~0.5 to ~1 with an increase in hazard levels. The ratios are observed to be closest 

to ~1 for Bridge F which means that the two types of EDPs are identical. The ratios closest to ~1 are 
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observed for return periods above 2000 years which means that the Site-Based hazard curves tend to 

be similar to IDA-Based hazard curves. Apart from the regional seismicity, the differences in the 

EDP hazard curves can be adhered to the fact that the Site-Based ground motions do not only 

represent the hazard levels in terms of Sa values but also contains the appropriate representation of 

other IMs. This phenomenon is not present in the scaling and selection method of recorded ground 

motions for IDA. 

 
(a)                                        (b) 

 
(c)              (d) 

Figure 5.6 – Ratios between Site-Based and IDA-Based hazard curves for Bridges: (a) A, (b) B, 

(c) C, and (d) F 

 

To assist with improving ground motion simulation methods using this research (or similar 

research where probabilistic seismic demand analysis is used for validation of a ground motion 

simulation method), dependencies of the difference in the response of each type of bridge (A, B, 

C, and F) on return period and site parameters are provided. This is done by combining the results 

from all sites and conducting mixed-effects regression analysis with the target variable being the 
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ratio of Rot50CDRs between Site-Based EDP hazard curves and IDA-Based EDP hazard curves. 

The predictor variables include Return Period (RP), site Shear-Wave Velocity (Vs30) and site 

Basin-Depth (Z2.5). This is expressed in Equation 5.1 and is fitted to data independently for each 

bridge. In Equation 5.1, 𝜀𝑖𝑗 represents the within-site variability  for the ith hazard level and jth site 

with zero mean and variance of 𝜙𝑎
2
, and 𝜎𝑖 represents the between-site variability for the ith hazard 

level with zero mean and variance of 𝜏𝑎
2. The coefficients and the goodness-of-fit measure (𝑅𝑎𝑑𝑗

2 ) 

for each bridge are given in Table 5.2. 

 

ln (
SiteBased 𝑅𝑜𝑡50𝐶𝐷𝑅

IDABased 𝑅𝑜𝑡50𝐶𝐷𝑅
) = 𝑎0 + 𝑎1(ln(𝑅𝑃)) + 𝑎2(ln(𝑉𝑠30)) + 𝑎3(ln(𝑍2.5)) + 𝜀𝑖𝑗(0, 𝜙𝑎

2) + 𝜎𝑖(0, 𝜏𝑎
2) (5.1) 

 

It can be observed from Table 5.2 that for all four bridges the value of 𝜙𝑎 is higher than 𝜏𝑎, which 

means that the site-to-site variability is highly explanatory in the computation of the EDP ratios. 

Hence, the use of mixed-effects regression is appropriate for describing the EDP ratios. Also, the 

goodness-of-fit measure 𝑅𝑎𝑑𝑗
2  is observed to be consistently above 0.75, which means that the 

regression equations can estimate the EDP ratios for the four bridge structures with a high level of 

accuracy. The coefficient a1 is observed to be positive for all bridges demonstrating that as the 

return period increases, the Site-Based Rot50CDR tends increase faster as compared to IDA-Based 

Rot50CDR. The effect of Vs30 (i.e. a2) is observed to be identical between single-column bridges 

(i.e. A and F) and multi-column bridges (i.e. B and C). Furthermore, the coefficient a3, which 

accounts for the effect of basin depth, is negative for  all bridges. This goes with the intuition as 

the Site-Based simulated ground motions do not incorporate any basin effects in the simulations. 

Hence the impact of basin depth is identical to all bridge structures. In general, for the bridge 

analysis, it is concluded that there is a need for detailed site-specific analysis to understand the 

fundamental underlying reasons for the differences between these EDP hazard curves. The 

relations provided in Table 5.2 can assist engineers in the short-term to validate their methods of 

bridge analysis and can be used in scaling of the EDPs as per the design site and bridge type. It 

should be noted that the regression equations proposed in this study are based on the DRD 

simulations of the five southern California sites with soft soils; hence they can be biased towards 

these conditions. However, these equations can provide initial estimates of the scaling factors and 

can be easily updated with more data from different site conditions. 
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Table 5.2 - Fitted coefficients of the Site-Based mixed-effects regressions 

Bridge 𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝝓𝒂 𝝉𝒂 𝑹𝒂𝒅𝒋
𝟐  

A -0.034 0.124 -0.192 -0.268 0.115 0.089 0.79 

B -2.439 0.069 0.264 -0.141 0.185 0.089 0.85 

C -1.468 0.091 0.081 -0.177 0.133 0.074 0.84 

F 0.243 0.115 -0.198 -0.224 0.187 0.084 0.73 

 

5.6   Statistical Analysis to Obtain Sample Number of Ground Motions and Intercept Angles 

for Proper Seismic Demand Estimation 

The bi-directional synthetic ground motions simulated for the five sites (and additional two sites 

PAS and STG) are used to conduct Non-Linear Time-History Analysis (NLTHA) of the four bridge 

structures. In this section the EDP is denoted as 𝑅𝑜𝑡50𝐶𝐷𝑅𝑚
𝑖  (expressed in Equation 5.2) where i 

denotes the ground motion and m denotes the number of equally spaced intercept angles. For 

example, m = 6 implies that ground motion components are rotated in equally spaced 6 angles from 

0o to 180o, which means ground motions are applied at 0o, 30o, 60o, 90o, 120o, and 150o with respect 

to the bridge`s longitudinal axis. The site-specific catalog simulations are conducted for m = 13 (i.e., 

intercept increment angle of 10 degrees).  

𝑅𝑜𝑡50𝐶𝐷𝑅𝑚
𝑖  =  𝑚𝑒𝑑𝑖𝑎𝑛 {𝐶𝐷𝑅

0×
180°

𝑚

𝑖 𝐶𝐷𝑅
1×

180°
𝑚

𝑖 ⋯ 𝐶𝐷𝑅
𝑚×

180°
𝑚

𝑖

}
𝑇

 (5.2) 

       
     (a)                        (b) 

Figure 5.7 - (a) RotD50 Sa (IM) vs. Rot50CDR (EDP) for Bridge A at the CCP site (b) Selected 

points associated with Sa,haz 

An example of Rot50CDR vs 𝑆𝑎(𝑇) for the catalog of simulated ground motions representing 100,000 

years’ time-span at the CCP site for Bridge A is given in Figure 5.7a. Similar plots for other sites are 
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achieved by analyzing each bridge under their respective catalogs of simulated ground motions. AS 

mentioned earlier, the catalogs of the simulated ground motions do not only represent the 𝑆𝑎 levels of 

the 100,000 years but also the other ground motion characteristics such as frequency content, time 

history evolution, duration, etc. Hence the EDPs obtained from these ground motions can be 

considered a good representation of the EDP hazard at the site. Since performing this type of simulation 

in design office can be quite cumbersome and would require substantial computational resources, this 

section aims to identify sample number (𝑛) of hazard-targeted simulated ground motions which when 

applied in m uniformly spaced intercept angles, lead to sample EDPs that are statistically equivalent to 

the EDPs obtained using the whole catalog of site-specific ground motions at the target hazard level 

IM. The term ‘hazard-targeted’ in this context means ground motions that naturally possess the 

𝑆𝑎(𝑇) of the target hazard level. The 𝑆𝑎(𝑇) associated with the target hazard level at the first mode 

period T is termed as 𝑆𝑎,ℎ𝑎𝑧(𝑇) where the hazard level in the case of bridge designs is 5% in 50 years 

(975 years return period). The Rot50CDR EDPs corresponding to the 𝑆𝑎,ℎ𝑎𝑧(𝑇), obtained after 

conducting NLTHA using the catalog of ground motions, are termed as Rot50CDRhaz and are assumed 

to follow a lognormal distribution with a mean 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
 and standard deviation 𝜎𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧

. To 

obtain the statistics of Rot50CDRhaz, the Rot50CDR values associated with ground motions having 

𝑆𝑎(𝑇) in the interval 𝑆𝑎,ℎ𝑎𝑧(𝑇)  ± 0.05𝑔 are used to compute the distribution parameters. An example 

of the selected values of Rot50CDR associated with 𝑆𝑎,ℎ𝑎𝑧(𝑇)  for the CCP site for Bridge A is given 

in Figure 5.7b (i.e., shown with solid black dots). For each bridge, for all sites, various values of the 

sample number of ground motions (n) and intercept angles (m) are used in different combinations and, 

the obtained sample distribution parameters are then tested for statistical equivalency against a 

lognormal distribution with a mean 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
 and standard deviation 𝜎𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧

. The n number 

of sample Site-Based ground motions are simulated using the algorithm described in Fayaz et al. 

(2021b) such that they naturally possess Sa(T) equal to the 𝑆𝑎,ℎ𝑎𝑧(𝑇), however, differ in their other 

ground motion characteristics. Finally, the number of hazard-targeted ground motions (n) and intercept 

angles (m) that satisfy the statistical equivalency for at least five out of seven sites is proposed for the 

four types of bridge structures. 

Six values of n including 7, 9, 11, 13, 15 and 17 are tested along with four values of m which include, 

3 (increments of 60o), 4 (increments of 45o), 6 (increments of 30o), and 12 (increments of 15o). For 

each of the 24 (6 values of n × 4 values of m) combinations of n and m, ten trials of ground motion 
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simulation and NLTHA are conducted to make the conclusions statistically robust. It is important to 

note that irrespective of the value of m, the EDP associated with a ground motion is always Rot50CDR, 

i.e., the median value of the m CDRs obtained from m rotations of the two components of ground 

motion. This means that for each ith ground motion the 𝑅𝑜𝑡50𝐶𝐷𝑅𝑚
𝑖  is obtained using Equation 5.2. 

This is done for n ground motions leading to a vector of 𝑹𝒐𝒕𝟓𝟎𝑪𝑫𝑹𝒏,𝒎
 as expressed in Equation 5.3, 

where the subscript contains n and m representing the number of ground motions (hence the number 

of Rot50CDR EDPs in the vector) and the number of intercept angles that the Rot50CDR EDPs are 

obtained from. 

Furthermore, for each combination of n and m, ten sets of n×1 vectors of 𝑹𝒐𝒕𝟓𝟎𝑪𝑫𝑹𝑛,𝑚 are 

obtained, and their average statistics are tested against the lognormal population distribution of 

𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧. The test is conducted in two-fold; firstly, a Hypothesis T-Test is conducted to test 

the match between average sample statistics and the population mean 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
, and secondly, 

the whole sample distributions are tested against the population distribution for entropy loss using 

Kullback-Leiber (KL) divergence. While the first test only compares the central value of responses 

of the two distributions, the second compares the probability distributions for information loss. 

𝑹𝒐𝒕𝟓𝟎𝑪𝑫𝑹𝑛,𝑚 = {𝑅𝑜𝑡50𝐶𝐷𝑅𝑚
𝑖 }  𝑤ℎ𝑒𝑟𝑒   {

𝑖 𝜖 {1, 2, … . , 𝑛}                
𝑛 𝜖 {7, 9, 11, 13, 15, 17}

𝑚 𝜖 {3, 4, 6, 12}                   
      (5.3) 

5.6.1  Hypothesis T-Test 

Most of the simplified statistical tools are mainly based on correctly estimating the central value of the 

true distribution using the central value of the sample. Hence in this study, the first test is conducted to 

determine the minimum value of n × m that on average for ten trials, achieve a sample statistic that is 

statistically equivalent to the true mean 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
. As mentioned above, by taking the median value 

of CDRs due to the m intercept angles, the n ground motions result in n number of Rot50CDR EDPs 

for each trial. Since the aim here is to match only the true mean 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
, different types of 

statistics of the n number of sample Rot50CDR EDPs are tested to achieve the 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
. The 

statistics that are tested include: mean, median, 3rd largest, median+1, and median-1 of the n number 

of sample Rot50CDR EDPs. For example, if n = 9, the 9 values of Rot50CDR EDPs are sorted in 

ascending order; median denotes the 5th value, median+1 represents the 6th value, median-1 represents 
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the 4th value and 3rd largest corresponds to the 7th value in the order. The statistics of the n number of 

Rot50CDR EDPs arising from n ground motions with m number of equally spaced intercept angles are 

generally represented as 𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
𝑆𝐼 where SI represents the statistical indicator (mean, median, 3rd 

largest, median+1, and median-1), n is the number of ground motions used in obtaining the estimate, 

and m is the number of ground motion intercept angles. This is briefly tabulated in Table 5.3.  

Table 5.3 - Description of Statistical Indicators (SI) of Rot50CDR 

𝑹𝒐𝒕𝟓𝟎𝑪𝑫𝑹𝒏,𝒎
𝑺𝑰  Description 

𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
𝑀𝑒𝑎𝑛 Mean of n values Rot50CDR (from m intercept angles) 

𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
𝑀𝑒𝑑𝑖𝑎𝑛 Median of n values Rot50CDR (from m intercept angles) 

𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
𝑀𝑒𝑑𝑖𝑎𝑛+1 

Next higher value to the median of n values Rot50CDR (from m 

intercept angles) 

𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
𝑀𝑒𝑑𝑖𝑎𝑛−1 

Next lower value to the median of n values Rot50CDR (from m 

intercept angles) 

𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
3𝑟𝑑 

3rd highest value among the n values Rot50CDR (from m 

intercept angles) 

 

The mean and standard deviation of the 𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
𝑆𝐼  for the 10 trials are computed and termed as 

𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
𝑆𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑠𝑛,𝑚

𝑆𝐼 . The statistical equivalence of 𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
𝑆𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , for each statistical indication 

(SI), to the 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
 is tested through Hypothesis T-Test. The T-Test involves specifying a Null 

Hypothesis (H0), which is statistically tested by calculating the T-score of the H0 using the T-

distribution and comparing its probability against a specified significance level (𝛼). If the probability 

of a T-score (i.e., p-value) is less than the specified significance 𝛼, then the Null Hypothesis (H0) is 

rejected. The Null Hypothesis (H0) specified in this research is that 𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚
𝑆𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is equal to 

𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
(i.e. 𝐻0 ~ 𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚

𝑆𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
= 0). The T-score is calculated using 

Equation 5.4, where N represents the number of samples (=10), and to balance the Type-I and Type-

II errors, a 𝛼 of 0.05 (5%) is used. A schematic of this test is provided in Figure 5.8. 

𝑡 − 𝑠𝑐𝑜𝑟𝑒 =  
  𝑅𝑜𝑡50𝐶𝐷𝑅𝑛,𝑚

𝑆𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
 

𝑠𝑛,𝑚
𝑆𝐼 √𝑁⁄

 
(5.4) 
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Figure 5.8 - Illustration of Hypothesis T-Test 

 

The values of n and m that satisfy the requirements of the T-Test and lead to the least number of 

simulations (i.e., least n × m) are chosen as the optimal values of n and m. Based on the results of 

all simulations it was noticed that median+1 statistic deemed suitable for all bridges to represent 

their 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
 for each site. Furthermore, for the two-spanned bridges (i.e. Bridge A and 

Bridge B), n = 9 and m = 6 (which means intercept angles from 0o to 150o with 30o increment) are 

selected as the optimal values, while for Bridge C, n = 11 and m = 6 (which means intercept angles 

from 0o to 150o with 30o increment) are sufficient to statistically represent the 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
. 

Furthermore, for Bridge F, n = 11 and m = 13 (which means intercept angles from 0o to 180o with 

15o increment). Since Bridge F is curved, the response of 180o is not equal to the response of 0o; 

hence 180o is included. An example of the T-Test for the CCP site for Bridge A for the proposed 

statistic of median+1 is provided in Figure 5.9. Figure 5.9a shows the variation p-value with 

respect to the changing values of n and m. As can be seen from the figure, n = 9 and m = 6, which 

means n × m = 54 simulations are the least number of simulations required to obtain a statistically 

equivalent EDP to the 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
. Figure 5.9b further portrays the variation of the values of 

Rot50CDR for the 9 ground motions for the 10 trials of simulations with respect to 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
. 

The dark filled circles in the plot show the Rot50CDR for the selected statistic of median+1. As 

can be seen from the figure, the median+1 (6th largest among 9) Rot50CDR for the 10 trials lies 

quite close to the 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
 which was statistically confirmed by the hypothesis test. While the 

results are presented only for the CCP site, the results for other sites were observed to be similar, 

and the final proposed values of the number of hazard-targeted ground motions (n) and intercept 

angles (m) along with the corresponding intercept angle increments are tabulated in Table 5.4.  
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(a)  (b) 

Figure 5.9 - (a) Results of hypothesis tests for all m×n for Bridge A at CCP site, (b) Rot50CDRs 

for n = 9 GMs and m = 6 angles (30o increment) for ten trials 

Table 5.4 - Proposed number of hazard-targeted simulations to statistically estimate 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
 

Bridge 
Number of Ground 

Motions (n) 

Number of Equally Spaced 

Intercept Angles (m) 
Intercept Angle Increment 

A 9 6 30o (0o to 150o) 

B 9 6 30o (0o to 150o) 

C 11 6 30o (0o to 150o) 

F 11 13 15o (0o to 180o) 

 

5.6.2  Kullback-Leibler (KL) Divergence Test 

Apart from the central values of EDP distribution, other statistical measures of the distribution may 

have value for engineers and researchers. One application of such understanding is on the 

development of Load and Resistance Factor Design (LRFD) type equations for proportioning 

structural components (Fayaz and Zareian 2019). This section shows how to identify n and m that 

lead to a sample distribution of Rot50CDR that match the population distribution of 𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧; 

Kullback-Leibler (KL) Divergence is used to measure such equivalency.  Kullback-Leibler (KL) 

Divergence is a measure to determine the information entropy loss between two distributions. 

Greater randomness implies higher entropy, and greater predictability implies lower entropy. KL 

Divergence (DKL) measures the similarity between two probability distribution by aiming to identify 

the divergence of a probability distribution given a baseline distribution. That is, for a target 

distribution, P, we compare a competing distribution, Q, by computing the expected value of the log-

odds of the two distributions using Equation 5.5. The smallest possible value for DKL is zero (which 

means that the distributions are equal), and the maximum value is infinity. We obtain infinity when 
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P is defined in a region where Q can never exist. Therefore, it is common to assume both distributions 

exist on the same support. The target distribution P, in this study, is the lognormal distribution of 

𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧  with population mean 𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
 and deviation 𝜎𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧

. 

𝐷𝐾𝐿(𝑃||𝑄) =  ∑ 𝑃(𝑖)𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

 
 

(5.5) 

 

Table 5.5 - Number of simulations corresponding to their p and q 

Number of Ground 

Motions (p) 

Number of Equally Spaced 

Intercept Angles (q) 

Intercept Angle 

Increment 

Number of 

Simulations (=p× 𝒒) 

7 

3 60o 21 

4 45o 28 

6 30o 42 

12 15o 84 

9 

3 60o 27 

4 45o 36 

6 30o 54 

12 15o 108 

11 

3 60o 33 

4 45o 44 

6 30o 66 

12 15o 132 

13 

3 60o 39 

4 45o 52 

6 30o 78 

12 15o 156 

15 

3 60o 45 

4 45o 60 

6 30o 90 

12 15o 180 

17 

3 60o 51 

4 45o 68 

6 30o 102 

12 15o 204 
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Figure 5.10 - Results of DKL(P|| Qp,q) for Bridge A at CCP site 

In this section, an attempt is made to obtain an optimal lognormal sample distribution Qp,q with mean 

using p number of ground motions and q equally spaced intercept angles from 0o to 180o. The p number 

of Rot50CDR EDPs obtained from conducting NLTHA using the sample p number ground motions 

with q number of equally spaced intercept angles, are assumed to follow a lognormal distribution with 

sample mean 𝑅𝑜𝑡50𝐶𝐷𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑝,𝑞, and sample standard deviation 𝑆𝑝,𝑞. Similar to the previous section, 24 

combinations of p and q are used to compute sample distribution values. This is repeated for ten trials 

which leads to ten values of 𝑅𝑜𝑡50𝐶𝐷𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑝,𝑞 and 𝑆𝑝,𝑞 for each combination of p and q. The average of 

these ten values of 𝑅𝑜𝑡50𝐶𝐷𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑝,𝑞 and 𝑆𝑝,𝑞 are calculated and termed as 𝑅𝑜𝑡50𝐶𝐷𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑝,𝑞𝑎𝑣𝑔
 and 𝑆𝑝,𝑞𝑎𝑣𝑔

. 

For all 24 combinations of p and q, 𝑅𝑜𝑡50𝐶𝐷𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑝,𝑞𝑎𝑣𝑔

 and 𝑆𝑝,𝑞𝑎𝑣𝑔
 are computed and then used to 

compute lognormal sample distribution Qp,q, which is compared against the true distribution P by 

calculating DKL(P|| Qp,q) using Equation 5.6. The two distributions are compared between ±3 standard 

deviations (covering 99% of distributions). The results of this are shown in Figure 5.10, where 

DKL(P||Qp,q) is plotted against the number of simulations (i.e., p × q) that represent 24 combinations 

of p and q for Bridge A for the CCP site. Table 5.5 relates the number of simulations with their 

corresponding p and q. The Qp,q after which the rate of decrease in DKL(P||Qp,q) is deemed low for all 

the sites, that Qp,q is selected as the optimal sample distribution with the p number of ground motions 

and q equally spaced intercept angles. This means that the values of p and q which lead to minimal 

information loss while requiring the least number of simulations are selected as the optimal number of 

ground motions and equally spaced intercept angles to estimate the population distribution P. For 
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Bridge A, simulation of p = 13 and q = 6 (intercept angle increment = 30o) is selected as optimal sample 

distribution Qp,q to represent the population distribution P for the site. The comparison of the selected 

Qp,q against the population distribution P is shown in Figure 5.11. Similar plots were generated for all 

bridges and all sites, and the proposed values of p and q that satisfy the statistical equivalency for at 

least five sites are presented in Table 5.6. 

Table 5.6 - Proposed number of hazard-targeted simulations to statistically estimate 

𝑃~𝐿𝑁(𝜇𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧
, 𝜎𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧

) 

Bridge 
Number of Ground 

Motions (p) 

Number of Equally Spaced 

Intercept Angles (q) 
Intercept Angle Increment 

A 13 6 30o (0o to 150o) 

B 13 6 30o (0o to 150o) 

C 15 6 30o (0o to 150o) 

F 17 7 30o (0o to 180o) 

 
Figure 5.11 - Comparison of population distribution (P) of 𝑅𝑜𝑡50𝐶𝐷𝑅ℎ𝑎𝑧 vs. sample distribution 

(Qp,q) of 𝑅𝑜𝑡50𝐶𝐷𝑅 with p= 13 GMs and q= 6 angles (30o increment angle) 

 

5.7   Conclusions 

This chapter uses the DRD Site-Based ground motion simulation tool to conduct NLTHA of the four 

ordinary bridge structures for the five sites in southern California. Catalogs of around 10,500 ground 

motions, corresponding to 100,000 years’ time-span, are simulated for each site based on the UCERF2 

rupture forecast model. The simulated ground motions not only represent the distribution of a single 

IM for the 100,000 years but also represent the variability in and the correlation between other ground 

motion characteristics, such as duration, frequency content, and other intensity measures.  
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This chapter provides bridge design engineers with framework of using Site-Based simulated ground 

motions for obtaining the EDP hazard curves. The Site-Based EDP hazard curves are developed for 

the four bridge structures and for the five sites. The developed EDP hazard curves are then compared 

against the IDA-Based EDP hazard curves obtained in Chapter 4 of this report. The EDP hazard 

curves from the two frameworks tend be quite identical and lead to similar Rot50CDR values. The 

differences between the two types of EDP hazard curves are computed in terms of ratio between the 

Rot50CDRs at various hazard levels for the five sites for each bridge structure. The EDP ratios are 

then used to develop a mixed-effects model that relate the EDP ratio with the return period, site 

shear-wave velocity and site basin depth. The mixed effects models are developed independently for 

each bridge structure with the random intercept denoting the variability between sites. These ratios 

can be utilized by the engineers to convert IDA-Based EDPs to Site-Based EDPs. Given that the 

study is mainly focused for engineering practice, performance is associated with EDPs; damage and 

loss assessment and performance evaluation are out of the scope of this study. Some other limitations 

of this study include that the ground motions are only simulated for a time span of 100,000 years, 

basin effects and soil-structure interaction effects are ignored, and only five sites and four bridges 

are considered. However, the selected sites and bridges are considered to be good representatives of 

the state-of-practice. Also note that some differences are observed in the ground motion levels 

predicted by the DRD model and the 2008 NGA GMPEs for periods around 1 s. These differences 

may affect the resulting IM-hazard curves at periods around 1 s but are not expected to significantly 

affect the EDP-IM relations and the results of this study. Moreover, engineers will not use simulated 

motions to calculate IM hazard curves but will use hazard studies commonly adopted for their site 

or region of interest (such as the USGS UHT) to obtain the IM of the design hazard level and the 

corresponding hazard-targeted simulated ground motions. Therefore, the differences in ground 

motion models are not expected to affect their results significantly. 

Using the EDP-IM data and IM-hazard curves obtained from the simulated catalogs, two types of 

statistical tests are conducted to arrive at the optimal number of hazard-targeted ground motions and 

equally spaced intercept angles that are required to match the EDPs corresponding to the IM of the 

target hazard level. Hypothesis T-Test is conducted to match only the point estimates of the expected 

value of EDPs, while KL Divergence is used to match the distribution of EDPs at the target IM hazard 

level. It is derived that by using statistical indicators of median+1, Bridges A, B, C, and F require 9, 9, 

11, and 11 number of ground motions with rotation increments of 30o, 30o, 30o, and 15o, respectively. 



87 

 

To match the whole distribution, using KL Divergence, it is concluded that Bridges A, B, C, and F 

require 13, 13, 15, and 17 number of ground motions, all with rotation increments of 30o. To properly 

estimate the seismic demands of ordinary bridge structures, the engineers can use Table 5.4 and 

Table 5.6 for determining the number of analyses to conduct for the respective type of ordinary 

bridge structure. 
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CHAPTER 6 

SEISMIC DEMAND ANALYSIS USING PHYSICS-BASED SIMULATED  

GROUND MOTIONS 

 

6.1   Introduction 

One of the primary reasons behind development of simulated ground motions is to reach a 

technological setting where seismic loading, including simulations, can be tailored for the 

engineering of a specific structure and its surrounding environment. In this chapter Physics-Based 

ground motions simulated for the CyberShake (ver. 15.12) study are utilized for developing EDP 

hazard curve. Catalogs of  simulated ground motions representing a 200,000-year history are 

selected from the Southern California Earthquake Center (SCEC) CyberShake (ver. 15.12) 

database for the five sites in Southern California (~20,500 unscaled ground motions per site). The 

selected ground motions are then used for Non-Linear Time History Analysis (NLTHA) of the 

four Ordinary Standard Bridge structures to obtain their Rot50CDR EDPs. Therefore, a total of 

approximately 5,330,000 NLTHA (= 20,500 ground motions × 5 sites × 4 bridges × 13 intercept 

angles) are conducted in this chapter. For each site and bridge structure, this data is used to obtain 

Physics-Based Rot50CDR hazard curves. These are compared against EDP hazard curves that are 

developed using conventional IDA method in Chapter 4. The two EDP hazard curves are compared 

at various return periods in terms of EDP ratios between the two types of EDPs (Physics-Based 

and IDA-Based) and site-specific relations are proposed that correlate the ratios with the hazard 

level, site condition, and site basin depth. It is observed that CyberShake (ver. 15.12) yields similar 

EDP values to empirical data for shorter return periods. For longer return periods, however, EDPs 

from Physics-Based analysis tend to be lower than the EDPs obtained from IDA-Based analysis 

for short-period bridges while the case is opposite for long-period bridges.  

6.2   CyberShake Simulations  

This chapter uses the ground motions simulated for the CyberShake 15.12 (Graves et al., 2011). 

CyberShake is a computational platform developed by the Southern California Earthquake Center 

(SCEC) that is based on integration of a collection of scientific software and middleware that 
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performs 3D Physics-Based simulations. For CyberShake 15.12 study, deterministic Physics-

Based (Source-Based) models are utilized in simulations for frequencies up to 1 Hz; the results are 

then augmented with high-frequency (1-10 Hz) stochastically simulated seismograms produced 

using the Graves and Pitarka (2015) module from the SCEC Broadband platform. The study 

simulated ground motions for 337 sites on a closely-spaced grid in the Southern California region. 

Among these, a subset of 5 representative sites (explained in Chapter 3) is selected for this study. 

The Earthquake Rupture Forecast used in CyberShake 15.12 study is based on the UCERF2 single 

branch model (Field et al. 2009). However, it does not use UCERF 2 directly and performs some 

modifications and incorporates additional constraints. These modifications include setting the 

minimum magnitude of considered earthquakes to 6, excluding background seismicity, and 

adjusting rupture areas for consistency with the simulation model (Graves et al. 2011). For each 

site, CyberShake-UCERF2 provides a list of potential ruptures with their annual probabilities of 

occurrences and also introduces a suite of variations in the hypocenter location and slip distribution 

to account for the natural variability in rupture characteristics. This process results in an average 

of 415,000 rupture variations for each site. Each rupture variation is associated with a ground 

motion waveform simulated for CyberShake 15.12 study. The ruptures are assumed to follow 

independent Poisson distribution and all the hypocentral variations are assumed to be equally likely 

for each rupture. 

Table 6.1 – Details of the sites and their Physics-Based simulations 

Site LADT WNGC SBSM STNI CCP 

Latitude 34.052 34.042 34.065 33.931 34.055 

Longitude -118.257 -118.065 -117.292 -118.179 -118.413 

No. of relevant ruptures 7,019 7,076 7,076 7,001 6,939 

No. of relevant rupture 

variations 
476,920 478,210 478,210 475,910 475,065 

Total No. of GMs in 

200,000-year catalogs 
20,984 21,359 22,848 20,415 19,822 

No. of Pulse-Like GMs 

in 200,000-year catalogs 
783 1167 1721 1014 965 

 

For the selected subset of five sites, Monte Carlo simulations are used to obtain a catalog of ground 

motion simulations representing a 200,000-year history within 200 km of the site. This is done by 

randomly sampling rupture variations for each site according to their annual probability of 
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occurrences and then obtaining their corresponding ground motions. The obtained catalog 

represents a realization of ~20,500 ground motions that may occur at the site over 200,000 years. 

Table 6.1 includes the site information and the number of events (or ground motions, GMs) in the 

simulated catalog for each site. Table 6.1 also provides information about the number of ground 

motions classified as pulse-like among the simulated catalogs using the algorithm proposed by 

Shahi and Baker (2014). 

6.3   Physics-Based EDP Hazard Curves 

 
Figure 6.1 – Physics-Based data for Bridge B (T*=0.8s) at the LADT site 

The simulated ground motions for two orthogonal horizontal components for each site are used to 

perform NLTHA of the four bridge structures to obtain their Rot50CDR EDPs. Hence this chapter 

is based on the results of 5 sites × 20,500 ground motions × 4 bridges × 13 intercept angles = 

5,330,000 NLTHA (266,500 NLTHA for each of the four bridges for every site representing 

200,000 years). The Rot50CDR and 𝑅𝑜𝑡𝐷50 𝑆𝑎(𝑇) values obtained from the catalogs of simulated 

ground motions are used directly to develop EDP and IM hazard curves, respectively. This is 

accomplished by sorting the obtained ~20,500 Rot50CDR and Sa(T) in a descending for each site 

and dividing their order number by the time-span of 200,000 years to attain the average annual rate 

of exceedance (𝜆) of EDPs and IMs. An example of the IM hazard curves and the EDP-IM data 

using Physics-Based simulations of CyberShake is presented for Bridge B for the LADT site in 

Figure 6.1. It was observed from Fayaz et al. (2021a) that the difference between EDP hazard 
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curves obtained through the procedure of numeric counting and EDP hazard curves obtained from 

integrating the EDP-IM cloud of the simulated data over the IM  hazard curve are highly similar.  

  
    (a)           (b) 

  
    (c)           (d) 

Figure 6.2 – Physics-Based hazard curves at LADT site for Bridges: (a) A, (b) B, (c) C, and (d) F 

Hence the bias of integration is ignored and the numerical EDP hazard curves are used for this 

study. Unlike the conventional IDA method, the simulated ground motion catalogs not only 

represent the Sa of the 200,000 years but also include the natural variability in the other ground 

motion characteristics, such as Arias Intensity, duration, frequency content, and other intensity 

measures. All these ground motion characteristics can lead to variability in the response of the 

structures. The obtained Physics-Based EDP hazard curves for Bridges A, B, C and F are presented 

in Figure 6.2. Similar to IM hazard curves, the EDP hazard curves can be directly utilized to obtain 

EDPs corresponding to a hazard level. Similar EDP hazard curves are obtained for other four sites 

and are presented in Appendix A. In general it is observed that the EDP hazard curves of Bridge 
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F are higher than other three bridges. This can be due to the longer period of the Bridge F as 

compared to other bridges and the fact that the period lies at the intersection of the stochastic and 

deterministic parts of the CyberShake 15.12 simulations. This means that the the validation of the 

CyberShake ground motions may require further validations for this transition period zone and the 

validations efforts must go beyond IM level and should be done using EDPs of real structures 

(such as Fayaz et al. 2020c). For a 1000-year return period the corresponding values of Rot50CDR 

for Bridges A, B, C, and F are computed to be 2.04%, 1.92%, 2.09%, and 2.14%, respectively, for 

LADT site.  

6.4   Comparison of Physics-Based and EDP Hazard Curves   

  
(a)                                        (b) 

   
(c)              (d) 

Figure 6.3 – Comparison of Physics-Based and IDA-Based hazard curves at LADT site for 

Bridges: (a) A, (b) B, (c) C, and (d) F 

 

The developed Physics-Based EDP hazard curves are compared against the hazard curves developed 

using IDA in the Chapter 4, for all four bridges and five sites. An example of the comparison is 
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provided in Figure 6.3 which compares the Physics-Based EDP hazard curves against the IDA-Based 

EDP hazard curves for the four bridge structures for LADT site. Similar plots are developed for 

visual comparison of the EDP hazard curves. From these plots it is observed that, in general, for 

bridges with shorter periods (A, B, and C) that IDA-Based EDP hazard curves lie in the vicinity of 

Physics-Based EDP hazard curves for smaller return periods; whereas for longer return periods it 

consistently leads to higher values of Rot50CDR as compared to Physics-Based EDP hazard 

curves.  For Bridge F, it is observed that Physics-Based EDP hazard curves leads to higher 

Rot50CDR as compared to IDA-Based EDP hazard curves for all hazard levels. Comparing Figure 

6.1 with Figure 4.2, it can be observed that the Physics-Based EDP-IM tends to show a lower 

median response for all IM levels and a lower variability for large IM levels as compared to the 

IDA-Based results. Similar patterns were observed for other bridges and sites, except for SBSM 

and STNI, where the variability in EDP-IM data from Physics-Based data was significantly higher 

than IDA-Based. This can be attributed to the fact that the simulated ground motions of these sites 

include the effects of a deep basin and directivity pulses in terms of intensity, frequency, and 

duration characteristics. These characteristics can uniquely affect the response of the bridge 

structures, causing the variability in EDPs to increase. This peculiar feature is not incoportated in 

the selection and scaling processes of the  conventional methods of Incremental Dynamic Analysis 

(IDA). Also among the bridge responses, the reposne of Bridge F is obsereved to be different to 

the other three bridge structures. As mentioned earlier, CyberShake 15.12 simulations are hybrid 

of deterministic and stochastic simulations; the higher frequency content (>1 Hz) is simulated with 

stochastic approaches and is added to the Physics-Based deterministic estimates of the ground 

motion time series corresponding to lower frequency content (≤1 Hz). Hence, the ground motions 

affect the response of bridge structures differently for bridges with shorter periods (Bridges A, B, 

and C) as compared to bridges with longer periods (Bridge F) in contrast to the recorded ground 

motions. Since the recorded ground motions have not been selected to explicitly account for the 

basin and directivity effects, the IDA-Based results tend to be similar for Bridges A, B and C, and 

F. This is consistent with the findings of Bijelić et al. (2019), who used building structures to 

compare simulation-based EDP hazard curves with conventional methods. Also the as explained 

in the Fayaz et al. (2020c), noticeable differences are obserevd in the IM hazard curves of 

CyberShake 15.12 study and CB14. The integration process of IDA-Based EDP hazard curves 

futher accumlates these diffferences leading to higher diffference from the Phyics-Based EDP 
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hazard curves. Fayaz et al. (2021a) futher showed that the primary differences between the two 

types of EDP hazard curves are due to the differences between their EDP-IM data and 

recommended that the engineering community should validate simulated ground motions not only 

based on IM levels but also based on more in-depth comparisons made on the EDP-IM level. 

  
  (a)          (b) 

  
  (c)           (d) 

Figure 6.4 – Ratios between Physics-Based and IDA-Based hazard curves for Bridges: (a) A, (b) 

B, (c) C, and (d) F 

To further understand the reasons for, and parameters that effect, ratios between EDPs obtained 

from Physics-Based and IDA-Based hazard curves are computed for various hazard levels. The 

ratios are used to construct functional forms to facilitate the conversion of EDPs from one form of 

representing ground motion hazard to another given the hazard level (in years), and site 

characteristics Vs30 (in m/s) and Z2.5 (in m). Figure 6.4 presents the ratios of Physics-Based and 

IDA-Based EDPs for various hazard levels. As a general observation, it can be seen that the ratios 

for Bridges A, B, and C tend to vary slightly with the return period, whereas for Bridge F, an 
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increasing trend is observed. The ratios are observed to be between 0.6 to 1 for Bridges A, B, and 

C, and mainly greater than 1.5 for Bridge F for most of the sites. This means, in general, there is a 

~40% reduction in Rot50CDR arising from Physics-Based analysis of CyberShake 15.12 

simulations as compared to IDA using recorded ground motions for short period bridges. For the 

bridge with a longer period, Bridge F,  there is a ~60% to ~70% increase in Rot50CDR arising 

from Physics-Based analysis of CyberShake 15.12 simulations compared to IDA using recorded 

ground motions. The site-to-site variability in these ratios are observed to be higher than the ones 

observed in Chapter 5 (using Site-Based ground motions). This is due to the fact that the Physics-

Based ground motions are able to more accurately model the 3-D surface of the basin and include 

the site and directivity effects for the propogation of ground motion waveforms. 

To assist with improving ground motion simulation methods using this research (or similar ones 

where probabilistic seismic demand analysis is used for validation of a ground motion simulation 

method), functional forms for the difference in the response of each type of bridge (A, B, C, and 

F) in terms of return period and site parameters are provided. This is done by combining the results 

from all sites and conducting mixed-effects regression analysis with the target variable being the 

ratio of Rot50CDRs between Physics-Based EDP hazard curves and IDA-Based EDP hazard 

curves. The predictor variables include Return Period (RP), site Shear-Wave Velocity (Vs30) and 

site Basin-Depth (Z2.5). This is expressed in Equation 6.1 and is fitted to data independently for 

each bridge. In Equation 5.1, 𝜀𝑖𝑗 represents the within-site variability  for the ith hazard level and 

jth site with zero mean and variance of 𝜙𝑏
2
, and 𝜎𝑖 represents the between-site variability for the 

ith hazard level with zero mean and variance of 𝜏𝑏
2. The coefficients and the goodness-of-fit 

measure (𝑅𝑎𝑑𝑗
2 ) for each bridge are given in Table 6.2. 

 

ln (
PhysicsBased 𝑅𝑜𝑡50𝐶𝐷𝑅

IDABased 𝑅𝑜𝑡50𝐶𝐷𝑅
) = 𝑏0 + 𝑏1(ln(𝑅𝑃)) + 𝑏2(ln(𝑉𝑠30)) + 𝑏3(ln(𝑍2.5)) + 𝜀𝑖𝑗(0, 𝜙𝑏

2) + 𝜎𝑖(0, 𝜏𝑏
2) 

 
(6.1) 

It can be observed from Table 6.2 that for all four bridges the value of 𝜙 is higher than 𝜏, which 

means that the site to site variability is highly explanatory in the computation of the EDP ratios 

Hence, the use of mixed-effects regression is appropriate for describing the EDP ratios. Also, 

goodness-of-fit measure 𝑅𝑎𝑑𝑗
2  is observed to be consistently above 0.95, which means that the 

regression equations can estimate the EDP ratios for the four bridge structures with a high level of 

accuracy. The coefficient b1 is observed to be negative for all Bridges A, B, and C, demonstrating 
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that as the return period increases, IDA-Based EDPs tends to be larger than Physics-Based EDPs; 

while the case is opposite for Bridge F. This is due to the higher variability in EDPs caused by 

recorded ground motions escpecially for larger IM levels. Due to the higher variability in EDPs in 

EDP-IM data, the integration process accumulates this variability causing the EDP hazard curve 

IDA-Based to grow faster as compared to Physics-Based.The value of b2 is positive for all four 

bridges, with the highest value being noted for Bridge F. This means with an increase in Vs30 of 

the site, Physics-Based EDPs tends to increase as compared to IDA-Based EDPs. This effect is 

observed to be highly dominant for Bridge F that has a relatively longer period than other OSBs. 

Furthermore, the coefficient b3 is negative for shorter period Bridges A, B and C, while it is 

significantly positive for Bridge F. This trend shows that with an increase in basin depth Z2.5, 

Physics-Based tends to be lower than IDA-Based for shorter period bridges (A, B and C). However, 

for a long period Bridge F, it is observed that a deeper basin tends to increase the EDP ratio and 

leads to higher Physics-Based as compared to  IDA-Based. This is postulated to be due the fact 

that the simulated ground motions, specifically for the sites with significant basin effects (SBSM 

and STNI), possess high basin and directivity effects, which alters the lower frequency content of 

the ground motions. This alteration in lower frequencies tends to increase the variability in EDP-

IM of Bridge F (possessing longer natural period), which leads to an increase in the Physics-Based 

EDP hazard curve. However, the impact of these basin effects is not observed to be highly 

prominent in the EDP-IM relationship for shorter period Bridges A, B, and C. The stochastic part 

(frequency content > 1 Hz) of the CyberShake simulated ground motions is modeled using a plane-

layer velocity structure; hence the basin effects are only captured approximately via the Vs30 

amplification factors. These features may be responsible for significantly different behavior 

observed for the regressions of Bridges A, B, and C versus Bridge F. In general, for the bridge 

analysis, it is concluded that there is a need for detailed site-specific analysis because basin effects 

and site amplification can lead to significant changes in the response of bridge structures. The 

relations provided in Table 6.2 can assist engineers in validating their methods of bridge analysis 

and can be used in scaling the EDPs as per the design site. It should be noted that the regression 

equations proposed in this study are based on the Cybershake 15.12 simulations of five southern 

California sites with soft soils; hence they can be biased towards these conditions. However, these 

equations can provide initial estimates of the scaling factors and can be easily updated with more 

data from different site conditions. 
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Table 6.2 – Fitted coefficients of the Physics-Based mixed-effects regressions 

Bridge 𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝝓𝒃 𝝉𝒃 𝑹𝒂𝒅𝒋
𝟐  

A -11.169 -0.142 2.124 -0.269 0.261 0.094 0.96 

B -15.781 -0.076 2.799 -0.291 0.162 0.069 0.97 

C -14.371 -0.055 2.516 -0.241 0.139 0.063 0.97 

F -40.165 0.017 6.844 0.427 0.207 0.093 0.98 

 

6.5   Conclusions 

This chapter demonstrates a framework for utilizing Physics-Based (in particular CyberShake 

15.12 study) simulated ground motions for development of EDP hazard curves. Catalogs of  

simulated ground motions representing a time-span of 200,000 years for five sites in Southern 

California with a diverse site and local seismicity conditions are obtained from CyberShake (i.e., 

20,000 ground motions from events with Mw > 6.0 occurring within 200 km of each site) and 

applied to four OSB structures. NLTHA is conducted to calculate the bridge column drift ratio 

(CDR); the effect of uncertainty in the ground motion incident angle is incorporated by rotating 

the applied time-series at 10o increments. The results show that CyberShake (ver. 15.12) 

simulation study is relatively acceptable for seismic performance assessment of OSBs with short 

periods. For the OSBs with long period (T = 1.1 sec) EDPs obtained from Physics-Based analysis 

tend to be higher than the EDPs obtained from utilizing recorded ground motions and performing 

IDA. Further observations suggest that the difference between EDP-IM data is the primary source 

of EDP hazard curve variations. It is recommended that validation efforts should go beyond 

comparisons of IM levels and also include EDP-IM level validation. Furthermore, to account for 

the site-specific differences in the EDP hazard curves obtained from Physics-Based analysis, 

predictive equations are provided using regression. The proposed equations relate the ratio 

between the EDPs obtained from Physics-Based analysis and IDA-Based analysis with the return 

period, and site characteristics Vs30 and Z2.5. These relations can be used by the engineers to scale 

the EDPs obtained from conventional IDA methods to the EDPs obtained using NLTHA under a 

large set of CyberShake simulated ground motions. Lastly, further analysis is recommended to 

compare the EDP-IM obtained from CyberShake with those of recorded motions, especially for 

long period and transition period (between stochastic and deterministic) bridge structures. Note 
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that the results and analysis presented in this study only pertain to CyberShake 15.12 study and 

other CyberShake studies coupled with different selection procedures for recorded ground motions 

may lead to different conclusions. However, this framework can be easily extended to other 

simulation studies and other types of structures. 
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APPENDIX A 

𝑹𝒐𝒕𝟓𝟎𝑪𝑫𝑹 EDP HAZARD CURVES 

 

 
(a)                                        (b) 

   
(c)              (d) 

Figure A.1 – Comparison of EDP hazard curves at CCP site for: (a) A, (b) B, (c) C, (d) F 
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(a)                                        (b) 

   
(c)              (d) 

Figure A.2 – Comparison of EDP hazard curves at LADT site for: (a) A, (b) B, (c) C, (d) F 
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(a)                                        (b) 

   
(c)              (d) 

Figure A.3 – Comparison of EDP hazard curves at SBSM site for: (a) A, (b) B, (c) C, (d) F 
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(a)                                        (b) 

   
(c)              (d) 

Figure A.4 – Comparison of EDP hazard curves at STNI site for: (a) A, (b) B, (c) C, (d) F 
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(a)                                        (b) 

   
(c)              (d) 

Figure A.5 – Comparison of EDP hazard curves at WNGC site for: (a) A, (b) B, (c) C, (d) F 

 

 




