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Abstract
When the phenomena of smog and acid deposition were first recognized, it was largely

gas phase chemists and photochemists who leapt into the fray to untangle the sources

and chemistry involved. Over time, the importance of multiphase chemistry was rec-

ognized, as illustrated in a dramatic manner with the discovery of the Antarctic ozone

hole which is driven by heterogeneous chemistry on polar stratospheric clouds. Since

then, it has become clear that multiphase chemistry is central to both the lower and

upper atmosphere and that this deeply intertwines interactions between the gas and

condensed phases in the atmosphere. As a result, it can be argued that multiphase

atmospheric chemistry begins … and ends… with gases. This paper is based on the

2018 Polanyi Medal award presentation at the 25th International Symposium on Gas

Kinetics & Related Phenomena and traces research carried out in the author’s labora-

tory on multiphase chemistry over a number of decades. While a great deal has been

learned about these processes, they remain one of the areas of greatest uncertainty in

understanding atmospheric composition, air quality, chemistry, and climate change.
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1 INTRODUCTION

I am delighted and honored to be awarded the 2018 Polanyi

Medal of the Royal Society of Chemistry. Given the previ-

ous awardees, it is in august company indeed to find oneself.

This paper is based on the award talk given at the 25th Inter-

national Symposium on Gas Kinetics & Related Phenomena

held in Lille in July 2018. The theme of that talk was my his-

tory in the field of gas phase and multiphase kinetics relevant

to atmospheric chemistry over more than four decades, and as

a result, it is very BJFP-lab centered. I apologize in advance

to many colleagues whose work is not cited in the interests of

following the award presentation and for brevity.

I have watched the field of atmospheric chemistry evolve

from its birth in the gas phase chemistry and photochemistry

community to the point that delineation of gases, clusters,

and particles is no longer always obvious. Multiphase interac-

tions between gases, liquids, and solids are ubiquitous in the

atmosphere and ultimately, one can argue, both start and end

with gases.

My interest in atmospheric chemistry began in an under-

graduate physical chemistry laboratory where my faculty

mentor, Professor Ray March, talked about the chemistry of

the aurora. It was my first introduction to the idea that the

atmosphere was really a giant, complex, constantly chang-

ing chemical reactor. At that time (1969), the field of atmo-

spheric chemistry per se did not exist, but scientists in phys-

ical, organic, and analytical chemistry had been drawn into

understanding the phenomenon of smog formation which was

clearly damaging human health, visibility, plants, and materi-

als. The seminal work in the 1950s of Professor Arie Haagen-

Smit, an organic chemist at Cal Tech, had established that

gas phase organic compounds and oxides of nitrogen, when

irradiated, form ozone, particles, and other manifestations

of smog. While NO2 photolysis was established to be the

source of anthropogenic ozone, the reactions responsible for
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converting NO (the major oxide of nitrogen emission from

fossil fuel combustion) to NO2 and the role of the organics

remained obscure. Indeed, it was not until about 1970 that

the OH free radical was established as a major oxidant1–4

that converted organics to alkylperoxy radicals that then oxi-

dized NO to NO2. However, relatively little was known about

the fundamental kinetics and mechanisms involved not only

in OH reactions with organics but also the subsequent free-

radical induced chemistry.

The most obvious manifestation of smog formation was

light scattering by particles which caused significant loss of

visibility. However, it has become clear over the years that

particles do not just represent an aesthetics problem asso-

ciated with visibility reduction5 but also have severe health

impacts.6,7 These include impacts8 on the heart, lungs, repro-

ductive system, and, more recently, particles have been asso-

ciated with neurodegenerative diseases such as dementia9–11

as well as cognitive performance.11 Particles also play a

major role in climate12–14 both directly by scattering incom-

ing solar radiation and indirectly by acting as seeds for cloud

formation.15 These direct and indirect effects cause a decrease

in radiative forcing (cooling). While light absorbing particles

such as soot and organic particles containing “brown carbon”

contribute to positive radiative forcing (warming), the overall

impact of particles is a net decrease in radiative forcing that

in part counteracts the warming due to greenhouse gases.16

Some particles are directly emitted (eg windblown dust,

soot from diesel engines, fly ash from coal-burning power

plants), but a major source of airborne particles is gas phase

reactions to form highly oxidized, low volatility products that

either nucleate to form new particles or add to existing par-

ticles to grow them.17,18 Predicting particle concentrations

and size distributions from such sources requires a detailed

understanding of gas phase kinetics and precursor oxidation

mechanisms, as well as how gases interact with particles.

Such new particle formation and growth processes involve

gases, clusters, and, finally, liquid or solid particles, sup-

porting all three as the basis for understanding and quan-

tifying multiphase atmospheric processes. Gases also react

with condensed phases in the atmosphere, and reactions on

and inside particles can provide new products that undergo

further chemistry.19 Finally, chemistry and photochemistry

within particles can result in the formation of more volatile

species which are emitted into the gas phase, contributing to

the budgets of those trace gases.20,21 So in short, it all starts

… and ends … with gases.

Four examples of multiphase reactions in the lower atmo-

sphere (troposphere) are described below. The first involves

the formation of new particles from the reactions of methane-

sulfonic acid, CH3S(O)(O)OH, (MSA) with amines in the

gas phase. The second example describes some studies

designed to probe the molecular interactions of incoming

gases with the surfaces of proxies for organic particles in air to

understand uptake and growth mechanisms of these parti-

cles. The third example involves reactions of gases with sea

salt particles, and, the fourth, the photochemistry of neoni-

cotinoid pesticides that undergo unusual chemistry to release

unexpected gas phase products. It is hoped that these four

examples illustrate the seminal role of gas phase kinetics and

mechanisms in understanding our complex atmosphere with

sufficient confidence to be able to make predictions that can

be used in the development of optimal control strategies to

address human health, climate, and visibility.

2 NEW PARTICLE FORMATION
FROM THE REACTIONS OF
METHANESULFONIC ACID WITH
AMINES

The combustion of sulfur-containing fossil fuels emits SO2,

which is oxidized in air to sulfuric acid, H2SO4 (SA).22,23

Gas phase SA reacts efficiently with the atmospheric bases

ammonia and amines,24–28 which are ubiquitous in air,29,30

generating low volatility clusters which can form and/or

grow particles. Once they reach ∼100 nm diameter, particles

can act as cloud condensation and ice nuclei,15,31 scatter

light efficiently,5 and reach the deep, alveolar region of the

lung where gas exchange occurs.32 However, there are other

sources of sulfur-based particles, for example, organosulfur

compounds such as dimethyl sulfide, CH3SCH3 (DMS),

emitted by biological processes in coastal areas, and their

oxidation products.33,34 Products of the oxidation35,36 include

not only SO2 and hence ultimately sulfuric acid but also

another strong acid, MSA. While a great deal is known

about the kinetics and mechanisms of the steps involved in

converting CH3SCH3 into MSA,35,36 there are some key

missing steps that are ripe for investigation. For example, the

CH3S(O)(O)O radical can be formed by various pathways but

those leading from the radical toMSA are not clear. Hydrogen

abstraction from organics has been proposed, but to the best

of the author’s knowledge there are no experimental studies

of these reactions. Theoretical studies suggest hydrogen

abstraction from formaldehyde has a submerged barrier and

should be very fast (Figure 1).37 While the reaction with CH4

has a positive barrier (Figure 1) and is expected to be slow,

reactions with larger organics, particularly those with weaker

C−H bonds such as allylic C-H may be much faster than CH4,

and may also contribute to the conversion of CH3S(O)(O)O

to MSA.

Although MSA does not form particles as efficiently with

water under atmospheric conditions as sulfuric acid does,38–40

we demonstrated that it can form a large number of new

particles in the presence of ammonia and/or amines.41 MSA

with ammonia is least efficient in forming particles, whereas

methylamine (MA) is the most efficient and di- and trimethyl
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F IGURE 1 Predicted energies in the reactions of the

CH3S(O)(O)O radical with HCHO and CH4 [Ref. 37] [Color figure can

be viewed at wileyonlinelibrary.com]

F IGURE 2 Rates of formation of detectable (2.5 nm) particles

(Jexp2.5 nm) from 4 × 1010 cm−3 MSA reacting with ammonia and

amines (MA = methylamine; DMA = dimethylamine and

TMA = trimethylamine) at 55% RH as a function of base

concentration42 [Color figure can be viewed at wileyonlinelibrary.com]

amine (DMA and TMA, respectively) are intermediate in this

regard (Figure 2).42 Interestingly, if water vapor is introduced

with the other reactants (as opposed to dry particles exposed

to water vapor after formation), it significantly enhances new

particle formation (Figure 3).41–45 Theoretical studies have

been carried out to elucidate the reasons that water plays such

an important role.37,41–48 As an example, Figure 4 shows the

calculated lowest energy structures of two small MSA-TMA-

water clusters that are stable.41 Water provides additional

hydrogen bonding sites to which incoming gas molecules can

bind, growing the particles to detectable sizes, in this case

∼2.5 nm. Particles of this size aremuch larger than the clusters

shown in Figure 4, so that experimentally it is the combination

of new particle formation and growth to this size that opera-

tionally defines particle formation in this system. In contrast,

quantum chemical calculations suggest that water added to

larger clusters formed from MSA-MA resides on the surface

or for increasing numbers of waters, inside the clusters.46,48

An important question is how important MSA is for parti-

cle formation in air compared to sulfuric acid. A classic case

is the South Coast Air Basin in Southern California where the

ports are a major source of anthropogenic SO2 and organosul-

fur compounds such as DMS are produced by biological pro-

cesses in the ocean. Specific unknowns are as follows: (1)

To what extent does MSA contribute to particle formation

under current conditions in a coastal urban area? (2) If anthro-

pogenic SO2 is eliminated in the future with phaseout of fos-

sil fuel combustion, what will the contribution of MSA be to

airborne particles? To answer these questions, modeling of

this region was undertaken37 using the University of Cali-

fornia, Irvine-California Institute of Technology (UCI-CIT)

regional airshed model49 that included SO2 emissions from

the ports and some other, smaller, sources as well as DMS

emissions from the coastal regions.37 Figure 5 is a schematic

of the model and the domain covered by the model. It divides

the region into 80 cells in the E-W direction, 30 cells N-S,

and 5 cells vertically. Emissions, meteorology, and chemistry

are integrated to predict the concentrations of various species

as a function of time and location. In that study, gas phase

concentrations of SA and MSA were calculated for the period

2011-2013 as proxies for particle formation from these two

precursors, since their major sink in each case will be particle

formation and growth. Concentrations at noon are shown in

Figure 6A for SA and 6C for MSA. The anthropogenic emis-

sions of SO2 were then assumed to be zero, and the MSA and

SA concentrations due only to the remaining biological emis-

sions were calculated. Note that MSA concentrations do not

change significantly under this scenario since they only have a

biogenic origin. Figure 6B shows the new SA concentrations

with anthropogenic SO2 emissions removed. Because SO2

and hence SA is also generated from organosulfur oxidation,

small amounts of sulfuric acid remainwhen the anthropogenic

sources fall to zero. However, peak concentrations of SA drop

by two orders of magnitude, and MSA and SA are now more

comparable in concentration and hence in their potential con-

tribution to airborne particles. Given that the net effect of such

particles on climate is cooling, such a decrease in particle for-

mation will provide less counterbalance to the warming due to

greenhouse gases, leading to even faster climate change than

is currently the case. On the other hand, a key point is that the

decreased particle concentrations will lead to less deleterious

impacts on human health as well as improved visibility.7,16,50

3 MOLECULAR BASIS OF
SECONDARY ORGANIC AEROSOL
PARTICLE GROWTH

Organic compounds comprise a large fraction of airborne

particles51,52 and have many sources, both anthropogenic and
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F IGURE 3 (A) Flow tube configurations used for studying particle formation from MSA reactions with amines in the absence and presence of

water vapor; (B) particle formation from MSA and trimethylamine (TMA) as a function of reaction time under dry conditions (red), under dry

conditions with water added later at the downstream spokes (blue), and at 19% RH where all three are present simultaneously, with water added

through the upstream spokes (green)44 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Theoretically predicted structures of some clusters of trimethylamine and MSA with one or two water molecules41 [Color figure

can be viewed at wileyonlinelibrary.com]

biogenic. Figure 7 shows typical contributions of organics

(green), sulfate (red), nitrate (blue), ammonium (yellow), and

chloride (purple) to the portions of particles that volatilize at

600◦C,51 illustrating that organics are a significant component

at all locations.

Organic particles that are formed in air from gas phase

reactions are known as secondary organic aerosol (SOA). We

prefer to designate these as SOA particles, since “aerosol”

is formally defined as the combination of particles and the

gas in which they are entrained.5 It has been historically

assumed in models that these organic particles are liquid,

so that diffusion and exchange with the gas phase is fast.

In this case, solubility and volatility are expected to play a

major role in determining uptake from the gas phase that

will control particle growth. However, about 10 years ago,

it was reported that SOA particles can bounce off the sur-

faces of impactors used to collect them in a manner that

suggested they were not lower viscosity liquids, but rather

higher viscosity, semisolids.53,54 This has since been con-

firmed by a number of groups.55–63 For example, Figure 8A

shows a custom-designed impactor used to collect particles on

an attenuated total reflectance infrared-transmitting crystal.60

The impaction patterns of deliquesced Na2SO4 particles

(Figure 8B) can be compared to those from 𝛼-pinene ozonol-

ysis (Figure 8C).60 The deliquesced particles impact imme-

diately below the orifice holes along the impactor centerline,

forming a corresponding line of collected particles. The SOA

particles, however, form a “cloud” located toward the edge of

the crystal, indicating they have bounced from the point of ini-

tial impact and hence must be a relatively high viscosity mate-

rial, likely a mixture of higher molecular mass organics. Inter-

estingly, there was a hint of the presence of such compounds
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F IGURE 5 Schematic of the UCI-CIT airshed model of Southern

California49 [Color figure can be viewed at wileyonlinelibrary.com]

in particles many decades ago from electron microscopy

images of haze particles collected in the Los Angeles area

(Figure 9).64 These images were interpreted as arising from

particles that were coated with a nonvolatile organic material.

Under the vacuum conditions used to obtain the images, water

and other high volatility components evaporated from the par-

ticles, leaving the organic material in a shrunken and wrinkled

form.

Typical timescales for diffusion in particles as a function

of viscosity/diffusion coefficients are shown in Figure 10.65

For a 100 nm particle, they range from milliseconds for liq-

uid particles to years for semisolid particles. This dramati-

cally impacts exchange with the gas phase and how the parti-

cles incorporate gases into their bulk to grow to larger sizes.

Figure 11 is a schematic that illustrates this difference. The

predictions of modeling studies of particle growth in the

F IGURE 6 Model-predicted gas phase concentrations (ppb) of sulfuric acid (SA) and MSA at noon under three scenarios: (A) SA

representative of the years 2011-2013, (B) SA with fossil fuel emissions removed, and (C) MSA (results the same for with and without anthropogenic

emissions since MSA sources are biogenic)37 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Aerosol mass spectrometry measurements of the nonrefractory components of airborne particles at various locations around the

world50 [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 8 (A) Schematic of impactor, (B) impaction patterns for deliquesced Na2SO4 particles showing the particles are collected where

they impact directly under the holes of the orifice plate, and (C) impaction patterns for SOA particles from 𝛼-pinene ozonolysis showing particle

bounce from the initial points of impaction59 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 9 Electron microscopy images of haze particles

collected from air in Los Angeles63

atmosphere are, not surprisingly, quite different for the two

assumptions.66

For semisolids, the probability of incorporation of a gas

molecule impacting on the surface of an SOA particle into

the bulk of the particle to cause growth will be determined by

F IGURE 1 1 Schematic of uptake of VOC oxidation products

into SOA particles under two scenarios: (A) low viscosity (𝜂< 102 Pa

s), liquid particles where diffusion in the particles is rapid and the

partitioning coefficient Kpart is determining and (B) higher viscosity

(𝜂> 103 Pa s) solid particles where uptake occurs via condensation on

the surface and the uptake coefficient 𝛾 is determining [Color figure

can be viewed at wileyonlinelibrary.com]

a number of factors. A major one is the nature and strength

of the intermolecular forces between the gas molecule and

the surface functional groups. The solubility of the gas in the

bulk of the particle will also depend on the intermolecular

forces, but those in the bulkmay differ from thosewith the sur-

face if the functional group distribution on the surface differs

F IGURE 1 0 Viscosity and diffusion coefficients for some common materials and diffusion times for 100 nm particles of low and high

viscosity64 [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 1 2 Structures of the organic thin film substrates TC, PEA, PA, and the gaseous organic nitrates 𝛽-hydroxyhexyl nitrate (HHN),

𝛽-hydroxypropyl nitrate (HPN), and 2-ethylhexyl nitrate (2EHN) whose uptake into the films was measured68

from the bulk. Some evidence for such a difference has been

reported; for example, in aggregates formed from the ozonol-

ysis of alkene self-assembled monolayers67 and in SOA par-

ticles from 𝛼-pinene ozonolysis,68 the O:C ratio was reported

to be lower on the surface than found in the bulk. Such a dif-

ference between the intermolecular interactions at the surface

and the bulkwould bemanifested in different trends for uptake

coefficients (surface property) compared to solubility (bulk

property).

To probe for potential differences in the trends of uptake

coefficients versus solubility, the incorporation of a series

of organonitrates into thin films was measured.69 These thin

films were solid organics of known composition containing

functional groups that are commonly found in SOA parti-

cles, as well as SOA particles from 𝛼-pinene ozonolysis. The

selected substrates and the gases are shown in Figure 12. Two

of the gases, 2-ethylhexylnitrate (2EHN) and hydroxypropy-

lnitrate (HPN), have similar vapor pressures (18 and 16 Pa,

respectively) but different functional groups and therefore dif-

ferent intermolecular interactions with substrates. Thus the

longer alkyl chain in 2EHN results in stronger dispersion

forces compared to HPN, but HPN has the possibility of

hydrogen bonding via the −OH group. On the other hand,

while HPN and hydroxyhexylnitrate (HHN) both have −OH
and −ONO2 groups, HHN has a much lower vapor pressure

(0.85 Pa) because of the long alkyl chain. The substrates range

from the nonpolar triacontane (TC) to the polar poly(ethylene

adipate) (PEA) to polar with strong hydrogen-bonding possi-

bilities, pinonic acid (PA).

F IGURE 1 3 Uptake coefficients for 2EHN, HPN, and HHN on

SOA, PA, and PEA, respectively68 [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 13 shows the uptake coefficients on SOA particles

from 𝛼-pinene ozonolysis, PA, and PEA. The uptake coeffi-

cients for 2EHN on PEA and PA are greater than those for

HPN, which was initially surprising, given the −OH group

in HPN and polar groups in PEA and PA. Quantum chem-

ical calculations on the organonitrates interacting with PEA

provided some insight. As seen in Figure 14A, the most sta-

ble configuration for 2EHN is one that aligns the alkyl chain

with the surface, which is not very sterically demanding. The

major interaction with HPN is a hydrogen bond to a C=O at

the surface (Figure 14B), so that if the initial point of contact

of HPN with PEA is not with the C=O but rather with the
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F IGURE 1 4 Optimized structures for (A) one 2EHN molecule

binding to one PEA subunit, and (B) one HPN molecule binding to one

PEA subunit68 [Color figure can be viewed at wileyonlinelibrary.com]

alkyl portion of the molecule, it will not be captured. Thus

even though the binding energy of 2EHN (11.8 kcal mol−1)

is less than that of HPN (13.5 kcal mol−1), its initial uptake is

higher. Interestingly, the uptake coefficient for 2EHN on col-

lected SOA particles is smaller than on PA or PEA. It is likely

that the surface of SOA is highly oxidized and does not con-

tain significant regions of nonpolar moieties to which 2EHN

can readily bind through dispersion forces as is the case for PA

and PEA.

Figure 15 shows the partition coefficients measured for dis-

solution of the gases into the films at equilibrium. HPN is

more soluble than 2EHN in SOA particles (Figure 15 inset).

This is not surprising sinceHPN ismore polar and hence inter-

act more strongly with the polar products present in SOA par-

ticles. The fact that there is a difference in solubility but not

in uptake coefficients highlights the issue that initial interac-

tions with the surface are not necessarily well predicted by

bulk solubility. For example, HHN uptake is similar across

substrates, while its solubility is quite different, illustrating

the importance of understanding the nature of the surfaces of

organic particles.

There are very few techniques that differentiate the parti-

cle surface composition from that of the bulk, although as

discussed earlier, there are some data suggesting they are

different.67,68 Some progress has been made in this regard

using new, ambient ionization techniques.70 In addition to

the lack of sample preparation required, these methods can

provide molecular level information. For example, extractive

electrospray ionization71 and easy ambient sonic spray ion-

ization (EASI)72 have both been shown to be capable of sam-

pling mainly the surfaces of organic particles suspended in air

without collection or other sample handling. In a recent study

from this lab,72 glutaric acid (GA) core particles were coated

with increasing thicknesses of malonic acid (MA), and sam-

pled using EASI-MS. Figure 16A shows the increase in the

signal from the MA coating and decrease in that from the GA

core as the coating thickness (as indicated by the temperature

used to volatilize the MA to coat the GA particles) increased.

Figure 16B shows the corresponding increase in the ratio of

coating (MA) to core (GA) as a function of the coating tem-

perature/coating thickness, supporting preferential detection

of the surface. Also shown is the ratio averaged over the entire

particle (bulk analysis from particles collected on a filter and

extracted), which is much smaller since it measures the coat-

ing and the entire core. These are promising techniques for

molecular level detection of the surface of organic particles,

F IGURE 1 5 Partition coefficients for the organic nitrates 2EHN, HPN, and HHN into SOA, PA, and PEA.68 The inset is an expanded view to

show 2EHN and HPN [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 1 6 (A) Signal intensities of 220 nm GA particles (black) coated with MA (red) as a function of MA coating reservoir temperature

(MA coating thickness); (B) black circles are MA/GA ratio calculated from EASI-MS data in (A). Blue triangles are the bulk analysis of filter

collected and extracted MA-coated 220 nm GA particles. The black filled and black open circles are data from replicate experiments71 [Color figure

can be viewed at wileyonlinelibrary.com]

which is needed for predicting particle growth by uptake from

the gas phase.

In short, understanding and quantifying the factors that

control the growth of organic particles via uptake from the

gas phase onto/into particles is still in its infancy, but is a crit-

ical area for predicting visibility, climate change and health

effects.

4 REACTIONS OF GASES WITH
PARTICLES AS A MEANS OF
ALTERING THE OXIDANT
CAPACITY OF THE ATMOSPHERE

Wave action generates sea salt particles that are ubiquitous

in coastal areas and can also be carried significant distances

inland.73 These particles are complex in composition and con-

tain both inorganic salts and organics,74–77 but are primarily

NaCl, with smaller amounts of bromide and iodide. Schroeder

and Urone78 showed many decades ago that NO2 at Torr

concentrations reacts with NaCl to generate nitrosyl chloride

(ClNO) which in the atmosphere would rapidly photolyze,

generating chlorine atoms. This was extended by this labo-

ratory to ppm concentrations,79 supporting sea salt reactions

as a potential source of atomic chlorine as an atmospheric

oxidant.80

Atomic chlorine is even more reactive with many gas phase

organic compounds than the OH radical,81,82 which drives

much of the chemistry of the atmosphere. As a result, pro-

cesses which generate atomic chlorine tend to drive O3 pro-

duction through the well-known VOC-NOx cycle.
23 Bromine

atoms, on the other hand, only react with a few types of

organics such as aldehydes, and hence the reaction of atomic

bromine with O3 dominates, resulting in the destruction of

ozone.83–90 Figure 17 is a schematic of the pathways that

were shown in early laboratory studies to generate photo-

F IGURE 1 7 Schematic diagram of mechanisms of formation of

chlorine atoms in air [Color figure can be viewed at

wileyonlinelibrary.com]

chemically active chlorinated compounds that serve as chlo-

rine atom sources in the lower atmosphere.79,84,91–104 Of these

compounds, Cl2, ClNO2, and HCl have been measured in the

troposphere. It was shown that similar reactions occur for bro-

mide in particles as well.84,105–115 Since then, there have been

a multitude of laboratory, field, and modeling studies that

clearly establish the importance of halogen chemistry (includ-

ing iodide) in the troposphere.88,116–119

Figure 18 shows the results of two studies120,121 in

which chlorine atom precursors were measured in Southern

California120 as well as in Calgary, Canada.121 The concen-

trations and known photochemistry of ClNO2 and Cl2 can

be used to calculate chlorine atom production rates. Mea-

surements such as these showed that, averaged over a day at

the coastal site, ClNO2 photolysis was responsible for 45%

of the chlorine atom production and was most important in

the morning, 10% was from Cl2 photolysis, and 45% from

the reaction of HCl with OH that peaked midday.120 In short,

under some circumstances, chlorine atoms can be a significant

oxidant in the troposphere, initiating the oxidation of VOC

and hence the conversion of NO to NO2 and ultimately ozone

formation.
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F IGURE 1 8 Measurements of ClNO2 and Cl2 (A) in a marine environment off the coast of Southern California119 and (B) in Calgary,

Alberta, Canada120 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 1 9 Comparison of experimentally measured Cl2

(green circles) produced in a chamber experiment where deliquesced

NaCl particles were oxidized by OH from photolysis of O3 (black

squares) in the presence of water vapor, to predictions based on known

aqueous phase chemistry at several pH values with (blue triangles) and

without (red triangles) the inclusion of a reaction of chloride ions at the

interface with OH [Ref. 121] [Color figure can be viewed at

wileyonlinelibrary.com]

An interesting aspect of halogen activation in the tropo-

sphere that arose out of combined experiment-theory studies

is the presence of chloride, bromide, and iodide ions at the

air-water interface of deliquesced salt particles.84,112,122–144

Through a combination of experiments, kinetics modeling,

and molecular dynamics simulations, it was shown that the

reaction of OHwith Cl− at the air-water interfacewas required

to reconcile experimental measurements of the Cl2 produced

with the predictions from kinetics modeling.122 One example

of such a process is illustrated in Figure 19 where Cl2 pro-

duction measured in an environmental chamber (green points)

is compared to that predicted using conventional processes

where OHwas taken up and reacted in the bulk of the particles

(red triangles), with the Cl2 generated subsequently diffusing

out of the particle into the gas phase. Under this scenario, the

amount of Cl2 predicted is less than 1% of that observed. Only

when a reaction of OH with Cl− at the interface was included

did the modeling results come into agreement with the exper-

imental observations (blue triangles). Additional experiments

and molecular dynamics simulations (Figure 20) showed that

there is an increasing propensity of halide ions for the air-

water interface as one moves down that group in the periodic

table.84,112,122–144

In short, it is now accepted that chlorine atom generation

and reactions can play a significant role in the troposphere,

leading to ozone production. Bromine atoms, on the other

hand, lead to ozone destruction. In any event, this is a rele-

vant example of gas-particle reactions playing a major role in

the chemistry of the lower atmosphere.

5 HETEROGENEOUS REACTIONS
OF NEONICOTINOID PESTICIDES
IN THE TROPOSPHERE

The photochemistry of neonicotinoid pesticides is a final

example of multiphase reactions in the atmosphere. Neon-

icotinoids (NNs) are systemic pesticides that came into

use in the early 1990s, largely supplanting other pesticides

such as the carbamates because of their lower mammalian

toxicity.145–149 They have seen increasing use, but recent evi-

dence suggests they are at least in part responsible for negative

impacts on pollinators, such as bee colony collapse.145,150–154

As a result, three of the major NN have been banned
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F IGURE 2 0 Molecular dynamics simulations of a “slab” of 96

Na+ and 96 Cl− with 864 water molecules. This represents a top down

view, showing the chloride ions (larger yellow) being readily available

to incoming gases such as OH at the interface121 [Color figure can be

viewed at wileyonlinelibrary.com]

for outdoor applications in the European Union155 and in

Canada.156

Figure 21 shows the structures of three representative neon-

icotinoids in use today, and the year they were introduced.

Chemically, they fall into three categories: (1) nitroguanidines

having a C=N−NO2 group, (2) nitromethylenes having a

C=N–NO2 group, and (3) cyanamidines having a C = N−CN
group. Figure 22 shows the UV-visible absorption spectra of

one NN from each group, indicating that two of the three

absorb in the actinic region, 𝜆 > 290 nm.

Imidacloprid, a nitroguanidine, has been the major NN in

use, for example, as a seed coating. It is translocated through-

out the plant and is subsequently taken up by sucking insects

such as aphids.146,148 Its light absorption extends out into the

actinic region above 290 nm. Photolysis of a solid film of

F IGURE 2 2 Absorption spectra of representative neonicotinoid

pesticides. The actinic region at > 290 nm is indicated [Color figure

can be viewed at wileyonlinelibrary.com]

imidacloprid generates two major reaction products, a urea

derivative and a desnitro derivative:157

NCl

N

NH
N

NO2NCl

N

NH
O NCl

N

NH
HN

Imidacloprid-urea
Imidacloprid

Desnitro-Imidacloprid

Although the desnitro product is formed in the smaller yield

(16% vs 84%),157 it has been reported to have increased mam-

malian toxicity compared to the parent imidacloprid.158 This

is a similar case as for the pesticide malathion, where more

toxic products are formed on reaction in air.159

An unexpected observation was the production of N2O

as a gas phase product detected by infrared spectroscopy,157

rather than NO2 as might be expected from cleavage of the

N−NO2 bond in the chromophore. This was the first obser-

vation of a gas phase product from this photochemistry, and

the unusual nature of the product suggested some interesting

chemistry. Through the use of quantum chemical calculations,

it was shown that the N−NO2 bond should indeed undergo

F IGURE 2 1 Representative examples of three types of neonicotinoids: nitroguanidines, nitromethylenes, and cyanamidines, with the years

they were introduced [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 3 Computational studies of the photochemistry of imidacloprid showing the pathways for formation of the major solid products

and gas phase N2O [Ref. 156] [Color figure can be viewed at wileyonlinelibrary.com]

cleavage on absorption of a photon.157 However, in the solid

film, the NO2 and nitrogen-centered radical that are gener-

ated are held in close proximity and recombine, releasing the

bond energy into vibrational excitation in the ground elec-

tronic state. This excited molecule then decomposes and in

a sequence of steps generates first OH and subsequently N2O

as shown in Figure 23. The generation of N2O was shown

experimentally to be characteristic of all of the nitroguanidine

neonicotinoids.160

Quantum yields for the loss of nitroguanidine in thin solid

films were recently measured to be of the order of ∼10−3 at

wavelengths above 300 nm.161 However, in aqueous solution

the quantum yields can be one to two orders of magnitude

higher.160,162,163 This is expected, since the solvent cage is

much more fluid and not as effective in holding the initially

formed fragments together for the duration needed for recom-

bination.

While the amount of nitrous oxide generated fromNN pho-

tolysis on a global scale is small compared to other sources161

and thus expected to have little impact on climate, the photol-

ysis of the solid NN is another example of a multiphase atmo-

spheric reaction that generates gas phase products from the

condensed phase.

6 CONCLUSIONS

In short, while the field of gas phase chemistry and photo-

chemistry has a long and illustrious history, it is also prov-

ing to be very relevant and important in understanding mul-

tiphase chemistry in the atmosphere involving both liquids

and solids. There remains much to be learned regarding the

interactions of gases and particles and the detailed molecular

interactions, chemistry and photochemistry that determine the

impacts on health, visibility, and climate,164 which is critical

for the development of an accurate, predictive capability to

address these critical issues.
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