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Abstract. We provide a combinatorial way of computing Speyer’s g-polynomial on arbitrary
Schubert matroids via the enumeration of certain Delannoy paths. We define a new statistic
of a basis in a matroid, and express the g-polynomial of a Schubert matroid in terms of it and
internal and external activities. Some surprising positivity properties of the g-polynomial
of Schubert matroids are deduced from our expression. Finally, we combine our formulas
with a fundamental result of Derksen and Fink to provide an algorithm for computing the
g-polynomial of an arbitrary matroid.
Keywords. Schubert matroids, g-polynomial, matroid polytopes, series-parallel matroids,
lattice path enumeration
Mathematics Subject Classifications. 05B35, 52B40, 14T15

Para Bruno. Gracias por hacerme papá.

1. Introduction

1.1. Overview

One of the most pervasive objects within combinatorial theory is the hypersimplex ∆k,n. Many
features of these polytopes have been studied throughout the literature; for example, their vol-
umes [Sta77], their unimodular triangulations [LP07], their f -vectors [HLO15], their Ehrhart
and h∗-polynomials [Li12, Kim20, Fer21], and polytopal subdivisions related to them [Ear22,
OS22]. A well known occurrence of ∆k,n in algebraic combinatorics is as the base polytope of
the uniform matroid of rank k on n elements Uk,n. The base polytope of every matroid of rank k
and cardinality n can be seen as a subpolytope of the hypersimplex ∆k,n. Of particular interest
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in this paper will be the regular subdivisions of ∆k,n into smaller matroid polytopes; these sub-
divisions are parameterized by a subfan of the secondary fan of ∆k,n, commonly known as the
Dressian Dr(k, n). Dressians and regular matroid subdivisions are important objects within the
tropical geometry framework, see [HJJS09, HJS14, JS17, OPS19, SW21].

A prominent conjecture regarding matroid subdivisions was posed by Speyer in [Spe08].

Conjecture 1.1 ([Spe08]). Let Sbe a subdivision of ∆k,n into smaller matroid polytopes. For
each 1 ⩽ i ⩽ n, denote by fi the number of cells of Sof dimension n − i lying in the interior
of ∆k,n. Then:

fi ⩽

(
n− 1− i

k − i

)(
n− k − 1

i− 1

)
.

Moreover, the simultaneous equality case occurs if and only if all the facets of S correspond to
base polytopes of series-parallel matroids.

A series-parallel matroid is a matroid that can be obtained fromU0,1 orU1,1 via a sequence of
series or parallel extensions. This family consists of the single loop U0,1, the single coloop U1,1

and all the matroids whose β-invariant is equal to 1 (in particular, we are using the convention
that series-parallel matroids are connected).

The above conjecture, known as “the f -vector conjecture”, is known be true in a number of
cases. Most notably, the conjecture holds whenever all the internal cells of the subdivision S

correspond to matroids realizable over a field of characteristic 0; that is precisely the content of
another result of Speyer in [Spe09]. The proof relies on a deep result from algebraic geometry
known as the Kawamata–Viehweg vanishing theorem; unfortunately, it is not clear how to extend
this vanishing result even to matroids representable over a field of positive characteristic.

One of the main players in Speyer’s proof of the aforementioned instance of Conjecture 1.1
is a matroid invariant known as the g-polynomial. This invariant was originally defined for
matroids representable over C by Speyer in [Spe09] via the K-theory of the Grassmannian, and
later to all matroids by Fink and Speyer in [FS12] via equivariant localization.

As Speyer mentions in [Spe09, p. 887], the coefficients of the g-polynomial of a matroid M
are “morally” counting the number of base polytopes of (direct sums of) series-parallel matroids
that are needed to built the base polytope P(M). This can be made rigorous as follows.

Definition 1.2. There is a unique way of associating to each matroid M a polynomial invari-
ant gM(t) ∈ Z[t] in such a way that the following properties hold:

(i) If M has loops or coloops, then gM(t) = 0.

(ii) If M is a series-parallel matroid on at least two elements, then gM(t) = t.

(iii) If M = M1 ⊕M2, then gM(t) = gM1(t) · gM2(t).

(iv) The map M 7−→ gM(t) is a covaluation under matroid polytope subdivisions.

The polynomial gM(t) is referred to as the g-polynomial of the matroid M.
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The fact that there exists at least one invariant satisfying the above conditions follows from
the work of Speyer [Spe09] and Fink and Speyer [FS12, Section 4]. The fact that there exists
at most one invariant satisfying the above conditions follows from the fact that direct sums of
series-parallel matroids span the covaluative group of matroid polytopes; this in turn can be seen
as a consequence of the reasoning of Ferroni and Schröter in the proof of [FS22, Theorem 5.22].
Recall that Derksen and Fink proved in [DF10] that the class of Schubert matroids is a basis of
the covaluative group of matroid polytopes, and on the other hand the base polytope of every
Schubert matroid admits a matroid subdivision in which all the interior cells are direct sums of
series-parallel matroids.

There exists an alternative description of the g-polynomial via the tautological classes of
matroids of Berget, Eur, Spink and Tseng [BEST23, Theorem 10.12], which also proves a Chow-
theoretic formula for gM(t) previously conjectured by López de Medrano, Rincón and Shaw
in [LdMRS20]. We mention that there is a generalization of the g-polynomial for morphisms of
matroids in the work of Dinu, Eur and Seynnaeve [DES21].

A strengthening of Conjecture 1.1, also due to Speyer is the following:

Conjecture 1.3 ([Spe09]). For every matroid M, the polynomial gM(t) has non-negative coeffi-
cients.

This conjecture is known to hold for all matroids representable over a field of characteristic 0
[Spe09, Proposition 3.3] and for all sparse paving matroids [FS22, Theorem 13.16]. Let us
denote by c(M) the number of connected components of M. It is known that if M does not
possess loops nor coloops, then [tc(M)]gM(t) is strictly positive, as it is the product of the β-
invariants of the connected components of M. To explain why the last conjecture implies the
f -vector conjecture, let us consider any subdivision S of ∆k,n. The fact that the g-polynomial
is covaluative yields:

gUk,n
(t) =

∑
P(N)∈S◦

gN(t),

where S◦ consists of all the internal faces of the subdivision S. In particular, assuming that the
g-polynomials of all the matroids N appearing in the subdivision are non-negative, given that
the coefficient of tc(N) is strictly positive, one has the coefficient-wise inequality:

gUk,n
(t) ⪰

∑
P(N)∈S◦

tc(N) =
n∑

i=1

#{N : P(N) ∈ S◦ and dimP(N) = n− i} ti,

whereas the left-hand-side can be explicitly computed (see, e.g., equation (3.1) below), yielding
precisely the inequality predicted by Conjecture 1.1.

1.2. Main results

One of the major obstacles of working with the g-polynomial is that it is is undoubtedly very
hard to compute for general matroids. The original definitions of Speyer [Spe09] and Fink and
Speyer [FS12], as well as the formula of Berget, Eur, Spink and Tseng [BEST23] lend themselves
very well for theoretical purposes; however, they are fairly complicated to turn into a pseudocode
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allowing a computer to perform the calculations. Arguably, the ultimate motivation in this paper
is to resolve this issue.

As mentioned before, Schubert matroids are a basis for the covaluative group of matroid
polytopes. They constitute the fundamental blocks throughout our procedure. Our first main
contribution is giving a combinatorial interpretation via the enumeration of “admissible” De-
lannoy paths of the coefficients of the g-polynomial of arbitrary Schubert matroids.

Theorem 1.4. Let M be a loopless and coloopless Schubert matroid. The g-polynomial of M is
given by:

gM(t) =

rk(M)∑
i=1

ci t
i,

where ci counts the number of admissible Delannoy paths associated to M having exactly i− 1
diagonal steps.

This retrieves the non-negativity of the coefficients of the g-polynomial of Schubert matroids
(which also follows from Speyer’s [Spe09, Proposition 3.3], as they are representable over C).
This has interesting consequences. As a glimpse, one is able to derive a very short proof of
the formula of the g-polynomial of uniform matroids, or prove that the coefficients of the g-
polynomial of Catalan matroids [Ard03] match with the f -vectors of associahedra.

By abstracting our definition of admissible Delannoy paths and removing all the lattice path
terminology, we can provide an equivalent statement in terms of statistics of bases in ordered
matroids. Two of the three players are well-known, they are the internal and external activity
of a basis B, usually denoted i(B) and e(B), respectively. The third is new, and we denote it
by α(B).

Definition 1.5. Let M = (E,B) be a matroid on an (ordered) ground set E. For simplicity,
assume that E = [n] and that the order is given by 1 < 2 < · · · < n. For each basis B of M we
define

α(B) := # {i ∈ B : B′ := (B ∖ {i}) ∪ {i+ 1} ∈ B and e(B′) = e(B), i(B′) = i(B)} .

An equivalent reformulation of Theorem 1.4 in terms of these notions is as follows.

Theorem 1.6. Let M be a loopless and coloopless Schubert matroid. Then, the g-polynomial
of M is given by

gM(t) = t
∑
B∈B

e(B)=1
i(B)=0

(t+ 1)α(B).

This statement is particularly useful to calculate with a computer the g-polynomial of Schu-
bert matroids. We point out, however, that the above formula does not work for matroids in
general. As mentioned before, the positivity of the coefficients of the g-polynomials of Schubert
matroids is not new. What is more striking is that a stronger positivity phenomenon holds within
this class.
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Corollary 1.7. For every matroid, let us denote g̃M(t) := 1
t
gM(t). If M is a Schubert matroid

we have that g̃M(t− 1) has non-negative coefficients.

The assumption on M being Schubert is essential, as there are non-Schubert matroids
for which the above statement fails. Counterexamples come in two distinct flavors. On one
hand, it is easy to construct disconnected matroids for which the above property fails: for
instance M = U1,2 ⊕ U1,2 has two direct summands that are series-parallel, thus gM(t) = t2.
In particular g̃M(t) = t and therefore g̃M(t − 1) = t − 1 which fails to have non-negative co-
efficients. Within the realm of connected matroids, it is more challenging to find examples for
which g̃M(t − 1) attains negative coefficients. In fact, the smallest such example is precisely
the Fano matroid, which is coincidentally the smallest matroid that is not representable over a
field of characteristic 0. Using the methods of Ferroni and Schröter [FS22] it is not difficult to
prove that sparse paving matroids1 with sufficiently many non-bases may easily attain a nega-
tive coefficient. In particular, the sparse paving matroid known as R8 (see [Oxl11, p. 646]) is
representable over the complex numbers and g̃R8(t − 1) attains a negative coefficient. We con-
jecture, however, that Corollary 1.7 admits an extension to all matroids that can be subdivided
into series-parallel matroids.

1.3. Outline

In Section 2 we make a quick recapitulation of some useful notions regarding Schubert ma-
troids, lattice path matroids and covaluations that we will be using throughout the paper. In
Section 3 we define the notion of “admissible Delannoy path” for Schubert matroids and prove
Theorem 1.4 (it is stated as Theorem 3.4), and we discuss some immediate consequences of
this result for some particular Schubert matroids. In Section 4 we provide a lattice-path-free
reformulation of the notion of admissibility of Delannoy paths, motivate the statistic α(B) and
prove Theorem 1.6 (it corresponds to Theorem 4.3). In Section 5 we use the methods developed
throughout in combination with results of Derksen and Fink [DF10] and Hampe [Ham17], to
provide a way of computing the g-polynomial of an arbitrary matroid. In Table 5.1 we list the
g-polynomials of many famous or relevant matroids, and provide a pseudocode together with its
SAGE implementation for computing g-polynomials of matroids.

2. Preliminaries

Throughout this paper we will assume that the reader is familiar with most of the terminology
and constructions in classical matroid theory, for which we refer to Oxley’s book [Oxl11] and
White’s anthologies [Whi86, Whi87, Whi92]. Let us make a brief review of some additional
notions that we will require.

2.1. Schubert matroids

Let us consider a finite set E and a total ordering < on E. Consider two r-subsets
I = {i1 < i2 < · · · < ir} and J = {j1 < j2 < · · · < jr}. We will write I ⩽ J if iℓ ⩽ jℓ for
each ℓ = 1, . . . , r.

1Sparse paving matroids on at least 5 elements and rank/corank greater than 1 are always connected.
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Definition 2.1. A Schubert matroid on E of rank r is a matroid whose set of bases is given by:

{B ⊆ E : |B| = r and U ⩽ B} (2.1)

for some total ordering < on E and some set U ⊆ E of cardinality r.

Whenever we say that an ordered matroidM is Schubert, then we will be tacitly implying that
the ordering of the ground set of M is precisely the one mentioned in the preceding definition.

Let us mention briefly that the definition of Schubert matroids stated above is essentially
borrowed from [EHL23, Definition 7.5]. It is equivalent to saying that Schubert matroids are
precisely the matroids whose lattice of cyclic flats is a chain [FS22, Definition 2.20]. Other
sources use the naming nested matroids, shifted matroids and generalized Catalan matroids.

2.2. Matroids and lattice paths

A convenient feature of Schubert matroids is that they can be represented as lattice path matroids
by using skew shapes. For more background on lattice path matroids we refer to [BdMN03].

Fix two integers 0 ⩽ r ⩽ n. Let us consider lattice paths in R2 starting at (0, 0), ending
at (n − r, r) and consisting of steps of the form +(1, 0) (an “east step”) or +(0, 1) (a “north
step”). Each such path consists of exactly r north steps and exactly n− r east steps, in particular
it is straightforward to check that there are

(
n
r

)
such paths. Clearly a path will be determined if

one knows the positions in which a north step is performed. For every P = {p1 < · · · < pr},
we will denote by path(P ) the unique path having north steps at the positions p1, . . . , pr (and
east positions elsewhere).

Let us consider as ground set E = [n] endowed with the usual ordering of the positive
integers, and consider an r-set U = {u1 < · · · < ur}. We can consider a lattice path repre-
sentation of U using the numbers u1, . . . , ur as the positions of the north steps. The family of
all sets in equation (2.1) corresponds to the family of all lattice paths that lie below U . This is
the lattice path matroid presentation of U . For example, in Figure 2.1 we have n = 12, r = 5
and U = {1, 2, 5, 7, 10}, the highlighted path is path(U).

1

2

3 4 5

6 7

8 9 10

11 12

n− r

r

Figure 2.1: n = 12, r = 5 and U = {1, 2, 5, 7, 10}.

The class of lattice path matroids arises when varying the “lower path”. Whenever we are
dealing with a Schubert matroid on [n] of rank r using the ordering 1 < · · · < n, we will
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denote L = {n− r + 1, . . . , n} (this corresponds to the lexicographically maximal basis of the
Schubert matroid).

Proposition 2.2 ([BdMN03, Theorem 5.3]). Let E = [n], U = {u1 < · · · < ur} and let M be
the corresponding Schubert matroid. For each basis B of M, the internal and external activities
are given by:

i(B) = #{intersections of path(B) with path(U) at a north step}
e(B) = #{intersections of path(B) with path(L) at an east step}.

Equivalently,

i(B) = |B ∩ U |
e(B) = n− |B ∩ L|.

Example 2.3. Consider again the Schubert matroid of Figure 2.1, and let B = {3, 4, 5, 7, 12},
depicted in Figure 2.2. Notice that path(B) intersects path(L) in the first two steps and in the
last one. Only the first two steps are east steps, hence e(B) = 2. On the other hand, path(B)
intersects path(U) at the steps number 5, 6, 7, 8 and 9. Among these, only the one at numbers 5
and 7 are north steps, thus i(B) = 2.

Figure 2.2: B = {3, 4, 5, 7, 12}.

2.3. The covaluative group

Some important and useful sources regarding matroid valuations and covaluations are [DF10,
AS23, EHL23, FS22]. As we have mentioned in the introduction, the g-polynomial is a covalu-
ation under matroid polytope subdivisions. In other words, it behaves additively on the internal
faces for matroidal subdivisions.

More precisely, if M is a matroid on the ground set E and P(M) denotes the base polytope,
we define the indicator function of the interior,

1P(M)◦(x) =

{
1 x ∈ P(M)◦

0 otherwise

If S is a subdivision of P(M) into matroid polytopes, we have:

1P(M)◦ =
∑
P∈S◦

1P◦ ,
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where S◦ stands for the interior faces of the subdivision S. This gives a linear relation be-
tween indicator functions of interiors of bases polytopes of matroids; more generally, con-
sider P1, . . . ,Pm base polytopes of matroids on E and satisfying that

m∑
j=1

ai1P◦
i
= 0

is the zero function RE → R, for integers a1, . . . , am. Any relation of this type will be called a
covaluative relation.

Theorem 2.4 ([DF10]). The set
{

1P(M)◦ : M Schubert matroid on E
}

is a basis of the Z-span
of all indicator functions of interiors of matroid polytopes on E.

If one considers the free Z-module spanned by all matroids on E, after modding out by
all possible covaluative relations, the resulting abelian group is what we will refer to as the
covaluative group of matroids on E. This group is canonically isomorphic to the Z-span of all
indicator functions of interiors of matroid polytopes on E, via the identification 1P(M)◦ = [M]
where [M] is the class of M in the covaluative group. In particular, the covaluative group of
matroids admits a basis given by the Schubert matroids.

The above result is possible to derive in an alternative way by building on the work of Eur,
Huh and Larson in [EHL23]: they established an isomorphism between the cohomology of the
stellahedral variety and the valuative group of matroids (which is defined in a very similar way).
A consequence of the above result is that for every matroid M on E there exists a list of Schubert
matroids on E, say M1, . . . ,Ms and integers a1, . . . , as, with the property that

1P(M)◦ =
s∑

j=1

aj1P(Mj)◦ . (2.2)

Later we will discuss how to recover all the coefficients a1, . . . , as and all the Schubert ma-
troids M1, . . . ,Ms by looking at the lattice of cyclic flats of the matroid M, following an idea of
Hampe [Ham17].

What is meant by affirming that the g-polynomial is a covaluation is that it acts as a linear
map on the covaluative group. In other words, equation (2.2) translates into

gM(t) =
s∑

j=1

aj gMj
(t). (2.3)

Therefore, we see that the computation of the g-polynomial of an arbitrary matroid M is
reduced to two problems:

• Computing the g-polynomial of Schubert matroids.

• Determine the Schubert matroids M1, . . . ,Ms and the coefficients a1, . . . , as on equa-
tion (2.2).

The first of these two problems is addressed in Sections 3 and 4, whereas the last is postponed
until Section 5.
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3. Delannoy paths and Speyer’s invariant

3.1. Delannoy paths and Schubert matroids

Whenever |E| = n, and we have a Schubert matroid M on E = {i1, . . . , in} using a lin-
ear ordering i1 < i2 < · · · < in, we will use the identification of E and its linear ordering
with [n] = {1, . . . , n} via ij 7→ j. There is no harm in using this identification, as we will be
trying to calculate the g-polynomial, which is invariant under isomorphisms.

In particular, we have access now to the skew shape arising from the lattice path presentation
of M. We will introduce a new character into the game. We will be interested in the enumeration
of paths within the diagram that not only have north steps +(0, 1) and east steps +(1, 0), but also
diagonal steps +(1, 1). This type of lattice paths are known in the literature under the name of
Delannoy paths, or bilateral Schröder paths.

A subtlety that arises is that we will be focusing primarily in the case in which our Schubert
matroid is loopless and coloopless. This guarantees that the point (1, 1) lies inside or on the
border of the lattice path representation of M. One can modify the approach slightly to lift this
requirement on the loops and coloops, but that implies dealing with an annoying number of
cases in some of the proofs below, and the gain is very little as the g-polynomial for matroids
with loops or coloops vanishes by definition.

Definition 3.1. LetM be a loopless and coloopless Schubert matroid onE, having upper pathU .
Assume that the rank of M is r and the size of the groundset is n. The admissible Delannoy
paths associated to M are all the paths starting at (1, 1), ending at (n− r, r), having steps of the
form +(1, 0), +(0, 1), or +(1, 1), and satisfying the following requirements:

(i) The paths stay within the lattice path representation of M, i.e., they do not go above U .

(ii) An intermediate step of the form +(0, 1) is valid only if it does not yield a vertical overlap
with the upper path U .

(iii) An intermediate step of the form +(1, 1) is valid only when the step +(0, 1) is valid.

Let us work out some examples and non-examples to get familiar and grasp the meaning of
the above definition.

Example 3.2. Consider E = {1, 2, . . . , 10} and U = {1, 2, 4, 7, 9}. From left to right, we have
in Figure 3.1 two Delannoy lattice paths that are not admissible, followed by two admissible
examples. The first path has a vertical overlap with U at the fourth step, and thus violates con-
dition (ii) of the definition. The second path does not overlap U but at the third step performs
a +(1, 1) movement precisely when it is prohibited, because doing a +(0, 1) would yield a ver-
tical overlap, this violates condition (iii). The two remaining examples are admissible: notice
that in the third of the four paths we do have an overlap with U but it is not vertical.

3.2. Subdivisions into direct sums of series-parallel matroids

As was pointed out in [FS22, Section 5.2], lattice path matroids (and, in particular, Schubert
matroids) can be subdivided into direct sums of series-parallel matroids. This can be achieved
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Figure 3.1: Two non-examples (left) and two examples (right).

by performing a sequence of hyperplane splits. Not all matroids enjoy the property of having
a subdivision into series-parallel matroids; in fact, some matroids cannot be subdivided at all,
for example the graphic matroid K4 induced by the complete graph on 4 vertices — it has β-
invariant equal to 2, hence it is not series-parallel, and does not admit any subdivisions into
smaller matroid polytopes.

Theorem 3.3. Let M be a loopless and coloopless Schubert matroid on E. There exists a subdi-
visionSofP(M) into base polytopes of series-parallel matroids. Moreover, there is a bijectionφ
between the internal faces of Swith the set of all admissible Delannoy paths associated to M.
This bijection has the following properties:

(i) The facets of the subdivision Scorrespond to paths with no diagonal steps.

(ii) More generally, for each matroid N corresponding to an internal face of S, the number of
connected components c(N) of N satisfies that c(N)− 1 is the number of diagonal steps of
the Delannoy path associated to N.

Proof. We will use a result of Chatelain and Ramı́rez-Alfonsı́n [CRA11, Section 2.2], also ap-
pearing in Bidkhori’s thesis [Bid10, Lemma 4.3.5] and [FS22, Proposition 5.11]. A Schubert
matroid admits a subdivision in which all the facets are base polytopes of “snakes” (also known
as “border strips”). These correspond to all connected lattice path matroids of rank r = rk(M)
and size n = |E| whose representation sits inside the representation of M and do not contain
interior lattice points (see, e.g., Figure 3.2). We map each of these snakes bijectively to an ad-
missible Delannoy path without diagonal steps by looking at what the upper path of the snake
looks like and removing the first step (which is always +(0, 1)) and the last step (which is al-
ways +(1, 0)), and placing it with origin at (1, 1)); cf. Figure 3.3 to see the admissible Delannoy
paths associated to the three snakes of Figure 3.2.

Figure 3.2: A Schubert matroid and the three snakes of the described subdivision.

The admissible Delannoy paths (without diagonal steps) of these three snakes are depicted
in Figure 3.3

Clearly this is a bijection from the facets of the subdivision to the admissible Delannoy paths
without diagonals. Now, since the subdivision is a sequence of hyperplane splits, the remaining
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Figure 3.3: Admissible Delannoy paths without diagonals.

faces of the subdivision have diagrams which consist of intersections of some pair of the facets2.
For example, the diagrammatic intersection of the last two snakes in Figure 3.2 is given by the
lattice path matroid depicted on the left of Figure 3.4

Figure 3.4: On the left, a face of the subdivision obtained by intersecting two snakes. On the
right, its associated admissible Delannoy path.

For each (valid) intersection of some pair of snakes, the diagonal steps of our Delannoy
path will be determined by the steps at which the diagram of the intersection “breaks” (see,
e.g., the right picture on Figure 3.4). That the map described so far between the faces of the
subdivision and the admissible Delannoy paths is a bijection, can be deduced from the fact that a
Delannoy path is admissible if and only if replacing each+(1, 1) by a+(0, 1) followed by+(0, 1)
yields an admissible Delannoy path without diagonal steps, and hence corresponding to a snake,
and the same happens with the path obtained by replacing each +(1, 1) by a +(1, 0) followed
by a +(0, 1); of course the intersection of the two mentioned snakes would correspond to the
admissible Delannoy path we started with.

Theorem 3.4. Let M be a loopless and coloopless Schubert matroid. The g-polynomial of M is
given by:

gM(x) =

rk(M)∑
i=1

ci t
i,

where ci counts the number of admissible Delannoy paths associated to M having exactly i− 1
diagonal steps.

Proof. Since all snakes are series-parallel matroids (and they are not single loops/coloops), their
g-polynomial is t. By condition (ii) in the preceding Theorem, each face of the subdivision is in
bijection with an admissible Delannoy path and moreover, the number of connected components
is enumerated by one plus the number of diagonal steps; this tells that the g-polynomial of the
corresponding face is tc where c is one plus the number of diagonal steps. The g-polynomial is
covaluative under matroid polytope subdivisions, thus the result follows.

2A caveat is that not all pairs of snakes will yield a diagrammatic intersection corresponding to a valid lattice
path matroid of the same rank and cardinality of the original matroid. For example, in a 3× 3 rectangle, consider
the snake having diagram the first column and the first row and the snake having as diagram the bottom row with
the last column. These two intersect in the bottom left and the top right square. This does not correspond to a lattice
path matroid.
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Example 3.5. Consider the uniform matroid Ur,n, it is a Schubert matroid using U = {1, . . . , r}
on E = {1, . . . , n}. The lattice path presentation of this matroid is a rectangle with ver-
tices (0, 0), (n−r, 0), (n−r, r) and (0, r). Essentially all Delannoy paths from (1, 1) to (n−r, r)
(without any restrictions!) are admissible. If we fix the number of diagonal steps, say i, we have
that each Delannoy path from (1, 1) to (n − r, r) corresponds to a words of length n − 2 − i
of symbols N (north), E (east) and D (diagonal), having exactly i occurrences of the symbol D,
exactly r − 1 − i occurrences of the symbol N and exactly n − r − 1 − i occurrences of the
symbol E. We have

(
n−2−i

i

)
possibilities of where the symbols D can be positioned, and among

the rest we have
(
n−2−2i
r−1−i

)
of where to put the symbols N. In particular,

gUr,n(t) =

min(r−1,n−r−1)∑
i=0

(
n− 2− i

i

)(
n− 2− 2i

r − 1− i

)
ti+1. (3.1)

After expanding the binomial coefficients and some simplifications, this coincides with the for-
mula derived by Speyer in [Spe09, Proposition 10.1].

A key observation of Speyer in his proof of the case i = 1 of Conjecture 1.1 is that the linear
term of the g-polynomial is precisely the β-invariant (see Ardila’s ICM survey [Ard22, p. 13]
for a brief outline, or [Spe08, Theorem 3.1]). We can retrieve this fact from Theorem 3.3.

Corollary 3.6. For every matroid M on at least 2 elements we have that the linear term of gM(t)
coincides with the β-invariant of M.

Proof. Since the β-invariant is a covaluation3, and the linear coefficient of the g-polynomial is
a covaluation too, by Theorem 2.4 it suffices to show that the statement that we want to prove
holds for Schubert matroids. Using Crapo’s formula for the Tutte polynomial,

TM(x, y) =
∑
B basis

xi(B) ye(B),

(see [Cra69]), since the β-invariant is given by the coefficient of x0y1 in the Tutte polynomial,
we have

β(M) = #{B basis of M : i(B) = 0, e(B) = 1}.

For Schubert matroids, in light of Proposition 2.2 this means that the β-invariant is counting
lattice paths from (0, 0) to (n−r, r) having +(1, 0) and +(0, 1) steps and starting with a +(1, 0)
followed by a +(0, 1), and not intersecting U in a vertical step. Ignoring the first two steps, this
is the same as an admissible Delannoy path without diagonals steps, and hence Theorem 3.3
tells us that this coincides with the linear term of the g-polynomial.

Remark 3.7. Although the g-polynomial is not a specification of the Tutte polynomial, we point
out that the Tutte polynomial “remembers” more than just the linear term of g. A result of
Merino, De Mier and Noy [MdMN01] proves that the Tutte polynomial of a connected matroid
does not factor over the integers (nor the complex numbers), hence it encodes the number of

3It is a valuation too, as it vanishes for disconnected matroids.



combinatorial theory 3 (3) (2023), #13 13

Figure 3.5: The lattice path representations of Catr for r = 1, 2, 3, 4, 5.

connected components of M. This recovers (i) the degree of the least non-zero coefficient of
the g-polynomial, because g is multiplicative and the linear term of g on a connected matroid is
strictly positive (because it coincides with the β-invariant, which only vanishes for disconnected
matroids), and (ii) the evaluation of gM(t) at t = −1, which is (−1)c(M). It would be very
interesting to understand if there are other properties of the g-polynomial encoded (in some
form) in the Tutte polynomial.

Example 3.8. Let us consider the Catalan matroid of rank r [Ard03], denotedCatr. It hasn = 2r
elements, it is a Schubert matroid, and admits a lattice path presentation as in Figure 3.5. In
this case, an admissible Delannoy path corresponds to the notion of Schröder path under the
requirement of not having +(1, 1) steps on the diagonal y = x. These numbers are listed in
the OEIS A033282 [Slo23], and coincide with the f -vectors of associahedra (see Table 5.1).
Interestingly, denoting g̃M(t) :=

1
t
gM(t), for each r ⩾ 2 we have:

g̃Catr(t− 1) = Nr−2(t) = (r − 2)-th Narayana polynomial.

4. A reinterpretation of the Delannoy paths

Our goal now is to get rid of the lattice path terminology, in order to provide an expression for
the g-polynomial only in terms of basis activities. That this can be done is a priori plausible due
to Proposition 2.2.

Let us fix a Schubert matroid M of size n and rank r. Now consider an arbitrary (i.e., not
necessarily admissible) Delannoy path P from (1, 1) to (n − r, r) that stays inside the lattice
path representation of M. We now describe a criterion to test the admissibility of P . Create a
basis of M associated to P , denoted by BP , and described as a lattice path as follows: path(BP )
starts with an east step followed by a north step, then the remaining steps are the same as P but
replacing each diagonal step by a north step followed by an east step.

Figure 4.1: A Delannoy path P in red and the associated basis BP in blue.
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Lemma 4.1. A Delannoy path P as described above is determined by the basis BP and the
information of where the diagonal steps were performed. Moreover, the path P is admissible if
and only if the basis BP has internal activity 0 and external activity 1.

Proof. This follows readily from the definitions and Proposition 2.2.

Now, the let us fix a basis B having internal activity 0 and external activity 1. The idea is to
think of B as a putative BP for some admissible P , and list all the possible admissible P . To this
end, observe that the diagonal steps of such a P are allowed appear only whenever B has a north
step followed by an east step (these two steps would be replaced to create a diagonal step in P ),
but only after the first two steps of B which are by definition anchored as always being +(1, 0)
and then +(0, 1). More precisely, this means considering elements i ∈ B such that i + 1 /∈ B
and i > 2. More succinctly, the possible diagonal steps might appear at the elements of the
following set:

{i ∈ B : B′ := (B ∖ {i}) ∪ {i+ 1} ∈ B and e(B′) = 1, i(B′) = 0} .

This motivates the following definition.
Definition 4.2. Let M = (E,B) be a matroid on an (ordered) ground set E. For simplicity,
assume that E = [n] and that the order is given by 1 < 2 < · · · < n. For each basis B of M we
define:

α(B) := # {i ∈ B : B′ := (B ∖ {i}) ∪ {i+ 1} ∈ B and e(B′) = e(B), i(B′) = i(B)} .

For example, for the Schubert matroid of Figure 4.1 and the basis corresponding the path
depicted in blue, i.e., B = {2, 3, 5, 8, 10}, the elements contributing to α(B) are {3, 5, 8} so
that α(B) = 3.

By leveraging all the preceding observations and notions, we are in position to prove the
following statement.
Theorem 4.3. Let M be a loopless and coloopless Schubert matroid. Then, the g-polynomial
of M is given by

gM(t) = t
∑
B∈B

e(B)=1
i(B)=0

(t+ 1)α(B).

Proof. Let us fix a basis B having external activity 1 and internal activity 0. Each pair of con-
secutive steps of the form +(0, 1) and +(1, 0) after the second step can be turned into a diagonal
movement, thus producing an admissible Delannoy path. Conversely, each admissible Delannoy
path will arise in this way by taking B = BP and interchanging the necessary “north + east”
steps to diagonals to recover P . Each basis B has exactly α(B) occurrences of a north step fol-
lowed by an east step. Fixing the number of diagonals we want to produce, say i, we have

(
α(B)
i

)
different admissible Delannoy paths inducing the same B = BP . In particular, Theorem 3.3
translates into:

gM(t) =
∑
B

α(B)∑
i=0

(
α(B)

i

)
ti+1 =

∑
B

t(t+ 1)α(B),

as desired.
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There is no reason to hope that the same statement will hold for general matroids. In fact,
it does not as the reader might verify by considering basically any non-Schubert matroid. What
is much more surprising, however, is that not only we see explicitly the non-negativity of the
coefficients of g-polynomial (predicted by Speyer’s result, as Schubert matroids are representable
over the complex numbers), but also a stronger phenomenon is true.

Corollary 4.4. For each matroid, let us denote g̃M(t) := 1
t
gM(t). If M is a Schubert matroid we

have that g̃M(t− 1) has non-negative coefficients.

One informal way of thinking about the above statement is that g̃M(t) behaves as the f -
vector of a “Cohen–Macaulay complex”. Due to a result of Speyer [Spe09, Proposition 6.4],
for a connected matroid we always have that g̃M(−1) = 1. We also have g̃M(0) = β(M).
In particular, for an arbitrary connected matroid, the polynomial g̃M(t − 1) has constant term
equal to 1 and the sum of its coefficients is the β-invariant. However, we mention explicitly
that the non-negativity property stated in the preceding corollary fails for non-Schubert ma-
troids. The smallest connected example is the Fano matroid. We have gM(t) = 3t3 + 5t2 + 3t,
and g̃M(t−1) = 3t2−t+1. A connected representable example is the matroidR8 (see Table 5.1).
Remark 4.5. This provides an example of a covaluation arising “in nature” that is
non-negative at all Schubert matroids but fails to be positive in general. If, on the other
hand, the reader is interested on valuations having this property, we suggest considering the
mapM 7→ rk(M)+1−#{cyclic flats of M}; for Schubert matroids this is trivially non-negative,
whereas for matroids in general it will attain negative values (the fact that this is a valuation is not
obvious, but follows from the techniques of Derksen and Fink [DF10] or, alternatively, Ferroni
and Schröter [FS22]).

We conjecture, however, that this positivity phenomenon persists for connected matroids that
can be subdivided into direct sums of series-parallel matroids. We also raise the challenge of
giving a combinatorial characterization of all matroids admitting such subdivisions.

Conjecture 4.6. Let M be a connected matroid whose base polytope admits a subdivision into
direct sums of series-parallel matroids. Then g̃M(t− 1) has non-negative coefficients.

The general scheme of our proof is possible to extend to arbitrary lattice path matroids, at
the expense of imposing additional restrictions to the notion of admissibility on the Delannoy
paths. What seems much more challenging is proving that positroids always admit subdivisions
into series-parallel matroids and satisfy the non-negativity property of g̃M(t− 1). It is not clear
to the authors whether the methods of Speyer and Williams in [SW21] might yield a proof of
(at least) the first assertion —i.e, that positroids always can be subdivided into direct sums of
series-parallel matroids. We suspect that much interesting combinatorics might be discovered
by trying to understand the analogue of our “admissible Delannoy paths” via the different com-
binatorial ways of representing a positroid (e.g., plabic graphs, Grassmann necklaces, decorated
permutations, etc. [Oh11]). The case of transversal and cotransversal matroids is also of inter-
est; notice that the classes of transversal matroids and positroids differ (cf. [Mar19, Section 6]).
In [FR15] Fink and Rincón studied matroidal subdivisions of transversal matroid polytopes. One
can (perhaps more ambitiously) ask for a characterization of all matroids whose base polytope
admits a subdivision into series-parallel matroids.
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5. An algorithm for general matroids

Now we focus on computing the coefficients a1, . . . , as and the Schubert matroids M1, . . . ,Ms in
equation (2.2). This can be done by following either an approach due to Derksen and Fink [DF10]
or, alternatively, Hampe [Ham17]. We will follow the approach of Hampe, as it is more conve-
nient to our purposes.

If M is a matroid on the ground set E and P(M) denotes the base polytope, we define the
indicator function,

1P(M)(x) =

{
1 x ∈ P(M)

0 otherwise

If S is a subdivision of P(M) into matroid polytopes, via inclusion-exclusion, we obtain the
valuative relation:

1P(M) =
∑
P∈S◦

(−1)dimP(M)−dimP1P,

where S◦ stands for the interior faces of the subdivision S. Notice how in Section 2 covaluations
behaved additively.

We will denote by Val(E) the Z-module spanned by all matroids on E and modding out over
all valuative relations. The abelian group Val(E) is canonically isomorphic to the integer span
of all indicator functions of matroid polytopes on E via the map [M] 7→ 1P(M).

If one further identifies classes of matroids inVal(E)whenever their base polytopes differ by
translations, one obtains the polytope algebra of McMullen [McM89] for matroids on E, which
we will denote by AE — here we are leveraging implicitly a result of Derksen and Fink [DF10,
Theorem 3.5], which proves that strong valuations and weak valuations agree for the class of base
polytopes of matroids. We refer to [EHL23, Appendix A] for more details about the interaction
of all these concepts in the framework of matroids.

For a fixed abelian groupA, anyZ-module homomorphismVal(E) → A can be thought of as
a valuation for matroids on E; correspondingly a Z-module homomorphism AE → A stands for
a translation invariant valuation. Observe that two matroid polytopes onE, sayP(M) andP(N),
are related by a translation if and only if the matroid N is obtained from the matroid M by replac-
ing loops by coloops or viceversa. If a matroid M has no loops nor coloops, the translation class
of the base polytope P(M) contains only one polytope. A result by Derksen and Fink [DF10]
guarantees that Val(E) has as basis the set of all classes of Schubert matroids on E, whereas AE

has as basis the set of all classes of loopless Schubert matroids on E.

Definition 5.1. Let M be a matroid and let Z(M) be its lattice of cyclic flats. The cyclic chain
lattice of M is defined as the lattice CZ(M) whose elements are all the chains of Z(M) that
contain the minimal 0Z and maximal 1Z element of the lattice Z(M); and an additional top
element, denoted by 1̂.

It can be proved that CZ is in fact a lattice. Consider the Möbius function of this poset,
as in Stanley [Sta12, Chapter 3]. To each element C ∈ CZ(M) we can associate the
number λC = −µ(C, 1̂). Furthermore, since each of these elements C is a chain of cyclic flats,
there is a unique Schubert matroid SC whose lattice of cyclic flats coincides with C. Observe
that M and all of the matroids SC share the same sets of loops and coloops.
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Theorem 5.2. Let M be a matroid without loops and coloops. Then,

1P(M) =
∑

C∈CZ(M)

C̸=1̂

λC 1P(SC).

Proof. Let us denote by E = {1, . . . , n} the ground set of the matroid M. By a result of Hampe
[Ham17, Theorem 3.12], one has an equality in the “intersection ring of matroids” Mn,

BM =
∑

C∈CZ(M)

C̸=1̂

λC BSC . (5.1)

Here BM stands for the Bergman class of M, and analogously for BSC . It follows from Berget,
Eur, Spink and Tseng [BEST23, Section 7] that the assignmentM 7→ BM is a translation invariant
valuation (alternatively, one can prove this by more elementary means by relying on the “catenary
data” studied by Bonin and Kung [BK18]). In particular, this tells that there is a Z-module
homomorphism AE → Mn given by [M] → BM. Since both rings AE and Mn have bases
given all loopless Schubert matroids on E, this homomorphism is actually an isomorphism. In
particular, equation (5.1) gives the following equality in AE:

[M] =
∑

C∈CZ(M)

C̸=1̂

λC [SC]. (5.2)

SinceM is loopless and coloopless, thenP(M) is the unique element in its translation class. Since
all the Schubert matroids SC appearing in the above sum are also loopless and coloopless, they
are unique in their translation classes as well. Hence, we can lift the above statement to Val(E)
(and hence, via the canonical isomorphism [M] 7→ 1P(M), to the span of indicator functions of
matroids), as desired.

We can turn the above result into a statement about indicator functions of interiors by apply-
ing the Euler map of McMullen [McM89], thus obtaining:

Corollary 5.3. Let M be a matroid without loops and coloops. Then,

1P(M)◦ =
∑

C∈CZ(M)

C̸=1̂

(−1)c(M)−c(SC)λC 1P(SC)◦ .

Since the g-polynomial is a covaluation, the above statement translates into the g-polynomial
of an arbitrary matroid M be:

gM(t) =
∑

C∈CZ(M)

C̸=1̂

(−1)c(M)−c(SC)λC gSC(t).

Notice that since the g-polynomial is multiplicative under direct sums of matroids, we can
restrict ourselves to the case in which M is connected, i.e., c(M) = 1. Also, notice that for a
Schubert matroid SC, being disconnected means that it has loops or coloops; therefore gSC(t) = 0
whenever c(SC) > 1. Combining all these observations we obtain:
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Corollary 5.4. Let M be a connected matroid, M ̸∼= U0,1,U1,1. Then,

gM(t) =
∑

C∈CZ(M)

C̸=1̂

λC gSC(t).

We provide the following pseudocode that can be used to compute the g-polynomial of an
arbitrary matroid.

input: An arbitrary matroid M
output: The g-polynomial of M
Function g polynomial(M):

if M has loops or coloops then
return 0

end
if M is disconnected then

ans = 1
for N connected component of M do

ans = ans · g polynomial(N)
end
return ans

end
else

ans = 0
for C ∈ CZ(M) do

λ = −µ(C, 1̂)
SC = Schubert matroid associated to C
aux = 0
for B basis of SC do

if e(B) = 1 and i(B) = 0 then
aux = aux+ t · (t+ 1)α(B)

end
end
ans = ans+λ · aux

end
return ans

end

Together with this manuscript, the reader might find a zip file with an implementation on
SAGE of the above algorithm. This can be used to compute within some minutes the g-polynomial
of all matroids up to 9 elements. We included in Table 5.1 the g-polynomials of several matroids,
calculated using the above procedure, the notation is that of Oxley’s catalogue [Oxl11], with one
extra graphic matroid that we denote by K1,2,3 and comes from the complete tripartite graph with
parts of sizes 1, 2 and 3. Some of these calculations had been done by Speyer in [Spe09] using
the original K-theoretic framework; of course, in all such cases our results coincide with his.
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size rank g-polynomial g̃(t− 1)

K4 6 3 t3 + 2t2 + 2t t2 + 1

K5 10 4 5t4 + 15t3 + 15t2 + 6t 5t3 + 1

Fano 7 3 3t3 + 5t2 + 3t 3t2 − t+ 1

NonFano 7 3 3t3 + 6t2 + 4t 3t2 + 1

Vámos 8 4 t4 + 12t3 + 25t2 + 15t t3 + 9t2 + 4t+ 1

O7 7 3 2t3 + 5t2 + 4t 2t2 + t+ 1

AG(3, 2)′ 8 4 t4 + 12t3 + 17t2 + 7t t3 + 9t2 − 4t+ 1

F8 8 4 t4 + 12t3 + 18t2 + 8t t3 + 9t2 − 3t+ 1

L8 8 4 t4 + 12t3 + 22t2 + 12t t3 + 9t2 + t+ 1

P8 8 4 t4 + 12t3 + 20t2 + 10t t3 + 9t2 − t+ 1

R8 8 4 t4 + 12t3 + 18t2 + 8t t3 + 9t2 − 3t+ 1

T8 8 4 t4 + 12t3 + 19t2 + 9t t3 + 9t2 − 2t+ 1

K3,3 9 5 4t4 + 12t3 + 12t2 + 5t 4t3 + 1

TicTacToe 9 5 4t4 + 30t3 + 52t2 + 27t 4t3 + 18t2 + 4t+ 1

Block 9–4 9 4 4t4 + 30t3 + 42t2 + 17t 4t3 + 18t2 − 6t+ 1

Block 10–5 10 5 t5 + 20t4 + 90t3 + 104t2 + 34t t4 + 16t3 + 36t2 − 20t+ 1

Pappus 9 3 10t3 + 21t2 + 12t 10t2 + t+ 1

NonPappus 9 3 10t3 + 22t2 + 13t 10t2 + 2t+ 1

AG(3, 2) 8 4 t4 + 12t3 + 16t2 + 6t t3 + 9t2 − 5t+ 1

AG(2, 3) 9 3 10t3 + 18t2 + 9t 10t2 − 2t+ 1

J 8 4 t4 + 6t3 + 10t2 + 6t t3 + 3t2 + t+ 1

W3 6 3 t3 + 2t2 + 2t t2 + 1

W4 8 4 t4 + 4t3 + 5t2 + 3t t3 + t2 + 1

W5 10 5 t5 + 5t4 + 10t3 + 9t2 + 4t t4 + t3 + t2 + 1

K1,2,3 11 5 2t5 + 12t4 + 24t3 + 20t2 + 7t 2t4 + 4t3 + 1

Cat1 2 1 t 1

Cat2 4 2 t 1

Cat3 6 3 t2 + 2t t+ 1

Cat4 8 4 t3 + 5t2 + 5t t2 + 3t+ 1

Cat5 10 5 t4 + 9t3 + 21t2 + 14t t3 + 6t2 + 6t+ 1

Table 5.1: g-polynomials of some matroids.
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